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Abstract: When studying survival data in the presence of right censoring,
it often happens that a certain proportion of the individuals under study
do not experience the event of interest and are considered as cured. It is
then common to model the data via a mixture cure model. It depends on a
model for the conditional probability of being cured (called the incidence)
and a model for the conditional survival function of the uncured individuals
(called the latency). This work considers a logistic model for the incidence
and a semiparametric accelerated failure time model for the latency part.
The estimation of this model is obtained via the maximization of the semi-
parametric likelihood, in which the unknown error density is replaced by
a kernel estimator based on the Kaplan-Meier estimator of the error dis-
tribution. Asymptotic theory for consistency and asymptotic normality of
the parameter estimators is provided. Moreover, the proposed estimation
method is compared with several competitors. Finally, the new method is
applied to data coming from a cancer clinical trial. An R package, called
kmcure, is developed to facilitate the use of the proposed methodology in
practice.
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1. Introduction

Cure models in survival analysis are nowadays standard in the modeling toolbox
for situations in which a certain proportion of the subjects under study never
experience the event of interest, i.e. their survival time will be equal to infinity.
This kind of phenomenon often occurs in practice, when studying e.g. the time
until death or recurrence of a certain disease, the time until an unemployed
person finds a new job, the time until a bank goes bankrupt, or the time until
a released prisoner is re-arrested. Basically, the population is then composed
of two groups of subjects, the susceptible (or uncured) subjects and the non-
susceptible (or cured) ones [8]. For book-long introductions to cure models we
refer to [19] and the recent book by [25], while recent review papers on cure
models are [24, 1, 12]. They all provide a comprehensive introduction to cure
models in terms of modeling, estimation, inference, and software.
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In the common case where the survival time is subject to right censoring
and the censoring variable does not have a mass at infinity, all cured subjects
will be censored, which makes the identifiability and estimation of this type of
model challenging. It is clear that some assumptions will be needed to identify
the cure fraction. A common assumption is on the duration of the experiment,
which should be sufficiently long to distinguish cured from uncured subjects.

When covariates are present, a common class of cure regression models is the
class of mixture cure models, which considers the population as a mixture of the
susceptible and cured subpopulations, and which is determined by a model for
the subpopulation of susceptible subjects (called the latency) and a model for
the probability of being cured (called the cure fraction or the incidence), each
time conditional on the covariates. Formally speaking, the survival function
S(tlz,z) = P(T >t | X = x,Z = z) of the survival time T given a set of
real-valued covariates (X, Z) = («, z) is given by

S(tle, z) =1 = p(2) + p(2)Su(t]2), 1)

where p(z) = P(B =1 | Z = z) is the conditional probability of being uncured
(called the incidence), B = I(T < oo) denotes the uncure status, and S, (t|z) =
P(T >t | B=1,X = z) is the conditional survival function for the uncured
subjects (called the latency). The vectors of covariates X and Z are of dimension
£ and k + 1 respectively, and can contain the same covariates, but they can also
be partially or completely different. The models for p(z) and S, (t|x) can be
parametric, semiparametric, or nonparametric in nature. We refer to [3, 2, 8]
for fully parametric approaches, and [15, 14] for fully nonparametric approaches.
For the middle category of semiparametric models, we like to mention [11, 23,
27, 7, 16, 4], who all proposed estimators for the semiparametric logistic/Cox
mixture cure model, while [22] suggested an estimation strategy which is based
on a parametric model for the incidence and a nonparametric model for the
latency.

In this paper, we will focus on the case where the cure fraction follows a
logistic model (which is common in the literature on cure models), and the
conditional survival function S, (¢|x) of the susceptible follows a semiparamet-
ric accelerated failure time (AFT) model. This model is a useful alternative to
the Cox model thanks to its direct physical interpretation [10, 6]. When a cure
fraction is present, the model has however not received much attention in the lit-
erature so far. As far as we know, the only papers that have proposed estimators
for the semiparametric logistic/AFT mixture cure model are [31, 17, 26]. These
papers differ in the way they estimate the nonparametric error survival function
and in the likelihood they use to estimate the parameters in the model. A com-
parison between the logistic/Cox and the logistic/ AFT mixture cure models in
terms of their ability to estimate well the cure fraction is given in [21]. This
comparison is especially relevant when the follow-up period of the experiment
is insufficient since the AFT model is able to transfer tail information from re-
gions in the covariate space where the follow-up is sufficient to regions where
the follow-up is insufficient.
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The goal of this paper is to propose a new estimation strategy for this semi-
parametric logistic/AFT mixture cure model. The estimation of the model is
obtained via the maximization of a so-called semiparametric observed likeli-
hood, in which the unknown error density in the AFT model is replaced by a
kernel estimator based on the Kaplan-Meier estimator of the error distribution.
We will develop rigorous asymptotic theory for the proposed estimator, and
show via simulations and the analysis of real data how the estimator performs
in practice, also compared to the existing estimators mentioned above.

This paper is organized as follows. In the next section we formally define
the semiparametric logistic/AFT mixture cure model, and we introduce some
notations. In Section 3 we explain what are the existing estimation procedures
for this model, together with their pros and cons, we introduce our proposed
estimation method and state the theorems for the consistency and asymptotic
normality of the estimator. Section 4 is devoted to a finite sample study in
which the proposed estimator is compared to the existing competitors. We also
consider the drawbacks and benefits of each method. In Section 5 real data on
the time to distant metastasis for lymph-node-negative breast cancer patients
are analyzed. Finally, the Appendix contains the proofs of the asymptotic results
and the results of additional simulations.

2. The AFT/logistic mixture cure model

We suppose that the uncure probability p(z) follows a logistic model given by

exp(v'z)
= = " 2
p(z) pV(z) 1 exp(’y%)’ ( )
where the vector v = (70, . ..,v)¢ is associated with z and contains an intercept

i.e. the first element of the vector z is 1. Note that other parametric models for
p(z) are also possible, as long as the parameters in the model are uniquely
identified.

We can write T = T*B + oo(1 — B), where T™* is the survival time of the
susceptible subjects. For the latency part, we consider a semi-parametric accel-
erated failure time (AFT) model of the following form:

logT* = B'X +e, (3)

where the error € is independent of (X, Z) and its distribution is unspecified,
B =(B1,-..,0B)" is a vector of parameters associated with X, and the intercept
is absorbed by the error term e. Equivalently, we can define the AFT model by
specifying the survival function:

Su(tlr) = Su,p(t|r) = So(t exp(—'x)), (4)

where Sp(t) = P(exp(e) > t) is the error survival function corresponding to the
conditional survival function for X = 0.
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Throughout the paper, we consider the AFT /logistic mixture cure model
given by (1), (2) and (3). As is often the case with time-to-event data, the
survival time T is subject to random right censoring, i.e. instead of observing
T we observe the couple (Y, A), where Y = min(7, C) is the observed survival
time, A = I(T < C) is the censoring indicator, and C' is the censoring time.
We assume that T and C are independent given the covariates (X, Z). Let
(Y, Ay, X4, Z;), i =1,...,n, be i.i.d. realizations of (Y, A, X, 7).

The identifiability of model (1)-(3) has been shown in [21]. They showed that
sufficient conditions for identifiability are

(A) i) Forallz 0<p(z) <Ll
(ii) The matrices Var (X) and Var (Z) are positive definite.
(iii) The variable exp(e) has support [0, 9] for some 79 < co.
(iv) P(C > mpexp(8'X)|X,Z) > 0 for all (X,Z) € S=5Sx xSz,
where Sx and Sz are such that P(X € Sx,Z € Sz) > 0,
Var (X|X € Sx) > 0 and Var (Z|Z € Sz) > 0.

Note that assumption (A)(iv) shows that the model is identified even if the
follow-up period is insufficient for certain regions of the covariate space. This
makes the AFT mixture cure model an attractive model in practice. [21] showed
that this feature holds for the AFT but not for the Cox mixture cure model.

Under this data-generating process, the likelihood is given by

£20, S0, fo) = ﬁ[ “fo(Ye*ﬂX)}A
i=1

. 1-A;
x [1= 3 (Z0) + y(Z0)So (Yie P X, (5)
where 6 = (v, 8)" and fo(t) = —(d/dt)So(t). This likelihood is often called the
observed likelihood, since it is based on the contributions of the uncensored and
censored observations, which are observable. On the other hand, the complete
likelihood is based on the contributions of uncensored subjects, censored and un-
cured subjects, and censored and cured subjects. The latter likelihood depends
on the latent cure status B and is given by:

L 0 507f0 ﬁ [ —BtX; fo(Yefﬁt )] B; A
=1
<[1-» }“_B”(l_m)[pv(zi)so(me*‘*txi) PO 6

3. The proposed estimator
3.1. Estimation procedure

We will now provide a semiparametric estimation method for the AFT /logistic
mixture cure model defined in (1), (2) and (3). The estimation of this model
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has been studied already in the past. The different estimation approaches differ
in the way in which they estimate Sy and fp, and in the likelihood they use (ob-
served or complete). Note that the incidence p.(z) is parametric and hence it
is easy to estimate, whereas the latency So(t exp(—p3tz)) is semiparametric and
therefore more challenging. As far as we know only one approach is based on the
observed likelihood, which is given in [26]. The estimation of the functions Sy
and fp is done based on a so-called SNP (semi-nonparametric) approach with
exponential or normal basis functions. For selecting the number of basis func-
tions an AIC criterion is exploited. Their method works both for right censored
and interval censored data.

