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Abstract: This paper is concerned with the problem of conditional inde-
pendence testing for discrete data. In recent years, researchers have shed
new light on this fundamental problem, emphasizing finite-sample optimal-
ity. The non-asymptotic viewpoint adapted in these works has led to novel
conditional independence tests that enjoy certain optimality under various
regimes. Despite their attractive theoretical properties, the considered tests
are not necessarily practical, relying on a Poissonization trick and unspec-
ified constants in their critical values. In this work, we attempt to bridge
the gap between theory and practice by reproving optimality without Pois-
sonization and calibrating tests using Monte Carlo permutations. Along
the way, we also prove that classical asymptotic χ2- and G-tests are no-
tably sub-optimal in a high-dimensional regime, which justifies the demand
for new tools. Our theoretical results are complemented by experiments on
both simulated and real-world datasets. Accompanying this paper is an R
package UCI that implements the proposed tests.
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1. Introduction

Conditional independence (CI) is the backbone of diverse fields in statistics,
including graphical models [18, 31] and causal inference [44, 37, 22]. Among
several benefits, this fundamental assumption allows us to simplify the structure
of a model, thereby increasing interpretability and reducing computational costs.
To justify the use of CI assumption, it is of considerable interest to test whether
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two random variables X and Y are independent after accounting for the effect
of another random variable Z. Due to its important role, the problem of CI
testing has received much attention in the past decade, resulting in numerous
exciting new developments [e.g., 12, 42, 8, 35, 40, 33]. See [32] and [16] for recent
reviews. However, most of the recent work is dedicated to continuous data and
the importance of discrete CI testing is relatively overlooked.

In discrete settings, two commonly used methods are the χ2-test [38] and
the G-test [34], and their asymptotic equivalence is well-known under regularity
conditions [e.g., Chapter 14 of 10]. When X and Y are binary, the Cochran–
Mantel–Haenszel test [2] is another popular method for CI testing. Despite
their popularity, these methods are asymptotic in nature, frequently calibrated
by their limiting null distributions. Therefore their finite-sample validity re-
mains questionable. This miscalibration issue becomes more serious in high-
dimensional regimes where the number of categories can be significantly larger
than the sample size. Besides, the power of these methods is not well-understood
except in classical fixed-dimensional settings.

For discrete CI testing, [13] put forward two testing algorithms and ana-
lyzed their sample complexity from a non-asymptotic perspective. Their sam-
ple complexity results are further complemented by matching lower bounds,
demonstrating optimality of their procedures in some regimes. In spite of these
technical advances, their approach poses several practical challenges. First, their
results rely on a Poissonization trick where the sample size is treated as a Pois-
son random variable. This assumption greatly simplifies the theoretical analysis,
but is untenable in practice. Another issue worth highlighting is the dependence
of the test on unspecified constants in their critical values. In many statistical
applications, the type I error is a greater concern than the type II error. It is
therefore desirable to set a critical value in such a way as to maximize the power,
while tightly controlling the type I error. However, it is unclear from [13] how to
modify their tests to meet this criteria, thereby leaving room for improvement
from a practical perspective. Indeed, this issue was the main motivation of recent
work of [28, 29] that advocates the use of permutation methods in two-sample
and (both unconditional and conditional) independence testing problems.

