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Abstract: Patient-reported outcome (PRO) measures are increasingly col-
lected as a means of measuring healthcare quality and value. The capability
to predict such measures enables patient-provider shared decision-making
and the delivery of patient-centered care. However, PRO measures often
suffer from high missing rates, and the missingness may depend on many
patient factors. Under such a complex missing mechanism, developing a
predictive model for PRO measures with valid inference procedures is chal-
lenging, especially when flexible imputation models such as machine learn-
ing or nonparametric methods are used. Specifically, the slow convergence
rate of the flexible imputation model may lead to non-negligible bias, and
the traditional missing propensity, capable of removing such a bias, is hard
to estimate due to the complex missing mechanism. To efficiently infer the
parameters of interest, we propose to use an informative surrogate that en-
ables a flexible imputation model lying in a low-dimensional subspace. To
remove the bias due to the flexible imputation model, we identify a class of
weighting functions as alternatives to the traditional propensity score and
estimate the low-dimensional one within the identified function class. Based
on the estimated low-dimensional weighting function, we construct a one-
step debiased estimator without using any information on the true missing
propensity. We establish the asymptotic normality of the one-step debiased
estimator. Simulation and an application to real-world data demonstrate
the superiority of the proposed method.
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1. Introduction

Patient-reported outcome (PRO) measures are increasingly collected before and
after an intervention or a treatment as a means of measuring healthcare quality
and value, which is an important step toward patient-centered care. Knowing
whether the measure goes up or down alone might not be sufficient to determine
the effectiveness of the intervention. More importantly, whether the measure
has changed with a sufficiently large margin, known as the minimally clinically
important difference (MCID), needs to be evaluated. If the intervention is an
elective surgery, identifying patients at risk of not achieving an MCID, par-
ticularly before the surgery, is important for pre-surgical decisions. There is a
growing interest in applying machine learning techniques to predict whether
a patient is likely to achieve an MCID before surgery and identify predictive
factors associated with post-surgical PRO measures.

The increasing adoption of electronic health record (EHR) systems has pro-
vided unprecedented opportunities to learn an interpretable model for predicting
PRO measures using massive observational data. Although the volume of obser-
vational data is large, the quality of such observational data may be uncertain.
One of the major difficulties is missing data, especially missing the outcome
data. In our motivating example, the MCIDs can only be observed from the
participants who take both pre- and post-surgical surveys. The participants
who completed both surveys may only account for a small portion (e.g., 1/3)
of the participants whose EHR data is available, according to the response rate
reported in literature [13, 26] and from our own data. Unfortunately, low survey
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response rates are not uncommon in healthcare and other service industries. In
this work, our objective is to develop an interpretable predictive model for the
outcome subject to missing. Specifically, we aim to develop a linear prediction
model by minimizing the deviance of a generalized linear model (GLM) with a
valid inference procedure for the coefficients under possible model misspecifica-
tion.

Many approaches have been developed to deal with missing outcomes un-
der the assumption of missing at random (MAR) [16]. One seminal work is
the propensity inverse weighting approach [30, 14]. For this approach, one first
estimates the probability of missing w.r.t the covariate (also called the propen-
sity) and then uses the inverse of the estimated propensity to adjust for the
selection bias. When the propensity is poorly estimated, the propensity inverse
weighting methods may not perform well. Another major type of approaches is
known as imputation. This approach first learns an imputation model using the
fully observed part of the data; then, imputes the missing outcomes with the
predicted values; and finally, refits the predictive model based on the imputed
outcomes [32]. When the estimated imputation model is misspecified, the refit-
ted predictive model may be biased. To maintain robustness against the possible
misspecification in the propensity and the imputation models, one possible solu-
tion is to use the doubly robust methods [29]. The doubly robust methods that
incorporate both the propensity score and the imputation models can lead to a
consistent estimate for the outcome as long as either model is correctly specified
[35, 36, 27, 28, 33, 2, 9, 31, 10].

Statistical inference for the parameters in predictive modeling with outcome
missingness is also challenging. In particular, when the missing mechanism de-
pends on multiple covariates through a nonlinear relationship, a consistent esti-
mator for the missing propensity with a fast convergence rate may be infeasible.
For the inverse weighting approaches and the doubly robust methods, a para-
metric model for the propensity may not capture the potential non-linearity.
To ensure a consistent propensity estimate, nonparametric regressions and ma-
chine learning methods have been adopted. These methods may lead to a slower
convergence rate and hinder the inference of the parameters in the predictive
model, especially when the number of covariates is large. When the number
of covariates is small, to address the slow convergence rate, a double machine
learning approach was proposed in [4]. They adopted a cross-fitting algorithm
using a doubly robust formulation and proposed to estimate both the propensity
and the imputation model using nonparametric or machine learning methods.
They proved that, as long as the product of the convergence rates of the propen-
sity and imputation estimates is smaller than n´1{2, a valid inference procedure
for the parameters in the predictive model is possible, where n represents the
sample size. However, their required rate condition may be negated due to a
large number of covariates or failure to meet the smoothness condition on the
true propensity under a complex missing mechanism.

To address the above statistical inference challenge due to the presence of
a large number of covariates, one possible strategy is to leverage a surrogate
outcome. The surrogate outcomes herein are defined as alternative clinical out-
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comes that are likely to predict the clinical benefit of primary interest. In our
motivating example, the MCID of the global physical health T-score in the
Patient-Reported Outcomes Measurement Information System (PROMIS) sur-
vey is a well-acknowledged measurement for evaluating surgery benefits. There
are other PRO measures collected that represent different but related mental
or physical health performances that can be considered surrogate outcomes. In
many applications, a surrogate outcome can help improve efficiency or overcome
the difficulties due to complex missing mechanisms. In causal inference, a surro-
gate can be used to improve the efficiency of estimating the average treatment
effect (ATE) [25, 8, 6, 3, 1]. In the application of semi-supervised inference, un-
der the assumption of missing completely at random (MCAR), [15] showed that
a surrogate can help infer the predicted risk derived from a high-dimensional
working model even when the true risk prediction model depends on multiple
covariates. However, their approach cannot be applied under the assumption of
MAR, which is the setting we need to deal with.

In this work, we focus on using surrogate outcomes to develop interpretable
predictive models with outcome missingness. The parameter of interest herein
is defined as the minimizer of the deviance under a GLM with possible model
misspecification. We propose a concept of an informative surrogate, defined as
a surrogate outcome that enables a low-dimensional imputation model condi-
tional on the surrogate and the covariates (i.e., the imputation model lies in a
low-dimensional subspace generated by the surrogate and the covariates). Un-
der the MAR assumption, we exploit the role of this informative surrogate to
1) allow for a low-dimensional imputation model under a large number of co-
variates and 2) avoid estimating the complex missing propensity. To harvest
the potential benefit brought by informative surrogate outcomes, we propose
the following procedure. First, we estimate a flexible imputation model (e.g.,
using kernel regression or basis expansion) in a reduced subspace that is con-
structed by leveraging the information from informative surrogate outcomes.
Subsequently, we can impute the missing outcomes and obtain an initial esti-
mator for the parameters of interest. Then, we bypass the estimation of the
complex missing propensity and instead estimate a low-dimensional weighting
function based on the reduced subspace to adjust for the possible bias due to
the estimated imputation model. Finally, a one-step debiased estimator for the
parameters in the predictive model is constructed. Both the point and interval
estimates of the parameters can be obtained. We further show that the pro-
posed method can provide a valid inference procedure for the parameters of
interest without requiring a consistent propensity estimation. In addition, when
the true propensity lies in the same subspace as the imputation model does, the
proposed method leads to a semiparametric efficient estimator for the parame-
ters in the predictive model. Extensive simulation and a study of real-world data
are provided to demonstrate the superior performance of the proposed method.

The remainder of the paper is organized as follows. In Section 2, we define
the parameter of interest and introduce our proposed method. In Section 3,
we demonstrate the theoretical validity of the proposed method. In Section 4,
we provide numerical studies to bolster the superiority of the proposed methods
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over other existing methods and methods without information on the surrogate.
In Section 5, we apply the proposed method to derive a predictive rule to infer
post-surgery improvement for joint replacement surgery patients. In Section 6,
we discuss possible future works.

2. Method

Let X be a p-dimensional covariate and Y be a binary, categorical, or con-
tinuous outcome of interest. Without loss of generality, we choose a GLM as
a working model for E rY | Xs. Following the notation of exponential family
distributions [34], a GLM assumes that E rY | Xs “ b1pXJβq, where b1p¨q, the
derivative of function bp¨q, is a known link function. The parameter of inter-
est, β, is often defined as the minimizer of the deviance (or equivalently, the
negative log-likelihood) under the working model, i.e., β˚ “ arg minE r�pβqs ,
where �pβq “ bpXJβq ´ YXJβ. If the working model is misspecified, i.e.,
E rY | Xs ­“ b1pXJβ˚q, β˚ that minimizes the deviance, a goodness-of-fit statis-
tic, is still meaningful. For a linear working model, the link function b1ptq is the
identity function, and the function bptq “ t2{2; the objective is equivalent to
the ordinary least square (OLS). Notice that the parameter of interest, β˚, is
defined under the full distribution where Y and X are always observed. To en-
sure that β˚ can be identified under the full distribution, we assume that b2

p¨q,
the second order derivative of function bp¨q, is always positive and ErXXJs is
positive definite.

For actual data, the outcome Y can be missing. We collect the covariate X,
the outcome Y , the informative surrogate outcome Z, and the missing indicator
R from all samples. The missing indicator R indicates whether Y is observed
(R “ 1) or not (R “ 0). We also assume that the surrogate Z can be fully
observed. Collectively, the observed data can be denoted as pX, Z,R,RY q. To
ensure the identifiability of β˚ using the actual data, we assume that Y K R |

X, Z.

2.1. First step: dimension reduction through informative surrogate

In this section, we propose a two-step procedure under the assumption of Y K

R | X, Z. To start with, we formally define the concept of informative surrogate
outcomes and introduce additional conditions for the identifiability of β˚.

An surrogate outcome Z is informative if 1) there exists a pp ` 1q ˆ d ma-
trix, Γ, with orthogonal columns satisfying Y K ĂX | ΓJ

ĂX and d ă p, where
ĂXJ “ pZ,XJq; 2) the coefficients in Γ corresponding to Z are not all zeros.
The first requirement of the definition implies that, conditioning on the surro-
gate outcome, the dimension of the space constructed by the covariates and the
surrogate can be reduced to d, which is expected to be much smaller than p. The
columns of Γ represent the reduced subspace. Thus, if the surrogate is informa-
tive, QpZ,Xq :“ E rY | Z,Xs is a function lying in a low-dimensional subspace,
i.e., there exists an unknown link function g such that QpZ,Xq “ gpΓJ

ĂXq. The



6 J. Park et al.

second requirement of the definition implies that ErY | Z,Xs ­“ ErY | Xs,
and thus an informative surrogate enables a more accurate imputation model.
Consequently, an efficient estimator for this low-dimensional imputation model
may have a faster convergence rate and more accurate imputations than directly
using the kernel regression to estimate E rY | Xs.

Various existing methods can be employed to estimate the reduced subspace
when the actual data is fully observable. The assumption Y K ĂX | ΓJ

ĂX is
closely related to the (sufficient) dimension reduction. In dimension reduction
literature [18, 5, 40, 39, 21, 22], the smallest space generated by the columns of
Γ that satisfies Y K ĂX | ΓJ

ĂX is referred to as the central subspace. When the
data are fully observed, the dimension reduction methods, such as the minimum
average variance estimation (MAVE) [40], the sliced-inverse regression (SIR)
[18], or semiparametric approaches in [21, 22], can be directly applied to estimate
the central subspace Γ, and the estimator is asymptotically normal. When there
are multiple surrogate outcomes in the observed data, the above-mentioned
methods (e.g., the MAVE) can be used to select candidate informative surrogate
outcomes. For example, we can select the surrogate outcome (or a combination
of multiple surrogate outcomes) that leads to the lowest reduced dimension.

Remark 2.1. Our proposed method and theory can accommodate multiple
surrogate outcomes. For ease of exposition, we focus on only one surrogate in
the main text. In Appendix A.4, we provide the theory and its proof when
multiple surrogate outcomes exist.

With incomplete outcome data, to ensure the identifiability of β˚ and Γ,
the traditional positivity assumption requires that P pR “ 1 | ĂXq ą 0. In this
work, instead of imposing the traditional positivity assumption, we consider
a relaxed positivity assumption, P pR “ 1 | ΓJ

ĂXq ą 0. Under this assump-
tion, if Y K ĂX | ΓJ

ĂX, we can show that Y K R | ΓJ
ĂX, and QpZ,Xq “

E rY | Z,Xs “ E
”

Y | ΓJ
ĂX
ı

“ E
”

Y | ΓJ
ĂX, R “ 1

ı

. This implies that the
conditional mean of Y restricted to R “ 1 shares the same subspace with the
unrestricted conditional mean. Thus, to estimate Γ, we only need to apply these
dimension reduction methods to the fully observed part of the data. Since Γ and
subsequently QpZ,Xq are identifiable, β˚ is also identifiable under the relaxed
positivity assumption.

Based on the identifiability under the relaxed positivity assumption and an
estimator for Γ, we can construct an initial estimator for β˚. Specifically, after
obtaining pΓ, we can use nonparametric regressions or machine learning meth-
ods to fit Y w.r.t pΓJ

ĂX to derive the unknown link function g and estimate
pQpZ,Xq “ pgppΓJ

ĂXq. Then, we obtain an initial estimator for β˚ by minimizing
pEn

”

bpXJβq ´ pgppΓJ
ĂXqXJβ

ı

, or equivalently, solving the estimating equation

pEn

”!

b1
pXJβq ´ pgppΓJ

ĂXq

)

X
ı

“ 0.

Denote the solution as pβ. Due to the slow convergence rate of nonparametric
regressions or machine learning methods, the convergence rate of pQ is dominated
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by that of pg. Subsequently, pβ may suffer from the slow convergence rate of pg.
Thus, to obtain an estimator with a faster convergence rate, we need to remove
the bias due to the estimation error of pg, which will be discussed in the following
section.

Remark 2.2. The term pgppΓJ
ĂXq is expected to form a good prediction for Y .

As an imputation model, it should be predictive of Y ; however, there are at
least two reasons that it may not be satisfactory. First, pgppΓJ

ĂXq depends on
the surrogate outcome Z, which may not be available at the time of making
the prediction and thus is not appropriate to be treated as a covariate. Second,
when the reduced dimension, i.e., the dimension of pΓJ

ĂX, is greater than 2, it
could be hard to interpret the model.

2.2. Second step: debias using a low-dimensional weighting function

In this section, we attempt to remove the bias due to the estimation error of
pg using a low-dimensional weighting function. For ease of exposition, we focus
on how to construct an improved estimator for β˚

1 , which is the first coefficient
in β˚. The proposed method can be extended to infer uJβ˚ for any u. To get
an improved estimator for β˚, we can implement the proposed method for each
coordinate of β˚ and ensemble these estimates to construct an estimator for β˚.

To start with, we consider a class of estimating equations for β˚
1 . We first de-

rive the efficient influence function (See Appendix A.1) of β˚
1 without assuming

any relationship between Y and Z given covariates X. Motivated by the effi-
cient influence function, we consider the following class of estimating equations
for β˚

1 ,

E
”

tSpβ;π,Qqu
J
v
ı

“ 0, (2.1)

where

Spβ;π,Qq “
“�

b1
pXJβq ´ QpZ,Xq

(

` π´1
pX, ZqR tQpZ,Xq ´ Y u

‰

X,

QpZ,Xq is the true imputation model for Y , and πpX, Zq is an arbitrary weight-
ing function. In this class of estimating equations, the first term

�

b1
pXJβq ´ QpZ,Xq

(

XJv

corresponds to the estimating equation using QpZ,Xq as the imputation for all
the outcomes. The second term

π´1
pX, ZqR tQpZ,Xq ´ Y uXJv

can be interpreted as an efficiency augmentation term using the weighting
function π´1pX, Zq. In the first step, we have obtained an imputation model
pQpZ,Xq and the initial estimator pβ, which can be plugged into estimating
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equations (2.1). That is, we will consider E

„

!

Spβ;π, pQq

)J

v

j

“ 0 with β be-

ing replaced by pβ1, pβ´1q, where pβ´1 is the sub-vector of pβ, excluding the first
coordinate.

However, directly solving this estimating equation for an arbitrary choice of
v and the weighting function may not lead to an improved estimator due to the
estimation error of pg. In the following, we discuss how to choose v and πpX, Zq

such that the first-order bias of the estimating equation induced by pg can be
removed. This estimation error affects the estimating equation via two paths.
First, the estimating equation depends on pQ, which is directly affected by the
estimation error of pg; second, the estimating equation depends on pβ´1, which is
also affected by the estimation error of pg.

To obviate the impact of the estimation error of pg on pβ´1, we resort to the
de-correlated score [24]. The de-correlated score projects the score in a chosen
direction such that the projected estimating equation is not affected by the
estimation error of pβ´1. Assimilating this idea, we choose the following v to
achieve this goal. Let w˚ be the minimizer of

E
”

b
2
pXJβ˚

qpX1 ´ XJ
´1wq

2
ı

,

where X1 is the first covariate in X and X´1 is the covariate vector of X
excluding X1. Consider the following estimating equation for β˚

1 ,

E

„

!

