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Abstract: The continuous ranked probability score (crps) is the most
commonly used scoring rule in the evaluation of probabilistic forecasts for
real-valued outcomes. To assess and rank forecasting methods, researchers
compute the mean crps over given sets of forecast situations, based on
the respective predictive distributions and outcomes. We propose a new,
isotonicity-based decomposition of the mean crps into interpretable com-
ponents that quantify miscalibration (MCB), discrimination ability (DSC),
and uncertainty (UNC), respectively. In a detailed theoretical analysis, we
compare the new approach to empirical decompositions proposed earlier,
generalize to population versions, analyse their properties and relationships,
and relate to a hierarchy of notions of calibration. The isotonicity-based de-
composition guarantees the nonnegativity of the components and quantifies
calibration in a sense that is stronger than for other types of decomposi-
tions, subject to the nondegeneracy of empirical decompositions. We illus-
trate the usage of the isotonicity-based decomposition and miscalibration–
discrimination (MCB–DSC) plots in case studies from weather prediction
and machine learning.
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1. Introduction

Probabilistic predictions are forecasts in the form of predictive probability dis-
tributions, which ought to be as sharp as possible subject to calibration (Gneit-
ing, Balabdaoui and Raftery, 2007). Informally, predictive distributions are cal-
ibrated if they provide a statistically coherent explanation of the outcomes.
Sharpness, on the other hand, quantifies how well one can discriminate different
scenarios for future events according to the forecast and is a property of the
forecast only. For the comparative evaluation of probabilistic forecasts, proper
scoring rules should be employed (Gneiting and Raftery, 2007). A proper scor-
ing rule assigns a numerical score to a probabilistic forecast with corresponding
observed realization, and addresses calibration and sharpness simultaneously. If
we compare two competing forecasts according to their scores, it is natural to
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ask in which aspect one forecast is superior to the other. This motivates the de-
composition of average realized scores into more interpretable terms measuring
calibration, discrimination ability, and uncertainty, respectively.

Historically, the first score decomposition was introduced by Murphy (1973),
who proposed a decomposition of the mean Brier score (BS). For a sequence of
forecast–observation pairs (p1, y1), . . . , (pn, yn), consisting of predictive proba-
bilities pi ∈ [0, 1] and corresponding binary outcomes yi ∈ {0, 1}, the empirical
average Brier score

BS = 1
n

n∑
i=1

(pi − yi)2

quantifies the overall performance of the assessed forecasts based on the actual
observations. Murphy (1973) motivates a decomposition of BS into interpretable
components: a term measuring miscalibration (MCB) or reliability, a term mea-
suring discrimination ability (DSC) or resolution, and a term quantifying the
overall uncertainty (UNC) of the outcome. Originally derived as a vector parti-
tion by Murphy (1973), Siegert (2017) gives a persuasive interpretation of the
Murphy decomposition: Suppose that the forecasts p1, . . . , pn attain a small
number m of values only (m < n). For i = 1, . . . , n, consider the conditional
event probability qi, i.e., the proportion of realized binary events when the fore-
cast value was pi. Denote by BSc the empirical Brier score of the calibrated
forecasts q1, . . . , qn, and by BSr the empirical Brier score with respect to the
static reference forecast r = (1/n)

∑n
i=1 yi, namely,

BSc = 1
n

n∑
i=1

(qi − yi)2 and BSr = 1
n

n∑
i=1

(r − yi)2 . (1)

Siegert (2017) shows that the Murphy decomposition reads as

BS =
(
BS − BSc

)︸ ︷︷ ︸
MCB

−
(
BSr − BSc

)︸ ︷︷ ︸
DSC

+ BSr︸︷︷︸
UNC

. (2)

The terms MCB, DSC, and UNC of this exact decomposition reveal deeper
insight into the performance of the assessed forecasts: The predictive proba-
bilities are calibrated if they are close to their conditional event probabilities,
and hence, low values of MCB indicate a good performance in terms of calibra-
tion. A perfectly calibrated forecast sequence can be constructed by issuing the
marginal probability r over all instances. Even though perfectly calibrated, such
a sequence would not be informative, since the same predictive probability is
issued throughout. For such a sequence, we would obtain DSC = 0, which has
a negative effect on the score, whereas larger values of DSC are obtained if the
calibrated forecasts can discriminate different scenarios better than the refer-
ence forecast. Finally, the UNC component informs about the inherent difficulty
of the prediction problem and is independent of the forecasts.

The rationale behind the decomposition in (2) can be summarized as the fol-
lowing recipe: Having available a calibration method that transforms the original
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forecasts p1, . . . , pn into calibrated forecasts q1, . . . , qn, and a reference forecast
that depends on the empirical distribution of the outcomes only, one can mea-
sure miscalibration as the difference in the mean score of the original forecasts
to the calibrated ones, resulting in the MCB term, discrimination ability as the
difference in the mean score of the calibrated forecasts to the reference forecast,
resulting in the DSC term, and uncertainty as the mean score with respect to
the reference forecast, resulting in the UNC term. The CORP (Consistent, Op-
timally binned, Reproducible, and PAV algorithm based) score decomposition
suggested by Dimitriadis, Gneiting and Jordan (2021) uses this general recipe,
with the specific innovation that the calibrated forecasts q1, . . . , qn are com-
puted by applying nonparametric isotonic regression on the vector (y1, . . . , yn)
with respect to the order induced by (p1, . . . , pn). The CORP approach enforces
isotonicity between the original forecasts and the calibrated ones, which “is nat-
ural, as decreasing estimates are counterintuitive, routinely being dismissed as
artifacts by practitioners” (Dimitriadis, Gneiting and Jordan, 2021, p. 4). If we
consider, e.g., the calibrated probability over all events where we predicted a
positive outcome with probability 0.5, then we should expect this value to be
smaller than the calibrated probability over all events where we predicted a
positive outcome with probability 0.6. As hinted at by Bentzien and Friederichs
(2014), Siegert (2017), Leutbecher and Haiden (2021), and Gneiting, Lerch and
Schulz (2023), and discussed in detail by Gneiting and Resin (2023), the ideas
of the Murphy decomposition and enforced isotonicity extend to scores other
than the Brier score and general types of statistical functionals.

In this paper, we focus on the continuous ranked probability score (crps;
Matheson and Winkler, 1976). The crps is one of the most prominent scoring
rules for the evaluation of probabilistic forecasts for real-valued outcomes and
is popular across application areas and methodological communities; see, e.g.,
Gneiting et al. (2005), Hothorn, Kneib and Bühlmann (2014), Pappenberger
et al. (2015), Rasp and Lerch (2018), and Gasthaus et al. (2019). The crps is
defined in terms of any cumulative distribution function (cdf) F on R and y ∈ R,
and given by

crps(F, y) =
∫
R

(
F (z) − 1{y ≤ z}

)2 dz.

For a sequence of forecast–observation pairs (F1, y1), . . . , (Fn, yn), comprising a
predictive distribution Fi and a corresponding real-valued outcome yi, the mean
crps,

CRPS = 1
n

n∑
i=1

crps(Fi, yi) (3)

serves to quantify the overall performance of the forecasts. Possible decompo-
sitions of the mean score at (3) have been discussed in the literature, with the
most prominent approaches being introduced by Hersbach (2000) and Candille
and Talagrand (2005). These methods offer promising solutions but come with
severe limitations, which we discuss in detail in Section 2. In a nutshell, the
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Hersbach decomposition lacks a theoretical background and the desirable prop-
erty that the components of the decomposition are nonnegative, whereas the
decomposition of Candille and Talagrand (2005) is not practically feasible, as
acknowledged in their article. Another approach for decomposing the mean crps
is by exploiting its representation as an integral over Brier scores, compare (6),
and then integrating existing decompositions of BS. Similarly, the crps can be
expressed as an integral over quantile scores, see (7), and existing decomposi-
tions for quantile scores can be leveraged to decompose the mean score at (3).
However, these approaches have the drawback that miscalibration and discrim-
ination ability are not measured with respect to the full probabilistic forecasts
but only with respect to individual threshold or quantile levels.

In this article, we propose a new decomposition of the mean crps based on Iso-
tonic Distributional Regression (IDR; Henzi, Ziegel and Gneiting, 2021). In the
case of binary outcomes, Dimitriadis, Gneiting and Jordan (2021) argue that
isotonicity between the original and the calibrated probabilities is a natural
constraint, as it implies the preservation of the order structure in the transition
from the original to the calibrated forecasts. This argument generalizes to the
real-valued setting, since it is natural to assume that the conditional law of the
outcome, given the forecast, should tend to be small (large) if the predictive
distribution is small (large), where notions of small and large are understood
with respect to the usual stochastic order. IDR is a nonparametric distributional
regression technique that honors the shape constraint of isotonicity. Applying
IDR to the data (F1, y1), . . . , (Fn, yn) yields calibrated forecasts, whereas the
marginal distribution of the outcomes y1, . . . , yn serves as static reference fore-
cast. The general recipe of the Murphy decomposition at (1) and (2) then yields
mean scores for the calibrated forecast and the reference forecast, respectively,
and a corresponding exact decomposition,

CRPS = MCBISO − DSCISO + UNC0,

of the mean crps at (3), to which we refer as the isotonicity-based decomposi-
tion. The isotonicity-based approach guarantees the nonnegativity of the three
components, and the miscalibration term admits a persuasive interpretation in
terms of calibration. Importantly, our method yields meaningful decompositions
if sufficiently many pairs of the raw forecasts F1, . . . , Fn are comparable under
the stochastic (partial) order. This condition may be restrictive, and we develop
and discuss remedies for this limitation.

While for binary events there is a universal notion of calibration (Gneiting
and Ranjan, 2013, Theorem 2.11), for real-valued random outcomes distinct no-
tions of calibration are found in the literature (Dawid, 1984; Diebold, Gunther
and Tay, 1998; Strähl and Ziegel, 2017; Arnold, Henzi and Ziegel, 2023), as re-
viewed by Gneiting and Resin (2023). The strongest notion is auto-calibration
and, ideally, one would like to measure miscalibration as deviation from auto-
calibration, as targeted by the decomposition of Candille and Talagrand (2005).
However, the Candille–Talagrand approach yields degenerate empirical decom-
positions. Therefore, we quantify miscalibration as the deviation from isotonic
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calibration, as introduced by Arnold and Ziegel (2024) in a study of the pop-
ulation version of IDR. Isotonic calibration is closer to auto-calibration than
the notions of calibration targeted by the Hersbach decomposition, or by the
aforementioned decompositions based on Brier or quantile scores.

We would like to clarify that in context of forecast evaluation, the term
‘calibration’ is used in at least two distinct, though related, senses. In a first
sense the term ‘calibration’ refers to the statistical consistency between forecasts
and outcomes as in the previous paragraph. In a second sense, the very same
term ‘calibration’ – or, perhaps more adequately, ‘re-calibration’ – refers to the
process of adjusting (improving) a forecast in such a way that the adjusted
(improved) forecast is ‘calibrated’ in the first sense.

The remainder of the paper is organized as follows. Section 2 reviews the pre-
viously proposed decompositions and their properties. In Section 3, we develop
the empirical version of the new isotonicity-based decomposition, followed by a
thorough study of the population versions of the various types of decomposition
and their properties in Section 4, with particular emphasis on calibration. In
Section 5, we apply the proposed isotonicity-based decomposition in case studies
from meteorology and machine learning, and we propose a succinct graphical
way of comparing competing forecast methods in miscalibration–discrimination
(MCB–DSC) plots. The main part of the paper closes with a discussion in Sec-
tion 6. Proofs, technical comments, and a series of detailed analytic examples
in population settings are available in Appendices A through F.

Replication materials and code in R (R Core Team, 2023) for the computa-
tion of the isotonicity-based decomposition and MCB–DSC plots are publicly
available at repositories (Walz, 2022, 2023).

2. Previously proposed empirical decompositions

2.1. Preliminaries

Throughout the article, we denote by P(R) the class of all probability distribu-
tions on R with finite first moment. We treat its elements interchangeably as
probability measures or cumulative distribution functions (cdfs).

Single-valued forecasts for functionals of an unknown quantity should be
compared using consistent scoring functions (Gneiting, 2011). For example, the
quadratic score s(x, y) = (x− y)2, and the piecewise linear quantile score

qsα(x, y) = (1{y ≤ x} − α) (x− y), (4)

where x, y ∈ R, are consistent scoring functions for the mean functional, and
for the quantile at level α ∈ (0, 1), respectively. In other words,

∫
(x− y)2 dF (y)

is minimal when x is the mean of F ∈ P(R), and
∫

qsα(x, y) dF (y) is minimal
when x is a quantile of F at level α ∈ (0, 1).

Probabilistic forecasts specify a probability measure over all possible values
of the outcome, and predictive performance ought to be be compared and evalu-
ated using proper scoring rules (Gneiting and Raftery, 2007). A popular proper
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scoring rule for probability forecasts of a binary outcome is the Brier score

sB(p, y) = (p− y)2, (5)

where p ∈ [0, 1] and 1 − p are the predicted probabilities of the outcomes y = 1
and y = 0, respectively. A key example of a proper scoring rule for predictive
distributions over R is the continuous ranked probability score (crps), defined for
all F ∈ P(R) and y ∈ R, and given equivalently by

crps(F, y) =
∫

sB(F (z),1{y ≤ z}) dz (6)

=
∫ 1

0
qsα(F−1(α), y) dα, (7)

where sB and qsα are defined at (5) and (4), respectively, and where F−1 denotes
the quantile function defined as F−1(α) = inf{z ∈ R | F (z) ≥ α} for α ∈ (0, 1).
The representation at (7) is due to Laio and Tamea (2007).

We consider a collection

(F1, y1), . . . , (Fn, yn) (8)

of tuples that comprise a forecast Fi ∈ P(R) in the form of a cdf and the
respective outcome yi ∈ R, where i = 1, . . . , n. Our aim is to decompose the
empirical mean score,

CRPS = 1
n

n∑
i=1

crps(Fi, yi), (9)

of the forecast–observation pairs at (8) into three distinct components, namely,
miscalibration (MCB), discrimination (DSC), and uncertainty (UNC). The fol-
lowing desirable properties are relevant.

(E1) The decomposition is exact, i.e.,

CRPS = MCB − DSC + UNC.

(E2) The components MCB, DSC, and UNC are nonnegative.
(E3) The decomposition is not degenerate. Here, a decomposition is degenerate

if MCB = CRPS whenever F1, . . . , Fn are pairwise distinct.
(E4) The DSC component vanishes if F1 = · · · = Fn.
(E5) The UNC component can be expressed in terms of the empirical distribu-

tion of the outcomes y1, . . . , yn.

These conditions do not depend on the use of any specific scoring rule; they
are desirable for decompositions of mean scores in general. An exact decompo-
sition (E1) is desirable, since it allows us to fully decompose the mean score. A
degenerate decomposition is undesirable, as in typical practice, such as in the
case studies in Section 5, the issued forecast distributions are pairwise distinct,
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and then the method is useless. A static forecast, i.e., F1 = · · · = Fn, has no
discrimination ability, hence E4 is desirable. Requirement E5 is natural since
intrinsic uncertainty does not depend on the activities of forecasters.