With these issues in mind, our work makes the following contributions: (i) In
Theorem 4.1, we depoissonize the sample complexity results of [13] and estab-
lish the same theoretical guarantees under the standard sampling setting. On
a technical level, the challenge lies in dealing with the complicated dependence
structure of multinomial samples. We overcome this difficulty using the negative
association property of multinomial distributions [24]. (ii) In Section 3.2, we in-
troduce a refined version of the general CI tester described in [13, Section 5].
This refinement reduces the number of splits from three to two, thereby utiliz-
ing the data more efficiently while maintaining the same theoretical guarantee.
(iii) We further make the algorithms of [13] practical by leveraging the permu-
tation method to calibrate test statistics. This resampling approach completely
removes the issue arising from unspecified constants, and provably controls the
finite-sample type I error. In Theorem 4.2, we prove that Monte Carlo permu-
tation tests achieve the same sample complexity as the theoretical tests of [13].
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This result is achieved by leveraging the general recipe for analyzing Monte
Carlo permutation tests introduced in [28]. (iv) The considered test statistics
are linear combinations of fourth order U-statistics, which can be daunting com-
putationally. We address this computational concern by presenting alternative
linear time expressions in Proposition 1. (v) We also prove an independent result
that demonstrates sub-optimality of asymptotic χ2- and G-tests in their power
performance. This negative result naturally inspires efforts to develop new CI
tests that perform better than the classical ones. (vi) Finally, we provide ex-
tensive simulation results that demonstrate the practical value of the proposed
methods in Section 5, and the algorithms are available in the R package UCI.1
To the best of our knowledge, this work is the first to investigate the optimal
sample complexity for CI testing without Poissonization, supported by empirical
results.

Our work is related to [45] who warn about the risk of asymptotic calibration
for χ2- and G-tests, and further highlight benefits of the permutation proce-
dure in type I error control. The risk of asymptotic calibration has also been
discussed in other testing problems, such as those studied in [4, 5, 28]. In line
with this research, we prove the negative result of asymptotic χ2- and G-tests,
and demonstrate attractive properties of the permutation method both in type
I and II error control. Another related work is [7] where the authors propose a
permutation test based on a U-statistic for unconditional independence testing.
Concurring with our view, [7] put an emphasis on the permutation approach
for practical calibration and demonstrate the competitive performance of their
proposal, coined USP test, over χ2- and G-tests. In fact, when the conditional
variable is degenerate (i.e., Z takes a single value), one of our practical proposals
becomes exactly the same as that of [7]. In this sense, our work can be considered
as an extension of [7] to CI testing. We also refer to [1, 49] that discuss exact in-
ference methods for contingency tables. It is worth pointing out that the current
paper builds on our prior work [29], which proves that the sample complexity
results of [13] continue to hold using permutation tests. However, the analysis
of [29] relies on Poissonization and also makes use of (computationally expen-
sive) full permutation tests. The current work deviates from [29] by removing
Poissonization and employing a more computationally efficient permutation test
via Monte Carlo sampling. As part of this effort, we depoissonize several lem-
mas of [13] in Appendix B [30], which may be useful in other contexts. We also
propose a new permutation test, called wUCI-test, that avoids sample splitting
and achieves the optimal sample complexity in certain regimes. We illustrate its
competitive finite sample performance under a variety of settings.

Organization The rest of this paper is organized as follows. In Section 2, we
set the stage by presenting some background information on sample complexity
and Poissonization. Section 3 describes the test statistics that we study, and
verifies that they can be computed in linear time. Section 4 contains our main
theoretical results including depoissonization and sub-optimality of χ2- and G-

1Publicly available at github repository: https://github.com/ilmunk/UCI

https://github.com/ilmunk/UCI
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tests. In Section 5, we demonstrate the empirical performance of the proposed
methods based on simulated and real-world datasets, before concluding in Sec-
tion 6. All the proofs of our results are relegated to the appendix [30].

Notation For a positive integer a, we use the shorthand [a] = {1, . . . , a}. The
conditional independence of X and Y given Z is denoted as X |= Y |Z. Given
two discrete distributions p and q, we write the L1 distance between p and q
as ‖p − q‖1. We say that random variables X1, . . . , Xn are i.i.d. when they are
independent and identically distributed. For two positive sequences an and bn,
we write an � bn if it holds that C1 ≤ an/bn ≤ C2 for some positive constants
C1 and C2, and for all n. We also write an = O(bn) or an � bn to indicate that
an ≤ Cbn for some positive constant C independent of n.

2. Background

Before presenting our main results, we start by building some background knowl-
edge on sample complexity and Poissonization.

