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Abstract

We examine the percolation model on Zd by an approach involving lattice animals and their
surface-area-to-volume ratio. For β ∈ [0, 2(d − 1)), let f(β) be the asymptotic exponential
rate in the number of edges of the number of lattice animals containing the origin which have
surface-area-to-volume ratio β. The function f is bounded above by a function which may be
written in an explicit form. For low values of β (β ≤ 1/pc − 1), equality holds, as originally
demonstrated by F.Delyon. For higher values (β > 1/pc − 1), the inequality is strict.
We introduce two critical exponents, one of which describes how quickly f falls away from the
explicit form as β rises from 1/pc − 1, and the second of which describes how large clusters
appear in the marginally subcritical regime of the percolation model. We demonstrate that
the pair of exponents must satisfy certain inequalities. Other such inequalities yield sufficient
conditions for the absence of an infinite cluster at the critical value (c.f. [4]). The first exponent
is related to one of a more conventional nature in the scaling theory of percolation, that of
correlation size. In deriving this relation, we find that there are two possible behaviours,
depending on the value of the first exponent, for the typical surface-area-to-volume ratio of an
unusually large cluster in the marginally subcritical regime.

1 Introduction

We examine the percolation model by an approach involving lattice animals, divided according
to their surface-area-to-volume ratio. Throughout, we work with the bond percolation model
in Zd. However, the results apply to the site or bond model on any infinite transitive amenable
graph with inessential changes.
For any given p ∈ (0, 1), two lattice animals with given size are equally likely to arise as the
cluster C(0) containing the origin provided that they have the same surface-area-to-volume
ratio. For given β ∈ (0,∞), there is an exponential growth rate in the number of edges for the
number of lattice animals up to translation that have surface-area-to-volume ratio very close
to β. This growth rate f(β) may be studied as a function of β. To illustrate the connection
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between the percolation model and the combinatorial question of the behaviour of f , note that
the probability that the cluster containing the origin contains a large number n of edges is
given by

Pp(|C(0)| = n) =
∑

m

σn,mp
n(1− p)m, (1)

where σn,m is the number of lattice animals that contain the origin, have n edges and m
outlying edges. We rewrite the right-hand-side to highlight the role of the surface-area-to-
volume ratio, m/n:

Pp(|C(0)| = n) =
∑

m

(fn(m/n)p(1− p)m/n)n. (2)

Here fn(β) = (σn,bβnc)
1/n is a rescaling that anticipates the exponential growth that occurs.

We examine thoroughly the link between percolation and combinatorics provided by (2): how
do the quantities fn(β) scale for high n, and in which range of values of m is the expression
in (2) carrying most of its weight? These questions are hardly new, and the techniques of
proof we have employed in seeking answers are not strikingly novel. However, in pursuing
answers, we have found two critical exponents that arise naturally in this approach, and some
inequalities that this pair must satisfy. Trying to determine the relationships satisfied by such
exponents is a central task in understanding a phase transition, and we believe that what is
of most interest in this re-examination of the lattice-animal based approach to percolation are
these exponents and their relation to those more conventionally defined in percolation theory.
We outline the approach in more detail, describing the presentation of the results as we do
so. In Section 2, we describe the model, and define notations, before stating the combinatorial
results that we will use. Theorem 2.2 asserts the existence of the function f and describes
aspects of its behaviour, and is a pretty standard result. The details of its proof are however
cumbersome, and are not given here: they appear in [4]. Theorem 2.3 implies that

log f(β) ≤ (β + 1) log(β + 1)− β log β for β ∈ (0, 2(d− 1)). (3)