Finally, we argue that there ought to be a population version of the decom-
position that applies to any admissible joint distribution P of tuples (F, Y ).
Furthermore, the population version ought to reduce to the empirical version if
P is the empirical measure for the data at (8). We study decompositions at the
population level in Section 4.

In what follows, let δy denote the Dirac or point measure in y ∈ R, and let
the marginal law F̂mg = 1

n

∑n
i=1 δyi denote the empirical distribution of the

outcomes y1, . . . , yn. All decompositions studied in the following quantify un-
certainty via the mean score of the static forecast F̂mg, and for ease of reference
we define

UNC0 = CRPSmg = 1
n

n∑
i=1

crps(F̂mg, yi). (10)

2.2. Candille–Talagrand decomposition

Candille and Talagrand (2005) naturally extend the idea of the Murphy decom-
position at (2). To describe their approach, let F̂i be the auto-calibrated version
of the forecast Fi in (8), i.e., let F̂i be the normalized version of

∑n
j=1 1{Fj =

Fi} δyj for i = 1, . . . , n, and let

CRPSac = 1
n

n∑
i=1

crps(F̂i, yi)

be the mean score of the auto-calibrated forecast. Candille and Talagrand (2005)
define miscalibration and discrimination components as

MCBCT = CRPS − CRPSac and DSCCT = CRPSmg − CRPSac, (11)

respectively, to yield the Candille–Talagrand (CT) decomposition

CRPS = MCBCT − DSCCT + UNC0. (12)

The Candille–Talagrand decomposition tackles the core idea of auto-calibration
and satisfies properties E1, E2, E4, and E5, but fails to satisfy the nondegeneracy
condition E3, which prohibits its practical use.

To avoid a degenerate decomposition, one might partition the forecasts into
equivalence classes of cdfs that are considered identical when calibrating (Can-
dille and Talagrand, 2005, p. 2147). However, the choice of such a partition is
challenging and the decomposition depends on its effects, akin to the effects of
binning on the Murphy decomposition and the classical reliability diagram for
probability forecasts of a binary event as described by Dimitriadis, Gneiting and
Jordan (2021) and references therein.
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2.3. Brier score based decomposition

The Brier score based representation of individual crps values at (6) implies
that

CRPS = 1
n

n∑
i=1

crps(Fi, yi) =
∫ ∞

−∞
BSz dz, (13)

where

BSz = 1
n

n∑
i=1

sB(Fi(z),1{yi ≤ z}).

In this light, a natural way of decomposing CRPS lies in integrating a given
decomposition of the mean Brier score, as proposed and implemented by Ferro
and Fricker (2012), Tödter and Ahrens (2012), and Lauret, David and Pinson
(2019), among other authors.

Specifically, suppose that, for each z ∈ R, there is a decomposition BSz =
MCBBS,z − DSCBS,z + UNCBS,z of the mean Brier score. Then we can define

MCBBS =
∫ ∞

−∞
MCBBS,z dz, DSCBS =

∫ ∞

−∞
DSCBS,z dz, (14)

and

UNCBS =
∫ ∞

−∞
UNCBS,z dz. (15)

The CORP approach of Dimitriadis, Gneiting and Jordan (2021) yields a com-
pelling decomposition of the mean Brier score, which does neither require tun-
ing, nor binning of the assessed predictive probabilities, and enforces the natural
shape constraint of isotonicity between the predictive probabilities and the cal-
ibrated forecasts. Throughout this article, we decompose the mean Brier score
by the CORP approach and refer to the induced decomposition, namely,

CRPS = MCBBS − DSCBS + UNCBS, (16)

as the Brier score based (BS) decomposition of CRPS. Details of this approach
are reviewed in Appendix A.1, where we prove the following result.

Proposition 2.1. For the Brier score based decomposition at (16) it holds that
UNCBS = UNC0, and the decomposition satisfies properties E1, E2, E3, E4,
and E5.

Despite these favorable properties, the Brier score based decomposition is
subject to shortcomings and inconsistencies, due to the isolated treatment of
probability forecasts at fixed thresholds. For discussion, we refer the reader to
Section 2.6 and Appendix A.
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2.4. Quantile score based decomposition

In view of the quantile score representation of the crps at (7), a natural approach
to decomposing the mean score CRPS leverages decompositions of the mean
quantile score at (4). Specifically, the quantile score representation implies that

CRPS = 1
n

n∑
i=1

crps(Fi, yi) =
∫ 1

0
QSα dα,

where

QSα = 1
n

n∑
i=1

qsα(F−1
i (α), yi).

Suppose that for each α ∈ (0, 1), there is a decomposition QSα = MCBQS,α −
DSCQS,α + UNCQS,α of the mean quantile score, and define MCBQS as the in-
tegral of MCBQS,α over α ∈ (0, 1), and similarly for the discrimination and un-
certainty components. The CORP score decomposition of Dimitriadis, Gneiting
and Jordan (2021) and its core idea of isotonicity as a shape constraint between
issued and calibrated forecasts extend naturally to quantiles, as discussed by
Gneiting and Resin (2023, Section 3.3) and Gneiting et al. (2023, Section 3.3).
Throughout the article, we decompose the mean quantile score by the CORP
approach and refer to the resulting decomposition, namely,

CRPS = MCBQS − DSCQS + UNCQS, (17)

as the quantile score based (QS) decomposition of CRPS. For details, we refer
the reader to Appendix A.2 where we prove the following result.

Proposition 2.2. For the quantile score based decomposition at (17) it holds
that UNCQS = UNC0, and the decomposition satisfies properties E1, E2, E3,
E4, and E5.

The quantile score based decomposition is subject to shortcomings in analogy
to the issues with the Brier score based approach, due to the reliance on quantile
forecasts at fixed levels; for further discussion see Section 2.6 and Appendix A.

2.5. Hersbach decomposition

The decomposition of Hersbach (2000) applies specifically to ensemble forecasts
and operates under the implicit assumption of a continuous outcome. For the
data at (8), assume that, for i = 1, . . . , n, the forecast Fi is the empirical cdf of
a fixed number m of values xi

1 ≤ · · · ≤ xi
m, where we allow for any real-valued

outcome yi, in contrast to Hersbach (2000), who assumes that yi �∈ {xi
1, . . . , x

i
m}.

Figure 5 in Appendix B illustrates in detail how the case yi ∈ {xi
1, . . . , x

i
m}

should be handled in the Hersbach decomposition.
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The miscalibration component, which Hersbach (2000) refers to as reliability,
is

MCBHBo =
m∑
�=0

ḡ� (p� − ō�)2 ,

where p� = �/m for � = 0, . . . ,m, and ḡ� is the average distance from xi
� to xi

�+1,
i.e.,

ḡ� = 1
n

n∑
i=1

(xi
�+1 − xi

�) (18)

for � = 1, . . . ,m− 1. The term ō� can be interpreted as an approximate version
of the average frequency of an outcome below the midpoint of the interval from
xi
� to xi

�+1; specifically, ō� = f̄� − m̄�, where

f̄� = 1
nḡ�

n∑
i=1

1{Fi(yi) ≤ p�} (xi
�+1 − xi

�) (19)

and m̄� = (1/(nḡ�))
∑n

i=1 1{xi
� < yi < xi

�+1} (yi − xi
�) for � = 1, . . . ,m − 1. To

complete the specification, we let

ō0 = 1
n

n∑
i=1

1{yi < xi
1} and ōm = 1

n

n∑
i=1

1{xi
m < yi},

and if these quantities are nonzero then we let

ḡ0 = 1
nō0

n∑
i=1

1{yi < xi
1} (xi

1 − yi) and ḡm = 1
nōm

n∑
i=1

1{xi
m < yi} (yi − xi

m),

respectively. The miscalibration component thus measures deviations from uni-
formity for the rank histogram of an ensemble forecast (Hamill, 2001; Gneiting,
Balabdaoui and Raftery, 2007).

Hersbach (2000) defines the resolution (in our terminology, the discrimina-
tion) component DSCHBo = MCBHBo + UNC0 − CRPS as the remainder, to
complete the original Hersbach (HBo) decomposition

CRPS = MCBHBo − DSCHBo + UNC0. (20)

For reasons that will become evident in Section 4.4, we introduce a slightly
modified miscalibration component,

MCBHB =
m−1∑
�=1

ḡ�
(
p� − f̄�

)2
, (21)

and a respectively modified discrimination component, DSCHB = MCBHB +
UNC0 − CRPS, to yield the modified Hersbach, or simply Hersbach (HB) de-
composition,

CRPS = MCBHB − DSCHB + UNC0. (22)
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The interpretation of the miscalibration component remains unchanged, as the
MCBHB and MCBHBo terms differ only slightly, with f̄� in (21) being the ap-
proximate frequency (19) of an outcome yi less than or equal to xi

�+1. For a
more detailed comparison and the proof of the following result, we refer the
reader to Appendix B.

Proposition 2.3. The original and modified Hersbach decompositions at (20)
and (22), respectively, satisfy properties E1, E3, and E5, while properties E2
and E4 fail to hold.

As discussed thus far, the Hersbach decomposition requires that the forecasts
assume the form of an ensemble. Further shortcomings have been discussed in
the literature (Siegert, 2017); in particular, it has been noted that the discrim-
ination component DSCHBo is defined “somewhat artificially” (Hersbach, 2000,
p. 565) and that it can be negative, thus violating property E2. The original
Hersbach decomposition has been extended by Lalaurette so that it applies
to forecasts with strictly increasing cdfs (Candille and Talagrand, 2005, Ap-
pendix A). We discuss and generalize Lalaurette’s extension in Section 4.4, and
our analysis demonstrates that the extensions can more naturally be interpreted
as extensions of the modified Hersbach decomposition at (22). In Appendix D
we describe empirical versions that apply in the general case of forecast distri-
butions with finite support, and to mixed discrete-continuous distributions for
nonnegative quantities, respectively.

2.6. Comparison and discussion

For an initial comparison of the different decompositions, we consider fore-
casts from the case studies in Section 5. The decompositions from Sections 2.2
through 2.5 all use the uncertainty component UNC0 at (10), and they specify
the discrimination component as

DSC• = CRPS − MCB• − UNC0,

where • indicates the type of decomposition, namely, the Candille–Talagrand
(CT), the Brier score based (BS), the quantile score based (QS), or the modified
Hersbach (HB) decomposition.

Table 1 displays the mean score CRPS, the uncertainty component UNC0,
and the various MCB• terms for the ENS forecast of precipitation accumu-
lation at Frankfurt Airport, as studied in our Section 5.1 and Henzi, Ziegel
and Gneiting (2021), and the EasyUQ forecasts for the Boston Housing and
Wine data, as considered in our Section 5.2 and Walz et al. (2024). The ENS
forecast is an ensemble forecast with m = 52 members and so the Hersbach
decomposition at (20) applies; for the EasyUQ forecasts, we apply the general-
ized formula (46) from Appendix D. For the first two examples in the table, it
holds that CRPS = MCBCT > MCBQS > MCBBS > MCBHB, where the initial
equality reflects the degeneracy of the Candille–Talagrand decomposition. In
our experience, this chain of relations holds in many, though not all, empirical
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Table 1

Candille–Talagrand (CT), quantile score based (QS), Brier score based (BS), and Hersbach
(HB) decomposition of the mean score CRPS, as applied to the one-day ahead raw ensemble

(ENS) forecast of precipitation accumulation at Frankfurt Airport (Section 5.1), and the
EasyUQ forecast for the Boston and Wine data, respectively (Section 5.2).

Forecast CRPS MCBCT MCBQS MCBBS MCBHB UNC0

ENS 0.75 0.75 0.18 0.16 0.08 1.21
EasyUQ (Boston) 1.75 1.75 0.72 0.57 0.36 4.76
EasyUQ (Wine) 0.35 0.35 0.04 0.07 0.08 0.43

examples. However, as we state in further generality at (26) and in Corollary 4.6,
it always holds that CRPS ≥ MCBCT ≥ max{MCBBS,MCBQS}.

While the Candille–Talagrand decomposition seems attractive and preferable
from theoretical perspectives, the degeneracy prohibits its practical use. The
Hersbach decomposition has been popular in the specific setting of ensemble
forecasts, but has serious shortcomings including but not limited to the pos-
sibility of a negative discrimination component. The Brier score and quantile
score based decompositions have desirable properties, but they define the com-
ponents of the decomposition in terms of isolated functionals (probabilities and
quantiles, respectively) rather than the entire predictive distributions, which
is “unsatisfactory” (Ferro and Fricker, 2012, p. 1958) and entails the artifacts
described in Remarks A.1 and A.2, respectively. Furthermore, it is not obvious
whether the Brier score based or the quantile score based decomposition ought
to be preferred. In this light, there remains the need for a decomposition that
is both practically feasible and theoretically justifiable and appealing.

3. Empirical isotonicity-based decomposition

We propose a method that builds on the idea of the Candille–Talagrand de-
composition, but replaces auto-calibration with a slightly weaker notion of cali-
bration, namely, isotonic calibration. The resulting isotonicity-based decompo-
sition, which we develop in this section, can be interpreted as a nondegenerate
approximation to the Candille–Talagrand decomposition.

3.1. Empirical isotonicity-based decomposition

Recall that we denote by P(R) the class of the probability distributions on R

with finite first moment. For cdfs F,G, F is stochastically smaller than or equal
to G, for short F ≤st G, if F (x) ≥ G(x) for all x ∈ R. The stochastic order
defines a partial order on P(R) and we refer to Müller and Stoyan (2002) and
Shaked and Shanthikumar (2007) for comprehensive studies.

In the spirit of the Candille–Talagrand decomposition, a calibration tool
ought to be applied to the assessed forecasts F1, . . . , Fn from (8), and we pro-
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pose that this tool be isotonic distributional regression (IDR; Henzi, Ziegel and
Gneiting, 2021). IDR is a nonparametric distributional regression method under
the shape constraint of isotonicity between covariates and responses: For train-
ing data consisting of covariates x1, . . . , xn in a partially ordered set (X ,�) and
real-valued responses y1, . . . , yn, Henzi, Ziegel and Gneiting (2021) prove that
there exists a unique minimizer of the criterion

1
n

n∑
i=1

crps(Pi, yi) (23)

in the space of the n-tuples (P1, . . . , Pn) of cdfs that satisfy Pi ≤st Pj if xi � xj

and Pi = Pj if xi = xj for i, j = 1, . . . , n, and we refer to this minimizer as the
IDR solution.

The constraint of isotonicity between the assessed and the calibrated forecasts
is natural, and hence, we apply IDR to the data (F1, y1), . . . , (Fn, yn) at (8),
where the covariates are F1, . . . , Fn and the partial order on the covariate space
is the stochastic order. Let F̌1, . . . , F̌n denote the calibrated forecasts that are
obtained by using IDR, let

CRPSISO = 1
n

n∑
i=1

crps(F̌i, yi) (24)

denote the mean score of the calibrated forecasts, let the marginal forecast F̂mg
and its mean score UNC0 = CRPSmg be defined as at (10), and let

MCBISO = CRPS − CRPSISO and DSCISO = CRPSmg − CRPSISO.

Then the isotonicity-based (ISO) decomposition

CRPS = MCBISO − DSCISO + UNC0 (25)

differs from the Candille–Talagrand decomposition at (11) by the choice of the
calibration method only, as it draws on the slightly weaker notion of isotonic
calibration in lieu of auto-calibration. The isotonicity-based decomposition has
desirable and appealing properties, as follows.

