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Abstract: When studying survival data in the presence of right censoring,
it often happens that a certain proportion of the individuals under study
do not experience the event of interest and are considered as cured. It is
then common to model the data via a mixture cure model. It depends on a
model for the conditional probability of being cured (called the incidence)
and a model for the conditional survival function of the uncured individuals
(called the latency). This work considers a logistic model for the incidence
and a semiparametric accelerated failure time model for the latency part.
The estimation of this model is obtained via the maximization of the semi-
parametric likelihood, in which the unknown error density is replaced by
a kernel estimator based on the Kaplan-Meier estimator of the error dis-
tribution. Asymptotic theory for consistency and asymptotic normality of
the parameter estimators is provided. Moreover, the proposed estimation
method is compared with several competitors. Finally, the new method is
applied to data coming from a cancer clinical trial. An R package, called
kmcure, is developed to facilitate the use of the proposed methodology in
practice.
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1. Introduction

Cure models in survival analysis are nowadays standard in the modeling toolbox
for situations in which a certain proportion of the subjects under study never
experience the event of interest, i.e. their survival time will be equal to infinity.
This kind of phenomenon often occurs in practice, when studying e.g. the time
until death or recurrence of a certain disease, the time until an unemployed
person finds a new job, the time until a bank goes bankrupt, or the time until
a released prisoner is re-arrested. Basically, the population is then composed
of two groups of subjects, the susceptible (or uncured) subjects and the non-
susceptible (or cured) ones [8]. For book-long introductions to cure models we
refer to [19] and the recent book by [25], while recent review papers on cure
models are [24, 1, 12]. They all provide a comprehensive introduction to cure
models in terms of modeling, estimation, inference, and software.
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In the common case where the survival time is subject to right censoring
and the censoring variable does not have a mass at infinity, all cured subjects
will be censored, which makes the identifiability and estimation of this type of
model challenging. It is clear that some assumptions will be needed to identify
the cure fraction. A common assumption is on the duration of the experiment,
which should be sufficiently long to distinguish cured from uncured subjects.

When covariates are present, a common class of cure regression models is the
class of mixture cure models, which considers the population as a mixture of the
susceptible and cured subpopulations, and which is determined by a model for
the subpopulation of susceptible subjects (called the latency) and a model for
the probability of being cured (called the cure fraction or the incidence), each
time conditional on the covariates. Formally speaking, the survival function
S(t|x, z) = P (T > t | X = x, Z = z) of the survival time T given a set of
real-valued covariates (X,Z) = (x, z) is given by

S(t|x, z) = 1 − p(z) + p(z)Su(t|x), (1)

where p(z) = P (B = 1 | Z = z) is the conditional probability of being uncured
(called the incidence), B = I(T < ∞) denotes the uncure status, and Su(t|x) =
P (T > t | B = 1, X = x) is the conditional survival function for the uncured
subjects (called the latency). The vectors of covariates X and Z are of dimension
� and k+ 1 respectively, and can contain the same covariates, but they can also
be partially or completely different. The models for p(z) and Su(t|x) can be
parametric, semiparametric, or nonparametric in nature. We refer to [3, 2, 8]
for fully parametric approaches, and [15, 14] for fully nonparametric approaches.
For the middle category of semiparametric models, we like to mention [11, 23,
27, 7, 16, 4], who all proposed estimators for the semiparametric logistic/Cox
mixture cure model, while [22] suggested an estimation strategy which is based
on a parametric model for the incidence and a nonparametric model for the
latency.

In this paper, we will focus on the case where the cure fraction follows a
logistic model (which is common in the literature on cure models), and the
conditional survival function Su(t|x) of the susceptible follows a semiparamet-
ric accelerated failure time (AFT) model. This model is a useful alternative to
the Cox model thanks to its direct physical interpretation [10, 6]. When a cure
fraction is present, the model has however not received much attention in the lit-
erature so far. As far as we know, the only papers that have proposed estimators
for the semiparametric logistic/AFT mixture cure model are [31, 17, 26]. These
papers differ in the way they estimate the nonparametric error survival function
and in the likelihood they use to estimate the parameters in the model. A com-
parison between the logistic/Cox and the logistic/AFT mixture cure models in
terms of their ability to estimate well the cure fraction is given in [21]. This
comparison is especially relevant when the follow-up period of the experiment
is insufficient since the AFT model is able to transfer tail information from re-
gions in the covariate space where the follow-up is sufficient to regions where
the follow-up is insufficient.
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The goal of this paper is to propose a new estimation strategy for this semi-
parametric logistic/AFT mixture cure model. The estimation of the model is
obtained via the maximization of a so-called semiparametric observed likeli-
hood, in which the unknown error density in the AFT model is replaced by a
kernel estimator based on the Kaplan-Meier estimator of the error distribution.
We will develop rigorous asymptotic theory for the proposed estimator, and
show via simulations and the analysis of real data how the estimator performs
in practice, also compared to the existing estimators mentioned above.

This paper is organized as follows. In the next section we formally define
the semiparametric logistic/AFT mixture cure model, and we introduce some
notations. In Section 3 we explain what are the existing estimation procedures
for this model, together with their pros and cons, we introduce our proposed
estimation method and state the theorems for the consistency and asymptotic
normality of the estimator. Section 4 is devoted to a finite sample study in
which the proposed estimator is compared to the existing competitors. We also
consider the drawbacks and benefits of each method. In Section 5 real data on
the time to distant metastasis for lymph-node-negative breast cancer patients
are analyzed. Finally, the Appendix contains the proofs of the asymptotic results
and the results of additional simulations.

2. The AFT/logistic mixture cure model

We suppose that the uncure probability p(z) follows a logistic model given by

p(z) = pγ(z) = exp(γtz)
1 + exp(γtz) , (2)

where the vector γ = (γ0, . . . , γk)t is associated with z and contains an intercept
i.e. the first element of the vector z is 1. Note that other parametric models for
p(z) are also possible, as long as the parameters in the model are uniquely
identified.

We can write T = T ∗B + ∞(1 − B), where T ∗ is the survival time of the
susceptible subjects. For the latency part, we consider a semi-parametric accel-
erated failure time (AFT) model of the following form:

log T ∗ = βtX + ε, (3)

where the error ε is independent of (X,Z) and its distribution is unspecified,
β = (β1, . . . , β�)t is a vector of parameters associated with X, and the intercept
is absorbed by the error term ε. Equivalently, we can define the AFT model by
specifying the survival function:

Su(t|x) = Su,β(t|x) = S0(t exp(−βtx)), (4)

where S0(t) = P (exp(ε) > t) is the error survival function corresponding to the
conditional survival function for X = 0.
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Throughout the paper, we consider the AFT/logistic mixture cure model
given by (1), (2) and (3). As is often the case with time-to-event data, the
survival time T is subject to random right censoring, i.e. instead of observing
T we observe the couple (Y,Δ), where Y = min(T,C) is the observed survival
time, Δ = I(T ≤ C) is the censoring indicator, and C is the censoring time.
We assume that T and C are independent given the covariates (X,Z). Let
(Yi,Δi, Xi, Zi), i = 1, . . . , n, be i.i.d. realizations of (Y,Δ, X, Z).

The identifiability of model (1)-(3) has been shown in [21]. They showed that
sufficient conditions for identifiability are

(A) (i) For all z, 0 < p(z) < 1.
(ii) The matrices Var (X) and Var (Z) are positive definite.
(iii) The variable exp(ε) has support [0, τ0] for some τ0 < ∞.
(iv) P (C > τ0 exp(βtX)|X,Z) > 0 for all (X,Z) ∈ S = SX × SZ ,

where SX and SZ are such that P (X ∈ SX , Z ∈ SZ) > 0,
Var (X|X ∈ SX) > 0 and Var (Z|Z ∈ SZ) > 0.

Note that assumption (A)(iv) shows that the model is identified even if the
follow-up period is insufficient for certain regions of the covariate space. This
makes the AFT mixture cure model an attractive model in practice. [21] showed
that this feature holds for the AFT but not for the Cox mixture cure model.

Under this data-generating process, the likelihood is given by

LO(θ, S0, f0) =
n∏

i=1

[
pγ(Zi)e−βtXif0(Yie

−βtXi)
]Δi

×
[
1 − pγ(Zi) + pγ(Zi)S0(Yie

−βtXi)
]1−Δi

, (5)

where θ = (γ, β)t and f0(t) = −(d/dt)S0(t). This likelihood is often called the
observed likelihood, since it is based on the contributions of the uncensored and
censored observations, which are observable. On the other hand, the complete
likelihood is based on the contributions of uncensored subjects, censored and un-
cured subjects, and censored and cured subjects. The latter likelihood depends
on the latent cure status B and is given by:

LC(θ, S0, f0) =
n∏

i=1

[
pγ(Zi)e−βtXif0(Yie

−βtXi)
]BiΔi

×
[
1 − pγ(Zi)

](1−Bi)(1−Δi)[
pγ(Zi)S0(Yie

−βtXi)
]Bi(1−Δi)

. (6)

3. The proposed estimator

3.1. Estimation procedure

We will now provide a semiparametric estimation method for the AFT/logistic
mixture cure model defined in (1), (2) and (3). The estimation of this model
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has been studied already in the past. The different estimation approaches differ
in the way in which they estimate S0 and f0, and in the likelihood they use (ob-
served or complete). Note that the incidence pγ(z) is parametric and hence it
is easy to estimate, whereas the latency S0(t exp(−βtx)) is semiparametric and
therefore more challenging. As far as we know only one approach is based on the
observed likelihood, which is given in [26]. The estimation of the functions S0
and f0 is done based on a so-called SNP (semi-nonparametric) approach with
exponential or normal basis functions. For selecting the number of basis func-
tions an AIC criterion is exploited. Their method works both for right censored
and interval censored data.