F.Delyon [2] showed that equality holds for β ∈ (0, 1/pc − 1). Theorem 2.3 implies that the
inequality is strict for higher values of β. The marked change, as β passes through 1/pc − 1,
in the structure of large lattice animals of surface-area-to-volume ratio β is a combinatorial
manifestation of the phase transition in percolation at criticality: a large lattice animal with
surface-area-to-volume β < 1/pc−1 presumably has an internal structure resembling a typical
portion of the infinite cluster at the supercritical value p = 1/(1 + β) that corresponds to β,
whereas, if β > 1/pc−1, there are too few large animals with surface-area-to-volume ratio β to
enable the formation of infinite structure in the percolation model at this corresponding value
of p. We mention also that the notion of a collapse transition for animals has been explored
in [3].
In Section 3, two scaling hypotheses are introduced, each postulating the existence of a critical
exponent. One of the exponents, ς, describes how quickly f(β) drops away from the explicit
form given on the right-hand-side of (3) as β rises above 1/pc − 1. The other, λ, describes
how rapidly decaying in n is the discrepancy between the critical value and that value on the
subcritical interval at which the probability of observing an n-edged animal as the cluster to
which the origin belongs is maximal. The first main result, Theorem 3.4, is then proved: the
inequalities λ < 1/2 and ςλ < 1 cannot both be satisfied. In outline, this is because λ < 1/2
implies that, for values of p just less than pc, most of the weight in the sum in (2) is carried
by terms indexed by m >> nα + n1/2, while ς < 1/λ implies that the limiting function f(β)
has dropped enough in this range of β = m/n that the probability of such lattice animals is
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decaying quickly: we have reached beyond the low side of the critical scaling window. This
decay rate is quick enough that it implies that the mean cluster size is uniformly bounded on
the subcritical interval, but this contradicts known results. In fact, by a similar approach, it
may be shown that ς < 2 or λ > 1/2 provide sufficient conditions for the continuity of the
percolation probability (c.f. [4]).
In Section 4, we relate the value of ς to an exponent of a more conventional nature in the
scaling theory of percolation, that of correlation size (see Theorem 4.2). Suppose that we
perform an experiment in which the surface-area-to-volume ratio of the cluster to which the
origin belongs is observed, conditional on its having a very large number of edges, for a p-value
slightly below pc. How does the typical measurement, βp, in this experiment behave as p tends
to pc? The value βp tends to lie somewhere on the interval (1/pc − 1, 1/p− 1). In Theorem
4.3, we determine that there are two possible scaling behaviours. The inequality ς < 2 again
arises, distinguishing the two possibilities. If ς < 2, then βp scales much closer to 1/pc − 1
while if ς > 2, it is found to be closer to 1/p − 1. It would be of much interest further to
understand the relation of λ and ς to other exponents.

2 Notations and combinatorial results

Throughout, we work with the bond percolation model on Zd, for any given d ≥ 2. This model
has a parameter p lying in the interval [0, 1]. Nearest neighbour edges of Zd are declared to be
open with probability p, these choices being made independently between distinct edges. For
any vertex x ∈ Zd, there is a cluster C(x) of edges accessible from x, namely the collection of
edges that lie in a nearest-neighbour path of open edges one of whose members contains x as
an endpoint.

Definition 2.1 A lattice animal is the collection of edges of a finite connected subgraph of Zd.
An edge of Zd is said to be outlying to a lattice animal if it is not a member of the animal, and
if there is an edge in the animal sharing an endpoint with this edge. We adopt the notations:

• for n,m ∈ N, set Γn,m equal to the collection of lattice animals in Zd one of whose edges
contains the origin, having n edges, and m outlying edges. Define σn,m = |Γn,m|. The
surface-area-to-volume ratio of any animal in Γn,m is said to be m/n.

• for each n ∈ N, define the function fn : [0,∞)→ [0,∞) by

fn(β) = (σn,bβnc)
1/n

On another point of notation, we will sometimes write the index set of a sum in the form nS,
with S ⊆ (0,∞), by which is meant {m ∈ N : m/n ∈ S}.
We require some results about the asymptotic exponential growth rate of the number of lattice
animals as a function of their surface-area-to-volume ratio. We now state these results, noting
that the following theorem appears as Theorem 2.1 in [4], which paper gives its proof.

Theorem 2.2

1. For β ∈ [0,∞) \ {2(d− 1)}, f(β) exists, being defined as the limit limn→∞ fn(β).

2. for β > 2(d− 1), f(β) = 0.

3. for β ∈ (0, 2(d− 1)), n ∈ N, fn satisfies fn(β) ≤ L1/nn1/nf(β), where the constant L
may be chosen uniformly in β ∈ (0, 2(d− 1)).
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4. f is log-concave on the interval (0, 2(d− 1)).

Remark: The proof involves concatenating two large lattice animals of the same surface-
area-to-volume ratio β ∈ (0, 2(d − 1)) by translating one so that it just touches the other.
This operation produces a new lattice animal with roughly this same surface-area-to-volume
ratio. In this way, some part of the set Γ2n,b2βnc is composed of concatenated pairs of animals
each lying in Γn,bβnc, if we overlook the errors that the joining produces. It would follow that
σ2n,b2βnc ≥ 2n

−1σ2
n,bβnc, the factor of 2n

−1 occurring because, in performing the argument
carefully, we work with the space of lattice animals up to translation rather than those con-
taining the origin, this alteration producing some factors of n. The proof demonstrates that
the errors involved in joining are indeed negligible. In this way, we obtain the existence of
the limit f(β), and the bound in the third part of the theorem. The proof of the fourth part
is a reprisal of the same argument that instead involves concatenating two lattice animals of
differing surface-area-to-volume ratio, with their relative sizes chosen to ensure a given surface-
area-to-volume ratio for the resulting lattice animal. More specifically, for β1, β2 ∈