While the observed likelihood has the advantage of not depending on latent
variables, the complete likelihood is computationally more attractive, since it
can be decomposed in the product of two factors, one only depending on 3, Sy
and fy, and the other one only depending on ~. All existing approaches are
based on the EM algorithm due to the unobserved B;’s. The first approach is
the one by [31], who proposed a rank estimator for 8. Their method was later
included in the smcure R package (see [4]). Later, [17] used a kernel approach
to maximize the profile likelihood in the M-step. In the E-step, the conditional
expectation of the complete likelihood is computed given the observed data
and the current parameter estimates. The proposed kernel estimation method
is motivated by the work of [30], in which an efficient estimatior for the AFT
model without cure fraction is introduced. The paper by [17] is the only one
that developed asymptotic theory for the proposed estimators.

Our approach is based on the observed likelihood in (5) and on preliminary
nonparametric estimators of the functions fy and Sy. Let 6y = (70, 050)" be
the true parameter vector. For fixed 3, let €;.,, (¢ = 1,...,n) be the i-th order
statistic of €1, . .., €,, where ¢; = log T — 3! X;, and let A;.,, be the corresponding
censoring indicator. Then, assuming that the error distribution is smooth, the
Kaplan-Meier estimator of Sy g(t) = P(T* exp(—8'X) < t) is given by

Q _ gﬁ (t) — Sﬁ (exp(en:n))

SO,L‘? (t) A ) (7)
1 — Sp(exp(en:n))
where

~ 1 Aiin
Ss(t) = 1l——F 8
o= I (1-amsy) ®

izexp(eiin) <t

in which the estimator depends on 3 via the error terms €;.,,, i = 1,...,n. Note

that when 5 equals the true parameter vector fJy, 5'0,5(15) estimates the true
error survival function Sp(¢). Standardization in (7) is necessary to make sure
that Sy 5(t) is a proper survival function. For estimating the density of the error
term, a kernel density estimator of fo g(t) = —(d/dt)So 5(t) is used:

Fop)) =0t [ (555 )dFos(o). 9

where 13’0,5 =1- 5‘0,5, b = b, is a bandwidth parameter tending to zero as n
tends to infinity, and K is a kernel function.
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Define the vector of nuisance functions h = (S, fo, f3)), and let M, (6, h) be
the vector of partial derivatives of the log-likelihood with respect to 6, i.e.

9 1og £O(0, h) n " mi(V;,0,h)
Mn 97}], = Iy ’ - m‘/iaeah’ = § : ) ’
(0:1) ( 86/3 log L9 (0, h) ; ( ) iz \ m2(Vi, 0, h)

where ‘/Z = (Y;',Ai,Xi,Zi), 1= 1, oy,

AZ ZeV'Z 1= Sy(Ye X

m1(V79’h)=W—(1— )1+67tzl+67tZSO(Ye*ﬁtX)’

and

Ye #X fé(Ye_ﬂtX))
fo(Ye=P'X)
Ye B Xer' 2 f (el X)
147285y (Ye B X) -
Moreover, let M (0, h) = E[m(V, 0, h)] be the score vector. Then, the true vector

0o satisfies M (0g, ho) = 0, where hg is the true vector of nuisance functions, and
we define the estimator

0= (%R = in ||M,(0,h 10
(¥, 6) argwergglelgll (0, hs)lls (10)

ma(V,0,h) = —AX(1 +

+(1-A)X

where the parameter space © = I' x B is a compact subspace of RFF*1 | - ||
denotes the Euclidean norm, hg = (S04, fo,8, fo ), and

foa =072 [ K (2) o p(s).

Note that since M, (6, ﬁg) is not smooth in 6 (due to the non-smoothness of the
Kaplan-Meier estimator Sy g), we minimize the norm of M, (6, hs) instead of
solving the equation M, (6, hg) = 0.

3.2. Asymptotic properties

Our criterion function M, (6, h) is semiparametric and is non-smooth in 6. We
will therefore make use of the asymptotic theory for semiparametric Z-estimators
based on non-smooth criterion functions, given in [5]. The latter paper provides
high-level sufficient conditions under which consistency and asymptotic normal-
ity are guaranteed. We will check these high-level conditions for our estimation
procedure.

This will be possible under assumption (A), which assures that there is a finite
cure threshold 79 < oo, which is the upper bound of the support of fo(t). We
start with the consistency of 6. For arbitrary 3 € B, note that T* exp(—3'X) =
exp(€) exp(—(8—Pp)! X) and hence the support of fy (t) is [0, 7(8)] with 7(3) =
T0SUP, ey €Xp(—(8 — fo)'x), since € and X are independent, where Rx is the
compact support of X.
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Theorem 3.1. Assume (A) and (C1)-(C8). Then,
)

The asymptotic normality of 6 can now be established.

Theorem 3.2. Assume (A) and (C1)-(C8). Then,
n'/2(0 — 69) % N(0,%),

for some positive definite covariance matriz 3.

As a by-product of our estimation procedure, we also obtain the following
result regarding the estimators Sp g, fo’g and fé 5- Note that these results are
well known in case [ is fixed, so the challenge here is to show the stated rate of
convergence uniformly in g € B.

Theorem 3.3. Assume (A) and (C1)-(C8). Then,

(i) SUPgep SUPo<t<r(B) |€0,6(t) = Sost)| = OP(n_l/Q)
(i) SUPgeB SUPo<t< () [fo.5(t) — fos(t)] = Op((nbn)_l/z(logn)1/2) +O(bt)
(i) 51D e SWPocrr(s) L 5(0) — i 5(0)] = Op((nb3)~1/2(log m)!/2) + O(bL).

The proofs of all theorems are provided in Appendix A.

4. Simulation study

In this section we will carry out an extensive simulation study, in which we
compare our proposed estimator with its competitors in the literature, namely
the estimators of [31] (given by the R package smcure, see [4]), [17] and [26]. For
our estimation procedure, we developed an R-package, called kmcure, which is
available from https://github.com/Motahareh-Parsa/kmcure.

We consider the following simulation setup. The covariate X is generated
under two scenarios: a Bernoulli distribution with success probability 0.5, or a
uniform distribution on [0, 1]. We will concentrate below on the case where X is
Bernoulli distributed. The uniform case is reported in Appendix B. Throughout
this study, we set Z = (1, X). The censoring time C' is generated from a uniform
distribution on [0, 7¢] and is independent of X and T', where 7¢ equals either
20 or 100, corresponding to heavy or moderate right censoring.

The model for the latency is given by log T* = 1 X +¢, with 5; = 1, whereas
the model for the incidence is p(z) = exp(y'z)/(1+exp(y!2)) with vg equal to 0.5
or 1 and 3 = —0.5, which means that the overall cure fraction is 0.44 or 0.32 re-
spectively. The error term e is generated from either a standard logistic distribu-
tion, a standard normal distribution, or a mixture 0.6 Weib(6, 1)+ 0.4 Weib(2, 1)
of two Weibull distributions. To satisfy the constraint that the support of the
error distribution is bounded (see condition (A)(iii)), we truncate these error
distributions at their 90 % percentile. Table 1 provides the cure fraction and
right censoring rate which are produced by the different values of vy and 7¢.
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TABLE 1
Cure fraction (CF) and right censoring (RC) rate for each setting considered in the
stmulation (expressed in %).

Y0 =0.5 Yo =1
7o = 20 Tc = 100 Tc = 20 Tc = 100
Error CF RC|CF RC|CF RC|CF RC
Logistic 44 56 44 48 32 47 32 37
Normal 44 52 44 45 32 42 32 34
Mix-Weibull 44 57 44 46 32 48 32 36

We compare our method with the kernel based approach of Lu (2010) [17],
the rank-based method of Zhang and Peng (2007) [31], which was implemented
in the R package smcure by [4], and the SNP approach of Scolas et al (2016) [26],
based on two basis distributions (standard normal and standard exponential)
and polynomials of order 0, 1 or 2. The AIC criterion is used to select the
optimal choice of the error distribution.

In each scenario two sample sizes are considered, namely n = 200 and 400.
Our method and the method of [17] require the selection of a bandwidth pa-
rameter. We follow the procedure proposed by [17], and work with a Gaussian
kernel and with the bandwidth b = (8v/2/3)Y/°6n~1/% where & is the sample
standard deviation for the uncensored error terms, in which 3 is substituted by
the estimator derived by fitting the linear model to the uncensored data.

The simulation results are presented in Tables 2-4 and are based on 500
runs. Note that to calculate the bias, variance and MSE, we only use samples for
which the four estimators could all be computed without errors. Specifically, Lu’s
method often encounters errors in parameter estimation, and such problematic
samples are then excluded in the reported results. We will come back to these
numerical problems later in this section.

The tables show that most of the time our method behaves slightly better
than Lu’s method, and is comparable to Zhang and Peng’s method. This is true
for all model scenarios, for both the incidence and the latency parameters, and
for both the bias and variance.

