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Abstract: We tackle the extension to the vector-valued case of consis-
tency results for Stepwise Uncertainty Reduction sequential experimental
design strategies established in [3]. This leads us in the first place to clar-
ify, assuming a compact index set, how the connection between continu-
ous Gaussian processes and Gaussian measures on the Banach space of
continuous functions carries over to vector-valued settings. From there, a
number of concepts and properties from [3] can be readily extended. How-
ever, vector-valued settings do complicate things for some results, mainly
due to the lack of continuity for the pseudo-inverse mapping that affects
the conditional mean and covariance function given finitely many pointwise
observations. We apply obtained results to the Integrated Bernoulli Vari-
ance and the Expected Measure Variance uncertainty functionals employed
in [9] for the estimation for excursion sets of vector-valued functions.
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1. Introduction

Sequential design of experiments is an important statistical area dealing with
the step by step assignment of resources (typically, experiments, measurements,
simulations) towards reducing the uncertainty about some quantity of interest.
Bect et al. have in [3] reinforced the theoretical foundations for the analysis of
a large class of strategies that are built according to the stepwise uncertainty
reduction (SUR) paradigm. This has enabled them to establish some broader
consistency results for the considered strategies under the assumption that the
function of interest is a sample path of the Gaussian process model used to con-
struct the sequential design. [3] is based on the idea that each of the SUR sequen-
tial design strategies involves an uncertainty functional applied to a sequence
of conditional probability distributions such that for any sequential design the
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resulting sequence of random variables, that we will denote by pHnqnPN
, is a su-

permartingale with respect to the filtration generated by the observations. This
is called supermartingale property of the underlying uncertainty functional. In
[3], a number of methodological developments and application areas of sequential
design of experiments with scalar-valued Gaussian process models are recalled
(notably in the introduction), and it is shown that two strategies for probabil-
ity of excursion / excursion set estimation (based on the integrated Bernoulli
variance and on the expected measure variance, respectively) and two global
optimization strategies (based on the expected improvement and on the knowl-
edge gradient criteria, respectively) enjoy established SUR consistency results.
The present work is motivated by the investigation of theoretical guarantees of
consistency to related approaches in the framework of vector-valued Gaussian
process models, such as considered in [9]. In the latter reference, a bivariate
Gaussian process was used to jointly model salinity and temperature fields to
delineate the river plume in a considered domain at the interface between the
Fjord of Trondheim and the ocean. Another related setting of learning many
tasks simultaneously using kernel methods (multi-task learning) also arises in
[2] and [8] and has turned out to significantly outperform standard single-task
learning methods in some cases. The multi-output model for Gaussian processes
was also recently studied and encouraged in [25].

In what follows we do establish extensions of SUR consistency results to
vector-valued (multi-output) settings, with a focus on the situation where mul-
tiple quantities are all observed at the same time and may correlate with each
other. While such extensions may seem quite natural, so far only very few works
have used vector-valued Gaussian processes in theoretical settings, which has
motivated us to investigate this aspect and establish links to Gaussian mea-
sures on corresponding function spaces. The latter is all the more crucial since
the connection between Gaussian processes and Gaussian measures plays a cen-
tral role in the theoretical constructions used in [3] to prove consistency of
(scalar-valued) SUR sequential design strategies.

We assume throughout that the function of interest is an element in the space
of continuous functions from a compact metric space pX, dq to R

d (for d P N),
denoted by C

`

X;Rd
˘

, and a sample path of the multivariate Gaussian process
ξ that is used to construct the sequential design. This means ξ “ pξ1, ..., ξdq

is a R
d-valued Gaussian process (every ξi is a R-valued Gaussian process) with

continuous sample paths defined on a compact metric space pX, dq. Observations

Zn “ ξ pXnq ` εn

for n ě 1 are to be made sequentially in order to estimate the quantity of
interest. Furthermore, we assume the sequence of observation errors pεnqnPN

to be independent of the Gaussian process ξ and distributed as independent
centered Gaussian vectors.

We can then directly take over the definition of a SUR strategy from [3], which
starts with the choice of a “measure of residual uncertainty” for the quantity of
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interest after n observations

Hn “ H
`

P ξ
n

˘

,

which is a non-negative function of the conditional distribution P ξ
n of ξ given

Fn, where Fn is the σ-algebra generated by X1, Z1, ..., Xn, Zn. For n ě 0, the
SUR sampling criterion Jn associated with H is then a function from X to r0,8q

and defined for x P X as the conditional expectation

Jn pxq “ E rHn`1|Fn, Xn`1 “ xs ,

assuming that Hn`1 is integrable for any choice of x P X. The value of the
sampling criterion Jn pxq quantifies the expected residual uncertainty at time
n ` 1 if the next observation is to be made at x P X. The sequential design is
then constructed by minimizing the expected residual uncertainty over X

Xn`1 P argmin
xPX

Jn pxq .

Note that some of the statements from [3] carry over smoothly to the vector-
valued case, with proofs needing moderate adjustments and further arguments
to hold in the more general setting. However, other aspects of extending SUR
consistency results to vector-valued settings pose novel challenges. One of the
key observations in [3] is that the sampling criterion is continuous when the co-
variance of the underlying Gaussian process is bounded away from zero. Things
become more complicated in the vector-valued case as the pseudo-inverse map-
ping presents discontinuities between matrices of different ranks. This affects
in turn extending the existence result for SUR sequential design and deserves
some more thorough consideration (see Proposition 3.12, Lemma 4.5 and Propo-
sition 5.1).

Since only two of the example design strategies from [3] have a straightforward
extension to vector-valued settings, we focus on them and establish consistency
for the extensions of the algorithms of [3] dedicated to the excursion probability/
excursion set estimation. For f “ pf1, ..., fdq P C

`

X;Rd
˘

define the set

Γ pfq :“ tu P X : f puq P Tu ,

where T Ă R
d is some closed set. For the case of orthants T :“ rt1,8q ˆ ... ˆ

rtd,8q,

Γ pfq “ tu P X : fpuq ě T u “ tu P X : fi puq ě ti, i P t1, ..., duu .

is called excursion set with excursion threshold T “ pt1, ..., tdq
J

P R
d. Given a

finite measure μ on X, the first measure of residual uncertainty in the excursion
case is called the integrated Bernoulli variance (IBV) and defined by

HIBV
n “

ż

X

pn p1 ´ pnq dμ,
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where pn pxq “ P pξ pxq ě T |Fnq denotes the excursion probability with respect
to Fn. Still with μ a finite measure on X, the second measure of residual uncer-
tainty is the variance of the excursion volume (EMV), defined by

HEMV
n “ Var pμ pΓ pξqq |Fnq .

Both measures of residual uncertainty also appear in [9]. On the first look these
criteria may seem to be the same as in [3], since HIBV

n and HEMV
n are again

functions to R. In fact, the vector-valued aspect is hidden within the definition
of the excursion set/probability and yet complicates theoretical investigations
on the aforementioned residual uncertainties (see Section 5). Indeed, it is not
possible to reduce the expressions for the residual uncertainties to a form where
we can utilize the theory from [3] for real-valued Gaussian processes. Even in
the case a multivariate Gaussian process ξ “ pξ1, ..., ξdq with pairwise indepen-
dent components ξi, we would end up with residual uncertainties that require
further investigation beyond what is supported in the existing literature. An
easy way out would be to assume a multivariate Gaussian process with inde-
pendent components and to select the sequential design points by alternating
between different residual uncertainties H

piq
n , each one corresponding to a dif-

ferent component ξi. However, this is clearly different from the approach in [9],
that motivated our work, and not the multivariate extension of SUR sequential
design that we would advertise.

In the next section we will prepare the ground for our theoretical investiga-
tions on SUR strategies for the vector-valued case. The connection between
continuous R

d-valued Gaussian processes and Gaussian random elements in
C
`

X;Rd
˘

will be tackled with Theorem 2.5. This connection will later be cru-
cial for the proofs of the consistency results and the analysis of SUR sequential
design, since we will work with the distribution P ξ of the Gaussian process ξ
(or more precisely with its conditional distribution given finitely many observa-
tions), which will turn out to be a Gaussian measure on C

`

X;Rd
˘

. In Section
3 we will define the statistical model and design problem more precisely as in-
troduced in [3]. In Section 4 we will discuss uncertainty functionals and some
properties that are important for the existence of SUR sequential design and
state general sufficient conditions for the consistency of SUR sequential designs.
In Section 5 we will finally apply these consistency results to the two SUR se-
quential designs introduced above. The proofs are postponed to the Appendix.

2. Gaussian processes and Gaussian random elements

Let pΩ,F , P q be the underlying probability space. In this section we will focus on
the connection between multivariate Gaussian processes and Gaussian random
elements in the space of continuous functions from a compact metric space pX, dq

to Rd, that we denote by C
`

X;Rd
˘

for some fixed d P N. The most important
statement of this section is Theorem 2.5, which shows that we can identify
each continuous multivariate Gaussian process as Gaussian random element in
C
`

X;Rd
˘

with respect to its Borel σ-algebra and vice versa. The theory of
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Gaussian random elements is based on [5] and [23]. See also Chapter 2.3 and
2.4 in [24] for similar results in a more general setting. For the proofs or more
details on C

`

X;Rd
˘

and its dual space see Appendix A.1.

Definition 2.1. Let pB, }¨}q be a (real) Banach space. A B-valued random
element X : Ω Ñ B is called Gaussian if for any bounded linear functional
L P B˚ the random variable xX,Ly is Gaussian. The distribution ν of X is
called a Gaussian measure on pB, }¨}q.

Definition 2.2. Let pX, dq be a compact metric space and ξ “ pξ pxqqxPX
a

stochastic process with state space
`

R
d,B

`

R
d
˘˘

. ξ is called a multivariate (d-
variate, vector-valued) Gaussian process if the finite-dimensional distributions
of ξ are Gaussian, i.e. if

´

ξ px1q
J
, ..., ξ pxnq

J
¯J

is a Gaussian vector in R
dn for every n ě 1 and x1, ..., xn P X.

Remark 2.3. We sometimes write ξ “ pξ1, ..., ξdq for a multivariate Gaussian
process, where ξi pxq :“ πi pξ pxqq “ ξ pxqi is the i-th component of ξ pxq for
i P t1, ..., du and x P X. By the definition of a multivariate Gaussian process this
means ξi is a real-valued Gaussian process for all i P t1, ..., du.

Furthermore, recall that the finite-dimensional distributions of a multivariate
Gaussian process ξ are determined by the mean function

m : X Ñ R
d, x ÞÑ E rξ pxqs

and covariance function

k : X ˆ X Ñ R
dˆd, px, yq ÞÑ E

”

pξpxq ´ mpxqq pξpyq ´ mpyqq
J
ı

.

It holds for the entries of the mean function

m pxqi “ E rξi pxqs

for x P X and i P t1, ..., du and for the entries of the matrix covariance function

kpx, yqij “ E rpξipxq ´ mpxqiq pξjpyq ´ mpyqjqs

for x, y P X and i, j P t1, ..., du. Hence the entries kpx, yqij of the matrix kpx, yq

correspond to the covariance between the outputs ξipxq and ξjpyq and describe
the degree of correlation or similarity between them.

Consideration of sample path properties makes it possible to think of mul-
tivariate Gaussian processes as random elements (measurable maps) from the
underlying probability space Ω to a function space S Ă

`

R
d
˘X. In the following

we will see that the induced random element will also be Gaussian if we consider
continuous sample paths. See also [15] for the case X Ă R and d “ 1.
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It is a well known result that S :“ C
`

X;Rd
˘

is a separable Banach space if
we equip it with the supremum norm

}f}
8

:“ sup
xPX

|f pxq|max ,

where |x|max :“ maxiPt1,...,du |xi| is the maximum norm on Rd (see Theorem
4.19 in [12]). Similar to the space of continuous R-valued functions it can be
shown that for the Borel σ-algebra S on pS, }¨}

8
q it holds

S “ σ ptδx : x P Xuq ,

where δx : S Ñ R
d, δx pfq “ f pxq are the evaluation maps for x P X (see

Chapter 1.2 in [23]).

