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Abstract

Let X and Y be Poisson point processes on R with rates λ1, λ2 respectively. We show that

if λ1 > λ2, then there exists a deterministic map φ with φ(X)
d
= Y such that the joint

distribution of (X,φ(X)) is translation-invariant and which is monotone in the sense that for
all intervals I, φ(X)(I) ≤ X(I), almost surely.

1 Introduction

Let X be a Poisson point processes on R with rate λ1. If λ2 < λ1, then it is well-known
that a Poisson point process Y with rate λ2 can be obtained from X by thinning ; points are
independently deleted from X with probability 1 − λ2/λ1 to get Y . This gives a coupling of
the two processes X and Y , which is monotone in the sense that almost surely all of the points
in Y are also points in X. Another way of saying this is that for any interval I, X(I) ≥ Y (I)
almost surely. Note also that the joint distribution of (X,Y ) under the thinning construction
is translation-invariant. In ergodic theory, a shift-invariant coupling of two processes is called
a joining.
In this paper, we show that the set of translation-invariant monotone couplings of Poisson
processes X and Y with rates λ1 > λ2 includes the special class of translation-invariant
couplings which are supported on graphs of functions. In other words, we prove that there is
a deterministic map φ such that

1. φ(X)
d
= Y ,

2. the joint distribution of (X,φ(X)) is invariant under translations, and

3. X(I) ≥ φ(X)(I) for all intervals I, almost surely.

Such a map φ is called a monotone factor from X to Y . A factor is a map satisfying just the
first two conditions.
Our map φ will have the additional property of being finitary, which means that it is almost
surely continuous in the vague topology. A finitary map φ is nice because φ(X)|I can be
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estimated accurately with finite data, for example by computer. We also show, in Section 6,
that for any I the expected size of the interval J(X) needed to compute φ(X)|I is finite.
The main theorem of this paper is the following:

Theorem 1.1. Let X and Y be Poisson point processes on R with rates λ1 and λ2 respectively.
If λ1 > λ2, then there is a monotone finitary factor φ taking X to Y .

There is a discrete-time version of the question of the existence of a monotone factor from
X to Y . A discrete-time version of Theorem 1.1 is proved in [1], though more conditions
are needed for this case. The construction of the monotone factor in discrete-time is more
complicated than the continuous-time construction given here. This is mostly because there
is more randomness in finite intervals of Poisson processes than there is in finite intervals of
Bernoulli processes.
The discrete-time problem was posed to the author by Russ Lyons. The question in the
context of Poisson point processes was asked by Alexander Holroyd and Yuval Peres. These
problems are interesting in part because they combine stochastic domination (see Strassen
[7]) and coupling ideas from probability theory with a question about the existence of factors,
which have long been of interest in ergodic theory.
One nice property of the monotone factor we construct here is that it is explicit—given λ1, λ2,
and a third number T , which can be chosen as a function of λ1 and λ2, one can compute φ(X).
The author knows of no other explicit factor taking one Poisson point process to another. The
obvious map X(t) 7→ X(λ2t/λ1) is not a factor because its joint distribution is not invariant
under translations.
Many ideas in this paper are related to the constructions of Keane and Smorodinski in [4] and
[5]. In these papers, they prove that if X̄ and Ȳ are i.i.d. processes with finite alphabets and
if X̄ has more entropy than Ȳ then there is a finitary factor from X̄ to Ȳ and furthermore,
if X̄ and Ȳ have the same entropy, then the finitary factor can be taken to be invertible. We
are able to use the properties of Poisson processes to simplify things, and so the construction
we end up with is significantly different from theirs. Other studies which have been made of
factors of Poisson processes and more general point processes in Rd include [2], [3], and [8], in
which the factors of interest were factor graphs, which are translation- or isometry-equivariant
functions of the process which place a graph structure on the points of the process.
The structure of the paper is as follows. In Section 2, we give formal definitions some of the
concepts in this introduction and set up notation that will be used throughout the paper. In
Sections 3-5, we construct φ and prove that it is a finitary monotone factor. We start by
constructing a monotone coupling γ of the processes X and Y restricted to a finite interval.
This coupling γ has the property that when X has exactly one point in the interval, it can
only couple to Y with zero points in the interval. We then construct a monotone coupling ρ
of X and Y on all of R which projects to γ on certain intervals. Thus, for ρ-almost every pair
(X,Y ), we will be able to pick out certain points from X which are not in Y . Randomness
from these deleted points is then used to decide which other points from X should or should
not be included in φ(X). In this way, we are able to construct our factor φ. In Section 6, we
show that φ(X)|I depends on XJ for some interval J with finite expected length. We conclude
in Section 7 with a couple of open questions related to this work.