While the observed likelihood has the advantage of not depending on latent
variables, the complete likelihood is computationally more attractive, since it
can be decomposed in the product of two factors, one only depending on β, S0
and f0, and the other one only depending on γ. All existing approaches are
based on the EM algorithm due to the unobserved Bi’s. The first approach is
the one by [31], who proposed a rank estimator for β. Their method was later
included in the smcure R package (see [4]). Later, [17] used a kernel approach
to maximize the profile likelihood in the M-step. In the E-step, the conditional
expectation of the complete likelihood is computed given the observed data
and the current parameter estimates. The proposed kernel estimation method
is motivated by the work of [30], in which an efficient estimatior for the AFT
model without cure fraction is introduced. The paper by [17] is the only one
that developed asymptotic theory for the proposed estimators.

Our approach is based on the observed likelihood in (5) and on preliminary
nonparametric estimators of the functions f0 and S0. Let θ0 = (γ0, β0)t be
the true parameter vector. For fixed β, let εi:n (i = 1, . . . , n) be the i-th order
statistic of ε1, . . . , εn, where εi = log T ∗

i −βtXi, and let Δi:n be the corresponding
censoring indicator. Then, assuming that the error distribution is smooth, the
Kaplan-Meier estimator of S0,β(t) = P (T ∗ exp(−βtX) ≤ t) is given by

Ŝ0,β(t) = Ŝβ(t) − Ŝβ(exp(εn:n))
1 − Ŝβ(exp(εn:n))

, (7)

where

Ŝβ(t) =
∏

i:exp(εi:n)≤t

(
1 − 1

n− i + 1

)Δi:n

, (8)

in which the estimator depends on β via the error terms εi:n, i = 1, . . . , n. Note
that when β equals the true parameter vector β0, Ŝ0,β(t) estimates the true
error survival function S0(t). Standardization in (7) is necessary to make sure
that Ŝ0,β(t) is a proper survival function. For estimating the density of the error
term, a kernel density estimator of f0,β(t) = −(d/dt)S0,β(t) is used:

f̂0,β(t) = b−1
∫

K
( t− s

b

)
dF̂0,β(s), (9)

where F̂0,β = 1 − Ŝ0,β , b = bn is a bandwidth parameter tending to zero as n
tends to infinity, and K is a kernel function.
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Define the vector of nuisance functions h = (S0, f0, f
′
0), and let Mn(θ, h) be

the vector of partial derivatives of the log-likelihood with respect to θ, i.e.

Mn(θ, h) =
(

∂
∂γ logLO(θ, h)
∂
∂β logLO(θ, h)

)
=

n∑
i=1

m(Vi, θ, h) =
n∑

i=1

(
m1(Vi, θ, h)
m2(Vi, θ, h)

)
,

where Vi = (Yi,Δi, Xi, Zi), i = 1, . . . , n,

m1(V, θ, h) = ΔZ

1 + eγtZ
− (1 − Δ) Zeγ

tZ

1 + eγtZ

1 − S0(Y e−βtX)
1 + eγtZS0(Y e−βtX) ,

and

m2(V, θ, h) = −ΔX
(
1 + Y e−βtXf ′

0(Y e−βtX)
f0(Y e−βtX)

)

+ (1 − Δ)XY e−βtXeγ
tZf0(Y eβ

tX)
1 + eγtZS0(Y e−βtX) .

Moreover, let M(θ, h) = E[m(V, θ, h)] be the score vector. Then, the true vector
θ0 satisfies M(θ0, h0) = 0, where h0 is the true vector of nuisance functions, and
we define the estimator

θ̂ = (γ̂, β̂)t = arg min
γ∈Γ,β∈B

‖Mn(θ, ĥβ)‖, (10)

where the parameter space Θ = Γ × B is a compact subspace of Rk+�+1, ‖ · ‖
denotes the Euclidean norm, ĥβ = (Ŝ0,β , f̂0,β , f̂

′
0,β), and

f̂ ′
0,β(t) = b−2

∫
K ′

( t− s

b

)
dF̂0,β(s).

Note that since Mn(θ, ĥβ) is not smooth in θ (due to the non-smoothness of the
Kaplan-Meier estimator Ŝ0,β), we minimize the norm of Mn(θ, ĥβ) instead of
solving the equation Mn(θ, ĥβ) = 0.

3.2. Asymptotic properties

Our criterion function Mn(θ, h) is semiparametric and is non-smooth in θ. We
will therefore make use of the asymptotic theory for semiparametric Z-estimators
based on non-smooth criterion functions, given in [5]. The latter paper provides
high-level sufficient conditions under which consistency and asymptotic normal-
ity are guaranteed. We will check these high-level conditions for our estimation
procedure.

This will be possible under assumption (A), which assures that there is a finite
cure threshold τ0 < ∞, which is the upper bound of the support of f0(t). We
start with the consistency of θ̂. For arbitrary β ∈ B, note that T ∗ exp(−βtX) =
exp(ε) exp(−(β−β0)tX) and hence the support of f0,β(t) is [0, τ(β)] with τ(β) =
τ0 supx∈RX

exp(−(β − β0)tx), since ε and X are independent, where RX is the
compact support of X.
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Theorem 3.1. Assume (A) and (C1)–(C8). Then,

θ̂ − θ0
P→ 0.

The asymptotic normality of θ̂ can now be established.

Theorem 3.2. Assume (A) and (C1)–(C8). Then,

n1/2(θ̂ − θ0)
d→ N(0,Σ),

for some positive definite covariance matrix Σ.

As a by-product of our estimation procedure, we also obtain the following
result regarding the estimators Ŝ0,β , f̂0,β and f̂ ′

0,β . Note that these results are
well known in case β is fixed, so the challenge here is to show the stated rate of
convergence uniformly in β ∈ B.

Theorem 3.3. Assume (A) and (C1)–(C8). Then,

(i) supβ∈B sup0≤t<τ(β) |Ŝ0,β(t) − S0,β(t)| = OP (n−1/2)
(ii) supβ∈B sup0≤t<τ(β) |f̂0,β(t) − f0,β(t)| = OP ((nbn)−1/2(logn)1/2) + O(b4n)
(iii) supβ∈B sup0≤t<τ(β) |f̂ ′

0,β(t) − f ′
0,β(t)| = OP ((nb3n)−1/2(logn)1/2) + O(b4n).

The proofs of all theorems are provided in Appendix A.

4. Simulation study

In this section we will carry out an extensive simulation study, in which we
compare our proposed estimator with its competitors in the literature, namely
the estimators of [31] (given by the R package smcure, see [4]), [17] and [26]. For
our estimation procedure, we developed an R-package, called kmcure, which is
available from https://github.com/Motahareh-Parsa/kmcure.

We consider the following simulation setup. The covariate X is generated
under two scenarios: a Bernoulli distribution with success probability 0.5, or a
uniform distribution on [0, 1]. We will concentrate below on the case where X is
Bernoulli distributed. The uniform case is reported in Appendix B. Throughout
this study, we set Z = (1, X). The censoring time C is generated from a uniform
distribution on [0, τC ] and is independent of X and T , where τC equals either
20 or 100, corresponding to heavy or moderate right censoring.

The model for the latency is given by log T ∗ = β1X+ε, with β1 = 1, whereas
the model for the incidence is p(z) = exp(γtz)/(1+exp(γtz)) with γ0 equal to 0.5
or 1 and γ1 = −0.5, which means that the overall cure fraction is 0.44 or 0.32 re-
spectively. The error term ε is generated from either a standard logistic distribu-
tion, a standard normal distribution, or a mixture 0.6Weib(6, 1)+0.4Weib(2, 1)
of two Weibull distributions. To satisfy the constraint that the support of the
error distribution is bounded (see condition (A)(iii)), we truncate these error
distributions at their 90 % percentile. Table 1 provides the cure fraction and
right censoring rate which are produced by the different values of γ0 and τC .

https://github.com/Motahareh-Parsa/kmcure
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Table 1

Cure fraction (CF) and right censoring (RC) rate for each setting considered in the
simulation (expressed in %).

γ0 = 0.5 γ0 = 1
τC = 20 τC = 100 τC = 20 τC = 100

Error CF RC CF RC CF RC CF RC
Logistic 44 56 44 48 32 47 32 37
Normal 44 52 44 45 32 42 32 34
Mix-Weibull 44 57 44 46 32 48 32 36

We compare our method with the kernel based approach of Lu (2010) [17],
the rank-based method of Zhang and Peng (2007) [31], which was implemented
in the R package smcure by [4], and the SNP approach of Scolas et al (2016) [26],
based on two basis distributions (standard normal and standard exponential)
and polynomials of order 0, 1 or 2. The AIC criterion is used to select the
optimal choice of the error distribution.

In each scenario two sample sizes are considered, namely n = 200 and 400.
Our method and the method of [17] require the selection of a bandwidth pa-
rameter. We follow the procedure proposed by [17], and work with a Gaussian
kernel and with the bandwidth b = (8

√
2/3)1/5σ̂n−1/5, where σ̂ is the sample

standard deviation for the uncensored error terms, in which β is substituted by
the estimator derived by fitting the linear model to the uncensored data.

The simulation results are presented in Tables 2–4 and are based on 500
runs. Note that to calculate the bias, variance and MSE, we only use samples for
which the four estimators could all be computed without errors. Specifically, Lu’s
method often encounters errors in parameter estimation, and such problematic
samples are then excluded in the reported results. We will come back to these
numerical problems later in this section.

The tables show that most of the time our method behaves slightly better
than Lu’s method, and is comparable to Zhang and Peng’s method. This is true
for all model scenarios, for both the incidence and the latency parameters, and
for both the bias and variance.

To assess the normality of the estimated coefficients in our simulations, we
employ Q-Q plots, which serve as a robust method for assessing normality.
These plots provide a visual comparison between the observed quantiles of the
estimated coefficients in 500 simulations and the expected quantiles under a
normal distribution. The Q-Q plots are given in Figure 4 in the Appendix for
one setting, and show that the normality is approximately satisfied for all meth-
ods. Furthermore, we provide in Table 5 the Pearson correlations (denoted by
QQr) between the observed and expected quantiles as a metric for normality
assessment.