Lemma 2.4. Let ξ be a multivariate Gaussian process with continuous sample
paths. Then the mean function m and covariance function k are continuous.

Theorem 2.5. A multivariate Gaussian process ξ with continuous sample paths
is a Gaussian random element in pS, }¨}

8
q with respect to the Borel σ-algebra

S and its distribution is a Gaussian measure on this space. Vice versa, we can
find for every Gaussian measure ν on pS,Sq a multivariate Gaussian process
with continuous sample paths that has distribution ν. The distribution of ξ is
uniquely determined by the mean function m and covariance function k, so we
use the notation ξ „ GPd pm, kq.

3. Conditioning on finitely many observations

Now that we have the grounding, we can revisit the construction from [3] around
conditioning on finitely many observations. Many properties carry over, but
we still require some careful thoughts in places. Especially Propositions 3.11
and 3.12 need some additional arguments if the underlying Gaussian process
has values in R

d. Proposition 3.12 comes as a surprise and will be the reason
that the sample criterion has a more complicated discontinuity structure in the
vector-valued case than in the scalar-valued case. All proofs have been moved
to Appendix A.2.

We will assume that

1. pX, dq is a compact metric space,
2. ξ “ pξ pxqqxPX

is a d-variate Gaussian process on the probability space
pΩ,F , P q with mean function m and covariance function k,

3. ξ has continuous sample paths,

and concentrate on the following model:
ξ can be observed at sequentially selected design points X1, X2,... with addi-

tive independent heteroscedastic Gaussian noise. This means pointwise obser-
vations Zk for k “ 1, 2, ... are given by

Zk “ ξ pXkq ` τ pXkqUk,
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where pUkqkPN
denotes a sequence of independent and Nd p0, Idq-distributed ran-

dom vectors, that are also independent of ξ, and τ : X Ñ R
dˆd denotes a known

continuous function. Then T : X Ñ Rdˆd, T pxq :“ τ pxq τ pxq
J is also continu-

ous and T pxq is symmetric and positive semi-definite for every x P X.
Furthermore, we define the filtration pFnqně0 by

Fn :“ σ

˜#

n
ď

i“1
pXi, Ziq

+¸

for n ě 1 and set F0 to be the trivial σ-algebra. Fn is the σ-algebra generated
by the first n sequential design points and n according pointwise observations
X1, Z1, X2, Z2,..., Xn, Zn and we have Fn Ď Fm for n ď m. We finally define

F8 :“ σ

˜

ď

ně1
Fn

¸

Ă F .

Definition 3.1. A sequence pXnqně1 is called sequential design if Xn is Fn´1-
measurable for all n ě 1.

Definition 3.2. For A P R
nˆm the (Moore-Penrose) pseudo-inverse of A is

defined as the matrix A: P R
mˆn satisfying the properties

1. AA:A “ A and A:AA: “ A:,
2.

`

AA:
˘J

“ AA: and
`

A:A
˘J

“ A:A.

Remark 3.3. 1. By the Theorem of Moore and Penrose the pseudo-inverse
always exists and is unique (see [14]).

2. If A is a square matrix with full rank, then A: “ A´1 (see [14]).
3. The mapping A ÞÑ A: is measurable (see [18]).
4. In contrast to the usual matrix inversion mapping A ÞÑ A´1 for invertible

matrices, the pseudo-inverse mapping A ÞÑ A: is in general not continuous.
However, continuity of this mapping is provided on sets with constant
matrix rank. This means A:

n Ñ A:, if An Ñ A and there exists n0 P N

such that rank pAnq “ rank pAq for all n ě n0 (see [16, 20]).

Theorem 3.4. For any ξ „ GPd pm, kq, Xn “ pX1, ..., Xnq P X
n, Zn “

pZ1,..., Znq P R
dˆn, as defined above, the conditional mean and covariance func-

tion of ξ given Zn “ zn and assuming a deterministic design Xn “ xn are
given by

mnpx;xn,znq “ m pxq ` K px,xnq Σ pxnq
:

pvec pznq ´ vec pm pxnqqq ,

kn px, y;xnq “ k px, yq ´ K px,xnq Σ pxnq
:K py,xnq

J,

where we define Σ pxq :“ kpx, xq`T pxq for x P X and use the matrix convention

m pxnq :“
`

m px1q ¨ ¨ ¨ m pxnq
˘

P R
dˆn,

K px,xnq :“
`

k px, x1q ¨ ¨ ¨ k px, xnq
˘

P R
dˆnd,
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Σ pxnq :“ K pxnq ` T pxnq P R
ndˆnd,

with

K pxnq :“

¨

˚

˚

˚

˚

˝

kpx1, x1q kpx1, x2q ¨ ¨ ¨ kpx1, xnq

kpx2, x1q
. . .

...
...

. . . kpxn´1, xnq

kpxn, x1q ¨ ¨ ¨ kpxn, xn´1q kpxn, xnq

˛

‹

‹

‹

‹

‚

,

T pxnq :“

¨

˚

˚

˚

˚

˝

T px1q 0 ¨ ¨ ¨ 0

0
. . .

...
...

. . . 0
0 ¨ ¨ ¨ 0 T pxnq

˛

‹

‹

‹

‹

‚

.

Remark 3.5. 1. For the case d “ 1 the formula reduces to the form

mn px;xn,znq “ m pxq ` K px,xnq Σ pxnq
:

pzn ´ m pxnqq
J
,

kn px, y;xnq “ k px, yq ´ K px,xnq Σ pxnq
:K py,xnq

J

with Σ pxnq “ pk pxi, xjq ` T pxiqδi,jq1ďi,jďn P R
nˆn. Hence the expres-

sions for mn and kn are consistent with the ones for R-valued Gaussian
processes as in [3].

2. Conditionally on Fn, the next observation Zn`1 follows a multivariate
normal distribution: Zn`1|Fn „ Nd pmn pXn`1q ,Σn pXn`1qq, where

Σn pxq :“ kn px, xq ` T pxq .

3. For the case n “ 0 we have Σ pxq “ Σ0 pxq “ k px, xq ` T pxq P R
dˆd as

expected for our model.
4. The conditional mean mn (or posterior mean in Bayesian statistics) is

also called Kriging predictor or rather co-Kriging in our case, since we
have the joint Kriging of multiple data inputs. For the univariate response
setting, there exists abundant literature to it (see [6, 17] and the references
therein). For the multivariate response see also [2, 25].

As shown in Section 2 we can think of the multivariate Gaussian process ξ as a
Gaussian random element in the separable Banach Space pS, }¨}

8
q equipped with

the Borel σ-algebra S. Let furthermore M be the space of Gaussian measures
on S. We equip M with the σ-algebra M generated by the evaluation maps
πA : ν Ñ ν pAq for A P S. As shown in Theorem 2.5 we have the following
connections:

Any measure ν P M corresponds to the distribution P ξ of some continuous
multivariate Gaussian Process ξ with mean m and covariance function k. Hence
we can write

ν “ P ξ
“ GPd pm, kq ,

since the distribution is uniquely determined by m and k.
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On the other hand the probability distribution P ξ “ GPd pm, kq of some
continuous multivariate Gaussian process is a Gaussian measure on S and hence
an element in M.

Definition 3.6. Given a Gaussian random element ξ in S, we will denote by
P pξq the set of all Gaussian conditional distributions of ξ. That is the set of
Gaussian random measures ν such that ν “ P pξ P ¨|F 1q for some σ-algebra
F 1 Ă F .

Remark 3.7. 1. Note that we use a bold letter ν to denote a random ele-
ment in M (Gaussian random measure) and a normal letter ν to denote a
point in the space M (Gaussian measure).

2. ν “ P pξ P ¨|F 1q is not necessarily Gaussian for an arbitrary σ-algebra
F 1 Ă F and hence not always a random element in M. However, the
next Proposition shows that it holds for the σ-algebra Fn generated by a
sequential design with corresponding pointwise observations.

Proposition 3.8. Let n ě 1. There exists a measurable mapping

X
n

ˆ R
dˆn

ˆ M Ñ M,

ppx1, ..., xnq , pz1, ..., znq , νq ÞÑ Condx1,z1,...,xn,zn pνq

such that CondX1,Z1,...,Xn,Zn

`

P ξ
˘

is the conditional distribution of ξ given the
σ-algebra Fn for any P ξ P M and sequential design pXnqně1 with pointwise
observations pZnqně1.

Remark 3.9. In a Bayesian context, P ξ can be seen as the prior distribution
and for n P N

P ξ
n :“ CondX1,Z1,...,Xn,Zn

`

P ξ
˘

as the posterior distribution after observing pZkq1ďkďn at the sequentially se-
lected design points pXkq1ďkďn. By Proposition 3.8 we have that P ξ

n is a Fn-
measurable random element in M with P ξ

n “ P pξ P ¨|Fnq and hence P ξ
n P P pξq

for all n P N. If P ξ “ GPd pm, kq, then it holds P ξ
n “ GPd pmn, knq, where the

Fn-measurable (and random) conditional mean function mn and conditional
covariance function kn are given as in Theorem 3.4.

Definition 3.10. Let pνn “ GPd pmn, knqqně1 be a sequence of Gaussian mea-
sures in M. We will say that pνnqně1 converges to ν8 P M if

mn Ñ m8 in C
`

X;Rd
˘

,

kn Ñ k8 in C
`

X ˆ X;Rdˆd
˘

with respect to the corresponding supremum norms }¨}
8

on the function spaces.
Notation: νn Ñ ν8.

Proposition 3.11. Let F8 be the σ-algebra generated by
Ť

ně1 Fn. For any
Gaussian random element ξ in S, defined on any probability space pΩ,F ,Pq,
and for any sequential design pXnqně1, the conditional distribution of ξ given
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F8 admits a version P ξ
8 which is an F8-measurable random element in M, and

it holds
P ξ
n

a.s.
ÝÝÝÑ
nÑ8

P ξ
8.

Proposition 3.12. Let ν “ GPd pmν , kνq P M, Σν pxq :“ kν px, xq ` T pxq P

Rdˆd and assume pxi, ziq ÝÑ px, zq as i Ñ 8 in X ˆ Rd with xi, x in the set

Ck :“ tx P X : rank pΣν pxqq “ ku

and zi, z P R
d for i P N and some k P t1, ..., du. Then we have

Condxi,zi pνq ÝÝÝÑ
iÑ8

Condx,z pνq .

Remark 3.13. The above Proposition illustrates an important difficulty that
arises when one turns from a scalar-valued Gaussian process GP pm, kq to a
multivariate Gaussian process GPd pm, kq. For a Gaussian process GP pm, kq and
just one observation px1, z1q “ px, zq P XˆR, the convergence mentioned above
only depends on the inverse of a scalar, whereas for a multivariate Gaussian
processes GPd pm, kq and the observation px1, z1q “ px, zq P X ˆ R

d we already
have to deal with matrix inversion. This yields some difficulties for the limit as
xi Ñ x.

4. SUR sequential design and its existence in the multivariate
setting

We will start by recalling some definitions from [3] that can instantly be ex-
tended to our multivariate setting, since they only depend on the space M of
Gaussian measures on S. However, the existence of SUR sequential design in
the multivariate case comes with some pitfalls caused by Proposition 3.12 in the
previous section. We will nevertheless prove that under some special assump-
tions the SUR sequential design indeed exists. All proofs have been moved to
Appendix A.3.

Definition 4.1. An uncertainty functional on M is a measurable function

H : M Ñ r0,8q

with minνPM H pνq “ 0. The residual uncertainty after n observations, for a
Gaussian random element ξ in S and a sequential design pXnqně1, is defined as
the Fn-measurable random variable

Hn :“ H
`

P ξ
n

˘

for n ě 0.