2.1. Setting the stage

Consider the set of discrete distributions of (X,Y, Z) on a domain [�1] × [�2] ×
[d], denoted by P. Let P0 be the subset of P such that X |= Y |Z. Given n
i.i.d. random vectors {(Xi, Yi, Zi)}ni=1 drawn from pX,Y,Z ∈ P, our goal is to
distinguish

H0 : pX,Y,Z ∈ P0 versus H1 : pX,Y,Z ∈ P1(ε) =
{
p ∈ P : inf

q∈P0
‖p− q‖1 ≥ ε

}
,

(1)

where ε > 0 is a distance parameter (Figure 1 for a pictorial description).
We point out that the class of alternatives P1(ε) is defined with respect to

the L1 distance or equivalently twice the total variation (TV) distance:

TV(p, q) = sup
A

|p(A) − q(A)| = 1
2‖p− q‖1,

where the supremum is taken over all possible measurable sets. The TV distance
has a clear probabilistic interpretation as being the maximum absolute difference
of the probabilities assigned to the same event by two distributions. Moreover,
it is a bounded metric and remains invariant under bijective transformations.
Lastly, as an f -divergence, the TV distance comes with the data-processing
inequality, which ensures that transformations cannot introduce additional in-
formation. All of these desirable properties have prompted the use of the TV
distance in distribution testing, which we also follow in the present work.

When the sample size n is too small, no valid test can reliably differentiate
the null from the alternative. On the other hand, when the sample size n is too
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Fig 1. Schematic of the hypotheses of CI testing. The space of null distributions is ε far from
the space of alternative distributions where the distance parameter ε controls the difficulty of
the problem.

large, the problem becomes trivial, resulting in many successful tests. A natural
question is then to determine the smallest n required to achieve the desired level
of testing accuracy for an optimal test. This concept is known as the optimal
sample complexity formally defined below.

Optimal sample complexity We define a test φ which maps from the sam-
ples, potentially augmented with external randomness R, to a binary outcome
as φ : {(Xi, Yi, Zi)}ni=1 ∪ R �→ {0, 1}. For some fixed α ∈ (0, 1), let Φα denote
the set of level α tests such that for each φ ∈ Φα,

sup
p∈P0

Pp(φ = 1) ≤ α.

The minimax risk is the worst-case type II error of an optimal level α test
defined as

Rn(ε, α) = inf
φ∈Φα

sup
p∈P1(ε)

Pp(φ = 0).

The difficulty of the problem can be characterized as the minimum number
of samples that makes the minimax risk bounded by some fixed constant β ∈
(0, 1 − α).2 This minimum number of samples is called the optimal sample
complexity given as

n� = inf
{
n : Rn(ε, α) ≤ β

}
.

We say that a level α test φ is rate-optimal in sample complexity if

n� � inf
{
n : sup

p∈P1(ε)
Pp(φ = 0) ≤ β

}
.

In practice, an optimal test whose risk is exactly equal to Rn(ε, α) is mostly
inaccessible. For this reason, we instead aim to find a rate-optimal test.

2Throughout this paper, we treat the target type I and II errors α and β as universal
constants, e.g., α = β = 0.05.
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Remark 1.

• (Finite-sample optimality) We highlight that the finite-sample minimax
optimality considered in this paper is distinct from traditional asymptotic
optimality. In classical asymptotic theory, the performance of a test is
typically measured against contiguous alternatives, which converge to the
null hypothesis at a

√
n-rate. While this type of local asymptotic analysis

enables precise power comparisons, it does not provide useful insight when
the underlying distribution is outside of regular, fixed-dimensional models.
This limitation has been emphasized in [3] and [4] that advocate for the
finite-sample minimax framework as in our work. This framework provides
quantitative information in both low- and high-dimensional cases, offering
a valuable alternative to traditional asymptotic approaches.

• (Choice of metrics) The optimal sample complexity depends crucially on
the choice of metrics in the definition of the alternative hypothesis (1). We
focus on the L1 distance throughout this paper, due to its desirable prop-
erties mentioned earlier, and because our primary goal is to depoissonize
previous results derived under the L1 distance. Nevertheless, alternative
metrics may be more suitable in certain contexts. For example, if p and
q are known to differ in a few sparse bins, the L∞ distance could offer
a more efficient sample complexity than the L1 distance. Alternatively,
the Wasserstein distance is often preferred for mixed-type data due to its
ability to effectively measure differences between diverse distributions. De-
pending on the metric, the construction of an optimal test needs to change
by incorporating geometric properties of the chosen metric. As a concrete
example, we refer the reader to the recent work of [36] that investigates
the optimal sample complexity for CI testing in terms of the Wasserstein
distance using a weighted multi-resolution U-statistic.