Also, in the simulations we used 100 bootstrap samples to estimate the pa-
rameters’ standard errors. Then, we used the asymptotic normality of the esti-
mators to construct 95% confidence intervals (CI). Their coverage probabilities
(CP), and the average length of these confidence intervals (CI L) are calculated
based on 500 samples, and are presented in Table 5. The results show that the
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Table 2. Bias, variance and mean squared error (MSE) of the model parameters when X follows a Bernoulli distribution and the error has a
truncated logistic distribution.

Ours Lu (2010) Zhang-Peng (2007) Scolas et al. (2016)
γ0 τC n Par. Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE
0.5 20 200 γ0 .011 .054 .054 .035 .055 .056 .004 .051 .051 −.021 .052 .052

γ1 −.104 .110 .121 .226 .210 .261 .050 .167 .170 −.027 .127 .128
β1 −.221 .105 .154 .311 .374 .471 .058 .213 .216 .014 .153 .153

400 γ0 .015 .029 .029 .046 .028 .030 .011 .027 .027 −.015 .026 .026
γ1 −.115 .060 .073 .197 .110 .149 .020 .074 .074 −.032 .063 .064
β1 −.231 .061 .114 .270 .188 .261 .023 .099 .100 .002 .075 .075

100 200 γ0 −.003 .043 .043 .002 .043 .043 −.003 .042 .042 −.004 .042 .042
γ1 −.009 .083 .083 .003 .085 .085 −.005 .084 .084 −.008 .083 .083
β1 −.057 .117 .120 .041 .121 .123 .018 .099 .099 −.002 .112 .112

400 γ0 .010 .024 .024 .012 .024 .024 .008 .024 .024 .008 .024 .024
γ1 −.010 .044 .044 −.001 .044 .044 −.007 .044 .044 −.011 .044 .044
β1 −.081 .065 .072 .014 .053 .053 .002 .046 .046 −.001 .095 .095

1 20 200 γ0 .024 .067 .068 .057 .068 .071 .016 .063 .063 −.017 .061 .061
γ1 −.093 .131 .140 .284 .275 .356 .092 .219 .227 .006 .172 .172
β1 −.216 .092 .139 .232 .246 .300 .038 .160 .161 .010 .125 .125

400 γ0 .015 .039 .039 .068 .035 .040 .023 .032 .033 −.007 .034 .034
γ1 −.142 .072 .092 .225 .129 .180 .017 .097 .097 −.040 .085 .087
β1 −.228 .049 .101 .243 .140 .199 .016 .081 .081 .001 .067 .067

100 200 γ0 .008 .049 .049 .013 .050 .050 .008 .049 .049 .008 .049 .049
γ1 .015 .092 .092 .031 .093 .094 .019 .091 .091 .015 .090 .090
β1 −.045 .109 .111 .024 .092 .093 .008 .080 .080 −.006 .109 .109

400 γ0 .018 .029 .029 .022 .028 .028 .017 .028 .028 .018 .028 .028
γ1 −.021 .049 .049 −.006 .049 .049 −.016 .048 .048 −.020 .047 .047
β1 −.055 .053 .056 .023 .043 .044 .003 .036 .036 .004 .090 .090
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Table 3. Bias, variance and mean squared error (MSE) of the model parameters when X follows a Bernoulli distribution and the error has a
truncated normal distribution.

Ours Lu (2010) Zhang-Peng (2007) Scolas et al. (2016)
γ0 τC n Par. Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE
.5 20 200 γ0 .001 .046 .046 .006 .046 .046 −.000 .046 .046 .023 .047 .048

γ1 −.029 .099 .100 .017 .104 .104 −.005 .102 .102 .024 .110 .111
β1 −.054 .052 .055 .028 .047 .048 −.000 .038 .038 .027 .043 .044

400 γ0 .009 .025 .025 .009 .024 .024 .003 .024 .024 .016 .025 .025
γ1 −.043 .047 .049 .024 .047 .048 .002 .046 .046 .030 .049 .050
β1 −.077 .026 .032 .030 .019 .020 −.001 .016 .016 .043 .018 .020

100 200 γ0 −.004 .042 .042 −.002 .041 .041 −.004 .041 .041 −.002 .043 .043
γ1 −.004 .082 .082 −.004 .081 .081 −.005 .082 .082 −.003 .084 .084
β1 −.120 .076 .090 −.001 .033 .033 −.001 .031 .031 .012 .034 .034

400 γ0 .003 .024 .024 .004 .023 .023 .002 .023 .023 .002 .023 .023
γ1 .005 .045 .045 .003 .043 .043 .002 .043 .043 .005 .045 .045
β1 −.102 .048 .058 .001 .014 .014 −.005 .013 .013 .027 .012 .013

1 20 200 γ0 .010 .051 .051 .016 .051 .051 .008 .050 .050 .039 .056 .058
γ1 −.016 .102 .102 .052 .110 .113 .025 .106 .107 .063 .123 .127
β1 −.053 .036 .039 .035 .034 .035 .004 .028 .028 .038 .032 .033

400 γ0 .016 .030 .030 .020 .028 .028 .012 .027 .027 .030 .029 .030
γ1 −.070 .060 .065 .018 .056 .056 −.006 .055 .055 .030 .059 .060
β1 −.063 .024 .028 .024 .016 .017 −.003 .014 .014 .044 .015 .017

100 200 γ0 .003 .045 .045 .004 .045 .045 .003 .045 .045 .004 .046 .046
γ1 .013 .084 .084 .017 .084 .084 .014 .084 .084 .018 .088 .088
β1 −.063 .047 .051 .005 .024 .024 .002 .022 .022 .023 .023 .024

400 γ0 .010 .026 .026 .012 .026 .026 .011 .027 .027 .014 .027 .027
γ1 −.004 .049 .049 −.004 .048 .048 −.007 .048 .048 −.006 .049 .049
β1 −.059 .030 .033 .001 .011 .011 −.002 .011 .011 .032 .010 .011
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Table 4. Bias, variance and mean squared error (MSE) of the model parameters when X follows a Bernoulli distribution and the error distribution
is a truncated mixture of Weibull distributions.

Ours Lu (2010) Zhang-Peng (2007) Scolas et al. (2016)
γ0 τC n Par. Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE
.5 20 200 γ0 −.003 .058 .058 −.009 .047 .047 −.007 .049 .049 .222 .066 .115

γ1 −.075 .147 .153 .008 .115 .115 .009 .122 .122 1.749 6.589 9.647
β1 .003 .013 .013 .005 .003 .003 .004 .003 .003 .377 .009 .151

400 γ0 −.002 .034 .034 .003 .024 .024 .003 .023 .023 .234 .030 .085
γ1 −.128 .088 .105 −.005 .052 .052 .001 .052 .052 1.255 1.035 2.610
β1 −.018 .010 .010 .006 .001 .001 −.000 .002 .002 .364 .006 .139

100 200 γ0 −.004 .043 .043 .001 .040 .040 −.004 .043 .043 .014 .045 .045
γ1 −.010 .086 .086 −.010 .087 .087 −.005 .089 .089 .043 .094 .096
β1 −.012 .008 .008 .001 .002 .002 .002 .002 .002 .176 .018 .049

400 γ0 .002 .021 .021 −.002 .020 .020 .001 .020 .020 .016 .021 .021
γ1 −.008 .041 .041 −.001 .039 .039 −.001 .041 .041 .049 .043 .046
β1 −.015 .005 .006 .000 .001 .001 .000 .001 .001 .204 .003 .045

1 20 200 γ0 .002 .068 .068 .017 .058 .058 .012 .059 .059 .330 .094 .203
γ1 −.114 .176 .189 −.002 .143 .143 .003 .134 .134 5.825 37.770 71.699
β1 −.003 .011 .011 .007 .003 .003 .003 .003 .003 .344 .006 .125

400 γ0 −.006 .046 .046 .008 .036 .036 .011 .031 .031 .326 .048 .154
γ1 −.153 .113 .136 .005 .079 .079 −.006 .071 .071 5.110 22.566 48.676
β1 −.017 .007 .007 .006 .001 .001 .001 .001 .001 .346 .004 .124

100 200 γ0 .007 .052 .052 .011 .051 .051 .009 .052 .052 .030 .056 .056
γ1 .004 .101 .101 .008 .103 .103 .009 .103 .103 .068 .109 .114
β1 −.007 .006 .006 .003 .002 .002 .004 .002 .002 .202 .012 .053

400 γ0 .008 .027 .027 .004 .026 .026 .008 .027 .027 .028 .028 .029
γ1 −.010 .052 .052 .006 .053 .053 −.003 .052 .052 .057 .057 .060
β1 −.012 .004 .004 .002 .001 .001 .001 .001 .001 .212 .003 .048
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Table 5. Coverage probabilities (CP) of 95% confidence intervals for the model parameters, the average length of these intervals (CI L), and the
Pearson correlation (QQr) when X follows a Bernoulli distribution. All intervals are based on bootstrap standard errors except the column indicated
as ‘Lu Method (2010)’, which is based on the method proposed in Lu (2010).