Definition 4.2. Let H be an uncertainty functional on M.
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1. H has the supermartingale property if for any Gaussian random element ξ
in S, defined on any probability space pΩ,F , P q, and any sequential design
pXnqně1 the sequence of residual uncertainties pHnqně0 is a pFnqně0-
supermartingale.

2. H is P-uniformly integrable if for any Gaussian random element ξ in S,
defined on any probability space pΩ,F , P q, the family pH pνqqνPPpξq

is
uniformly integrable.

3. H is P-continuous if for any Gaussian random element ξ in S, defined on
any probability space pΩ,F , P q, and any sequence of random measures
pνnqně1 Ă P pξq such that νn

a.s.
ÝÝÝÑ
nÑ8

ν8 P P pξq it holds

H pνnq
a.s.

ÝÝÝÑ
nÑ8

H pν8q .

For the definition of stepwise uncertainty reduction (SUR) sequential design
strategies we need to define some important functionals on M. For any x P X

observe the mapping Jx : M Ñ r0,8s defined by

Jx pνq “

ż

Rd

ż

S

H
`

Condx,fpxq`τpxqu pνq
˘

ν pdfqφd puq du

“

ż

Rd

H
´

Cond
x,mνpxq`Σνpxq

1
2 u

pνq

¯

φd puq du,

where Σν pxq
1
2 P R

dˆd is the unique symmetric and positive semi-definite square
root matrix of Σν pxq “ kν px, xq ` T pxq, φd is the density of Nd p0, Idq and
ν “ GPd pmν , kνq.

Proposition 4.3. The mapping

J : X ˆ M Ñ r0,8s , px, νq ÞÑ Jx pνq

is B pXq b M-measurable.

Definition 4.4. Let ξ be a Gaussian random element in S, pXnqně1 be a se-
quential design and Fn the σ-algebra generated by X1, Z1, ..., Xn, Zn. The SUR
sampling criterion Jn associated to an uncertainty functional H on M is defined
as the function Jn : X Ñ r0,8s, where

Jn pxq :“ Jx

`

P ξ
n

˘

“ En

“

H
`

Condx,Zpxq

`

P ξ
n

˘˘‰

:“ E
“

H
`

Condx,Zpxq

`

P ξ
n

˘˘

|Fn

‰

with Zpxq “ ξ pxq ` τ pxqU and U „ Nd p0, Idq independent of ξ, U1, ..., Un as
defined in the introduction of Section 3.

1. pXnqně1 is called a SUR sequential design associated to the uncertainty
functional H, if

Xn`1 P argmin
xPX

Jn pxq

for all n ě n0 with n0 P N.
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2. Let pεnqnPN
be a sequence of non-negative real numbers with εn Ñ 0 as

n Ñ 8. pXnqně1 is called an ε-quasi SUR sequential design associated to
the uncertainty functional H, if it holds

Jn pXn`1q ď inf
xPX

Jn pxq ` εn

for all n ě n0 with n0 P N.

Lemma 4.5. Let H be a measurable uncertainty functional on M that is P-
continuous, P-uniformly integrable and has the supermartingale property.

1. For any sequential design pXnqně1 the sample paths of

Jn : X Ñ r0,8q , Jn pxq “ En

“

H
`

Condx,Zpxq

`

P ξ
n

˘˘‰

are continuous on the random sets

Cn,k :“ tx P X : rank pΣn pxqq “ ku Ď X

for n P N and k “ 0, ..., d.
2. Assume that the covariance function k of the underlying Gaussian process

ξ is positive definite and T pxq “ τ pxq τ pxq
J is positive definite for all

x P X. Then there exists a SUR sequential design pXnqně1 associated with
H.

3. There exists an ε-quasi SUR sequential design pXnqně1 associated with H.

Definition 4.6. Let H be an uncertainty functional on M that has the super-
martingale property.

1. The expected gain functional at x P X is defined by

Gx : M Ñ r0,8q , Gx pνq :“ H pνq ´ Jx pνq .

2. The maximal expected gain functional is defined by

G : M Ñ r0,8q , G pνq :“ sup
xPX

Gx pνq .

5. Consistency of multivariate excursion set estimation under SUR
sequential design

In the previous section we have recalled some desirable properties of a SUR
sequential design strategy that guarantee existence and continuity of the sample
criterion on a partition of the domain X. The following Proposition is the key
to proving consistency of SUR sequential design in the case of multivariate
excursion set estimation. The Proposition (see proof in Appendix A.4) follows
from two Theorems in [3] that are also stated for completeness in Appendix A.4.
The proofs of the Theorems have been adjusted to the multivariate setting.
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Proposition 5.1. Let H be an uncertainty functional on M, pXnqně1 be an ε-
quasi SUR sequential design for H and G the associated maximal expected gain
functional. Assume that

1. H is P-continuous, P-uniformly integrable and has the supermartingale
property,

2. tν P M : H pνq “ 0u “ tν P M : G pνq “ 0u .

Then it holds
Hn “ H

`

P ξ
n

˘ a.s.
ÝÝÝÑ
nÑ8

0.

5.1. Integrated Bernoulli variance (IBV)

In this subsection we are turning to the integrated Bernoulli variance, that is for
example used for uncertainty reduction in [9] in the case of river plume mapping
as already mentioned in the Introduction. The proofs are inspired by [3] and
can be found in Appendix A.4.

Let ξ be a Gaussian random element in S. The residual uncertainty of the
integrated Bernoulli variance (IBV) is defined as the random variable

HIBV
n :“

ż

X

pn puq p1 ´ pn puqqμ pduq “

ż

X

Var
`

1Γpξq puq |Fn

˘

μ pduq ,

where Fn is the σ-algebra generated by n observations and

pn puq :“ E
“

1Γpξq puq |Fn

‰

“ P pξ puq ě T |Fnq .

More generally, we can define the corresponding uncertainty functional HIBV

by the mapping

HIBV : M Ñ r0,8q ,

ν ÞÑ

ż

X

pν puq p1 ´ pν puqqμ pduq ,

where pν puq :“
ş

S
1Γpfq puq ν pdfq. Note that HIBV is clearly an uncertainty

functional on M. Furthermore, let GIBV be the associated maximal expected
gain functional.

We want to use Proposition 5.1 to show

HIBV
n “ HIBV

`

P ξ
n

˘ a.s.
ÝÝÝÑ
nÑ8

0

for any ε-quasi SUR sequential design pXnqně1 for HIBV . In the following we
will check the assumptions of the Proposition.

Lemma 5.2. HIBV is P-uniformly integrable and has the supermartingale
property.
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Recall that for every sequence pνnqně1 Ă P pξq such that νn ÝÑ ν8 P P pξq

almost surely, it holds

HIBV
pνnq

a.s.
ÝÝÝÑ
nÑ8

HIBV
pν8q

and that νn P P pξq with ξ „ GPd pm, kq if there exist σ-algebras Gn Ă F such
that νn “ P pξ P ¨|Gnq and νn pωq is a Gaussian measure on

`

C
`

X,Rd
˘

, }¨}
8

˘

.
In this case we can write νn “ GPd pmn, knq for some random mean function
mn and random covariance function kn. We have

νn
a.s.

ÝÝÝÑ
nÑ8

ν8 P P pξq ,

if
mn

a.s.
ÝÝÝÑ
nÑ8

m8

uniformly on X and
kn

a.s.
ÝÝÝÑ
nÑ8

k8

uniformly on X ˆ X, where

ν8 “ GPd pm8, k8q “ P pξ P ¨|G8q

for some G8 Ă F . Furthermore, we can write

HIBV
pνnq “

ż

X

g pP pξ puq ě T |Gnqqμ pduq

for the bounded continuous function g : r0, 1s Ñ
“

0, 1
2
‰

, x ÞÑ x p1 ´ xq, so the
claim follows by the Dominated Convergence Theorem if we can show

P pξ puq ě T |Gnq “ P pξ1 puq ě t1, ..., ξd puq ě td|Gnq
a.s.

ÝÝÝÑ
nÑ8

P pξ puq ě T |G8q .

We have for almost all ω P Ω and all u P X by definition of the multivariate
Gaussian process that ξ puq „ Nd pm puq , k pu, uqq and

νn pu, ωq :“ L ppξ puq |Gnq pωqq “ Nd pmn puq pωq , kn pu, uq pωqq

for all n P N Y t8u with

mn puq pωq ÝÝÝÑ
nÑ8

m8 puq pωq ,

kn pu, uq pωq ÝÝÝÑ
nÑ8

k8 pu, uq pωq

by the almost sure uniform convergence of mn and kn. This already implies
νn pu, ωq

w
ÝÑ ν8 pu, ωq as n Ñ 8 for almost all ω P Ω and all u P X, so by the

Portmanteau Theorem

νn pu, ωq pTq “P pξ1 puq ě t1, ..., ξd puq ě td|Gnq pωq

ÝÝÝÑ
nÑ8

P pξ1 puq ě t1, ..., ξd puq ě td|G8q pωq
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“ν8 pu, ωq pTq ,

if
ν8 pu, ωq pBTq “ P pDi P t1, ..., du : ξi puq “ ti|G8q pωq “ 0.

This is clearly the case if for all j P t1, ..., du it holds k8 pu, uq pωqjj ą 0 or
m8 puq pωqj ‰ tj , but turns out to be more difficult in other cases. For the prove
that HIBV is P-continuous, we need to construct a suitable finite decomposition
of X to check the convergence in each case.

Lemma 5.3. Define the functions F1 : X ˆ Ppt1, ..., duq Ñ r0,8q and F2 :
X ˆ Ppt1, ..., duq ˆ Ω Ñ r0,8q by

F1pu, Jq “
ÿ

jPJ

k pu, uq
2
jj

and
F2pu, J, ωq “

ÿ

jPJ

´

m8 puq pωqj ´ tj

¯2
` k8 pu, uq pωq

2
jj .

For J1, J2 Ď t1, ..., du and ω P Ω fixed, let BJ1,J2pωq Ď X be the set of all u P X

such that

1. F1pu, J1q “ 0
2. F2pu, J2, ωq “ 0
3. For every J 1

1 Ą J1 and J 1
2 Ą J2 it holds F1pu, J 1

1q ą 0 and F2pu, J 1
2, ωq ą 0.

Then X can be written as the disjoint union
ď

J1,J2Ďt1,...,du

BJ1,J2 pωq

and it holds:

1. If J2 Ę J1, then BJ1,J2 is almost surely a μ- null set.
2. If J2 Ď J1, then

P pξ puq ě T |Gnq
a.s.

ÝÝÝÑ
nÑ8

P pξ puq ě T |G8q

for all u P BJ1,J2 .

Lemma 5.4. HIBV is P-continuous.

Proof. Using the decomposition for X from the above Lemma 5.3 and recalling
that the finite union of P -null sets is again a P -null set, we get by the first
property in Lemma 5.3

μ pXq
a.s.
“ μ pAq ,

where the random subset A is defined by

A pωq :“
ď

J1,J2Ďt1,...,du
J2ĎJ1

BJ1,J2 pωq .
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Hence we can conclude with g : r0, 1s Ñ
“

0, 1
2
‰

, x ÞÑ x p1 ´ xq that
ż

X

g pP pξ puq ě T |Gnqqμ pduq

a.s.
“

ż

A

g pP pξ puq ě T |Gnqqμ pduq

a.s.
ÝÝÝÑ
nÑ8

ż

A

g pP pξ puq ě T |G8qqμ pduq

a.s.
“

ż

X

g pP pξ puq ě T |G8qqμ pduq .

by the second property in Lemma 5.3 and dominated convergence.

Lemma 5.5.
�

ν P M : HIBV
pνq “ 0

(

“
�

ν P M : GIBV
pνq “ 0

(

.

Note that tν P M : H pνq “ 0u Ď tν P M : G pνq “ 0u always holds as shown
in [3]. In the proof of the above Lemma (see Appendix) we will only focus on
the reverse inclusion.

