A QUESTION ABOUT THE PARISI FUNCTIONAL

DMITRY PANCHENKO ${ }^{1}$
Department of Mathematics
Massachusetts Institute of Technology
77 Massachusetts Ave, 2-181
Cambridge, MA, 02139
email: panchenk@math.mit.edu

Submitted 30 December 2004, accepted in final form 19 July 2005
AMS 2000 Subject classification: 60K35, 82B44
Keywords: Spin glasses, the Parisi formula.

Abstract

We conjecture that the Parisi functional in the Sherrington-Kirkpatrick model is convex in the functional order parameter. We prove a partial result that shows the convexity along "one-sided" directions. An interesting consequence of this result is the log-convexity of L_{m} norm for a class of random variables.

1 A problem and some results.

Let \mathcal{M} be a set of all nondecreasing and right-continuous functions $m:[0,1] \rightarrow[0,1]$. Let us consider two convex smooth functions Φ and $\xi: \mathbb{R} \rightarrow \mathbb{R}$ both symmetric, $\Phi(-x)=\Phi(x)$ and $\xi(-x)=\xi(x)$, and $\Phi(0)=\xi(0)=0$. We will also assume that Φ is of moderate growth so that all integrals below are well defined.
Given $m \in \mathcal{M}$, consider a function $\Phi(q, x)$ for $q \in[0,1], x \in \mathbb{R}$ such that $\Phi(1, x)=\Phi(x)$ and

$$
\begin{equation*}
\frac{\partial \Phi}{\partial q}=-\frac{1}{2} \xi^{\prime \prime}(q)\left(\frac{\partial^{2} \Phi}{\partial x^{2}}+m(q)\left(\frac{\partial \Phi}{\partial x}\right)^{2}\right) \tag{1.1}
\end{equation*}
$$

Let us consider a functional $\mathcal{P}: \mathcal{M} \rightarrow \mathbb{R}$ defined by $\mathcal{P}(m)=\Phi(0, h)$ for some $h \in \mathbb{R}$.
Main question: Is \mathcal{P} a convex functional on \mathcal{M} ?
The same question was asked in [7]. Unfortunately, despite considerable effort, we were not able to give complete answer to this question. In this note we will present a partial result that shows convexity along the directions $\lambda m+(1-\lambda) n$ when $m(q) \geq n(q)$ for all $q \in[0,1]$. It is possible that the answer to this question lies in some general principle that we are not aware of. A good starting point would be to find an alternative proof of the simplest case of constant m given in Corollary 1 below.

[^0]The functional \mathcal{P} arises in the Sherrington-Kirkpatrick mean field model where with the choice of $\Phi(x)=\log \operatorname{ch} x$, the following Parisi formula

$$
\begin{equation*}
\inf _{m \in \mathcal{M}}\left(\log 2+\mathcal{P}(m)-\frac{1}{2} \int_{0}^{1} m(q) q \xi^{\prime \prime}(q) d q\right) \tag{1.2}
\end{equation*}
$$

gives the free energy of the model. A rigorous proof of this result was given by Michel Talagrand in [5]. Since the last term is a linear functional of m, convexity of $\mathcal{P}(m)$ would imply the uniqueness of the functional order parameter $m(q)$ that minimizes (1.2). A particular case of $\xi(x)=\beta^{2} x^{2} / 2$ for $\beta>0$ would also be of interest since it corresponds to the original SK model [2].
In the case when m is a step function, the solution of (1.1) can be written explicitly, since for a constant m the function $g(q, x)=\exp m \Phi(q, x)$ satisfies the heat equation

$$
\frac{\partial g}{\partial q}=-\frac{1}{2} \xi^{\prime \prime}(q) \frac{\partial^{2} g}{\partial x^{2}}
$$

Given $k \geq 1$, let us consider a sequence

$$
0=m_{0} \leq m_{1} \leq \ldots \leq m_{k}=1
$$

and a sequence

$$
q_{0}=0 \leq q_{1} \leq \ldots \leq q_{k} \leq q_{k+1}=1
$$

We will denote $\boldsymbol{m}=\left(m_{0}, \ldots, m_{k}\right)$ and $\boldsymbol{q}=\left(q_{0}, \ldots, q_{k+1}\right)$. Let us define a function $m \in \mathcal{M}$ by

$$
\begin{equation*}
m(q)=m_{l} \text { for } q_{l} \leq q<q_{l+1} \tag{1.3}
\end{equation*}
$$

For this step function $\mathcal{P}(m)$ can be defined as follows. Let us consider a sequence of independent Gaussian random variables $\left(z_{l}\right)_{0 \leq l \leq k}$ such that

$$
\mathbb{E} z_{l}^{2}=\xi^{\prime}\left(q_{l+1}\right)-\xi^{\prime}\left(q_{l}\right)
$$

Define $\Phi_{k+1}(x)=\Phi(x)$ and recursively over $l \geq 0$ define

$$
\begin{equation*}
\Phi_{l}(x)=\frac{1}{m_{l}} \log \mathbb{E}_{l} \exp m_{l} \Phi_{l+1}\left(x+z_{l}\right) \tag{1.4}
\end{equation*}
$$

where \mathbb{E}_{l} denotes the expectation in $\left(z_{i}\right)_{i \geq l}$ and in the case of $m_{l}=0$ this means $\Phi_{l}(x)=$ $\mathbb{E}_{l} \Phi_{l+1}\left(x+z_{l}\right)$. Then $\mathcal{P}(m)$ for m in (1.3) is be given by

$$
\begin{equation*}
\mathcal{P}_{k}=\mathcal{P}_{k}(\boldsymbol{m}, \boldsymbol{q})=\Phi_{0}(h) . \tag{1.5}
\end{equation*}
$$

For simplicity of notations, we will sometimes omit the dependence of \mathcal{P}_{k} on \boldsymbol{q} and simply write $\mathcal{P}_{k}(\boldsymbol{m})$. Let us consider another sequence $\boldsymbol{n}=\left(n_{0}, \ldots, n_{k}\right)$ such that

$$
0=n_{0} \leq n_{1} \leq \ldots \leq n_{k}=1
$$

The following is our main result.
Theorem 1 If $n_{j} \leq m_{j}$ for all j or $n_{j} \geq m_{j}$ for all j then

$$
\begin{equation*}
\mathcal{P}_{k}(\boldsymbol{n})-\mathcal{P}_{k}(\boldsymbol{m}) \geq \nabla \mathcal{P}_{k}(\boldsymbol{m}) \cdot(\boldsymbol{n}-\boldsymbol{m})=\sum_{0 \leq j \leq k} \frac{\partial \mathcal{P}_{k}}{\partial m_{j}}(\boldsymbol{m})\left(n_{j}-m_{j}\right) \tag{1.6}
\end{equation*}
$$