2 Notation and definitions

We start by formalizing the definitions of couplings, monotonicity, and factors.
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Definition 2.1. A coupling of two measures µ and ν on Ω1 and Ω2, respectively, is a measure
γ on Ω1 × Ω2 such that µ( · ) = γ( · × Ω2) and ν( · ) = γ(Ω1 × · ).
A coupling of two random processes X and Y is a joint distribution for (X,Y ) which is a
coupling of the distributions of X and Y .
If µ and ν are measures on a common space Ω and if ≤ is a partial order on Ω, then a coupling
γ of µ and ν is monotone if

γ({(ω1, ω2) : ω1 ≥ ω2}) = 1.

Let B(R) be the Borel σ-algebra on R and let Ω be the space of Borel measures on R. Define
a partial order ≤ on Ω by

ω1 ≤ ω2 ⇐⇒

∫
F dω1 ≤

∫
F dω2 ∀ continuous functions F : R→ R.

If X and Y are point processes, which we may regard as processes taking values in Ω, a
coupling of X and Y is monotone with respect to this partial order if and only if X(I) ≥ Y (I)
for all intervals I almost surely (or equivalently if all of the points in Y are also points in X,
almost surely).
Factors are maps which behave well with respect to certain dynamics. In our case, the dynamics
we are concerned with are translations on R. Let (σt)t∈R be the group of translations or left-
shifts on R, with σt(r) = r− t. Then σt acts on Ω by σt(ω)(A) = ω(σ−1t (A)) = ω(A+ t) where
A ∈ B(R).

Definition 2.2. Let X and Y be stationary processes taking values in Ω. A factor from X to
Y is a map φ : Ω→ Ω (defined a.s. with respect to the distribution of X), such that

φ(X)
d
= Y and (1)

σt(φ(X)) = φ(σt(X)) ∀t ∈ R, a.s. (2)

A factor φ from X to Y is monotone if P(X ≥ φ(X)) = 1.

A little thought shows that (2) is equivalent to requiring that the joint distribution of (X,φ(X))
be invariant under translations by t for all t ∈ R.
The third important definition we need is that of a finitary factor.

Definition 2.3. Let X and Y be stationary processes taking values in Ω. A factor φ from X
to Y is finitary if there is a set Ω̃ ⊆ Ω with PX(Ω̃) = 1 such that φ|Ω̃ is continuous in the
vague topology on Ω (see, for example, Reiss’ book [6] for the definition of vague convergence).

From now on, X is a Poisson point process on R with rate λ1 which we regard as a random
measure taking values in Ω. Let the support of the random measure X be the random set

[X] = {x ∈ R : X(x) = 1}.

We will also use the notation [ω] to denote the support of a nonrandom measure ω ∈ Ω. Let
(χn)n∈Z be a sequence of random variables giving the ordered locations of the points in [X].
Let µ be the distribution of X on Ω. Define Y , [Y ], (ψn), and ν to be an Poisson process with
rate λ2, its support, the locations of its points, and its distribution. Assume that λ1 > λ2.
Poisson processes are supported on counting measures, where the atoms are discrete and each
atom has mass 1. Call the set of such measures Ω′ ⊂ Ω. Then µ(Ω′) = ν(Ω′) = 1. For
A ∈ B(R), define ΩA = {ω ∈ Ω : ω(A) = ω(R)} and Ω′

A = Ω′ ∩ ΩA. If ω ∈ Ω, we put
ωA( · ) = ω( · ∩A).
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3 Monotone couplings of Poisson processes

As mentioned in the introduction, a natural monotone coupling ofX and Y is given by thinning
X to get Y as follows. Let (αn)n∈Z be a sequence of i.i.d. random variables independent of X
taking value 1 with probability λ2/λ1 and 0 otherwise. Use the points (χn) of X and (αn) to
define a random measure Y supported on Ω′ by

Y =
∑

n∈Z

αn1χn
.