Ours Lu (2010) Lu Method (2010) Zhang-Peng (2007) Scolas et al. (2016)
γ0 τC n Par. CP CI L QQr CP CI L QQr CP CI L CP CI L QQr CP CI L QQr

Logistic error
.5 20 200 γ0 .960 .990 .999 .753 .772 .999 .958 1.288 .960 .964 .999 .964 .939 .999

γ1 .950 1.407 .999 .870 1.318 .997 .922 2.586 .982 1.902 .985 .970 1.833 .997
β1 .900 1.274 .998 .701 1.497 .999 .738 1.937 .950 1.804 .997 .970 1.655 .998

.5 100 200 γ0 .954 .842 .999 .917 .736 .999 .990 2.819 .954 .841 .999 .958 .843 .999
γ1 .966 1.187 .998 .944 1.147 .999 .984 3.274 .962 1.188 .999 .964 1.192 .999
β1 .942 1.314 .998 .929 1.328 .999 .882 1.363 .928 1.193 .998 .970 1.400 .998

Normal error
.5 20 200 γ0 .960 .880 .997 .880 .688 .998 .980 1.304 .960 .874 .998 .962 .891 .998

γ1 .962 1.266 .998 .877 1.159 .998 .960 1.720 .964 1.279 .998 .964 1.323 .998
β1 .928 .863 .998 .880 .797 .998 .866 .755 .954 .765 .998 .938 .778 .998

.5 100 200 γ0 .966 .843 .997 .942 .777 .997 .992 3.689 .968 .841 .997 .966 .846 .997
γ1 .968 1.178 .999 .958 1.159 .999 .996 4.177 .968 1.172 .999 .960 1.182 .999
β1 .860 .913 .987 .964 .746 .997 .970 .832 .944 .670 .997 .930 .686 .999
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coverage probabilities are close to their nominal value 0.95, although for Lu’s
method the bootstrap standard errors often lead to too low coverage. Lu (2010)
provides an alternative method, based on the inversion of the Fisher information
matrix, which yields better results, but the intervals are considerably wider in
that case than for the other methods.

The performance of the SNP method depends on the error distribution. For
the standard normal distribution the method outperforms the three other meth-
ods, which is not surprising since in that case the true distribution belongs to
the family of basis functions. For the other distributions the other methods have
lower bias and variance. This is especially the case for the mixture of Weibull
distributions, where the SNP approach has a very poor and sometimes even dra-
matic behavior, both in terms of bias and variance. This can be explained by the
fact that this distribution cannot be well approximated by the basis functions,
which are normal and exponential distributions enriched with polynomials.

While Tables 2–4 show that Lu’s method performs well in practice, there is
also a downside or weakness of this method. In the case of the mixture of two
Weibulls, the method often has convergence problems, leading to errors or warn-
ings when running the method in R. Table 6 shows the number of errors/warn-
ings under each scenario when ε follows the mixture of Weibull distributions.
Whenever an error in one of the estimation methods occurs (usually this hap-
pens with Lu’s method, but occasionally also with one of the other methods),
that sample is removed for all estimation methods and a new sample is taken
to reach the required number of 500 simulation runs. The table shows that Lu’s
method faces indeed a lot of convergence issues, especially for large sample sizes
and scenarios with heavy censoring. Note however that these convergence issues
are almost absent in the case of the logistic or normal error distribution, so the
results in the table cannot be generalized to other distributions.

Table 6

The frequency of errors that have occurred in the simulations (out of 500 samples), when
the error distribution is a mixture of Weibull distributions.

γ0 τC n Ours Lu Zhang-Peng Scolas et al
0.5 20 200 0 37 0 0

400 0 265 0 0
100 200 0 12 0 0

400 0 37 0 0
1 20 200 0 69 0 0

400 2 261 0 0
100 200 0 12 0 0

400 0 34 0 0

Since our method and the method of [17] depend on a bandwidth, it is im-
portant to investigate the effect of the bandwidth on the performance of these
two estimation methods. Table 7 shows the results when the error distribution
is the mixture of two Weibull distributions, for n = 200 and for three choices of
the bandwidth, namely b/2, b and 2b, where b is selected as before. The table
shows that both methods are robust to alterations of the bandwidth. However,
when τC = 20 (corresponding to the heavy censoring case), the results of our
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method are more stable than those of Lu’s method. Also, note that the results
for bandwidth b do not coincide with those in Table 4. This is because we replace
a sample by another sample as soon as there is a convergence issue for at least
one bandwidth or method (as for Table 6).

Table 7

Bias, variance and mean squared error (MSE) of the model parameters for n = 200 and for
three values of the bandwidth, when X follows a Bernoulli distribution and the error

distribution is a mixture of Weibull distributions.
b/2 b 2b

γ0 τC Method Par. Bias Var MSE Bias Var MSE Bias Var MSE
0.5 20 Ours γ0 .009 .051 .051 .009 .051 .051 .008 .051 .051

γ1 .000 .112 .112 .002 .113 .113 .007 .114 .114
β1 .000 .006 .006 .005 .004 .004 .010 .004 .004

Lu γ0 .007 .049 .049 .010 .049 .049 .026 .051 .052
γ1 .005 .115 .115 .018 .118 .118 .068 .127 .132
β1 .006 .006 .006 .011 .004 .004 .025 .004 .005

100 Ours γ0 −.002 .041 .041 −.002 .041 .041 −.003 .041 .041
γ1 .015 .075 .075 .015 .075 .075 .015 .075 .075
β1 .002 .005 .005 .001 .003 .003 .003 .003 .003

Lu γ0 −.001 .041 .041 −.001 .041 .041 .001 .041 .041
γ1 .016 .075 .075 .017 .075 .075 .021 .075 .075
β1 .001 .004 .004 .003 .003 .003 .006 .003 .003

1 20 Ours γ0 .023 .066 .067 .023 .066 .067 .022 .067 .067
γ1 .029 .143 .144 .029 .141 .142 .034 .141 .142
β1 .002 .004 .004 .006 .003 .003 .011 .003 .003

Lu γ0 .017 .064 .064 .023 .065 .066 .045 .067 .069
γ1 .026 .147 .148 .041 .149 .151 .116 .166 .179
β1 .005 .004 .004 .010 .003 .003 .023 .004 .005

100 Ours γ0 .006 .050 .050 .006 .050 .050 .006 .050 .050
γ1 .007 .088 .088 .007 .089 .089 .007 .088 .088
β1 .001 .003 .003 .000 .002 .002 .001 .002 .002

Lu γ0 .006 .050 .050 .006 .050 .050 .045 .067 .069
γ1 .009 .088 .088 .010 .089 .089 .002 .002 .002
β1 .009 .050 .050 .015 .089 .089 .004 .002 .002

The frequency of errors that occur also depends in a crucial way on the
bandwidth used for our and Lu’s method, as can be seen in Table 8. The table
shows the number of samples that needs to be generated under a given scenario
in order to obtain 500 samples for which no convergence problems exist. The
table shows that such problems occur more often when the bandwidth is small.

Table 8

Number of needed simulations to obtain 500 successful fits in all methods, where the error
distribution is a mixture of Weibull distributions and n = 200.

b/2 b 2b
γ0 τC Method Success Error Success Error Success Error
0.5 20 Ours 2285 4 2288 1 2289 0

Lu 500 1789 2006 283 2288 1
100 Ours 1054 1 1055 0 1055 0

Lu 500 555 1031 24 1055 0
1 20 Ours 2309 2 2311 0 2311 0

Lu 500 1811 2043 268 2310 1
100 Ours 950 0 950 0 950 0

Lu 500 450 930 20 950 0
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Finally, we study the computation time of the four studied methods. Table 9
shows the average computation time in seconds (over 100 samples) in the case
of the logistic error distribution with γ = 0.5. The table shows that the fastest
method is the SNP approach, whereas the three others have more comparable
computation times, with Lu’s method being however the slowest of all methods.

Table 9

Computation time in seconds for the logistic error distribution with γ0 = 0.5.
n τC Ours Lu Zhang-Peng Scolas et al

200 20 1.65 3.89 1.37 0.43
100 1.38 2.59 0.90 0.44

400 20 5.27 12.25 3.79 0.69
100 3.87 10.87 2.31 0.67

We end this section with plots of the estimated error densities f̂0,β̂ for 20
arbitrary samples of size n = 400 generated from a logistic, a normal and a
mixture of Weibull densities. They are given in Figure 1 for γ0 = 0.5, τC = 20
or 100 and for a uniform covariate X. The plots show that the estimated curves
are quite close to the true curves for all considered settings.

Fig 1. Plots of the estimated error densities f̂0,β̂ for 20 arbitrary samples of size n = 400
generated from a logistic density (first column), a normal density (second column), and a
mixture of Weibull densities (third column). The first row corresponds to τC = 100, the
second row to τC = 20. The covariate X follows a uniform distribution, and γ0 = 0.5.

To conclude, the simulations showed that the proposed method works well
in practice under various model settings. It has the advantage of working well
under all model settings (whereas the method of [26] does not work well for
certain error distributions), it does not have any convergence problems (contrary
to [17], which suffers sometimes from such problems), we developed rigorous
asymptotic theory for the proposed estimator (which is not the case for the
estimators of [26] and [31]), and it is the only method that has been used so
far for variable selection in the AFT mixture cure model. For this we refer to
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[20], who developed a penalized likelihood approach based on adaptive LASSO
penalties to do variable selection both for the incidence and the latency.

5. Real data application

As an application of our estimation method, we study breast cancer data of
286 patients who experienced lymph-node-negative breast cancer between 1980
and 1995 [29]. The event of interest is distant metastasis, and the associated
survival time is the time to distant metastasis (DM). Among the 286 patients,
107 experienced a distant recurrence from breast cancer. Figure 2 shows the
Kaplan-Meier estimator of the survival function, from which it is clear that
there is an overall cure fraction of about 60%. Moreover, the plateau is very
long and contains 88% of the censored observations, which indicates that the
follow-up period is sufficiently long [1].

The data set also contains four covariates: the age of the patient (ranging
from 26 to 83), the estrogen receptor (ER) status (where 0 signifies ER −,
defined as less than 10 fmol/mg protein, and 1 signifies ER +, defined as at
least 10 fmol/mg protein), the size of the tumor (ranging from 1 to 4), and the
menopausal status (where 0 means pre-menopausal defined as age ≤ 50, and 1
means post-menopausal meaning age > 50). We suppose that the AFT/logistic
mixture cure model is valid for these data, and we estimate the model using
the proposed approach, and also using the method of [31] (using the R package
smcure), the kernel approach of [17] and the SNP method of [26]. The bandwidth
is calculated in the same way as in the simulation study, and the initial values
are obtained using the survreg function in R for the AFT model, and using the
glm function for the logistic model.