Remark. In Theorem 1 one does not have to assume that the coordinates of vectors \boldsymbol{m} and \boldsymbol{n} are bounded by 1 or arranged in an increasing order. The proof requires only slight modifications which for simplicity will be omitted.
Since the functional \mathcal{P} is uniformly continuous on \mathcal{M} with respect to L_{1} norm (see [1] or [7]), approximating any function by the step functions implies that \mathcal{P} is continuous along the directions $\lambda m+(1-\lambda) n$ when $m(q) \geq n(q)$ for all $q \in[0,1]$.
Of course, (1.6) implies that $\mathcal{P}_{k}(\boldsymbol{m})$ is convex in each coordinate. This yields an interesting consequence for the simplest case of a constant function $m(q)=m$, which formally corresponds to the case of $k=2$,

$$
0=m_{0} \leq m \leq m_{2}=1 \text { and } 0=q_{0}=q_{1} \leq q_{2}=q_{3}=1
$$

In this case,

$$
\begin{equation*}
\mathcal{P}_{k}=f(m)=\frac{1}{m} \log \mathbb{E} \exp m \Phi(h+\sigma z) \tag{1.7}
\end{equation*}
$$

Here $\sigma^{2}=\xi^{\prime}(1)$ can be made arbitrary by the choice of ξ. (1.6) implies the following.
Corollary 1 If $\Phi(x)$ is convex and symmetric them $f(m)$ defined in (1.7) is convex.
Corollary 1 implies that the L_{m} norm of $\exp \Phi(h+\sigma z)$ is log-convex in m. This is a stronger statement than the well-known consequence of Hölder's inequality that the L_{m} norm is always log-convex in $1 / m$. At this point it does not seem obvious how to give an easier proof even in the simplest case of Corollary 1 than the one we give below. For example, it is not clear how to show directly that

$$
f^{\prime \prime}(m)=m^{-3}\left(\mathbb{E} V \log ^{2} V-(\mathbb{E} V \log V)^{2}-2 \mathbb{E} V \log V\right) \geq 0
$$

where $V=\exp m(\Phi(h+\sigma z)-f(m))$.
Finally, let us note some interesting consequences of the convexity of $f(m)$. First, $f^{\prime \prime}(0) \geq 0$ implies that the third cumulant of $\eta=\Phi(h+\sigma z)$ is nonnegative,

$$
\begin{equation*}
\mathbb{E} \eta^{3}-3 \mathbb{E} \eta^{2} \mathbb{E} \eta+2(\mathbb{E} \eta)^{3} \geq 0 \tag{1.8}
\end{equation*}
$$

Another interesting consequence of Corollary 1 is the following. If we define by continuity $f(0)=\mathbb{E} \eta=\mathbb{E} \Phi(h+\sigma z)$ and write $\lambda=\lambda \cdot 1+(1-\lambda) \cdot 0$ then convexity of $f(m)$ implies

$$
\begin{equation*}
\mathbb{E} \exp (\lambda \eta) \leq(\mathbb{E} \exp \eta)^{\lambda^{2}} \exp (\lambda(1-\lambda) \mathbb{E} \eta) \tag{1.9}
\end{equation*}
$$

If $A=\log \mathbb{E} \exp (\eta-\mathbb{E} \eta)<\infty$ then Chebyshev's inequality and (1.9) imply that

$$
\mathbb{P}(\eta \geq \mathbb{E} \eta+t) \leq \mathbb{E} \exp (\lambda \eta-\lambda \mathbb{E} \eta-\lambda t) \leq \exp \left(\lambda^{2} A-\lambda t\right)
$$

and minimizing over $\lambda \in[0,1]$ we get,

$$
\mathbb{P}(\eta \geq \mathbb{E} \eta+t) \leq\left\{\begin{array}{cc}
\exp \left(-t^{2} / 4 A\right), & t \leq 2 A \tag{1.10}\\
\exp (A-t), & t \geq 2 A
\end{array}\right.
$$

This result can be slightly generalized.
Corollary 2 If $\eta=\Phi(|\boldsymbol{h}+\boldsymbol{z}|)$ for some $\boldsymbol{h} \in \mathbb{R}^{n}$ and standard Gaussian $\boldsymbol{z} \in \mathbb{R}^{n}$ then the function $m^{-1} \log \mathbb{E} \exp m \eta$ is convex in m and, thus, (1.9) and (1.10) hold.

The proof follows along the lines of the proof of Corollary 1 (or Theorem 1 in the simplest case of Corollary 1) and will be omitted.

2 Proof of Theorem 1.

The proof of Theorem 1 will be based on the following observations. First of all, we will compute the derivative of \mathcal{P}_{k} with respect to q_{l}. We will need the following notations. For $0 \leq l \leq k$ we define

$$
\begin{equation*}
V_{l}=V_{l}\left(x, z_{l}\right)=\exp m_{l}\left(\Phi_{l+1}\left(x+z_{l}\right)-\Phi_{l}(x)\right) \tag{2.1}
\end{equation*}
$$

Let $Z=h+z_{0}+\ldots+z_{k}$ and $Z_{l}=h+z_{0}+\ldots+z_{l-1}$ and define

$$
X_{l}=\Phi_{l}\left(Z_{l}\right) \text { and } W_{l}=V_{l}\left(Z_{l}, z_{l}\right)=\exp m_{l}\left(X_{l+1}-X_{l}\right)
$$

Then the following holds.
Lemma 1 For $1 \leq l \leq k$, we have,

$$
\begin{equation*}
\frac{\partial \mathcal{P}_{k}}{\partial q_{l}}=-\frac{1}{2}\left(m_{l}-m_{l-1}\right) \xi^{\prime \prime}\left(q_{l}\right) U_{l} \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{l}=U_{l}(\boldsymbol{m}, \boldsymbol{q})=\mathbb{E} W_{1} \ldots W_{l-1}\left(\mathbb{E}_{l} W_{l} \ldots W_{k} \Phi^{\prime}(Z)\right)^{2} \tag{2.3}
\end{equation*}
$$

Proof. The proof can be found in Lemma 3.6 in [7] (with slightly different notations).
It turns out that the function U_{l} is nondecreasing in each m_{j} which is the main ingredient in the proof of Theorem 1.

Theorem 2 For any $1 \leq l \leq k$ the function U_{l} defined in (2.3) is nondecreasing in each m_{j} for $1 \leq j \leq k$.