(

0, 2(d−1)
)

satisfying β1 < β2, and for λ ∈ (0, 1), we would show that

log f
(

λβ1 + (1− λ)β2

)

≥ λ log f
(

β1

)

+ (1− λ) log f(β2),

by concatenating a pair of animals drawn from the sets Γbλnc,bβ1bλncc and Γb(1−λ)nc,bβ2b(1−λ)ncc,
the resulting animal lying in Γ

n,b
(

λβ1+(1−λ)β2

)

nc
, provided that we again tolerate the slight

discrepancy caused by the joining mechanism, as well as some rounding errors.
The second part of the theorem follows from the fact, easily proved by an induction on n, that
a lattice animal in Zd of size n may have at most 2(d− 1)n+ 2d outlying edges.

Theorem 2.3 Introducing g : (0, 2(d− 1))→ [0,∞) by means of the formula

f(β) = g(β)
(β + 1)β+1

ββ
,

we have that

g(β)

{

= 1 on (0, α],
< 1 on (α, 2(d− 1)),

where throughout α = 1/pc − 1, pc being the critical value of the model.

Remark: The assertion that g = 1 on (0, α] was originally proved by Delyon [2]. For the sake
of completeness, however, we will give a proof of this result.
We will make use of the following weaker result in the proof of Theorem 2.3.

Lemma 2.4 The function f : (0, 2(d− 1))→ [0,∞) satisfies

log f(β) ≤ (β + 1) log(β + 1)− β log β

Proof: We give a probabilistic proof, that uses the percolation model. The link between the
random and combinatorial models is provided by (1), which we restate for convenience:

Pp(|C(0)| = n) =
∑

m

σn,mp
n(1− p)m

Let β ∈ (0, 2(d−1)). Choosing p = 1/(1+β), and noting that the right-hand-side of the above
equation is bounded above by one, yields

σn,bβnc ≤

(

(β + 1)β+1

ββ

)n

max
{

1, β
}

,
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which may be rewritten

fn(β) ≤
(β + 1)β+1

ββ
max

{

1, β
1

n

}

.

Taking the limit as n→∞ gives that

f(β) ≤
(β + 1)β+1

ββ
,

as required. ¤
We will also require the following lemma, to handle some expressions corresponding to a few
miscellaneous lattice animals whose surface-area-to-volume ratio is almost maximal.

Lemma 2.5 There exists r ∈ (0, 1) such that, for n sufficiently large and for m ∈ {2(d −
1)n, . . . , 2(d− 1)n+ 2d}, we have that

σn,m ≤
(1 + m

n )
n+m

(mn )
m

rn.

Proof: The inequality pc > 1/(2d− 1) is known, a proof is supplied on [4, page 13]. There is
an exponential decay rate in n for the probability of observing an n-edged cluster containing
the origin in the subcritical phase [1]. Hence, for some rj ∈ (0, 1) and for n sufficiently large,
we have that

σn,2(d−1)n+j ≤
( (2d− 1)n+ j

n

)n( (2d− 1)n+ j

2(d− 1)n+ j

)2(d−1)n+j

rnj .

Setting r = maxj∈{0,...,2d} rj gives the result. ¤
Proof of Theorem 2.3: We firstly prove Delyon’s result, that g(β) = 1 for β ∈ [0, α]. By
Theorem 2.2, we know that f is log-concave on (0, α) and, by Lemma 2.4, that on that interval,
it satisfies

f(β) ≤
(β + 1)β+1

ββ
.

From these statements and the assumption that Delyon’s result fails, it follows that there exist
β0 ∈ (0, α) and ε > 0 such that

f(β) ≤
(β + 1)β+1

ββ
− ε on (β0 − ε, β0 + ε). (4)

Set p = 1/(1 + β0), and note that p > pc. We rewrite the right-hand-side of (1) as follows:

∑

m

σn,mp
n(1− p)m =

∑

m

(

fn(m/n)
β0

m
n

(1 + β0)
1+m

n

)n

.

It follows that

Pp(|C(0)| = n) =
∑

m∈nS1

(

fn(m/n)
β0

m
n

(1 + β0)
1+m

n

)n

+
∑

m∈nS2

(

fn(m/n)
β0

m
n

(1 + β0)
1+m

n

)n

+

2(d−1)n+2d
∑

m=2(d−1)n

(

fn(m/n)
β0

m
n

(1 + β0)
1+m

n

)n
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where

S1 = (β0 − ε, β0 + ε) and S2 =
(

0, 2(d− 1)
)

\
(

β0 − ε, β0 + ε
)

.