Proposition 3.1. The isotonicity-based decomposition at (25) satisfies E1, E2,
E3, E4, and E5. Furthermore, MCBISO = 0 if, and only if, Fi = F̌i for i =
1, . . . , n, and DSCISO = 0 if, and only if, F̌i = F̂mg for i = 1, . . . , n.

Proof. By definition, the isotonicity-based decomposition satisfies properties E1
and E5. The IDR solution is the unique minimizer of the criterion (23) over all
n-tuples of distributions (P1, . . . , Pn) that are stochastically ordered with the
same order relations as the covariates. Therefore, (F1, . . . , Fn) is an admissible
n-tuple of distributions in the minimization problem, whence MCBISO ≥ 0. A
further admissible n-tuple in the minimization problem is the constant n-tuple
with entries F̂mg, whence DSCISO ≥ 0, so E2 is satisfied. The examples in the
case study in Section 5 imply that the isotonicity-based decomposition satisfies
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E3. Assume now that F1 = · · · = Fn. Then we obtain F̂mg as the IDR solution,
whence DSCISO = 0, so E4 is satisfied. Finally, if MCBISO = 0 then Fi = F̌i,
since IDR is the unique minimizer of the criterion at (23), and analogously, if
DSCISO = 0 then F̌i = F̂mg for i = 1, . . . , n.

In the pure form presented thus far, the isotonicity-based decomposition is
fully automated in the sense that it does not involve any tuning parameter. For
the examples in Table 1, MCBISO equals 0.34, 0.80, and 0.072, respectively, and
so MCBISO is larger than MCBBS (which equals 0.068 in the third example)
and MCBQS and smaller than the essentially useless MCBCT = CRPS term. As
we demonstrate in Section 4.5, it is always true that

CRPS ≥ MCBCT ≥ MCBISO ≥ max{MCBBS,MCBQS}. (26)

In view of these theoretical guarantees in concert with its non-degeneracy and
generality, we contend that the isotonicity-based method is more compelling
than the Brier score or quantile score based decompositions.

3.2. Computational implementation

When the predictive distributions are empirical distributions, stochastic order
relations can be found by comparing the cdfs at a finite number of real numbers,
namely, the respective jump points. If the predictive distributions are paramet-
ric, analytical results in terms of the parameters may be available; see, e.g.,
Shaked and Shanthikumar (2007) and the proof of Proposition 1 in Gneiting
and Vogel (2022).

In relevant applications, the stochastic order in its pure form might be too
strong for our purposes, since it does not allow for crossings of the forecast
cdfs. For example, for Gaussian forecasts F = N (μ, σ2) and G = N (ν, τ2),
F and G only order with respect to the stochastic order in case of σ = τ , a
condition which is rarely satisfied if parameters are estimated from data.1 Gen-
erally, if F and G are members of a location-scale family, they are stochastically
ordered if, and only if, they have equal scale parameter, subject to minimal
conditions. If only very few forecasts in the dataset are comparable with respect
to the stochastic order, applying IDR results in calibrated forecasts that are
close to Dirac measures in the corresponding observations. Hence, in principle,
the isotonicity-based decomposition faces the same problem as the Candille–
Talagrand decomposition in this setting. However, we argue that there is a
convincing remedy to the issue.

Consider settings where only few of the predictive distributions Fi in the
collection at (8) are comparable with respect to the stochastic order. Frequently,

1For an explicit example, consider the Laplace method in Section 5.2, where the predictive
distributions are Gaussian with estimated mean and estimated variance. Therefore, there
are no pairs of comparable cdfs in the pure form of the isotonicity-based decomposition.
However, if the approximate implementation proposed in this section is applied, the fraction
of comparable cdfs rises to values of about 0.90 and higher, depending on the dataset.
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predictive distributions fail to order due to crossings of the cdfs in a far tail.
Recent work by Brehmer and Strokorb (2019) and Taillardat et al. (2023) casts
doubt on the ability of the average crps to distinguish tail behaviour of the
forecast distribution, which provides support for the evaluation of the forecasts
on a bounded interval only. Motivated by these findings, instead of decomposing
the original mean score CRPS as given in (9), we decompose

CRPS(a,b) = 1
n

n∑
i=1

crps(F̃ (a,b)
i , yi), (27)

where for lower and upper threshold values a ≤ min{y1, . . . , yn} and b ≥
max{y1, . . . , yn}, respectively,

F
(a,b)
i (x) =

⎧⎪⎨
⎪⎩

0, x < a,

Fi(x), x ∈ [a, b),
1, x ≥ b,

(28)

for i = 1, . . . , n. Given an error tolerance ε > 0, we determine the thresholds a
and b such that the condition∣∣∣CRPS − CRPS(a,b)

∣∣∣ = CRPS − CRPS(a,b)
< ε (29)

is satisfied, where the equality holds since CRPS ≥ CRPS(a,b). Condition (29)
is equivalent to

I(a, b) = 1
n

n∑
i=1

(∫ a

−∞
Fi(x)2 dx +

∫ ∞

b

(1 − Fi(x))2 dx
)

< ε.

A simple method for determining the thresholds a and b to be used in (28) is de-
scribed in Algorithm 1. If the support of the predictive distributions is bounded
from above or below (e.g., in the case of precipitation accumulations, which are
necessarily nonnegative), it is natural to set a or b equal to the respective bound
(e.g., a = 0 for precipitation accumulations).

Algorithm 1 Determination of thresholds a, b from data (F1, y1), . . . , (Fn, yn).
1: ε = CRPS/1000
2: a = min{y1, . . . , yn} and b = max{y1, . . . , yn}
3: if I(a, b) ≥ ε then
4: δ = (b− a)/100
5: while I(a, b) ≥ ε do
6: a = a− δ and b = b + δ
7: end while
8: end if
9: return a, b

The computation of this modified isotonicity-based decomposition remains of
complexity O(n2). Furthermore, the following result shows that, even with the
approximation, theoretical guarantees from (26) continue to hold.
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Proposition 3.2. Let CRPS = MCBISO − DSCISO + UNC0 = MCBBS −
DSCBS + UNC0 denote decompositions for data (F1, y1), . . . , (Fn, yn), and let

CRPS(a,b) = MCB(a,b)
ISO − DSC(a,b)

ISO + UNC0 = MCB(a,b)
BS − DSC(a,b)

BS + UNC0

denote the respective decompositions for modified data (F (a,b)
1 , y1), . . . , (F (a,b)

n ,
yn), where F

(a,b)
1 , . . . , F

(a,b)
n derive from F1, . . . , Fn as in (28). Then I(a, b) =

CRPS − CRPS(a,b)
< ε implies that

MCBISO ≥ MCB(a,b)
ISO ≥ MCB(a,b)

BS > MCBBS − ε. (30)

Proof. The properties of the IDR solution imply CRPSISO ≤ CRPS(a,b)
ISO ≤

CRPS(a,b) ≤ CRPS, and we conclude that

MCBISO = CRPS − CRPSISO ≥ CRPS(a,b) − CRPS(a,b)
ISO = MCB(a,b)

ISO .

To complete the proof, we apply the inequality (26) to the modified data to
yield MCB(a,b)

ISO ≥ MCB(a,b)
BS , and we note that a ≤ min{y1, . . . , yn} and b ≥

max{y1, . . . , yn}, whence MCBBS − MCB(a,b)
BS = I(a, b) < ε.

Assume that the predictive cdfs belong to a location-scale family with full
support, i.e., there exists a distribution F0 ∈ P(R) with full support on R such
that for i = 1, . . . , n and x ∈ R, Fi(x) = F0((x−μi)/σi) for some location μi ∈ R

and scale σi > 0. Then for any i, j = 1, . . . , n, the stochastic order relations
between the modified distributions can be obtained based on the parameters
(Gneiting and Vogel, 2022, proof of Proposition 1), in that

F
(a,b)
i ≤st F

(a,b)
j

if, and only if, μi ≤ μj and either σi = σj or (μiσj − μjσi)/(σj − σi) /∈ [a, b]. In
more complex but not uncommon situations, e.g., when the predictive distribu-
tions are mixtures of Gaussians, it may be hard to decide analytically whether or
not there is a stochastic dominance relation between any two such distributions.
A remedy is then to numerically evaluate and compare the cdfs on a suitably
chosen grid of threshold values. As a default we suggest and use an equidistant
grid from a to b of size 5000. As long as the grid is sufficiently dense, order re-
lations hardly ever change with the size of the grid, as experimental experience
demonstrates.

In order to increase the number of comparable pairs amongst F1, . . . , Fn, it
may also appear natural to exchange the stochastic order with a weaker partial
order on P(R), rather than restricting the support of the predictive distributions
to a bounded interval [a, b] ⊆ R. However, we show in Appendix C that isotonic
calibration is generally only compatible with the stochastic order. Therefore,
the stochastic order is the only valid choice of a partial order if IDR is applied
to generate a calibrated forecast for an isotonicity-based approach in the spirit
of the Candille–Talagrand decomposition.
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Table 2

Properties of the empirical Candille–Talagrand (CT), isotonicity-based (ISO), Brier score
based (BS), quantile score based (QS), and Hersbach (HB) decomposition of the mean crps.
For properties E1, . . . , E5 see Section 2.1. Computational complexity is quantified via a

lower bound to the number of floating point operations in terms of the sample size n at (8).

E1 E2 E3 E4 E5 Complexity

CT ✓ ✓ ✗ ✓ ✓ O(n)
ISO ✓ ✓ ✓ ✓ ✓ O(n2)
BS ✓ ✓ ✓ ✓ ✓ O(n2 logn)
QS ✓ ✓ ✓ ✓ ✓ O(n2 logn)
HB ✓ ✗ ✓ ✗ ✓ O(n)

We emphasize that we employ the approximations described in this section
only when the predictive distributions have an absolutely continuous compo-
nent. If the predictive distributions are discrete the pure form of the decompo-
sition from Section 3.1 suffices. The pure form also suffices when it is known
a priori that every single pair orders, e.g., when the predictive distributions
are members of a location family with pairwise distinct centers. For illustration
we refer the reader to our case studies and the penultimate paragraphs in Sec-
tions 5.1 and 5.2, respectively, where we indicate the use of the pure versus the
approximate implementation.

Table 2 summarizes properties of the empirical isotonicity-based decompo-
sition in a comparison to the types of decomposition from Section 2. For the
statements of properties E1, . . . , E5 we refer the reader to Section 2.1. The prop-
erties quoted for the isotonicity-based decomposition apply both to the pure and
to the approximate implementation; for the latter, property E1 is understood
relative to the modified score at (27).

Computational complexity is quantified in floating point operations in terms
of the number n of tuples (Fi, yi) at (8). Concerning the isotonicity-based decom-
position, the determination of the pairwise stochastic order relations between the
distributions F1, . . . , Fn requires O(n2) operations. As IDR can be implemented
in at most O(n2) operations (Henzi, Ziegel and Gneiting, 2021; Henzi, Mösching
and Dümbgen, 2022), the computation of the isotonicity-based decomposition
is of complexity O(n2). In contrast, the Brier score based and quantile score
based decompositions require at least O(n) sortings of n real-valued quantities
(cf. Appendices A.1 and A.2) and, hence, the implementation is of complexity
at least O(n2 logn).

4. Population level analysis

In this section, we present population level versions of all decompositions which
we have discussed so far, and we analyse their relations to notions of calibration.
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The population quantity to be decomposed is the expected score

E crps(F, Y ), (31)

where the expectation is with respect to the joint law P of the random tuple
(F, Y ) on a probability space (Ω,F ,P), where F is a cdf-valued random quantity,
which we interpret as the forecast, and the random variable Y is the real-valued
outcome. Under simple conditions, which we state in Section 4.4, the expectation
at (31) is finite. For subsequent use, we assume the existence of a standard
uniform variable U on (Ω,F ,P), which is independent of (F, Y ). Evidently, if P
is the empirical distribution for the data at (8) the expectation at (31) reduces
to the mean score CRPS from (9).

In all types of decompositions the population version of the uncertainty com-
ponent is the expected score

UNC0 = E crps(Fmg, Y ) (32)

of the marginal law Fmg of Y . Again, the expectation is with respect to P, and
if P is the empirical distribution of the data at (8) then (32) reduces to (10). In
this light, the decompositions at the population level read

E crps(F, Y ) = MCB• − DSC• + UNC0,

where • indicates the type, namely, CT, BS, QS, HB, or our new ISO. Therefore,
it suffices to specify the miscalibration component MCB•; the discrimination
component is deduced as DSC• = MCB• + UNC0 − E crps(F, Y ).

4.1. Desiderata for decompositions at the population level

We adapt the desirable properties E1 through E5 for decompositions of a mean
score from Section 2.1 to the population setting, as follows.

(P1) The decomposition is exact.
(P2) The components MCB, DSC, and UNC are nonnegative.
(P3) The MCB component vanishes if, and only if, the forecast is calibrated in

a well defined sense.
(P4) The DSC component vanishes if the forecast is static, i.e., there is an

F0 ∈ P(R) such that F = F0 almost surely.
(P5) The UNC component only depends on the unconditional distribution Fmg

of the outcome.

The following property P0 formalizes the natural reduction condition intro-
duced and formulated at the end of Section 2.1.

(P0) When the joint law P is an empirical measure, MCB, DSC, and UNC
reduce to the empirical components MCB, DSC, and UNC, respectively.

Evidently, in concert with P0 properties P1 and P2 are direct counterparts of
properties E1 and E2, respectively. Concerning P3, a notion of forecast calibra-
tion has to be specified. In the special case of a binary outcome, there is a unique,
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clear-cut notion of calibration (Gneiting and Ranjan, 2013, Theorem 2.11). Here,
we consider the case of a real-valued outcome, for which numerous notions of
calibration exist (Gneiting and Resin, 2023), which we discuss in Section 4.3.
Auto-calibration is the strongest such notion, but typically cannot be used in
practice. Indeed, it turns out that E3 and P3 represent two sides of the same coin,
in the sense that if a decomposition satisfies P3 with respect to the strongest
notion of auto-calibration, then E3 is violated and the decomposition becomes
degenerate. Conversely, if we wish for E3 to hold, we ought to consider notions
of calibration for P3 that are weaker than auto-calibration. Requirement P4
is natural, since a static forecast has no discrimination ability at all. Finally,
property P5 is motivated by the observation that intrinsic uncertainty does not
depend on the forecast; evidently, the criterion is satisfied by UNC0 at (32).

4.2. Isotonic conditional expectations and laws

The population versions of the isotonicity-based, Brier score based, and quantile
score based decompositions rely on conditional expectations given σ-lattices and
isotonic conditional laws. We give a short overview of the necessary concepts
and refer to Arnold and Ziegel (2024) for further details. Readers not familiar
with measure theory might skip the current section and intuitively think of the
conditional expectation and the conditional law of a random variable Y given
a σ-lattice A, which we denote E(Y | A) and PY |A, respectively, as classical
conditional expectations and laws under the constraint of isotonicity.