First, let us show how Lemma 1 and Theorem 2 imply Theorem 1.
Proof of Theorem 1. Let us assume that $n_{j} \leq m_{j}$ for all $j \leq k$. The opposite case can be handled similarly. If we define

$$
\boldsymbol{m}^{l}=\left(n_{0}, \ldots, n_{l}, m_{l+1}, \ldots, m_{k}\right)
$$

then

$$
\mathcal{P}_{k}(\boldsymbol{n})-\mathcal{P}_{k}(\boldsymbol{m})=\sum_{0 \leq l \leq k}\left(\mathcal{P}_{k}\left(\boldsymbol{m}^{l}\right)-\mathcal{P}_{k}\left(\boldsymbol{m}^{l-1}\right)\right)
$$

We will prove that

$$
\begin{equation*}
\mathcal{P}_{k}\left(\boldsymbol{m}^{l}\right)-\mathcal{P}_{k}\left(\boldsymbol{m}^{l-1}\right) \geq \frac{\partial \mathcal{P}_{k}(\boldsymbol{m})}{\partial m_{l}}\left(n_{l}-m_{l}\right) \tag{2.4}
\end{equation*}
$$

which, obviously, will prove Theorem 1. Let us consider vectors

$$
\boldsymbol{m}_{+}^{l}=\left(n_{0}, \ldots, n_{l}, m_{l}, m_{l+1}, \ldots, m_{k}\right)
$$

and

$$
\boldsymbol{q}^{l}(t)=\left(q_{0}, \ldots, q_{l}, q_{l+1}(t), q_{l+1}, q_{l+2}, \ldots, q_{k}\right)
$$

where $q_{l+1}(t)=q_{l}+t\left(q_{l+1}-q_{l}\right)$. Notice that we inserted one coordinate in vectors \boldsymbol{m}^{l} and \boldsymbol{q}. For $0 \leq t \leq 1$, we consider

$$
\varphi(t)=\mathcal{P}_{k+1}\left(\boldsymbol{m}_{+}^{l}, \boldsymbol{q}^{l}(t)\right)
$$

It is easy to see that $\varphi(t)$ interpolates between $\varphi(1)=\mathcal{P}_{k}\left(\boldsymbol{m}^{l}\right)$ and $\varphi(0)=\mathcal{P}_{k}\left(\boldsymbol{m}^{l-1}\right)$. By Lemma 1,

$$
\varphi^{\prime}(t)=-\frac{1}{2}\left(m_{l}-n_{l}\right) \xi^{\prime \prime}\left(q_{l+1}(t)\right) U_{l+1}
$$

where U_{l+1} is defined in terms of \boldsymbol{m}_{+}^{l} and $\boldsymbol{q}^{l}(t)$. Next, let us consider

$$
\boldsymbol{m}_{\varepsilon}^{l}=\left(m_{0}, \ldots, m_{l-1}, m_{l}-\varepsilon\left(m_{l}-n_{l}\right), m_{l}, m_{l+1}, \ldots, m_{k}\right)
$$

and define

$$
\varphi_{\varepsilon}(t)=\mathcal{P}_{k+1}\left(\boldsymbol{m}_{\varepsilon}^{l}, \boldsymbol{q}^{l}(t)\right)
$$

First of all, we have $\varphi_{\varepsilon}(0)=\mathcal{P}_{k}(\boldsymbol{m})$ and $\varphi_{\varepsilon}(1)=\mathcal{P}_{k}\left(\boldsymbol{m}_{\varepsilon}\right)$, where

$$
\boldsymbol{m}_{\varepsilon}=\left(m_{0}, \ldots, m_{l-1}, m_{l}-\varepsilon\left(m_{l}-n_{l}\right), m_{l+1}, \ldots, m_{k}\right)
$$

Again, by Lemma 1,

$$
\varphi_{\varepsilon}^{\prime}(t)=-\frac{1}{2} \varepsilon\left(m_{l}-n_{l}\right) \xi^{\prime \prime}\left(q_{l+1}(t)\right) U_{l+1}^{\varepsilon}
$$

where U_{l+1}^{ε} is defined in terms of $\boldsymbol{m}_{\varepsilon}^{l}$ and $\boldsymbol{q}^{l}(t)$. It is obvious that for $\varepsilon \in[0,1]$ each coordinate of $\boldsymbol{m}_{\varepsilon}^{l}$ is not smaller than the corresponding coordinate of \boldsymbol{m}^{l} and, therefore, Theorem 2 implies that $U_{l+1} \leq U_{l+1}^{\varepsilon}$. This implies

$$
\frac{1}{\varepsilon} \varphi_{\varepsilon}^{\prime}(t) \leq \varphi^{\prime}(t)
$$

and, therefore,

$$
\frac{1}{\varepsilon}\left(\varphi_{\varepsilon}(1)-\varphi_{\varepsilon}(0)\right) \leq \varphi(1)-\varphi(0)
$$

which is the same as

$$
\frac{1}{\varepsilon}\left(\mathcal{P}_{k}\left(\boldsymbol{m}_{\varepsilon}\right)-\mathcal{P}_{k}(\boldsymbol{m})\right) \leq \mathcal{P}_{k}\left(\boldsymbol{m}^{l}\right)-\mathcal{P}_{k}\left(\boldsymbol{m}^{l-1}\right) .
$$

Letting $\varepsilon \rightarrow 0$ implies (2.4) and this finishes the proof of Theorem 1.

3 Proof of Theorem 2.

Let us start by proving some preliminary results. Consider two classes of (smooth enough) functions

$$
\begin{equation*}
\mathcal{C}=\left\{f: \mathbb{R} \rightarrow[0, \infty): f(-x)=f(x), f^{\prime}(x) \geq 0 \text { for } x \geq 0\right\} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{C}^{\prime}=\left\{f: \mathbb{R} \rightarrow[0, \infty): f(-x)=-f(x), f^{\prime}(x) \geq 0 \text { for } x \geq 0\right\} \tag{3.2}
\end{equation*}
$$

The next Lemma describes several facts that will be useful in the proof of Theorem 2.

Lemma 2 For all $1 \leq l \leq k$ and $V_{l}=V_{l}\left(x, z_{l}\right)$ defined in (2.1) we have, (a) $\Phi_{l}(x)$ is convex, $\Phi_{l}(x) \in \mathcal{C}$ and

$$
\Phi_{l}^{\prime}(x)=\mathbb{E}_{l} V_{l} \ldots V_{k} \Phi^{\prime}\left(x+z_{l}+\ldots+z_{k}\right) \in \mathcal{C}^{\prime}
$$

(b) If $f_{1} \in \mathcal{C}$ and $f_{2} \in \mathcal{C}^{\prime}$ then for $x \geq 0$

$$
\mathbb{E}_{l} V_{l} f_{1}\left(x+z_{l}\right) f_{2}\left(x+z_{l}\right) \geq \mathbb{E}_{l} V_{l} f_{1}\left(x+z_{l}\right) \mathbb{E}_{l} V_{l} f_{2}\left(x+z_{l}\right)
$$

(c) If $f(-x)=-f(x)$ and $f(x) \geq 0$ for $x \geq 0$ then $g(x)=\mathbb{E}_{l} V_{l} f\left(x+z_{l}\right)$ is such that

$$
g(-x)=-g(x) \text { and } g(x) \geq 0 \text { if } x \geq 0
$$

(d) If $f \in \mathcal{C}$ then $\mathbb{E}_{l} V_{l} f\left(x+z_{l}\right) \in \mathcal{C}$. (e) If $f \in \mathcal{C}^{\prime}$ then $\mathbb{E}_{l} V_{l} f\left(x+z_{l}\right) \in \mathcal{C}^{\prime}$.
(f) $f(x)=\mathbb{E}_{l} V_{l} \log V_{l} \in \mathcal{C}$.