Table 10 shows the estimated parameters, the estimated standard errors,
the Wald statistics and the corresponding P-values for the four available meth-
ods. For all methods except for Lu’s method, the standard errors are obtained
from 500 bootstrap samples drawn with replacement from the original sample,

Fig 2. Kaplan-Meier estimator of the survival function for the breast cancer data.
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whereas Lu’s method uses the inverse Fisher information matrix to estimate
the covariance matrix. The table shows that for all methods except the SNP
approach of [26], the signs of the estimated coefficients are in agreement and
the estimated parameters are close to each other. The coefficient of tumor size
in the AFT model is significant according to these three methods. Finally, the
SNP approach gives quite different results, both in terms of the significance of
the coefficients, their size, and their sign. This can be explained by the fact that
the estimated error density, given in Figure 3, is bimodal, and we know from the
simulation study in Section 4 that the SNP approach is not able to approximate
well bimodal densities.

Table 10

Estimated parameters, estimated standard errors (SE), Wald statistics and corresponding
P-values using the four available methods for the breast cancer data. P-values that are

significant at the 0.05 level are indicated by a ∗.
Method Model Variable Est.par. SE Wald P-value
Ours Incidence Intercept .131 .607 .216 .829

Age −.012 .010 −1.18 .239
ER .230 .358 .643 .520
Tumor size −.085 .190 −.445 .656
Menopausal −.068 .330 −.207 .836

Latency Age .002 .007 .265 .791
ER .309 .207 1.49 .136
Tumor size −.310 .158 −1.96 .050∗
Menopausal .292 .205 1.43 .154

Lu Incidence Intercept .231 .703 .328 .743
Age −.012 .039 −.310 .756
ER .237 .343 .689 .491
Tumor size −.133 .261 −.511 .610
Menopausal −.018 .594 −.030 .976

Latency Age .004 .007 .567 .570
ER .278 .239 1.16 .245
Tumor size −.335 .168 −2.00 .046∗
Menopausal .350 .140 2.50 .012∗

Zhang-Peng Incidence Intercept .157 .690 .228 .819
Age −.011 .011 −1.04 .299
ER .246 .363 .625 .532
Tumor size −.117 .221 −.528 .598
Menopausal −.044 .394 −.112 .911

Latency Age .006 .006 .993 .320
ER .302 .248 1.21 .225
Tumor size −.340 .150 −2.27 .023∗
Menopausal .364 .241 1.51 .131

Scolas et al Incidence Intercept −3.59 .857 −4.19 .000∗
Age .051 .015 3.44 .001∗
ER .654 .694 .942 .346
Tumor size .792 .381 2.08 .037∗
Menopausal −.047 .605 −.078 .937

Latency Age .095 .016 5.80 .000∗
ER .441 .517 .853 .394
Tumor size .653 .406 1.61 .108
Menopausal .771 .421 1.83 .067
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Fig 3. Estimated density of exp(ε) for the breast cancer data.

Appendix A: Proofs

A.1. Definitions and assumptions

Here, we provide some necessary definitions and the conditions under which our
asymptotic results are valid.

First of all, as explained already earlier, we will use the results in [5] to show
the consistency and asymptotic normality of our estimators. The latter paper
gives sufficient conditions under which Z-estimators in a semiparametric model
based on a non-smooth criterion function, are consistent and asymptotically
normal. We will suppose that the vector of nuisance functions h0 = (S0, f0, f

′
0)

belongs to the space H = H1 ×H2 ×H3, where

H1 =
{
g : [0, τmax] → [0, 1] : g is decreasing

}
H3 =

{
g : [0, τmax] → R : g is differentiable, sup

t≤τmax
|g(k)(t)| ≤ M,k = 0, 1

}
H2 =

{
g ∈ H3 : inf

t≤τmax
g(t) > ζ

}

for some M < ∞ and some ζ > 0, where τmax = maxβ∈B τ(β). For h ∈ H, define
‖h‖H = max(‖h1‖H, ‖h2‖H, ‖h3‖H), where ‖hj‖H = supβ∈B supt<τ(β) |hj(t, β)|,
h(t, β) = (h1(t, β), h2(t, β), h3(t, β)) and h0(t, β) = (S0,β(t), f0,β(t), f ′

0,β(t)). Fi-
nally, define G0,β(t) = P (C exp(−βtX) ≤ t) for any β ∈ B, and let S0,β({t}) =
S0,β(t−) − S0,β(t) be the point mass of S0,β at t.

We will make use of the following theorems, which are Theorems 1 and 2 in [5].
They give high-level conditions under which θ̂ is respectively weakly consistent
and asymptotically normal. In the next two subsections, we will check these
high-level conditions for our estimator.

Theorem A.1. Suppose that θ0 ∈ Θ satisfies M(θ0, h0) = 0, and that:

(1.1) ‖Mn(θ̂, ĥ)‖ ≤ infθ∈Θ ‖Mn(θ, ĥ)‖ + oP (1).
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(1.2) For all δ > 0, there exists ε(δ) > 0 such that inf‖θ−θ0‖>δ ‖M(θ, h0)‖ ≥
ε(δ) > 0.

(1.3) Uniformly for all θ ∈ Θ, M(θ, h) is continuous (w.r.t. ‖ · ‖H) in h at
h = h0.

(1.4) ‖ĥ− h0‖H = oP (1).
(1.5) For all sequences of positive numbers δn with δn = o(1),

sup
θ∈Θ,‖h−h0‖H≤δn

‖Mn(θ, h) −M(θ, h)‖ = oP (1),

Then, θ̂ − θ0 = oP (1).

For the next result, we define the matrix of partial derivatives Γ1(θ, h) =
(∂/∂θ)M(θ, h(·, β)), which satisfies

Γ1(θ, h)(θ̄ − θ) = lim
τ→0

1
τ

[
M

(
θ + τ(θ̄ − θ), h(·, β + τ(β̄ − β))

)
−M

(
θ, h(·, β)

)]
for θ̄ = (γ̄, β̄)t ∈ Θ, and we let Γ1 = Γ1(θ0, h0). For any θ ∈ Θ, we say that
M(θ, h) is pathwise differentiable at h ∈ H in the direction [h̄−h] if {h+τ(h̄−h) :
τ ∈ [0, 1]} ⊂ H and if

Γ2(θ, h)[h̄− h] = lim
τ→0

1
τ

[
M

(
θ, h(·, θ) + τ(h̄(·, θ) − h(·, θ))

)
−M

(
θ, h(·, θ)

)]
exists. Also, for any δ > 0, let Θδ = {θ ∈ Θ : ‖θ − θ0‖ ≤ δ} and Hδ = {h ∈ H :
‖h− h0‖H ≤ δ}.

Theorem A.2. Suppose that θ0 ∈ Θ satisfies M(θ0, h0) = 0, that θ̂ − θ0 =
oP (1), and that:

(2.1) ‖Mn(θ̂, ĥ)‖ = infθ∈Θ ‖Mn(θ, ĥ)‖ + oP (n−1/2).
(2.2) For θ ∈ Θ, the matrix Γ1(θ, h0) exists and is continuous at θ = θ0, and

Γ1 has full rank.
(2.3) For all θ ∈ Θ the functional derivative Γ2(θ, h0)[h−h0] exists in all direc-

tions [h−h0] ∈ H, and for all (θ, h) ∈ Θδn ×Hδn with a positive sequence
δn = o(1):
(i) ‖M(θ, h)−M(θ, h0)−Γ2(θ, h0)[h−h0]‖ ≤ c‖h−h0‖2

H for some c < ∞,
(ii) ‖Γ2(θ, h0)[h− h0] − Γ2(θ0, h0)[h− h0]‖ ≤ o(1)δn.

(2.4) P (ĥ ∈ H) → 1, and ‖ĥ− h0‖H = oP (n−1/4).
(2.5) For all sequences of positive numbers {δn} with δn = o(1),

sup
‖θ−θ0‖≤δn,‖h−h0‖H≤δn

‖Mn(θ, h) −M(θ, h) −Mn(θ0, h0)‖ = oP (n−1/2).

(2.6) For some finite matrix S, n1/2{Mn(θ0, h0)+Γ2(θ0, h0)[ĥ−h0]} d→ N(0, S).

Then, n1/2(θ̂ − θ0)
d→ N(0,Σ), where Σ = Γ−1

1 S Γ−1
1 .

To establish the asymptotic results regarding our estimator θ̂ we need to
impose the following assumptions:
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(C1) The covariate vectors X and Z have compact support, denoted by RX and
RZ . The true vector θ0 belongs to the interior of Θ, and Θ is compact.

(C2) The kernel K is symmetric of order larger than 3, K is twice continuously
differentiable with support [−1, 1], K(±1) = K ′(±1) = K ′′(±1) = 0.

(C3) The bandwidth bn satisfies nb6n(logn)−2 → ∞ and nb8n → 0.
(C4) For all β ∈ B, S0,β(t) is 6 times continuously differentiable in t for t ∈

[0, τ(β)), supβ∈B supt<τ(β) |f
(k)
0,β (t)| < ∞ for k = 0, 1, . . . , 5, and

infβ∈B S0,β({τ(β)}) > 0.
(C5) For all β ∈ B, G0,β(t) is continuous in t for t ∈ [0, τ(β)), and infβ∈B

(
1 −

G0,β(τ(β))
)
> 0.

(C6) supx,y fY |X(y|x) < ∞ and supx fX(x) < ∞.
(C7) For all δ > 0, there exists ε(δ) > 0 such that inf‖θ−θ0‖>δ ‖M(θ, h0)‖ ≥

ε(δ) > 0.
(C8) The matrix Γ1 has full rank.

In the following subsections, we provide the proofs of Theorems 3.1, 3.2
and 3.3 under assumptions (C1)-(C8).