2.2. Poissonization

Poissonization is now a standard technique to study the sample complexity in
hypothesis testing [e.g., 48, 15, 47, 5]. The idea itself is old in statistics and
probability theory, dating back at least to [25]. See also Chapter 3.5 of [46]. It
is used in theoretical works on hypothesis testing as a trick to simplify several
calculations in dealing with categorical data. In particular, it is well-known that
when the data are generated by Poisson sampling (Algorithm 1), the number of
samples falling into disjoint sets are mutually independent. This independence
property lies at the heart of deriving various existing results of the sample
complexity in distribution testing. See [14] for a recent review.

2.3. General recipe and related issue

If constant factors are not the main concern, there are straightforward ways of
transferring the sample complexity obtained from Poisson sampling to the usual



Conditional independence testing for discrete distributions 4773

Algorithm 1 Poisson Sampling
Input: For a fixed n ∈ N and a distribution pX,Y,Z

1. Draw Ñ ∼ Poisson(n).
2. Generate i.i.d. (X1, Y1, Z1), . . . , (XÑ , YÑ , ZÑ ) random variables from pX,Y,Z .

Return: {(Xi, Yi, Zi)}Ñi=1

sampling scenario with a fixed sample size. One concrete procedure, described
in [35], is as follows. Given n i.i.d. copies of (X,Y, Z),

1. Draw Ñ ∼ Poisson
(
n
2
)
.

2. If Ñ > n, then accept the null hypothesis.
3. If Ñ ≤ n, perform a test based on (X1, Y1, Z1), . . . , (XÑ , YÑ , ZÑ ) and

return a result.

This procedure leverages the concentration property of a Poisson random vari-
able to its mean, which implies that the probability of observing Ñ > n in
the second step is small especially for large n. As a result, one can proceed to
the third step with high probability and analyze the sample complexity under
Poisson sampling of size Ñ . To make this idea concrete, let φ be a generic test
function using (X1, Y1, Z1), . . . , (XÑ , YÑ , ZÑ ) and then the resulting test from
the above procedure can be concretely written as φ∗ = 1(Ñ ≤ n)φ. Suppose
that the test φ has the type I error as well as the type II error bounded by α
and β, respectively. Then the corresponding test φ∗ has the type I and II error
bounds as

sup
p∈P0

Ep[φ∗] ≤ α and sup
p∈P1(ε)

Ep[1 − φ∗] ≤ β + P[Ñ > n].

Since a Poisson random variable is tightly concentrated around its mean, the
additional term in the type II error of φ∗ can be made small when n is rela-
tively large compared to β.3 Therefore one can transfer the sample complexity
obtained under Poissonization to the usual sampling scheme up to a constant
factor.

Nevertheless, due to an inefficient use of the data as well as a non-trivial
chance of accepting the null irrelevant to the data, practitioners may not neces-
sarily follow this general recipe. To address this concern, there has been an effort
to depoissonize the results of distribution testing under Poisson sampling. For
instance, [26] revisits the truncated χ2 test for goodness-of-fit testing proposed
by [5] and establishes the same optimality without Poissonization. We also refer
to [23] and Chapter 2.5 of [39] that present useful depoissonization tools, but
mostly for asymptotic results. In this work, we analyze the tests proposed by
[13] under the usual i.i.d. sampling model with a fixed sample size and show that
the same sample complexity can be achieved without any further assumption.

3More precisely, an exponential tail bound for a Poisson random variable ensures that
P(Ñ > n) ≤ e−n/8 [e.g., Theorem A.8 of 14] so that if n ≥ 8 log(1/β), the type II error is
bounded above by 2β.
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At the heart of our technique is the negative association of multinomial distri-
butions [24], which would be potentially useful for depoissonizing other sample
complexity results.