To assess the normality of the estimated coefficients in our simulations, we
employ Q-Q plots, which serve as a robust method for assessing normality.
These plots provide a visual comparison between the observed quantiles of the
estimated coefficients in 500 simulations and the expected quantiles under a
normal distribution. The Q-Q plots are given in Figure 4 in the Appendix for
one setting, and show that the normality is approximately satisfied for all meth-
ods. Furthermore, we provide in Table 5 the Pearson correlations (denoted by
QQr) between the observed and expected quantiles as a metric for normality
assessment.

Also, in the simulations we used 100 bootstrap samples to estimate the pa-
rameters’ standard errors. Then, we used the asymptotic normality of the esti-
mators to construct 95% confidence intervals (CI). Their coverage probabilities
(CP), and the average length of these confidence intervals (CI L) are calculated
based on 500 samples, and are presented in Table 5. The results show that the
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TABLE 2. Bias, variance and mean squared error (MSE) of the model parameters when X follows a Bernoulli distribution and the error has a
truncated logistic distribution.

Ours Lu (2010) Zhang-Peng (2007) Scolas et al. (2016)
Yo TC n Par. Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE
0.5 | 20 | 200 Y0 .011  .054 .054 .035  .055 .056 .004 .051 .0561 | —.021  .052 .052
Y1 —.104 .110 121 226 .210 .261 .050 .167 170 | —.027 127 128
b1 —.221 105 154 311 .374 471 .058  .213 216 .014 153 .153
400 Y0 .015  .029 .029 046 .028 .030 011 .027 .027 | —.015 .026 .026
Y1 —.115  .060 .073 197 110 .149 .020 .074 .074 | —.032 .063 .064
B1 —.231 .061 114 270 188 .261 023 .099 .100 .002 .075 .075
100 | 200 Y0 —.003 .043 .043 002  .043 .043 | —.003 .042 .042 | —.004 .042 .042
Y1 —.009 .083 .083 .003  .085 .085 | —.005 .084 .084 | —.008 .083 .083
51 —.057 117 120 041 121 123 .018  .099 .099 | —.002 .112 112
400 Y0 .010 .024 .024 012 .024 .024 .008  .024 .024 .008 .024 .024
Y1 —.010 .044 .044 | —.001 .044 .044 | —.007 .044 .044 | —.011 .044 .044
51 —.081 .065 .072 014  .053 .053 .002 .046 .046 | —.001 .095 .095
1 20 | 200 Y0 .024  .067 .068 .057  .068 .071 .016 .063 .063 | —.017 .061 .061
Y1 —.093 .131 .140 284 275 .356 .092 219 227 .006 .172 172
b1 —.216  .092 139 232 .246 .300 .038  .160 .161 .010 .125 125
400 Y0 .015 .039 .039 .068  .035 .040 .023  .032 .033 | —.007 .034 .034
Y1 —.142 072 .092 225 129 .180 .017  .097 .097 | —.040 .085 .087
B1 —.228 .049 .101 243 140 .199 .016 .081 .081 .001  .067 .067
100 | 200 Y0 .008  .049 .049 .013  .050 .050 .008  .049 .049 .008  .049 .049
Y1 .015  .092 .092 031 .093 .094 .019  .091 .091 .015  .090 .090
51 —.045 .109 111 024 .092 .093 .008 .080 .080 | —.006 .109 .109
400 Y0 .018  .029 .029 022 .028 .028 017 .028 .028 .018  .028 .028
Y1 —.021  .049 .049 | —.006 .049 .049 | —.016 .048 .048 | —.020 .047 .047
B£1 —.055 .053 .056 023 .043 .044 .003  .036 .036 .004 .090 .090




TABLE 3. Bias, variance and mean squared error (MSE) of the model parameters when X follows a Bernoulli distribution and the error has a
truncated normal distribution.

Ours Lu (2010) Zhang-Peng (2007) Scolas et al. (2016)
Yo | TC n Par. Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE
.5 20 | 200 Y0 .001  .046 .046 .006  .046 .046 | —.000 .046 .046 .023  .047 .048
Y1 —.029 .099 .100 017 .104 .104 | —.005 .102 .102 .024 .110 111
51 —.054  .052 .055 028 .047 .048 | —.000 .038 .038 027 .043 .044
400 Y0 .009 .025 .025 .009 .024 .024 .003 .024 .024 .016 .025 .025
Y1 —.043 .047 .049 .024 .047 .048 .002  .046 .046 .030  .049 .050
B1 —.077  .026 .032 .030 .019 .020 | —.001 .016 .016 .043  .018 .020
100 | 200 Yo —.004 .042 042 | —.002 .041 .041 —.004 .041 .041 —.002 .043 .043
Y1 —.004 .082 .082 | —.004 .081 .081 | —.005 .082 .082 | —.003 .084 .084
B1 —.120 .076 .090 | —.001 .033 .033 | —.001 .031 .031 .012 .034 .034
400 Y0 .003 .024 .024 .004 .023 .023 .002 .023 .023 002 .023 .023
Y1 .005 .045 .045 .003  .043 .043 .002 .043 .043 .005 .045 .045
B1 —.102 .048 .058 .001 .014 .014 | —.005 .013 .013 .027  .012 .013
1 20 200 Y0 .010 .051 .051 016  .051 .051 .008  .050 .050 .039 .056 .058
Y1 —.016 .102 .102 052 .110 113 .025  .106 107 063 .123 127
B1 —.0563 .036 .039 .035 .034 .035 .004 .028 .028 .038  .032 .033
400 Y0 .016 .030 .030 .020 .028 .028 .012  .027 .027 .030 .029 .030
Y1 —.070 .060 .065 .018 .056 .056 | —.006 .055 .055 .030 .059 .060
B1 —.063 .024 .028 024 .016 .017 | —.003 .014 .014 .044  .015 .017
100 | 200 Y0 .003 .045 .045 .004 .045 .045 .003  .045 .045 .004 .046 .046
Y1 .013 .084 .084 .017  .084 .084 .014 .084 .084 .018 .088 .088
£1 —.063 .047 .051 005 .024 .024 .002  .022 .022 .023 .023 .024
400 Y0 .010 .026 .026 .012  .026 .026 .011  .027 .027 .014  .027 .027
Y1 —.004 .049 .049 | —.004 .048 .048 | —.007 .048 .048 | —.006 .049 .049
B1 —.059 .030 .033 .001 .011 .011 | —.002 .011 .011 .032  .010 .011

SpPpoOWL 2UNI 24NITIUW T, Y O?JlQW'DJ’Dd'Z’LU,QS
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TABLE 4. Bias, variance and mean squared error (MSE) of the model parameters when X follows a Bernoulli distribution and the error distribution

is a truncated mixture of Weibull distributions.

Ours Lu (2010) Zhang-Peng (2007) Scolas et al. (2016)
Yo TC n Par. Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE
.5 20 | 200 Yo —.003 .058 .068 | —.009 .047 .047 | —.007  .049 .049 222 .066 115
Y1 —.075 .147 .153 .008 .115 115 .009 .122 122 | 1.749 6.589 9.647
B1 .003  .013 .013 .005 .003 .003 .004 .003 .003 377 .009 .151
400 Y0 —.002 .034 .034 .003 .024 .024 .003  .023 .023 234 .030 .085
Y1 —.128 .088 105 | —.005  .052 .052 .001  .052 .052 | 1.255 1.035 2.610
b1 —.018 .010 .010 .006 .001 .001 | —.000 .002 .002 .364 .006 139
100 | 200 Y0 —.004 .043 .043 .001  .040 .040 | —.004 .043 .043 .014 .045 .045
Y1 —.010 .086 .086 | —.010 .087 .087 | —.005 .089 .089 .043 .094 .096
b1 —.012 .008 .008 .001  .002 .002 .002 .002 .002 176 .018 .049
400 Y0 .002 .021 .021 | —.002 .020 .020 .001  .020 .020 .016 .021 .021
Y1 —.008 .041 .041 | —.001 .039 .039 | —.001 .041 .041 .049 .043 .046
B1 —.015 .005 .006 .000 .001 .001 .000 .001 .001 .204 .003 .045
1 20 | 200 Yo .002 .068 .068 .017  .058 .058 .012  .059 .059 .330 .094 .203
Y1 —.114 176 189 | —.002  .143 .143 .003 .134 134 | 5.825 37.770  71.699
B1 —.003 .011 .011 .007  .003 .003 .003 .003 .003 .344 .006 125
400 Y0 —.006 .046 .046 .008 .036 .036 .011  .031 .031 .326 .048 .154
Y1 —.153  .113 136 .005 .079 .079 | —.006 .071 .071 | 5.110 22.566  48.676
b1 —.017  .007 .007 .006 .001 .001 .001  .001 .001 .346 .004 124
100 | 200 Y0 .007  .052 .052 .011  .051 .051 .009 .052 .052 .030 .056 .056
Y1 .004 .101 .101 .008 .103 .103 .009 .103 .103 .068 .109 114
b1 —.007  .006 .006 .003  .002 .002 .004 .002 .002 .202 .012 .053
400 Y0 .008  .027 .027 .004 .026 .026 .008 .027 .027 .028 .028 .029
Y1 —.010 .052 .052 .006 .053 .063 | —.003 .052 .052 .057 .057 .060
B1 —.012 .004 .004 .002 .001 .001 .001  .001 .001 212 .003 .048




TABLE 5. Coverage probabilities (CP) of 95% confidence intervals for the model parameters, the average length of these intervals (CI L), and the
Pearson correlation (QQr) when X follows a Bernoulli distribution. All intervals are based on bootstrap standard errors except the column indicated
as ‘Lu Method (2010)°, which is based on the method proposed in Lu (2010).