Theorem 5.6. If pXnqně1 is an ε-quasi SUR sequential design for HIBV , then
it holds

HIBV
n

a.s.
ÝÝÝÑ
nÑ8

0.

Furthermore, it holds almost surely and in L1 that,
ż

X

`

1ξpuqěT ´ pn puq
˘2

μ pduq ÝÝÝÑ
nÑ8

0.

5.2. Excursion Measure Variance (EMV)

Let ξ be a Gaussian random element in S. Another popular measure of the
residual uncertainty with respect to the excursion set that is used in [3], is the
variance of the excursion volume or excursion measure variance (EMV) defined
by

HEMV
n :“ E

”

pα pξq ´ E rα pξq |Fnsq
2

|Fn

ı

“ Var pα pξq |Fnq ,

where Fn is the σ-algebra generated by n observations and α pξq :“ μ pΓ pξqq.
More generally, we can in this case define the corresponding uncertainty func-
tional HEMV by the mapping

HEMV : M Ñ r0,8q

ν ÞÑ

ż

S

pα pfq ´ ᾱνq
2
ν pdfq ,

where ᾱν :“
ş

S
α pfq ν pdfq. Note that HEMV is clearly an uncertainty func-

tional on M. Furthermore, let GEMV be the associated maximal expected gain
functional.
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We want again to use Proposition 5.1 to show

HEMV
n “ HEMV

`

P ξ
n

˘ a.s.
ÝÝÝÑ
nÑ8

0

for any ε-quasi SUR sequential design pXnqně1 for HEMV . The ideas for the
proofs are again based on results shown in [3] and can be found in Appendix A.4.

Lemma 5.7. HEMV is P-uniformly integrable and has the supermartingale
property.

Using Fubini’s Theorem one can see that for the P-continuity of HEMV it is
necessary to deal with the covariance of 1Γpξq pu1q and 1Γpξq pu2q at two points
u1, u2 P X.

Lemma 5.8. For J i
2 Ď J i

1 Ď t1, ..., du with i “ 1, 2 it holds

Cov
`

1Γpξq pu1q ,1Γpξq pu2q |Gn

˘ a.s.
ÝÝÝÑ
nÑ8

Cov
`

1Γpξq pu1q ,1Γpξq pu2q |G8

˘

for all u1 P BJ1
1 ,J

1
2

and u2 P BJ2
1 ,J

2
2

Lemma 5.9. HEMV is P-continuous.

Proof. Using Fubini’s Theorem we have

HEMV
pνnq “E

”

pα pξq ´ E rα pξq |Gnsq
2

|Gn

ı

“E

«

ˆ
ż

X

1Γpξq puqμ pduq

˙2

|Gn

ff

´ E

„
ż

X

1Γpξq puqμ pduq |Gn

j2

“

ż

X

ż

X

E
“

1Γpξq pu1q 1Γpξq pu2q |Gn

‰

μ pdu1qμ pdu2q

´

ż

X

E
“

1Γpξq pu1q |Gn

‰

μ pdu1q

ż

X

E
“

1Γpξq pu2q |Gn

‰

μ pdu2q

“

ż

X

ż

X

Cov
`

1Γpξq pu1q ,1Γpξq pu2q |Gn

˘

μ pdu1qμ pdu2q .

We can now use the same decomposition X “
Ť

J1,J2Ďt1,...,du
BJ1,J2 as in

Lemma 5.3 and already know that BJ1,J2 is almost surely a μ- null set if J2 Ę J1.
Hence the claim follows by Lemma 5.8 and the Dominated Convergence Theo-
rem as

ż

BJ2
1 ,J2

2
pωq

ż

BJ1
1 ,J1

2
pωq

Cov
`

1Γpξq pu1q ,1Γpξq pu2q |Gn

˘

pωqμ pdu1qμ pdu2q

ÝÝÝÑ
nÑ8

ż

BJ2
1 ,J2

2
pωq

ż

BJ1
1 ,J1

2
pωq

Cov
`

1Γpξq pu1q ,1Γpξq pu2q |G8

˘

pωqμ pdu1qμ pdu2q

for almost all ω P Ω.



5108 P. Stange and D. Ginsbourger

To apply Proposition 5.1 it remains to show that HEMV and GEMV vanish
on the same subset of M. It can be deduced by the same steps as in part
(f) in the proof of Theorem 4.3 in [3] that α pξq ´ Erα pξqs is orthogonal to
L2 pΩ, σ pZ pxqq , P q for all x P X, where Z pxq “ ξ pxq ` τ pxqU , U „ Nd p0, Idq

independent of ξ, since even for a multivariate Gaussian process ξ we have that
αpξq is only a random variable. The bottleneck is to conclude that α pξq´Erα pξqs

is also orthogonal to L2 pΩ, σ pξ pxqq , P q, which can be handled by the following
Lemma.

Lemma 5.10. Let V “ pV1, ..., Vdq and W “ pW1, ...,Wdq be independent Gaus-
sian random vectors in

`

R
d,B

`

R
d
˘˘

and U be a random variable in pR,B pRqq,
all defined on the probability space pΩ,F , P q. Assume that W is independent of
pU, V q and that U is orthogonal to L2 pΩ, σ pV ` W q , P q, that means for every
σ pV ` W q-measurable and square-integrable random variable X : Ω Ñ R we
have E rUXs “ 0. Then U is also orthogonal to L2 pΩ, σ pV q , P q.

Lemma 5.11.
�

ν P M : HEMV
pνq “ 0

(

“
�

ν P M : GEMV
pνq “ 0

(

.

Combining Lemmas 5.7, 5.9 and 5.11 we get by means of Proposition 5.1
and the same martingale convergence arguments for pE rα pξq |FnsqnPN

as in the
proof of Proposition 4.5 in [3] the following Theorem.

Theorem 5.12. If pXnqně1 is an ε-quasi SUR sequential design for HEMV ,
then it holds

HEMV
n

a.s.
ÝÝÝÑ
nÑ8

0.

Furthermore, we have almost surely and in L1 that,

E rα pξq |Fns ÝÝÝÑ
nÑ8

α pξq .

6. Conclusion

We have successfully extended the consistency results for the SUR sequential
design strategies based on the integrated Bernoulli variance functional (IBV)
and the variance of the excursion volume functional (EMV), that address the
estimation of the excursion set problem, as introduced and proven for the uni-
variate setting in [3], to the multivariate setting based on multivariate Gaussian
processes ξ “ pξ1, ..., ξdq with sample paths in the function space C

`

X;Rd
˘

.
The authors of [3] have furthermore proven consistency for the knowledge

gradient functional and the expected improvement functional. However, multi-
objective optimization with multivariate Gaussian processes is beyond the scope
of this paper and not considered. Nevertheless, our results, i.e. from Section 2,
can be of interest for further research in this area.

The multivariate setting for excursion set estimation also arises in [9] and
our work provides a (slightly relaxed) theoretical foundation for the techniques
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that are used in the paper for river plume mapping. Note that the excursion
sets that we are addressing have the special form

Γ pξq “ tu P X : ξ puq ě T u ,

due to the orthants T :“ rt1,8qˆ...ˆrtd,8q that we are considering. It remains
to be checked if the general case of arbitrary closed sets T Ď R

d also holds.
Further studies should also include the convergence rate of the SUR sequen-

tial design to provide a full theoretical support for their effectiveness. An im-
portant question in this context is also whether the correlation (similarity) of
the Gaussian processes pξ1, ..., ξdq has an enhancing effect on the convergence
rate.

Appendix A: Proofs and auxiliary results

A.1. Proofs of Section 2

Proof. (Lemma 2.4)
Let ξ “ pξ1, ..., ξdq be a multivariate Gaussian process with continuous sample
paths. Then we have for x P X and any sequence pxnqnPN

in X with xn Ñ x

(with respect to the metric d on X) that
řd

i“1 pξi pxnq ´ ξi pxqq
2 a.s.

ÝÝÑ 0. Hence
ξi pxnq is a Gaussian random variable for every i P t1, ..., du and n P N with
ξi pxnq

a.s.
ÝÝÑ ξi pxq, so Lemma 1 in [10] implies

řd
i“1 E

”

pξi pxnq ´ ξi pxqq
2
ı

ÝÑ 0.
This already implies continuity of the mean function m since

}m pxnq ´ m pxq}
2
2 ď

d
ÿ

i“1
E

”

pξi pxnq ´ ξi pxqq
2
ı

ÝÑ 0.

For continuity of the covariance function let also y P X and pynqnPN
be any

sequence in X with yn Ñ y. Since

k pxn, ynq “ E
“

ξpxnqξpynq
J
‰

´ mpxnqmpynq
J,

it only remains to show convergence of the first term on the right hand side.
This can be checked component-wise using Cauchy-Schwarz and

E

”

pξipxnq ´ ξipxqq
2
ı

ÝÑ 0

for all i P t1, ..., du.

Recall that the (continuous) dual space of a real normed vector space pX, }¨}q

is defined by

X˚ :“ tL : X Ñ R : L is linear and continuousu

and that the operator norm }¨}op on the dual space X˚ is given by

}L}op :“ inf tc ě 0 : |Lx| ď c }x} for all x P Xu .
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Two well known results are that L is bounded if and only if it is continuous and
that }L}op “ sup}x}ď1 |Lx|. Furthermore, we have the following basic result for
the dual space of (finite) product spaces:

Let
`

X1, }¨}X1

˘

, ...,
`

Xd, }¨}Xd

˘

be real Banach spaces with dual spaces X˚
1 , ...,

X˚
d . Define the space

X1 ˆ ... ˆ Xd :“ tpx1, ..., xdq : xi P Xi, i P t1, ..., duu

with norm }px1, ..., xdq} “ maxiPt1,...,du }xi}Xi
and

X˚
1 ˆ ... ˆ X˚

d :“ tpL1, ..., Ldq : Li P X˚
i , i P t1, ..., duu

with norm }pL1, ..., Ldq}
˚

“
řd

i“1 }Li}op,Xi
. Then the following statements hold.

1. pX1 ˆ ... ˆ Xd, }¨}q and
`

X˚
1 ˆ ... ˆ X˚

d , }¨}
˚

˘

are Banach spaces.
2. J : X˚

1 ˆ ... ˆ X˚
d Ñ pX1 ˆ ... ˆ Xdq

˚ defined by

J pL1, ..., Ldq px1, ..., xdq “

d
ÿ

i“1
Lixi

is an isometric isomorphism.

Let pX, dq be a compact metric space. The product space C pXq ˆ ... ˆ C pXq

and C
`

X;Rd
˘

with the supremum norm

}f}
8

“ sup
xPX

}f pxq}max

are isomorphic and have the same topological structure. They even form an
isometric isomorphism if we consider the product space with the norm

}pf1, ..., fdq}d,8 “ max
iPt1,...,du

}fi}8
.

Proposition A.1. Let pX, dq be a compact metric space. The dual space of
C
`

X;Rd
˘

is isometrically isomorphic to M pXq ˆ ... ˆ M pXq, where M pXq is
the space of finite signed measures on X equipped with the Borel σ-algebra. This
means for every L P C

`

X;Rd
˘˚ there exist finite signed measures μi for i P

t1, ..., du such that for all f “ pf1, ..., fdq P C
`

X;Rd
˘

it holds

L pfq “

d
ÿ

i“1

ż

X

fi pxqμi pdxq .

Proof. Since X is a compact metric space, every measure in M pXq is also a
Radon measure. The statement that the dual space of C pXq is the space M pXq of
finite signed measures is well-known as Riesz–Markov Representation Theorem,
see Chapter 14 in [1]. Since C pXq ˆ ... ˆ C pXq and C

`

X;Rd
˘

are isometrically
isomorphic, this shows that pC pXq ˆ ... ˆ C pXqq

˚ is isometrically isomorphic to
M pXq ˆ ... ˆ M pXq.
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Proof. (Theorem 2.5)
We first show that ξ is a stochastic process with continuous sample paths if
and only if it is a random element in

`

C
`

X;Rd
˘

, }¨}
8

˘

with respect to its
Borel σ-algebra. Assume that ξ is a stochastic process with continuous sam-
ple paths. ξ is measurable with respect to the σ-algebra C

`

X;Rd
˘

X B
`

R
d
˘X

by Lemma 4.1 in [11]. Since B
`

R
d
˘X is generated by the projection (or evalua-

tion) maps πx :
`

R
d
˘X

Ñ R
d for x P X, we have that ξ is also measurable with

respect to the Borel σ-algebra on C
`

X;Rd
˘

. This makes ξ a random element
in

`

C
`

X;Rd
˘

, }¨}
8

˘

. The other direction is clear since the evaluation maps are
linear and continuous.