Spβ;π, pQq

)J

v

j

“ 0, (2.2)

where vJ “ p1,´w˚J
q and β “ pβ1, pβ´1q. Using this estimating equation, the

estimation error of pβ´1 will not affect the estimation of β˚
1 .

To obviate the impact of the estimation error of pg on pQ, we choose a tailored
weighting function. Under the proposed estimating equation (2.2), for any choice
of π, the first-order bias of the proposed estimating equation (2.2) with Q being
replaced by pQ is

E
”!

R{πpĂXq ´ 1
)!

pgppΓJ
ĂXq ´ gpΓJ

ĂXq

)

XJv
ı

« E
”!

R{πpĂXq ´ 1
)!

pgpΓJ
ĂXq ´ gpΓJ

ĂXq

)

XJv
ı

.

In order to remove the estimation error of pQ, one possible strategy is to choose
πpĂXq such that

E
”!

R{πpĂXq ´ 1
)

fpΓJ
ĂXqXJv

ı

“ 0, for any f P L2pΓJ
ĂXq. (2.3)

Let P pR “ 1q “ ρ ą 0 and ηp¨ | Rq be the conditional density function of
ΓJ

ĂX given R. Define

JrpΓJ
rxq “ E

”

XJv | ΓJ
ĂX “ ΓJ

rx, R “ r
ı

ηpΓJ
rx | R “ rq,

for r “ 0 and 1. Theorem 2.1 characterizes the solution to Equation (2.3).
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Theorem 2.1. We define two regularity conditions:

1. P pJ1pΓJ
ĂXq ­“ 0q “ 1;

2.
�

rx : J1pΓJ
rxq “ 0

(

Ă
�

rx : J0pΓJ
rxq “ 0

(

.

Under any of the two regularity conditions, we can point-wisely define π´1
˚ prxq

as
π´1

˚ prxq “ E
”

XJv | ΓJ
ĂX “ ΓJ

rx
ı

{E
”

RXJv | ΓJ
ĂX “ ΓJ

rx
ı

on
�

rx : J1pΓJ
rxq ­“ 0

(

. In addition, such a π˚prxq is a solution to Equation (2.3).
Further, the solution set of Equation (2.3) can be characterized as all the func-
tions of the form π´1

˚ prxq ` T hprxq on trx : J1pΓJ
rxq ­“ 0u, where T is a linear

operator defined as

T h “ h ´ E
”

hXJv | ΓJ
ĂX, R “ 1

ı

{E
”

XJv | ΓJ
ĂX, R “ 1

ı

and h is an arbitrary function in L2pĂXq.

The proof of Theorem 2.1 can be found in Appendix A.2.

Remark 2.3. The term π´1
˚ prxq can also be written as

1 `
�

ρJ1pΓJ
rxq
(´1

J0pΓJ
rxqp1 ´ ρq.

Thus, to estimate π´1
˚ prxq, we can estimate J1, J0, and ρ, and then plug-in these

estimates and pΓ to construct an estimator for π´1
˚ prxq.

Remark 2.4. The regularity conditions can be easily satisfied. For example,
assume the density of ΓJ

ĂX | R “ 1 is bounded above 0. If

E
”

XJv | ΓJ
ĂX, R “ 1

ı

has a continuous distribution, then we have P
´

J1pΓJ
ĂXq ­“ 0

¯

“ 1. In addition,

when P pR “ 1 | Z,Xq “ P pR “ 1 | ΓJ
ĂXq, the regularity condition is also

satisfied because

E
”

XJv | ΓJ
ĂX, R “ 1

ı

“ E
”

XJv | ΓJ
ĂX, R “ 0

ı

.

Remark 2.5. The term π´1
˚ prxq is a function of ΓJ

rx. This can be interpreted
as the consequence of Y K R | ΓJ

ĂX. However, the term π´1
˚ prxq ` T hprxq may

not include P pR “ 1 | ΓJ
ĂXq. This implies that the true propensity based on

ΓJ
ĂX may not be sufficient to remove the bias.

We then use π´1
˚ pĂXq to replace the π´1pĂXq in estimating equation (2.2). The

weighting function π´1
˚ pĂXq only depends on ΓJ

ĂX and thus is a low-dimensional
function. To estimate the weighting function π´1

˚ pĂXq, we consider the trimmed
kernel estimates. First, we estimate w by minimizing

pEn

”

b
2
pXJ

pβqpX1 ´ XJ
´1wq

2
ı

,
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and construct pvJ “ p1,´ pwJq. Then, using kernel regressions, we consider the
following estimator for π´1

˚ :

pπ´1
prx; pΓ, pvq “

$

&

%

1 `

!

pJ1ppΓJ
rxqpρ

)´1
pJ0ppΓJ

rxqp1 ´ pρq

ˇ

ˇ

ˇ

pJ1ppΓJ
rxq

ˇ

ˇ

ˇ
ą cn,

pρ´1,
ˇ

ˇ

ˇ

pJ1ppΓJ
rxq

ˇ

ˇ

ˇ
ď cn,

where pJrppΓJ
rxq “ pEn

”

XJ
pvKh̄ppΓJ

ĂX ´ pΓJ
rxq | R “ r

ı

, pρ “ pEnrRs, Kh̄p¨q “

Kp¨q{h̄d, and pEn r¨ | R “ rs is the empirical mean over the samples with R “

r. The function Kp¨q is a kernel function with the order of ν ´ 1, and the
bandwidth parameter h̄ is selected according to Theorem 3.1. The proposed
estimator equals to the kernel regression when

ˇ

ˇ

ˇ

pJ1ppΓJ
rxq

ˇ

ˇ

ˇ
is far from 0, and

equals to pρ´1, when
ˇ

ˇ

ˇ

pJ1ppΓJ
rxq

ˇ

ˇ

ˇ
is close to 0. The term cn is used to trim possible

extremities of the kernel regression estimates.
After obtaining the estimator pπ´1 for π´1

˚ pĂXq, we construct the estimat-

ing equation by incorporating pπ´1, i.e., pEn

„

!

Spβ; pQ, pπq

)J

pv

j

with a constraint

β´1 “ pβ´1. To avoid possible computational issues in solving this estimat-
ing equation (Chapter 5 in Van der Vaart [37]), we use its first-order expan-
sion and construct a one-step debiased estimator rβ1 “ pβ1 ´ sI´1S, where S “

pEn

„

!

Sppβ; pQ, pπq

)J

pv

j

, and sI “ pEn

”

b
2
pXJ

pβqX1X
J
pv
ı

. Another challenge

in constructing the debiased estimator is that the estimation errors of pQ, pπ
and the samples used to construct the estimator are correlated. We adopt the
cross-fitting procedure proposed in [4] in the implementation.

2.3. Implementation

The entire procedure can be separated into two steps. In the first step, using
all fully observed data, we obtain pΓ and then regress Y on pΓJ

ĂX using kernel
regressions and denote the estimated link function as pg. Using the estimated
imputation model, pQpZ,Xq “ pgppΓJ

ĂXq, we obtain an initial estimate pβ by
solving

pEn

”!

b1
pXJβq ´ pgppΓJ

ĂXq

)

X
ı

“ 0,

which is equivalent to fitting a working generalized linear model for pgppΓJ
ĂXq

using X. Using the initial estimate, we solve

min
w

pEn

”

b
2
pXJ

pβqpX1 ´ XJ
´1wq

2
ı

,

and denote its minimizer as pw. Then we can construct pvJ “ p1,´ pwJq. In
the second step, we estimate the identified weighting function and use it to
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form a one-step debiased estimator for β˚
1 . First, we split the data into K sub-

sets (I1, . . . , IK) with equal sample sizes. The choice of K does not affect the
theoretical results; in our simulation and real data analysis, for simplicity of
the computation, we set K “ 2. For a specific index k, the estimated link
function, denoted as pgp´kqp¨q, is obtained through kernel regression of Y w.r.t.
pΓJ

ĂX using the data excluding Ik. The estimated weighting function denoted
as pπ´1

p´kq
pĂX; pΓ, pvq is obtained through the truncated kernel regression using the

data excluding Ik. Specifically,

pπ´1
p´kq

prx; pΓ, pvq “

$

’

&

’

%

1 `

!

pJ
p´kq

1 ppΓJ
rxqpρ

)´1
pJ

p´kq

0 ppΓJ
rxqp1 ´ pρq

ˇ

ˇ

ˇ

pJ
p´kq

1 ppΓJ
rxq

ˇ

ˇ

ˇ
ą cn,

pρ´1,
ˇ

ˇ

ˇ

pJ
p´kq

1 ppΓJ
rxq

ˇ

ˇ

ˇ
ď cn,

where pJ
p´kq
r ppΓJ

rxq “ pE
p´kq
n

”

XJ
pvKh̄ppΓJ

ĂX ´ pΓJ
rxq | R “ r

ı

and pE
p´kq
n r¨ | R “

rs is the empirical average over the samples with R “ r and excluding those
in Ik. In theory, the value of cn can be chosen following Theorem 3.1; in our
implementation, we choose cn “ 0.01 to trim extreme estimates. Then, the
one-step debiased estimator is rβ1 “ pβ1 ´ sI´1

sS, where

sS “

K
ÿ

k“1
Spkq

{K, Spkq
“ pEpkq

n

„

!

Sppβ; pQp´kq, pπp´kqq

)J

pv

j

.

A summary of the entire algorithm can be found in the Appendix A.3. In our
simulation and real data analysis, for kernel regressions obtaining pgp¨q and pJ

p´kq
r ,

we adopt the Gaussian kernel function, which is a symmetric kernel function of
order 1 (i.e., ν “ 2); to determine the bandwidth, we specify the bandwidth h̄
as the theoretical optimal bandwidth to minimize the l2-estimation errors, i.e.,
h̄opt “ pnρq´1{p2ν`dq. In practice, we use pnpρq´1{p2ν`dq, where npρ is the sample
size of fully observed data.

To estimate the asymptotic variance of rβ1, following [20], we bootstrap based
on the entire sample for B times; for the bth bootstrapped dataset, we implement
the algorithm and obtain rβ

pbq

1 , where b “ 1, ¨ ¨ ¨ , B. We use the sample variance

of
!

rβ
pbq

1

)B

b“1
as the estimate for the asymptotic variance to construct interval

estimations. The confidence interval is constructed as follows: rβ1˘z1´α{2ˆ stan-

dard deviation of
!

rβ
pbq

1

)B

b“1
, where z1´α{2 is the 1 ´ α{2 quantile of a standard

normal distribution, and 1 ´ α is the pre-specified nominal coverage. In our
simulation and real data analysis, we choose B “ 500.

Remark 2.6. To generalize the proposed procedure to infer uJβ˚ for any u,
we modify the construction of pv. To construct pv, we calculate

pv “

!

pEn

”

b
2
pXJ

pβqXXJ
ı)´1

u.
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When constructing the one-step debiased estimator, we will use uJ
pβ ´ sI´1

sS,
where

sI “ pEn

«

ˆ

!

Sppβ; pQ, pπq

)J

pv

˙2
ff

.

This modification is based on the proof of Theorem A.1. In the proof, we shown
that when u “ p1, 0, ¨ ¨ ¨ , 0qJ, vJ is proportional to p1,´pw˚qJq, where

v “

!

E
”

b
2
pXJβ˚

qXXJ
ı)´1

u.

In general cases, it de-correlates the estimation error of uJ
pβ w.r.t. other orthog-

onal complements. Thus, this procedure is an extension of the de-correlated score
for an arbitrary u.

3. Theoretical properties

In this section, we provide the asymptotic property of the proposed estimator.
To accommodate the situation where the marginal missing rate may be close to
1, we assume that the distribution of pX, Zq and the conditional distribution
Y | Z,X do not depend on n; the missing propensity P pR “ 1 | Z,Xq may
depend on n. Specifically, we consider two scenarios: 1) the missing propensity
P pR “ 1 | Z,Xq does not change with n; 2) P pR “ 1 | Z,Xq “ ρnwpĂXq

with ρn Ñ 0, where wpĂXq does not depend on n, wpĂXq is always bounded
away from 8, and E

”

wpĂXq

ı

“ 1. For both scenarios, we assume the relaxed

positivity assumption that P pR “ 1 | ΓJ
ĂXq ą 0 rather than the traditional

positivity assumption that P pR “ 1 | Z,Xq ą 0, which is a benefit of not
using the inverse of the true propensity P pR “ 1 | Z,Xq in the estimation. For
brevity, we focus on the theoretical results for Scenario 1) in the main text and
leave those for Scenario 2) in Appendix A.4. All the proofs of the theorems can
also be found in Appendix A.4.

For Scenario 1), the following assumptions are required.
Assumption 3.1. The covariate X’s and the surrogate outcome Z are bounded,
and the function b

2
p¨q is continuously differentiable; maxt}β˚}2, }v}2u is bounded.

Assumption 3.2. There is a positive constant γd ą 1{4 such that

}pgppΓJ
ĂXq ´ QpZ,Xq}8 “ Oppn´γdq,

and
!

vecppΓq ´ vecpΓq

)

“ n´1
n
ÿ

i“1
1tRi “ 1uψpXi, Zi, Yiq ` oppn´1{2

q,

where ψpXi, Zi, Yiq is bounded with mean 0 and vecp¨q represents the vector-
ization of the matrix. In addition, we assume that

sup
rx

ˇ

ˇ

ˇ
ppg ´ gq ppΓJ

rxq ´ ppg ´ gq pΓJ
rxq

ˇ

ˇ

ˇ
“ oppn´1{2

q.
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Assumption 3.3. The function Kp¨q is a kernel function with the order of ν´1.
Function JrpΓJ

rxq’s are at least νth order differentiable w.r.t ΓJ
rx with bounded

derivatives. Define GpΓJ
rxq “ J´1

1 pΓJ
rxqJ0pΓJ

rxq. We assume that GpΓJ
rxq is

bounded away from `8 on the open set
�

rx : J1pΓJ
rxq ­“ 0

(

. We also assume
that for any matrix A of full rank, the density function of AJ

ĂX, ηpAJ
ĂXq,

is bounded away from 0 and `8, and at least νth order differentiable with
bounded derivatives.

Assumption 3.4. When t ą 0 is small enough, there exist positive constants
A0 and γm such that P

!

0 ­“

ˇ

ˇ

ˇ
ErXJv | ΓJ

ĂX, R “ 1s

ˇ

ˇ

ˇ
ď t

)

ď A0t
γm .

Assumption 3.5. Set cn “ rδ
2{p2`γmq
n , where rδn “ pnh̄d

{ lognq´1{2 ` h̄ν
`n´γd .

We assume that n´γdrδ
γm{p2`γmq
n “ opn´1{2q.

In Assumption 3.1, for ease of exposition, we assume a bounded design for
each X and Z. Assumption 3.2 includes the requirement for the chosen di-
mension reduction method to estimate Γ and the chosen method to estimate
g. Specifically, we assume that the uniform convergence rate of pQ is Oppn´γdq,
and the estimated subspace pΓ is asymptotically linear. In addition, we assume
that sup

rx

ˇ

ˇ

ˇ
ppg ´ gq ppΓJ

rxq ´ ppg ´ gq pΓJ
rxq

ˇ

ˇ

ˇ
“ oppn´1{2q. Many dimension reduc-

tion methods and nonparametric methods satisfy Assumption 3.2. An example
is given in Appendix A.5. Assumption 3.3 requires JrpΓJ

rxq and ηpAJ
ĂXq to be

at least ν-th order differentiable. These requirements guarantee the convergence
rates of the kernel regressions using a kernel function of order ν ´ 1 to esti-
mate JrpΓJ

rxq and ηpAJ
ĂXq. Assumption 3.4 restricts the concentration near

ErXJv | ΓJ
ĂX, R “ 1s “ 0 by the parameter γm. When ErXJv | ΓJ

ĂX, R “ 1s

is bounded away from 0, we have γm “ `8; when ErXJv | ΓJ
ĂX, R “ 1s

has a continuous distribution, we have γm ě 1. Assumption 3.5 specifies the
condition on γd and γm. In the following, we provide an example on the values
of γd and γm. When X | R “ 1 follows a multi-variate Gaussian distribution,
ErXJv | ΓJ

ĂX, R “ 1s is continuous, and thus we have γm “ 1. Further, if we
choose the optimal h̄ “ n´1{p2ν`dq, we have that rδn “ n´ν{p2ν`dq ` n´γd , and
γd “ ν{p2ν ` dq. Assumption 3.5 can be satisfied if d ă 2ν{3.

Under these assumptions, we show that the one-step debiased estimator is
asymptotically normal.

Theorem 3.1. Under Assumptions 3.1–3.5, we have
?
nprβ1 ´β˚

1 q Ñ Np0, σ2q,
where the formula of the asymptotic variance σ2 can be found in the Appendix A.4.

In addition, Corollary 3.1 shows a sufficient condition that the semiparametric
lower bound can be achieved.

Corollary 3.1. When the true propensity P pR “ 1 | Z,Xq “ P pR “ 1 | ΓJ
ĂXq,

the one-step debiased estimator rβ1 obtains the semiparametric lower bound.