A.2. Proof of Theorem 3.1

We will verify conditions (1.1)-(1.5) of Theorem A.1, from which the stated
result will follow. First, condition (1.1) holds true by definition of the estimator
θ̂, and condition (1.2) is given in assumption (C7). The continuity of M(θ, h) is
straightforward under the given assumptions, so (1.3) is also verified. Condition
(1.4) is verified thanks to Theorem 3.3. Finally, condition (1.5) is satisfied if the
class {v → m(v, θ, h) : θ ∈ Θ, h ∈ H} is Glivenko-Cantelli. We will show in the
proof of Theorem 3.2 below that this class is even Donsker, which implies that
it is Glivenko-Cantelli (see p. 80-81 in [28] for the definition of Glivenko-Cantelli
and Donsker classes). �

A.3. Proof of Theorem 3.2

We will now verify conditions (2.1)-(2.6) of Theorem A.2. First, condition (2.1)
holds true by definition of the estimator θ̂, whereas for condition (2.2) the matrix
Γ1(θ, h0) can be obtained using straightforward calculations. The continuity
of Γ1(θ, h0) follows from assumptions (C1) and (C4), whereas the full rank
condition is stated in assumption (C8).

For condition (2.3) tedious but straightforward calculations show that
Γ2(θ, h0)[h−h0] can be obtained by applying Taylor expansions of order one of
the function m with respect to the nuisance functions S0, f0 and f ′

0. This gives
the following formula for Γ2(θ, h0)[h− h0] = (Γ2,1(θ, h0)[h− h0],Γ2,2(θ, h0)[h−
h0])t, where Γ2,j(θ, h0)[h−h0] is the functional derivative of E[mj(θ, h0)] in the
direction [h− h0], j = 1, 2:

Γ2,1(θ, h0)[h− h0] = E
{ (1 − Δ)Zeγ

tZ(Sβ − S0,β)(Y e−βtX)
(1 + eγtZS0,β(Y e−βtX))2

}
(11)
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Γ2,2(θ, h0)[h− h0] = E
{
− ΔXY e−βtX

[ (f ′
β − f ′

0,β)(Y e−βtX)
f0,β(Y e−βtX) (12)

−
f ′
0,β(Y e−βtX)(fβ − f0,β)(Y e−βtX)

f2
0,β(Y e−βtX)

]}

+ E
{

(1 − Δ)XY e−βtXeγ
tZ
[ (fβ − f0,β)(Y e−βtX)
1 + eγtZS0,β(Y e−βtX)

− f0,β(Y e−βtX)(Sβ − S0,β)(Y e−βtX)
(1 + eγtZS0,β(Y e−βtX))2

]}
.

The verification of (2.3) (i) and (ii) requires lengthy calculations, based how-
ever on simple algebraic manipulations and Taylor expansions of the functions
Γ2,j(θ, h0)[h− h0] (j = 1, 2) given in (11) and (12).

The second part of condition (2.4) follows from Theorem 3.3 and assumption
(C3) on the bandwidth. Indeed, we need that O((nb3n)−1/2(logn)1/2)+O(b4n) =
o(n−1/4), which is satisfied if nb6n(logn)−2 → ∞ and nb16n → 0. For the first
part, we need to show that (Ŝ0,β , f̂0,β , f̂

′
0,β) ∈ H with probability tending to

one. For Ŝ0,β this is obvious. To show that f̂0,β ∈ H2 and f̂ ′
0,β ∈ H3, we need

to show that
sup
β∈B

sup
0≤t<τ(β)

|f̂ (k)
0,β (t)| ≤ M

with probability tending to one, for k = 0, 1, 2. For k = 0, 1 this follows from
Theorem 3.3. For k = 2 the proof is similar as for Theorem 3.3, and allows
to show that supβ∈B sup0≤t<τ(β) |f̂ ′′

0,β(t)− f ′′
0,β(t)| = OP ((nb5n)−1/2(logn)1/2) +

O(b4n) = oP (1).
For condition (2.5) we apply Theorem 3 in [5], which says that (2.5) is satisfied

if for each component m1,j (j = 1, . . . , k + 1) of m1 and each component m2,j
(j = 1, . . . , �) of m2, we have (with i = 1, 2)

|mi,j(v, θ, h) −mi,j(v, θ̃, h̃)| ≤ bi,j(v){‖θ − θ̃‖ + ‖h− h̃‖},

with E[b2i,j(V )] < ∞, and if
∫ ∞

0

√
logN(ε,Hj , ‖ · ‖H)dε < ∞, (13)

for j = 1, 2, 3, where N(ε,Hj , ‖ · ‖H) is the ε-covering number of the class
Hj with respect to the ‖ · ‖H-norm (see p. 83 in [28] for the definition of the
covering number). The first requirement is easily seen to be satisfied thanks to
the smoothness of the function m, whereas for the second one we apply Theorem
2.7.2 in [28] for H2 and H3, and Theorem 2.7.5 in [28] for H1, together with the
fact that the covering number is bounded by the bracketing number (see p. 84
in [28]). This shows that logN(ε,Hj , ‖ · ‖H) ≤ Kε−1, and hence the integral in
(13) is bounded by 2(K max{2M, 1})1/2, since for ε > max{2M, 1} one ε-ball
suffices to cover the space Hj .
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It remains to verify condition (2.6). First note that it follows from (11) and
(12) that Γ2(θ0, h0)[ĥ−h0] can be written as E[G1(V ){Ŝ0−S0}(eε)+G2(V ){f̂0−
f0}(eε) + G3(V ){f̂ ′

0 − f ′
0}(eε)] for certain vectors of functions G1, G2 and G3.

We know from [13] and [18] that

Ŝ0(t) − S0(t) = n−1
n∑

i=1
ξ(Yie

−βt
0Xi ,Δi, t) + OP (n−1 logn)

uniformly in 0 ≤ t < τ0, where

ξ(e, δ, t) = S0(t)
{I(e ≤ t, δ = 1)

1 −H0(e)
−

∫ min(e,t)

0

dH1
0 (s)

(1 −H0(s))2
}
,

H0(t) = P (Y e−βtX ≤ t) and H1
0 (t) = P (Y e−βtX ≤ t,Δ = 1). Using this i.i.d.

representation, we can also decompose f̂0(t) − f0(t) in a sum of independent
terms and a remainder term of smaller order:

f̂0(t) − f0(t) = b−1
∫

K
( t− s

b

)
d(F̂0(s) − F0(s)) + O(b4n)

= −b−1
∫

K(u)d(F̂0(t− ub) − F0(t− ub)) + O(b4n)

= b−1
∫

(F̂0(t− ub) − F0(t− ub))K ′(u)du + O(b4n)

= −(nb)−1
n∑

i=1

∫
ξ(Yie

−βt
0Xi ,Δi, t− ub)K ′(u)du

+ OP ((nbn)−1 logn) + O(b4n)

= −(nb)−1
n∑

i=1

∫
ξ(Yie

−βt
0Xi ,Δi, t− ub)K ′(u)du + oP (n−1/2),

since nb8n → 0 and nb2n(logn)−2 → ∞. Note that the order O(b4n) of the bias
term follows from the fact that the order of the kernel K is larger than 3 (see
the proof of Theorem 3.3 (ii) for more details). Similarly we can show that

f̂ ′
0(t) − f ′

0(t) = −(nb2)−1
n∑

i=1

∫
ξ(Yie

−βt
0Xi ,Δi, t− ub)K ′′(u)du + oP (n−1/2),

since nb4n(logn)−2 → ∞. We can now write

Mn(θ0, h0) + Γ2(θ0, h0)[ĥ− h0]

= n−1
n∑

i=1
m(Vi, θ0, h0)

+ E
[
G1(V ){Ŝ0 − S0}(eε) + G2(V ){f̂0 − f0}(eε) + G3(V ){f̂ ′

0 − f ′
0}(eε)

]
= n−1

n∑
i=1

m(Vi, θ0, h0) + n−1
n∑

i=1
E
[
G1(V )ξ(Yie

−βt
0Xi ,Δi, e

ε)
]
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− (nb)−1
n∑

i=1
E
[
G2(V )

∫
ξ(Yie

−βt
0Xi ,Δi, e

ε − ub)K ′(u)du
]

− (nb2)−1
n∑

i=1
E
[
G3(V )

∫
ξ(Yie

−βt
0Xi ,Δi, e

ε − ub)K ′′(u)du
]

+ oP (n−1/2).

Let Lj(Vi, w) = E
[
Gj(V )ξ(Yie

−βt
0Xi ,Δi, e

ε−w)
]
, j = 1, 2, 3, where the expected

value is taken with respect to V , conditional on the i-th data point Vi. Then,
with L

(k)
j (V,w) = (∂k/∂wk)Lj(V,w),

Mn(θ0, h0) + Γ2(θ0, h0)[ĥ− h0]

= n−1
n∑

i=1

{
m(Vi, θ0, h0) + L1(Vi, 0) − b−1

∫
L2(Vi, ub)K ′(u)du

− b−2
∫

L3(Vi, ub)K ′′(u)du
}

+ oP (n−1/2)

= n−1
n∑

i=1

{
m(Vi, θ0, h0) + L1(Vi, 0)

}

− (nb)−1
n∑

i=1

∫ [ 4∑
k=0

1
k!L

(k)
2 (Vi, 0)(ub)k + 1

5!L
(5)
2 (Vi, η2)(ub)5

]
K ′(u)du

}

− (nb2)−1
n∑

i=1

∫ [ 5∑
k=0

1
k!L

(k)
3 (Vi, 0)(ub)k + 1

6!L
(6)
3 (Vi, η3)(ub)6

]
K ′′(u)du

}

+ oP (n−1/2),

for some values η2 and η3 between 0 and ub. We have that
∫
ukK ′(u)du = 0

for k = 0, 2, 3, 4,
∫
uK ′(u)du = −1,

∫
ukK ′′(u)du = 0 for k = 0, 1, 3, 4, 5,∫

u2K ′′(u)du = 2. It follows that

Mn(θ0, h0) + Γ2(θ0, h0)[ĥ− h0]

= n−1
n∑

i=1

{
m(Vi, θ0, h0) + L1(Vi, 0) + L′

2(Vi, 0) + L′′
3(Vi, 0)

}
+ oP (n−1/2),

since nb8 → 0. Hence, n1/2(Mn(θ0, h0) + Γ2(θ0, h0)[ĥ− h0]) converges to a zero
mean normal vector with covariance matrix S = E[s(V )s(V )t], where s(V ) =
m(V, θ0, h0) + L1(V, 0) + L′

2(V, 0) + L′′
3(V, 0). It now follows from Theorem A.2

that n1/2(θ̂−θ0) converges to a zero mean normal vector with covariance matrix
Γ−1

1 S Γ−1
1 . �

A.4. Proof of Theorem 3.3

In the proof we will show that the stated results are valid if certain results hold
for the estimators
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Ĥ0,β(t) = n−1
n∑

i=1
I(Yie

−βtXi ≤ t)

Ĥ1
0,β(t) = n−1

n∑
i=1

I(Yie
−βtXi ≤ t,Δi = 1).