Proof. (a) Since Φ_{k+1} is convex, symmetric and nonnegative then $\Phi_{l}(x)$ is convex, symmetric and nonnegative by induction on l in (1.4). Convexity is the consequence of Hölder's inequality and the symmetry follows from the symmetry of Φ_{l+1} and the symmetry of the Gaussian distribution. Obviously, this implies that $\Phi_{l}^{\prime}(x) \in \mathcal{C}^{\prime}$.
(b) Let z_{l}^{\prime} be an independent copy of z_{l} and, for simplicity of notations, let $\sigma^{2}=\mathbb{E} z_{l}^{2}$. Since $\mathbb{E}_{l} V_{l}=1$ (i.e. we can think of V_{l} as the change of density), we can write,

$$
\begin{align*}
& \mathbb{E}_{l} V_{l} f_{1}\left(x+z_{l}\right) f_{2}\left(x+z_{l}\right)-\mathbb{E}_{l} V_{l} f_{1}\left(x+z_{l}\right) \mathbb{E}_{l} V_{l} f_{2}\left(x+z_{l}\right)= \tag{3.3}\\
= & \mathbb{E}_{l} V_{l}\left(x, z_{l}\right) V_{l}\left(x, z_{l}^{\prime}\right)\left(f_{1}\left(x+z_{l}\right)-f_{1}\left(x+z_{l}^{\prime}\right)\right)\left(f_{2}\left(x+z_{l}\right)-f_{2}\left(x+z_{l}^{\prime}\right)\right) I\left(z_{l} \geq z_{l}^{\prime}\right)
\end{align*}
$$

Since $V_{l}\left(x, z_{l}\right) V_{l}\left(x, z_{l}^{\prime}\right)=\exp m_{l}\left(\Phi_{l}\left(x+z_{l}\right)+\Phi_{l}\left(x+z_{l}^{\prime}\right)-2 \Phi_{l}(x)\right)$, if we make the change of variables $s=x+z_{l}$ and $t=x+z_{l}^{\prime}$ then the right hand side of (3.3) can be written as

$$
\begin{equation*}
\frac{1}{2 \pi \sigma^{2}} \exp \left(-2 m_{l} \Phi_{l}(x)\right) \int_{\{s \geq t\}} K(s, t) \exp \left(-\frac{1}{2 \sigma^{2}}\left((s-x)^{2}+(t-x)^{2}\right)\right) d s d t \tag{3.4}
\end{equation*}
$$

where

$$
K(s, t)=\exp m_{l}\left(\Phi_{l}(s)+\Phi_{l}(t)\right)\left(f_{1}(s)-f_{1}(t)\right)\left(f_{2}(s)-f_{2}(t)\right)
$$

We will split the region of integration $\{s \geq t\}=\Omega_{1} \cup \Omega_{2}$ in the last integral into two disjoint sets

$$
\Omega_{1}=\{(s, t): s \geq t,|s| \geq|t|\}, \quad \Omega_{2}=\{(s, t): s \geq t,|s|<|t|\}
$$

In the integral over Ω_{2} we will make the change of variables $s=-v, t=-u$ so that for $(s, t) \in \Omega_{2}$ we have $(u, v) \in \Omega_{1}$ and $d s d t=d u d v$. Also,

$$
K(s, t)=K(-v,-u)=-K(u, v)
$$

since Φ_{l} is symmetric by (a), $f_{1} \in \mathcal{C}, f_{2} \in \mathcal{C}^{\prime}$ and, therefore,

$$
\left(f_{1}(-v)-f_{1}(-u)\right)\left(f_{2}(-v)-f_{2}(-u)\right)=-\left(f_{1}(u)-f_{1}(v)\right)\left(f_{2}(u)-f_{2}(v)\right)
$$

Therefore,
$\int_{\Omega_{2}} K(s, t) \exp \left(-\frac{1}{2 \sigma^{2}}\left((s-x)^{2}+(t-x)^{2}\right)\right) d s d t=-\int_{\Omega_{1}} K(u, v) \exp \left(-\frac{1}{2 \sigma^{2}}\left((u+x)^{2}+(v+x)^{2}\right)\right) d u d v$
and (3.4) can be rewritten as

$$
\begin{equation*}
\frac{1}{2 \pi \sigma^{2}} \exp \left(-2 m_{l} \Phi_{l}(x)\right) \int_{\Omega_{1}} K(s, t) L(s, t, x) d s d t \tag{3.5}
\end{equation*}
$$

where

$$
L(s, t, x)=\exp \left(-\frac{1}{2 \sigma^{2}}\left((s-x)^{2}+(t-x)^{2}\right)\right)-\exp \left(-\frac{1}{2 \sigma^{2}}\left((s+x)^{2}+(t+x)^{2}\right)\right) .
$$

Since $f_{1} \in \mathcal{C}$, for $(s, t) \in \Omega_{1}$ we have $f_{1}(s)-f_{1}(t)=f_{1}(|s|)-f_{1}(|t|) \geq 0$. Moreover, since for $(s, t) \in \Omega_{1}$ we have $t \leq s$, the fact that $f_{2} \in \mathcal{C}^{\prime}$ implies that $f_{2}(s)-f_{2}(t) \geq 0$. Combining these two observations we get that $K(s, t) \geq 0$ on Ω_{1}. Finally, for $(s, t) \in \Omega_{1}$ we have $L(s, t, x) \geq 0$ because

$$
(s-x)^{2}+(t-x)^{2} \leq(s+x)^{2}+(t+x)^{2} \Longleftrightarrow x(s+t) \geq 0,
$$

and the latter holds because $x \geq 0$ and $s+t \geq 0$ on Ω_{1}. This proves that (3.5), (3.4) and, therefore, the right hand side of (3.3) are nonnegative.
(c) Let $g(x)=\mathbb{E}_{l} V_{l}\left(x, z_{l}\right) f\left(x+z_{l}\right)$. Then

$$
g(-x)=\mathbb{E}_{l} V_{l}\left(-x, z_{l}\right) f\left(-x+z_{l}\right)=\mathbb{E}_{l} V\left(-x,-z_{l}\right) f\left(-x-z_{l}\right)=-\mathbb{E}_{l} V_{l}\left(x, z_{l}\right) f\left(x+z_{l}\right)=-g(x) .
$$

Next, if $x \geq 0$ and $\sigma^{2}=\mathbb{E}_{l} z_{l}^{2}$ then

$$
\begin{aligned}
g(x)= & \exp \left(-m_{l} \Phi_{l}^{\prime}(x)\right) \mathbb{E}_{l} \exp \left(m_{l} \Phi_{l+1}\left(x+z_{l}\right)\right) f\left(x+z_{l}\right)=\exp \left(-m_{l} \Phi_{l}^{\prime}(x)\right) \frac{1}{\sqrt{2 \pi} \sigma} \times \\
& \times \int_{s \geq 0} \exp \left(m_{l} \Phi_{l+1}(s)\right) f(s)\left(\exp \left(-\frac{1}{2 \sigma^{2}}(x-s)^{2}\right)-\exp \left(-\frac{1}{2 \sigma^{2}}(x+s)^{2}\right)\right) d s \geq 0
\end{aligned}
$$

because $(x-s)^{2} \leq(x+s)^{2}$ for $x, s \geq 0$ and $f(s) \geq 0$ for $s \geq 0$.
(d) Take $f \in \mathcal{C}$. Positivity of $\mathbb{E}_{l} V_{l} f\left(x+z_{l}\right)$ is obvious and symmetry follows from

$$
\begin{equation*}
\mathbb{E}_{l} V_{l}\left(-x, z_{l}\right) f\left(-x+z_{l}\right)=\mathbb{E}_{l} V_{l}\left(-x,-z_{l}\right) f\left(-x-z_{l}\right)=\mathbb{E}_{l} V_{l}\left(x, z_{l}\right) f\left(x+z_{l}\right) . \tag{3.6}
\end{equation*}
$$