Ours Lu (2010) Lu Method (2010) | Zhang-Peng (2007) Scolas et al. (2016)
Yo | TC n Par. CP CIL QQ | CP CIL QQr | CP CIL| CP CIL QQr| CP CIL QQr
Logistic error
5| 20 | 200 | 4o .960 990 999 | .753 772999 | 1958 1.288 | .960 964 999 | .964 939 .999
1 950  1.407 999 | .870 1.318  .997 | .922 2.586 | .982 1.902 .985 | 970 1.833  .997
B1 900 1.274 998 | .701 1.497  .999 | .738 1.937 | 950 1.804 .997 | 970 1.655  .998
.5 | 100 | 200 | o .954 842 999 | 917 736 .999 | .990 2.819 | .954 841 999 | .958 843 .999
1 966 1.187 998 | .944 1.147 999 | .984 3.274 | 962 1.188 .999 | .964 1.192  .999
51 942 1.314 998 | 929 1.328 .999 | .882 1.363 | .928 1.193 .998 | .970 1.400  .998
Normal error
5| 20 | 200 | qo .960 .880  .997 | .880 688  .998 | .980 1.304 | .960 874 998 | .962 891 .998
71 962 1.266 998 | .877 1.159  .998 | .960 1.720 | 964 1.279 998 | .964 1.323  .998
B1 .928 .863 998 | .880 797 998 | .866 755 | .954 .765 998 | 938 778 .998
5 | 100 | 200 | 4o .966 843 997 | 942 Tt 997 | 1992 3.689 | .968 841 997 | .966 846 997
71 968  1.178 999 | .958 1.159  .999 | .996 4.177 | 968 1.172 999 | 960 1.182  .999
51 .860 913 987 | .964 746 997 | .970 832 | 944 .670 997 | .930 .686 1999

SpPpoOWL 2UNI 24NITIUW T, Y O?JlQW'DJ’Dd'Z’LU,QS

€687
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coverage probabilities are close to their nominal value 0.95, although for Lu’s
method the bootstrap standard errors often lead to too low coverage. Lu (2010)
provides an alternative method, based on the inversion of the Fisher information
matrix, which yields better results, but the intervals are considerably wider in
that case than for the other methods.

The performance of the SNP method depends on the error distribution. For
the standard normal distribution the method outperforms the three other meth-
ods, which is not surprising since in that case the true distribution belongs to
the family of basis functions. For the other distributions the other methods have
lower bias and variance. This is especially the case for the mixture of Weibull
distributions, where the SNP approach has a very poor and sometimes even dra-
matic behavior, both in terms of bias and variance. This can be explained by the
fact that this distribution cannot be well approximated by the basis functions,
which are normal and exponential distributions enriched with polynomials.

While Tables 2—4 show that Lu’s method performs well in practice, there is
also a downside or weakness of this method. In the case of the mixture of two
Weibulls, the method often has convergence problems, leading to errors or warn-
ings when running the method in R. Table 6 shows the number of errors/warn-
ings under each scenario when e follows the mixture of Weibull distributions.
Whenever an error in one of the estimation methods occurs (usually this hap-
pens with Lu’s method, but occasionally also with one of the other methods),
that sample is removed for all estimation methods and a new sample is taken
to reach the required number of 500 simulation runs. The table shows that Lu’s
method faces indeed a lot of convergence issues, especially for large sample sizes
and scenarios with heavy censoring. Note however that these convergence issues
are almost absent in the case of the logistic or normal error distribution, so the
results in the table cannot be generalized to other distributions.

TABLE 6
The frequency of errors that have occurred in the simulations (out of 500 samples), when
the error distribution is a mizture of Weibull distributions.

Yo TC n Ours Lu Zhang-Peng  Scolas et al
0.5 | 20 | 200 0 37 0 0
400 0 265 0 0
100 | 200 0 12 0 0
400 0 37 0 0
1 20 | 200 0 69 0 0
400 2 261 0 0
100 | 200 0 12 0 0
400 0 34 0 0

Since our method and the method of [17] depend on a bandwidth, it is im-
portant to investigate the effect of the bandwidth on the performance of these
two estimation methods. Table 7 shows the results when the error distribution
is the mixture of two Weibull distributions, for n = 200 and for three choices of
the bandwidth, namely b/2, b and 2b, where b is selected as before. The table
shows that both methods are robust to alterations of the bandwidth. However,
when 7¢ = 20 (corresponding to the heavy censoring case), the results of our
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method are more stable than those of Lu’s method. Also, note that the results
for bandwidth b do not coincide with those in Table 4. This is because we replace
a sample by another sample as soon as there is a convergence issue for at least
one bandwidth or method (as for Table 6).

TABLE 7
Bias, variance and mean squared error (MSE) of the model parameters for n = 200 and for
three values of the bandwidth, when X follows a Bernoulli distribution and the error
distribution is a mizture of Weibull distributions.

b/2 b 2b
Y0 TC Method | Par. Bias Var MSE Bias Var MSE Bias Var MSE
0.5 | 20 Ours Yo .009 .051 .051 .009 .051 .051 .008  .051 .051
o1 .000 112 112 .002 113 113 .007 114 114
51 .000 .006 .006 .005 .004 .004 .010 .004 .004
Lu Yo .007  .049 .049 .010 .049 .049 .026 .051 .052
T .005 115 115 .018 118 118 .068  .127 132
51 .006  .006 .006 .011  .004 .004 .025 .004 .005
100 Ours Yo —.002 .041 .041 | —.002 .041 .041 | —.003 .041 .041
T .015 .075 .075 .015 .075 .075 .015 .075 .075
B1 .002 .005 .005 .001  .003 .003 .003 .003 .003
Lu Y0 —.001 .041 .041 —.001 .041 .041 .001 .041 .041
71 .016 .075 .075 .017  .075 .075 .021  .075 .075
B1 .001  .004 .004 .003 .003 .003 .006 .003 .003
1 20 Ours Yo .023  .066 .067 .023  .066 .067 022  .067 .067
T .029  .143 144 029 141 142 034 141 142
51 .002 .004 .004 .006 .003 .003 .011  .003 .003
Lu Yo 017  .064 .064 .023  .065 .066 .045  .067 .069
T 026 .147 .148 .041 149 151 116 .166 179
581 .005 .004 .004 .010 .003 .003 .023  .004 .005
100 Ours Yo .006 .050 .050 .006 .050 .050 .006 .050 .050
T .007 .088 .088 .007  .089 .089 .007 .088 .088
51 .001  .003 .003 .000 .002 .002 .001  .002 .002
Lu Yo .006 .050 .050 .006 .050 .050 .045  .067 .069
Y1 .009 .088 .088 .010 .089 .089 .002 .002 .002
51 .009 .050 .050 .015 .089 .089 .004 .002 .002

The frequency of errors that occur also depends in a crucial way on the
bandwidth used for our and Lu’s method, as can be seen in Table 8. The table
shows the number of samples that needs to be generated under a given scenario
in order to obtain 500 samples for which no convergence problems exist. The
table shows that such problems occur more often when the bandwidth is small.

TABLE 8
Number of needed simulations to obtain 500 successful fits in all methods, where the error
distribution is a mizture of Weibull distributions and n = 200.

b/2 b 2b
Yo 7c | Method | Success Error | Success Error | Success Error
0.5 | 20 | Ours 2285 4 2288 1 2289 0
Lu 500 1789 2006 283 2288 1
100 | Ours 1054 1 1055 0 1055 0
Lu 500 555 1031 24 1055 0
1 20 | Ours 2309 2 2311 0 2311 0
Lu 500 1811 2043 268 2310 1
100 | Ours 950 0 950 0 950 0
Lu 500 450 930 20 950 0
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Finally, we study the computation time of the four studied methods. Table 9
shows the average computation time in seconds (over 100 samples) in the case
of the logistic error distribution with v = 0.5. The table shows that the fastest
method is the SNP approach, whereas the three others have more comparable
computation times, with Lu’s method being however the slowest of all methods.

TABLE 9
Computation time in seconds for the logistic error distribution with yo = 0.5.
n TC Ours Lu Zhang-Peng  Scolas et al
200 | 20 1.65 3.89 1.37 0.43
100 1.38 2.59 0.90 0.44
400 | 20 5.27 12.25 3.79 0.69
100 3.87 10.87 2.31 0.67

We end this section with plots of the estimated error densities f07 4 for 20
arbitrary samples of size n = 400 generated from a logistic, a normal and a
mixture of Weibull densities. They are given in Figure 1 for v = 0.5, 7¢ = 20
or 100 and for a uniform covariate X. The plots show that the estimated curves
are quite close to the true curves for all considered settings.