In other words, form the process Y by taking [X] and independently deleting points with
probability 1 − λ2/λ1. It is standard and easy to prove that the point process Y defined in
this way is Poisson with rate λ2. Call the resulting monotone coupling of X and Y π and let
πt be the restriction of π to an interval of length t.
The first step in the proof of Theorem 1.1 is to give another monotone coupling of X and
Y with some special properties. Actually, this γ will only couple X and Y restricted to an
interval in R with finite length T . Fix T > 0, so that

e(λ1−λ2)T > 1 + λ1T, (3)

or equivalently, keeping in mind that X and Y are Poisson processes,

P(#[Y(0,T ]] = 0) > P#[X(0,T ]] ≤ 1). (4)

Let µT and νT be the distributions of X(0,T ] and Y(0,T ], respectively. The coupling γ of µT
and νT is then constructed as follows. Let

ri = P(#[X(0,T ]] < i) for i = 0, 1, 2, . . .

si = P(#[Y(0,T ]] < i) for i = 0, 1, 2, . . . .

Since λ1 > λ2, we have ri ≤ si for all i. By inequality (4), r2 < s1. Define a probability
measure γ∗ on N0 × N0 by

γ∗(i, j) = `([ri, ri+1] ∩ [sj , sj+1]),

where ` is Lebesgue measure. Then γ∗({(i, j) : i ≥ j} = 1.
Define a probability measure supported on Ω′

(0,T ] × Ω′
(0,T ] by taking ω1 with distribution µT

and

γ((ω1, ω2) | ω1 × Ω) =



γ∗((#[ω1],#[ω2]) | #[ω1]× N) ·

(
#[ω1]

#[ω2]

)−1

ω2 ≤ ω1, ω2 ∈ Ω′
(0,T ]

0 otherwise.

In other words, the first marginal of γ has distribution µT and for a given ω1, the number
of points in the support of ω2 is chosen from γ∗ conditioned on the number of points in the
support of ω1. Then a subset of [ω1] of the appropriate size is chosen uniformly at random to
get [ω2].

Lemma 3.1. The measure γ defined above is a monotone coupling of µT and νT .
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Proof. It is clear from the definition that γ is a monotone coupling of its first and second
marginals and that it must have µT as its first marginal as desired. Thus, we just have to
show that the second marginal is νT . By the way in which we constructed γ∗,

γ({Ω× {ω2} : #[ω2] = i}) = e−Tλ2(Tλ2)
i/i! = P(#[Y(0,T ]] = i),

so the number of points in γ(Ω × · ) has the right distribution. Furthermore, since X is a
Poisson process, once #[X(0,T ]] is fixed, the points in [X] ∩ (0, T ] are distributed uniformly
and independently in the interval (0, T ]. If we chose a random subset of these points, they
will also be distributed uniformly and independently in (0, T ]. This proves that the second
marginal of γ is indeed the Poisson point process on (0, T ] with rate λ2.

Remark 3.2. The important feature of γ that we will use in this paper is that γ∗(1, 0) =
P(#[X(0,T ]] = 1) (this follows from the fact that s1 > r2, as noted above). This means that
µT -almost any ω1 with #[ω1] = 1 couples under γ only to the zero measure ϕ with ϕ(R) = 0.
Thus, if there is exactly point in [ω1], it will never be included in [ω2] under γ. The fact
that we know this point will be deleted will give us the information we need to construct a
monotone factor out of the monotone coupling we will construct.

4 Markers and more monotone couplings

We now construct a new monotone coupling ρ of X and Y using both the natural monotone
coupling π of µ and ν and the specially constructed monotone coupling γ of µT and νT . In
the following section, we will then show how to use ρ to construct a monotone finitary factor
from X to Y .

First, we introduce the notion of a marker. For ω ∈ Ω, let ā(ω) = {a : [ω]∩ (a− 2T, a] = {a}}.
Then µt-almost surely there are infinitely many points in ā(ω). We will inductively form a
subset of ā(ω) as follows. Let

a(0)(ω) = {a ∈ ā(ω) : ā(ω) ∩ (a− 3T, a) = ∅},

a(n)(ω) = {a : ∃b ∈ a(n−1)(ω) s.t. a = min{a′ ∈ ā(ω) : a′ ≥ b+ 3T}}.