Assume that ξ is a multivariate Gaussian processes. By the above part ξ is a
random element in C

`

X;Rd
˘

and it is Gaussian if xξ, Ly is a Gaussian variable for
all L P C

`

X;Rd
˘˚. By Proposition A.1 there exist finite signed Borel measures

μi on pX, dq such that

xξ, Ly “

d
ÿ

i“1

ż

X

ξi pxqμi pdxq .

Let D be a countable dense subset of X. Since Borel measures and Baire mea-
sures are equivalent on compact metric spaces (see Chapter 7 and 8 in [4]) and
every finite measure μi is also a Radon measure since it is regular, there exists a
sequence of linear combinations of Dirac measures δ

x
piq
k

with x
piq
k P D such that

n
ÿ

k“1
a

piq
k δ

x
piq
k

w
ÝÝÝÑ
nÑ8

μi,

where a
piq
k P R, by Example 8.1.6 in [4] (see also Example 8.16 in [19] or Chapter

15 in [1]) for every i P t1, ..., du. By the definition of multivariate Gaussian
processes we know that

d
ÿ

i“1

n
ÿ

k“1
a

piq
k ξi

´

x
piq
k

¯

is a Gaussian variable for every n P N and

d
ÿ

i“1

n
ÿ

k“1
a

piq
k ξi

´

x
piq
k

¯

“

d
ÿ

i“1

ż

X

ξi pxq

˜

n
ÿ

k“1
a

piq
k δ

x
piq
k

¸

pdxq

a.s.
ÝÝÝÑ
nÑ8

d
ÿ

i“1

ż

X

ξi pxqμi pdxq .

Since the almost sure limit of a sequence of Gaussian random variables is again
Gaussian, we conclude that xξ, Ly is Gaussian.

Assume now that ξ is a Gaussian random element. We know that ξ induces
a Gaussian vector

pL1 pξq , ..., Ld pξqq
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for Li P Ui, where Ui are subsets of the dual space of C
`

X;Rd
˘

for i P t1, ..., du.
Taking the evaluation maps δx : C

`

X;Rd
˘

Ñ R
d, f ÞÑ f pxq and the projection

maps πi : R
d Ñ R, x ÞÑ xi we have that πi ˝ δx : C

`

X;Rd
˘

Ñ R is linear
and continuous for every i P t1, ..., du, x P X. Hence we can define a R

d-valued
process by pπ1 ˝ δx pξq , ..., πd ˝ δx pξqqxPX

, whose finite-dimensional distributions
are Gaussian.

The finite-dimensional distributions of ξ are uniquely determined by m and k
and hence by Proposition 4.2 in [11] the last claim follows, since the σ-algebras
coincide as already mentioned in the first part of the proof.

Remark A.2. ξ is a continuous multivariate Gaussian process with zero mean
function and covariance function k : XˆX Ñ R

dˆd if and only if ξ is a centered
Gaussian random element in the separable Banach space B with covariance
operator Kξ : B˚ Ñ B. The covariance operator can be derived from the co-
variance function k by

L ÞÑ KξL “

»

–y P X ÞÑ

˜

d
ÿ

k“1

ż

X

k px, yqkl μk pdxq

¸

l“1,...,d

fi

fl ,

where μk are the finite signed measures from Proposition A.1. Given the covari-
ance operator Kξ : B˚ Ñ B we can derive the covariance function by

px, yq ÞÑ
`@

Kξδ
k
x, δ

l
y

D˘d

k,l“1 ,

where δkx :“ πk ˝ δx and δly :“ πl ˝ δy for x, y P X and k, l P t1, ..., du.

A.2. Proofs of Section 3

Lemma A.3. Let C
`

X;Rd
˘

and C
`

X ˆ X;Rdˆd
˘

be endowed with their Borel
σ-algebra. Define the mappings

m‚ : M Ñ C
`

X;Rd
˘

, ν ÞÑ mν

k‚ : M Ñ C
`

X ˆ X;Rdˆd
˘

, ν ÞÑ kν

Ψ :“ pm‚, k‚q

and let Θ Ă C
`

X;Rd
˘

ˆ C
`

X ˆ X;Rdˆd
˘

be the range of Ψ with trace σ-algebra
ΣΘ. Then Ψ : M Ñ Θ is M{ΣΘ-measurable and its inverse Ψ´1 : Θ Ñ M is
ΣΘ{M-measurable.

Proof. The mappings m‚ and k‚ are M{S-measurable and M{B
`

C
`

X;Rdˆd
˘˘

-
measurable, respectively. The statement for m‚ follows by Proposition A.1 as in
Lemma A.1 and A.2 in [3]. The statement for k‚ follows by the same arguments
if we consider the isometric isomorphism

A “ paijq1ďi,jďd ÞÑ pa11, ..., a1d, a21, ..., addq ,
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between R
dˆd and R

d2 . That Ψ is M{ΣΘ-measurable follows now easily by the
measurability of m‚ and k‚. Ψ´1 is ΣΘ{M-measurable if and only if pm, kq ÞÑ

GPd pm, kq pAq is measurable for all APB
`

C
`

X;Rd
˘˘

. The latter holds for all
cylinder sets of the form A “

Şn
k“1

�

f P C
`

X;Rd
˘

: f pxkq P Γk

(

with xk P X

and Γk P B
`

R
d
˘

for k “ 1, ..., n and hence for all APB
`

C
`

X;Rd
˘˘

by Dynkin’s
π-λ Theorem.

Lemma A.4. For all n ě 1, the mapping

κ̃n : Xn
ˆ R

dˆn
ˆ Θ Ñ Θ,

pxn, zn, pm, kqq ÞÑ pmn p¨;xn, znq , kn p¨;xnqq

is
`

B pXnq b B
`

R
dˆn

˘

b ΣΘ
˘

{ΣΘ-measurable, where xn “ px1, ..., xnq P X
n and

zn “ pz1, ..., znq P R
dˆn.

Proof. ξ´mn p¨;xn, znq is again a multivariate Gaussian process with continuous
sample paths and has the covariance function kn p¨;xnq for any deterministic de-
sign xn “ px1, ..., xnq P X

n which implies indeed pmn p¨;xn, znq , kn p¨;xnqq P Θ.
The claim for the measurability of the function κ̃n follows from the continuity of
the mappings pm,xq ÞÑ m pxq, pk, xq ÞÑ k px, ¨q, pk, x, yq ÞÑ k px, yq and the mea-
surability of the mapping X ÞÑ X: in combination with the explicit expressions
for mn p¨;xn, znq and kn p¨;xnq from Theorem 3.4.

Proof. (Proposition 3.8)
Any ν P M is the distribution of a multivariate Gaussian process ξ and uniquely
determined by its mean m and covariance k, so we can write ν “ P ξ “

GPd pm, kq and define κn : Xn ˆ R
dˆn ˆ M Ñ M by

κn pxn, zn, νq “ GPd pmn p¨;xn, znq , kn p¨;xnqq “: P ξ
n

with xn “ px1, ..., xnq P X
n and zn “ pz1,..., znq P R

dˆn. The measurability of
κn follows by the previous two Lemmas and the equality

κn pxn, zn, νq “ Ψ´1
pκ̃n pxn, zn,Ψ pνqqq .

We need to show that P ξ
n is a conditional distribution of ξ given the σ-algebra Fn

generated by the sequential design pXnqně1 and pointwise observations pZnqně1.
By the defining property of the conditional expectation this holds if we can prove

E
“

UP ξ
n pΓq

‰

“ E rU1ξPΓs

for any U “
śn

i“1 ϕi pZiq with measurable ϕi : Rd Ñ R and Γ P B
`

C
`

X;Rd
˘˘

of the form Γ “
ŞJ

j“1 tξ px̄jq P Γju with x̄j P X and Γj P B
`

R
d
˘

for j “ 1, ..., J ,
since it extends to any Fn-measurable U (recall that Xn is Fn´1-measurable
and by iteration it can be written as a measurable function of Zn´1, ..., Z1) and
any set in S by Dynkin’s π-λ Theorem, since C pXq ˆ ... ˆ C pXq and S with
the supremum norm }f}

8
“ supxPX }f pxq}max are isomorphic and have the
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same topological structure. Indeed, the above statement follows by applying the
equality

κn`m pxn`m, zn`m, νq “ κm pxn`1:n`m, zn`1:n`m, κn pxn, zn, νqq

recursively to P ξ
n “ κn

`

xn, zn, P ξ
˘

.

Proof. (Proposition 3.11)
By Proposition 3.8 we have that the conditional distribution of ξ given Fn

is of the form P ξ
n “ GPd pmn, knq and that ξ is a Bochner-integrable random

element with values in S. We can define a Lévy-martingale by pE rξ|FnsqnPN
with

respect to the filtration pFnqnPN
, which is again a random element with values

in S for every n P N, and by the Convergence Theorem for Lévy-martingales
(see Theorem 6.1.12 in [21]) we have

E rξ|Fns ÝÝÝÑ
nÑ8

E rξ|F8s

in S with respect to the supremum norm, P -almost surely and in L1 pΩ,F , P q.
The limit m8 :“ E rξ|F8s is again a random element with values in S and
F8-measurable by definition. We clearly have mn “ E rξ|Fns since both are
elements in S with mn pxq “ E rξ pxq |Fns “ δx pE rξ|Fnsq for all x P X, where
δx denotes the (linear and continuous) evaluation function δx : S Ñ R

d with
δx pfq :“ f pxq. We conclude

mn
a.s.

ÝÝÝÑ
nÑ8

m8

uniformly on X.
Assume now for simplicity that ξ is a centered Gaussian random element

so the covariance function reduces to kc px, yq “ E

”

ξ pxq ξ pyq
J
ı

. We can de-
fine a random element ξ2 in the separable Banach space C

`

X ˆ X;Rdˆd
˘

with
supremum norm

}f}
8

:“ sup
xPX

ˆ

max
i,jP t1, ..., du

ˇ

ˇ

ˇ
f pxqij

ˇ

ˇ

ˇ

˙

by ξ2 px, yq :“ ξ pxq ξ pyq
J for x, y P X. Note that it holds

sup
x,yPX

›

›

›
ξ pxq ξ pyq

J
›

›

›

F
“ sup

x,yPX

tr
ˆ

´

ξ pxq ξ pyq
J
¯J ´

ξ pxq ξ pyq
J
¯

˙
1
2

“ sup
x,yPX

´

ξ pxq
J
ξ pxq

¯
1
2 tr

´

ξ pyq ξ pyq
J
¯

1
2

“ sup
x,yPX

}ξ pxq}2 }ξ pyq}2

“

ˆ

sup
xPX

}ξ pxq}2

˙2

.

Using the equivalence of norms on finite-dimensional vector spaces and Fer-
nique’s Theorem, this yields E

“›

›ξ2
›

›

8

‰

ă 8 and hence ξ2 is Bochner-integrable.
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By the same reasoning as above we have E
“

ξ2|Fn

‰

ÝÝÝÑ
nÑ8

E
“

ξ2|F8

‰

“: kc8 in
C
`

X ˆ X;Rdˆd
˘

with respect to the supremum norm, P -almost surely and in
L1 pΩ,F , P q. Hence kcn “ E

“

ξ2|Fn

‰

, since both are elements in C
`

X ˆ X;Rdˆd
˘

with kcn px, yq “ E

”

ξ pxq ξ pyq
J

|Fn

ı

“ δx,y
`

E
“

ξ2|Fn

‰˘

for all px, yq P XˆX and
hence

kcn
a.s.