These are estimators of the distribution H0,β(t) = P (Y e−βtX ≤ t) of the ob-
served survival times, and the subdistribution H1

0,β(t) = P (Y e−βtX ≤ t,Δ = 1)
of the uncensored survival times. Since these estimators are sums of i.i.d. terms,
they are easier to handle than the estimators F̂0,β(t), f̂0,β(t) and f̂ ′

0,β(t).

A.4.1. Proof of Theorem 3.3 (i)

First, note that by Duhamel’s identity (see [9]),

Ŝ0,β(t) − S0,β(t) = −S0,β(t)
∫ t

0

Ŝ0,β(t−)
S0,β(t)

(
Λ̂0,β(ds) − Λ0,β(ds)

)
, (14)

where

Λ̂0,β(t) =
∫ t

0

Ĥ1
0,β(ds)

1 − Ĥ0,β(s−)
estimates the cumulative hazard given by

Λ0,β(t) = exp(−S0,β(t)) =
∫ t

0

H1
0,β(ds)

1 −H0,β(s) .

It can be easily seen that

Λ̂0,β(t) − Λ0,β(t) (15)

=
∫ t

0

[ 1
1 − Ĥ0,β(s−)

− 1
1 −H0,β(s)

]
dĤ1

0,β(s) +
∫ t

0

d(Ĥ1
0,β(s) −H1

0,β(s))
1 −H0,β(s) .

Hence, it follows from assumptions (C4)-(C5) that the stated result follows if we
can show that supβ∈B sup0≤t<τ(β) |Ĥ0,β(t)−H0,β(t)| = OP (n−1/2), and similarly
with H0,β(t) replaced by H1

0,β(t).
Next, consider the class

F =
{

(x, y) → I(ye−βtx ≤ t) : β ∈ B, 0 ≤ t ≤ τmax

}
.

We suppose for notational simplicity that X is one-dimensional (� = 1). Divide
B into small intervals [bj−1, bj ], j = 1, . . . ,M , with M = O(ε−2) and bj =
bj−1 + ε2, and similarly divide [0, τmax] into intervals [tk−1, tk], k = 1, . . . , L,
with L = O(ε−2) and tk = tk−1 +ε2. Then, for any β ∈ B and t ∈ [0, τmax] there
exist a j and k such that tk−1 < t ≤ tk and bj−1 < β ≤ bj . Hence,

I(ye−btj−1x ≤ tk−1) < I(ye−βtx ≤ t) ≤ I(ye−btjx ≤ tk)
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(we suppose for simplicity that x is positive). Moreover,

E
[
I(Y e−btjX ≤ tk) − I(Y e−btj−1X ≤ tk−1)

]2

= P
(
Y e−btjX ≤ tk

)
− P

(
Y e−btj−1X ≤ tk−1

)
=

∫ [
FY |X(tkeb

t
jx|x) − FY |X(tk−1e

btj−1x|x)
]
fX(x) dx

≤ sup
x,y

fY |X(y|x)
∫ [

tke
btjx − tk−1e

btj−1x
]
fX(x) dx ≤ Kε2,

where the last inequality follows from assumption (C6). Hence, N[ ](ε,F , L2(P ))
= O(ε−4), and ∫ 1

0

√
logN[ ](ε,F , L2(P ))dε < ∞,

where N[ ](ε,F , L2(P )) is the ε-bracketing number of the class F with respect to
the L2-distance. This shows that the class F is Donsker (see p. 80-83 in [28] for
the definition of a Donsker class and the bracketing number). It now follows from
Theorem 2.5.6 in [28] that supβ∈B sup0≤t<τ(β) |Ĥ0,β(t)−H0,β(t)| = OP (n−1/2),
which shows the result. �

A.4.2. Proof of Theorem 3.3 (ii)

Write

f̂0,β(t) − f0,β(t)

= b−1
∫

K
( t− s

b

)
d(F̂0,β(s) − F0,β(s)) + b−1

∫
K
( t− s

b

)
dF0,β(s) − f0,β(t)

= T1(t, β) + T2(t, β).

We start with the bias term T2(t, β):

T2(t, β)

= b−1
∫

K
( t− s

b

)[
f0,β(s) − f0,β(t)

]
ds

=
∫

K(u)
[
f0,β(t− ub) − f0,β(t)

]
du

=
∫

K(u)
[
− f ′

0,β(t)ub + 1
2f

′′
0,β(t)u2b2 − 1

6f
(3)
0,β(t)u3b3 + 1

24f
(4)
0,β(ξ)u4b4

]
du

= O(b4n),

uniformly in t and β, for some ξ between t and t − ub, since the order of K is
larger than 3 (see assumption (C2)). Next, for the term T1(t, β), note that using
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(14) and (15) we can decompose T1(t, β) into two terms. We will concentrate
on the second one, since the first one is easier to handle:

b−1
∫

K
( t− s

b

)1 − F̂0,β(s−)
1 − F0,β(s)

f0,β(s)
1 −H0,β(s)d(Ĥ0,β(s) −H0,β(s))

= b−1
∫

K(v)1 − F̂0,β((t− vb)−)
1 − F0,β(t− vb)

f0,β(t− vb)
1 −H0,β(t− vb)d

[
(Ĥ0,β −H0,β)(t− vb)

]
= b−1

∫ [
(Ĥ0,β −H0,β)(t− vb) − (Ĥ0,β −H0,β)(t)

]
d
[
K(v)1 − F̂0,β((t− vb)−)

1 − F0,β(t− vb)
f0,β(t− vb)

1 −H0,β(t− vb)

]
,

where the last equality holds since K(±1) = 0. It follows that

sup
t,β

|T1(t, β)| ≤ Kb−1 sup
t,β,v

∣∣(Ĥ0,β −H0,β)(t− vb) − (Ĥ0,β −H0,β)(t)
∣∣.

Let

F =
{

(x, y) → I(ye−βtx ≤ t− vb) − I(ye−βtx ≤ t) : β ∈ B, 0 ≤ t ≤ τmax,

− 1 ≤ v ≤ 1, 0 ≤ b ≤ 1
}
.

For any f ∈ F , let Gn(f) = n−1/2 ∑n
i=1(f(Xi, Yi)−Ef(X,Y )) = n1/2[(Ĥ0,β −

H0,β)(t− vb) − (Ĥ0,β −H0,β)(t)
]
. It follows from Theorem 2.14.2 in [28] that

E
(

sup
f∈F

|Gn(f)|
)

= n1/2E
(

sup
t,β,v,b

∣∣(Ĥ0,β −H0,β)(t− vb) − (Ĥ0,β −H0,β)(t)
∣∣)

≤ J[ ](δ,F , L2(P ))‖F‖P,2 + n1/2E
[
F (X,Y )I

(
F (X,Y ) > n1/2a(δ)

)]
,

provided ‖f‖P,2 ≤ δ‖F‖P,2, where

J[ ](δ,F , L2(P )) =
∫ δ

0

√
1 + logN[ ](ε‖F‖P,2,F , L2(P ))dε,

F is an envelope for the class F , ‖F‖2
P,2 = E[F 2(X,Y )], and

a(δ) = δ‖F‖P,2√
1 + logN[ ](δ‖F‖P,2,F , L2(P ))

.

Note that F ≡ 1 and hence ‖F‖P,2 = 1. It follows from the proof of part (i)
that N[ ](ε,F , L2(P )) ≤ Kε−2(�+1), where � is the dimension of X. Moreover,
for any f ∈ F ,

‖f‖2
P,2

=
∫

f2(X,Y )dP
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= E
[{

I(Y e−βtX ≤ t− vb) − I(Y e−βtX ≤ t)
}2]

= P (Y e−βtX ≤ t− vb) + P (Y e−βtX ≤ t) − 2P (Y e−βtX ≤ t + min(−vb, 0))

=
∣∣P (Y e−βtX ≤ t− vb) − P (Y e−βtX ≤ t)

∣∣ ≤ Kb,

since supt,β fY e−βtX (t) < ∞. Hence, δ ∝ b1/2, and for small δ,

a(δ) ≥ δ√
1 + log(Kδ−2(m+1))

≥ δ√
1 + δ−2

= δ√
2δ−2

= δ2
√

2
∝ b.

It follows that I(F (X,Y ) > n1/2a(δ)) ≤ I(1 > (nb2)1/2) = 0 for n large,
since nb2n → ∞. Next, J[ ](δ,F , L2(P )) ≤ K

∫ δ

0

√
log(ε−1)dε and this is eas-

ily seen to be bounded by K ′δ
√

log(δ−1) for some K,K ′ < ∞. It now fol-
lows that E

(
supf∈F |Gn(f)|

)
= O(b1/2n (logn)1/2), and hence supt,β |T1(t, β)| =

OP ((nbn)−1/2(logn)1/2) thanks to Markov’s inequality. �

A.4.3. Proof of Theorem 3.3 (iii)

Write

f̂ ′
0,β(t) − f ′

0,β(t)

= b−2
∫

K ′
( t− s

b

)
d(F̂0,β(s) − F0,β(s)) + b−2

∫
K ′

( t− s

b

)
dF0,β(s) − f ′

0,β(t)

= T1(t, β) + T2(t, β).