When P pR “ 1 | Z,Xq “ P pR “ 1 | ΓJ
ĂXq, we can show that π´1

˚ p rXq “

P´1pR “ 1 | Z,Xq, which is the inverse of the true propensity score. Thus,
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the proposed method will lead to an estimator obtaining the semiparametric
lower bound. In general cases where P pR “ 1 | Z,Xq ­“ P pR “ 1 | ΓJ

ĂXq, the
proposed estimator cannot obtain the semiparametric lower bound. Although
the asymptotic variance of the proposed method may be higher than the semi-
parametric lower bound when P pR “ 1 | Z,Xq ­“ P pR “ 1 | ΓJ

ĂXq, the
proposed method may still show better performance in finite sample cases since
low-dimensional imputation model and weighting function are easier to estimate.

4. Simulations

In this section, we conduct simulations and compare the proposed method with
other methods to demonstrate 1) the advantage of avoiding complex propensity
estimation and 2) the possible efficiency gain from incorporating the surrogate
outcome. To show the advantage of avoiding modeling the complex propen-
sity, we compare our proposed method with two baseline approaches. Baseline
1 follows the double machine learning procedure proposed in [4], which esti-
mates both the propensity and the imputation model using kernel regressions.
When using the kernel regressions to estimate the propensity and the impu-
tation model, we first implement dimension reduction and then conduct the
kernel regression. Another baseline approach (Baseline 2) executes the same
procedure as Baseline 1 but employs a logistic regression to estimate the miss-
ing propensity. For both Baselines 1 and 2, we implement a threshold of 0.01 for
the estimated propensities to trim extreme values. To show possible efficiency
gain from incorporating the surrogate outcome, besides the proposed procedure
using the surrogate outcome (denoted as “Proposed with Z”), we implement
another approach (denoted as “Proposed w/o Z”) following the same procedure
but only using X (no surrogate outcome Z) in the dimension reduction, impu-
tation model estimation, and weighting function estimation. For the dimension
reduction step implemented in all these approaches, we use the kernel sliced
regression method and choose the reduced dimension using cross-validation.

We consider 8 simulation scenarios with different missing rates, sample sizes,
and outcome formats, i.e., continuous and binary outcomes. For each type of
outcome, we consider a moderate marginal missing rate of 50% and a high
marginal missing rate of 90%. For both scenarios, we choose the sample size to
be 500 or 1000. To generate data under each design, we first generate the missing
indicator R following a Bernoulli distribution with the success probability of 0.5
(moderate marginal missing rate) or 0.1 (high marginal missing rate). Then, we
generate the covariates based on R “ 1 or R “ 0. When the outcome is missing
(R “ 0), the covariates, i.e., X | R “ 0, follow a standard multivariate Gaussian
distribution with zero means and the identity covariance matrix; when the out-
come is observed (R “ 1), the covariates follow a mixture of two multivariate
Gaussian distributions. With a probability of 0.7, the covariates are generated
following a standard multivariate Gaussian distribution; otherwise, the covari-
ates are generated following a multivariate Gaussian distribution Np1, 1.5Ipq,
i.e., X | R “ 1 „ ξNp0, Ipq ` p1 ´ ξqNp1, 1.5Ipq, where ξ follows a Bernoulli
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distribution with a success probability of 0.7. The surrogate outcome is gen-
erated from Z “ δXJβ0 `

ř8
j“5 |Xj |{4 ` εz where εz „ Np0, 1q. To generate

the outcome Y given the covariates, for the scenario with continuous outcomes,
we consider Y “ XJβ0{2 ` Z ` ε, where β0 “ p1, 1,´1,´1, 0, 0, 0, 0qJ and
ε „ Np0, 1q. For binary outcomes, we consider Y “ 1tXJβ0{4 ` Z ` ε ą 0u. In
addition, δ is fixed at 0.5 for continuous outcomes and 0.25 for binary outcomes.

To evaluate the proposed methods, we use metrics including coverage, bias,
standard deviation, and deviance of the estimates. For each scenario, we run 500
replicates. For each replicate, we estimate the coefficients and use bootstrapping
(500 bootstraps) to construct a 95%-confidence interval using the training sam-
ples. We obtain the mean for each coefficient over 500 replicates to calculate the
bias and obtain the standard deviation for each coefficient over 500 replicates.
We also calculate the deviance using the coefficients estimated by each approach
on an independently generated testing dataset with a sample size of 104.

Tables 1, 2, and 3 exhibit the coverage, bias, and standard deviation of the
first four coefficients, respectively. From Table 1, overall, the proposed methods
(Proposed w/o and with Z) achieve the nominal coverage in most scenarios
even in the high missing rate settings, whereas Baseline 1 and Baseline 2 do
not. This suggests both Baseline 1 and Baseline 2 are incapable of handling
the complex missing mechanism. In the scenario with binary outcomes, for
both proposed methods, there might be over-coverage issues, especially when
the number of fully observed samples is below 250. When the number of fully
observed samples increases, the coverage of both proposed methods tends to
converge to the nominal coverage as the finite sample bias diminishes. From
Table 2, our proposed method with Z yields lower bias compared with Base-
line 1 and the proposed method without Z. From Table 3, our proposed method
with Z provides smaller standard deviations than the proposed method with-
out Z. Baseline 2 may achieve a relatively low bias/standard deviation due to
a more stable estimation of the weights using logistic regressions, especially in
the scenario n “ 500 and with moderate missing rates. Figure 1 summarizes
the deviance of the estimates for all scenarios. With the moderate missing rate,
our proposed method with Z performs comparably to Baseline 2 but outper-
forms the other methods. In the high missing rate scenarios, Proposed with Z
achieves the minimum deviance. Our proposed method with Z surpasses the
method without Z in all the scenarios due to the reduced finite sample bias
of the low-dimensional imputation model and weighting estimation induced by
the surrogate Z. In summary, considering all the metrics, the proposed method
with Z outperforms others.

As discussed in Section 2.1, machine learning methods, instead of kernel
regression, can be used for the imputation model. The simulation results using
random forests to fit the imputation model can be found in Appendix A.7.

5. Application to PROMIS global physical health T-score

In this section, we applied our proposed method to predict whether the improve-
ment of the PROMIS global physical health T-score will exceed the MCID after
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Table 1

Coverage of the 95% confidence interval for the coefficients.
n “ 500 n “ 1000

Continuous, Missing rate of 50%
β1 β2 β3 β4 β1 β2 β3 β4

Baseline 1 0.872 0.840 0.886 0.864 0.847 0.769 0.861 0.817
Baseline 2 0.896 0.912 0.906 0.928 0.885 0.873 0.893 0.875
Proposed w/o Z 0.920 0.938 0.910 0.922 0.901 0.901 0.891 0.893
Proposed with Z 0.952 0.964 0.958 0.968 0.954 0.954 0.956 0.954

Continuous, Missing rate of 90%
β1 β2 β3 β4 β1 β2 β3 β4

Baseline 1 0.866 0.840 0.844 0.854 0.740 0.798 0.752 0.762
Baseline 2 0.904 0.876 0.922 0.920 0.910 0.898 0.894 0.902
Proposed w/o Z 0.954 0.966 0.968 0.946 0.942 0.944 0.938 0.952
Proposed with Z 0.946 0.968 0.966 0.962 0.946 0.964 0.954 0.956

Binary, Missing rate of 50%
β1 β2 β3 β4 β1 β2 β3 β4

Baseline 1 0.908 0.918 0.916 0.932 0.892 0.882 0.918 0.900
Baseline 2 0.928 0.932 0.916 0.930 0.920 0.898 0.894 0.912
Proposed w/o Z 0.968 0.970 0.956 0.950 0.962 0.964 0.964 0.964
Proposed with Z 0.970 0.972 0.948 0.962 0.958 0.968 0.956 0.946

Binary, Missing rate of 90%
β1 β2 β3 β4 β1 β2 β3 β4

Baseline 1 0.950 0.940 0.948 0.962 0.892 0.942 0.964 0.940
Baseline 2 0.932 0.930 0.920 0.956 0.924 0.912 0.896 0.926
Proposed w/o Z 0.956 0.950 0.948 0.964 0.954 0.962 0.944 0.950
Proposed with Z 0.966 0.966 0.976 0.948 0.942 0.962 0.966 0.974

Table 2

Bias of coefficient estimates.
n = 500 n= 1000

Continuous, Missing rate of 50%
β1 β2 β3 β4 β1 β2 β3 β4

Baseline 1 1.635 1.543 -1.404 -1.451 1.064 1.151 -0.997 -1.078
Baseline 2 0.070 0.054 -0.049 -0.067 0.057 0.055 -0.040 -0.054
Proposed w/o Z 0.694 0.693 -0.883 -0.926 0.554 0.635 -0.689 -0.656
Proposed with Z 0.097 0.072 -0.129 -0.087 0.054 0.072 -0.076 -0.068

Continuous, Missing rate of 90%
β1 β2 β3 β4 β1 β2 β3 β4

Baseline 1 2.394 2.262 -2.374 -2.234 1.989 1.845 -1.915 -1.881
Baseline 2 0.074 0.141 -0.079 -0.108 0.171 0.193 -0.189 -0.131
Proposed w/o Z -0.082 -0.103 0.125 0.105 -0.069 -0.049 0.028 0.041
Proposed with Z 0.056 0.050 -0.096 0.006 0.046 0.036 -0.084 -0.060

Binary, Missing rate of 50%
β1 β2 β3 β4 β1 β2 β3 β4

Baseline 1 1.176 1.099 -1.123 -1.008 0.857 0.864 -0.809 -0.766
Baseline 2 0.048 0.031 -0.039 -0.037 0.023 0.027 -0.016 -0.035
Proposed w/o Z 0.288 0.318 -0.208 -0.299 0.261 0.191 -0.199 -0.226
Proposed with Z 0.007 0.000 -0.020 -0.016 -0.005 0.000 0.020 -0.006

Binary, Missing rate of 90%
β1 β2 β3 β4 β1 β2 β3 β4

Baseline 1 9.457 9.361 -2.557 -2.440 7.875 6.110 -4.685 -4.458
Baseline 2 -0.034 -0.096 -0.218 -0.213 0.054 0.021 -0.243 -0.135
Proposed w/o Z 0.199 0.431 0.290 0.483 -0.054 0.009 0.029 0.084
Proposed with Z -0.244 -0.218 0.214 0.191 -0.076 -0.155 0.108 0.113
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Table 3

Standard deviations of coefficient estimates.
n = 500 n= 1000

Continuous, Missing rate of 50%
β1 β2 β3 β4 β1 β2 β3 β4

Baseline 1 1.535 1.694 1.626 1.698 0.949 1.000 0.954 0.987
Baseline 2 0.176 0.173 0.179 0.171 0.118 0.120 0.120 0.123
Proposed w/o Z 1.312 1.306 1.324 1.263 0.759 0.761 0.790 0.772
Proposed with Z 0.423 0.414 0.452 0.390 0.226 0.257 0.255 0.254

Continuous, Missing rate of 90%
β1 β2 β3 β4 β1 β2 β3 β4

Baseline 1 2.368 2.441 2.523 2.447 1.534 1.543 1.588 1.423
Baseline 2 0.698 0.724 0.692 0.644 0.522 0.553 0.513 0.521
Proposed w/o Z 1.038 0.968 0.869 0.965 0.617 0.566 0.653 0.597
Proposed with Z 0.726 0.640 0.709 0.623 0.404 0.338 0.418 0.378

Binary, Missing rate of 50%
β1 β2 β3 β4 β1 β2 β3 β4

Baseline 1 2.022 1.961 1.981 2.009 1.316 1.355 1.219 1.200
Baseline 2 0.237 0.255 0.228 0.219 0.180 0.186 0.173 0.159
Proposed w/o Z 1.368 1.443 1.397 1.441 0.872 0.813 0.785 0.772
Proposed with Z 0.683 0.653 0.540 0.507 0.474 0.480 0.386 0.365

Binary, Missing rate of 90%
β1 β2 β3 β4 β1 β2 β3 β4

Baseline 1 17.967 18.218 19.511 17.679 12.282 12.271 12.390 12.162
Baseline 2 1.489 1.479 1.348 1.272 1.340 1.271 1.067 1.003
Proposed w/o Z 3.233 3.307 3.142 2.397 1.669 1.661 1.688 1.540
Proposed with Z 0.704 0.869 0.478 0.460 0.672 0.640 0.385 0.312

Fig 1. Deviance under different missing rates, sample sizes, and outcome types.
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receiving total joint replacement using the information obtained before schedul-
ing the surgery. In addition to making predictions, we also aimed to identify the
driving factors of not achieving the MCID in the presence of highly incomplete
outcomes. The dataset includes 1044 University of Florida Health patients who
participated in the pre-surgical survey and underwent total joint replacement
surgery. In the analysis, we incorporated many baseline covariates, including
demographics, socioeconomic characteristics, medical history, and care charac-
teristics before surgery (e.g., 30 days before admission for surgery). According
to the convention of constructing MCID, the MCID is obtained based on the
one-half standard deviation of the difference between the pre-and post-surgical
PROMIS global health T-scores [7, 17].

For our data, the difference between the pre-and post-surgical scores has an
average of 9.5 and a standard deviation of 8.1, and consequently, the MCID is
4.1. Thus, the outcome Y “ 1 if the difference is less than 4.1, and Y “ 0,
otherwise. In terms of the missing proportion, all the 1044 identified patients
took the pre-surgical survey, but only 261 patients (25%) responded to the
post-surgical survey (the missing rate is 75%). Of the patients who took both
surveys, 67 p25.7%q patients did not meet the MCID. Since the PROMIS global
physical T-score is derived from the ten survey questionnaire items, individual
items can be considered as candidates for the surrogate outcome. To construct
an informative surrogate, we relied on actual data and fitted the outcome Y
using the pre-surgical survey responses on the fully observed data. Then, we
predicted the outcome Y using the pre-surgical survey responses and used the
predicted values as a single informative surrogate outcome.

We conducted two analyses to investigate the performance of the proposed
method. In the first analysis, we compared the proposed methods with the
baseline methods in terms of the deviance E

“

�ppβq
‰

, where �ppβq “ bpXJ
pβq ´

pgppΓJ
ĂXqXJ

pβ. Specifically, we randomly split the entire dataset into a training
dataset and a testing dataset with equal sample sizes. We estimated coefficients
using the training dataset, and then calculated the deviance on the testing
dataset. This procedure was repeated 1000 times. In the second analysis, we
fitted the model on the entire dataset and compared the variables selected by
different methods.

Table 4 shows that the proposed method with Z achieves the lowest de-
viance. In terms of the selected variables, compared with other methods, the
proposed method with Z uniquely revealed that geriatric patients were less likely
to achieve the MCID (estimated coefficient is 0.367; 95%-CI is r0.020, 0.714s).
This is in accordance with the existing research finding that elderly patients
were more likely to have post-operative adverse clinical outcomes than younger
patients in total joint replacement [11, 23]. The coefficients with confidence in-
tervals for other covariates are presented in the Appendix A.8.

Table 4

Comparison of averaged deviances (standard deviations) in real data example.

Baseline1 Baseline2 Proposed w/o Z Proposed w/ Z
0.714 (0.105) 0.696 (0.094) 0.685 (0.091) 0.670 (0.094)
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6. Discussion

In this work, we propose a debias approach to estimating the parameters of
interest under a possibly misspecified GLM. This approach uses an informative
surrogate outcome that leads to a low-dimensional flexible imputation model and
estimates a low-dimensional weighting function instead of the complex propen-
sity score. When the true propensity happens to enjoy the same low-dimensional
structure, the proposed method achieves the semi-parametric efficiency lower
bound. Compared with the double machine learning method, the proposed ap-
proach relaxes the requirement on the propensity estimation and maintains al-
most the same flexibility or requirement on the imputation model estimation.
In addition, we only require a relaxed positivity assumption.

There are multiple future directions to extend the proposed approach. First,
we can consider extending the proposed approach to high-dimensional settings
where p{n Ñ `8. In a high-dimensional setting, pΓ may not be asymptotic
normal due to the possible penalization. In this case, in order to achieve an
asymptotic normal estimator, an additional debias procedure is needed to ad-
just for the bias due to the estimation error of pΓ. Second, we can investigate
more choices of the function h. In this work, to pursue a low-dimensional weight-
ing function, we choose h such that T h “ 0 when constructing the weighting
function. However, we can choose other potential alternatives to mitigate cer-
tain deficiencies, such as minimizing the asymptotic variance of the debiased
estimator or avoiding possible negative weights. Third, we can combine the pro-
posed approach with the augmented minimax linear estimation [12] to avoid
the computation of the Riesz representer. In the high-dimensional setting, an
explicit form of the weights to debias pΓ might be intractable.

Appendix A: Appendix

Appendix A contains the derivation of all the theorems and the variables selected
in the real data study.

A.1. Semiparametric lower bound with and without using surrogate
outcome

In this section, we derive the semiparametric lower bound (i.e., the efficient
influence function) for estimating β˚

1 with or without surrogate outcomes under
two scenarios: 1) the distribution of pX, Zq is known; 2) the distribution of
pX, Zq is unknown.

Theorem A.1. Assuming pY,Zq K R | X, regardless of the distribution of
pX, Zq is known or not, a semiparametric efficient estimator for β˚

1 obtained
using the surrogate outcome Z is more efficient than that using only X if ErY |

Xs ­“ ErY | Z,Xs, where β˚
1 is the first coordinate of β˚.
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Proof. To show this result, we derive the semiparametric lower bounds with sur-
rogate outcome Z assuming the distribution of pX, Zq is 1) known; 2) unknown.
To start with, we present the likelihood of the full data.