B e

F1c 1. Plots of the estimated error densities fo 3 for 20 arbitrary samples of size n = 400

generated from a logistic density (first column), a normal density (second column), and a
mizture of Weibull densities (third column). The first row corresponds to T¢ = 100, the
second row to Tc = 20. The covariate X follows a uniform distribution, and yo = 0.5.

To conclude, the simulations showed that the proposed method works well
in practice under various model settings. It has the advantage of working well
under all model settings (whereas the method of [26] does not work well for
certain error distributions), it does not have any convergence problems (contrary
to [17], which suffers sometimes from such problems), we developed rigorous
asymptotic theory for the proposed estimator (which is not the case for the
estimators of [26] and [31]), and it is the only method that has been used so
far for variable selection in the AFT mixture cure model. For this we refer to
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[20], who developed a penalized likelihood approach based on adaptive LASSO
penalties to do variable selection both for the incidence and the latency.

5. Real data application

As an application of our estimation method, we study breast cancer data of
286 patients who experienced lymph-node-negative breast cancer between 1980
and 1995 [29]. The event of interest is distant metastasis, and the associated
survival time is the time to distant metastasis (DM). Among the 286 patients,
107 experienced a distant recurrence from breast cancer. Figure 2 shows the
Kaplan-Meier estimator of the survival function, from which it is clear that
there is an overall cure fraction of about 60%. Moreover, the plateau is very
long and contains 88% of the censored observations, which indicates that the
follow-up period is sufficiently long [1].

The data set also contains four covariates: the age of the patient (ranging
from 26 to 83), the estrogen receptor (ER) status (where O signifies ER —,
defined as less than 10 fmol/mg protein, and 1 signifies ER +, defined as at
least 10 fmol/mg protein), the size of the tumor (ranging from 1 to 4), and the
menopausal status (where 0 means pre-menopausal defined as age < 50, and 1
means post-menopausal meaning age > 50). We suppose that the AFT /logistic
mixture cure model is valid for these data, and we estimate the model using
the proposed approach, and also using the method of [31] (using the R package
smcure), the kernel approach of [17] and the SNP method of [26]. The bandwidth
is calculated in the same way as in the simulation study, and the initial values
are obtained using the survreg function in R for the AFT model, and using the
glm function for the logistic model.

Table 10 shows the estimated parameters, the estimated standard errors,
the Wald statistics and the corresponding P-values for the four available meth-
ods. For all methods except for Lu’s method, the standard errors are obtained
from 500 bootstrap samples drawn with replacement from the original sample,
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Fic 2. Kaplan-Meier estimator of the survival function for the breast cancer data.
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whereas Lu’s method uses the inverse Fisher information matrix to estimate
the covariance matrix. The table shows that for all methods except the SNP
approach of [26], the signs of the estimated coefficients are in agreement and
the estimated parameters are close to each other. The coefficient of tumor size
in the AFT model is significant according to these three methods. Finally, the
SNP approach gives quite different results, both in terms of the significance of
the coefficients, their size, and their sign. This can be explained by the fact that
the estimated error density, given in Figure 3, is bimodal, and we know from the
simulation study in Section 4 that the SNP approach is not able to approximate
well bimodal densities.

TABLE 10
Estimated parameters, estimated standard errors (SE), Wald statistics and corresponding
P-values using the four available methods for the breast cancer data. P-values that are
significant at the 0.05 level are indicated by a *.

Method Model Variable Est.par. SE Wald  P-value
Ours Incidence | Intercept 131 .607 .216 .829
Age —-.012 .010 -—-1.18 .239
ER .230  .358 .643 .520
Tumor size —.085 190 —.445 .656
Menopausal —.068 .330 —.207 .836
Latency Age .002 .007 .265 791
ER 309 207 1.49 .136
Tumor size —.310 .158 —1.96 .050*
Menopausal 292 205 1.43 154
Lu Incidence | Intercept 231 .703 328 743
Age —-.012 .039 —-.310 756
ER 237 .343 .689 491
Tumor size —.133 .261 —.511 .610
Menopausal —.018 594 —.030 976
Latency Age .004 .007 567 .570
ER 278 239 1.16 245
Tumor size —.335 .168 —2.00 .046*
Menopausal 350 .140 2.50 .012*
Zhang-Peng | Incidence | Intercept 157 .690 228 .819
Age —-.011 .011 -1.04 .299
ER 246 .363 625 .532
Tumor size —.117 221  —.528 .598
Menopausal —.044 394 —.112 911
Latency Age .006  .006 .993 .320
ER 302 .248 1.21 225
Tumor size —.340 .150 —2.27 .023*
Menopausal 364 241 1.51 131
Scolas et al Incidence | Intercept —3.59 857 —4.19 .000*
Age .051 .015 3.44 .001*
ER 654  .694 .942 .346
Tumor size 792 .381 2.08 .037*
Menopausal —.047 605 —.078 937
Latency Age .095 .016 5.80 .000*
ER 441 517 .853 .394
Tumor size 653  .406 1.61 .108
Menopausal 771 421 1.83 .067
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Fi1G 3. Estimated density of exp(e) for the breast cancer data.

Appendix A: Proofs
A.1. Definitions and assumptions

Here, we provide some necessary definitions and the conditions under which our
asymptotic results are valid.

First of all, as explained already earlier, we will use the results in [5] to show
the consistency and asymptotic normality of our estimators. The latter paper
gives sufficient conditions under which Z-estimators in a semiparametric model
based on a non-smooth criterion function, are consistent and asymptotically
normal. We will suppose that the vector of nuisance functions hg = (So, fo, f§)
belongs to the space H = H1 x Ha X Hs, where

Hy = {9 : [0, Tmax]) — [0,1] : g is decreasing}

Hz = {g . [0, Tmax] = R : g is differentiable, sup [¢¥) ()| < M,k =0, 1}

t<Tmax

Hy = {g €Mz inf g(t) > g}
for some M < oo and some ¢ > 0, where Ty,ax = maxgeg 7(8). For h € H, define
Al = max([|hl[3, [[h2ll#, [|h3]l#), where |||l = supgep sup«r () 12 (¢, B)I,
B(t,B) = (1t B), ha(t, B), ha(t, B)) and ho(t, B) = (So5(8), for (D), fo4(t))- Fi-
nally, define G g(t) = P(Cexp(—3'X) < t) for any B € B, and let Sy 5({t}) =
So,5(t—) — So.5(t) be the point mass of Sp g at t.

We will make use of the following theorems, which are Theorems 1 and 2 in [5].

They give high-level conditions under which 0 is respectively weakly consistent
and asymptotically normal. In the next two subsections, we will check these
high-level conditions for our estimator.

Theorem A.1l. Suppose that 0y € O satisfies M (6y, ho) = 0, and that:
(1.1) || M (8, h)|| < infoce || Mo (8, h)]| + 0p(1).
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(1.2) For all 6 > 0, there exists €(0) > 0 such that infjg_gy>s [[M (6, ho)|| >
€(9) > 0.

(1.8) Uniformly for all 6 € ©, M(0,h) is continuous (w.r.t. || - |n) in h at
h = ho.

(1.4) |h = hollw = op(1).

(1.5) For all sequences of positive numbers §,, with §, = o(1),

sup |M,(0,h) — M(0,h)| = op(1),
0€0,||h—holl#<dn

Then, 0 — 0y = op(1).

For the next result, we define the matrix of partial derivatives I'1(6,h) =
(0/00)M (0, h(-,B)), which satisfies

- .1 _ _
T1(6,h)(8 = 6) = lim = [M (6 +7(0 = 0), h(-, B + 7(5 = 8)) = M (0. h(-, 8)) |
for # = (3,6)! € ©, and we let 'y = I'; (6, ho). For any 0 € ©, we say that
M (0, h) is pathwise differentiable at & € # in the direction [h—h] if {h+7(h—h) :
T €[0,1]} C H and if

_ 1 _
Ly(0, h)[h = h] = lim ~[M (6, h(-,6) + 7 (h(:, 6) — h(6))) = M (6, h(-,6))|
exists. Also, for any 0 > 0,let O5 = {0 € O : || — by|| <} and Hs ={h € H :
Ih — holln < 6}

Theorem A.2. Suppose that 0y € O satisfies M (6o, ho) = 0, that 0 — 0y =
op(1), and that:

(2.1) [ Ma(@,B)]| = infoco M (6, B)]| + op(n=1/2).

(2.2) For 0 € ©, the matriz T'1(0, hy) exists and is continuous at 0 = 6y, and
'y has full rank.

(2.3) For all § € © the functional derivative I's(0, ho)[h — ho] exists in all direc-
tions [h — hg] € H, and for all (8,h) € Os, x Hs, with a positive sequence
9, = o(1):
(i) |M(0,h)— M (0, ho) —T2(6, ho)[h—hol|| < c||h—hol|3, for some ¢ < oo,
(7i) [|T2(0, ho)[h — ho] — T'2(0o, ho) [l — hol|| < o(1)dy,.

(2.4) P(h e H) = 1, and ||h — holl = op(n=/%).

(2.5) For all sequences of positive numbers {0, } with 6, = o(1),

sup ||M"L(0ﬂ h) - M(ev h) - Mn(007 hO)” = OP(n71/2)-
16—00l|<6n;llh—holl2<dn

(2.6) For some finite matriz S, n*/2{ M, (00, ho)+L2(00, ho)[h—ho]} 4 N(0,S).