Let $x \geq 0$. Recalling the definition (2.1), the derivative

$$
\frac{\partial}{\partial x} \mathbb{E}_{l} V_{l}\left(x, z_{l}\right) f\left(x+z_{l}\right)=\mathrm{I}+m_{l} \mathrm{II}
$$

where $\mathrm{I}=\mathbb{E}_{l} V_{l}\left(x, z_{l}\right) f^{\prime}\left(x+z_{l}\right)$ and

$$
\begin{aligned}
\mathrm{II} & =\mathbb{E}_{l} V_{l}\left(x, z_{l}\right) f\left(x+z_{l}\right)\left(\Phi_{l+1}^{\prime}\left(x+z_{l}\right)-\Phi_{l}^{\prime}(x)\right) \\
& =\mathbb{E}_{l} V_{l}\left(x, z_{l}\right) f\left(x+z_{l}\right) \Phi_{l+1}^{\prime}\left(x+z_{l}\right)-\mathbb{E}_{l} V_{l}\left(x, z_{l}\right) f\left(x+z_{l}\right) \mathbb{E}_{l} V_{l} \Phi_{l+1}^{\prime}\left(x+z_{l}\right),
\end{aligned}
$$

since (1.4) yields that $\Phi_{l}^{\prime}(x)=\mathbb{E}_{l} V_{l}\left(x, z_{l}\right) \Phi_{l+1}^{\prime}\left(x+z_{l}\right)$. By (a), $\Phi_{l+1}^{\prime} \in \mathcal{C}^{\prime}$, and since $f \in \mathcal{C}$, (b) implies that $\mathrm{II} \geq 0$. The fact that $\mathrm{I} \geq 0$ for $x \geq 0$ follows from (c) because $f^{\prime}(-x)=-f^{\prime}(x)$ and $f^{\prime}(x) \geq 0$ for $x \geq 0$.
(e) Take $f \in \mathcal{C}^{\prime}$. Antisymmetry of $\mathbb{E}_{l} V_{l} f\left(x+z_{l}\right)$ follows from

$$
\mathbb{E}_{l} V_{l}\left(-x, z_{l}\right) f\left(-x+z_{l}\right)=\mathbb{E}_{l} V_{l}\left(-x,-z_{l}\right) f\left(-x-z_{l}\right)=-\mathbb{E}_{l} V_{l}\left(x, z_{l}\right) f\left(x+z_{l}\right)
$$

As in (d), the derivative can be written as

$$
\frac{\partial}{\partial x} \mathbb{E}_{l} V_{l}\left(x, z_{l}\right) f\left(x+z_{l}\right)=\mathrm{I}+m_{l} \mathrm{II}
$$

where $\mathrm{I}=\mathbb{E}_{l} V_{l}\left(x, z_{l}\right) f^{\prime}\left(x+z_{l}\right)$ and

$$
\mathrm{II}=\mathbb{E}_{l} V_{l}\left(x, z_{l}\right) f\left(x+z_{l}\right) \Phi_{l+1}^{\prime}\left(x+z_{l}\right)-\mathbb{E}_{l} V_{l}\left(x, z_{l}\right) f\left(x+z_{l}\right) \mathbb{E}_{l} V_{l} \Phi_{l+1}^{\prime}\left(x+z_{l}\right)
$$

First of all, $\mathrm{I} \geq 0$ because $f^{\prime} \geq 0$ for $f \in \mathcal{C}^{\prime}$. As in (3.3) we can write

$$
\mathrm{II}=\mathbb{E}_{l} V_{l}\left(x, z_{l}\right) V_{l}\left(x, z_{l}^{\prime}\right)\left(f\left(x+z_{l}\right)-f\left(x+z_{l}^{\prime}\right)\right)\left(\Phi_{l+1}^{\prime}\left(x+z_{l}\right)-\Phi_{l+1}^{\prime}\left(x+z_{l}^{\prime}\right)\right) I\left(z_{l} \geq z_{l}^{\prime}\right)
$$

But both f and Φ_{l+1}^{\prime} are in the class \mathcal{C}^{\prime} and, therefore, both nondecreasing which, obviously, implies that they are similarly ordered, i.e. for all $a, b \in \mathbb{R}$,

$$
\begin{equation*}
(f(a)-f(b))\left(\Phi_{l+1}^{\prime}(a)-\Phi_{l+1}^{\prime}(b)\right) \geq 0 \tag{3.7}
\end{equation*}
$$

and as a result $\mathrm{II} \geq 0$.
(f) Symmetry of $g(x)=\mathbb{E}_{l} V_{l} \log V_{l}$ follows as above and positivity follows from Jensen's inequality, convexity of $x \log x$ and the fact that $\mathbb{E}_{l} V_{l}=1$. Next, using that $\Phi_{l}^{\prime}(x)=\mathbb{E}_{l} V_{l} \Phi_{l+1}^{\prime}(x+$ z_{l}) we can write

$$
\begin{aligned}
g^{\prime}(x) & =m_{l} \mathbb{E}_{l}\left(1+\log V_{l}\right) V_{l}\left(\Phi_{l+1}^{\prime}\left(x+z_{l}\right)-\Phi_{l}^{\prime}(x)\right) \\
& =m_{l}^{2} \mathbb{E}_{l} V_{l}\left(\Phi_{l+1}\left(x+z_{l}\right)-\Phi_{l}(x)\right)\left(\Phi_{l+1}^{\prime}\left(x+z_{l}\right)-\Phi_{l}^{\prime}(x)\right) \\
& =m_{l}^{2} \mathbb{E}_{l} V_{l} \Phi_{l+1}\left(x+z_{l}\right)\left(\Phi_{l+1}^{\prime}\left(x+z_{l}\right)-\Phi_{l}^{\prime}(x)\right) \\
& =m_{l}^{2}\left(\mathbb{E}_{l} V_{l} \Phi_{l+1}\left(x+z_{l}\right) \Phi_{l+1}^{\prime}\left(x+z_{l}\right)-\mathbb{E}_{l} V_{l} \Phi_{l+1}\left(x+z_{l}\right) \mathbb{E}_{l} V_{l} \Phi_{l+1}^{\prime}\left(x+z_{l}\right)\right)
\end{aligned}
$$

Since $\Phi_{l+1} \in \mathcal{C}$ and $\Phi_{l+1}^{\prime} \in \mathcal{C}^{\prime},(\mathrm{b})$ implies that for $x \geq 0, g^{\prime}(x) \geq 0$ and, therefore, $g \in \mathcal{C}$.