Set a(ω) = ∪∞n=0a
(n)(ω). We call the points in a(ω) markers. Markers are important because

they will indicate a change in ρ from coupling according to π to coupling according to γ. The
rather complicated definition of a(ω) ensures that the distance between markers is always at
least 3T and that if ai is a marker, the next marker ai+1 is the smallest element of ā(ω) which
is larger than ai + 3T .

Let Z = (Z(1), Z(2)) and Z̃ = (Z̃(1), Z̃(2)) be random pairs of measures taking values in Ω×Ω,
with distribution γ and π respectively, and suppose that Z and Z̃ are independent. Define a
new random pair of measures Z̄ = (Z̄(1), Z̄(2)) by taking

Z̄(1) := Z
(1)
(0,T ] + Z̃

(1)
(T,∞),

Z̄(2) := Z
(2)
(0,T ] + Z̃

(2)
(T,∞).

Z̄ is a coupling of XR+ and YR+ since both Z and Z̃ couple X and Y restricted to the appro-
priate intervals and since Z and Z̃ are independent and Poisson processes have independent
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increments. Let τ be the random stopping time which is the first time such that τ is the
endpoint of a marker in Z̄(1); i.e.

τ := min{t > 3T : [Z̄(1)] ∩ (t− 2T, t] = {t}}.

Let W = (W (1),W (2)) be the random pair of measures on R obtained by setting

W (1) := Z̄
(1)
(0,τ ], W (2) := Z̄

(2)
(0,τ ].

With respect to W , τ = max{t : t ∈ [W (1)]}.

Let W0,W1, . . . be i.i.d. with Wi
d
=W for all i. Each Wi then defines random time τi which is

the largest t in the support of W
(1)
i . Define Ẑ = (Ẑ(1), Ẑ(2)) by

Ẑ :=W0 +

∞∑

i=1

σ−(
∑i−1

j=0
τj)

(Wi).

Since Poisson processes have independent increments, Ẑ is also a monotone coupling of XR+

and YR+ . Let ρ̂ be the distribution of Ẑ. This measure ρ̂ is not stationary because we started
by coupling from γ, so let ρ̇ = limn→∞

1
n

∑n−1
j=0 σj(ρ̂). Then ρ̇ is a stationary coupling of X

and Y restricted to R+. This implies that ρ̇ is a measure on ΩR+ × ΩR+ which is invariant
with respect to the semigroup action of (σt)t∈R+ on this space:

σt(ω, ω
′) = ((σt(ω))R+ , (σt(ω

′))R+).

Therefore, there exists a translation-invariant measure ρ on Ω×Ω such that the map (ω, ω ′) 7→
(ωR+ , ω′R+) takes ρ to ρ̇. This measure ρ is the natural extension of ρ̇. This implies that the
following lemma holds.

Lemma 4.1. The probability measure ρ is a monotone translation-invariant coupling of X
and Y .

The construction of ρ given above is designed to make Lemma 4.1 obvious. We now give
another useful characterization of ρ. First, we need some notation. Let a(ω) = (ai)i∈Z be
the sequence of consecutive markers in X. Let Ji = (ai, ai + T ] for each i. Since markers at
least distance 3T apart, these intervals are all disjoint. Let Ki = (ai + T, ai+1]; these are the
intervals interlaced between the Ji. Finally, ki is the length of the interval Ki, which must be
at least 2T . It is important to keep in mind that the sequences (ai), (Ji), (Ki), and (ki) are
all deterministic functions of the random process X and that the sequences (though not the
indexing) are equivariant under translations; for example a(σt(X)) = σt(a(X)).
We want to show that ρ(ω× · | ω×Ω) has a certain product structure. Take sets Ai ∈ σ(ΩJi

)
and Bi ∈ σ(ΩKi

) and set

CA,B =
⋂

i∈Z

{ω ∈ Ω : ωJi
∈ Ai, ωKi

∈ Bi}.

For any such set, it is clear from the construction of ρ that

ρ({ω} × CA,B | ω × Ω) =

∞∏

i=−∞

γ(σ−ai−1
({ωJi

} ×Ai) | ωJi
) (5)

·πki
(σ−(ai−1+T )({ωKi

} ×Bi) | ωKi
).