The behaviour of the three sums above will now be analysed, under the assumption that
Delyon’s result is false. Firstly, we need a definition.

Definition 2.6 Let the function φ : (0,∞)2 → R be given by

φ(α, β) = (β + 1) log(β + 1)− β log β + β logα− (β + 1) log(α+ 1).

Remark. That φ ≤ 0 is straightforward.

• The sum indexed by nS1 We estimate

∑

m∈nS1

(

fn(m/n)
β0

m
n

(1 + β0)
1+m

n

)n

≤ Ln
∑

m∈nS1

(

f(m/n)
β0

m
n

(1 + β0)
1+m

n

)n

≤ Ln
∑

m∈nS1

(

(

(1 + m
n )

1+m
n

(mn )
m
n

− ε

)(

β0
m
n

(1 + β0)
1+m

n

)

)n

≤ Ln
∑

m∈nS1

exp
(

n
[

φ(β0,m/n) + log(1− cε)
]

)

≤ Ln(2εn+ 1)(1− cε)n,

where the third part of Theorem 2.2 was applied in the first inequality, with (4) being
used in the second. The constant c > 0 is chosen to satisfy log c < (β0 + ε) log(β0 + ε)−
(β0 + 1 + ε) log(β0 + 1 + ε).

• The sum indexed by nS2

In this case, note that

∑

m∈nS2

(

fn(m/n)
β0

m
n

(1 + β0)
1+m

n

)n

≤ Ln
∑

m∈nS2

(

f(m/n)
β0

m
n

(1 + β0)
1+m

n

)n

≤ Ln
∑

m∈nS2

(

(

(1 + m
n )

1+m
n

(mn )
m
n

)(

β0
m
n

(1 + β0)1+
m
n

)

)n

= Ln
∑

m∈nS2

exp
(

nφ(β0,m/n)
)

,

where Lemma 2.4 was applied in the second inequality. The fact that

d

dγ
φ(β0, γ) = log(1 + 1/γ)− log(1 + 1/β0)
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implies that there exists δ > 0 such that φ(β0, γ) < −δ for γ ∈ S2. Hence

∑

m∈nS2

(

fn(m/n)
β0

m
n

(1 + β0)
1+m

n

)n

≤ 2(d− 1)Ln2 exp
(

− nδ
)

.

• The sum indexed by {2(d− 1)n, . . . , 2(d− 1)n+ 2d}

Note that Lemma 2.5 implies that, for n sufficiently large,

2(d−1)n+2d
∑

m=2(d−1)n

(

fn(m/n)
β0

m
n

(1 + β0)
1+m

n

)n

≤

2(d−1)n+2d
∑

m=2(d−1)n

(

(

(1 + m
n )

1+m
n

(mn )
m
n

)(

β0
m
n

(1 + β0)1+
m
n

)

)n

rn

=

2(d−1)n+2d
∑

m=2(d−1)n

rn exp
(

nφ(β0,m/n)
)

.

≤ (2d+ 1)rn.

We have demonstrated that if Delyon’s result fails, then

lim inf
n→∞

− logPp(|C(0)| = n)

n
> 0. (5)

The sharp first-order asymptotics in large size for the probability of observing a finite cluster in
the supercritical phase of the percolation model were derived in [5]. This probability certainly
decays at a subexponential rate. Since p > pc is in the supercritical phase, we find that the
left-hand-side of (5) is zero. This contradiction completes the proof of Delyon’s result.
We must also show that, for β ∈ (α, 2(d − 1)), g(β) is strictly less than one. For such β, let
p = 1/(1 + β). Note that p < pc, and that

Pp(|C(0)| = n) ≥ Pp(C(0) ∈ Γn,bβnc)

= |Γn,bβnc|
βbβnc

(1 + β)n+bβnc

=
(

fn(β)
)n βbβnc

(1 + β)n+bβnc
.

Taking logarithms yields

logPp
(

|C(0)| = n
)

n
≥ log fn(β) +

bβnc log β

n
−
(

1 +
bβnc

n

)

log(1 + β),

from which it follows that

lim inf
n→∞

logPp
(

|C(0)| = n
)

n
≥ log f(β) + β log β − (1 + β) log(1 + β). (6)

The right-hand-side of (6) is equal to log g(β), by definition. The exponential decay rate for
the probability of observing a large cluster in the subcritical phase was established in [1]. Since
p < pc, this means the left-hand-side of (6) is negative. This implies that g(β) < 1, as required.
¤
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3 Critical exponents and inequalities

We introduce two scaling hypotheses, each of which postulates the existence of a critical
exponent. We then state and prove the first main theorem, which demonstrates that a pair of
inequalities involving the two exponents cannot both be satisfied.