Multinomial sampling. To fix terminology, we refer to the usual sampling
with fixed sample size n as multinomial sampling in what follows.

3. Test statistics

To describe our main results, we first need to recall the test statistics introduced
by [13]. As noted by [35], their test statistics can be viewed as linear combina-
tions of U-statistics constructed using the observations of (X,Y ) in the same
category of Z. We describe two kinds of U-statistics considered in [13] and our
modifications.

3.1. Unweighted U-statistic

Suppose that we observe N ≥ 4 i.i.d. observations of (X,Y ) supported on
[�1] × [�2]. We let pX,Y denote the joint discrete distribution of (X,Y ) and let
pX and pY denote the marginal distribution of X and Y , respectively. The first
U-statistic is an unbiased estimator of the squared L2 distance between pX,Y

and pXpY . In more detail, mostly borrowing the notation from [35], let

φij(q, r) = 1(Xi = q)1(Yi = r) − 1(Xi = q)1(Yj = r).

For four distinct observations indexed by i, j, k, l ∈ [N ], the kernel of the un-
weighted U-statistic is defined as

hijkl = 1
4!

∑
(π1,π2,π3,π4)∈Π

∑
q∈[�1],r∈[�2]

φπ1π2(q, r)φπ3π4(q, r),

where Π is the set of all possible permutations of (i, j, k, l). By the linear-
ity of expectations, we see that hijkl is an unbiased estimator of the squared
L2 distance between pX,Y and pXpY . Given this kernel and the dataset D =
{(X1, Y1), . . . , (XN , YN )}, the unweighted U-statistic is computed as

U(D) =
(
N

4

)−1 ∑
i<j<k<l:(i,j,k,l)∈[N ]

hijkl. (2)

It is worth pointing out that U(D) is equivalent to the U-statistic for un-
conditional independence testing considered in [6, 7, 28]. Denote the datasets
Dm = {(Xi, Yi) : Zi = m, i ∈ [n]} and write the sample size within Dm by Nm.
The final test statistic for CI testing based on U(D) is then constructed as

T =
∑
m∈[d]

1(Nm ≥ 4)NmU(Dm). (3)
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3.2. Weighted U-statistic

The previous unweighted U-statistic may suffer from high variance especially
when the L2 norms of pX,Y and pXpY are large, resulting in sub-optimal per-
formance (see the simulation result in Figure 2 under Scenario 1). To address
this issue, [13] employ the flattening idea proposed by [19]. This approach in-
volves partitioning heavier bins into multiple smaller pieces in a way to reduce
the L2 norms of the transformed distributions, leading to a smaller variance of
the test statistic. As noted in [4] and further elaborated by [35], the flatten-
ing procedure is equivalent to using a carefully designed weighted kernel for a
U-statistic.

To describe the weighted U-statistic considered in [13], assume that the sam-
ple size N = 4 + 4t for some t ∈ N, and let t1 = min(t, �1) and t2 = min(t, �2).
The construction of the weighted U-statistic involves three-fold splitting where
the dataset D = {(X1, Y1), . . . , (XN , YN )} is split into D̃X = {Xi : i ∈ [t1]},
D̃Y = {Yi : t1 +1 ≤ i ≤ t1 + t2} and D̃X,Y = {(Xi, Yi) : 2t+1 ≤ i ≤ N} of sizes
t1, t2 and 4 + 2t, respectively. Define ãq (and ã′r) as the number of observations
equal to q (and r) in D̃X (and D̃Y ). For four distinct observations indexed by
i, j, k, l in D̃X,Y , consider a weighted kernel given as

hã
ijkl = 1

4!
∑

(π1,π2,π3,π4)∈Π

∑
q∈[�1],r∈[�2]

φπ1π2(q, r)φπ3π4(q, r)
(1 + ãq)(1 + ã′r)

.