ÝÝÝÑ
nÑ8

kc8

uniformly on X ˆ X. The general case (non-centered) follows in combination
with the first part since

kn px, yq “ E

”

pξ pxq ´ m pxqq pξ pyq ´ m pyqq
J

|Fn

ı

“ kcn px, yq ´ mn pxqmn pyq
J
.

Hence we conclude
kn

a.s.
ÝÝÝÑ
nÑ8

k8

uniformly on X ˆ X.
Let now Q denote any conditional distribution of ξ given F8. The F8-

measurable random measure Q is then almost surely Gaussian (follows as in
the proof of Proposition 2.9 in [3] using the characteristic function for random
vectors) and thus taking

P ξ
8 pω, ¨q “

#

Q pω, ¨q , ω P Ω0

GPd p0, 0q , ω P ΩzΩ0

we have constructed a F8-measurable random element in M such that

P ξ
n

a.s.
ÝÝÝÑ
nÑ8

P ξ
8.

Proof. (Proposition 3.12)
Let ν “ GPd pmν , kνq P M and let pxi, ziq Ñ px, zq in XˆR

d. For any i P NYt8u

we have Condxi,zi pνq “ GPd pm1 p¨;xi, ziq , k1 p¨, ¨;xiqq where m1 and k1 are
given as in Theorem 3.4. It follows easily by uniform continuity of mν (see
Lemma 2.4) that m1 p¨;xi, ziq Ñ m1 p¨;x, zq uniformly on X and by uniform
continuity of kν (Lemma 2.4, X ˆ X compact) together with the continuity of
M ÞÑ M : for matrices with the same rank that k1 p¨, ¨;xiq Ñ k1 p¨, ¨;xq uniformly
on X ˆ X.

A.3. Proofs of Section 4

Proof. (Lemma 4.5)
1.) Without loss of generality assume H0 “ 0, since it only adds a constant
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term. Furthermore Jn pxq “ Jx

`

P ξ
n

˘

and hence it is equivalent to prove that
the result holds for all P ξ P M at n “ 0.

Assume now that n “ 0, x P X such that

Σ pxq “ Σ0 pxq “ k px, xq ` T pxq P R
dˆd

has rank k for some k P t0, ..., du and let pxiqiPN be a sequence in C0,k with
xi

iÑ8
ÝÝÝÑ x (C0,k is separable as subset of a separable metric space for all k P

t0, ..., du). Recall that it holds

J0 pxq “ Jx

`

P ξ
˘

“ E
“

H
`

Condx,Zpxq

`

P ξ
˘˘‰

,

so if we take νi :“ Condxi,Zpxiq

`

P ξ
˘

for i P N and ν8 :“ Condx,Zpxq

`

P ξ
˘

we
have νi P P pξq and by Proposition 3.12 νi

a.s.
ÝÝÝÑ
iÑ8

ν8. It follows

H pνiq
a.s.

ÝÝÝÑ
iÑ8

H pν8q

by P´ continuity of H and by the above equality finally

Jxi

`

P ξ
˘

ÝÝÝÑ
iÑ8

Jx

`

P ξ
˘

since pH pνiqqiPN is uniformly integrable.
2.) Let n P N. Assume that we have a deterministic design such that Xi “ xi

and Zi “ Zi pxiq for all i ď n. We will first prove that kn px, xq is positive
definite for all n P N and x P Xz tx1, ..., xnu. As already mentioned in the proof

of Theorem 3.4 we know that
´

ξ pxq
J
,ZJ

n

¯J

, where Zn :“
`

ZJ
1 , ..., ZJ

n

˘J, is a
Gaussian vector by definition of multivariate Gaussian processes with covariance
matrix

ˆ

Var pξ pxqq Cov pξ pxq ,Znq

Cov pZn, ξ pxqq Var pZnq

˙

“

ˆ

k px, xq Kpx,xnq

Kpxn, xq Σ pxnq

˙

,

using the same notation as in Theorem 3.4. The covariance matrix above is
positive definite whenever x P Xz tx1, ..., xnu, since for every v0, v1, ..., vn P Rd,
at least one non-zero, it holds

n
ÿ

i,j“0
vJ
i k pxi, xjq vj `

n
ÿ

i“1
vJ
i T pxiq vi ą 0

by positive definiteness of k, where we define x0 :“ x. As shown in Theorem 3.4
the covariance of ξ pxq given Zn is

kn px, xq “ k px, xq ´ Kpx,xnqΣpxnq
´1Kpx,xnq

J,

which is exactly the Schur complement of the covariance matrix stated above. By
[26] the Schur complement of a positive definite matrix is again positive definite
and hence we conclude that kn px, xq is positive definite for all x P Xz tx1, ..., xnu.
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For x P tx1, ..., xnu we obtain again a Gaussian vector pξ pxiq ,Znq with
covariance matrix

ˆ

Var pξ pxiqq Cov pξ pxiq ,Znq

Cov pZn, ξ pxiqq Var pZnq

˙

“

ˆ

k pxi, xiq Kpxi,xnq

Kpxn, xiq K pxnq

˙

`

ˆ

0 0
0 T pxnq

˙

.

The first matrix is positive semi-definite as covariance matrix of a Gaussian
vector (one entry is double) and the second matrix contains the positive definite
matrix T pxnq. Since k pxi, xiq is also positive definite, we conclude

pv1, v2q
J

ˆ

Var pξ pxiqq Cov pξ pxiq ,Znq

Cov pZn, ξ pxiqq Var pZnq

˙

pv1, v2q ą 0

for all pv1, v2q P Rd ˆ Rnd, pv1, v2q ‰ 0 and hence the positive definiteness of
the covariance matrix of pξ pxiq ,Znq. This means also the Schur complement
kn pxi, xiq is positive definite. We finally conclude that kn px, xq is positive defi-
nite for all x P X.

If kn px, xq is positive definite, then Σn pxq has full rank since rank pΣn pxqq ě

max trank pkn px, xqq , rank pT pxqqu “ d and hence the sample paths of Jn are
continuous on X by 1.).

Since Jn has continuous sample paths and X is compact, we know that
An pωq :“ tx P X : Jn pxq pωq “ infxPX Jn pxq pωqu is a non-empty closed set for
every ω P Ω. Hence the mapping ω ÞÑ An pωq is a Fn-measurable random closed
set that admits a Fn-measurable selection Xn`1, i.e. a X-valued random element
such that Xn`1 pωq P An pωq for all ω P Ω (see Theorem 2.13 in [13]).

3.) Define for ω P Ω and 0 ď k ď d the sets

Cď
n,k pωq :“ tx P X : rank pΣn pxqq pωq ď ku ,

Mn pωq :“
"

x P X : Jn pxq pωq ď inf
yPX

Jn pyq pωq ` εn

*

.

For each 0 ď k ď d the set Cď
n,k pωq is compact as closed subsets of the compact

metric space X by continuity of the mapping x ÞÑ pΣn pxqq pωq and closedness
of the set

�

M P R
dˆd : rankpMq ď k

(

. Since Jn p¨q pωq is by definition constant
if Σn p¨q pωq ” 0 and hence Mn pωq “ X, we assume that ω P Ω is such that
Σn p¨q pωq ı 0. Without loss of generality, we assume infyPX Jn pyq pωq ă Hn pωq

and consider the following two cases:
Assume Cď

n,0 pωq X Mn pωq ‰ H. Then it holds for x˚ P Cď
n,0 pωq X Mn pωq

that Σn px˚q pωq “ 0 and hence Jn px˚q pωq “ Hn pωq, which yields

inf
yPX

Jn pyq pωq ď Jn pxq pωq ď inf
yPX

Jn pyq pωq ` εn

for all x P X and hence Mn pωq “ X.
Assume Cď

n,0 pωqXMn pωq “ H. Then there must exist an integer 1 ď k˚ ď d

such that Cď
n,k pωqXMn pωq “ H for all 0 ď k ă k˚ and Cď

n,k˚
pωqXMn pωq ‰ H.
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Indeed, if pxjqjPN
Ă X is a sequence such that Jn pxjq pωq Ñ infyPX Jn pyq pωq

for j Ñ 8, then we have for some j large enough that

Jn pxjq pωq ď inf
yPX

Jn pyq pωq ` εn

and Jn pxjq pωq ă Hn pωq, which implies tr pΣn pxjqq pωq ą 0 and hence xj P

Cď
n,k pωq XMn pωq for some 1 ď k ď d. Hence the sets Cď

n,k pωq XMn pωq are not
empty for some k large enough. Taking the smallest integer k˚ ě 1 such that
Cď

n,k˚
pωq X Mn pωq ‰ H gives the desired result.

Choosing k˚ this way means

Cď
n,k˚

pωq X Mn pωq Ă Cn,k˚

and since Jn is continuous on Cn,k˚ by 1.), we conclude that Cď
n,k˚

pωqXMn pωq

is closed and hence compact. This means the mapping ω ÞÑ Cď
n,k˚

pωq XMn pωq

is an Fn-measurable random closed set and we can chose an Fn-measurable
selection X

pk˚q

n`1 that takes values in this random closed set (see Theorem 2.13 in
[13]). The desired ε-quasi SUR sequential design pXnqně1 can hence be defined
by

Xn`1 “

#

x ,Mn “ X

X
pk˚q

n`1 , else

for some arbitrary x P X.

Proof. (Proposition 4.3)
Using the notation from the proof of Proposition 3.8, we see that

Jx pνq “

ż

Rd

H
´

κ1

´

x,mν pxq ` Σν pxq
1
2 u, ν

¯¯

φd puq du.

Using Lemma A.4 in the Appendix and the measurability of κ1 (see proof of
Proposition 3.8), we see that the integrand is a B pXq bB

`

R
d
˘

bM measurable
function of px, u, νq. The claim follows by Fubini’s Theorem.

A.4. Proofs of Section 5

Theorem A.5. Let H be an uncertainty functional on M that has the su-
permartingale property, G the associated maximal expected gain functional and
pXnqně1 be an ε-quasi SUR sequential design for H.

1. Then it holds
G
`

P ξ
n

˘ a.s.
ÝÝÝÑ
nÑ8

0.

2. If moreover

(a) Hn “ H
`

P ξ
n

˘ a.s.
ÝÝÝÑ
nÑ8

H
´

P ξ
8

¯

,

(b) G
`

P ξ
n

˘ a.s.
ÝÝÝÑ
nÑ8

G
´

P ξ
8

¯

,
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(c) ZH :“ tν P M : H pνq “ 0u “ tν P M : G pνq “ 0u “: ZG,
then we have

Hn
a.s.

ÝÝÝÑ
nÑ8

0.

Proof. See Theorem 3.12 in [3]. The proof works the same way for multivariate
Gaussian processes.

Theorem A.6. Let H be an uncertainty functional on M and G the associated
maximal expected gain functional. Assume that we can decompose H “ H0 `H1,
where

1. H0 pνq “
ş

S
L0dν for some L0 P

Ş

νPM
L1 pS,S, νq and

2. H1 is P-continuous, P-uniformly integrable and has the supermartingale
property.

Then, for any ε-quasi SUR sequential design associated with H, it holds

G
`

P ξ
8

˘ a.s.
“ 0.

Proof. Using Theorem A.5 and Proposition 3.11, it is straightforward to obtain

Gx

`

P ξ
8

˘

“ H
`

P ξ
8

˘

´ E8

“

H
`

P ξ
8,x

˘‰ a.s.
“ 0

for each x P X by following the same steps as in the proof of Theorem 3.16 in
[3]. To conclude, we need to show that

G
`

P ξ
8

˘

“ sup
xPX

Gx

`

P ξ
8

˘ a.s.
“ 0.