3.1 Hypothesis (λ)

Definition 3.1 For each n ∈ N, let tn ∈ (0, pc) denote the least value satisfying the condition
∑

m

σn,mt
n
n(1− tn)

m = sup
p∈(0,pc]

∑

m

σn,mp
n(1− p)m. (7)

That is, tn is some point at or below the critical value at which the probability of observing
an n-edged animal as the cluster to which the origin belongs is maximal. It is reasonable to
suppose that tn is slightly less than pc, and that the difference decays polynomially in n as n
tends to infinity.

Definition 3.2 Define Ω
(λ)
+ = {µ ≥ 0 : lim infn→∞ (pc − tn)/n

−µ =∞}, and Ω
(λ)
− = {µ ≥ 0 :

lim supn→∞ (pc − tn)/n
−µ = 0}.

If supΩ
(λ)
− = inf Ω

(λ)
+ , then hypothesis (λ) is said to hold, and λ is defined to be equal to the

common value.

So, if hypothesis (λ) holds, then pc − tn behaves like n
−λ, for large n. We remark that it

would be consistent with the notion of a scaling window about criticality that the probability
of observing the cluster C(0) with n-edges achieves its maximum on the subcritical interval
on a short plateau whose right-hand endpoint is the critical value. If this is the case, then tn
should lie at the left-hand endpoint of the plateau. To be confident that pc− tn is of the same
order as the length of this plateau, the definition of the quantities tn could be changed, in such
a way that a small and fixed constant multiplies the right-hand-side of (7). In this paper, any
proof of a statement involving the exponent λ is valid if it is defined in terms of this altered
version of the quantities tn.

3.2 Hypothesis (ς)

This hypothesis is introduced to describe the behaviour of f for values of the argument just
greater than α. Theorem 2.3 asserts that the value α is the greatest for which log f(β) =
(β+1) log(β+1)−β log β; the function g was introduced to describe how log f falls away from
this function as β increases from α. Thus, we phrase hypothesis (ς) in terms of g.

Definition 3.3 Set Ω
(ς)
− = {µ ≥ 0 : lim infδ→0 (g(α+ δ)− g(α))/δµ = 0}, and Ω

(ς)
+ = {µ ≥

0 : lim supδ→0 (g(α+ δ)− g(α))/δµ = −∞}.

If supΩ
(ς)
− = inf Ω

(ς)
+ , then hypothesis (ς) is said to hold, and ς is defined to be equal to the

common value.

If hypothesis (ς) holds, then greater values of ς correspond to a smoother behaviour of f at α.
For example, if ς exceeds N for N ∈ N, then f is N -times differentiable at α.
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3.3 Relation between λ and ς

Theorem 3.4 Suppose that hypotheses (ς) and (λ) hold. If λ < 1/2, then ςλ ≥ 1.

Proof: We prove the Theorem by contradiction, assuming that the two hypotheses hold, and
that λ < 1/2, ςλ < 1. We will arrive at the conclusion that the mean cluster size, given by
∑

n nPp(|C(0)| = n), is bounded above, uniformly for p ∈ (0, pc). That this is not so is proved
in [1]. Note that

sup
p∈(0,pc)

∑

n

nPp(|C(0)| = n) ≤
∑

n

nPtn(|C(0)| = n).

We write
Ptn(|C(0)| = n) =

∑

m

σn,mt
n
n(1− tn)

m, (8)

and split the sum in (8). To do so, we use the following definition.

Definition 3.5 For n ∈ N, let αn be given by tn = 1/(1 + αn). For G ∈ N, let Dn(= Dn(G))
denote the interval

Dn =
(

αn −G
(

log(n)/n
)1/2

, αn +G
(

log(n)/n
)1/2

)

.

Now,
∑

m

σn,mt
n
n(1− tn)

m = C1(n) + C2(n) + C3(n),

where the terms on the right-hand-side are given by

C1(n) =
∑

m∈nDn

σn,mt
n
n(1− tn)

m,

C2(n) =
∑

m∈n
(

(0,2(d−1))−Dn

)

σn,mt
n
n(1− tn)

m

and
C3(n) =

∑

m∈{2(d−1)n,...,2(d−1)n+2d}

σn,mt
n
n(1− tn)

m.

Lemma 3.6 The function φ specified in Definition 2.6 satisfies

φ
(

α, α+ γ
)

= −
γ2

2α(α+ 1)
+O(γ3).