Proof of Theorem 2.

We will consider two separate cases.
Case 1. $j \leq l-1$. First of all, using Lemma 2 (a) we can rewrite U_{l} as

$$
U_{l}=\mathbb{E} W_{1} \ldots W_{l-1} f_{l}\left(Z_{l}\right)
$$

where

$$
\begin{equation*}
f_{l}(x)=\left(\Phi_{l}^{\prime}(x)\right)^{2} \in \mathcal{C} \text { since } \Phi_{l}^{\prime}(x) \in \mathcal{C}^{\prime} \tag{3.8}
\end{equation*}
$$

Using that

$$
X_{j}=\frac{1}{m_{j}} \log \mathbb{E}_{j} \exp m_{j} X_{j+1}
$$

we get

$$
\frac{\partial X_{j}}{\partial m_{j}}=\frac{1}{m_{j}} \mathbb{E}_{j} W_{j} X_{j+1}-\frac{1}{m_{j}^{2}} \log \mathbb{E}_{j} \exp m_{j} X_{j+1}=\frac{1}{m_{j}} \mathbb{E}_{j} W_{j}\left(X_{j+1}-X_{j}\right)
$$

For $p \leq j$, we get

$$
\frac{\partial X_{p}}{\partial m_{j}}=\frac{1}{m_{j}} \mathbb{E}_{p} W_{p} \ldots W_{j}\left(X_{j+1}-X_{j}\right)
$$

and for $p>j, X_{p}$ does not depend on m_{j}. Therefore,

$$
\begin{aligned}
& \frac{\partial}{\partial m_{j}} W_{1} \ldots W_{l-1}=\frac{\partial}{\partial m_{j}} \exp \left(\sum_{p \leq l-1} m_{p}\left(X_{p+1}-X_{p}\right)\right) \\
& =W_{1} \ldots W_{l-1}\left(\left(X_{j+1}-X_{j}\right)-\frac{1}{m_{j}} \sum_{p \leq j}\left(m_{p}-m_{p-1}\right) \mathbb{E}_{p} W_{p} \ldots W_{j}\left(X_{j+1}-X_{j}\right)\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
m_{j} \frac{\partial U_{l}}{\partial m_{j}}= & m_{j} \mathbb{E} W_{1} \ldots W_{l-1} f_{l}\left(Z_{l}\right)\left(X_{j+1}-X_{j}\right) \\
& -\sum_{p \leq j}\left(m_{p}-m_{p-1}\right) \mathbb{E} W_{1} \ldots W_{l-1} f_{l}\left(Z_{l}\right) \mathbb{E}_{p} W_{p} \ldots W_{j}\left(X_{j+1}-X_{j}\right)
\end{aligned}
$$

If we denote $f_{j}\left(Z_{j+1}\right)=\mathbb{E}_{j+1} W_{j+1} \ldots W_{l-1} f_{l}\left(Z_{l}\right)$ then we can rewrite

$$
\begin{align*}
m_{j} \frac{\partial U_{l}}{\partial m_{j}}= & m_{j} \mathbb{E} W_{1} \ldots W_{j} f_{j}\left(Z_{j+1}\right)\left(X_{j+1}-X_{j}\right) \tag{3.9}\\
& -\sum_{p \leq j}\left(m_{p}-m_{p-1}\right) \mathbb{E} W_{1} \ldots W_{p-1} \mathbb{E}_{p} W_{p} \ldots W_{j} f_{j}\left(Z_{j+1}\right) \mathbb{E}_{p} W_{p} \ldots W_{j}\left(X_{j+1}-X_{j}\right)
\end{align*}
$$

First of all, let us show that

$$
\begin{equation*}
\mathbb{E}_{j} W_{j} f_{j}\left(Z_{j+1}\right)\left(X_{j+1}-X_{j}\right) \geq \mathbb{E}_{j} W_{j} f_{j}\left(Z_{j+1}\right) \mathbb{E}_{j} W_{j}\left(X_{j+1}-X_{j}\right) \tag{3.10}
\end{equation*}
$$

Since X_{j} does not depend on z_{j} and $\mathbb{E}_{j} W_{j}=1$, this is equivalent to

$$
\begin{equation*}
\mathbb{E}_{j} W_{j} f_{j}\left(Z_{j+1}\right) X_{j+1} \geq \mathbb{E}_{j} W_{j} f_{j}\left(Z_{j+1}\right) \mathbb{E}_{j} W_{j} X_{j+1} \tag{3.11}
\end{equation*}
$$

Here f_{j} and X_{j+1} are both functions of $Z_{j+1}=Z_{j}+z_{j}$. Since by (3.8), $f_{l}\left(Z_{l}\right)$ seen as a function of Z_{l} is in \mathcal{C}, applying Lemma $2(\mathrm{~d})$ inductively we get that $f_{j}\left(Z_{j+1}\right)$ seen as a function of Z_{j+1} is also in \mathcal{C}. By Lemma 2 (a), X_{j+1} seen as a function of Z_{j+1} is also in \mathcal{C}. Therefore, f_{j} and X_{j+1} are similarly ordered i.e.

$$
\left(f_{j}\left(Z_{j+1}\right)-f_{j}\left(Z_{j+1}^{\prime}\right)\right)\left(X_{j+1}\left(Z_{j+1}\right)-X_{j+1}\left(Z_{j+1}^{\prime}\right)\right) \geq 0
$$

and, therefore, using the same trick as in (3.3) we get (3.11) and, hence, (3.10). By Lemma 2 (d), $\mathbb{E}_{j} W_{j} f_{j}\left(Z_{j+1}\right)$ seen as a function of Z_{j} is in \mathcal{C} and by Lemma $2(\mathrm{f}), \mathbb{E}_{j} W_{j}\left(X_{j+1}-X_{j}\right)=$ $m_{j}^{-1} \mathbb{E}_{j} W_{j} \log W_{j}$ seen as a function of Z_{j} is also in \mathcal{C}. Therefore, they are similarly ordered and again

$$
\mathbb{E}_{p} W_{p} \ldots W_{j-1} \mathbb{E}_{j} W_{j} f_{j}\left(Z_{j+1}\right) \mathbb{E}_{j} W_{j}\left(X_{j+1}-X_{j}\right) \geq \mathbb{E}_{p} W_{p} \ldots W_{j} f_{j}\left(Z_{j+1}\right) \mathbb{E}_{p} W_{p} \ldots W_{j}\left(X_{j+1}-X_{j}\right)
$$

Combining this with (3.10) implies that
$\mathbb{E} W_{1} \ldots W_{j} f_{j}\left(Z_{j+1}\right)\left(X_{j+1}-X_{j}\right) \geq \mathbb{E} W_{1} \ldots W_{p-1} \mathbb{E}_{p} W_{p} \ldots W_{j} f_{j}\left(Z_{j+1}\right) \mathbb{E}_{p} W_{p} \ldots W_{j}\left(X_{j+1}-X_{j}\right)$.