η
ĂX

pĂXq

!

1 ´ πpĂXq

)1´R !

πpĂXqηY pY, ĂXq

)R

,

where η
ĂX

is the density of ĂX, and η
rY is the density of Y | ĂX. Under the

assumption Y K R | pX, Zq, the definition of β˚
1 does not depend on πRpXq,

and thus the form of the semiparametric lower bounds does not depend on
whether πRpXq is known or not. Thus, we will derive the semiparametric lower
bounds assuming πRpXq is known.

First, we characterize the nuisance tangent space generated by η
ĂX

and η
rY .

Λ
ĂX

“

!

fpĂXq : E
”

fpĂXq

ı

“ 0
)

,

ΛY “

!

RfpY, ĂXq : E
”

fpY, ĂXq | ĂX
ı

“ 0
)

.

Let Λπ “

!”

R ´ πpĂXq

ı

hpĂXq : @h P L2pĂXq

)

. By the decomposition of the like-
lihood, we have

H “ Λ
ĂX

‘ Λπ ‘ ΛY .

Second, we find an influence function of β˚
1 . [15] verified that

φ “ π´1
pĂXqRtY ´ b1

pXJβquXJ
ru0

is an influence function of β˚
1 , where ru0 is defined as

!

E
”

b
2
pXJβ˚

qXXJ
ı)´1

p1, 0, ¨ ¨ ¨ , 0q
J.

Finally, denote the nuisance tangent space as Λ. We derive the efficient influ-
ence function by subtracting its projection onto ΛK from φ. When the distribu-
tion of pX, Zq is unknown, we have Λ “ Λ

ĂX
‘ ΛY . Thus, ΛK “ Λπ. To derive

the projection of φ onto ΛK, we solve the following equation for h,

E
”!

φ ´

”

R ´ πpĂXq

ı

hpĂXq

) ”

R ´ πpĂXq

ı

rhpĂXq

ı

“ 0,@rh P L2pĂXq.

This equation is equivalent to

E
”!

φ ´

”

R ´ πpĂXq

ı

hpĂXq

) ”

R ´ πpĂXq

ı

| ĂX
ı

“ 0.

Solving this equation, we have hpĂXq “ π´1pĂXq

!

E
”

Y | ĂX
ı

´ b1pXJβq

)

XJ
ru0.

Thus, when the distribution of pX, Zq is unknown and the surrogate outcome
Z is available, the efficient influence function is

φ1,Z “ π´1
pĂXqRtY ´ b1

pXJβquXJ
ru0

´π´1
pĂXq

!

R ´ πpĂXq

)!

E
”

Y | ĂX
ı

´ b1
pXJβq

)

XJ
ru0.
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The semiparametric lower bound of estimating β˚
1 is given by varprφ1,Zq.

Now, we compare the semiparametric lower bound with and w/o the sur-
rogate outcome Z when the distribution of pX, Zq is unknown. Under the as-
sumption that R K Z | X, we have

rφ1,Z “ π´1
pXqRtY ´ b1

pXJβquXJ
ru0

´π´1
pXq tR ´ πpXqu

!

E
”

Y | ĂX
ı

´ b1
pXJβq

)

XJ
ru0.

Likewise, we can derive the efficient influence function without the surrogate
outcome Z, i.e.,

φ1 “ π´1
pĂXqRtY ´ b1

pXJβquXJ
ru0

´π´1
pĂXq

!

R ´ πpĂXq

)

�

E rY | Xs ´ b1
pXJβq

(

XJ
ru0.

The difference φ1´rφ1,Z “ π´1pXq tR ´ πpXqu

!

E
”

Y | ĂX
ı

´ E rY | Xs

)

XJ
ru0 P

Λπ and rφ1,Z P ΛK
π . Thus, we have varpφ1q ě varprφ1,Zq and the equality holds if

and only if E
”

Y | ĂX
ı

“ E rY | Xs.
When the distribution of pX, Zq is known, the nuisance tangent space is

Λ “ ΛY . Thus, we have ΛK “ Λπ ‘ Λ
ĂX

. To derive the projection of φ onto ΛK,
we solve the following equations for h1 and h2,

E
”!

φ ´

”

R ´ πpĂXq

ı

h1pĂXq ´ h2pĂXq

)!

R ´ πpĂXq

)

rh3pĂXq

ı

“ 0,

E
”!

φ ´

”

R ´ πpĂXq

ı

h1pĂXq ´ h2pĂXq

)

rh4pĂXq

ı

“ 0,

for any rh3 P L2pĂXq and rh4 P Λ
ĂX

.
These equations are equivalent to

E
”!

φ ´

”

R ´ πpĂXq

ı

h1pĂXq ´ h2pĂXq

)!

R ´ πpĂXq

)

| ĂX
ı

“ 0,

E
”!

φ ´

”

R ´ πpĂXq

ı

h1pĂXq ´ h2pĂXq

)

| ĂX
ı

“ 0.

By solving these equations, we have that

h1pĂXq “ π´1
pĂXq

!

E
”

Y | ĂX
ı

´ b1
pXJβq

)

XJ
ru0

and
h2pĂXq “

!

E
”

Y | ĂX
ı

´ b1
pXJβq

)

XJ
ru0.

Thus, when the distribution of pX, Zq is known, and the surrogate outcome Z
is available, the efficient influence function is

φ2,Z “ π´1
pĂXqR

!

Y ´ E
”

Y | ĂX
ı)

XJ
ru0.

The semiparametric lower bound of estimating β˚
1 is given by varprφ2,Zq.
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Now, we compare the semiparametric lower bound with and w/o the surro-
gate outcome Z when the distribution of pX, Zq is known. Under the assumption
that R K Z | X, we have

rφ2,Z “ π´1
pXqR

!

Y ´ E
”

Y | ĂX
ı)

XJ
ru0.

Likewise, we can derive the efficient influence function without the surrogate
outcome Z, i.e.,

φ2 “ π´1
pXqR tY ´ E rY | XsuXJ

ru0.

The difference

φ2 ´ rφ2,Z

“ π´1
pXqR

!

E
”

Y | ĂX
ı

´ E rY | Xs

)

XJ
ru0

“ π´1
pXq tR ´ πpXqu

!

E
”

Y | ĂX
ı

´ E rY | Xs

)

XJ
ru0

`

!

E
”

Y | ĂX
ı

´ E rY | Xs

)

XJ
ru0

P Λπ ‘ Λ
ĂX

“ ΛK.

Since rφ2,Z P Λ, we have varpφ2q ě varprφ2,Zq, and the equality holds if and only
if E

”

Y | ĂX
ı

“ E rY | Xs.

A.2. Proof of Theorem 2.1

In this section, we show the characterization of the solution to

E
”!

R ´ πpĂXq

)

π´1
pĂXqfpΓJ

ĂXqXJv
ı

“ 0,@f P L2pΓJ
ĂXq.

Proof. First, we assume that πpĂXq is a ΓJ
ĂX-measurable function and show

π˚pĂXq is the unique solution. Equation (2.3) is equivalent to

E
”!

R ´ πpĂXq

)

π´1
pĂXqXJv | ΓJ

ĂX
ı

“ 0.

Since πpĂXq is assumed to be a ΓJ
ĂX-measurable function, we can obtain

π´1
pĂXqE

”

RXJv | ΓJ
ĂX
ı

“ E
”

XJv | ΓJ
ĂX
ı

.

Thus, on E
”

RXJv | ΓJ
ĂX
ı

­“ 0, we have

π´1
pĂXq “ E

”

XJv | ΓJ
ĂX
ı

{E
”

RXJv | ΓJ
ĂX
ı

“ 1 ` E
”

p1 ´ RqXJv | ΓJ
ĂX
ı

{E
”

RXJv | ΓJ
ĂX
ı

.
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Since

E
”

p1 ´ RqXJv | ΓJ
ĂX
ı

{E
”

RXJv | ΓJ
ĂX
ı

“

!

ρJ1pΓJ
ĂXq

)´1
J0pΓJ

ĂXqp1 ´ ρq,

we have that π´1pĂXq “ π´1
˚ pĂXq on J1pΓJ

ĂXq ­“ 0 if πpĂXq is a ΓJ
ĂX-measurable

function.
Next, we show that any solution to Equation (2.3) bears such form, i.e.,

π´1pĂXq “ π´1
˚ pĂXq ` T hpĂXq. Suppose that π´1pĂXq is a solution to Equa-

tion (2.3). Define gpĂXq :“ π´1pĂXq ´ π´1
˚ pĂXq. Suppose we have

E
”

R
!

gpĂXq ` π´1
˚ pĂXq

)

XJv | ΓJ
ĂX
ı

“ E
”

XJv | ΓJ
ĂX
ı

.

Since

π´1
˚ pĂXqE

”

RXJv | ΓJ
ĂX
ı

“ E
”

XJv | ΓJ
ĂX
ı

,

then we must have
E
”

RgpĂXqXJv | ΓJ
ĂX
ı

“ 0.

In fact, for any g satisfies that

E
”

RgpĂXqXJv | ΓJ
ĂX
ı

“ 0,

we have g “ T pgq. Thus, π´1pĂXq must have the form π´1
˚ pĂXq ` T hpĂXq for

some h.

A.3. Outline of the proposed debias algorithm

An outline of the proposed debias algorithm is exhibited in Algorithm 1.

A.4. Proof of Theorem 3.1

In this section, we provide proofs of Theorem 3.1, and Corollary 3.1. In the
proofs, we also accommodate the case where there are multiple surrogates. We
use Z to denote the multi-dimensional surrogate vector. To derive the main
theorem, we assume that pX,Zq and Y | pZ,Xq do not depend on n; in contrast,
the missing propensity P pR “ 1 | Z,Xq may depend on n. In this work, we
consider two scenarios: 1) the missing propensity P pR “ 1 | Z,Xq does not
change with n; 2) P pR “ 1 | Z,Xq “ ρnwpĂXq with ρn Ñ 0, where wpĂXq

does not depend on n, wpĂXq is always non-negative and bounded away from
8, and E

”

wpĂXq

ı

“ 1. Notice that for the first scenario, we can treat it as
a special case of the second scenario with ρn, which does not change with n,
and P pR “ 1 | Z,Xq{P pR “ 1q “ wpĂXq. In both scenarios, we have that
P pR “ 1q “ ρn. In addition to these assumptions, we also assume the following
conditions.
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Algorithm 1: A debias procedure for individual coefficient estimation.
Input: A random seed; n samples; a positive integer K.
Output: Estimator rβ1.
Use the entire observed dataset and selected dimension reduction approach to get pΓ;
Use the entire dataset to fit the imputation model pgppΓJ

ĂXq; then we fit an initial
coefficients pβ by solving

min
β

pEn

”

bpXJβq ´ pgppΓJ
ĂXqXJβ

ı

. (A.1)

;
On the entire dataset, using the estimated initial coefficients pβ, we estimate v by
optimizing

min
w

pEn

”

b
2

pXJ
pβqpX1 ´ XJ

´1wq
2
ı

;

denote the minimizer as pw;
Randomly split data into K subsets with equal sample sizes, denote the index sets as

tIkuKk“1, and set k “ 1;
Estimate the imputation model using the fully observed data in Ick by kernel
regression based on the reduced dimension, and estimate the pπ´1

p´kq
using the data in

Ick by the truncated kernel regression based on the reduced dimension;
Similarly, we repeat Step (1) for k “ 2, ¨ ¨ ¨ ,K;
Obtain the one-step debiased estimator pβ1 by rβ1 “ pβ1 ´ sI´1

sS, where
sS “

řK
k“1 S

pkq{K, Spkq “ pE
pkq
n

„

!

Sppβ; pQp´kq, pπp´kqq

)J
pv

j

.

Assumption A.1. The covariate X’s and the surrogate outcome Z are bounded,
and the function b

2
p¨q is continuously differentiable; maxt}β˚}2, }v}2u is bounded.

In addition, the smallest eigenvalue of E
“

XXJ
‰

is bounded away from 0.

Assumption A.2. There is a positive constant γd ą 1{4 such that

}pgppΓJ
ĂXq ´ QpZ,Xq}8 “ Op

!

pnρnq
´γd

)

,

and
!

vecppΓq ´ vecpΓq

)

“ n´1
n
ÿ

i“1
1tRi “ 1uψpXi,Zi, Yiq ` op

!

pnρnq
´1{2

)

,

where ψpXi,Zi, Yiq is bounded with mean 0 and vecp¨q represents the vector-
ization of the matrix. In addition, we assume that

sup
ĂX

ˇ

ˇ

ˇ
ppg ´ gq ppΓJ

ĂXq ´ ppg ´ gq pΓJ
ĂXq

ˇ

ˇ

ˇ
“ op

!

pnρnq
´1{2

)

.

Assumption A.3. The function Kp¨q is a kernel function with the order of
ν ´ 1. The JwpΓJ

ĂXq and JpΓJ
ĂXq are νth order differentiable w.r.t ΓJ

ĂX with
bounded derivatives, where

JwpΓJ
ĂXq “ E

”

wpĂXqXJv | ΓJ
ĂX
ı

, JpΓJ
ĂXq “ E

”

XJv | ΓJ
ĂX
ı

.
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Define GpΓJ
ĂXq as J´1

w pΓJ
ĂXqJpΓJ

ĂXq. We assume that GpΓJ
ĂXq is bounded

away from `8 on the open set tJwpΓJ
ĂXq ­“ 0u. We also assume that the

density function of AJ
ĂX, ηpAJ

ĂXq, is bounded away from 0 and `8, and νth
order differentiable with bounded derivatives. Define

H1pvecpΓq;vq “ E
”!

J´1
w pΓJ

ĂXqwpĂXqJpΓJ
ĂXq ´ 1

)

∇gpΓJ
ĂXq b XJv

ı

,

where b is the Kronecker product. The H1pvecpΓq;vq is bounded for any }v}2 “

1.

Assumption A.4. When t ą 0 is small enough, there exist positive constants
A0 and γm such that P

!

0 ­“

ˇ

ˇ

ˇ
JwpΓJ

ĂXq

ˇ

ˇ

ˇ
ď t

)

ď A0t
γm .

Assumption A.5. Take cn “ rδ
2{p2`γmq
n , where rδn “ ρ

´1{2
n pnh̄d

{ lognq´1{2 `

h̄ν
` pnρnq´γd . We assume that nρn Ñ `8 and pnρnq´γdrδ

γm{p2`γmq
n

“ o
�

pnρnq´1{2( .

Assumptions A.1–A.5 are different from those in the main text. In the main
text, we focus on Scenario 1) where ρn is a constant. When ρn is a constant,
Assumptions A.1–A.5 are equivalent to Assumptions 3.1–3.5 in the main text.

To start with the proof, Lemma A.2 provides the convergence rate of the
initial estimator pβ and pw.

Lemma A.2. Under Assumptions A.1-A.2, we have that

}pβ ´ β˚
}2 “ Op

!

pp{nq
1{2

` pnρnq
´γd

)

,

} pw ´ w˚
}2 “ Op

!

pp{nq
1{2

` pnρnq
´γd

)

.

Proof. First, we show the consistency and convergence rate of pβ. To show con-
sistency, notice that the optimization problem (A.1) is strictly convex. Let
lβpβ; pQq “ bpXJβq´pgppΓJ

ĂXqXJβ. Using the strong convexity of E rlβpβ;Qqs,
there is a positive constant λmin such that

λmin

›

›

›

pβ ´ β˚
›

›

›

2
ď E

”

lβppβ;Qq

ı

´ E rlβpβ˚;Qqs

ď sup
βPB

ˇ

ˇ

ˇ
p pEn ´ Eq rlβpβ;Qqs

ˇ

ˇ

ˇ

` sup
βPB

ˇ

ˇ

ˇ

pEn

”

lβpβ;Qq ´ lβpβ; pQq

ıˇ

ˇ

ˇ

“ I1 ` I2.

For I2, we have

sup
βPB

ˇ

ˇ

ˇ

pEn

”

lβpβ;Qq ´ lβpβ; pQq

ıˇ

ˇ

ˇ

“ }pgppΓJ
ĂXq ´ QpZ,Xq}8 sup

βPB
pEn

`

|XJβ|
˘

“ Op

�

pnρnq
´γd

(

,
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where B is a centered l2-ball with a radius sufficiently large (see Condition A.1).
For I1, Theorem 2.1 in [38], we have

sup
βPB

ˇ

ˇ

ˇ
p pEn ´ Eq rlβpβ;Qqs

ˇ

ˇ

ˇ
“ Op

!

pp{nq
1{2

)

.

Thus, we have

}pβ ´ β˚
}2 “ Op

!

pp{nq
1{2

` pnρnq
´γd

)

.

Similarly we can derive that

} pw ´ w˚
}2 “ Op

!

pp{nq
1{2

` pnρnq
´γd

)

.

Specifically, let lwpw; pβq “ b
2
pXJ

pβqpX1 ´XJ
´1wq2. Using the strong convexity

of E
”

lwpw; pβq

ı

, there is a positive constant λ1
min such that

λmin } pw ´ w˚
}2 ď E rlwp pw;β˚

qs ´ E rlβpw˚;β˚
qs

ď sup
wPB

ˇ

ˇ

ˇ
p pEn ´ Eq rlwpw;β˚

qs

ˇ

ˇ

ˇ

` sup
wPB

ˇ

ˇ

ˇ

pEn

”

lwpw;β˚
q ´ lwpw; pβq

ıˇ

ˇ

ˇ

“ I1 ` I2.