Proof: We compute

φ(α, α+ γ) = −(α+ γ) log(α+ γ) + (α+ 1 + γ) log(α+ 1 + γ)

− (α+ 1 + γ) log(α+ 1) + (α+ γ) logα

= −(α+ γ) log(1 + γ/α)

+ (α+ 1 + γ) log(1 + γ/(α+ 1))

= −(α+ γ)[γ/α− γ2/2α2]

+ (α+ 1 + γ)[γ/(α+ 1)− γ2/2(α+ 1)2] +O(γ3)

= −γ2/[2α(α+ 1)] +O(γ3),
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giving the result. ¤.
We have that

∑

n

C2(n) =
∑

n

∑

m∈n((α,2(d−1))−Dn)

(

fn(m/n)
α
m/n
n

(1 + αn)1+m/n

)
n

≤ L
∑

n

n
∑

m∈n((α,2(d−1))−Dn)

exp
(

nφαn,m/n

)

,

where the inequality is valid by virtue of Theorem 2.2 and the fact that g ≤ 1. Lemma 3.6
implies that

∑

m∈n((α,2(d−1))−Dn)

exp
(

nφαn,m/n

)

≤ (2(d− 1)− α)n−K ,

where K may be chosen to be arbitrarily large by an appropriate choice of G. It is this
consideration that determines the choice of G. The miscellaneous term C3 is treated by
Lemma 2.5. We find that the m-indexed summand in C3(n) is at most r

n exp
(

nφαn,m/n

)

:
thus C3(n) ≤ (2d+ 1)r

n. Note that C1 satisfies

C1(n) =
∑

m∈nDn

(

fn(m/n)
α
m/n
n

(1 + αn)1+m/n

)
n

≤ Ln
∑

m∈nDn

g(m/n)n exp(nφαn,m/n),

where the inequality is a consequence of Theorems 2.2 and 2.3. The fact that the function φ
is nowhere positive implies that

C1(n) ≤ Ln
∑

m∈nDn

g(m/n)n.

Hence the desired contradiction will be reached if we can show that
∑

n

n
∑

m∈nDn

g(m/n)n (9)

is finite. As such, the proof is completed by the following lemma.

Lemma 3.7 Assume hypotheses (ς) and (λ). Suppose that λ < 1/2 and that ςλ < 1. Then,
for ε ∈ (0, 1− ςλ) and n ∈ N sufficiently large,

∑

m∈nDn

g(m/n)n ≤ exp
(

− n1−ςλ−ε
)

. (10)

Proof: Let ς∗ > ς and λ∗ > λ be such that λ∗ < 1/2 and ς∗λ∗ < ςλ + ε. By hypothesis (ς),
there exists ε′ > 0 such that

δ ∈ (0, ε′) implies g(α+ δ)− g(α) < −δς
∗

.

From Theorems 2.2 and 2.3, it follows that supβ∈[α+ε′,2(d−1)] g(β) < 1, which shows that the
contribution to the sum in (10) from all those terms indexed by m for which m/n > α+ ε′ is
exponentially decaying in n. Thus, we may assume that there exists N1 such that for n ≥ N1,
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if m ∈ D∗
n then m/n − α < ε′. Note that, by hypothesis (λ), αn − α ≥ n−λ

∗

for sufficiently
large. Hence, there exists N2 such that, for n ≥ N2,

αn −G(log(n)/n)1/2 ≥ α+ n−λ
∗

−G(log(n)/n)1/2 ≥ α+ (1/2)n−λ
∗

.

For n ≥ max{N1, N2} and m ∈ nD∗
n,

g(m/n) ≤ 1− (m/n− α)ς
∗

≤ 1− (αn −G(log(n)/n)1/2 − α)ς
∗

≤ 1− ((1/2)n−λ
∗

)ς
∗

.

So, for n ≥ max(N1, N2),

∑

m∈nD∗

n

g(m/n)n ≤ (2G(n log(n))1/2)[1− C ′n−λ
∗ς∗ ]n,

for some constant C ′ > 0. There exists g ∈ (0, 1), such that for large n,

[1− C ′n−λ
∗ς∗ ]n ≤ gn

1−λ∗ς∗

.

This implies that

∑

m∈nD∗

n

g(m/n)n ≤ hn
1−λ∗ς∗

for large n and h ∈ (g, 1).