Then, n'/2(0 — o) % N(0,%), where & =T ST

To establish the asymptotic results regarding our estimator 0 we need to
impose the following assumptions:
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(C1) The covariate vectors X and Z have compact support, denoted by Rx and
Rz. The true vector 6y belongs to the interior of ©, and © is compact.

(C2) The kernel K is symmetric of order larger than 3, K is twice continuously
differentiable with support [—1,1], K(£1) = K'(£1) = K" (£1) = 0.

(C3) The bandwidth b,, satisfies nbS (logn)~2 — co and nb$ — 0.

(C4) For all g € B, Sy p(t) is 6 times continuously differentiable in ¢ for ¢ €

k

[O,T(ﬁ))7 SUPgeg SUP; <7 (3) |fé/3)(t)| < oo for £k = 0,1,...,5, and
infgep So.s({7(8)}) > 0.

(C5) For all 8 € B, Go(t) is continuous in ¢ for t € [0,7(3)), and infgep (1 —
Go(r(B))) > 0.

(06) SUupy 4 fY|X(y|x) < 00 and Sup, fx(l‘) < 0.

(C7) For all 6 > 0, there exists €(§) > 0 such that infjg_g,>s M (0, ho)| >
€(d) > 0.

(C8) The matrix I'; has full rank.

In the following subsections, we provide the proofs of Theorems 3.1, 3.2
and 3.3 under assumptions (C1)-(C8).

A.2. Proof of Theorem 3.1

We will verify conditions (1.1)-(1.5) of Theorem A.l, from which the stated
result will follow. First, condition (1.1) holds true by definition of the estimator
0, and condition (1.2) is given in assumption (C7). The continuity of M (6, h) is
straightforward under the given assumptions, so (1.3) is also verified. Condition
(1.4) is verified thanks to Theorem 3.3. Finally, condition (1.5) is satisfied if the
class {v = m(v,0,h) : 0 € ©,h € H} is Glivenko-Cantelli. We will show in the
proof of Theorem 3.2 below that this class is even Donsker, which implies that
it is Glivenko-Cantelli (see p. 80-81 in [28] for the definition of Glivenko-Cantelli
and Donsker classes). (]

A.3. Proof of Theorem 3.2

We will now verify conditions (2.1)-(2.6) of Theorem A.2. First, condition (2.1)
holds true by definition of the estimator §, whereas for condition (2.2) the matrix
I'1(0,hp) can be obtained using straightforward calculations. The continuity
of T'1(6, hy) follows from assumptions (C1) and (C4), whereas the full rank
condition is stated in assumption (C8).

For condition (2.3) tedious but straightforward calculations show that
['5(0, ho)[h — ho] can be obtained by applying Taylor expansions of order one of
the function m with respect to the nuisance functions Sp, fo and f§. This gives
the following formula for I's(8, ho)[h — ho] = (T'2,1(8, ho)[h — hol, T2.2(8, ho)[h —
ho))t, where I's j(6, ho)[h — ho] is the functional derivative of E[m;(6, ho)] in the
direction [h — hg], j =1, 2:

(11)

(1—A)Ze 2 (S5 — So,5) (Ve #'X) }

F2,1(9a ho)[h - h()] = E{ (1 4 e»\/tZSO’B(Ye,BtX))Q
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fh— £ ) (Y e 7X)
fos(Ye=F'X)
_ fé,ﬁ(yefﬂtx)(fﬁ - fo,ﬁ)(YeBtX)”
f&g(Ye*ﬁtX)
(f3 = fop)(Ye P'X)
14 €728y (Ye B'X)

 fop(Ye P X) (S5 — So,ﬁ)(Ye_BtX)} }
(1+ €728y 3(Ye B'X))2 '

I'2(0, ho)[h — ho] = E{ CAXYe PX [(

n E{(1 - A)XYe—f’tXthZ[

The verification of (2.3) (i) and (i7) requires lengthy calculations, based how-
ever on simple algebraic manipulations and Taylor expansions of the functions
Iy (0, ho)[h — ho] (j =1,2) given in (11) and (12).

The second part of condition (2.4) follows from Theorem 3.3 and assumption
(C3) on the bandwidth. Indeed, we need that O((nb3)~1/2(logn)'/?) + O(b2) =
o(n='/*), which is satisfied if nbS(logn)=2 — oo and nbX® — 0. For the first
part, we need to show that (5’075, fo,@, fé’ﬁ) € H with probability tending to
one. For Sy 4 this is obvious. To show that fo 5 € Hy and fé_ﬂ € H3, we need
to show that

sup sup | (1) <M

BEBO<t<T(B)
with probability tending to one, for £k = 0,1,2. For k£ = 0,1 this follows from
Theorem 3.3. For £k = 2 the proof is similar as for Theorem 3.3, and allows
to show that supgep Supg<;«r(g) |f6’5(t) —fog®) = Op((nb2)~'/2(logn)/?) +
O(b) = op(1).

For condition (2.5) we apply Theorem 3 in [5], which says that (2.5) is satisfied
if for each component m;; (j =1,...,k + 1) of m; and each component mg ;
(j=1,...,¢) of my, we have (with ¢ = 1,2)

(i3 (v, 8, 1) —mi (0,6, h)] < bij (0) {116 — 8| + [|h — hll},

with E[b7 ;(V)] < oo, and if

| losN et e < o, (13)
0

for j = 1,2,3, where N(e,H,,| - |l%) is the e-covering number of the class
H; with respect to the || - ||%-norm (see p. 83 in [28] for the definition of the
covering number). The first requirement is easily seen to be satisfied thanks to
the smoothness of the function m, whereas for the second one we apply Theorem
2.7.2 in [28] for Ho and H3, and Theorem 2.7.5 in [28] for H;, together with the
fact that the covering number is bounded by the bracketing number (see p. 84
in [28]). This shows that log N (e, H;, | - ||) < Ke™!, and hence the integral in
(13) is bounded by 2(K max{2M,1})'/2, since for ¢ > max{2M, 1} one e-ball
suffices to cover the space H;.
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It remains to verify condition (2.6). First note that it follows from (11) and
(12) that T'5 (6o, ho)[h—ho] can be written as E[G1(V){So—So}(e)+Ga(V){ fo—
fo(e) + Gs(V){f} — fi}(e)] for certain vectors of functions Gy, Ga and Gs.
We know from [13] and [18] that

So(t) = So(t) = '3 E(Yie X A t) + Op(n~tlogn)

i=1

uniformly in 0 < ¢ < 79, where

_ Ie<t,d=1) ™) dHi(s)
g(e,é,t)—So(t){l_—HO(e)_/O m}

Ho(t) = P(Ye #'X < t) and HL(t) = P(Ye "X < t,A = 1). Using this i.i.d.
representation, we can also decompose fo(t) — fo(t) in a sum of independent
terms and a remainder term of smaller order:

fo(t) — fo(t) = b—l/K(t— s

_ /K(u)d(ﬁo(t —ub) — Fo(t — ub)) + O(b4)

Jd(Fo(s) ~ Fols)) + O(b)

—p! / (Fo(t — ub) — Fo(t — ub)) K’ (u)du + O(b)

= —(nb)~? Xn:/f(}’ieﬁéxi,Ai,t —ub)K'(u)du
i=1
+ Op((nb,) tlogn) + O(b})

= 7(771))71 Z/E(YvieiﬁgxaAht - ub)K’(u)du + OP(n71/2)7
i=1

since nb$ — 0 and nb?(logn)~2? — oco. Note that the order O(b1) of the bias
term follows from the fact that the order of the kernel K is larger than 3 (see
the proof of Theorem 3.3 (i¢) for more details). Similarly we can show that

folt) = fo(t) = —=(nb*) ™! Zn:/é(l@e‘%xi,Ai,t — ub) K" (u)du + op(n~'/?),
i=1
since nbl (logn)~2 = co. We can now write
M, (80, ho) + T2(80, ko) [h — ho]
=n"" _Xn:m(%ﬁo,ho)
+ EZ[;(V){S’O — So}(e) + Ga(V){fo = fo} () + Ga(V){fg — fo}(e)]

=n! z": m(V;, 00, ho) + 1" Zn: E[Gl(v)g(yie_ﬂé&’&’ ee)}

i=1 i=1
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— (nb)~? ; E GQ(V) / g(}ge*ﬁéXi,A,»,ef—ub)K’(u)du}

=1

- (@)™ ZE[G?’(V) /g(Yie_BéXf’,Ai,ee - ub)K"(u)dU} +op(n1/?).
i=1

Let L;(V;,w) = E[Gj(V)f(Yie_ﬁ(t)Xi,Ai, ee—w)] , 7 = 1,2, 3, where the expected
value is taken with respect to V, conditional on the i-th data point V;. Then,
with L (V,w) = (9% /ow*) L (V,w),

M, (80, ho) + D280, ho)[h — ho]

lz{ (Visbosho) + La(Vi,0) = b [ La(Vis ) (u)d
_ b’Q/Lg(Vi,ub)K”(u)du} +op(n1/?)