We start again with the bias term T2(t, β):

T2(t, β)

= b−1
∫

K ′(u)f0,β(t− ub)du− f ′
0,β(t)

=
∫

K(u)
[
f ′
0,β(t− ub) − f ′

0,β(t)
]
du

=
∫

K(u)
[
− f ′′

0,β(t)ub + 1
2f

(3)
0,β(t)u2b2 − 1

6f
(4)
0,β(t)u3b3 + 1

24f
(5)
0,β(ξ)u4b4

]
du

= O(b4n),

uniformly in t and β, for some ξ between t and t − ub. For the term T1(t, β)
we can follow a very similar development as in the proof of part (ii), provided
K ′(±1) = 0. �

Appendix B: Further simulation results

Tables 11–13 show the simulations results when the covariate X follows a uni-
form distribution on [0, 1].
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Table 11. Bias, variance and mean squared error (MSE) of the model parameters when X follows a uniform distribution and the error has a logistic
distribution.

Ours Lu (2010) Zhang-Peng (2007) Scolas et al. (2016)
γ0 τC n Par. Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE
0.5 20 200 γ0 −.095 .126 .135 −.093 .131 .140 −.118 .120 .134 −.204 .095 .137

γ1 −.220 .358 .358 .199 .526 .566 .081 .460 .467 .046 .330 .332
β1 −.153 .518 .541 .200 .766 .806 .045 .506 .508 .159 .409 .434

400 γ0 −.091 .074 .082 −.059 .075 .078 −.109 .063 .075 −.213 .051 .096
γ1 .003 .209 .209 .202 .303 .344 .052 .216 .219 .048 .176 .178
β1 −.094 .433 .442 .199 .524 .564 −.004 .326 .326 .184 .278 .312

100 200 γ0 −.014 .093 .093 −.008 .093 .093 −.015 .091 .091 −.056 .077 .080
γ1 −.005 .265 .265 .040 .285 .287 .010 .269 .269 −.035 .241 .242
β1 −.028 .343 .344 .069 .397 .402 .025 .336 .337 −.136 .530 .548

400 γ0 −.016 .046 .046 .006 .050 .050 −.014 .045 .045 −.053 .040 .043
γ1 −.010 .119 .119 .032 .132 .133 −.003 .120 .120 −.057 .113 .116
β1 −.045 .223 .225 .031 .257 .258 −.016 .200 .200 −.267 .302 .373

1 20 200 γ0 −.131 .154 .171 −.140 .149 .169 −.178 .133 .165 −.286 .096 .178
γ1 −.014 .398 .398 .296 .594 .682 .152 .514 .537 .098 .340 .350
β1 −.184 .398 .432 .194 .556 .594 .052 .404 .407 .149 .380 .402

400 γ0 −.112 .100 .113 −.082 .094 .101 −.146 .075 .096 −.284 .059 .140
γ1 −.009 .247 .247 .238 .366 .423 .072 .277 .282 .067 .206 .210
β1 −.138 .333 .352 .165 .360 .387 .013 .259 .259 .178 .215 .247

100 200 γ0 −.023 .098 .099 −.012 .096 .096 −.023 .097 .098 −.080 .078 .084
γ1 .022 .267 .267 .082 .287 .294 .040 .272 .274 −.019 .246 .246
β1 −.020 .288 .288 .069 .319 .324 .032 .271 .272 −.189 .470 .506

400 γ0 −.016 .058 .058 .008 .063 .063 −.017 .057 .057 −.074 .049 .054
γ1 −.013 .155 .155 .045 .172 .174 .000 .157 .157 −.061 .143 .147
β1 −.058 .178 .181 .018 .192 .192 −.025 .157 .158 −.303 .266 .358
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Table 12. Bias, variance and mean squared error (MSE) of the model parameters when X follows a uniform distribution and the error has a normal
distribution.

Ours Lu (2010) Zhang-Peng (2007) Scolas et al. (2016)
γ0 τC n Par. Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE
0.5 20 200 γ0 −.006 .110 .110 −.006 .113 .113 −.010 .110 .110 −.009 .105 .105

γ1 .021 .332 .332 .112 .378 .391 .051 .355 .358 .024 .331 .332
β1 −.015 .182 .182 .080 .197 .203 .021 .148 .148 .007 .083 .083

400 γ0 .023 .048 .049 .034 .051 .052 .021 .048 .048 .024 .045 .046
γ1 −.040 .138 .140 .040 .153 .155 −.024 .141 .142 −.038 .138 .139
β1 −.019 .083 .083 .062 .088 .092 −.001 .069 .069 −.014 .037 .037

100 200 γ0 −.017 .084 .084 −.014 .085 .085 −.016 .084 .084 −.018 .084 .084
γ1 .034 .244 .245 .038 .246 .247 .036 .244 .245 .034 .243 .244
β1 .008 .114 .114 .021 .120 .120 .009 .107 .107 .017 .061 .061

400 γ0 .026 .036 .037 .030 .037 .038 .026 .036 .037 .026 .036 .037
γ1 −.043 .114 .116 −.039 .115 .117 −.041 .114 .116 −.042 .115 .117
β1 −.016 .053 .053 −.003 .054 .054 −.007 .051 .051 −.013 .030 .030

1 20 200 γ0 .021 .140 .140 .019 .143 .143 .013 .137 .137 .014 .130 .130
γ1 −.005 .406 .406 .109 .461 .473 .029 .422 .423 −.002 .385 .385
β1 −.001 .151 .151 .093 .148 .157 .030 .117 .118 .015 .061 .061

400 γ0 .023 .065 .066 .037 .068 .069 .019 .063 .063 .022 .059 .059
γ1 −.031 .188 .189 .072 .215 .220 −.010 .193 .193 −.022 .187 .187
β1 −.012 .064 .064 .058 .069 .072 .002 .057 .057 −.003 .034 .034

100 200 γ0 .006 .104 .104 .010 .104 .104 .007 .104 .104 .006 .104 .104
γ1 .004 .294 .294 .012 .297 .297 .007 .296 .296 .003 .295 .295
β1 .017 .091 .091 .032 .095 .096 .019 .086 .086 .016 .054 .054

400 γ0 .026 .046 .047 .029 .046 .047 .026 .046 .047 .024 .046 .047
γ1 −.034 .145 .146 −.026 .146 .147 −.031 .146 .147 −.032 .145 .146
β1 −.013 .043 .043 −.001 .044 .044 −.001 .042 .042 .001 .027 .027
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Table 13. Bias, variance and mean squared error (MSE) of the model parameters when X follows a uniform distribution and the error distribution
is a mixture of Weibull distributions.

Ours Lu (2010) Zhang-Peng (2007) Scolas et al. (2016)
γ0 τC n Par. Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE
0.5 20 200 γ0 .001 .106 .106 .002 .107 .107 .001 .107 .107 .231 .209 .262

γ1 −.007 .341 .341 .013 .351 .351 .006 .350 .350 .720 .978 1.50
β1 −.003 .011 .011 .007 .011 .011 −.001 .010 .010 .145 .159 .180

400 γ0 .016 .045 .045 .017 .046 .046 .015 .045 .045 .323 .106 .210
γ1 −.019 .144 .144 .005 .148 .148 −.007 .148 .148 .540 .428 .720
β1 .002 .004 .004 .007 .005 .005 .003 .005 .005 .038 .109 .110

100 200 γ0 −.021 .083 .083 −.020 .083 .083 −.021 .083 .083 −.016 .085 .085
γ1 .039 .246 .248 .040 .246 .248 .041 .247 .249 .097 .259 .268
β1 −.006 .009 .009 −.003 .009 .009 −.002 .009 .009 .418 .216 .391

400 γ0 .023 .036 .037 .025 .036 .037 .023 .036 .037 .017 .039 .039
γ1 −.036 .117 .118 −.036 .117 .118 −.035 .117 .118 .037 .125 .126
β1 .001 .004 .004 .002 .004 .004 .002 .004 .004 .561 .118 .433

1 20 200 γ0 .032 .138 .139 .033 .139 .140 .032 .140 .141 .358 .440 .568
γ1 −.029 .409 .410 −.010 .428 .428 −.016 .429 .429 1.15 2.58 3.90
β1 .003 .008 .008 .008 .008 .008 −.001 .008 .008 .116 .140 .153

400 γ0 .012 .054 .054 .016 .054 .054 .012 .055 .055 .418 .197 .372
γ1 .006 .167 .167 .028 .174 .175 .018 .175 .175 .944 1.02 1.91
β1 .004 .004 .004 .008 .004 .004 .004 .004 .004 .022 .098 .098

100 200 γ0 .000 .102 .102 .001 .101 .101 .000 .102 .102 .005 .109 .109
γ1 .013 .292 .292 .015 .291 .291 .015 .293 .293 .090 .322 .330
β1 −.005 .007 .007 −.003 .007 .007 −.002 .007 .007 .464 .191 .406

400 γ0 .024 .045 .046 .025 .045 .046 .024 .045 .046 .019 .048 .048
γ1 −.029 .143 .144 −.026 .143 .144 −.027 .144 .145 .057 .155 .158
β1 .002 .003 .003 .003 .003 .003 .003 .004 .004 .585 .092 .434
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We end this Appendix with Q-Q plots for the estimated parameters β̂1, γ̂0 and
γ̂1 for the four methods, and for one setting, namely when n = 400, τC = 20,
γ0 = 0.5, X follows a binomial distribution, and the error distribution is a
mixture of two Weibull distributions.

Fig 4. Q-Q plots for the estimated parameters β̂1 (first column), γ̂0 (second column) and
γ̂1 (third column) for the four methods: Our method (first row), Lu (2010)’s method (second
row), Zhang-Peng (2007)’s method (third row), and Scolas et al (2016)’s method (fourth row).
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