For I1, we have

sup
wPB

ˇ

ˇ

ˇ
p pEn ´ Eq rlwpw;β˚

qs

ˇ

ˇ

ˇ
“ Op

!

pp{nq
1{2

)

.

For I2, we have

sup
wPB

ˇ

ˇ

ˇ

pEn

!

lwpw;β˚
q ´ lwpw; pβq

)ˇ

ˇ

ˇ

“ sup
wPB

ˇ

ˇ

ˇ

pEn

”!

b
2
pXJ

pβq ´ b
2
pXJβ˚

q

)

pX1 ´ XJ
´1wq

2
ıˇ

ˇ

ˇ

ď C pEn

!ˇ

ˇ

ˇ
XJ

ppβ ´ β˚
q

ˇ

ˇ

ˇ

)

À Op

!

pp{nq
1{2

` pnρnq
´γd

)

.

Lemma A.3. When nρn Ñ `8, for any r, we have

pρr{ρrn ´ 1 “ Op

!

pnρnq
´1{2

)

,

where pρ “ pEnrRs.
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Proof. To show this result, we use the Bernstein’s inequality. By Bernstein’s
inequality, we have

P

#ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1
pRi ´ ρnq

ˇ

ˇ

ˇ

ˇ

ˇ

ě t

+

ď exp
“

´t2{t2nρnp1 ´ ρnq ` t{3u
‰

.

Notice that when nρn Ñ `8, we have that

P p|pρ ´ ρn| ě tq ď exp
“

´nt2{t3ρnp1 ´ ρnqu
‰

.

Set t “ pρn{nq1{2, we have

pρ ´ ρn “ Op

!

pρn{nq
1{2

)

,

for n large enough.
By nρn Ñ `8, we further have ρ´1

n ppρ´ρnq “ Op

�

pnρnq´1{2( “ opp1q. Thus,
we have

pρr ´ ρrn “ rρr´1
n ppρ ´ ρnq ` op

�

ρr´1
n ppρ ´ ρnq

(

“ Op

!

ρrnpnρnq
´1{2

)

.

Lemma A.4. Under Assumptions A.1–A.5, we have
›

›

›

!

pπ´1
p´kq

´ π´1
˚

)

R
›

›

›

P,2
“ Op

!

ρ´1{2
n cγm{2

n ` ρ´1{2
n pnρnq

´1{2
)

,

where

c1`γm{2
n “ ρ´1{2

n pnh̄d
{ lognq

´1{2
` h̄´ν

` pnρnq
´γd ,

and h̄ is the kernel bandwidth in estimating pπ´1
p´kq

; in addition, we have
›

›

›

!

pπ´1
p´kq

´ π´1
˚

)

R
›

›

›

P,1
“ Oppcγm{2

n ` pnρnq
´1{2

q.

Proof. Conditional on Ick, taking the expectation over ĂX and R over Ik, we have

E
”!

pπ´1
p´kq

´ π´1
˚

)

R
ı2

“ E

„

π
!

pπ´1
p´kq

´ π´1
˚

)2
j

“ E

„

π
!

pπ´1
p´kq

´ π´1
˚

)2
1
!

JwpΓJ
ĂXq ­“ 0,

ˇ

ˇ

ˇ

pJ
p´kq

1 ppΓJ
ĂXq

ˇ

ˇ

ˇ
ą cn

)

j

`E

„

π
!

pπ´1
p´kq

´ π´1
˚

)2
1
!

JwpΓJ
ĂXq “ 0,

ˇ

ˇ

ˇ

pJ
p´kq

1 ppΓJ
ĂXq

ˇ

ˇ

ˇ
ą cn

)

j

`E
”

π
`

pρ´1
´ π´1

˚

˘2 1
!

JwpΓJ
ĂXq ­“ 0,

ˇ

ˇ

ˇ

pJ
p´kq

1 ppΓJ
ĂXq

ˇ

ˇ

ˇ
ď cn

)ı

`E
”

π
`

pρ´1
´ ρ´1

n

˘2 1
!

JwpΓJ
ĂXq “ 0,

ˇ

ˇ

ˇ

pJ
p´kq

1 ppΓJ
ĂXq

ˇ

ˇ

ˇ
ď cn

)ı

“ I21 ` I22 ` I23 ` I24.
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Notice we can rewrite pπ´1
p´kq

and π´1
˚ as

pπ´1
p´kq

pĂXq “ pρ´1
pJ p´kq

ppΓJ
ĂXq{ pJ

p´kq

1 ppΓJ
ĂXq,

π´1
˚ pĂXq “ ρ´1

n JpΓJ
ĂXq{JwpΓJ

ĂXq,

pJ p´kq
ppΓJ

ĂXq “ h´d
pEpkq
n

”

XJ
pvKh̄ppΓJ

ĂX ´ pΓJ
ĂXq

ı

.

Notice that

pρ pJ
p´kq

1 ppΓJ
ĂXq “ h´d

pEpkq
n

”

RXJ
pvKh̄ppΓJ

ĂX ´ pΓJ
ĂXq

ı

.

To bound each term, we first consider the convergence rate of pJ
p´kq

1 ppΓJ
ĂXq

and pJ p´kqppΓJ
ĂXq, i.e.,

sup
x

ˇ

ˇ

ˇ

pJ
p´kq

1 ppΓJ
ĂXq ´ ρnJwpΓJ

ĂXqηpΓJ
ĂXq

ˇ

ˇ

ˇ
,

sup
x

ˇ

ˇ

ˇ

pJ p´kq
ppΓJ

ĂXq ´ JpΓJ
ĂXqηpΓJ

ĂXq

ˇ

ˇ

ˇ
,

where ηpΓJ
ĂXq is the density function of ΓJ

ĂX.
By Lemma 6.6 in [39], for any positive α1, we can choose constants α2 and

α3 such that

P

#

sup
|A|,ĂX

ˇ

ˇ

ˇ

´

pEpkq
n ´ E

¯ ”

RXJvKh̄pAJ
ĂX ´ AJ

ĂXq

ıˇ

ˇ

ˇ

ě α2ρ
1{2
n pnh̄d

{ lognq
´1{2

)

“ op1q,

P

#

sup
|A|,ĂX

ˇ

ˇ

ˇ

´

pEpkq
n ´ E

¯ ”

XJvKh̄pAJ
ĂX ´ AJ

ĂXq

ıˇ

ˇ

ˇ
ě α2pnh̄d

{ lognq
´1{2

+

“ op1q.

To bound E
”

RXJvKh̄pAJ
ĂX ´ AJ

ĂXq

ı

“ ρnE
”

wpĂXqXJvKh̄pAJ
ĂX ´ AJ

ĂXq

ı

,
by Condition A.3, we directly calculate

ˇ

ˇ

ˇ
E
”

wpĂXqXJvKh̄pAJ
ĂX ´ AJ

ĂXq

ı

´E
”

wpĂXqXJv | AJ
ĂX “ AJ

ĂX
ı

ηpAJ
ĂXq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
E
”

E
”

wpĂXqXJv | AJ
ĂX
ı

Kh̄pAJ
ĂX ´ AJ

ĂXq

ı

´E
”

wpĂXqXJv | AJ
ĂX “ AJ

ĂX
ı

ηpAJ
ĂXq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

E
”

wpĂXqXJv | AJ
ĂX “ AJ

ĂX ` h̄s
ı

KpsqηpAJ
ĂX ` h̄sqds
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´E
”

wpĂXqXJv | AJ
ĂX “ AJ

ĂX
ı

ηpAJ
ĂXq

ˇ

ˇ

ˇ

ď α4h̄
´ν ,

uniformly holds for any A and ĂX with a constant α4, where ηp¨q is the density
function of AĂX. Similarly, we can choose a sufficiently large α4 such that

sup
A,ĂX

ˇ

ˇ

ˇ
E
”

XJvKh̄pAJ
ĂX ´ AJ

ĂXq

ı

´ E
”

XJv | AJ
ĂX “ AJ

ĂX
ı

ηpAJ
ĂXq

ˇ

ˇ

ˇ

ď α4h̄
´ν .

Since

}vecppΓq ´ vecpΓq}2 “ Op

!

pnρnq
´1{2

)

,

we have

sup
ĂX

ˇ

ˇ

ˇ
E
”

wpĂXqXJv | pΓJ
ĂX “ pΓJ

ĂX
ı

ηppΓJ
ĂXq ´ JwpΓJ

ĂXqηpΓJ
ĂXq

ˇ

ˇ

ˇ

“ Op

!

pnρnq
´1{2

)

,

sup
ĂX

ˇ

ˇ

ˇ
E
”

XJv | pΓJ
ĂX “ rΓJ

ĂX
ı

ηppΓJ
ĂXq ´ JpΓJ

ĂXqηpΓJ
ĂXq

ˇ

ˇ

ˇ

“ Op

!

pnρnq
´1{2

)

.

Combining these inequalities, we have

sup
ĂX

ˇ

ˇ

ˇ

pEpkq
n

”

RXJvKh̄ppΓJ
ĂX ´ pΓJ

ĂXq

ı

´ ρnJwpΓJ
ĂXqηpΓJ

ĂXq

ˇ

ˇ

ˇ

“ Op

”

ρn

!

pnρnh̄
d
{ lognq

´1{2
` h̄´ν

` pnρnq
´1{2

)ı

;

sup
ĂX

ˇ

ˇ

ˇ

pEpkq
n

”

XJvKh̄ppΓJ
ĂX ´ pΓJ

ĂXq

ı

´ JpΓJ
ĂXqηpΓJ

ĂXq

ˇ

ˇ

ˇ

“ Op

!

pnρnh̄
d
{ lognq

´1{2
` h̄´ν

` pnρnq
´γd

)

.

To obtain the convergence rate of pJ
p´kq

1 ppΓJ
ĂXq and pJ p´kqppΓJ

ĂXq, we further
consider

sup
ĂX

ˇ

ˇ

ˇ

pEpkq
n

”

RXJvKh̄ppΓJ
ĂX ´ pΓJ

ĂXq

ı

´ pρ pJ
p´kq

1 ppΓJ
ĂXq

ˇ

ˇ

ˇ

“ sup
ĂX

ˇ

ˇ

ˇ

pEpkq
n

”

RXJ
pv ´ pvqKh̄ppΓJ

ĂX ´ pΓJ
ĂXq

ıˇ

ˇ

ˇ
,

and

sup
ĂX

ˇ

ˇ

ˇ

pEpkq
n

”

XJvKh̄ppΓJ
ĂX ´ pΓJ

ĂXq

ı

´ pJ p´kq
ppΓJ

ĂXq

ˇ

ˇ

ˇ

“ sup
ĂX

ˇ

ˇ

ˇ

pEpkq
n

”

XJ
pv ´ pvqKh̄ppΓJ

ĂX ´ pΓJ
ĂXq

ıˇ

ˇ

ˇ
.
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To bound this term, following the proof above, we can show that

sup
ĂX

›

›

›

pEpkq
n

”

RXKh̄ppΓJ
ĂX ´ pΓJ

ĂXq

ı

´

ρnE
”

wpĂXqX | ΓJ
ĂX “ ΓJ

ĂX
ı

ηpΓJ
ĂXq

›

›

›

8

“ Op

”

ρn

!

pnρnh̄
d
{ lognq

´1{2
` h̄´ν

` pnρnq
´1{2

)ı

;

sup
ĂX

›

›

›

pEpkq
n

”

XKh̄ppΓJ
ĂX ´ pΓJ

ĂXq

ı

´ E
”

X | ΓJ
ĂX “ ΓJ

ĂX
ı

ηpΓJ
ĂXq

›

›

›

8

“ Op

!

pnh̄d
{ lognq

´1{2
` h̄´ν

` pnρnq
´1{2

)

.

Notice that

sup
ĂX

ˇ

ˇ

ˇ

pEpkq
n

”

RXJ
pv ´ pvqKh̄ppΓJ

ĂX ´ pΓJ
ĂXq

ıˇ

ˇ

ˇ

ď sup
ĂX

›

›

›

pEpkq
n

”

RXKh̄ppΓJ
ĂX ´ pΓJ

ĂXq

ı›

›

›

8
}v ´ pv}1

“ Op

!

ρn

”

pp{nq
1{2

` pnρnq
´γd

ı)

,

and

sup
ĂX

ˇ

ˇ

ˇ

pEpkq
n

”

XJ
pv ´ pvqKh̄ppΓJ

ĂX ´ pΓJ
ĂXq

ıˇ

ˇ

ˇ

ď sup
ĂX

›

›

›

pEpkq
n

”

XKh̄ppΓJ
ĂX ´ pΓJ

ĂXq

ı›

›

›

8
}v ´ pv}1

“ Op

!

pp{nq
1{2

` pnρnq
´γd

)

.

Thus, because p is fixed and γd ď 1{2, for the convergence rate of pρ pJ p´kq

1 ppΓJ
ĂXq

and pJ p´kqppΓJ
ĂXq, we have

sup
x

ˇ

ˇ

ˇ
pρ pJ

p´kq

1 ppΓJ
ĂXq ´ ρnJwpΓJ

ĂXqηpΓJ
ĂXq

ˇ

ˇ

ˇ

“ Op

!

ρn

”

pnρnh̄
d
{ lognq

´1{2
` h̄´ν

` pnρnq
´γd

ı)

,

sup
x

ˇ

ˇ

ˇ

pJ p´kq
ppΓJ

ĂXq ´ JpΓJ
ĂXqηpΓJ

ĂXq

ˇ

ˇ

ˇ

“ Op

!

pnρnh̄
d
{ lognq

´1{2
` h̄´ν

` pnρnq
´γd

)

.

By Lemma A.3, these imply that

sup
x

ˇ

ˇ

ˇ

pJ
p´kq

1 ppΓJ
ĂXq ´ JwpΓJ

ĂXqηpΓJ
ĂXq

ˇ

ˇ

ˇ

“ Op

!

pnρnh̄
d
{ lognq

´1{2
` h̄´ν

` pnρnq
´γd

)

.
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Let δn “ h̄´ν
` pnρnq´γd . Take crn “ pnρnh̄

d
{ lognq´1{2 ` δn, where r ą 1 is

a constant to be chosen. Define the event Ω as

sup
ĂX

ˇ

ˇ

ˇ

pJ
p´kq

1 ppΓJ
ĂXq ´ JwpΓJ

ĂXqηpΓJ
ĂXq

ˇ

ˇ

ˇ
ď Cpnρnh̄

d
{ lognq

´1{2
` Cδn,

sup
ĂX

ˇ

ˇ

ˇ

pJ p´kq
ppΓJ

ĂXq ´ JpΓJ
ĂXqηpΓJ

ĂXq

ˇ

ˇ

ˇ
ď Cpnh̄d

{ lognq
´1{2

` Cδn,

pρ´1ρn ď 1 ` Cpnρnq
´1{2,

where ε is any positive constant. The derivation above and Lemma A.3 shows
that limCÑ`8 limn P pΩq “ 1.

Next, on Ω, we bound I21, I22, I23, and I24. For I22, on Ω, when n is large
enough, we have

1
!ˇ

ˇ

ˇ

pJ
p´kq

1 ppΓJ
ĂXq

ˇ

ˇ

ˇ
ą cn, JwpΓJ

ĂXq “ 0
)

“ 0,

for all ĂX. Thus, I22 “ 0.
For I23, since P pR “ 1 | Z,Xq “ ρnwpĂXq, and wpĂXq is bounded away from

0, on Ω, we have

π
`

pρ´1
´ π´1

˚

˘2 1
!

JwpΓJ
ĂXq ­“ 0,

ˇ

ˇ

ˇ

pJ
p´kq

1 ppΓJ
ĂXq

ˇ

ˇ

ˇ
ď cn

)

ď c23ρ
´1
n 1

!

JwpΓJ
ĂXq ­“ 0,

ˇ

ˇ

ˇ

pJ
p´kq

1 ppΓJ
ĂXq

ˇ

ˇ

ˇ
ď cn

)

,

for some constant c23 large enough. By Lemma A.3, on Ω, we have

I23 ď c23ρ
´1
n P

!

0 ­“

ˇ

ˇ

ˇ
JwpΓJ

ĂXqηpΓJ
ĂXq

ˇ

ˇ

ˇ
ď cn ` Ccrn

)

.

For n large enough, we have Ccrn ď cn. Thus, by Condition A.4, we have

I23 ď c23ρ
´1
n p2cnq

γm .

For I21, we separate the discussion based on the value of JwpΓJ
ĂXq. When

|JwpΓJ
ĂXq| ď cn{2, the upper bound for I23 can be applied, since we apply

truncation to impose that pπ´1
p´kq

pĂXq ď pρ´1M , where M is a large constant.
Specifically, in this case

I23 ď 2ρnE
”

wpĂXqppρ´2M2
` ρ´2

n M2
q1
!