In other words, to sample from ρ given first coordinate ω, we select the second coordinate
independently from γ given ωJi

on each Ji and from πki
given ωKi

on each Ki.
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5 Construction of a monotone factor

In this section, we use the joining ρ to construct a monotone factor φ taking X to Y .
For µT -almost every ω ∈ Ω, γ(ω × ω′ | ω) is positive for finitely many ω′, all of which have
[ω′] ⊆ [ω]. Similarly, for µt-almost every ω, πt(ω × ω

′ | ω) is positive for the finitely many ω′

with [ω′] ⊆ [ω]. We define φ so that it chooses among these finitely many possibilities on each
Ji and Ki. The next lemma constructs the functions that make these choices.

Lemma 5.1. If U is a uniform random variable, there are measurable functions f : Ω′ ×
[0, 1]→ Ω′ and (gt : Ω

′ × [0, 1]→ Ω′)t>0 such that

f(ω,U) has distribution γ((ω, ·) | ω × Ω), µT -a.s. (6)

gt(ω,U) has distribution πt((ω, ·) | ω × Ω), µt-a.s. (7)

Proof. Define the lexicographic ordering on the set {ω ∈ Ω′ : [ω] <∞}:

ω < ω′ if #[ω] < #[ω′] or

if #[ω] = #[ω′], ω 6= ω′ and min{t : t ∈ [ω] M [ω′]} ∈ [ω],

where M denotes the symmetric difference. This is a total ordering on this set.
To define f and g, let ω1 < · · · < ωm be the measures in Ω with [ωi] ⊆ [ω]. Then set

f(ω, r) = ωi if γ({ω} × {ωj : j < i} | ω) ≤ r < γ({ω} × {ωj : j ≤ i} | ω),

gt(ω, r) = ωi if πt({ω} × {ωj : j < i} | ω) ≤ r <πt({ω} × {ωj : j ≤ i} | ω).

These functions are clearly measurable and satisfy (6) and (7).

If ω ∈ Ω′
(0,T ] and #[ω] = 1 then by Remark 3.2, γ({ω} × · | ω × Ω) is concentrated on the

point (ω, ϕ), where ϕ is the measure of total mass 0. Therefore for such ω, f(ω,U) ≡ ϕ is
independent of U . It is also independent of the locations of the point in [ω]. This is the key
fact that we will use in constructing our monotone factor map φ from X to Y .
We have defined a(ω) = {ai} to be the set of markers for ω. Let i(ω) = {in} be the set of
integers in with #[ωJin

] = 1. Both sets are defined µ-almost surely. Set

A(ω) = {ω′ : a(ω′) = a(ω), i(ω′) = i(ω), ω′R\(∪nJin )
= ωR\(∪nJin )

}.

This defines the σ-algebra which identifies measures which agree everywhere on R except on
the intervals Jin . For ω

′ ∈ A(ω), if in ∈ i(ω), set [ω
′
Jin

] = {χ̄n}. We get a sequence of random

variables as a function of X, conditional on A(ω), by taking

Un := (χ̄n − ain)/T.

Lemma 5.2. (Un)n∈Z is an i.i.d. sequence of uniform random variables.

Proof. Because X is a Poisson point process, conditional on the location of ain , χ̄n is indepen-
dent of XR\[ain ,ain+T )

. The only thing we know about χ̄n is that it is the unique point in [X]
in the interval (ain , ain + T ). It is a standard result that for a Poisson process, such a point is
uniformly distributed in (ain , ain + T ). Therefore, Un is uniformly distributed in (0, 1). The
independence of increments in a Poisson process implies that the Un are independent.
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Definition of φ: We are now ready to define our monotone factor φ. Since each Un can
be written as a sequence of i.i.d. Bernoulli-(1/2,1/2) random variables, we can redistribute

the bits of this expansion to get a sequence of i.i.d. uniform random variables U
(1)
n , U

(2)
n , . . ..

Define

φ(ω)Ji
=

{
σ−ai

f(σai
(ωJi

), U
(2j)
m ) for im < (i = im + j) < im+1 i /∈ (i(ω))

ϕ i ∈ (i(ω)).
(8)

and

φ(ω)Ki
= σ−(ai+T )gki

(σai+T (ωKi
), U (2j+1)m ) for im ≤ (i = im + j) < im+1. (9)

This defines φ(ω) on all of R almost surely.