=013 {m(Vi, 00, ho) + L1(V;, 0)}

- n 4
)3 [ [ L (a0t + L (Vi) ) K )}
i=1 k=0 :
2\—1 . : 1 (k) k 1 (6) 6 7
=) [0 LV 00w L Vi) () K ()}
=1 k=0
+0P(n_1/2)7

for some values 7o and 73 between 0 and ub. We have that [u*K'(u)du = 0
for k = 0,2,3,4, [uK'(u)du = -1, [u*K"(u)du = 0 for k = 0,1,3,4,5,
Ju?K"( )du = 2. Tt follows that

M, (6, ho) + Ta(Bo, ho)[h — ho]

n! Z {m(Vi, 00, ho) + L1 (V;, 0) + L4(Vi,0) + L{(V;, 0) | + 0p(n /%),
since nb® — 0. Hence, n/2(M,, (6o, ho) + T'2(6o, ho)[ﬁ — hg]) converges to a zero
mean normal vector with covariance matrix S = E[s(V)s(V)!], where s(V) =
m(V, 0o, ho) + L1(V,0) + L5(V,0) + LE(V,0). It now follows from Theorem A.2

that n'/2(6 —6,) converges to a zero mean normal vector with covariance matrix
rytsrit. O

A.4. Proof of Theorem 3.3

In the proof we will show that the stated results are valid if certain results hold
for the estimators
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n
Hop(t)=n~" Y 1(Y;e "X <)

=1

o) =n Y I(Yie P X <t A = 1),

i=1

These are estimators of the distribution Hy g(t) = P(Ye X < ¢) of the ob-

served survival times, and the subdistribution H&ﬁ(t) =PYe P X <t,A=1)
of the uncensored survival times. Since these estimators are sums of i.i.d. terms,
they are easier to handle than the estimators o g(t), fo,5(t) and fg 5(¢).

A.4.1. Proof of Theorem 3.3 (i)

First, note that by Duhamel’s identity (see [9]),

. A
. Sop(t—)
$0.6(0) — 0,800 = ~S05(8) [ 20 (R ) Mop(as)), (1)
o Sos(t)
where .
. t Hy 4(ds
Ao,ﬁ(t)z/ 40iﬂ( )
0 1-— Hoﬁ(S*)
estimates the cumulative hazard given by
t H} .(ds)
Ao g(t) = exp(—Sy 5(t)) = / A
0,5(t) (=So0,8(1)) T Hos(s)

It can be easily seen that

Ao s(t) — Ao s(t) (15)

o 1 - 1 1 PA(HY 4(s) — H 4(s))
a /0 [1 — Hop(s—) 1- Ho,ﬂ(S)]dHO’ﬁ( ) +/0 1—Hop(s)

Hence, it follows from assumptions (C4)-(C5) that the stated result follows if we
can show that supgep Supg<¢< () |Ho 5(t)—Ho 5(t)| = Op(n~1/?), and similarly
with Hy g(t) replaced by H&B (t).

Next, consider the class

F = {(x,y) —>I(ye_5t‘” <t):eB,0<t< Tmax}.

We suppose for notational simplicity that X is one-dimensional (¢ = 1). Divide
B into small intervals [bj_1,b;], j = 1,...,M, with M = O(¢7?) and b; =
bj_1 + €2, and similarly divide [0, Tmax] into intervals [ty_1,%;], k = 1,..., L,
with L = O(¢72) and t;, = t;_1 +¢2. Then, for any 8 € B and t € [0, Tiax] there
exist a j and k such that ¢, <t <t; and b;_; < 8 < b;. Hence,

I(ye Yi—1" < ty_1) < I(ye 7" <t) < I(ye b7 < t})
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(we suppose for simplicity that z is positive). Moreover,
—biX —bt X 2
EPWBJ <ty) — I(Yetim gm4ﬂ
= P(Ye_b;X < tk) — P(Ye_bz'*lx < tkfl)
= / [Fy‘x(tkebzxkt) - Fy‘X(tk,1eb§*1I|m)}fX(x) dx

Ssupfy\x(mm)/[tk@b; — t_yelit “1fx () de < Ke?,

T,y

where the last inequality follows from assumption (C6). Hence, Njj(e, F, L2(P))
= 0(e™*), and

1
/ ¢bgMﬂafiﬂP»@<xa
0

where Njj(e, F, Lo(P)) is the e-bracketing number of the class F with respect to
the Lo-distance. This shows that the class F is Donsker (see p. 80-83 in [28] for
the definition of a Donsker class and the bracketing number). It now follows from
Theorem 2.5.6 in [28] that supgep supg<i<-(s) |Ho 5(t) — Ho p(t)| = Op(n=1/2),
which shows the result. O

A.4.2. Proof of Theorem 3.3 (i1)

Write
fop(t) = fos(t)
—07 [ (5 )dlEnas) ~ Fap(o) + 0 [ (5 )dBus(s) ~ foslt)
= Tl(t,ﬂ) + TZ(tvﬂ)

We start with the bias term Th(¢, 5):

Ta(t, B)
=p ! /K(t ; S) [fo.5(s) — fo,8(t)]ds

:/memawmm—nﬁmwu

1 1
= [ [ = Rt 3700~ GIB 0 + gAYt
=0},

uniformly in ¢ and 3, for some & between ¢ and t — ub, since the order of K is
larger than 3 (see assumption (C2)). Next, for the term T4 (¢, 5), note that using
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(14) and (15) we can decompose Ti(t, ) into two terms. We will concentrate
on the second one, since the first one is easier to handle:

_ t—s\1=Fys(s—) fops(s) 2
b 1/K< b ) 1—;0[3() 1—OH0,B(3)d(HO’ﬁ<S)_HO’B(S))

=b! /K 1 If(}f; ﬁ(it—vzl))l))) ) . _foﬁﬁo(tﬁ@ v_b)vb)d[(lffoﬁ — Hop)(t — vb)]

_ b—l/ [(ﬁo,ﬁ — Hy g)(t —vb) — (ﬁoﬁ - HOﬁ)(t)]

1~ Fos((t —vb)=)  fos(t—vb) }
1—F0)5(t—?]b) 1—H073(t—’l)b) ’
where the last equality holds since K (+1) = 0. It follows that

suéa Ty (t, B)| < Kb~ sup |(Ho,s — Hop)(t — vb) — (Hos — Hop)(t)].
t

t,B,v

d[K(v)

Let
F={@y) > 1ye™* <t —vb) = I{ye™'* <1): B € B0 <t < Tina,
—1§v§1,0§b§1}.

For any f € F. let Gu(f) = n™V2 S, (F(X,, ) = BF(X,Y)) = n/2[(Ho 5 -
Ho 3)(t — vb) — (Ho3 — Ho)(t )]. It follows from Theorem 2.14.2 in [28] that

B( sup|Gu(f)])

feF

- nl/QE( sup |(Ho,p — Ho,p)(t — vb) — (Ho,p — H‘W)(t)‘)

t,B,v,
< J(8,F, La(P))||F|lp2 + n'/*E[F(X,Y)I(F(X,Y) > n'/?a(6))],
provided || f|lp2 < d||F| p2, where

&
J[](d,]-',LQ(P)):/ 1+ 108 Ny (el Fllp2. F La(P))de,
0

F is an envelope for the class F, || F||3, = E[F?*(X,Y)], and
S| F[lp.2
\/1 —|—10gN[]((5||F||p72,]:, LQ(P))

Note that F' = 1 and hence ||F||p2 = 1. It follows from the proof of part (z)
that Njj(e, F, La(P)) < Ke 2D where ¢ is the dimension of X. Moreover,
for any f € F,

1112

= /f2(X,Y)dP

a(d) =
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t + 2
= E[{I(Yeiﬁ X<t—wb)—I(Ye PX < t)} }
= P(Ye*BtX <t—wvb)+ P(Ye*ﬂtX <t)-— 2P(Ye*BtX <t + min(—wvb,0))
= |P(Ye P'™X <t —wb) — P(Ye #X <t)| < Kb,

since supy g fy-,-stx (t) < co. Hence, § o b'/2, and for small 6,

a(d) > d > 0 = 0 = ﬁ o b.
T V1t log(Ke2m) T V1+462 V2572 V2
It follows that I(F(X,Y) > n'/?a (6)) < I(1 > (nb*)Y/2) = 0 for n large,
since nby — oo. Next, Jjj(6, F, Lo(P Kfo /log(e~1)de and this is eas-
ily seen to be bounded by K’ 5W for some K, K’ < oo. It now fol-
lows that E(supcr |Gn(f)]) = O(bL/*(log n)/2), and hence sup, 4 |T1(t, B)] =
Op((nb,)~/?(logn)'/?) thanks to Markov’s inequality. O

A.4.3. Proof of Theorem 3.3 (iii)

Write
foﬂ( fO/D’()
Jﬂ/K' (Fua(s) = Foals) +67* [ 10 (S52) o ste) = 0

=Ti(t, ) + T2(75 ﬁ)

We start again with the bias term T(¢, 8):

T2 (t7 ﬁ)

_p! /K'(u)fw(t — ub)du — £ 4(t)

- [ xw [faﬁ(t —ub) — f ()] du

1
/ K(u s(tyub+ - fgf”ﬁ)(t)u%? — Sfop 0’ + f(5)(§)u4b4] du

=0O( b4

uniformly in ¢ and 3, for some £ between ¢ and ¢ — ub. For the term T (¢, 3)

we can follow a very similar development as in the proof of part (i), provided
K'(£1) = 0. g

Appendix B: Further simulation results

Tables 11-13 show the simulations results when the covariate X follows a uni-
form distribution on [0, 1].