From ς∗λ∗ < ςλ+ ε, we find that

∑

m∈nD∗

n

g(m/n)n ≤ exp−n1−ςλ−ε for large n,

as required. ¤
Remark: It may be similarly shown that ς < 2 or λ > 1/2 are sufficient conditions for the
absence of infinite open clusters at the critical value pc. Except for some borderline cases, this
leaves the region of the (λ, ς)-plane specified by ς > 2 and ςλ > 1. Here, such a sufficient
condition may be phrased in terms of the extent to which fn(β) underestimates f(β) for a
restricted range of values of β, namely those that are roughly of the size α+nλ. In this regard,
bounds on the entropic exponent are relevant (see [6]). These results are stated and proved as
[4, Theorems 4.1 and 4.3].

4 Scaling law

In this section, we examine the exponential decay rate in n for the probability of the event
{C(0) = n} for p slightly less than pc by our combinatorial approach. In doing so, we relate
the quantity ς to the exponent for correlation size, and see how the scaling behaviour for the
typical surface-area-to-volume ratio of unusually large clusters in the marginally subcritical
regime depends on the value of ς.

Definition 4.1 Let q : (0, pc)→ [0,∞) be given by

q(p) = lim
n→∞

− logPp(|C(0)| = n)

n
.
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Define Ω
(%)
+ = {γ ≥ 0 : lim infp↑pc

q(p)
(pc−p)γ

=∞} and

Ω
(%)
− = {γ ≥ 0 : lim supp↑pc

q(p)
(pc−p)γ

= 0}. If supΩ
(%)
− = inf Ω

(%)
+ , then hypothesis (%) is said to

hold, and % is defined to be equal to the common value.

Remark: The existence of q follows from a standard subadditivity argument.
The quantity % might reasonably be called the exponent for ‘correlation size’.

Theorem 4.2 There exists δ′ > 0 and p0 ∈ (0, pc) such that p ∈ (p0, pc) implies that q(p) is
given by

q(p) = inf
β∈(α,α+δ′)

(

− log g(β)− φ
(

1/p− 1, β
)

)

,

where the function φ : (0,∞)2 → R was specified in Definition 2.6. Recall also that α =
1/pc − 1.

Proof: We may write Pp(|C(0)| = n) = H1 +H2, where

H1 =

2(d−1)n−1
∑

m=0

σn,mp
n(1− p)m

and H2 =

2(d−1)n+d
∑

m=2(d−1)n

σn,mp
n(1− p)m. (11)

Note that, by Lemma 2.5, there exists r ∈ (0, 1) such that, for all p ∈ (0, 1), H2 ≤ (2d+ 1)r
n.

To treat the quantity H1, note that

H1 =

2(d−1)n−1
∑

m=0

an(m/n) exp
(

n
(

log g(m/n) + φ(1/p− 1,m/n)
)

)

, (12)

where the quantity an(β) for β ∈
(

0, 2(d− 1)
)

is given by the relation

σn,bβnc = an(β)f(β)
n.

Note that, by the third part of Theorem 2.2, an(β) ≤ Ln for such values of β. From this
bound, and (12), it follows that

H1 ≤ 2(d− 1)Ln
2 exp

(

− nγp
)

,

where γp is given by

γp = inf
β∈[0,2(d−1))

(

− log g(β)− φ
(

1/p− 1, β
)

)

. (13)

From Theorem 2.3, we see that the function β → − log g(β)− φ(1/p− 1, β) is continuous on

(0, 2(d − 1)). Allied with the fact that for β ∈ (0, 2(d− 1)), lim sup − log an(β)
n ≤ 0, it follows

that, for ε > 0, and for n sufficiently large, H1 ≥ exp
(

− n(γp + ε)
)

. Hence,

lim
n→∞

− logH1

n
= γp. (14)
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We now make the claim that there exists p0 ∈ (0, pc) and δ
′ > 0 such that, for p ∈ (p0, pc), γp

is given by

γp = inf
β∈[α,α+δ′]

(

− log g(β)− φ(1/p− 1, β)
)

. (15)

Note that from

−
d

dβ
φ(1/p− 1, β) = log

(

1− 1/(1 + β)
)

− log(1− p),

and pc = 1/(1 + α), it follows that the expression −φ(1/p − 1, β) is decreasing in β on [0, α],
for p ∈ (0, pc). Recalling from Theorem 2.3 that g(β) = 1 for each β ∈ [0, α], it follows that,
for p ∈ (0, pc),

− log g(α)− φ(1/p− 1, α) ≤ − log g(β)− φ(1/p− 1, β). (16)

The fourth part of Theorem 2.2 implies that g :
(

0, 2(d − 1)
)

→ [0,∞) is continuous. Using
this fact and Theorem 2.3, we may, for a given ε > 0, find δ′ > 0 such that

β ∈
(

α+ δ′, 2(d− 1)
)

implies that g(β) < 1− ε. (17)

Using g(α) = 1, we may similarly choose δ ∈ (0, δ′) such that

β ∈ (α, α+ δ) implies that g(β) > 1− ε/2.