Define with Σ8 pxq “ k8 px, xq ` T pxq the random sets

Ck,8 :“ tx P X : rank pΣ8 pxqq “ ku

and
Cď

k,8 :“ tx P X : rank pΣ8 pxqq ď ku

for k “ 0, ..., d. For k P t0, ..., du the sets Cď
k,8 are closed subsets of X (Σ8 pωq

is continuous for all ω P Ω and
�

M P R
dˆd : rank pMq ď k

(

is closed) and hence
compact and separable with Cď

k,8 Ď Cď
k`1,8, k P t0, ..., d ´ 1u, and X “ Cď

d,8.
By the previous Lemma we know that the sample paths of J8 are continuous on
each set Ck,8 and hence x ÞÑ Gx

´

P ξ
8

¯

has continuous sample paths on Ck,8.
Let txiuiPN be a countable dense subset of Cď

1,8. In the previous part we
have seen that Gxi

´

P ξ
8

¯

“ 0 for all i P N, almost surely. Using the continuity

of x ÞÑ Gx

´

P ξ
8

¯

on C1,8 and the fact that Gx

´

P ξ
8

¯

“ 0 on C0,8, we conclude

sup
xPCď

1,8

Gx

`

P ξ
8

˘

“ 0
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almost surely. Assume now that we have shown Gx

´

P ξ
8

¯

“ 0 on Cď
k,8 almost

surely. Let txiuiPN be a countable dense subset of Cď
k`1,8. Then Gxi

´

P ξ
8

¯

“ 0

for all i P N almost surely and using the continuity of x ÞÑ Gx

´

P ξ
8

¯

on Ck`1,8

and Gx

´

P ξ
8

¯

“ 0 on Cď
k,8 we conclude

sup
xPCď

k`1,8

Gx

`

P ξ
8

˘

“ 0

almost surely. This leads in the end for k “ d to

G
`

P ξ
8

˘

“ sup
xPX

Gx

`

P ξ
8

˘

“ 0

almost surely, since X “ Cď
d,8.

Proof. (Proposition 5.1)
Take H0 “ 0 and H1 “ H. Then we have for any ε-quasi SUR sequential design
associated with H that G

´

P ξ
8

¯

a.s.
“ 0 by Theorem A.6. By the first part of

Theorem A.5 it holds G
`

P ξ
n

˘ a.s.
ÝÝÝÑ
nÑ8

0 and hence G
`

P ξ
n

˘ a.s.
ÝÝÝÑ
nÑ8

G
´

P ξ
8

¯

. By

P-continuity we also have H
`

P ξ
n

˘ a.s.
ÝÝÝÑ
nÑ8

H
´

P ξ
8

¯

and hence all conditions for

the second part of Theorem A.5 are satisfied. We conclude Hn
a.s.

ÝÝÝÑ
nÑ8

0.

A.4.1. Proofs of Section 5.1 (IBV)

Proof. (Lemma 5.2)
HIBV is P-uniformly integrable, since the uncertainty functional is upper-
bounded. Indeed, we have for every Gaussian random element ξ in S and u P X

Var
`

1Γpξq puq
˘

ď
1
4 ,

since 1Γpξq puq P r0, 1s. Hence we have for any measure ν P M taking ξ „ ν that

ˇ

ˇHIBV
pνq

ˇ

ˇ “

ż

X

Var
`

1Γpξq puq
˘

μ pduq ď
μ pXq

4 ,

since μ is a finite measure over X. Furthermore, HIBV
n is an Fn-measurable

random variable and integrable by definition of the conditional expectation.
Furthermore, we have for pn puq “ E

“

1Γpξq puq |Fn

‰

by the tower property and
Jensen’s inequality

E
“

HIBV
n |Fn´1

‰

“

ż

X

´

E rpn puq |Fn´1s ´ E

”

pn puq
2

|Fn´1

ı¯

μ pduq

a.s.
ď

ż

X

´

pn´1 puq ´ pn´1 puq
2
¯

μ pduq
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“ HIBV
n´1 .

Proof. (Lemma 5.3)
That X can be written as the disjoint union

ď

J1,J2Ďt1,...,du

BJ1,J2 pωq

follows already by assumption 3. of the Lemma.
Let ξ be a random element in S with ξ „ GPd pm, kq and let νn P P pξq for

all n P N Y t8u such that νn ÝÑ ν8 almost surely. By definition of P pξq there
exist σ-algebras Gn such that νn “ P pξ P ¨|Gnq for all n P NY t8u. For the first
property note that for u P X and j P t1, ..., du we have

E

„

1k8pu,uqjj“0

´

ξ puqj ´ m8 puqj

¯2
j

“E

„

1k8pu,uqjj“0E

„

´

ξ puqj ´ m8 puqj

¯2
|G8

jj

“E

”

1k8pu,uqjj“0k8 pu, uqjj

ı

“0

by the tower property and since k8 pu, uq is G8-measurable. This means

1k8pu,uqjj“0

´

ξ puqj ´ m8 puqj

¯2
a.s.
“ 0,

since it is a non-negative random variable, and hence for almost all ω P Ω we
have that

ř

jPJ2
k8 pu, uq pωq

2
jj “ 0 implies

ξ puq pωqj “ m8 puq pωqj

for all j P J2. Note that pu, ωq ÞÑ m8 puq pωq and pu, ωq ÞÑ k8 pu, uq pωq are
jointly measurable by continuity of the sample paths u ÞÑ m8 puq pωq and u ÞÑ

k8 pu, uq pωq for all ω P Ω. By Fubini-Tonelli we conclude

E rμ pBJ1,J2qs

“

ż

X

¨

˝1ř

jPJ1
kpu,uq2jj“0

ź

jPJc
1

1kpu,uqjją0

˛

‚ ¨

E

«

1ř

jPJ2
k8pu,uq2jj“0

ź

jPJ2

1m8puqj“tj ¨

ź

jPJc
2

max
´

1k8pu,uqjją0,1m8puqj‰tj

¯

fi

flμ pduq
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ď

ż

X

¨

˝1ř

jPJ1
kpu,uq2jj“0

ź

jPJc
1

1kpu,uqjją0

˛

‚ ¨

E

«

1ř

jPJ2
k8pu,uq2jj“0

ź

jPJ2

1ξpuqj“tj

ff

μ pduq

ď

ż

X

¨

˝1ř

jPJ1
kpu,uq2jj“0

ź

jPJc
1

1kpu,uqjją0

˛

‚E

«

ź

jPJ2

1ξpuqj“tj

ff

μ pduq

“0,

where the last equality follows by the assumption that there exists j˚ P t1, ..., du

with j˚ P J2 and j˚ P Jc
1 . Indeed, we have for the multivariate Gaussian process

ξ that ξ puqj˚ „ N
´

m puqj˚ , k pu, uqj˚j˚

¯

which implies ξ puqj˚
a.s.
‰ tj˚ since

k pu, uqj˚j˚ ą 0 and hence

E

«

ź

jPJ2

1ξpuqj“tj

ff

“ P

˜

č

jP J2

!

ξ puqj “ tj

)

¸

ď min
jPJ2

P
´

ξ puqj “ tj

¯

ď P
´

ξ puqj˚ “ tj˚

¯

“ 0.

Since μ pBJ1,J2q is almost surely non-negative, the first property follows.
We will now turn to the second property. For j P t1, ..., du we have that

k pu, uqjj “ 0 implies kn pu, uqjj
a.s.
“ 0 for all n P N Y t8u. Indeed, for a random

variable X and σ-algebra F

E

”

pX ´ E rXsq
2
ı

“ 0

implies X
a.s.
“ E rXs and hence also E rX|Fs

a.s.
“ X. We conclude

E

”

pX ´ E rX|Fsq
2

|F
ı

a.s.
“ 0.

Hence for almost all ω P Ω and all n P N Y t8u we have for u P BJ1,J2 pωq that

ξ puq pωqj “ mn puq pωqj “ m puqj “

#

aj , j P J1zJ2

tj , j P J2

for some aj P R, aj ‰ tj . We will use the notation

ξ puqJc
1

:“
´

ξ puqj

¯

jPJc
1
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and
tJc

1 :“ ptjqjPJc
1

for the sub-vectors containing only the elements with index in Jc
1 . Then com-

bining the previous result with the Portmanteau Theorem yields for almost all
ω P Ω for all u P BJ1,J2 pωq

P pξ puq ě T |Gnq pωq “P
´

ξ puqJc
1

ě tJc
1 |Gn

¯

pωq
ź

jPJ1zJ2

1mpuqjětj

ÝÝÝÑ
nÑ8

P
´

ξ puqJc
1

ě tJc
1 |G8

¯

pωq
ź

jPJ1zJ2

1mpuqjětj

“P pξ puq ě T |G8q pωq ,

since ξ puqJc
1

is again a Gaussian vector with almost surely convergent condi-
tional mean and covariance. Indeed, for all elements in j P Jc

1 (which also means
j R J2 by assumption) we have k8 pu, uq pωqjj ą 0 or m8 puq pωqj ‰ tj which
implies for the boundary of TJc

1 “
Ś

jPJc
1

rtj8q, that

P
´

ξ puqJc
1

P BTJc
1 |G8

¯

pωq “ P
´

Dj P Jc
1 : ξ puqj “ tj |G8

¯

pωq

“ P

¨

˝

ď

jPJc
1

!

ξ puqj “ tj

)

|G8

˛

‚ pωq

ď
ÿ

jPJc
1

P
´

ξ puqj “ tj |G8

¯

pωq

“ 0

and hence we can apply the Portmanteau Theorem, which concludes the second
property.

Proof. (Lemma 5.5)
It remains to show

�

ν P M : HIBV pνq “ 0
(

Ě
�

ν P M : GIBV pνq “ 0
(

. Let ν “

GPd pm, kq P
�

ν P M : GIBV pνq “ 0
(

and ξ „ ν, then it holds by the law of
total variance (see Theorem 8.2 in [11])

0 “ sup
xPX

GIBV
x pνq

“ sup
xPX

HIBV
pνq ´ J IBV

x pνq

“ sup
xPX

ż

X

Var
`

1Γpξq puq
˘

μ pduq ´ E

„
ż

X

Var
`

1Γpξq puq |Z pxq
˘

μ pduq

j

“ sup
xPX

ż

X

Var
`

1Γpξq puq
˘

´ E
“

Var
`

1Γpξq puq |Z pxq
˘‰

μ pduq

“ sup
xPX

ż

X

Var
`

E
“

1Γpξq puq |Z pxq
‰˘

μ pduq .
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This means for all x P X, with Zpxq “ ξ pxq`τ pxqU , U „ Nd p0, Idq independent
of ξ, that we have

Var
`

E
“

1Γpξq puq |Z pxq
‰˘

“ Var pP pξ puq ě T |Z pxqqq

“ Var pNd pm1 puq , k1 pu, uqq pTqq

“ 0

for μ-almost all u P X. Note that Nd pm1 puq , k1 pu, uqq is a random measure
with

Nd pm1 puq , k1 pu, uqq pωq “ Nd pm1 puq pωq , k1 pu, uqq ,

where m1 puq and k1 puq are given by

m1 puq “ mpuq ` kpu, xqΣ pxq
:

pZ pxq ´ m pxqq ,

k1 pu, uq “ k pu, uq ´ kpu, xqΣ pxq
:kpu, xq

J.

Since k1 pu, uq does not depend on ω P Ω and Var pNd pm1 puq , k1 pu, uqq pTqq “

0, we conclude that m1 puq has to be P -almost surely constant and hence

Var pm1 puqq “ Var
`

kpu, xqΣ pxq
:

pZ pxq ´ m pxqq
˘

“ kpu, xqΣ pxq
:Var pZ pxqq

`

kpu, xqΣ pxq
:
˘J

“ kpu, xqΣ pxq
:Σ pxq Σ pxq

:kpu, xq
J

“ kpu, xqΣ pxq
:kpu, xq

J

“ 0 P R
dˆd.