0 ­“ |JwpΓJ
ĂXq| ď cn{2

)ı

ď 2c211cγm
n ,

for a sufficiently large constant c211.
When |JwpΓJ

ĂXq| ą cn{2, to derive an upper bound for I21, we first derive an
upper bound for sup

ĂX

ˇ

ˇ

ˇ
pπ´1

p´kq
´ π´1

˚

ˇ

ˇ

ˇ
. When

ˇ

ˇ

ˇ
JwpΓJ

ĂXq

ˇ

ˇ

ˇ
ą cn{2,

ˇ

ˇ

ˇ

pJ
p´kq

1 ppΓJ
ĂXq

ˇ

ˇ

ˇ
ą

cn, we write
ˇ

ˇ

ˇ
pπ´1

p´kq
´ π´1

˚

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

!

pρ pJ
p´kq

1 ppΓJ
ĂXq

)´1
pJ p´kq

ppΓJ
ĂXq ´

!

ρnJwpΓJ
ĂXq

)´1
JpΓJ

ĂXq

ˇ

ˇ

ˇ

ˇ
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ď

ˇ

ˇ

ˇ

ˇ

!

pJ
p´kq

1 ppΓJ
ĂXq

)´1
pJ p´kq

ppΓJ
ĂXq ´

!

JwpΓJ
ĂXq

)´1
JpΓJ

ĂXq

ˇ

ˇ

ˇ

ˇ

pρ´1

`
ˇ

ˇ

pρ´1
´ ρ´1

n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

!

JwpΓJ
ĂXq

)´1
JpΓJ

ĂXq

ˇ

ˇ

ˇ

ˇ

.

By Condition A.3, we have that |

!

JwpΓJ
ĂXq

)´1
JpΓJ

ĂXq| is bounded. By

Lemma A.3 and Condition A.3, we have
ˇ

ˇ

pρ´1 ´ ρ´1
n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

!

JwpΓJ
ĂXq

)´1
JpΓJ

ĂXq

ˇ

ˇ

ˇ

ˇ

ď

Cρ´1
n pnρnq´1{2 on Ω. Further, on Ω, when

ˇ

ˇ

ˇ
JwpΓJ

ĂXq

ˇ

ˇ

ˇ
ą cn{2,

ˇ

ˇ

ˇ

pJ
p´kq

1 ppΓJ
ĂXq

ˇ

ˇ

ˇ
ą

cn, we have
ˇ

ˇ

ˇ

ˇ

!

pJ
p´kq

1 ppΓJ
ĂXq

)´1
pJ p´kq

ppΓJ
ĂXq ´

!

JwpΓJ
ĂXq

)´1
JpΓJ

ĂXq

ˇ

ˇ

ˇ

ˇ

ď CcΓ´1
n ,

for a large enough C. Thus, we have

I21 À ρ´1
n pc2r´2

n ` pnρnq
´1

q.

Similarly, we can obtain I24 ď ρn
ˇ

ˇ

pρ´1 ´ ρ´1
n

ˇ

ˇ

2
ď c24ρ

´1
n pnρnq´1, for some con-

stant c24.
Therefore, we have

›

›

›

!

pπ´1
p´kq

´ π´1
˚

)

R
›

›

›

P,2
“ Op

!

ρ´1{2
n cr´1

n ` ρ´1{2
n cγm{2

n ` ρ´1{2
n pnρnq

´1{2
)

.

Take r “ 1 ` γm{2, we have
›

›

›

!

pπ´1
p´kq

´ π´1
˚

)

R
›

›

›

P,2
“ Op

!

ρ´1{2
n cγm{2

n ` ρ´1{2
n pnρnq

´1{2
)

,

where c
1`γm{2
n “ ρ

´1{2
n pnh̄d

{ lognq´1{2 ` δn.
Similarly, we can show that

›

›

›

!

pπ´1
p´kq

´ π´1
˚

)

R
›

›

›

P,1
“ Op

!

cγm
n ` cr´1

n ` pnρnq
´1{2

)

“ Op

!

cγm{2
n ` pnρnq

´1{2
)

.

To show this, we write

E
”ˇ

ˇ

ˇ
pπ´1

p´kq
´ π´1

˚

ˇ

ˇ

ˇ
R
ı

“ E
”

π
ˇ

ˇ

ˇ
pπ´1

p´kq
´ π´1

˚

ˇ

ˇ

ˇ

ı

“ E
”

π
ˇ

ˇ

ˇ
pπ´1

p´kq
´ π´1

˚

ˇ

ˇ

ˇ
1
!

JwpΓJ
ĂXq ­“ 0,

ˇ

ˇ

ˇ

pJ
p´kq

1 ppΓJ
ĂXq

ˇ

ˇ

ˇ
ą cn

)ı

`E
”

π
ˇ

ˇ

ˇ
pπ´1

p´kq
´ π´1

˚

ˇ

ˇ

ˇ
1
!

JwpΓJ
ĂXq “ 0,

ˇ

ˇ

ˇ

pJ
p´kq

1 ppΓJ
ĂXq

ˇ

ˇ

ˇ
ą cn

)ı

`E
”

π
ˇ

ˇ

pρ´1
´ π´1

˚

ˇ

ˇ 1
!

JwpΓJ
ĂXq ­“ 0,

ˇ

ˇ

ˇ

pJ
p´kq

1 ppΓJ
ĂXq

ˇ

ˇ

ˇ
ď cn

)ı
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`E
”

π
ˇ

ˇ

pρ´1
´ ρ´1

n

ˇ

ˇ 1
!

JwpΓJ
ĂXq “ 0,

ˇ

ˇ

ˇ

pJ
p´kq

1 ppΓJ
ĂXq

ˇ

ˇ

ˇ
ď cn

)ı

“ rI21 ` rI22 ` rI23 ` rI24.

Similar to I22, on Ω, when n is large enough, we have rI22 “ 0. For rI23, since
P pR “ 1 | Z,Xq “ ρnwpĂXq, and wpĂXq is bounded away from 0, on Ω, we have

π
`

pρ´1
´ π´1

˚

˘

1
!

JwpΓJ
ĂXq ­“ 0,

ˇ

ˇ

ˇ

pJ
p´kq

1 ppΓJ
ĂXq

ˇ

ˇ

ˇ
ď cn

)

ď rc231
!

JwpΓJ
ĂXq ­“ 0,

ˇ

ˇ

ˇ

pJ
p´kq

1 ppΓJ
ĂXq

ˇ

ˇ

ˇ
ď cn

)

,

for some constant rc23 large enough. By Lemma A.3, on Ω, we have

I23 ď rc23P
!

0 ­“

ˇ

ˇ

ˇ
JwpΓJ

ĂXqηpΓJ
ĂXq

ˇ

ˇ

ˇ
ď cn ` Ccrn

)

.

For n large enough, we have Ccrn ď cn. Thus, we have

rI23 À cγm
n .

For rI24, we have

rI24 ď ρn
ˇ

ˇ

pρ´1
´ ρ´1

n

ˇ

ˇ “ Op

!

pnρnq
´1{2

)

.

For rI21, when |J1pΓJ
ĂXq| ď cn{2, the upper bound for rI23 can be applied; when

ˇ

ˇ

ˇ
JwpΓJ

ĂXq

ˇ

ˇ

ˇ
ą cn{2,

ˇ

ˇ

ˇ

pJ
p´kq

1 ppΓJ
ĂXq

ˇ

ˇ

ˇ
ą cn, we write

ρn

ˇ

ˇ

ˇ
pπ´1

p´kq
´ π´1

˚

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

!

pJ
p´kq

1 ppΓJ
ĂXq

)´1
pJ p´kq

ppΓJ
ĂXq ´

!

JwpΓJ
ĂXq

)´1
JpΓJ

ĂXq

ˇ

ˇ

ˇ

ˇ

pρ´1ρn

`ρn
ˇ

ˇ

pρ´1
´ ρ´1

n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

!

JwpΓJ
ĂXq

)´1
JpΓJ

ĂXq

ˇ

ˇ

ˇ

ˇ

.

By Condition A.3, we have that
ˇ

ˇ

ˇ

ˇ

!

JwpΓJ
ĂXq

)´1
JpΓJ

ĂXq

ˇ

ˇ

ˇ

ˇ

is bounded. By Lemma A.3 and Condition A.3, we have

ρn
ˇ

ˇ

pρ´1
´ ρ´1

n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

!

JwpΓJ
ĂXq

)´1
JpΓJ

ĂXq

ˇ

ˇ

ˇ

ˇ

“ Op

!

pnρnq
´1{2

)

.

Further, on Ω, when
ˇ

ˇ

ˇ
JwpΓJ

ĂXq

ˇ

ˇ

ˇ
ą cn{2,

ˇ

ˇ

ˇ

pJ
p´kq

1 ppΓJ
ĂXq

ˇ

ˇ

ˇ
ą cn, we have

ˇ

ˇ

ˇ

ˇ

!

pJ
p´kq

1 ppΓJ
ĂXq

)´1
pJ p´kq

ppΓJ
ĂXq ´

!

JwpΓJ
ĂXq

)´1
JpΓJ

ĂXq

ˇ

ˇ

ˇ

ˇ

ď CcΓ´1
n ,
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for a large enough C. Thus, we have

rI21 “ Op

!

cr´1
n ` pnρnq

´1{2
)

.

Combining these results, we can obtain
›

›

›

!

pπ´1
p´kq

´ π´1
˚

)

R
›

›

›

P,1
“ Op

!

cγm
n ` cr´1

n ` pnρnq
´1{2

)

“ Op

!

cγm{2
n ` pnρnq

´1{2
)

,

where c
1`γm{2
n “ ρ

´1{2
n pnh̄d

{ lognq´1{2 ` δn.

Lemma A.5.

K´1
K
ÿ

k“1
E

„

!

Sppβ; pQp´kq, pπp´kqq ´ Spβ˚;Q, π˚q

)J

u

j

“ E
”

b
2
pXJβ˚

qXJ
ppβ ´ β˚

qXJu
ı

`K´1
K
ÿ

k“1
E
”

`

Rπ´1
˚ ´ 1

˘

!

pgp´kqpΓJ
ĂXq ´ gpΓJ

ĂXq

)

XJu
ı

`H1pvecpΓq;uq

!

vecppΓq ´ vecpΓq

)

` op

!

pnρnq
´1{2

)

uniformly holds for any vector u with }u}2 “ 1, where

H1pvecpΓq;uq “ E

„

!

J´1
w pΓJ

ĂXqwpĂXqJpΓJ
ĂXq ´ 1

)

`

XJu
˘

!

∇gpΓJ
ĂXq b X

)J
j

,

b is the Kronecker product, and vecpΓq is the vectorization of Γ. When u “

v{}v}2, we have

K´1
K
ÿ

k“1
E

„

!

Sppβ; pQp´kq, pπp´kqq ´ Spβ˚;Q, π˚q

)J

v

j

“ E
”

b
2
pXJβ˚

qXJ
ppβ ´ β˚

qXJv
ı

`H1pvecpΓq;vq

!

vecppΓq ´ vecpΓq

)

` op

!

pnρnq
´1{2

)

.

Proof. We write

E

„

!

Sppβ; pQp´kq, pπp´kqq ´ Spβ˚;Q, π˚q

)J

u

j

“ E

„

!

Sppβ; pQp´kq, pπp´kqq ´ Spβ˚; pQp´kq, pπp´kqq

)J

u

j

`E

„

!

Spβ˚; pQp´kq, pπp´kqq ´ Spβ˚;Q, π˚q

)J

u

j

“ I31 ` I32.
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For I31, we have

I31 “ E
”!

b1
pXJ

pβq ´ b1
pXJβ˚

q

)

XJu
ı

.

We use the Taylor expansion, and we have

I31 “ E
”

�

b2
pXJbq

(

XJ
ppβ ´ β˚

qXJu
ı

,

where b “ λpβ ` p1 ´ λqβ˚. Thus, we have that
ˇ

ˇ

ˇ
I31 ´ E

”

b
2
pXJβ˚

qXJ
ppβ ´ β˚

qXJu
ıˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
E
”!

b
2
pXJbq ´ b

2
pXJβ˚

q

)

XJ
ppβ ´ β˚

qXJu
ıˇ

ˇ

ˇ

ď CE

„

!

XJ
ppβ ´ β˚

q

)2
j

“ Op

�

n´1
` pnρnq

´2γd
(

uniformly holds for all }u}2 “ 1. By γd ą 1{4, we can conclude that

I31 “ E
”

b
2
pXJβ˚

qXJ
ppβ ´ β˚

qXJu
ı

` op

!

pnρnq
´1{2

)

.

For I32, we write

I32 “ E
”´

pπ´1
p´kq

´ π´1
˚

¯

R pQ ´ Y qXJu
ı

`E
”

`

Rπ´1
˚ ´ 1

˘

´

pQp´kq ´ Q
¯

XJu
ı

`E
”´

pπ´1
p´kq

´ π´1
˚

¯

R
´

pQp´kq ´ Q
¯

XJu
ı

“ I321 ` I322 ` I323.

For I321, because E
”

Q ´ Y | R, ĂX
ı

“ 0, we have I321 “ 0. By Lemma A.4 and
Condition A.2, we have

|I323| ď sup
X

ˇ

ˇ

ˇ

´

pQp´kq ´ Q
¯

XJv
ˇ

ˇ

ˇ

›

›

›

´

pπ´1
p´kq

´ π´1
˚

¯

R
›

›

›

P,1

“ Opppnρnq
´γdpcγm{2

n ` pnρnq
´1{2

qq.

By Condition A.5, we have pnρnq´γdpc
γm{2
n ` pnρnq´1{2q “ o

�

pnρnq´1{2(, and
I323 “ op

�

pnρnq´1{2(. For I322, we write

pQp´kq ´ Q “ pgp´kqppΓJ
ĂXq ´ gpΓJ

ĂXq

“ pgp´kqppΓJ
ĂXq ´ pgp´kqpΓJ

ĂXq ` pgp´kqpΓJ
ĂXq ´ gpΓJ

ĂXq.

Thus, we have

I322 “ E
”

`

Rπ´1
˚ ´ 1

˘

!

pgp´kqppΓJ
ĂXq ´ pgp´kqpΓJ

ĂXq

)

XJu
ı

`E
”

`

Rπ´1
˚ ´ 1

˘

!

pgp´kqpΓJ
ĂXq ´ gpΓJ

ĂXq

)

XJu
ı

.



36 J. Park et al.

We discuss these two terms separately. The second term depends on the value
of u. For example, by the definition of π˚, when u “ v{}v}2, the second term is
0. In the following, we focus on the first term.

E
”

`

Rπ´1
˚ ´ 1

˘

!

pgp´kqppΓJ
ĂXq ´ pgp´kqpΓJ

ĂXq

)

XJu
ı

“ E
”

`

Rπ´1
˚ ´ 1

˘

!

ppgp´kq ´ gqppΓJ
ĂXq ´ ppgp´kq ´ gqpΓJ

ĂXq

)

XJu
ı

`E
”

`

Rπ´1
˚ ´ 1

˘

!

gppΓJ
ĂXq ´ gpΓJ

ĂXq

)

XJu
ı

“ I3221 ` I3222.

Notice that

E
´

Rπ´1
˚ | ĂX

¯

“ J´1
w pΓJ

ĂXqwpĂXqJpΓJ
ĂXq.

By Taylor’s expansion, we have

I3222 “ H1pvecpΓq;vq

!

vecppΓq ´ vecpΓq

)

` Opp}vecppΓq ´ vecpΓq}
2
2q.

By }vecppΓq ´ vecpΓq}2
2 “ pnρnq´1 “ op

�

pnρnq´1{2(, we have

I3222 “ H1pvecpΓq;vqpvecppΓq ´ vecpΓqq ` opppnρnq
1{2

q.

By Condition A.2, we have

|I3221| À sup
ĂX

ˇ

ˇ

ˇ

`

pgp´kq ´ g
˘

ppΓJ
ĂXq ´

`

pgp´kq ´ g
˘

pΓJ
ĂXq

ˇ

ˇ

ˇ
“ op

!

pnρnq
´1{2

)

.

Combining these equations, we can conclude the proof.

Lemma A.6. Under Assumptions A.1–A.5, we have that

K´1
K
ÿ

k“1

pEpkq
n

„

!

Sppβ; pQp´kq, pπp´kqq ´ Spβ˚;Q, π˚q

)J

u

j

´E

„

!

Sppβ; pQp´kq, pπp´kqq ´ Spβ˚;Q, π˚q

)J

u

j

“ op

!

pnρnq
´1{2

)

uniformly holds for u with }u}2 “ 1.

Proof.

K´1
K
ÿ

k“1

pEpkq
n

„

!

Sppβ; pQp´kq, pπp´kqq ´ Spβ˚;Q, π˚q

)J

u

j

´E

„

!

Sppβ; pQp´kq, pπp´kqq ´ Spβ˚;Q, π˚q

)J

u

j

“ K´1
K
ÿ

k“1

pEpkq
n

„

!

Sppβ; pQp´kq, pπp´kqq ´ Spβ˚; pQp´kq, pπp´kqq

)J

u

j
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´E

„

!

Sppβ; pQp´kq, pπp´kqq ´ Spβ˚; pQp´kq, pπp´kqq

)J

u

j

`K´1
K
ÿ

k“1

pEpkq
n

„

!

Spβ˚; pQp´kq, pπp´kqq ´ Spβ˚;Q, π˚q

)J

u

j

´E

„

!

Spβ˚; pQp´kq, pπp´kqq ´ Spβ˚;Q, π˚q

)J

u

j

“ I11 ` I12.