Consider the probability space (Ω,F ,P). A subset A ⊆ F is a σ-lattice if it is
closed under countable unions and intersections and Ω, ∅ ∈ A. Let A ⊆ F be a
σ-lattice and let X and Z be integrable random variables defined on (Ω,F ,P).
We call X A-measurable if {X > x} ∈ A for all x ∈ R and define the σ-lattice
generated by X, denoted by L (X), as the smallest σ-lattice which contains
{X > x} for all x ∈ R. We call an A-measurable random variable X̃ a conditional
expectation of X given A, for short E(X | A), if E(X1A) ≤ E(X̃1A) for all A ∈ A
and E(X1B) = E(X̃1B) for all B ∈ σ(X̃), where σ(X̃) denotes the σ-algebra
generated by X̃. Brunk (1965) showed that E(X | A) is almost surely unique
and coincides with the classical conditional expectations if A is a σ-algebra.
Conditional expectations given σ-lattices are closely connected to isotonicity as
illustrated in Arnold and Ziegel (2024). In particular, for any integrable random
variable X and random variable Z, there exists an increasing Borel measurable
function f : R → R such that E(X | L (Z)) = f(Z). This result is analogous to
the well-known factorization result for classical conditional expectations given
σ-algebras, with the difference that, additionally, f has to be increasing.

Isotonic conditional laws can be defined in analogy to classical conditional
laws. Specifically, the isotonic conditional law (ICL) of the random variable Y
given A, denoted PY |A, is a Markov kernel from (Ω,F) to (R,B(R)) such that
ω 
→ PY |A(ω, (y,∞)) is a version of P(Y > y | A) = E(1{Y > y} | A) for
any y ∈ R. Arnold and Ziegel (2024) show the existence and uniqueness of
ICL. Equivalently, ICL emerges as the minimizer of an expected score, where



5012 S. Arnold et al.

the scoring rule may be taken from a large class of proper scoring rules that
includes the crps.

We are particularly interested in ICL with respect to the σ-lattice generated
by the forecast F . We call B ⊆ P(R) an upper set if P ∈ B and P ≤st Q
implies Q ∈ B for Q ∈ P(R), and we denote by U the family of all upper sets in
P(R). For the forecast F , we define the σ-lattice generated by F as the family
of all preimages of measurable upper sets under F , i.e., L (F ) =

{
F−1(B) |

B ∈ B(P(R)) ∩ U} ⊆ F , where B(P(R)) denotes the σ-algebra on P(R) with
respect to the weak topology. For details, we refer the reader to Definition 3.1
of Arnold and Ziegel (2024).

In a nutshell, PY |L (F ) arises as the best available prediction for the dis-
tribution of Y , given all information in the forecast F , under the assumption
that smaller (greater) values of F correspond to smaller (greater) values of the
conditional law with respect to the stochastic order.

4.3. Calibration

A strong notion of calibration is auto-calibration, which formalizes the idea
that the outcome is indistinguishable from a random draw from the posited
distribution F . Specifically, the random forecast F is auto-calibrated (Tsyplakov,
2013) if PY |F = F , or equivalently

F (x) = P(Y ≤ x | F ) almost surely for all x ∈ R. (33)

For any threshold value x ∈ R, we may condition on the random variable F (x)
instead of the random distribution F in (33), to obtain the weaker notion of
threshold calibration. Specifically, the forecast F is called threshold calibrated
(Henzi, Ziegel and Gneiting, 2021) if

F (x) = P(Y ≤ x | F (x)) almost surely for all x ∈ R.

Essentially, for a threshold calibrated forecast F , we can take F (x) at face value
for any x ∈ R. In a slight adaptation of the definition in Gneiting and Resin
(2023), we call the forecast F quantile calibrated if

F−1(α) = qα(Y | F−1(α)) almost surely for all α ∈ (0, 1),

where for any α ∈ (0, 1), qα(Y | F−1(α)) denotes the lower-α-quantile of the con-
ditional law of Y given F−1(α). Equivalently, one can think of qα(Y | F−1(α))
as a σ(F−1(α))-measurable random variable which minimizes E qsα(G,Y ) over
all σ(F−1(α))-measurable random variables G; see Armerin (2014).

The forecast F is called isotonically calibrated if F is almost surely equal to
the isotonic conditional law of Y given L (F ), i.e., F = PY |L (F ) almost surely.
By Proposition 5.3 of Arnold and Ziegel (2024), auto-calibration implies isotonic
calibration, and isotonic calibration implies threshold calibration and quantile
calibration.
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AC
⇓
IC

⇒ ⇒

TC QC
↪→

←↩
PC

Fig 1. Implications between auto-calibration (AC), isotonic calibration (IC), threshold calibra-
tion (TC), and quantile calibration (QC). Implications with respect to probabilistic calibration
(PC) are indicated by hooked arrows and hold under Assumption 2.15 of Gneiting and Resin
(2023).

The probability integral transform (PIT) of the cdf-valued random quantity
F is the random variable ZF = F (Y−) + U(F (Y ) − F (Y−)), where F (y−) =
limx↑y F (x) denotes the left-hand limit of F at y ∈ R, with a random variable U
that is standard uniform and independent of F and Y . The PIT of a continuous
cdf F simplifies to ZF = F (Y ). The forecast F is probabilistically calibrated if
ZF is uniformly distributed on the unit interval (Gneiting and Ranjan, 2013).
Originally suggested by Dawid (1984), checks for probabilistic calibration, and
for the uniformity of the closely related rank histogram, constitute a cornerstone
of forecast evaluation (Diebold, Gunther and Tay, 1998; Hamill, 2001; Gneiting,
Balabdaoui and Raftery, 2007). Under regularity conditions, a threshold cali-
brated or quantile calibrated forecast is probabilistically calibrated; details and
a direct implication from isotonic calibration to a weak form of probabilistic
calibration are available in Gneiting and Resin (2023, Section 3.3) and Arnold
and Ziegel (2024, Appendix D), respectively. Figure 1 summarizes relationships
between the notions of calibration discussed in this section.

4.4. Population level decompositions

We now give generalizations of the empirical decompositions discussed in Sec-
tions 2 and 3 that apply at the population level. Recall that we consider the
joint law P of the random tuple (F, Y ). As before, we let P(R) denote the class
of the Borel probability measures on R that have a finite first moment. In the
current and the subsequent subsection, we generally operate under the following
regularity conditions. For proofs, we refer the reader to Appendix D.

Assumption 4.1. Let the marginal law Fmg of Y be such that Fmg ∈ P(R),
and suppose that

E

∫
|x|dF (x) = EEF |X| < ∞. (34)

In view of the kernel score representation of the crps (Gneiting and Raftery,
2007, eq. (21)), Assumption 4.1 implies that

E crps(F, Y ) = EE(crps(F, Y ) | F )
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= E

(
EF (|X − Y | | F ) − 1

2EF (|X −X ′| | F )
)

≤ EEF |X| + E |Y | < ∞,

where X and X ′ are independent random variables with law F . Similarly, it
follows that E crps(Fmg, Y ) < ∞. Furthermore, the properties of isotonic and
standard conditional laws imply that E crps(PY |L (F ), Y ) ≤ E crps(F, Y ) and
E crps(PY |F , Y ) ≤ E crps(F, Y ), respectively. In this light, Assumption 4.1 en-
sures that E crps(F, Y ), E crps(Fmg, Y ), E crps(PY |L (F ), Y ), and E crps(PY |F , Y )
are finite.

The population version of the Candille–Talagrand decomposition at (12) is

E crps(F, Y ) = MCBCT − DSCCT + UNC0, (35)

where UNC0 is defined at (32), and

MCBCT = E crps(F, Y ) − E crps(PY |F , Y ).

Similarly, the population version of the isotonicity-based decomposition at (25)
is

E crps(F, Y ) = MCBISO − DSCISO + UNC0, (36)

where
MCBISO = E crps(F, Y ) − E crps(PY |L (F ), Y ).

The decomposition at (36) is analogous to the theoretically preferred Candille–
Talagrand decomposition at (35), except that the performance of the forecast
F is compared with the isotonic conditional law PY |L (F ) rather than the con-
ditional law PY |F . The general decompositions at (35) and (36) reduce to (12)
and (25), respectively, when P is the empirical distribution of the data in (8).

The population version of the Brier score based decomposition at (16) is

E crps(F, Y ) = MCBBS − DSCBS + UNC0, (37)

where

MCBBS = E crps(F, Y ) − E

∫ (
P(Y ≤ z | L (F (z))) − 1{Y ≤ z}

)2 dz.

Similarly, the population version of the quantile based based decomposition
at (17) is

E crps(F, Y ) = MCBQS − DSCQS + UNC0, (38)

where

MCBQS = E crps(F, Y ) − E

∫ 1

0
qsα

(
qα(Y | L (F−1(α))), Y

)
dα.

The properties of isotonic conditional expectations and isotonic conditional
quantiles imply that E

∫
(P(Y ≤ z | L (F (z)))−1{Y ≤ z})2 dz ≤ E crps(F, Y ) <
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∞ and E
∫ 1
0 qsα(qα(Y | L (F−1(α))), Y ) dα ≤ E crps(F, Y ) < ∞. The decom-

positions at (37) and (38) reduce to (16) and (17), respectively, when P is the
empirical distribution of the data in (8).

Finally, we consider the Hersbach decomposition. To this end, let νF be the
image of the Lebesgue measure λ under F , i.e., νF (A) = λ(F−1(A)), and define
the measures given by

μ(A) = E (νF (A)) (39)

and
τ(A) = E

(∫
A

1{F (Y ) ≤ p}dνF (p)
)
, (40)

respectively, where A ∈ B(0, 1) is any Borel set. We are now ready to state a
population version of the Hersbach decomposition from Section 2.5.

Proposition 4.1. Let Assumption 4.1 hold, and let μ and τ be the measures
defined at (39) and (40), respectively. Then τ is absolutely continuous with
respect to μ; let f denote the respective Radon–Nikodym derivative. It holds
that

E crps(F, Y ) = MCBHB − DSCHB + UNC0, (41)

where UNC0 is given at (32),

MCBHB =
∫ 1

0
(p− f(p))2 dμ(p),

DSCHB = UNC0 −
∫ 1

0
f(p)(1 − f(p)) dμ(u) − MS,

and

MS = E
[
1{F (Y ) = 0} (F−1(0+) − Y )

]
(42)

+ E
[
1{F (Y ) > 0} (2F (Y ) − 1)(Y − F−1(F (Y )))

]
.

The MS component can only be nonzero when Y lies outside the support of
F with positive probability; hence, we write MS for misspecified support. Note
that MS can be negative, e.g., if F = (δ0 + 3 δ2)/4 and Y = 1 almost surely
then MS = −1/2.

The following result is a special case of the more general statement in Corol-
lary D.1 in Appendix D. It shows that the population decomposition nests the
modified empirical Hersbach decomposition.

Corollary 4.2. If P is the empirical measure of a finite collection of forecast–
observation pairs (F1, y1), . . . , (Fn, yn), where each Fi is the empirical cdf of
a sample of size m, then the population decomposition at (41) reduces to the
modified empirical Hersbach decomposition at (22).

The next result demonstrates that Proposition 4.1 subsumes the Hersbach–
Lalaurette decomposition for strictly increasing forecast cdfs as given in Ap-
pendix A of Candille and Talagrand (2005).
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Corollary 4.3. Let Assumption 4.1 hold, and suppose that F−1 is almost surely
absolutely continuous. Then MS = 0 and the measure μ at (39) has density

γ(p) = E

(
d
dpF

−1(p)
)

(43)

with respect to the Lebesgue measure on the unit interval. Furthermore, the
measure τ at (40) has Radon–Nikodym derivative defined by

f(p) = 1
γ(p) E

(
1{F (Y ) ≤ p} d

dpF
−1(p)

)
(44)

if γ(p) > 0, and f(p) = 0 otherwise, with respect to μ.

Considering a practically relevant case, we derive in Example D.1 in Ap-
pendix D the empirical Hersbach decomposition for probabilistic forecasts of a
nonnegative quantity, assuming that the forecast distributions are mixtures of
a point mass at zero and a strictly positive density on the positive halfline.

4.5. Properties of the decompositions

The following theorem summarizes properties of the Candille–Talagrand, the
isotonicity-based, the Brier score based, and the quantile score based decompo-
sitions at the population level. Proofs of the theorem and all other results in
this section are deferred to Appendix E.

Theorem 4.4. Under Assumption 4.1 the following statements hold.

(a) The Candille–Talagrand decomposition at (35) is exact and satisfies
– MCBCT ≥ 0 with equality if, and only if, F is auto-calibrated;
– DSCCT ≥ 0 with equality if, and only if, PY |F = Fmg almost surely.

(b) The isotonicity-based decomposition at (36) is exact and satisfies
– MCBISO ≥ 0 with equality if, and only if, F is isotonically calibrated;
– DSCISO ≥ 0 with equality if, and only if, PY |L (F ) = Fmg almost

surely.
(c) The Brier score based decomposition at (37) is exact and satisfies

– MCBBS ≥ 0 with equality if, and only if, F is threshold calibrated;
– DSCBS ≥ 0 with equality if, and only if, for all z ∈ R, P(Y ≤ z |

L (F (z))) = P(Y ≤ z) almost surely.
(d) The quantile score based decomposition at (38) is exact and satisfies

– MCBQS ≥ 0 with equality if F is quantile calibrated; conversely, if
the random element (Y, F−1(α)) satisfies Assumption 6.1 in Arnold
and Ziegel (2024) for all α ∈ (0, 1) then MCBQS = 0 implies quantile
calibration of F ;
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– DSCQS ≥ 0 with equality if, and only if, for all α ∈ (0, 1), qα(Y |
L (F−1(α))) = qα(Y ) almost surely.

To summarize, the population versions of the Candille–Talagrand, isotonicity-
based, Brier score based, and quantile score based decompositions satisfy prop-
erties P0, P1, P2, P4, and P5, and property P3 with auto-calibration, isotonic
calibration, threshold calibration, and quantile calibration, respectively. These
findings lend theoretical support to the use of the isotonicity-based decomposi-
tion.

While in principle one would like to quantify miscalibration in terms of devi-
ations from auto-calibration, as done by the Candille–Talagrand decomposition,
the empirical version thereof is degenerate. The isotonicity-based decomposition
quantifies miscalibration as deviation from isotonic calibration, which avoids de-
generacy and is closer to auto-calibration than threshold or quantile calibration,
as illustrated in Figure 1.

In view of known relationships between notions of calibration (Gneiting and
Resin, 2023, Sections 2.2 and 2.3) the following implications hold.

Corollary 4.5. Under Assumption 4.1, an auto-calibrated forecast yields

MCBCT = MCBISO = MCBBS = MCBQS = 0.

Corollary 4.6. Under Assumption 4.1, it holds that

E crps(F, Y ) ≥ MCBCT ≥ MCBISO ≥ max{MCBBS,MCBQS}. (45)

Importantly, while formulated at the population level, the above results ap-
ply to the empirical versions of the decompositions in view of the reduction
property P0, which is obvious for the decompositions considered here. In partic-
ular, the relations in (45) nest the respective inequalities (26) for the empirical
decompositions. For the isotonicity-based decomposition, if modified cdfs F (a,b)

are used the results apply to the latter, and we refer to (30) for relationships to
the respective components computed on the original cdfs.