Since Σ pxq is symmetric positive semi-definite, we know that Σ pxq : is sym-
metric positive semi-definite and hence kpu, xqΣ pxq :kpu, xqJ “ 0 if and only if
kpu, xqΣ pxq : “ 0. Indeed, if A P R

dˆd, B P S`
d and ABAJ “ 0, then

ABAJ
“ AQQJAJ

“ AQ pAQq
J

“ 0

for Q P Rdˆd with B “ QQJ and hence }AQ}
2
F “ tr

´

pAQq
J
AQ

¯

“ 0 implying
AQ “ 0 and finally AQQJ “ AB “ 0 (the other direction is trivial). Using the
properties Σ pxq Σ pxq :Σ pxq “ Σ pxq and

`

Σ pxq :Σ pxq
˘J

“ Σ pxq :Σ pxq of the
pseudo-inverse Σ pxq :, this implies for every x P X

kpu, xqΣ pxq “ 0 P R
dˆd

for μ-almost all u P X. This also yields kpu, uqΣ puq “ 0 and hence

tr pk pu, uq Σ puqq “ tr
´

k pu, uq
2
¯

` tr pk pu, uq T puqq “ 0

for μ-almost all u P X.
We have

tr
´

k pu, uq
2
¯

“ tr
´

k pu, uq
J
k pu, uq

¯

“ }k pu, uq}
2
F ě 0
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and
tr pk pu, uq T puqq ě 0,

since T puq and k pu, uq are both symmetric and positive semi-definite. Indeed,
we can write for A,B P S`

d that

tr pABq “ tr
`

AQQJ
˘

“ tr
`

QJAQ
˘

“

d
ÿ

i“1
qJ
i Aqi ě 0

for Q P R
dˆd with B “ QQJ by the Spectral Theorem (see Theorem 1.3.1 in

[22]).
We conclude }k pu, uq}

2
F “ 0 and hence k pu, uq “ 0 for μ-almost all u P X,

which yields P pξ puq ě T q “ 1mpuqěT and finally

HIBV
pνq “

ż

X

Var
`

1Γpξq puq
˘

μ pduq

“

ż

X

P pξ puq ě T q p1 ´ P pξ puq ě T qqμ pduq

“ 0.

Proof. (Theorem 5.6)
The first statement follows by combining the three Lemmas in Section 5.1 with
Proposition 5.1. For the second part note that, as seen in the proof of Lemma 5.3,
we have k8 pu, uq pωq “ 0 P R

dˆd for μ-almost all u P X, since HIBV
´

P ξ
8 pωq

¯

“

0 for almost all ω P Ω. Furthermore, we have for the random set

A “
ď

J1,J2Ďt1,...,du
J2ĎJ1

BJ1,J2

that
μ pXq “ μ pA pωqq

for almost all ω P Ω and

pn puq pωq “ P pξ puq ě T |Fnq pωq ÝÝÝÑ
nÑ8

P pξ puq ě T |F8q pωq “ p8 puq pωq

for all u P A pωq by Lemma 5.3. Combining both statements we conclude

pn puq pωq ÝÝÝÑ
nÑ8

1ξpuqpωqěT

for P -almost all ω P Ω and μ-almost all u P X, since k8 pu, uq
a.s.
“ 0 yields

p8 puq “ E
“

1Γpξq puq |F8

‰ a.s.
“ 1Γpξq puq. The claim follows by using the Domi-

nated Convergence Theorem.
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A.4.2. Proofs of Section 5.2 (EMV)

Proof. (Lemma 5.7)
HEMV is P-uniformly integrable since we have for any measure ν P M with
ξ „ ν that

ˇ

ˇHEMV
pνq

ˇ

ˇ ď E

”

α pξq
2
ı

ď μ pXq
2

ă 8,

since α pξq “ μ pΓ pξqq and Γ pξq Ď X almost surely.
HEMV

n is Fn-measurable and integrable by definition of the conditional ex-
pectation. Furthermore, it holds by Jensen’s inequality and the tower property
that

E rVar pα pξq |Fnq |Fn´1s “ E

”

E

”

α pξq
2

|Fn

ı

´ E rα pξq |Fns
2

|Fn´1

ı

“ E

”

α pξq
2

|Fn´1

ı

´ E

”

E rα pξq |Fns
2

|Fn´1

ı

a.s.
ď E

”

α pξq
2

|Fn´1

ı

´ E rα pξq |Fn´1s
2

“ Var pα pξq |Fn´1q .

Proof. (Lemma 5.8)
Let ξ be a random element in S with ξ „ GPd pm, kq and let νn P P pξq for all
n P NYt8u such that νn ÝÑ ν8 almost surely. By definition of P pξq there exist
σ-algebras Gn such that νn “ P pξ P ¨|Gnq for all n P N Y t8u.

Note first that for almost all ω P Ω and all n P N Y t8u we have for ui P

BJi
1,J

i
2

pωq, j P J i
1 and i P t1, 2u

ξ puiq pωqj “ mn puiq pωqj “ m puiqj “

#

aij , j P J i
1zJ i

2
tj , j P J i

2

for some aij P R with aij ‰ tj .
Combining this with the Portmanteau Theorem leads to

E
“

1Γpξq puiq |Gn

‰

pωq “P pξ puiq ě T |Gnq pωq

“P
´

ξ puiq
`

Ji
1
˘c ě t`Ji

1
˘c |Gn

¯

pωq
ź

jPJi
1zJi

2

1mpuiqjětj

ÝÝÝÑ
nÑ8

P
´

ξ puq`Ji
1
˘c ě t`Ji

1
˘c |G8

¯

pωq
ź

jPJi
1zJi

2

1mpuiqjětj

“P pξ puiq ě T |G8q pωq

“E
“

1Γpξq puiq |G8

‰

pωq

for almost all ω P Ω for all ui P BJi
1,J

i
2

pωq and i P t1, 2u, as we have already
seen in the second claim in the proof of Lemma 5.4. We conclude

E
“

1Γpξq pu1q |Gn

‰

pωqE
“

1Γpξq pu2q |Gn

‰

pωq
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ÝÝÝÑ
nÑ8

E
“

1Γpξq pu1q |G8

‰

pωqE
“

1Γpξq pu2q |G8

‰

pωq .

Similarly, we have again by the Portmanteau Theorem

E
“

1Γpξq pu1q 1Γpξq pu2q |Gn

‰

pωq

“P pξ pu1q ě T, ξ pu2q ě T |Gnq pωq

“P
´

ξ pu1q
pJ1

0 q
c ě tpJ1

1 q
c , ξ pu2q

pJ2
1 q

c ě tpJ2
1 q

c |Gn

¯

pωq
ź

jPJi
1zJi

2
i“1,2

1mpuiqjětj

ÝÝÝÑ
nÑ8

P
´

ξ pu1q
pJ1

1 q
c ě tpJ1

1 q
c , ξ pu2q

pJ2
1 q

c ě tpJ2
1 q

c |G8

¯

pωq
ź

jPJi
1zJi

2
i“1,2

1mpuiqjětj

“P pξ pu1q ě T, ξ pu2q ě T |G8q pωq

“E
“

1Γpξq pu1q 1Γpξq pu2q |G8

‰

pωq ,

since
´

ξ pu1q
J
, ξ pu2q

J
¯J

is a Gaussian vector and

P

˜

ď

i“1,2

!

ξ puiq
`

Ji
1
˘c P BT`

Ji
1
˘c

)

|G8

¸

pωq

ď
ÿ

i“1,2
P
´

ξ puiq
`

Ji
1
˘c P BT`

Ji
1
˘c |G8

¯

pωq

“0.

Combining both statements yields for almost all ω P Ω and all ui P BJi
1,J

i
2

pωq,
i “ 1, 2, that

Cov
`

1Γpξq pu1q ,1Γpξq pu2q |Gn

˘

pωq ÝÝÝÑ
nÑ8

Cov
`

1Γpξq pu1q ,1Γpξq pu2q |G8

˘

pωq .

Proof. (Lemma 5.10)
Assume without loss of generality that all random elements U, V and W are
centered. By Fernique’s Theorem

E rexp pc }V }qs “

ż

Rd

exp pc }x}qPV
pdxq ă 8

for some c ą 0 and hence by Theorem 3.2.18 in [7] the space of polynomials
Πd is dense in the space L2 `Rd,B

`

Rd
˘

, dPV
˘

. The polynomials in Πd are here
given by

p pxq “
ÿ

αPA

cαx
α,

where A is some (finite) subset of N
d
0 and the product xα “ xα1

1 ...xαd

d is
called monomial in the variables x1, ..., xd for α P N

d
0 and cα P R. The integer
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|α| “ α1 ` ... ` αd is called total degree of the monomial xα. This means every
f P L2 `

R
d,B

`

R
d
˘

, dPV
˘

can be approximated by a sequence of polynomials
`

x ÞÑ
ř

αPAn
cαx

α
˘

nPN
in Πd, i.e.

ż

Rd

˜

f pxq ´
ÿ

αPAn

cαx
α

¸2

PV
pdxq ÝÝÝÑ

nÑ8
0.

By the factorization Lemma every element in Z P L2 pΩ, σ pV q , P q can be writ-
ten as f pV q for some measurable function f : Rd Ñ R with

E

”

f pV q
2
ı

“

ż

Rd

f pxq
2
PV

pdxq ă 8.

Hence the above statement yields the existence of a polynomial sequence such
that

E

»

–

˜

Z ´
ÿ

αPAn

cαV
α

¸2
fi

fl “ E

»

–

˜

f pV q ´
ÿ

αPAn

cαV
α

¸2
fi

fl ÝÝÝÑ
nÑ8

0.

Assume now that U is not orthogonal to L2 pΩ, σ pV q , P q. Then there exists
an element Z P L2 pΩ, σ pV q , P q such that E rUZs ‰ 0 and since

ˇ

ˇ

ˇ

ˇ

ˇ

E rUZs ´ E

«

U
ÿ

αPAn

cαV
α

ffˇ

ˇ

ˇ

ˇ

ˇ

ď E
“

U2‰ 1
2
E

»

–

˜

Z ´
ÿ

αPAn

cαV
α

¸2
fi

fl

1
2

loooooooooooooooomoooooooooooooooon

ÝÝÝÑ
nÑ8

0

by Cauchy-Schwarz there must exist N P N such that for all n ě N we have
E
“

U
ř

αPAn
cαV

α
‰

‰ 0 and by the linearity of the expectation there must hence
be a multi-index α with total degree |α| “ k0 for some k0 P N0 such that
E rUV αs ‰ 0.

This means the set

Ik0 :“
�

α P N
d
0 : E rUV α

s ‰ 0, |α| “ k0
(

is non-empty. By reducing k0 by one in each step, we can calculate the sets Ik
for every 0 ď k ď k0 and define by k˚ the smallest k such that Ik is non-empty.
Then we have for every multi-index λ P Ik˚

E
“

UV λ
‰

“ E

«

U
d
ź

i“1
V λi
i

ff

‰ 0

and

E

«

U
d
ź

i“1
V ki
i

ff

“ 0,
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if ki ď λi for all i P t1, ..., nu with at least one strict inequality. Indeed, if this
would not be the case we would have a contradiction with the minimality of k˚.

Using the independence, we conclude

E

«

U
d
ź

i“1
pV ` W q

λi

i

ff

“ E

«

U
d
ź

i“1

˜

λi
ÿ

k“0

ˆ

λi

k

˙

V k
i Wλi´k

i

¸ff

“ E

«

U
λ1,...,λd
ÿ

k1,...,kd“0

d
ź

i“1

ˆ

λi

ki

˙

V ki
i Wλi´ki

i

ff

“

λ1,...,λd
ÿ

k1,...,kd“0

d
ź

i“1

ˆ

λi

ki

˙

E

«

U
d
ź

i“1
V ki
i

ff

E

«

d
ź

i“1
Wλi´ki

i

ff

“ E

«

U
d
ź

i“1
V λi

i

ff

‰ 0

and hence U can not be orthogonal to L2 pΩ, σ pV ` W q , P q.
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