Since $m_{j}=\sum_{p \leq j}\left(m_{p}-m_{p-1}\right)$, this and (3.9) imply that $\partial U_{l} / \partial m_{j} \geq 0$ which completes the proof of Case 1 .

Case 2. $j \geq l$. If we denote

$$
g_{l}=g_{l}\left(Z_{l}\right)=\mathbb{E}_{l} W_{l} \ldots W_{l} \Phi^{\prime}(Z), \quad f_{l}=f_{l}\left(Z_{l}\right)=g_{l}^{2}
$$

then a straightforward calculation similar to the one leading to (3.9) gives

$$
\begin{align*}
m_{j} \frac{\partial U_{l}}{\partial m_{j}}= & -\sum_{p \leq l-1}\left(m_{p}-m_{p-1}\right) \mathbb{E} W_{1} \ldots W_{l-1} f_{l} \mathbb{E}_{p} W_{p} \ldots W_{j}\left(X_{j+1}-X_{j}\right) \\
& -\left(2 m_{l}-m_{l-1}\right) \mathbb{E} W_{1} \ldots W_{l-1} f_{l} \mathbb{E}_{l} W_{l} \ldots W_{j}\left(X_{j+1}-X_{j}\right) \\
& -\sum_{l+1 \leq p \leq j} 2\left(m_{p}-m_{p-1}\right) \mathbb{E} W_{1} \ldots W_{l-1} g_{l} \mathbb{E}_{l} W_{l} \ldots W_{k} \Phi^{\prime}(Z) \mathbb{E}_{p} W_{p} \ldots W_{j}\left(X_{j+1}-X_{j}\right) \\
& +2 m_{j} \mathbb{E} W_{1} \ldots W_{l-1} g_{l} \mathbb{E}_{l} W_{l} \ldots W_{k} \Phi^{\prime}(Z)\left(X_{j+1}-X_{j}\right) \tag{3.12}
\end{align*}
$$

To show that this is positive we notice that

$$
2 m_{j}=\sum_{p \leq l-1}\left(m_{p}-m_{p-1}\right)+\left(2 m_{l}-m_{l-1}\right)+\sum_{l+1 \leq p \leq j} 2\left(m_{p}-m_{p-1}\right)
$$

and we will show that the last term with factor $2 m_{j}$ is bigger than all other terms with negative factors. If we denote

$$
h\left(Z_{j+1}\right)=\mathbb{E}_{j+1} W_{j+1} \ldots W_{k} \Phi^{\prime}(Z)
$$

then since $\Phi^{\prime} \in \mathcal{C}^{\prime}$, using Lemma $2(\mathrm{e})$ inductively, we get that $h\left(Z_{j+1}\right)$ seen as a function of Z_{j+1} is in \mathcal{C}^{\prime}. Each term in the third line of (3.12) (without the factor $2\left(m_{p}-m_{p-1}\right)$) can be rewritten as

$$
\begin{equation*}
\mathbb{E} W_{1} \ldots W_{l-1} g_{l} \mathbb{E}_{l} W_{l} \ldots W_{p-1} \mathbb{E}_{p} W_{p} \ldots W_{j} h\left(Z_{j+1}\right) \mathbb{E}_{p} W_{p} \ldots W_{j}\left(X_{j+1}-X_{j}\right) \tag{3.13}
\end{equation*}
$$

the term in the second line of (3.12) (without the factor $2 m_{l}-m_{l-1}$)) is equal to (3.13) for $p=l$, and the term in the fourth line (without $2 m_{j}$) can be written as

$$
\begin{equation*}
\mathbb{E} W_{1} \ldots W_{l-1} g_{l} \mathbb{E}_{l} W_{l} \ldots W_{j} h\left(Z_{j+1}\right)\left(X_{j+1}-X_{j}\right) \tag{3.14}
\end{equation*}
$$

We will show that (3.14) is bigger than (3.13) for $l \leq p \leq j$. This is rather straightforward using Lemma 2. Notice that $g_{l}=g_{l}\left(Z_{l}\right)$ seen as a function of Z_{l} is in \mathcal{C}^{\prime} by Lemma 2 (a). If we define for $l \leq p \leq j$,

$$
r_{p}\left(Z_{l}\right)=\mathbb{E}_{l} W_{l} \ldots W_{p-1} \mathbb{E}_{p} W_{p} \ldots W_{j} h\left(Z_{j+1}\right) \mathbb{E}_{p} W_{p} \ldots W_{j}\left(X_{j+1}-X_{j}\right)
$$

and

$$
r\left(Z_{l}\right)=\mathbb{E}_{l} W_{l} \ldots W_{j} h\left(Z_{j+1}\right)\left(X_{j+1}-X_{j}\right)
$$

then the difference of (3.14) and (3.13) is

$$
\begin{equation*}
\mathbb{E} W_{1} \ldots W_{l-1} g_{l}\left(Z_{l}\right)\left(r\left(Z_{l}\right)-r_{p}\left(Z_{l}\right)\right) \tag{3.15}
\end{equation*}
$$

Using the argument similar to (3.6) (and several other places above), it should be obvious that $r_{p}\left(-Z_{l}\right)=-r_{p}\left(Z_{l}\right)$ since X_{i} 's are symmetric and h is antisymmetric. Similarly, $r\left(-Z_{l}\right)=$ $-r\left(Z_{l}\right)$. Therefore, if we can show that

$$
\begin{equation*}
r\left(Z_{l}\right)-r_{p}\left(Z_{l}\right) \geq 0 \text { for } Z_{l} \geq 0 \tag{3.16}
\end{equation*}
$$

then, since $g_{l} \in \mathcal{C}^{\prime}$, we would get that

$$
g_{l}\left(Z_{l}\right)\left(r\left(Z_{l}\right)-r_{p}\left(Z_{l}\right)\right) \geq 0 \text { for all } Z_{l}
$$

and this would prove that (3.15) is nonnegative. Let us first show that (3.16) holds for $p=j$. In this case, since X_{j} does not depend on z_{j} and, therefore, $\mathbb{E}_{j} W_{j} X_{j}=X_{j},(3.16)$ is equivalent to

$$
\begin{equation*}
\mathbb{E}_{l} W_{l} \ldots W_{j-1} \mathbb{E}_{j} W_{j} h\left(Z_{j+1}\right) X_{j+1} \geq \mathbb{E}_{l} W_{l} \ldots W_{j-1} \mathbb{E}_{j} W_{j} h\left(Z_{j+1}\right) \mathbb{E}_{j} W_{j} X_{j+1} \tag{3.17}
\end{equation*}
$$

for $Z_{l} \geq 0$. Let us define

$$
\Delta_{j}\left(Z_{j}\right)=\mathbb{E}_{j} W_{j} h\left(Z_{j+1}\right) X_{j+1}-\mathbb{E}_{j} W_{j} h\left(Z_{j+1}\right) \mathbb{E}_{j} W_{j} X_{j+1}
$$