Finally, we consider the Hersbach decomposition from Proposition 4.1, which
struggles to satisfy the desirable properties from Section 4.1. By Corollary 4.2,
the reduction property P0 holds under conditions. By definition, properties P1
and P5 hold. The miscalibration component is clearly nonnegative. However,
DSCHB may be negative as in Example F.3, i.e., property P2 is violated. More-
over, the example in the proof of Proposition 2.3 shows that the Hersbach de-
composition fails to satisfy P4. Concerning P3, Hersbach (2000), Candille and
Talagrand (2005) and Yang and Kleissl (2024, p. 421) argue that the Hers-
bach reliability component is closely related to the rank histogram and hence
one might expect that MCBHB = 0 if, and only if, F is probabilistically cali-
brated. However, the examples in Appendices F.4 and F.5 show that, in general,
probabilistic calibration is neither sufficient nor necessary for MCBHB = 0 to
hold. The following proposition collects calibration properties in relation to the
Hersbach decomposition.



5018 S. Arnold et al.

Table 3

Properties of the population versions of the Candille–Talagrand (CT), isotonicity-based
(ISO), Brier score based (BS), quantile score based (QS), and Hersbach (HB)

decompositions of the mean crps. For properties P0, P1, . . . , P5 see Section 4.1. The
acronyms AC, IC, TC, QC, and PC concern modes of calibration and are expanded in the

legend of Figure 1. The Hersbach decomposition satisfies P0 under the conditions of
Corollary 4.2 (UC). Regarding P3 we indicate if a mode of calibration is necessary and
sufficient (NaS); necessary and sufficient under Assumption 2.15 in Gneiting and Resin
(2023) (UC); necessary but not sufficient (N); necessary under Assumption 2.15 (NuC);

sufficient but not necessary (S); or sufficient under Assumption 2.15 and the conditions of
Proposition 4.7(c) but not necessary (SuC); for the MCB component to vanish.

P0 P1 P2 P3 P4 P5

AC IC TC QC PC

CT ✓ ✓ ✓ NaS N N N N ✓ ✓

ISO ✓ ✓ ✓ S NaS N N NuC ✓ ✓

BS ✓ ✓ ✓ S S NaS UC NuC ✓ ✓

QS ✓ ✓ ✓ S S UC NaS NuC ✓ ✓

HB UC ✓ ✗ S SuC SuC SuC SuC ✗ ✓

Proposition 4.7. Let Assumption 4.1 hold and consider the population version
of the Hersbach decomposition at (41).

(a) If Y ∈ supp(F ) almost surely, then MS = 0, where MS is defined at (42).
(b) For an auto-calibrated forecast, it holds that MS = MCBHB = 0.
(c) Suppose that F belongs to a location family, i.e., for all x ∈ R, F (x) =

F0(x−μ) for some F0 ∈ P(R) and random location μ. Suppose furthermore
that F0 has no jumps and F−1

0 is absolutely continuous. Then MCBHB = 0
if F is probabilistically calibrated.

For a succinct overview of properties of the population versions of the
Candille–Talagrand, isotonicity-based, Brier score based, quantile score based,
and Hersbach decompositions see Table 3, which mirrors the findings at the
empirical level from Table 2.

In Appendix F we illustrate the different types of decompositions in a num-
ber of analytic examples at the population level. Figure 2 summarizes how the
respective miscalibration terms relate to the theoretically preferred MCBCT
component.

5. Case studies

We now illustrate the use of the isotonicity-based decomposition from Sec-
tion 3 in case studies on weather forecasts and benchmark regression tasks from
machine learning, respectively. For simplicity, we use an abbreviated notation
for the components of the mean score CRPS throughout this section, namely,
MCB = MCBISO, DSC = DSCISO, and UNC = UNC0, respectively. Note the
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Fig 2. The graphic indicates for the population level examples F.1, . . . , F.5 in Appendix F
whether the MCB• term, where • stands for CT, ISO, BS, QS, or HB, respectively, agrees
with the theoretically preferred quantity MCBCT (green), is smaller than MCBCT but remains
positive (orange), or deceptively equals zero (red). Connected segments indicate equality of
corresponding terms. For analytic results, see Table 4.

opposite orientation of MCB and DSC, in that higher DSC corresponds to better
discrimination ability, whereas lower MCB indicates better calibration.

When one seeks to simultaneously compare CRPS, MCB, and DSC between
larger numbers of forecast methods, tables get cumbersome. Therefore, we sug-
gest a graphical display, namely, the miscalibration–discrimination (MCB–DSC)
plot, which is motivated by similar displays in Gneiting et al. (2023) and Dimi-
triadis et al. (2024). In this type of graphic, DSC is plotted against MCB, and
isolines correspond to specific values of the mean score CRPS, which is con-
stant along parallel lines. The uncertainty component UNC is independent of
the forecast method, and we display it in the upper left or upper right corner
of the plot.

5.1. Probabilistic quantitative precipitation forecasts

Ensemble prediction systems have tremendously improved weather forecasts
over the past decades (Bauer, Thorpe and Brunet, 2015). However, ensem-
ble forecasts remain subject to biases and dispersion errors, and hence require
some form of statistical postprocessing (Gneiting and Raftery, 2005; Vannitsem,
Wilks and Messner, 2018). Here we consider the case study in Henzi, Ziegel and
Gneiting (2021), which compares the performance of raw and postprocessed en-
semble forecasts for 24-hour accumulated precipitation in terms of the mean
score CRPS, which we decompose into MCB, DSC, and UNC, respectively.

Following Henzi, Ziegel and Gneiting (2021), we consider forecasts and obser-
vations for 24-hour accumulated precipitation from 6 January 2007 to 1 January
2017 at Brussels, Frankfurt, London, and Zurich in millimeters. The 52 member
raw ensemble (ENS) forecast operated by the European Centre for Medium-
Range Weather Forecasts comprises a high resolution member, a control mem-
ber at lower resolution, and 50 perturbed members at the same lower resolution
but with perturbed initial conditions (Molteni et al., 1996). We use data from
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Fig 3. MCB–DSC plots for forecasts of 24-hour accumulated precipitation at Brussels, Frank-
furt, London, and Zurich, at prediction horizons of one to five days ahead. The mean score
CRPS is constant along the parallel lines and shown in the unit of millimeters. Acronyms
are defined in the text, and details of the forecast methods are documented in Henzi, Ziegel
and Gneiting (2021, Section 5).

2007 to 2014 to train the postprocessing techniques Bayesian model averag-
ing (BMA; Sloughter et al., 2007), ensemble model output statistics (EMOS;
Scheuerer, 2014), heteroscedastic censored logistic regression (HCLR; Messner
et al., 2014) and two versions, IDRcw and IDRst, of isotonic distributional re-
gression (IDR; Henzi, Ziegel and Gneiting, 2021), where IDRcw is documented
in Henzi, Ziegel and Gneiting (2021) and IDRst uses the stochastic order on the
ensemble cdfs. For further implementation details we refer the reader to Henzi,
Ziegel and Gneiting (2021). The years 2015 and 2016 form the evaluation period.

The ENS and IDR forecast distributions have finite support and we apply
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the isotonicity-based decomposition of CRPS in its pure form from Section 3.1.
For the other forecasts, which employ mixtures of a point mass at zero (for
no precipitation) and a density at positive accumulations as predictive distri-
butions, we fix a = 0 and use Algorithm 1 to determine the upper bound b,
which generally is identical to, or very slightly higher than, the highest accu-
mulation observed in the test data; then we compute stochastic order relations
on an equidistant grid of size 5000 over [a, b] and apply the isotonicity-based
decomposition in its approximate form from Section 3.2.

The respective MCB–DSC plots for Brussels, Frankfurt, London, and Zurich
are shown in Figure 3. We note an increase of the mean score CRPS values with
the prediction horizon, which is due to a decrease in discrimination ability. The
raw ensemble (ENS) forecasts discriminate very well, but are poorly calibrated.
The postprocessing methods yield considerable improvement in CRPS, subject
to a trade-off between MCB and DSC. The EMOS and HCLR techniques, which
employ inflexible parametric densities with fixed shape, excel in terms of dis-
crimination, but lack in calibration. In contrast, the BMA and IDR techniques,
which are much more flexible, are better calibrated, but inferior in terms of
discrimination ability.

5.2. Benchmark regression problems from machine learning

A sizable strand of recent literature in machine learning is concerned with meth-
ods for uncertainty quantification for neural networks, where the task is the
transformation of single-valued neural network output into predictive distri-
butions (Gawlikowski et al., 2023). In this literature, performance is typically
evaluated in terms of the mean logarithmic score (Gneiting and Raftery, 2007,
Section 4.1) which, in sharp contrast to the crps, can only be applied to methods
that generate predictive densities. Furthermore, extant measures for the assess-
ment of calibration and discrimination ability tend to be ad hoc. In this section,
we demonstrate the use of the mean score CRPS and its isotonicity-based de-
composition into MCB, DSC, and UNC in this context.

We adopt the benchmark regression tasks setting originally proposed by
Hernandéz-Lobato and Adams (2015) and consider the datasets and methods
from the middle block of Table 6 in Walz et al. (2024), except that we skip
results for the Naval and Year datasets, for which there are missing entries.
The experimental setting is based on single-valued output from a neural net-
work, which learns a regression function based on a collection of covariates or
features. In this setting, Walz et al. (2024) compare competing methods for un-
certainty quantification, including the popular Monte Carlo Dropout approach
(MC Dropout; Gal and Ghahramani, 2016) and a scalable Laplace approxima-
tion based technique (Laplace; Immer et al., 2021; Ritter, Botev and Barber,
2018) that operate within the neural network learning pipeline. Their com-
petitors include output-based methods that learn on training data of previous
single-valued model output and outcomes only, without accessing feature values,
namely, the Single Gaussian technique, conformal prediction (CP; Vovk et al.,
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2020), and the EasyUQ technique (Walz et al., 2024), which is based on IDR
(Henzi, Ziegel and Gneiting, 2021). Furthermore, we consider smoothed versions
of the discrete CP and EasyUQ distributions, termed Smooth CP and Smooth
EasyUQ, respectively. For implementation details, we refer the reader to Walz
(2022).

The CP and EasyUQ distributions have finite support, and the Single Gaus-
sian incurs normal distribution with a fixed variance, but varying mean. For
these three methods, we use the isotonicity-based decomposition of CRPS in the
pure form from Section 3.1. The Laplace method also employs normal distribu-
tions, but with varying mean and variances. The MC Dropout technique yields
mixtures of normal distributions, and the Smooth CP and Smooth EasyUQ
distributions are mixtures of Student-t distributions (or normal distributions
as a limit case). For these methods, we use the approximations described in
Section 3.2.

The MCB–DSC plots in Figure 4 illustrate the mean score CRPS and the
MCB, DSC, and UNC components for the eight datasets and seven methods,
respectively. The MC Dropout technique yields predictive distributions that are
poorly calibrated, a finding that is well documented in the machine learning
literature (Gawlikowski et al., 2023), though with high discrimination ability.
The predictive distributions generated by the Laplace method trade better cal-
ibration for diminished discrimination ability. The simplistic Single Gaussian
technique performs surprisingly well, typically with both the MCB and the DSC
component being small relative to the competitors. The EasyUQ and CP dis-
tributions generally are well calibrated, with low MCB components throughout,
and often superior overall performance. Smoothing of the discrete EasyUQ and
CP distributions has only small effects. The only exception is for the EasyUQ
forecast for the Wine dataset, which has only ten unique outcomes that corre-
spond to quality levels, thus favoring the discrete basic EasyUQ distributions,
which place all probability mass on this small set of outcomes.

6. Discussion

In line with the general idea of the CORP approach of Dimitriadis et al. (2024)
and Gneiting and Resin (2023), we have developed an isotonicity-based decom-
position of the mean score CRPS into miscalibration (MCB), discrimination
(DSC), and uncertainty (UNC) components. Both theoretically and computa-
tionally, the isotonicity-based decomposition serves as an attractive alternative
to the Candille–Talagrand decomposition, which is of theoretical appeal, but
yields degenerate decompositions in practice. Remarkably, Proposition 3.2 en-
sures that theoretical guarantees for the pure form from Section 3.1 very nearly
carry over to the approximate implementation described in Section 3.2. In typi-
cal practice, interest focuses on the relative contributions of miscalibration and
discrimination to the mean score. Competing forecast methods can be com-
pared in MCB–DSC plots, which visualize these contributions and showcase the
methods’ strengths and deficiencies in succinct ways.
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Fig 4. MCB–DSC plots for methods of uncertainty quantification for neural network based regression from the middle block in Table 6 of Walz et al.
(2024). The mean score CRPS is constant along the parallel lines.
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The isotonicity-based decomposition may degenerate if the data at (8) lack
pairs of predictive distributions that can be compared in stochastic order. Our
approximate implementation from Section 3.2 aims to increase the number of
pairs of comparable cdfs, which addresses this limitation and yields appealing
results in our experience. If further robustness in the decomposition is sought,
convex combinations of the isotonicity-based decomposition with the Brier score
based or the quantile score based decomposition can be employed.

Due to its linear computational complexity, the Hersbach decomposition is
a viable option for decomposing CRPS for ensemble forecasts with a moder-
ate number m of members, even when the size n of the evaluation set at (8)
is very large and the isotonicity-based approach with its quadratic complexity
is not feasible.2 We recommend that it be used in the modified form described
in Section 2.5, which allows for extensions beyond the case of ensemble forecasts,
as described in Appendix D. A useful facet of the Hersbach decomposition is
that it applies to general (nonnegatively) weighted sums (rather than simple
averages only) of crps scores (Hersbach, 2000). The isotonicity-based decompo-
sition generalizes to weighted sums as well, as the theoretical guarantees for IDR
(Henzi, Ziegel and Gneiting, 2021) continue to apply in weighted case, and soft-
ware developed by Alexander Henzi (https://github.com/AlexanderHenzi/
isodistrreg) handles the extension. We leave details to future work.

As noted, the desirable properties E1, . . . , E5 in the empirical case and P0,
P1, . . . , P5 in the population case remain valid for decomposition of the mean
score under proper scoring rules other than the crps. For instance, in various
applications a certain region of the potential range of the outcome is of particular
interest, and predictive performance might then be assessed with emphasis on
these regions. In such settings, one may use versions of the crps as proposed by
Gneiting and Ranjan (2013), namely,

crpsw(F, y) =
∫ ∞

−∞
w(x) sB(F (x),1{y ≤ x}) dx

and

crpsv(F, y) =
∫ 1

0
v(α) qsα(F−1(α), y) dα,

where w and v, respectively, are nonnegative weight functions. In view of the
universality property of IDR (Henzi, Ziegel and Gneiting, 2021, Theorem 2),
the isotonicity-based decomposition extends naturally to means of these types
of scores, while preserving its desirable properties.

However, the isotonicity-based approach fails if a mean of logarithmic scores
(Gneiting and Raftery, 2007, Section 4.1) is sought to be decomposed, for the
logarithmic score, which allows for the comparison of density forecasts only, can-
not be applied to the discrete IDR distributions. While in principle isotonic re-
calibration by IDR, on which isotonicity-based decompositions are based, could

2As a rule of thumb, the empirical isotonicity-based decomposition can be employed when
the size n of the evaluation set is below 100 000. In Section 5.2 we apply it to the Protein
dataset, which is of size n = 45 730.

https://github.com/AlexanderHenzi/isodistrreg
https://github.com/AlexanderHenzi/isodistrreg
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be replaced by recalibration with other methods, it is not at all evident what
type of technique ought to be used, and we are unaware of any such method
that would share the optimality properties of IDR that underlie the theoretical
guarantees enjoyed by the isotonicity-based approach.