For I11, notice that
!

Sppβ; pQp´kq, pπp´kqq ´ Spβ˚; pQp´kq, pπp´kqq

)J

u

“

!

b1
pXJ

pβq ´ b1
pXJβ˚

q

)

XJu.

Thus, by Taylor’s expansion, we have

K´1
K
ÿ

k“1

pEpkq
n

„

!

Sppβ; pQp´kq, pπp´kqq ´ Spβ˚; pQp´kq, pπp´kqq

)J

u

j

´E

„

!

Sppβ; pQp´kq, pπp´kqq ´ Spβ˚; pQp´kq, pπp´kqq

)J

u

j

“ K´1
K
ÿ

k“1

pEpkq
n

”

b2
pXJbqXJ

ppβ ´ β˚
qXJu

ı

´E
”

b2
pXJbqXJ

ppβ ´ β˚
qXJu

ı

,

where b “ λpβ ` p1 ´ λqβ˚. Notice that

|b2
pXJbq ´ b2

pXJβ˚
q| ď Cλ}pβ ´ β˚

}2.

We have

K´1
K
ÿ

k“1

pEpkq
n

”

b2
pXJbqXJ

ppβ ´ β˚
qXJu

ı

´E
”

b2
pXJbqXJ

ppβ ´ β˚
qXJu

ı

“ K´1
K
ÿ

k“1

pEpkq
n

”

b2
pXJβ˚

qXJ
ppβ ´ β˚

qXJu
ı

´E
”

b2
pXJβ˚

qXJ
ppβ ´ β˚

qXJu
ı

` Op

"

”

pp{nq
1{2

` pnρnq
´γd

ı2
*

.

Write

sup
}u}2“1

ˇ

ˇ

ˇ

ˇ

ˇ

K´1
K
ÿ

k“1

pEpkq
n

”

b2
pXJβ˚

qXJ
ppβ ´ β˚

qXJu
ı
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´E
”

b2
pXJβ˚

qXJ
ppβ ´ β˚

qXJu
ıˇ

ˇ

ˇ

“

›

›

›

›

›

K´1
K
ÿ

k“1
p pEpkq

n ´ Eqrb2
pXJβ˚

qXXJ
sppβ ´ β˚

q

›

›

›

›

›

2

Thus, we have

I11 “ Op

!

n´1{2
”

pp{nq
1{2

` pnρnq
´γd

ı)

.

For I12, we write

I12 “ K´1
K
ÿ

k“1

´

pEpkq
n ´ E

¯ ”´

pπ´1
p´kq

´ π´1
˚

¯

R pQ ´ Y qXJu
ı

`K´1
K
ÿ

k“1

´

pEpkq
n ´ E

¯ ”

`

Rπ´1
˚ ´ 1

˘

´

pQp´kq ´ Q
¯

XJu
ı

`K´1
K
ÿ

k“1

´

pEpkq
n ´ E

¯ ”´

pπ´1
p´kq

´ π´1
˚

¯

R
´

pQp´kq ´ Q
¯

XJu
ı

“ I121 ` I122 ` I123.

To bound each term, we use the maximal inequality in Lemma 19.38 in [37].
For the first term, the envelope function is

Fv,1 “ C
ˇ

ˇ

ˇ

´

pπ´1
p´kq

´ π´1
˚

¯

R pQ ´ Y q

ˇ

ˇ

ˇ
.

By calculation, }Fv,1}P,2 ď C 1

›

›

›

´

pπ´1
p´kq

´ π´1
˚

¯

R
›

›

›

P,2
for some constant C 1. By

Lemma A.4, we have
›

›

›

´

pπ´1
p´kq

´ π´1
˚

¯

R
›

›

›

P,2
“ oppρ

´1{2
n q. Therefore, I121 “

op
�

pnρnq´1{2(. Similarly, we have I123 “ op
�

pnρnq´1{2(.
For the second term, the envelope function is

Fv,2 “ C
ˇ

ˇ

ˇ

`

Rπ´1
˚ ´ 1

˘

´

pQp´kq ´ Q
¯ˇ

ˇ

ˇ
.

By the L8-convergence rate of pQp´kq, }Fv,2}P,2 “ C
!

E
”

`

Rπ´1
˚ ´ 1

˘2
ı)1{2

pnρnq´γd .

Under Condition A.3, we have E
”

`

Rπ´1
˚ ´ 1

˘2
ı

ď 4E
”

π´2
˚ ρnwpĂXq

ı

` 4 “

Opρ´1
n q, we have

I122 À Op

!

pnρnq
´1{2´γd

)

.

Combining I121, I122, and I123, we have

I12 “ op

!

pnρnq
´1{2

)

.

This concludes the proof.
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Theorem 3.1 shows that the one-step debiased estimator is asymptotically
normal.

Proof. Denote

S˚ “ pEn

”

tSpβ˚;Q, π˚qu
J
v
ı

.

First, we will show that

pnρnq
1{2

sIprβ1 ´ β˚
1 ` S˚

q “ pnρnq
1{2

!

sI
´

pβ1 ´ β˚
1

¯

´ S̄ ` S˚
)

is asymptotically normal when P pR “ 1 | Z,Xq ­“ P pR “ 1 | ΓJ
ĂXq; and is

negligible when P pR “ 1 | Z,Xq “ P pR “ 1 | ΓJ
ĂXq.

We decompose the right-hand side by

pnρnq
1{2

!

sI
´

pβ1 ´ β˚
1

¯

´ S̄ ` S˚
)

“ pnρnq
1{2

!

I˚
´

pβ1 ´ β˚
1

¯

´K´1
K
ÿ

k“1

pEpkq
n

„

!

Sppβ; pQp´kq, pπp´kqq ´ Spβ˚;Q, π˚q

)J

v

j

+

`pnρnq
1{2

#

K´1
K
ÿ

k“1

pEpkq
n

„

!

Sppβ; pQp´kq, pπp´kqq ´ Spβ˚;Q, π˚q

)J

pv ´ pvq

j

+

`pnρnq
1{2

#

K´1
K
ÿ

k“1

pEpkq
n

”

tSpβ˚;Q, π˚qu
J

pv ´ pvq

ı

+

`pnρnq
1{2

!

psI ´ I˚
q

´

pβ1 ´ β˚
1

¯)

“ I1 ` I2 ` I3 ` I4.

By (the proof of) Lemma A.6 and A.5, we have

I1 “ pnρnq
1{2

”

I˚
´

pβ1 ´ β˚
1

¯

´ E
”

b
2
pXJβ˚

qXJ
ppβ ´ β˚

qXJv
ıı

´pnρnq
1{2H1pvecpΓq;vq

!

vecppΓq ´ vecpΓq

)

` opp1q,

I2 “ pnρnq
1{2

«

K´1
K
ÿ

k“1
E
”

b
2
pXJβ˚

qXJ
ppβ ´ β˚

qXJ
pv ´ pvq

ı

ff

`pnρnq
1{2E

”

`

Rπ´1
˚ ´ 1

˘

!

pgp´kqpΓJ
ĂXq ´ gpΓJ

ĂXq

)

XJ
pv ´ pvq

ı

`pnρnq
1{2

tH1pvecpΓq; pvq ´ H1pvecpΓq;vqu

!

vecppΓq ´ vecpΓq

)

.

For I1, by the definition of v, we have

K´1
K
ÿ

k“1
E
”

b
2
pXJβ˚

qXJ
ppβ ´ β˚

qXJv
ı
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“ K´1
K
ÿ

k“1
E
”

b
2
pXJβ˚

qX1ppβ1 ´ β˚
1 qXJv

ı

“ I˚
´

pβ1 ´ β˚
1

¯

.

Thus, when P pR “ 1 | Z,Xq ­“ P pR “ 1 | ΓJ
ĂXq, we have that

I1 “ pnρnq
1{2H1pvecpΓq;vq

!

vecppΓq ´ vecpΓq

)

,

is asymptotic normal by Condition A.2; when P pR “ 1 | Z,Xq “ P pR “ 1 |

ΓJ
ĂXq, we can verify that H1pvecpΓq;vq “ 0, and thus, I1 is negligible.
For I2, the first term is bounded by

pnρnq
1{2

}pβ ´ β˚
}2}pv ´ v}2 “ Op

"

pnρnq
1{2

”

n´1{2
` pnρnq

´γd

ı2
*

“ opp1q.

The second term is bounded by

pnρnq
1{2

}pg ´ g}8}pv ´ v}2 “ Op

!

pnρnq
1{2

pnρnq
´γd

”

n´1{2
` pnρnq

´γd

ı)

“ opp1q.

The third term is bounded by

pnρnq
1{2

}pv ´ v}2}vecppΓq ´ vecpΓq}2

“ Op

!

pnρnq
1{2

”

n´1{2
` pnρnq

´γd

ı

pnρnq
´1{2

)

“ opp1q.

Thus, we have I2 “ opp1q.
For I3, by Bernstein’s inequality, we have

›

›

›

pEpkq
n rSpβ˚;Q, π˚qs

›

›

›

8
“ Op

!

pnρnq
´1{2

)

.

Thus, we have

I3 “ Op

!

pnρnq
1{2

pnρnq
´1{2

”

n´1{2
` pnρnq

´γd

ı)

“ opp1q.

For I4, it is easy to see that
ˇ

ˇsI ´ I˚
ˇ

ˇ “ Opp}pβ ´ β}2 ` }pv ´ v}2q.

Thus, we have

I4 “ Op

"

pnρnq
1{2

”

n´1{2
` pnρnq

´γd

ı2
*

“ opp1q.

Therefore,

pnρnq
1{2

!

sI
´

pβ1 ´ β˚
1

¯

´ S̄ ` S˚
)

“ ´pnρnq
1{2H1pvecpΓq;vq

!

vecppΓq ´ vecpΓq

)

` opp1q;
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and pnρnq1{2H1pvecpΓq;vq

!

vecppΓq ´ vecpΓq

)

“ opp1q when P pR “ 1 | Z,Xq “

P pR “ 1 | ΓJ
ĂXq.

Next, we will show that

pnρnq
1{2

”

´S˚ ´ H1pvecpΓq;vq

!

vecppΓq ´ vecpΓq

)ı

Ñ Np0, σ2
Sq,

where σ2
S is some positive constant. Since the asymptotic variance σ2

S depends
on whether ρn Ñ 0 or ρn “ ρ ą 0. Thus, we separate the discussion based on
the value of ρn.

Notice that with

H1pvecpΓq;vqpvecppΓq ´ vecpΓq

“ pEn

“

Rρ´1
n H1pvecpΓq;vqψpX,Z, Y q

‰

` op

!

pnρnq
´1{2

)

,

we have

´S˚ ´ H1pvecpΓq;vq

!

vecppΓq ´ vecpΓq

)

“ pEn

”

´ tSpβ˚;Q, π˚qu
J
v ´ Rρ´1

n H1pvecpΓq;vqψpX,Z, Y q

ı

.

We will verify that

´ tSpβ˚;Q, π˚qu
J
v ´ Rρ´1

n H1pvecpΓq;vqψpX,Z, Y q

satisfies the Lindeberg condition.
First, we calculate the mean

E
”

´ tSpβ˚;Q, π˚qu
J
v ´ Rρ´1

n H1pvecpΓq;vqψpX,Z, Y q

ı

“ 0;

and the variance

E
”

´ tSpβ˚;Q, π˚qu
J
v ´ Rρ´1

n H1pvecpΓq;vqψpX,Z, Y q

ı2

“ E
”

tSpβ˚;Q, π˚qu
J
v
ı2

`E
”

Rρ´2
n tH1pvecpΓq;vqψpX,Z, Y qu

2
ı

`2E
”

Rρ´1
n tSpβ˚;Q, π˚qu

J
vH1pvecpΓq;vqψpX,Z, Y q

ı

.

We calculate E
”

tSpβ˚;Q, π˚qu
J
v
ı2

as

E
”

tSpβ˚;Q, π˚qu
J
v
ı2

“ E
”

ππ´2
˚ pQ ´ Y q

2 `XJv
˘2ı

` E

„

!

b
1
pXJβ˚

q ´ Q
)2

`

XJv
˘2
j
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“ ρ´1
n E

”

wpĂXqJ´2
w pΓJ

ĂXqJ2
pΓJ

ĂXqpQ ´ Y q
2 `XJv

˘2ı

`E

„

!

b
1
pXJβ˚

q ´ Q
)2

`

XJv
˘2
j

.

The second term is

E
”

Rρ´2
n tH1pvecpΓq;vqψpX,Z, Y qu

2
ı

“ ρ´1
n E

”

wpĂXq tH1pvecpΓq;vqψpX,Z, Y qu
2
ı

.

The third term is

E
”

Rρ´1
n tSpβ˚;Q, π˚qu

J
vH1pvecpΓq;vqψpX,Z, Y q

ı

“ ρ´1
n E

”

wpĂXqJ´1
w pΓJ

ĂXqJpΓJ
ĂXqpQ ´ Y q

`

XJv
˘

H1pvecpΓq;vqψpX,Z, Y q

ı

`E
”

wpĂXq

!

b
1
pXJβ˚

q ´ Q
)

`

XJv
˘

H1pvecpΓq;vqψpX,Z, Y q

ı

.

When ρn ” ρ ą 0, define

σ2
S

“ E
”

wpĂXqJ´2
w pΓJ

ĂXqJ2
pΓJ

ĂXqpQ ´ Y q
2 `XJv

˘2ı

`ρE

„

!

b
1
pXJβ˚

q ´ Q
)2

`

XJv
˘2
j

`E
”

wpĂXq tH1pvecpΓq;vqψpX,Z, Y qu
2
ı

`2E
”

wpĂXqJ´1
w pΓJ

ĂXqJpΓJ
ĂXqpQ ´ Y q

`

XJv
˘

H1pvecpΓq;vqψpX,Z, Y q

ı

`2ρE
”

wpĂXq

!

b
1
pXJβ˚

q ´ Q
)

`

XJv
˘

H1pvecpΓq;vqψpX,Z, Y q

ı

.

We have

E
”

´ tSpβ˚;Q, π˚qu
J
v ´ Rρ´1

n H1pvecpΓq;vqψpX,Z, Y q

ı2

“ ρ´1σ2
S .

When P pR “ 1 | Z,Xq “ P pR “ 1 | ΓJ
ĂXq, we have

σ2
S

“ E
”

wpĂXqJ´2
w pΓJ

ĂXqJ2
pΓJ

ĂXqpQ ´ Y q
2 `XJv

˘2ı

`ρE

„

!

b
1
pXJβ˚

q ´ Q
)2

`

XJv
˘2
j

.

Notice that
ˇ

ˇ

ˇ
´ tSpβ˚;Q, π˚qu

J
v ´ Rρ´1

n H1pvecpΓq;vqψpX,Z, Y q

ˇ

ˇ

ˇ
ď Cρ´1,
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for a large enough C. Thus, the Lindeberg condition satisfies because for any
ε ą 0, we have

1
!ˇ

ˇ

ˇ
´ tSpβ˚;Q, π˚qu

J
v ´ Rρ´1

n H1pvecpΓq;vqψpX,Z, Y q

ˇ

ˇ

ˇ
ą εn1{2σS

)

ď 1
!

Cρ´1
ě εn1{2σS

)

“ 0,

for a large enough n. By the Proposition 2.27 (Lindeberg-Feller CLT) of [37],
we have

pnρq
1{2

”

´S˚ ´ H1pvecpΓq;vq

!

vecppΓq ´ vecpΓq

)ı

Ñ Np0, σ2
Sq.

Thus, we have

pnρq
1{2

prβ1 ´ β˚
1 q Ñ Np0, σ2

1q,

where σ2
1 “ σ2

S{ pI˚q
2. Especially, when P pR “ 1 | Z,Xq “ P pR “ 1 | ΓJ

ĂXq,
we have

ρ´1σ2
S “ E

”

tSpβ˚;Q, π˚qu
J
v
ı2

,

and π˚ “ P pR “ 1 | Z,Xq.
When ρn Ñ 0, we define

σ2
S

“ E
”

wpĂXqJ´2
w pΓJ

ĂXqJ2
pΓJ

ĂXqpQ ´ Y q
2 `XJv

˘2ı

`E
”

wpĂXq tH1pvecpΓq;vqψpX,Z, Y qu
2
ı

`2E
”

wpĂXqJ´1
w pΓJ

ĂXqJpΓJ
ĂXqpQ ´ Y q

`

XJv
˘

H1pvecpΓq;vqψpX,Z, Y q

ı

.

Notice that

E
”

´ tSpβ˚;Q, π˚qu
J
v ´ Rρ´1

n H1pvecpΓq;vqψpX,Z, Y q

ı2
{pρ´1

n σ2
Sq Ñ 1.

In addition, we have
ˇ

ˇ

ˇ
´ tSpβ˚;Q, π˚qu

J
v ´ Rρ´1

n H1pvecpΓq;vqψpX,Z, Y q

ˇ

ˇ

ˇ
ď Cρ´1

n ,

for a large enough C. We can also verify that the Lederberg condition satisfies
because for any ε ą 0, we have

1
!ˇ

ˇ

ˇ
´ tSpβ˚;Q, π˚qu

J
v ` Rρ´1

n H1pvecpΓq;vqψpX,Z, Y q

ˇ

ˇ

ˇ
ą εn1{2ρ´1{2

n σS

)

ď 1
!