Given this kernel, the weighted U-statistic proposed in [13] is computed as

U ã
W (D) =

(
2t + 4

4

)−1 ∑
i<j<k<l:(i,j,k,l)∈DX,Y

hã
ijkl,

where (i, j, k, l) ∈ DX,Y indicates taking four observations indexed by (i, j, k, l)
from the dataset DX,Y . It is worth noting that, due to the independence among
the split datasets, the conditional expectation of hã

ijkl taken over DX,Y is the
square of the L2 distance between pX,Y and pXpY weighted by (1+ ãq)(1+ ã′r).

As before, denote the datasets Dm = {(Xi, Yi) : Zi = m, i ∈ [n]} and write
the sample size within Dm by Nm. Introducing ωm =

√
min(Nm, �1)min(Nm, �2),

the final test statistic proposed in [13] is given as

TW =
∑
m∈[d]

1(Nm ≥ 4)NmωmU ã
W (Dm). (4)

However, the construction of TW uses the dataset rather inefficiently. It relies
on three-fold splitting and discards a portion of samples when �1, �2 < t in the
computation of U ã

W (D). This motivates our proposal below.

Refined weighted U-statistic We now enhance the previous weighted U-
statistic by reducing the three-fold splits to two-fold splits. Additionally, our
approach does not discard the samples {(Xi, Yi) : t1 + t2 + 1 ≤ i ≤ 2t} when
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t1, t2 < t. As we will demonstrate later, this improvement can be achieved while
maintaining the same theoretical guarantees.

To elaborate, consider the dataset D = {(X1, Y1), . . . , (XN , YN )} with N ≥ 4
and split it into D(1) = {(Xi, Yi) : 1 ≤ i ≤ N(1)} and D(2) = {(Xi, Yi) :
N(1) + 1 ≤ i ≤ N} where N(1) = N − N(2) and N(2) = 4 + �(N − 4)/2. In
contrast to ãq and ã′r, which are based on two independent splits, we define aq
and a′r based on the single dataset D(1) as

aq = �1
N(1)

N(1)∑
i=1

1(Xi = q) and a′r = �2
N(1)

N(1)∑
i=1

1(Yi = r),

when N(1) ≥ 1. If N(1) = 0, we set aq = a′r = 0. For four distinct observations
indexed by i, j, k, l in D(2), define a refined weighted kernel as

ha
ijkl = 1

4!
∑

(π1,π2,π3,π4)∈Π

∑
q∈[�1],r∈[�2]

φπ1π2(q, r)φπ3π4(q, r)
(1 + aq)(1 + a′r)

.

Given this kernel, we compute the weighted U-statistic as

Ua
W (D) =

(
N(2)

4

)−1 ∑
i<j<k<l:(i,j,k,l)∈D(2)

ha
ijkl. (5)

Recalling Dm = {(Xi, Yi) : Zi = m, i ∈ [n]}, a refined version of TW is then
constructed as

TW∗ =
∑
m∈[d]

1(Nm ≥ 4)NmωmUa
W (Dm). (6)

Plug-in approach We also propose another version of the test statistic that
does not involve sample splitting. As demonstrated in Section 5, the test based
on TW∗ may experience a loss of practical power in small sample size regimes
because the main body of the statistic and weights are computed using separate
datasets. To mitigate this issue, we consider a weight kernel computed without
sample splitting:

hb
ijkl = 1

4!
∑

(π1,π2,π3,π4)∈Π

∑
q∈[�1],r∈[�2]

φπ1π2(q, r)φπ3π4(q, r)
(1 + bq)(1 + b′r)

,

where bq = �1N
−1 ∑N

i=1 1(Xi = q) and b′r = �2N
−1 ∑N

i=1 1(Yi = r). The result-
ing weighted U-statistic is then computed as

Ub
W (D) =

(
N

4

)−1 ∑
i<j<k<l:(i,j,k,l)∈[N ]

hb
ijkl. (7)

Similarly as before, the final CI test statistic based on Ub
W (D) is given as

TW,plug =
∑
m∈[d]

1(Nm ≥ 4)NmωmUb
W (Dm). (8)
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Remark 2 (Connection with the truncated χ2-test). As pointed out by several
authors [21, 5, 26], the classical χ2-test for goodness-of-fit testing can easily
break down for sparse multinomial data. To address this problem, [5] introduce
a modification of the χ2-test by using a truncated weight function and prove
its minimax optimality. Interestingly, the weight (1 + bq)(1 + b′r) (and also (1 +
aq)(1 + a′r)) that we consider is closely connected to the truncated weight of [5]
and may be regarded as an empirical counterpart for independence testing. To
explain, let us simply focus on the first term in the product weight and notice
that