Various authors have pondered the use of the crps, which is favored by the
meteorological and renewable energy literatures, as opposed to the logarithmic
score, which is of particular popularity in econometrics and machine learning,
with the choice arising both in the context of estimation via empirical score
minimization and in the evaluation of predictive performance (Gneiting and
Raftery, 2007). For example, D’Isanto and Polsterer (2018, Appendix B) argue
that in neural network learning empirical score minimization in terms of the
mean crps is preferable to optimization of the logarithmic score. In the evalu-
ation of predictive performance, the availability of the theoretically supported
and practically feasible isotonicity-based decomposition, in concert with the ap-
plicability of the score to discrete forecast distributions, strengthens arguments
in favor of the crps.

Appendix A: Technical details for the Brier score and quantile score
based decompositions

In this appendix we describe the Brier score (BS) and quantile score (QS)
based decompositions from Sections 2.3 and 2.4 for the mean score CRPS of
the forecast–observation pairs (F1, y1), . . . , (Fn, yn) at (8). Both decompositions
build on a general version of the pool-adjacent-violators (PAV) algorithm for
nonparametric isotonic regression (Ayer et al., 1955). While historically work
on the PAV algorithm has focused on the mean functional (Barlow et al., 1972;
Robertson, Wright and Dykstra, 1988; de Leeuw, Hornik and Mair, 2009), the
algorithm yields optimal isotonic fits under any identifiable functional; see, e.g.,
Jordan, Mühlemann and Ziegel (2022) and Gneiting and Resin (2023, Sec-
tion 3.1).

A.1. Brier score based decomposition

For each threshold value z ∈ R, we interpret F1(z), . . . , Fn(z) as probability
forecasts for the binary event ξi(z) = 1{yi ≤ z}, where i = 1, . . . , n. We ob-
tain calibrated forecasts F́1(z), . . . , F́n(z) by applying the PAV algorithm for
the mean functional on ξ1(z), . . . , ξn(z) with respect to the order induced by
F1(z), . . . , Fn(z). This yields the CORP decomposition of the mean Brier score

BSF (z) = 1
n

n∑
i=1

sB
(
Fi(z), ξi(z)

)
as proposed by Dimitriadis, Gneiting and Jordan (2021), namely,

BSF (z) =
(
BSF (z) − BSF́ (z)

)
︸ ︷︷ ︸

MCBBS,z

−
(
BSF́ (z) − BSF̂mg(z)

)
︸ ︷︷ ︸

DSCBS,z

+ BSF̂mg(z)︸ ︷︷ ︸
UNCBS,z

,
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where F̂mg(z) = 1
n

∑n
i=1 ξi(z) for z ∈ R,

BSF́ (z) = 1
n

n∑
i=1

sB
(
F́i(z), ξi(z)

)
and BSF̂mg(z) = 1

n

n∑
i=1

sB
(
F̂mg(z), ξi(z)

)
.

Integration of the MCBBS,z,DSCBS,z and UNCBS,z components over z ∈ R

yields the Brier score based score components and decomposition at (14), (15),
and (16), respectively.

Computationally, it suffices to run the PAV algorithm at z ∈ {y1, . . . , yn}
and at the crossing points of the cdfs F1, . . . , Fn.

Proof of Proposition 2.1. We note that

UNCBS =
∫

BSF̂mg(z) dz =
∫ 1

n

n∑
i=1

sB
(
F̂mg(z), ξi(z)

)
dz

= 1
n

n∑
i=1

∫ (
F̂mg(z) − ξi(z)

)2 dz = 1
n

n∑
i=1

crps(F̂mg, yi) = UNC0,

which implies that E5 is satisfied. Property E1 is immediate. Dimitriadis, Gneit-
ing and Jordan (2021) show that MCBBS,z and DSCBS,z are nonnegative for all
z ∈ R and thus E2 is satisfied. Example F.3 implies that the decomposition is
not degenerate, so E3 is satisfied. Finally, suppose that F1 = · · · = Fn. Then
for each z ∈ R, the PAV algorithm for the mean functional on ξ1(z), . . . , ξn(z)
with respect to the order induced by F1(z) = · · · = Fn(z) yields the constant
calibrated forecast F̂mg(z). Hence DSCBS = 0, so that (E4) is satisfied.

Remark A.1. The functions F́1, . . . , F́n are not necessarily increasing and hence
they generally fail to be cdfs. For instance, let n = 2 and z < z′. If F1(z) < F2(z),
F1(z′) = F2(z′) and y2 ≤ z < z′ < y1, then F́2(z) = 1 > 1/2 = F́2(z′), so F́2 is
not increasing.

A.2. Quantile score based decomposition

For each level α ∈ (0, 1), we consider F−1
1 (α), . . . , F−1

n (α) as point forecasts in
the form of the α-quantile. We apply the PAV algorithm for the α-quantile func-
tional on y1, . . . , yn with respect to the order induced by F−1

1 (α), . . . , F−1
n (α)

to yield calibrated α-quantile forecasts F̀−1
1 (α), . . . , F̀−1

n (α). This induces the
CORP decomposition of the mean quantile score

QSF−1(α) = 1
n

n∑
i=1

qsα
(
F−1
i (α), yi

)
as described by Gneiting and Resin (2023, Section 3.3) and Gneiting et al. (2023,
Section 3.3), namely,

QSF−1(α) =
(
QSF−1(α) − QSF̀−1(α)

)
︸ ︷︷ ︸

MCBQS,α

−
(
QSF̀−1(α) − QSF̂−1

mg (α)
)

︸ ︷︷ ︸
DSCQS,α

+ QSF̂−1
mg (α)︸ ︷︷ ︸

UNCQS,α

,
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where F̂−1
mg (α) is the quantile function of the marginal empirical law of the

outcomes y1, . . . , yn,

QSF̀−1(α) = 1
n

n∑
i=1

qsα
(
F̀−1
i (α), yi

)
, QSF̂−1

mg (α) = 1
n

n∑
i=1

qsα
(
F̂−1

mg (α), yi
)
.

Integration of the MCBQS,α,DSCQS,α and UNCQS,α components over α ∈ (0, 1)
yields the quantile score based decomposition at (17).

For an exact computation, the PAV algorithm needs to be run at all quantile
levels l/k, where k = 1, . . . , n and l = 1, . . . , k − 1, and at all crossing points of
the quantile functions F−1

1 , . . . , F−1
n . In practice, it suffices to apply the PAV

algorithm on a fine grid of quantile levels.

Proof of Proposition 2.2. In analogy to the proof of Proposition 2.1, we find
that

UNCQS =
∫ 1

0
QSF̂−1

mg (α) dα =
∫ 1

0

1
n

n∑
i=1

qsα
(
F̂−1

mg (α), yi
)
dα

= 1
n

n∑
i=1

∫ 1

0
qsα

(
F̂−1

mg (α), yi
)
dα = 1

n

n∑
i=1

crps(F̂mg, yi) = UNC0,

and hence E5 is satisfied. Property E1 is clear by definition. Theorem 3.3 of
Gneiting and Resin (2023) implies that MCBQS,α and DSCQS,α are nonnegative
for all α ∈ (0, 1) and thus E2 is satisfied. Example F.3 shows that the decompo-
sition is not degenerate, i.e., E3 is satisfied. Finally, suppose that F1 = · · · = Fn.
Then for each α ∈ (0, 1), applying the PAV algorithm on y1, . . . , yn with respect
to the order induced by F−1

1 (α) = · · · = F−1
n (α) yields the constant calibrated

forecast F̀−1(α) = F̂−1
mg (α) and hence DSCQS = 0, i.e., (E4) is satisfied.

Remark A.2. In analogy to the statements in Remark A.1, the functions F̀−1
1 ,

. . . , F̀−1
n are not necessarily increasing and hence may not be quantile functions.

For example, let n = 2 and α < α′ < 1/2, and suppose that y1 < y2, F−1
1 (α) <

F−1
2 (α), and F−1

1 (α′) = F−1
2 (α′). Then F̀−1

2 (α) = y2 > y1 = F̀−1
2 (α′) whence

F̀−1
2 is not increasing.

Appendix B: Technical details for the original and modified
Hersbach decompositions

As in Section 2.5, we consider a collection of the form at (8) of forecast–outcome
pairs (F1, y1), . . . , (Fn, yn), where for i = 1, . . . , n, the forecast Fi is the empir-
ical cdf of a fixed number m of numbers xi

1 ≤ · · · ≤ xi
m. Hersbach (2000)

implicitly assumes that yi /∈ {xi
1, . . . , x

i
m} for i = 1, . . . , n. If this condition

is not satisfied, the extension of the original Hersbach decomposition at (20),
which is implemented in the R function crpsDecomposition from the verifi-
cation package (https://rdrr.io/cran/verification/), is problematic. Our

https://rdrr.io/cran/verification/
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Fig 5. Adaptation of Figure 2 from Hersbach (2000) with the empirical cdf of x1 < · · · < x5
and outcome y. Hersbach (2000) assumes that y /∈ {x1, . . . , x5} and divides the quantity
x�+1 − x� for � = 1, . . . ,m− 1 into α� and β�, as illustrated in the left panel. When y = x3
the original decomposition sets α2 = β3 = 0. However, according to display (26) in Hersbach
(2000), if y ↑ x3 then α2 → x3 − x2, β2 → 0, and β3 = x4 − x3, and if y ↓ x3 then
α2 = x3 − x2, α3 → 0, and β3 → x4 − x3. This suggests that α2 = x3 − x2, α3 = 0, β2 = 0,
and β3 = x4 − x3 when y = x3, as indicated in the right panel and in accordance with the
quantity f̄3 in the modified Hersbach decomposition.

suggested modified Hersbach decomposition at (22) resolves this issue, as illus-
trated graphically in Figure 5.

We proceed to a comparison of the orginal with the modified Hersbach de-
composition. For i = 1, . . . , n, Hersbach (2000) defines the quantities

αi
� = (xi

�+1 − xi
�)1{yi > x�+1} + (yi − x�)1{xi

� < yi < xi
�+1},

βi
� = (xi

�+1 − xi
�)1{yi < xi

�} + (xi
�+1 − yi)1{xi

� < yi < xi
�+1},

for � = 1, . . . ,m− 1, and

αi
m = (yi − xi

m)1{yi > xi
m} and βi

0 = (xi
1 − yi)1{yi < xi

1}.

For � = 1, . . . ,m− 1, let ᾱ� = (1/n)
∑n

i=1 α
i
�, β̄� = (1/n)

∑n
i=1 β

i
�, ḡ� = ᾱ� + β̄�,

and ō� = β̄�/ḡ�. To complete the specification, let ō0 = (1/n)
∑n

i=1 1{yi < xi
1},

ḡ0 = 1{ō0 �= 0}β̄0/ō0, ōm = (1/n)
∑n

i=1 1{xi
m < yi}, and ḡm = 1{ōm �=

0}ᾱm/(1 − ōm), where β̄0 = (1/n)
∑n

i=1 β
i
0 and αm = (1/n)

∑n
i=1 α

i
m.

As before, let p� = �/m for � = 0, . . . ,m. Hersbach (2000) defines the miscal-
ibration component as

MCBHBo =
m∑
�=0

ḡ� (p� − ō�)2 .

In contrast, we let

MCBHB =
m−1∑
�=1

ḡ�
(
p� − f̄�

)2
,

where f̄� = (1/n)
∑n

i=1 f̄
i
� with f̄ i

� = (1/ḡ�)1{yi < xi
�+1 }(αi

� + βi
�) for i =

1, . . . , n and � = 1, . . . ,m − 1. In other words, Hersbach (2000) includes terms
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for � = 0 and � = m in the miscalibration component and compares the nominal
level p� with the quantity ō�, which approximates the frequency of an outcome
below the midpoint between xi

� and xi
�+1. In contrast, we omit the outer terms

and compare p� with f̄�, which approximates the frequency of an outcome yi
less than or equal to xi

�+1.

Proof of Proposition 2.3. By definition, both decompositions are exact and the
uncertainty component UNC0 depends only on the outcomes, i.e., E1 and E5
are satisfied. Example F.3 shows that E3 is satisfied, and that E2 fails to hold
for the modified Hersbach decomposition. Consider the sample (F, y1), (F, y2)
with F = (δ−1/2 + δ1/2)/2, y1 = −1/6 and y2 = 1/6. Then CRPS = 1/4 and
UNC0 = 1/12. Moreover, ḡ1 = 1, ḡ0 = ḡ2 = 0, ō1 = 1/2, ō0 = ō2 = 0, and f̄1 =
1. Thus MCBHBo = 0, MCBHB = 1/4, DSCHBo = −1/6, and DSCHB = 1/12.
This demonstrates that the original Hersbach decomposition does not satisfy
E2 and E4 and that E4 fails to hold for the modified decomposition as well.
Numerical examples in Hersbach (2000) show that property E3 is satisfied for
the original Hersbach decomposition.

Appendix C: Relaxations of the stochastic order

Consider any partial order ≤′ on P(R), which is weaker than the stochastic
order in the sense that G ≤st H implies G ≤′ H for G,H ∈ P(R). Possible
choices include the almost-first-stochastic-dominance order proposed by Leshno
and Levy (2002) or stochastic dominance of order (1+γ) as proposed by Müller
et al. (2017). If there are only few forecasts in a sample (F1, y1), . . . , (Fn, yn) ∈
P(R)×R that are comparable with respect to ≤st, one could think of applying
IDR with respect to ≤′ instead of ≤st in order to obtain more comparable
forecasts. In this appendix, we explain why such an approach is bound to fail.