Cρ´1
n ě εn1{2ρ´1{2

n σS

)

“ 0,
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for a large enough n given nρn Ñ `8. By the Proposition 2.27 (Lindeberg-Feller
CLT) of [37], we have

pnρq
1{2

”

´S˚ ´ H1pvecpΓq;vq

!

vecppΓq ´ vecpΓq

)ı

Ñ Np0, σ2
Sq.

Thus, we have

pnρnq
1{2

prβ1 ´ β˚
1 q Ñ Np0, σ2

1q,

where σ2
1 “ σ2

S{ pI˚q
2. Especially, when P pR “ 1 | Z,Xq “ P pR “ 1 | ΓJ

ĂXq,
we have

ρ´1
n σ2

S “ ρ´1
n E

”

wpĂXqJ´2
w pΓJ

ĂXqJ2
pΓJ

ĂXqpQ ´ Y q
2 `XJv

˘2ı

“ E
”

Rπ´2
˚ pΓJ

ĂXqpQ ´ Y q
2 `XJv

˘2ı

and π˚ “ P pR “ 1 | Z,Xq.

In Corollary 3.1, we show that the debiased estimator is locally efficient.

Proof. Notice that when P pR “ 1 | Z,Xq “ P pR “ 1 | ΓJ
ĂXq, we have

JwpΓJ
ĂXq bounded away from 0 and π˚pĂXq “ P pR “ 1 | ΓJ

ĂXq. Thus,
H1pvecpΓq;vq “ 0.

We separate the discussions for the cases where ρn “ ρ ą 0 and ρn Ñ 0.
When ρn “ ρ ą 0, we can verify that the asymptotic variance of rβ1 is

vJE
“

Ω2XXJ
‰

v{pI˚
q
2,

where

Ω “ P´1
pR “ 1 | Z,XqRtY ´ b1

pXJβqu

´P´1
pR “ 1 | Z,Xq tR ´ P pR “ 1 | Z,Xqu

!

E
”

Y | ĂX
ı

´ b1
pXJβq

)

.

By Theorem A.1, the semiparametric lower bound is given by varprφ1,Zq, i.e.,

ruJ
0 E

“

Ω2XXJ
‰

ru0,

where

ru0 “ E´1
”

b
2
pXJβ˚

qXXJ
ı

p1, 0, ¨ ¨ ¨ , 0q
J.

Thus, to show that rβ1 achieves the semiparametric lower bound, we just need
to verify ru0 “ v{I˚.

When ρn Ñ 0, we can verify that the asymptotic variance of rβ1 is of the form

vJE
”

rΩ2XXJ
ı

v{pI˚
q
2,
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where

rΩ “ P´1
pR “ 1 | Z,XqR

!

Y ´ E
”

Y | ĂX
ı)

.

By Theorem A.1, the semiparametric lower bound is given by varprφ2,Zq, i.e.,

ruJ
0 E

”

rΩ2XXJ
ı

qru0.

Thus, to show that rβ1 achieves the semiparametric lower bound, we just need
to verify ru0 “ v{I˚.

To show ru0 “ v{I˚, we compute each term directly. First, we can use the
formula of the inverse of a block symmetric matrix to derive

E´1
”

b
2
pXJβ˚

qXXJ
ı

“ pa, bJ; b, cq{μ,

where

a “ 1,

b “ ´E´1
”

b
2
pXJβ˚

qX´1X
J
´1

ı

E
”

b
2
pXJβ˚

qX1X´1

ı

c “ μE´1
”

b
2
pXJβ˚

qX´1X
J
´1

ı

` bbJ,

μ “ E
”

b
2
pXJβ˚

qX2
1

ı

´

E
”

b
2
pXJβ˚

qX1X
J
´1

ı

E´1
”

b
2
pXJβ˚

qX´1X
J
´1

ı

E
”

b
2
pXJβ˚

qX1X´1

ı

.

Thus, we have

ruJ
0 “

´

1,´E´1
”

b
2
pXJβ˚

qX´1X
J
´1

ı

E
”

b
2
pXJβ˚

qX1X´1

ı¯

{μ.

By the definition of v, we have

vJ
“

´

1,´E´1
”

b
2
pXJβ˚

qX´1X
J
´1

ı

E
”

b
2
pXJβ˚

qX1X´1

ı¯

.

Thus, to show ru0 “ v{I˚, it is sufficient to verify that μ “ I˚. Notice that

I˚
“ E

“

b2
pXJβ˚

qX1X
Jv

‰

“ E
”

b
2
pXJβ˚

qX2
1

ı

´

E
”

b
2
pXJβ˚

qX1X
J
´1

ı

E´1
”

b
2
pXJβ˚

qX´1X
J
´1

ı

E
”

b
2
pXJβ˚

qX1X´1

ı

“ μ.

This concludes the proof.
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A.5. An example for Assumption A.2

In Assumption A.2, we require that there is a positive constant γd ą 1{4
such that }pgppΓJ

ĂXq ´ QpZ,Xq}8 “ Op

!

pnρnq
´γd

)

, and
!

vecppΓq ´ vecpΓq

)

“

n´1 řn
i“1 1tRi “ 1uψpXi, Zi, Yiq`op

!

pnρnq
´1{2

)

, where ψpXi, Zi, Yiq is bounded
and vecp¨q represents the vectorization of the matrix. In addition, we assume that
sup

ĂX

ˇ

ˇ

ˇ
ppg ´ gq ppΓJ

ĂXq ´ ppg ´ gq pΓJ
ĂXq

ˇ

ˇ

ˇ
“ op

!

pnρnq
´1{2

)

.

This assumption has two parts. The first part is the assumption on dimension
reduction method, i.e.,

!

vecppΓq ´ vecpΓq

)

“ n´1 řn
i“1 1tRi “ 1uψpXi, Zi, Yiq`

op

!

pnρnq
´1{2

)

, where ψpXi, Zi, Yiq is bounded and vecp¨q represents the vec-
torization of the matrix. This assumption is satisfied if the dimension reduction
methods lead to asymptotically normal estimates (e.g., Sliced inverse regression
[18], or minimum average variance estimation [40] and its variant [39]). The
second part of the assumption on pgp¨q involve a common condition adopted by
double machine learning literature [4], i.e., there is a positive constant γd ą 1{4
such that }pgppΓJ

ĂXq ´ QpZ,Xq}8 “ Op

!

pnρnq
´γd

)

.
In this section, we provide one of the examples to show that

sup
ĂX

ˇ

ˇ

ˇ
ppg ´ gq ppΓJ

ĂXq ´ ppg ´ gq pΓJ
ĂXq

ˇ

ˇ

ˇ
“ op

!

pnρnq
´1{2

)

.

Specifically, we assume that gp¨q can be written using basis functions, i.e.,

gptq “

8
ÿ

l“8

α˚
l φlptq,

where tφlp¨qu
8

l“1 are basis functions. We assume that
ř8

l“8
|α˚

l | ą `8, and
φlptq’s and their gradients are uniformly bounded. The gradient of gp¨q is

∇gptq “

8
ÿ

l“8

α˚
l ∇φlptq.

We consider to approximate gp¨q and its gradient ∇gp¨q using L terms of basis
functions, i.e.,

rgptq “

L
ÿ

l“8

α˚
l φlptq,

∇rgptq “

L
ÿ

l“8

α˚
l ∇φlptq.

We will show that if the approximation error of ∇rgptq vanishes as L increases
(L Ñ `8 as n Ñ `8), then any method satisfying that

L
ÿ

l“1
|pαl ´ α˚

l | “ opp1q.
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will satisfy the required condition, where pαl’s are estimators for α˚
l ’s. To show

this, notice that

pgppΓJ
rXq “

L
ÿ

l“1
pαlφlp

pΓJ
rXq.

By direct calculation, we have
ˇ

ˇ

ˇ
ppg ´ gq ppΓJ

ĂXq ´ ppg ´ gq pΓJ
ĂXq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

pgppΓJ
ĂXq ´ pgpΓJ

ĂXq ´

!

∇gpΓJ
ĂXq b ĂX

)J !

vecppΓq ´ vecpΓq

)

ˇ

ˇ

ˇ

ˇ

`op

!

pnρnq
´1{2

)

“

ˇ

ˇ

ˇ

ˇ

ˇ

L
ÿ

l“1
pαl

!

φlp
pΓJ

ĂXq ´ φlpΓJ
ĂXq

)

´

!

∇gpΓJ
ĂXq b ĂX

)J !

vecppΓq ´ vecpΓq

)

ˇ

ˇ

ˇ

ˇ

ˇ

`op

!

pnρnq
´1{2

)

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

#

L
ÿ

l“1
pαl∇φlpΓJ

ĂXq b ĂX

+J
!

vecppΓq ´ vecpΓq

)

´

!

∇gpΓJ
ĂXq b ĂX

)J !

vecppΓq ´ vecpΓq

)

ˇ

ˇ

ˇ

ˇ

` op

!

pnρnq
´1{2

)

.

Notice that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

#

L
ÿ

l“1
pαl∇φlpΓJ

ĂXq b ĂX

+J
!

vecppΓq ´ vecpΓq

)

´

!

∇gpΓJ
ĂXq b ĂX

)J !

vecppΓq ´ vecpΓq

)

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

#

L
ÿ

l“1
pαl∇φlpΓJ

ĂXq b ĂX

+

´

!

∇gpΓJ
ĂXq b ĂX

)

ˇ

ˇ

ˇ

ˇ

ˇ

8

›

›

›
vecppΓq ´ vecpΓq

›

›

›

1

ď

ˇ

ˇ

ˇ

ˇ

ˇ

#

L
ÿ

l“1
pαl∇φlpΓJ

ĂXq b ĂX

+

´

!

∇gpΓJ
ĂXq b ĂX

)

ˇ

ˇ

ˇ

ˇ

ˇ

8

Op

!

pnρnq
´1{2

)

ď

ˇ

ˇ

ˇ

ˇ

ˇ

L
ÿ

l“1
pαl∇φlpΓJ

ĂXq b ĂX ´

L
ÿ

l“1
α˚
l ∇φlpΓJ

ĂXq b ĂX

›

›

›

›

›

8

Op

!

pnρnq
´1{2

)

`

›

›

›

›

›

#

L
ÿ

l“1
α˚
l ∇φlpΓJ

ĂXq b ĂX

+

´

!

∇gpΓJ
ĂXq b ĂX

)

›

›

›

›

›

8

Op

!

pnρnq
´1{2

)

.

The second term is op
!

pnρnq
´1{2

)

if the approximation error of ∇rgptq vanishes
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as L increases; the first term is op

!

pnρnq
´1{2

)

if
ˇ

ˇ

ˇ

ˇ

ˇ

L
ÿ

l“1
pαl∇φlpΓJ

ĂXq b ĂX ´

L
ÿ

l“1
α˚
l ∇φlpΓJ

ĂXq b ĂX

›

›

›

›

›

8

ď C
L
ÿ

l“1
|pαl ´ α˚

l | “ opp1q.

A.6. An extension to a doubly robust procedure

The proposed method in the main text assumes that QpZ,Xq is correctly spec-
ified. In this section, we can follow the idea in our main text to extend our pro-
posed method by incorporating a working model for the true propensity, which
enables a doubly robust estimation. However, since the extended algorithm is
complicated (needs to fit nuisance parameters twice), we focus on only the case
where we assume that QpZ,Xq is correctly specified, i.e., Y K ĂX | ΓJ

ĂX in the
main text. In this extension, instead of assuming that Y K ĂX | ΓJ

ĂX only, we
assume that either Y K ĂX | ΓJ

ĂX or R K ĂX | ΓJ
ĂX. To estimate such Γ, we

can conduct sufficient dimension reduction for Y and R, separately. Suppose
that pΓY is the reduced dimension for Y and pΓR is the reduced dimension for
R, then we can set pΓ “

´

pΓY , pΓR

¯

. Based on the pΓ, we further modify how to
construct the initial estimator (to ensure doubly robustness) and how to debias
the initial estimator.

To obtain the initial estimator of β˚, we regress Y on pΓJ
ĂX using kernel

regressions and denote the estimated link function as pg. Similarly, we regress
R on pΓJ

ĂX using kernel regressions and denote the estimated link function
as pm. Using the estimated imputation model and estimated propensity score,
pQpZ,Xq “ pgppΓJ

ĂXq and pπpZ,Xq “ pmppΓJ
ĂXq, we obtain an initial estimate pβ

by solving

pEn

”

Spβ; pπ, pQq

ı

“ 0.

Using the initial estimate, we can construct pvJ “ p1,´ pwJq following the pro-
cedure in the main text.

To remove the bias of the initial estimator due to the estimation of pQ and pπ
in the cross-fitting procedure, using the data excluding Ik, we will first obtain
pπ´1

p´kq
prx; pΓ, pvq following

pπ´1
p´kq

prx; pΓ, pvq “

$

&

%

1 `

!

pJ
p´kq

1 ppΓJ
rxqpρ

)´1
pJ

p´kq

0 ppΓJ
rxqp1 ´ pρq

ˇ

ˇ

ˇ

pJ
p´kq

1 ppΓJ
rxq

ˇ

ˇ

ˇ
ą cn,

pρ´1,
ˇ

ˇ

ˇ

pJ
p´kq

1 ppΓJ
rxq

ˇ

ˇ

ˇ
ď cn.

Then we will fit pQp´kqprx; pΓ, pvq following

pQp´kqprx; pΓ, pvq “
pE

p´kq
n rYXJ

pνKh̄ppΓJ
ĂX ´ pΓJ

rxq | R “ 1s

pE
p´kq
n rXJ

pνKh̄ppΓJ
ĂX ´ pΓJ

rxq | R “ 1s
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Then, the one-step debiased estimator is rβ1 “ pβ1 ´ sI´1
sS, where

sS “

K
ÿ

k“1
Spkq

{K, Spkq
“ pEpkq

n

„

!

Sppβ; pQp´kq, pπp´kqq

)J

pv

j

.

It can be shown that the limit of pΓ, Γ, satisfies either Y K ĂX | ΓJ
ĂX or

R K ĂX | ΓJ
ĂX, we will have that either pQpZ,Xq converges to ErY | ĂXs

or pπpZ,Xq converges to P pR “ 1 | ĂXq, and thus the initial estimator pβ is
consistent. Further, we will also have that either pQp´kqpĂX; pΓ, pvq converges to
ErY | ĂXs or pπp´kqpĂX; pΓ, pvq converges to P pR “ 1 | ĂXq, and thus the debiased
estimator rβ1 is also consistent. The asymptotic normality of rβ1 will be left for
future investigation.

A.7. Simulations with the random forest

We use the random forest with the default parameter setting in the randomFor-
est R package [19] and evaluate the four methods using the random forest as the
method to fit the imputation model. We choose the simulation scenario where
we have a binary outcome with a high missing rate and n “ 1000. Table 5 sum-
marizes the coverage, bias, and standard deviations of the coefficient estimates,
and Figure 2 exhibits the deviance. Our proposed method achieves nominal cov-
erage and has the smallest deviance among other methods. In terms of the bias
and standard deviations, our proposed method has a smaller or comparable bias
and standard deviation compared with Baseline 1 and Baseline 2.

Table 5

Coverage, Bias, and standard deviation when the imputation model is fitted using the
random forest.

Binary, Missing rate of 90%, n “ 1000
Coverage

β1 β2 β3 β4
Baseline 1 0.816 0.816 0.848 0.868
Baseline 2 0.854 0.852 0.850 0.866
Proposed w/o Z 0.958 0.950 0.974 0.978
Proposed with Z 0.940 0.948 0.948 0.962

Bias
β1 β2 β3 β4

Baseline 1 9.862 8.470 -9.641 -8.353
Baseline 2 0.104 0.101 -0.239 -0.204
Proposed w/o Z -0.071 -0.072 0.069 0.115
Proposed with Z -0.192 -0.123 0.133 0.128

Standard Deviation
β1 β2 β3 β4

Baseline 1 9.137 9.648 9.580 9.327
Baseline 2 1.054 1.017 0.938 0.826
Proposed w/o Z 1.374 1.357 1.198 1.210
Proposed with Z 0.815 0.768 0.383 0.415
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Fig 2. Deviance when the imputation model is fitted using the random forest.

A.8. Selected risk factors in the real data example

Table 6 reports the coefficients estimates and their 95%-confidence intervals
for the predictive model developed using the proposed approach. The model
provides some interesting observations. Elderly patients were significantly more
likely to achieve the MCID, and non-white patients may be more likely to achieve
the MCID. These findings can potentially be used to support patient-provider
shared decision-making.

Table 6

Risk factors of the failure of the MCID identified from Proposed w/ Z.

Covariates Coefficients (95% Confidence Interval)
Intercept -1.449 (-1.880, -1.018)
Age 0.367 (0.020, 0.714)
Race - Not White 0.867 (-0.008, 1.743)
Income (ref: <40,000)

40,000 - 60,000 -0.071 (-0.792, 0.650)
>60,000 0.332 (-0.344, 1.008)

Cardiovascular -0.203 (-1.161, 0.755)
Respiratory 0.378 (-0.821, 1.577)
Weight -0.419 (-1.289, 0.451)
BMI -0.133 (-0.412, 0.146)
No. of orthopedics visits -0.128 (-0.504, 0.247)
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