Let p0 = 1/(α+ 1 + δ). For p ∈ (p0, pc),

− log g(1/p− 1)− φ(1/p− 1, 1/p− 1) < − log(1− ε/2), (18)

the second term on the left-hand-side being zero. From (17), we have that, for β ∈
(

α +

δ′, 2(d− 1)
)

,
− log g(β)− φ(1/p− 1, β) ≥ − log(1− ε), (19)

since φ is nowhere positive. We learn from (13), (16), (18) and (19) that, for p ∈ (p0, pc), (15)
holds, as claimed. Note that

lim inf
n→∞

− logH2

n
≥ − log r,

whereas, for p ∈ (p0, pc), it follows from (14), (15) and (18) that

lim sup
n→∞

− logH1

n
< − log(1− ε/2).

By choosing ε < 2(1− r), we obtain for such values of p,

lim
n→∞

− logPp(|C(0)| = n)

n
= inf

β∈[α,α+δ′]

(

− log g(β)− φ(1/p− 1, β)
)

,

as required. ¤
Theorem 4.2 allows us to deduce a scaling law that relates the combinatorially defined exponent
ς to one which is defined directly from the percolation model.

Theorem 4.3 Assume hypothesis (ς).

• Suppose that ς ∈ (1, 2). Then hypothesis (%) holds and % = 2.

• Suppose that ς ∈ (2,∞). Then hypothesis (%) holds and % = ς.
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Proof: Suppose that ς ∈ (1, 2). Choose ε > 0 so that 1 < ς − ε < ς + ε < 2. There exists
constants C1, C2 > 0 such that, for p ∈ (p0, pc) and β ∈ (α, α+ δ′),

(β − α)ς+ε + C1

(

β − (1/p− 1)
)2

≤ − log g(β) +−φ
(

1/p− 1, β
)

(20)

≤ (β − α)ς−ε + C2

(

β − (1/p− 1)
)2
.

Applying Theorem 4.2, we find that

(βp − α)ς+ε + C1

(

βp − (1/p− 1)
)2
≤ q(p), (21)

where βp ∈ [α, α + δ′] denotes a value at which the infimum in the interval [α, α + δ′] of the
first term in (20) is attained. Let yp = 1/p− 1− α, and let σp satisfy βp = α+ y

σp
p . Then βp

and σp satisfy

(ς + ε)(βp − α)ς+ε−1 = −2C1

(

βp − (1/p− 1)
)

(ς + ε)yσp(ς+ε−1)
p = 2C1

(

yp − yσpp
)

(22)

Since βp ≤ 1/p−1, σp ≥ 1. From this and (22) follows lim infp↑pc σp ≥ 1/(ς+ ε−1). Applying
(22) again, we deduce that limp↑pc σp = 1/(ς + ε− 1). Substituting σp in (21) yields

yσp(ς+ε)p + C1

(

yp − yσpp
)2
≤ q(p).

The facts that limp↑ σp > 1 and limp↑ σp(ς + ε) = (ς + ε)/(ς + ε − 1) > 2 imply that, for a
small constant c, c(pc − p)2 ≤ q(p) for values of p just less than pc. A similar analysis in which
q(p) is bounded below by the infimum on the interval [α, α+ δ′] of the third expression in (20)
implies that for large C, q(p) ≤ C(pc − p)2, in a similar range of values of p. Thus hypothesis
(%) holds, and % = 2.

In the case where ς > 2, let ε > 0 be such that ς > 2 + ε. Defining σ′p by βp = 1/p− 1− y
σ′p
p ,

we find that

(ς + ε)
(

yp − y
σ′p
p

)ς+ε−1
= 2C1y

σ′p
p . (23)

Note that βp ≥ α implies that σ′p ≥ 1. From (23), it follows that lim infp↑pc σ
′
p ≥ ς + ε − 1.

Since ς+ ε−1 > 1, applying (23) again shows that the limit limp↑pc σ
′
p exists and infact equals

ς + ε− 1. Substituting σ′p in (20) yields

(

yp − y
σ′p
p

)ς+ε
+ C1y

2σ′p
p ≤ q(p).

The fact that lim infp↑pc σ
′
p > 1 implies that c(pc − p)ς+ε ≤ q(p) for values of p just less than

pc. Making use of the inequality ς > 2 + ε in considering the infimum of the third term ap-
pearing in (20) yields in this case q(p) ≤ C(pc − p)ς−ε for similar values of p. Thus, since ε
may be chosen to be arbitrarily small, we find that, if ς > 2, then hypothesis (%) holds, and
that % = ς. ¤
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