Let Y be a random variable and F be a random forecast defined on the same
probability space. Recall from Section 4.2 that ICL forms the population version
of IDR (Arnold and Ziegel, 2024, Proposition 4.1). In analogy to Definition 3.1
of Arnold and Ziegel (2024), one could define the σ-lattice generated by F with
respect to the weaker order ≤′ as L ′(F ) = {F−1(B) | B ∈ B(P(R)) ∩ U ′},
where U ′ denotes the family of all upper sets in P(R) with respect to ≤′. How-
ever, if the space P(R) equipped with the partial order ≤′ and the topology
of weak convergence satisfies Assumption C.1 of Arnold and Ziegel (2024), the
corresponding notion of isotonic calibration, namely, PY |L ′(F ) = F , fails to be
intuitive for two reasons. First, auto-calibration does not imply the respective
notion of calibration. Second, G ≤′ H already implies G ≤st H for all G and
H in the support of F by Theorem 3.3 of Arnold and Ziegel (2024). Clearly,
this implication may only hold if ≤′ equals ≤st on the support of F , which is
violated for any ≤′ that is strictly weaker than ≤st, contrary to the scope of a
relaxation. Moreover, there is no theoretical guarantee that the corresponding
miscalibration term MCBISO′ = E crps(F, Y )−E crps(PY |L ′(F ), Y ) is nonnega-
tive.
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Appendix D: Proofs for Section 4.4 and extensions

Proof of Proposition 4.1. Following the argument in Appendix A of Candille
and Talagrand (2005), we apply the change of variable z 
→ p = F (z) to demon-
strate that E crps(F, Y ) can be represented as

E

∫
S

(F (z) − 1{F (Y ) ≤ F (z)})2 dz

+ E

∫
S

(2F (z) − 1)(1{F (Y ) ≤ F (z)} − 1{Y ≤ z}) dz,

where S = {z ∈ R | (F (z) − 1{Y ≤ z})2 > 0}. The indicator is essential,
since if F (Y ) = 0 then 1{F (Y ) ≤ F (z)} = 1 and the integrals may not exist.
We decompose S into the disjoint sets S1 = S ∩ {z ∈ R | F (z) > 0} and
S2 = S ∩ {z ∈ R | F (z) = 0} = {z ∈ R | Y ≤ z, F (z) = 0}, and use the
equivalence 1{F (Y ) ≤ F (z)} − 1{Y ≤ z} = 1{Y > z, F (Y ) = F (z)} to show
that

E crps(F, Y ) = E

∫
S1

(F (z) − 1{F (Y ) ≤ F (z)})2 dz

+ E

∫
S2

1{Y ≤ z, F (z) = 0}dz

+ E

∫
S

(2F (Y ) − 1)1{Y > z, F (Y ) = F (z)}dz

= E

∫
S1

(F (z) − 1{F (Y ) ≤ F (z)})2 dz + MS,

where MS is given at (42).
We have τ(A) ≤ E

∫
A

1 dνF (u) = E(νF (A)) = μ(A) for A ∈ B(0, 1), i.e., τ is
absolutely continuous with respect to μ. Hence τ has a density f with respect
to μ, and we find that

E crps(F, Y ) = E

∫
S

(F (z) − 1{F (Y ) ≤ F (z)})2 dz + MS

= E

∫ 1

0
(p− 1{F (Y ) ≤ p})2 dνF (p) + MS

=
∫ 1

0
p2 dμ(p) −

∫ 1

0
(2p− 1) dτ(p) + MS

=
∫ 1

0
p2 dμ(p) −

∫ 1

0
(2p− 1) f(p) dμ(p) + MS

=
∫ 1

0
(p− f(p))2 dμ(p) +

∫ 1

0
f(p) (1 − f(p)) dμ(p) + MS,

which yields the claimed decomposition.
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In the following corollary to Proposition 4.1, which is a more general result
than Corollary 4.2, we consider forecast–observation pairs (F1, y1), . . . , (Fn, yn),
where for each i = 1, . . . , n, Fi is a distribution with a finite number mi of
support points xi

1 < · · · < xi
mi

and (cumulative) probability values pi1 < · · · <
pimi

, so that Fi(xi
�) = pi� for � = 1, . . . ,mi. Let 0 < p̂1 < . . . < p̂M = 1 be the

unique probability values from the set {pi� | i = 1, . . . , n; � = 1, . . . ,mi}. For
i = 1, . . . , n and j = 1, . . . ,M − 1, we define

σi
j =

{
� if p̂j = pi�,

0 if p̂j /∈ {pi1, . . . , pimi
}.

Corollary D.1. Assume that P is the empirical measure of forecast–observation
pairs (F1, y1), . . . , (Fn, yn), where each Fi is a distribution with finite support
as described above. Then

MCBHB =
M−1∑
j=1

ĝj(p̂j − f̂j)2 (46)

where, for j = 1, . . . ,M − 1,

ĝj = 1
n

n∑
i=1

1{σi
j �= 0}

(
xi
σi
j+1 − xi

σi
j

)
, (47)

f̂j = 1
nĝj

n∑
i=1

1{Fi(yi) ≤ p̂j}1{σi
j �= 0}

(
xi
σi
j+1 − xi

σi
j

)
. (48)

Proof. For i = 1, . . . , n, let νi be the image measure of Fi with respect to the
Lebesgue measure, i.e.,

νi =
M−1∑
j=1

δp̂j1{σi
j �= 0}

(
xi
σi
j+1 − xi

σi
j

)
,

and thus, μ =
∑M−1

j=1 δp̂j ĝj , where ĝj is given at (47). Therefore, for any A ∈
B(0, 1), we have

τ(A) = E

∫
A

1{F (Y ) ≤ u}dνF (u)

= 1
n

n∑
i=1

M−1∑
j=1

δp̂j (A)1{Fi(yi) ≤ p̂j}1{σi
j �= 0}

(
xi
σi
j+1 − xi

σi
j

)

=
M−1∑
j=1

δp̂j (A) 1
n

n∑
i=1

1{Fi(yi) ≤ p̂j}1{σi
j �= 0}

(
xi
σi
j+1 − xi

σi
j

)

=
M−1∑
j=1

δp̂j (A)f̂j ĝj .

We conclude that the Radon–Nikodym derivative of τ with respect to μ is
f(p̂j) = f̂j for j = 1, . . . ,M − 1, where f̂j is given at (48).
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To specialize Corollary D.1 to the ensemble setting of Corollary 4.2, let mi =
m and pi� = �/m for i = 1, . . . , n and � = 1, . . . ,m− 1. Then M = m, p̂� = �/m,
and the quantities in (18) and (47), and in (19) and (48), respectively, coincide.

Proof of Corollary 4.3. Since F−1 is almost surely absolutely continuous, for
any 0 < a < b < 1, we have almost surely

νF ([a, b)) = λ(F−1([a, b))) = F−1(b) − F−1(a) =
∫ b

a

d
dpF

−1(p) dp.

That is, the random measure νF almost surely possesses a density ( d/dp)F−1(p)
with respect to the Lebesgue measure, and it follows that the measure μ has
density γ at (43) with respect to the Lebesgue measure. Since for A ∈ B(0, 1),

τ(A) = E

∫
A

1{F (Y ) ≤ p}dνF (p) =
∫
A

E

(
1{F (Y ) ≤ p} d

dpF
−1(p)

)
dp,

the density f of the measure τ with respect to μ is given as stated at (44).

The following example relates to the case study on probabilistic quantitative
precipitation forecasts in Section 5.1, where it applies to the BMA, EMOS, and
HCLR forecasts, respectively.

Example D.1. Let (F1, y1), . . . , (Fn, yn) be forecast–observation pairs for a
nonnegative (possibly, censored) quantity, so that yi ≥ 0 for i = 1, . . . , n. Sup-
pose that, for i = 1, . . . , n,

Fi(x) =
{

0 for x < 0,
pi0 +

∫ x

0 fi(t) dt for x ≥ 0,

for some 0 ≤ pi0 < 1 and a strictly positive continuous function fi : (0,∞) → R+
with

∫∞
0 fi(t) dt = 1−pi0. Then F−1

i is absolutely continuous and has derivative
fi(F−1

i (p))−1 for p ∈ (pi0, 1) and zero otherwise. Hence, MCBHB =
∫ 1
0 (p −

f(p))2 γ(p) dp by Corollary 4.3, where

γ(p) = 1
n

n∑
i=1

1
fi(F−1

i (p))
1(pi

0,1)(p)

and

f(p) = 1
nγ(p)

n∑
i=1

1{Fi(yi) ≤ p} 1
fi(F−1

i (p))
1(pi

0,1)(p)

for p ∈ (0, 1) with γ(p) > 0, and f(p) = 0 otherwise.
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Appendix E: Proofs for Section 4.5

Proof of Theorem 4.4. Concerning part (a), we consider the Brier score based
decomposition of CRPS and apply Fubini’s theorem to obtain

MCBCT =
∫ (

E
(
F (z) − 1{Y ≤ z}

)2 − E
(
P(Y ≤ z | F ) − 1{Y ≤ z}

)2) dz,

(49)

DSCCT =
∫ (

E
(
Fmg(z) − 1{Y ≤ z}

)2 − E
(
P(Y ≤ z | F ) − 1{Y ≤ z}

)2) dz.

(50)

Recall that for any z ∈ R, the expectation E (1{Y ≤ z} − p)2 is minimized
by P(Y ≤ z | F ) over all σ(F )-measurable random variables p, and this mini-
mizer is P-almost surely unique. Since F (z) and the constant Fmg(z) are σ(F )-
measurable, it follows from (49) and (50) that MCBCT ≥ 0 and DSCCT ≥ 0,
respectively. Equality in (49) holds if, and only if, F is auto-calibrated. Equality
in (50) holds if, and only if, PY |F = Fmg, i.e., P(Y ≤ z | F ) = Fmg(z) for all
z ∈ R.

For part (b), in analogy to the above, we find that

MCBISO =
∫ (

E
(
F̄ (z) − 1{Y > z}

)2− E
(
P(Y > z | L (F )) − 1{Y > z}

)2)dz,

(51)

DSCISO =
∫ (

E
(
F̄mg(z) − 1{Y > z}

)2− E
(
P(Y > z | L (F )) − 1{Y > z}

)2)dz,

(52)

where F̄ (z) = 1−F (z), and F̄mg(z) = 1−Fmg(z). Recall that for any z ∈ R, the
expectation E(1{Y > z}−p)2 is minimized by P(Y > z | L (F )) over all L (F )-
measurable random variables p, and the minimizer is P-almost surely unique.
Since F̄ (z) and the constant F̄mg(z) are L (F )-measurable, it follows directly
that MCBISO ≥ 0 and DSCISO ≥ 0. Equality in (51) holds if, and only if, F is
isotonically calibrated, and equality in (52) holds if, and only if, PY |L (F ) = Fmg.

To demonstrate part (c), it suffices to observe from Arnold and Ziegel (2024,
Lemma 5.4) that threshold calibration is equivalent to P(Y ≤ z | L (F (z))) =
F (z) for z ∈ R. The rest of the argument is analogous to the above.

Finally, for part (d), recall that for α ∈ (0, 1), a random variable is a con-
ditional quantile qα(Y | L (F−1(α))) if, and only if, it minimizes EQSα(X,Y )
over all L (F−1(α))− measurable random variables X, see Arnold and Ziegel
(2024). It follows that MCBQS ≥ 0 and DSCQS ≥ 0. Assume that F is quan-
tile calibrated; then qα

(
Y | L

(
F−1(α)

))
= F−1(α) for α ∈ (0, 1) and hence

MCBQS = 0. Conversely, if MCBQS = 0 then Fubini’s theorem implies∫ 1

0

(
E qsα

(
F−1(α), Y

)
− E qsα

(
qα

(
Y | L (F−1(α))

)
, Y

))
dα = 0.
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Since the integrand is non-negative, it follows that qα
(
Y | L (F−1(α))

)
=

F−1(α) for almost all α ∈ (0, 1) and, hence, there exists a Lebesgue null set
N ⊆ (0, 1) with qα(Y | L (F−1(α))) = F−1(α) for all α ∈ (0, 1) \N .

Assume for a contradiction that N �= ∅ and consider α0 ∈ N . Choose
(αn)n∈N ⊆ (0, 1) \ N with αn ↑ α0 as n → ∞. Since F−1(αn) → F−1(α0)
almost surely and qsαn

(·, y) → qsα0
(·, y) pointwise for any y ∈ R, it fol-

lows that qsαn
(F−1(αn), Y ) → qsα0

(F−1(α0), Y ) almost surely, and hence,
E qsαn

(F−1(αn), Y ) → E qsα0
(F−1(α0), Y ) by dominated convergence. Anal-

ogously, E qsαn
(X,Y ) → EQSα0

(X,Y ) for X = qα0(Y | L (F−1(α0))) and
E qsα0

(X,Y ) ≥ E qsα0
(F−1(α0), Y ) since E qsαn

(X,Y ) ≥ E qsαn
(F−1(αn), Y )

for all n ∈ N. This shows that qα
(
Y | L (F−1(α))

)
is an α-quantile of F for

α ∈ (0, 1). By construction in Section 6 of Arnold and Ziegel (2024), qα
(
Y |

L (F−1(α))
)

is the smallest possible minimizer of E qsα(X,Y ), so it coincides
with F−1(α) for all α ∈ (0, 1) and, hence, N = ∅. Clearly, DSCQS = 0 if
qα

(
Y | L (F−1(α))

)
= qα(Y ) for α ∈ (0, 1). Conversely, if DSCQS = 0 then

qα
(
Y | L (F−1(α))

)
= qα(Y ) for α ∈ (0, 1).

Proof of Corollary 4.6. For any z ∈ R, PY |F (·, (z,∞)) minimizes E(p− 1{Y >
z})2 over all σ(F )-measurable random variables p, and hence, also over all
L (F )-measurable random variables since any L (F )-measurable random vari-
able is also σ(F )-measurable, see Arnold and Ziegel (2024, Lemma 3.1). Thus,
we apply Fubini to derive

E crps(PY |F , Y ) =
∫

E (PY |F (·, (z,∞)) − 1{Y > z})2 dz

≤
∫

E (PY |L (F )(·, (z,∞)) − 1{Y > z})2 dz

= E crps(PY |L (F ), Y ),

which implies MCBCT ≥ MCBISO. Moreover, for any z ∈ R we know that
L (F (z)) ⊆ L (F ), where for any σ-lattice A ⊆ F , Ā denotes the σ-lattice which
consists of all complements of elements in A. Hence, we may argue similarly that

E crps(PY |L (F ), Y ) =
∫

E(1 − PY |L (F )(·, (z,∞)) − 1{Y ≤ z})2 dz

≤
∫

E(P(Y ≤ z | L (F (z))) − 1{Y ≤ z})2 dz,

which implies MCBISO ≥ MCBBS. Finally for any α ∈ (0, 1), we have that
P−1
Y |L (F )(α) minimizes E qsα(X,Y ) over all L (F )-measurable random variables

X. We use that L (F−1(α)) ⊆ L (F ), to derive that

E crps(PY |L (F ), Y ) =
∫ 1

0
E qsα(P−1

Y |L (F )(α), Y ) dα

≤
∫ 1

0
E qsα(qα(Y | L (F−1(α)), Y ) dα

and hence MCBISO ≥ MCBQS.
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Proof of Proposition 4.7. The claim in part (a) follows from the definition of
MS at (42). For part (b), suppose that F is auto-calibrated. Then Y ∈ supp(F )
almost surely and hence MS = 0 by part (a). The tower property implies for
any A ∈ B(0, 1) that

τ(A) = E

(
E

(∫
A

1{F (Y ) ≤ p}dνF (p)
∣∣∣ F))

= E

(∫
A

E (1{F (Y ) ≤ p} | F ) dνF (p)
)

= E

(∫
A

F (F−1(p)) dνF (p)
)
,

where the last equality follows since if Y ∈ supp(F ), then F (Y ) ≤ p if and only
if Y ≤ F−1(p) and P(Y ≤ F−1(p) | F ) = F (F−1(p)) by auto-calibration. By
the properties of generalized inverses (Embrechts and Hofert, 2013), we have
F (F−1(p)) ≥ p for all p ∈ (0, 1). However, if F (F−1(p)) > p for all p ∈ B
in some B ∈ B(0, 1), then F−1(B) = {x ∈ R | F (x) ∈ B} = ∅ and hence
νF (B) = 0 almost surely. That is, νF ({p ∈ (0, 1) : F (F−1(p)) > p} = 0 almost
surely and thus

τ(A) = E

(∫
A

F (F−1(p)) dνF (p)
)

= E

(∫
A

pdνF (p)
)

=
∫
A

pdμ(p).