TABLE 11. Bias, variance and mean squared error (MSE) of the model parameters when X follows a uniform distribution and the error has a logistic

distribution.
Ours Lu (2010) Zhang-Peng (2007) Scolas et al. (2016)
Yo TC n Par. Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE
0.5 | 20 | 200 Yo —.095 .126 135 | —.093  .131 140 | —.118  .120 134 | —.204 095 137
T —.220 .358 .358 199 526 .566 .081  .460 467 .046  .330 .332
51 —.153  .518 541 200 .766 .806 .045  .506 .508 159 409 434
400 Yo —.091 .074 .082 | —.059 .075 .078 | —.109 .063 075 | —.213  .051 .096
T .003  .209 .209 202 .303 .344 .052  .216 .219 .048 176 178
B1 —.094 433 442 199 524 564 | —.004 .326 .326 184 278 312
100 | 200 Yo —.014 .093 .093 | —.008 .093 .093 | —.015 .091 .091 | —.056 .077 .080
1 —.005 .265 .265 .040  .285 287 .010 .269 269 | —.035 .241 .242
B1 —.028 .343 .344 .069  .397 .402 .025 .336 337 | —.136  .530 .548
400 Yo —.016 .046 .046 .006  .050 .050 | —.014 .045 .045 | —.053 .040 .043
Y1 —.010 .119 119 032 132 133 | —.003  .120 120 | —.057  .113 116
51 —.045 .223 .225 .031  .257 258 | —.016  .200 200 | —.267  .302 .373
1 20 200 Yo —.131 .154 171 —.140 .149 169 | —.178 .133 165 | —.286  .096 178
o1 —.014 .398 .398 296  .594 .682 152 514 537 .098  .340 .350
51 —.184 .398 .432 194 556 .594 .052  .404 407 149 .380 .402
400 Yo —.112  .100 113 | —.082 .094 .101 —.146  .075 .096 | —.284 .059 .140
T —.009 .247 .247 238 .366 .423 072 277 .282 .067  .206 210
b1 —.138 .333 .352 165  .360 .387 .013  .259 .259 178 215 .247
100 | 200 Yo —.023  .098 .099 | —.012 .096 .096 | —.023 .097 .098 | —.080 .078 .084
Y1 022 .267 267 .082  .287 294 .040 .272 274 | —.019  .246 .246
51 —.020 .288 .288 .069  .319 .324 032 .271 272 | —.189 470 .506
400 Yo —.016 .058 .058 .008 .063 .063 | —.017 .057 .057 | —.074 .049 .054
Y1 —.013 .155 .155 045 172 174 .000  .157 157 | —.061  .143 147
B1 —.068 .178 181 .018  .192 192 | —.025  .157 158 | —.303  .266 .358

SpPpoOWL 2UNI 24NITIUW T, Y O?JlQW'DJ’Dd'Z’LU,QS
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TABLE 12. Bias, variance and mean squared error (MSE) of the model parameters when X follows a uniform distribution and the error has a normal

distribution.
Ours Lu (2010) Zhang-Peng (2007) Scolas et al. (2016)
Yo TC n Par. Bias Var MSE Bias  Var MSE Bias Var MSE Bias Var MSE
0.5 | 20 | 200 Y0 —.006 .110 110 | —.006 .113 113 | —.010 .110 .110 | —.009 .105 .105
Y1 .021  .332 .332 112 .378 .391 .051  .355 .358 .024 331 .332
B1 —.015 .182 .182 .080 .197 .203 .021  .148 148 .007 .083 .083
400 Yo .023  .048 .049 .034  .051 .052 .021  .048 .048 .024  .045 .046
Y1 —.040 138 .140 .040 .153 155 | —.024 141 142 | —.038 .138 139
b1 —.019 .083 .083 062 .088 .092 | —.001 .069 .069 | —.014 .037 .037
100 | 200 Y0 —.017  .084 .084 | —.014 .085 .085 | —.016 .084 .084 | —.018 .084 .084
Y1 034 244 .245 .038  .246 247 036  .244 .245 034  .243 244
51 .008 .114 114 .021 120 .120 .009 .107 107 .017  .061 .061
400 Y0 .026  .036 .037 .030 .037 .038 .026  .036 .037 .026  .036 .037
Y1 —.043 114 116 | —.039 .115 A17 | —.041 114 116 | —.042  .115 117
B1 —.016 .053 .053 | —.003 .054 .054 | —.007 .051 .051 | —.013 .030 .030
1 20 200 Yo .021  .140 .140 .019  .143 .143 .013  .137 137 .014  .130 .130
Y1 —.005 .406 .406 109 461 473 .029 422 423 | —.002 .385 .385
B1 —.001 .151 151 .093  .148 157 .030 .117 118 .015 .061 .061
400 Y0 .023  .065 .066 .037  .068 .069 .019  .063 .063 .022  .059 .059
Y1 —.031 .188 .189 072 215 220 | —.010 .193 193 | —.022 187 187
B1 —.012 .064 .064 .058  .069 .072 .002  .057 .057 | —.003 .034 .034
100 | 200 Y0 .006 .104 .104 .010 .104 .104 .007 .104 .104 .006 .104 .104
Y1 .004 294 .294 012  .297 207 .007  .296 .296 .003  .295 .295
b1 .017  .091 .091 032 .095 .096 .019  .086 .086 .016  .054 .054
400 Y0 026 .046 .047 .029 .046 .047 .026 .046 .047 .024  .046 .047
Y1 —.034 145 146 | —.026  .146 147 | —.031  .146 147 | —.032  .145 .146
B1 —.013 .043 .043 | —.001 .044 .044 | —.001 .042 .042 .001 .027 .027




TABLE 13. Bias, variance and mean squared error (MSE) of the model parameters when X follows a uniform distribution and the error distribution
is a mizture of Weibull distributions.

Ours Lu (2010) Zhang-Peng (2007) Scolas et al. (2016)
Yo TC n Par. Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE
0.5 | 20 | 200 Yo .001  .106 .106 .002 .107  .107 .001  .107 107 231 .209 .262
Y1 —.007  .341 .341 .013  .351 .351 .006  .350 .350 720 978 1.50
51 —.003 .011 .011 .007 .011 .011 | —.001 .010 .010 145 159 .180
400 | o .016  .045 .045 .017  .046 .046 .015  .045 .045 323 .106 .210
Y1 —.019 .144 144 .005 .148 148 | —.007  .148 .148 .540 428 .720
b1 .002  .004 .004 .007  .005 .005 .003  .005 .005 .038  .109 110
100 | 200 Yo —.021 .083 .083 | —.020 .083 083 | —.021 .083 .083 | —.016 .085 .085
Y1 .039  .246 .248 .040  .246 .248 041  .247 .249 .097  .259 .268
61 —.006 .009 .009 | —.003 .009 .009 | —.002 .009 .009 418 216 .391
400 Yo .023  .036 .037 .025  .036 .037 .023  .036 .037 .017  .039 .039
Y1 -.036 .117  .118 | —.036 .117  .118 | —.035 .117 118 .037 125 .126
B1 .001  .004 .004 .002  .004 .004 .002 .004 .004 561 118 433
1 20 200 Yo .032  .138 139 .033  .139 .140 032  .140 141 .358  .440 .568
Y1 —.029 409 410 | —.010  .428 428 | —.016  .429 429 1.15 2.58 3.90
b1 .003  .008 .008 .008 .008 .008 | —.001 .008 .008 116 .140 153
400 | o 012 .054 .054 .016 .054 .054 .012  .055 .055 418 197 .372
71 .006 .167 167 028 174 175 018 .175 175 944 1.02 1.91
b1 .004  .004 .004 .008  .004 .004 .004 .004 .004 022 .098 .098
100 | 200 | 7o .000 .102 .102 .001 .101 .101 .000 .102 102 .005  .109 .109
Y1 013 .292 .292 015  .291 291 015  .293 .293 .090 .322 .330
61 —.005 .007  .007 | —.003 .007  .007 | —.002 .007 .007 464 191 .406
400 | o 024 .045 .046 .025  .045 .046 .024  .045 .046 .019  .048 .048
Y1 —.029 .143 144 | —.026  .143 144 | —.027 144 .145 .057  .155 .158
B1 .002  .003 .003 .003 .003 .003 .003 .004 .004 585 .092 434

SpPpoOWL 2UNI 24NITIUW T, Y OfLJlQ’LLL'DJ’Dd'Z’LU,QS
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We end this Appendix with Q-Q plots for the estimated parameters Bl, 4o and
41 for the four methods, and for one setting, namely when n = 400, 7« = 20,
Yo = 0.5, X follows a binomial distribution, and the error distribution is a
mixture of two Weibull distributions.
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Fic 4. Q-Q plots for the estimated parameters B1 (first column), 4o (second column) and
A1 (third column) for the four methods: Our method (first row), Lu (2010)’s method (second
row), Zhang-Peng (2007)’s method (third row), and Scolas et al (2016)’s method (fourth row).
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