To complete the proof of the main theorem, we must show that this map φ is a monotone
finitary factor from X to Y .

Proof of Main Theorem 1.1. Clearly, φ is a monotone, measurable map, defined µ-almost
surely on Ω, and it commutes with shifts σt for all t.

It is also not difficult to see that φ is finitary. This follows from the fact that for each n,
φ(ω)(ain ,ain−1

) depends only and continuously on ω(ain ,ain−1
).

It only remains to show that φµ = ν. Let µω( · ) = µ( · | A(ω)). Define νω( · ) = ρ(Ω × · |
A(ω)× Ω). Then it follows from the fact that ρ is a coupling of µ and ν that

∫
νωdµ(ω) = ν.

Thus it suffices to show that that for µ-almost every ω,

φ|A(ω)µω = νω.

By (5), νω is a product measure:

νω( · ) =
∏

i∈Z

γ(Ω× · | {ωJi
} × Ω)× πki

(Ω× · | {ωKi
} × Ω). (10)

We chose f and gt so that (φµω)Ji
= (νω)Ji

and (φµω)Ki
= (νω)Ki

for all i ∈ Z. The (U (j)n )n,j

are i.i.d. and uniform by Lemma 5.2. The independence of the U
(j)
n implies that φµσ has the

desired product structure as in (10). Thus, φµω = νω and φ is a monotone factor from X to
Y .

6 How finitary is φ?

Here we compute an estimate for the expected distance between ain and ain+1
. This distance

is important because φ(X)(ain ,ain+1
] is a function of X(ain ,ain+1

]. In particular, we show that

the size of this interval has finite expected value.

Proposition 6.1.

E(ain+1
− ain) < eTλ1(Tλ1)

−1(e2Tλ1/λ1 + 3T ) <∞.
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Proof. We first estimate E(ai+1 − ai). If Z1, Z2, . . . are i.i.d. exponential random variables
with mean 1/λ1 and τ is the first t such that Zt ≥ 2T , then

E(ai+1 − ai) = T +E

(
τ∑

t=1

Zt

)

= T +E(τ − 1)E(Z1 | Z1 < 2T ) +E(Zτ | Zτ ≥ 2T )

< E(τ)E(Z1) + 3T = e2Tλ1/λ1 + 3T.

The last equality above follows from the fact that τ is a geometric random variable with mean
(P(Z1 ≥ 2T ))−1 = e2Tλ1 .
The probability that #[ωJi

] = 1 is e−Tλ1(Tλ1). Therefore,

E(ain+1
− ain) ≤ e

Tλ1(Tλ1)
−1(e2Tλ1/λ1 + 3T ).

Remark 6.2. Recall that T was chosen in (3) so that

e(λ1−λ2)T > 1 + λ1T.

For fixed λ1, as λ2 ↗ λ1, T must tend to infinity and the expected size of the interval
blows up. On the other hand, when λ2 ¿ λ1 a reasonable choice for T may be made. For
instance, for λ1 = 1 and λ2 < 1 − ln(2) ≈ .3068, we may take T = 1 and get the estimate
E(ain+1

− ain) < e(e2 + 3) < 29. This shows that, at least when λ2 is small, the numbers
involved here are not astronomical.

7 Some open problems

We conclude with a couple of open problems relating to this work.
The joint distribution of (X,φ(X)) is not invariant under the map η : R → R given by
η(a) = −a and so is not a factor with respect to the full group of isometries of R.

Question 7.1. Does there exist a monotone map φ from X to Y such that the joint distribution
of (X,φ(X)) is invariant with respect to the group of isometries of R?

It is also natural to ask the analogous question in higher dimensions.

Question 7.2. If X and Y are Poisson point processes in Rd for d ≥ 2 with intensities λ1 > λ2,
does there exist a monotone factor from X to Y with respect to either the group of translations
on Rd or the group of isometries on Rd?

Acknowledgements. Thank you to Russ Lyons, Alexander Holroyd, and Yuval Peres for
asking interesting questions. We also thank the referee for his valuable comments.
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