We conclude that f(p) = p μ-almost surely and hence MCBHB = 0.
The condition in part (c) is equivalent to assuming that d

dpF
−1 is almost

surely constant for all p ∈ (0, 1). Since F is probabilistically calibrated, we have
for any p ∈ (0, 1),

f(p) = 1
γ(p)E

(
1{F (Y ) ≤ p} d

dpF
−1(p)

)

= γ(p)
γ(p)E (1{F (Y ) ≤ p}) = P(F (Y ) ≤ p) = p

and hence MCBHB = 0.

Appendix F: Analytic examples at the population level

In this section we compare the population level decompositions from Section 4 in
a number of examples in the prediction space setting. Table 4 collects and sum-
marizes the analytic forms of the decomposition components in these examples.
Assumption 4.1 is satisfied throughout.

F.1. Auto-calibrated Gaussian

In this example, the predictive distribution F is Gaussian with mean μi and
standard deviation σi > 0 with probability wi for i = 1, . . . , n, where w1 +



5036 S. Arnold et al.

Table 4

Analytic form of the various different types of decomposition in population level examples
F.1, . . . ,F.5. For details and supporting calculations see the text.

Example F.1 F.2 F.3 F.4 F.5

E crps(F, Y )
∑n

i=1 wi
σi√
π

1
6 1 39

80
5
24 t

MCBCT 0 1
30 1 7

400
3

200 t

MCBISO 0 1
30 1 9

2800
3

200 t2

MCBQS 0 1
30

13
16

9
2800 0

MCBBS 0 1
30

1
2

9
2800 0

MCBHB 0 0 1
8

1
1600 0

UNC0
1
2
∑n

i,j=1 wiwj A(μi − μj , σ
2
i + σ2

j ) 2
5

3
4

3
2

2
9 t

· · · + wn = 1. Conditionally on F , the outcome Y has distribution F , so F is
auto-calibrated. We conclude that

MCBCT = MCBISO = MCBBS = MCBQS = 0.

Since auto-calibration implies probabilistic calibration, Proposition 4.7 yields
MCBHB = MSHB = 0. Finally, we apply formulas in Grimit et al. (2006) to
obtain

E crps(F, Y ) =
n∑

i=1
wi

σi√
π

and UNC0 = 1
2

n∑
i,j=1

wiwjA(μi − μj , σ
2
i + σ2

j ),

where A(μ, σ2) = 2σϕ(μσ ) + μ(2Φ(μσ ) − 1), with ϕ and Φ denoting the density
and the cdf of the standard normal distribution, respectively.

F.2. Example in Candille and Talagrand (2005)

In this example of Candille and Talagrand (2005, p. 2145), the forecast F is
F1, which is uniform on (−1, 0), or F2, which is uniform on (0, 1), with equal
probability. Given F = F1, the conditional cdf of Y is Q1(z) = 1 − z2 for
z ∈ (−1, 0), and given F = F2, the conditional cdf of Y is Q2(z) = z2 for
z ∈ (0, 1).

For i = 1, 2, we denote by Gi the isotonic conditional law of Y given F = Fi.
Since F1 ≤st F2 and Q1 ≤st Q2 it follows that Qi = Gi for i = 1, 2 and the
isotonicity-based decomposition coincides with the Candille–Talagrand decom-
position. For any z ∈ (−1, 1), F1(z) and F2(z) strictly order and hence the
random variable F (z) already reveals the value of F . That is, σ(F (z)) = σ(F )
and hence P(Y ≤ z | F (z)) = P(Y ≤ z | F ) = PY |F (z). Since this conditional
probability is already an increasing function of F (z), we may conclude by Propo-
sition 3.2. in Arnold and Ziegel (2024) that P(Y ≤ z | L (F (z))) = PY |F (z) for
all z ∈ R and hence the Brier score based decomposition correspond with the
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Candille–Talagrand decomposition. Analogously the claim can be shown for
the quantile score based decomposition. Thus the isotonicity-based, Brier score
based, and quantile score based decompositions coincide with the Candille–
Talagrand decomposition, where E crps(F, Y ) = 1/6, MCBCT = 1/30, and
UNC0 = 2/5.

The forecasts satisfy the conditions in part (c) of Proposition 4.7, therefore
MCBHB = 0. Since Y ∈ supp(F ) almost surely, we have MS = 0.

F.3. Example with two atoms

This simple example illustrates that the Brier score and quantile score based
decompositions do not coincide in general, that the corresponding calibration
methods do not necessarily produce valid cdfs or quantile functions, respectively,
and that DSCHB can be negative.

Consider the distributions F1 = (δ1 + δ2)/2 and F2 = (δ0 + δ3)/2, where δz
denotes the Dirac measure at z ∈ R. Assume that F is F1 and F2 with equal
probability and that Y = y1 if F = F1 and Y = y2 if F = F2. Let y1 = 3 and
y2 = 0, so the marginal law Fmg of Y is F2. We readily compute E crps(F, Y ) = 1
and E crps(Fmg, Y ) = UNC0 = 3/4.

An application of the PAV algorithm for the mean functional on (1{y1 ≤
z},1{y2 ≤ z}) with respect to the order induced by (F1(z), F2(z)) at threshold
z ∈ R results in

F́1(z) = 1
21[1,3)(z) + 1[3,∞)(z) and F́2(z) = 1[0,1)(z) + 1

21[1,3)(z) + 1[3,∞)(z),

and we see that F́2 fails to be increasing. Similarly, an application of the PAV
algorithm for the α-quantile on (y1, y2) with respect to the order induced by
(F−1

1 (α), F−1
2 (α)) at level α ∈ (0, 1) results in

F̀−1
1 (α) = 3 and F̀−1

2 (α) = 31( 1
2 ,1](α).

It follows easily that MCBBS = 1/2 �= 13/16 = MCBQS. As the conditional
law of Y given F is a Dirac measure, E crps(PY |F , Y ) = 0 and MCBCT = 1.
Similarly, MCBISO = 1 since F1 and F2 do not order.

According to the formulas in Section 2.5, ḡ1 = 2 and f̄1 = (1{F1(y1) ≤
1
2} + 31{F2(y2) ≤ 1/2})/(2ḡ1) = 3/4 and thus MCBHB = (p1 − f̄1)2 ḡ1 = 1/8,
whence we conclude that DSCHB = MCBHB + UNC0 − E crps(F, Y ) = −1/8.

F.4. Example 2.4 a) in Gneiting and Resin (2023)

Let F be a mixture of uniform distributions on [0, 1], [1, 2], and [2, 3] with
weights p1, p2, and p3, respectively, and let Y be drawn from a mixture of
these distributions with weights q1, q2, and q3, respectively, where the tuple
(p1, p2, p3; q1, q2, q3) attains each of the values( 1

2 ,
1
4 ,

1
4 ; 5

10 ,
1
10 ,

4
10
)
,

( 1
4 ,

1
2 ,

1
4 ; 1

10 ,
8
10 ,

1
10
)
,

( 1
4 ,

1
4 ,

1
2 ; 4

10 ,
1
10 ,

5
10
)
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with equal probability. We note that F is probabilistically calibrated, and still
we find that MCBHB �= 0.

Let F1, F2, and F3 denote the distributions that F attains. For i = 1, 2, 3,
let Qi be the conditional law of Y given F = Fi, and let Gi be the isotonic
conditional law of Y given F = Fi. The marginal law Fmg of Y is uniform on
[0, 3] and, hence,

UNC0 = E crps(Fmg, Y ) =
∫ ∫

(Fmg(x) − 1{y ≤ x})2 dxdFmg(y)

= 1
3

∫ 3

0

∫ 3

0

(x
3 − 1{y ≤ x}

)2
dxdy = 3

2 .

It holds that F1 ≤st F2 ≤st F3 but only Q1 ≤st Q3, hence PY |F �= PY |L (F ). Let
r = 10/7, s = 11/7. On (−∞, r], we have the pointwise inequalities Q2 ≤ Q3 ≤
Q1; on [r, s], we have Q3 ≤ Q2 ≤ Q1; and on [s,∞), we have Q3 ≤ Q1 ≤ Q2.
Consider the pooled cdfs Q12 = (Q1 + Q2)/2 and Q23 = (Q2 + Q3)/2. The
Gi’s may be derived by pooling the Qi’s according to the given order constraint
G1 ≤st G2 ≤st G3, namely,

G1(z) = Q1(z)1(−∞,s](z) + Q12(z)1[s,∞)(z),
G2(z) = Q23(z)1(−∞,r](z) + Q2(z)1[r,s](z) + Q12(z)1[s,∞)(z),
G3(x) = Q23(z)1(−∞,r](x) + Q3(z)1[r,∞)(z).

By the law of total expectation and Fubini’s theorem,

E crps(F, Y ) = 1
3

3∑
i=1

E
(
crps(F, Y ) | F = Fi

)

= 1
3

3∑
i=1

∫ ∫ (
Fi(x) − 1{y ≤ x}

)2 dxdQi(y)

= 1
3

3∑
i=1

∫ ∫ (
Fi(x) − 1{y ≤ x}

)2 dQi(y) dx

= 1
3

3∑
i=1

∫ (
F 2
i (x) − 2Fi(x)Qi(x) + Qi(x)

)
dx.

Similarly, we find that E crps(G,Y ) = (1/3)
∑3

i=1
∫

(G2
i (x) − 2Gi(x)Qi(x) +

Qi(x)) dx and E crps(Q,Y ) = (1/3)
∑3

i=1
∫

(Qi(x) − Q2
i (x)) dx; and therefore

E crps(F, Y ) = 39/80, E crps(G,Y ) = 339/700, and E crps(Q,Y ) = 47/100. We
conclude that

MCBCT = 39
80 − 47

100 = 7
400 and MCBISO = 39

80 − 339
700 = 9

2800 .

Since the predictive distributions are ordered with respect to ≤st, it follows
that for every threshold z, the ordering of Fi(z) is the same. For z ∈ (−∞, 1],
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F2(z) and F3(z) coincide but this also holds for G2(z) and G3(z). Similarly,
for z ∈ [2,∞), F1(z) and F2(z) coincide but this also holds for G1(z) and
G2(z). This implies that the Brier score based and the isotonocity-based de-
compositions coincide. Since the stochastic order is equivalently characterized
by pointwise orderings of lower quantile functions, the quantile score based and
the isotonicity-based decompositions also coincide.

As all F−1
i ’s are absolutely continuous, we may apply Corollary 4.3 to com-

pute MCBHB. For p ∈ (0, 1) \ {1/4, 1/2, 3/4} we find that

d
dpF

−1
1 (p) = 21(0, 12 )(p) + 41( 1

2 ,1)(p),
d
dpF

−1
3 (p) = 41(0, 12 )(p) + 21( 1

2 ,1)(p),

d
dpF

−1
2 (p) = 41(0, 14 )(p) + 21( 1

4 ,
3
4 )(p) + 41( 3

4 ,1)(p),

hence

γ(p) = 1
3
∑3

i=1 E
(

d
dpF

−1(p)
∣∣∣F = Fi

)
= 10

3 1(0, 14 )(p) + 8
31( 1

4 ,
3
4 )(p) + 10

3 1( 3
4 ,1)(p).

The law of total expectation implies

E

(
1{F (Y ) ≤ p} d

dpF
−1(p)

)
= 10

3 p1(0, 14 )(p) +
(

3
15 + 34

15p
)
1( 1

4 ,
3
4 )(p) + 10

3 p1( 3
4 ,1)(p),

and hence,

f(p) = p1(0, 14 )(p) +
( 3

40 + 17
20p

)
1( 1

4 ,
3
4 )(p) + p1( 3

4 ,1)(p).

Finally, we obtain

MCBHB =
∫

(p− f(p))2 γ(p) dp =
∫ 3

4
1
4

( 3
20p−

3
40
)2 8

3 dp = 1
1600 .

F.5. Example 2.14 b) in Gneiting and Resin (2023)

For y1 < y2 < y3, let F be a mixture of the Dirac measures on y1, y2, and y3
with weights p1, p2, and p3, and let Y be drawn from a mixture of the same
Dirac measures with weights q1, q2, and q3, respectively. Suppose that the tuple
(p1, p2, p3; q1, q2, q3) attains each of the values( 1

2 ,
1
4 ,

1
4 ; 5

10 ,
4
10 ,

1
10
)
,

( 1
4 ,

1
2 ,

1
4 ; 1

10 ,
5
10 ,

4
10
)
,

( 1
4 ,

1
4 ,

1
2 ; 4

10 ,
1
10 ,

5
10
)

with equal probability. Let t1 = y2 − y1 > 0, t2 = y3 − y2 > 0, and t = t1 + t2. It
is immediate that E crps(F, Y ) = 5t/24 and UNC0 = E crps(Fmg, Y ) = 2t/9. As
Gneiting and Resin (2023) show, F is threshold and quantile calibrated, hence
MCBBS = MCBQS = 0.
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Let F1, F2, and F3 denote the three discrete distributions that F may attain.
For i = 1, 2, 3, denote by Qi the conditional law of Y given F = Fi and by Gi

the isotonic conditional law of Y given F = Fi, namely,

G1 = 1
2δy1 + 4

10δy2 + 1
10δy3 , G2 = 1

4δy1 + 7
20δy2 + 4

10δy3 ,

and

G3 = 1
4δy1 + 1

4δy2 + 1
2δy3 .

Since the image of the random vector (F, Y ) is finite and ICL is the population
version of IDR (Arnold and Ziegel, 2024, Proposition 4.1), one obtains the Gi’s
alternatively by applying IDR on the finite sample of size n = 30 with five
occurrences of (F1, y1), four of (F1, y2), one each of (F1, y3 and (F2, y1), five of
(F2, y2), four each of (F2, y3) and (F3, y1), one of (F3, y2), and five of (F3, y3).
The MCBCT and MCBISO components may be calculated in analogy to previous
examples. We obtain MCBCT = 3t/200 and MCBISO = 3t2/200.

To compute the Hersbach decomposition, let νi be the image of the Lebesgue
measure on (0, 1) under Fi where i = 1, 2, 3. We have ν1 = t1δ1/2 + t2δ3/4,
ν2 = t1δ1/4 + t2δ3/4, and ν3 = t1δ1/4 + t2δ1/2, and hence, μ = (1/3)(2t1 δ1/4
+ t δ1/2 + 2t2 δ3/4). For � = 1, 2, 3 and p� = �/4, and for any A ∈ B(0, 1), the
quantities f� = f(p�) satisfy

τ(A) = E

∫
A

1{F (Y ) ≤ p}dνF (p) (53)

=
∫
A

f(p) dμ(p) = f1
2t1
3 δ1/4(A) + f2

t

3 δ1/2(A) + f3
2t2
3 δ3/4(A),

where the expectation in (53) may be calculated by the law of total expectation:

E
∫
A
1{F (Y ) ≤ p}dν(p) = 1

3

3∑
i=1

E

(∫
A

1{F (Y ) ≤ p}dνF (p)
∣∣ F = Fi

)

= 1
3

3∑
i=1

∫ ∫
A

1{Fi(y) ≤ p}dνi(p) dQi(y)

= t1
6 δ1/4(A) + t

6 δ1/2(A) + t2
2 δ3/4(A).

We conclude that f� = p� for � = 1, 2, 3, and hence MCBHB = 0.
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