As above, $\Delta_{j}\left(-Z_{j}\right)=-\Delta_{j}\left(Z_{j}\right)$ and by Lemma $2(\mathrm{~b}), \Delta_{j}\left(Z_{j}\right) \geq 0$ for $Z_{j} \geq 0$, since $h \in \mathcal{C}^{\prime}$ and $X_{j+1} \in \mathcal{C}$. Therefore, by Lemma 2 (c),

$$
\Delta_{j-1}\left(Z_{j-1}\right):=\mathbb{E}_{j-1} W_{j-1} \Delta_{j}\left(Z_{j-1}+z_{j}\right) \geq 0 \text { if } Z_{j-1} \geq 0
$$

and, easily, $\Delta_{j-1}\left(-Z_{j-1}\right)=-\Delta_{j-1}\left(Z_{j-1}\right)$. Therefore, if for $i \geq l$ we define

$$
\Delta_{i}\left(Z_{i}\right)=\mathbb{E}_{i} W_{i} \Delta_{i+1}\left(Z_{i}+z_{i}\right)
$$

we can proceed by induction to show that $\Delta_{i}\left(-Z_{i}\right)=-\Delta_{i}\left(Z_{i}\right)$ and $\Delta_{i}\left(Z_{i}\right) \geq 0$ for $Z_{i} \geq 0$. For $i=l$ this proves (3.17) and, therefore, (3.16) for $p=j$. Next, we will show that

$$
\begin{equation*}
r_{p+1}\left(Z_{l}\right)-r_{p}\left(Z_{l}\right) \geq 0 \text { for } Z_{l} \geq 0 \tag{3.18}
\end{equation*}
$$

for all $l \leq p<j$, and this, of course, will prove (3.16). If we define

$$
f_{1}\left(Z_{p+1}\right)=\mathbb{E}_{p+1} W_{p+1} \ldots W_{j} h\left(Z_{j+1}\right) \text { and } f_{2}\left(Z_{p+1}\right)=\mathbb{E}_{p+1} W_{p+1} \ldots W_{j}\left(X_{j+1}-X_{j}\right)
$$

then (3.18) can be rewritten as

$$
\mathbb{E}_{l} W_{l} \ldots W_{p-1} \mathbb{E}_{p} W_{p} f_{1}\left(Z_{p+1}\right) f_{2}\left(Z_{p+1}\right) \geq \mathbb{E}_{l} W_{l} \ldots W_{p-1} \mathbb{E}_{p} W_{p} f_{1}\left(Z_{p+1}\right) \mathbb{E}_{p} f_{2}\left(Z_{p+1}\right) \text { for } Z_{l} \geq 0
$$

Since $h\left(Z_{j+1}\right) \in \mathcal{C}^{\prime}$, recursive application of Lemma $2(\mathrm{e})$ implies that $f_{1}\left(Z_{p+1}\right) \in \mathcal{C}^{\prime}$. Since $\mathbb{E}_{j} W_{j}\left(X_{j+1}-X_{j}\right)=m_{j}^{-1} \mathbb{E}_{j} W_{j} \log W_{j}$ seen as a function of Z_{j} is in \mathcal{C} by Lemma 2 (f), recursive application of Lemma $2(\mathrm{~d})$ implies that $f_{2}\left(Z_{p+1}\right) \in \mathcal{C}$. If we now define

$$
\Delta_{p}\left(Z_{p}\right)=\mathbb{E}_{p} W_{p} f_{1}\left(Z_{p+1}\right) f_{2}\left(Z_{p+1}\right)-\mathbb{E}_{p} W_{p} f_{1}\left(Z_{p+1}\right) \mathbb{E}_{p} W_{p} f_{2}\left(Z_{p+1}\right)
$$

then, as above, $\Delta_{p}\left(-Z_{p}\right)=-\Delta_{p}\left(Z_{p}\right)$ and by Lemma $2(\mathrm{~b}), \Delta_{p}\left(Z_{p}\right) \geq 0$ for $Z_{p} \geq 0$, since $f_{1} \in \mathcal{C}^{\prime}$ and $f_{2} \in \mathcal{C}$. Therefore, by Lemma 2 (c),

$$
\Delta_{p-1}\left(Z_{p-1}\right):=\mathbb{E}_{p-1} W_{p-1} \Delta_{p}\left(Z_{p-1}+p_{j}\right) \geq 0 \text { if } Z_{p-1} \geq 0
$$

and, easily, $\Delta_{p-1}\left(-Z_{p-1}\right)=-\Delta_{p-1}\left(Z_{p-1}\right)$. Therefore, if for $i \geq l$ we define

$$
\Delta_{i}\left(Z_{i}\right)=\mathbb{E}_{i} W_{i} \Delta_{i+1}\left(Z_{i}+z_{i}\right)
$$

we can proceed by induction to show that $\Delta_{i}\left(-Z_{i}\right)=-\Delta_{i}\left(Z_{i}\right)$ and $\Delta_{i}\left(Z_{i}\right) \geq 0$ for $Z_{i} \geq 0$. For $i=l$ this proves (3.18). Thus, we finally proved that (3.14) is bigger than (3.13) for $p \geq l$. To
prove that (3.12) is nonnegative it remains to show that each term in the first line of (3.12) (without the factor $-\left(m_{p}-m_{p-1}\right)$) is smaller than (3.14). Clearly, it is enough to show that

$$
\begin{equation*}
\mathbb{E} W_{1} \ldots W_{l-1} f_{l} \mathbb{E}_{p} W_{p} \ldots W_{j}\left(X_{j+1}-X_{j}\right) \leq \mathbb{E} W_{1} \ldots W_{l-1} f_{l} \mathbb{E}_{l} W_{l} \ldots W_{j}\left(X_{j+1}-X_{j}\right) \tag{3.19}
\end{equation*}
$$

since the right hand side of (3.19) is equal to (3.13) for $p=l$ which was already shown to be smaller than (3.14). The proof of (3.19) can be carried out using the same argument as in the proof of (3.10) in Case 1 and this finishes the proof of Case 2.

References

[1] F. Guerra. Broken replica symmetry bounds in the mean field spin glass model. Comm. Math. Phys. 233 no. 1 (2003), 1-12.
[2] D. Sherrington, S. Kirkpatrick. Solvable model of a spin glass. Phys. Rev. Lett. 35 (1972), 1792-1796.
[3] M. Talagrand. Spin Glasses: a Challenge for Mathematicians. (2003) Springer-Verlag.
[4] M. Talagrand. The generalized Parisi formula. C. R. Math. Acad. Sci. Paris 337 no. 2 (2003), 111-114.
[5] M. Talagrand. Parisi formula. To appear in Ann. Math. (2003).
[6] M. Talagrand. On the meaning of Parisi's functional order parameter. C. R. Math. Acad. Sci. Paris 337 no. 9 (2003), 625-628.
[7] M. Talagrand. Parisi measures. Preprint (2004).

[^0]: ${ }^{1}$ RESEARCH PARTIALLY SUPPORTED BY NSF