�−1
1 (1 + bq) = 1

�1
+ p̂X(q) � max

{
1
�1
, p̂X(q)

}
,

where p̂X(q) = N−1 ∑N
i=1 1(Xi = q). The right-hand side of the above equation

is exactly the same as the truncated weight in [5] for goodness-of-fit testing.

3.3. Linear time expression

The original forms of the aforementioned U-statistics take O(N4�1�2) time to
compute, which can be prohibitive for large N, �1, �2. Luckily, this computational
complexity can be reduced to O(N) by exploiting a contingency table represen-
tation. A computationally convenient form of the unweighted U-statistic U(D)
is already given by [13, 6, 7]. We also note that an alternative form of Ua

W (D)
is provided in [13], but a naive calculation of their expression takes at least
O(N�21�

2
2) time. Here we present a general expression for the U-statistics and

explain that it can be run in linear time on average independent of �1 and �2.
To this end, let us set some notation. Let η = {η1, . . . , η�1} and υ =

{υ1, . . . , υ�2} be some weight vectors with non-zero components. Given the
dataset D = {(X1, Y1), . . . , (XN , YN )}, consider four distinct observations in-
dexed by i, j, k, l ∈ [N ] and define the weighted kernel associated with η and υ
as

hη,υ
ijkl = 1

4!
∑

(π1,π2,π3,π4)∈Π

∑
q∈[�1],r∈[�2]

φπ1π2(q, r)φπ3π4(q, r)
ηqυr

.

It is clear that the above kernel is equivalent to hijkl when η and υ are vectors
with each entry equal to one. Similarly, when η and υ are defined with 1 + aq
and 1 + a′r, respectively, then the above kernel corresponds to ha

ijkl. The U-
statistic based on hη,υ

ijkl is denoted by Uη,υ
W (D), which is similarly computed

as in (2). For q ∈ [�1] and r ∈ [�2], define oqr =
∑n

i=1 1(Xi = q)1(Yi = r),
oq+ =

∑�2
r=1 oqr and o+r =

∑�1
q=1 oqr. With this notation in place, we give an

alternative expression of Uη,υ
W (D) as follows.

Proposition 1 (Alternative expression). The U-statistic Uη,υ
W (D) can be writ-

ten as

Uη,υ
W (D) = 1

N(N − 3)

[
A1 + 1

(N − 1)(N − 2)A2 −
2

N − 2A3

]
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where

A1 =
�1∑
q=1

�2∑
r=1

(
o2
qr − oqr

ηqυr

)
, A2 =

�1∑
q=1

(
o2
q+ − oq+

ηq

)
·

�2∑
r=1

(
o2
+r − o+r

υr

)
,

A3 =
�1∑
q=1

�2∑
r=1

oqr(oq+o+r − oq+ − o+r + 1)
ηqυr

.

We now discuss the average-case time complexity of Uη,υ
W (D) by assuming

that the weight vectors η,υ are given in advance. First of all, we note that
the �1 × �2 contingency table of D is sparse in a sense that it has at most
N non-zero entries. Importantly, the zero entries do not affect the calculation
of A1, A2, A3. Hence we only focus on the non-zero entries of the contingency
table, which can be computed in linear time by using hash tables [e.g., Chapter
11 of 17]. Similarly, the non-zero row sums and the non-zero column sums of
the contingency table can be computed in linear time independent of �1 and �2.
Given the non-zero entries of {oqr, oq+, o+r : q ∈ [�1], r ∈ [�2]} stored in hash
tables, the computational complexity of the terms A1, A2, A3 is linear since their
non-zero summands are at most O(N) and the average-case time complexity of
retrieving entries from hash tables is O(1). See Algorithm 5 in Appendix A for
a more concrete description.

As mentioned, this linear-time complexity is an average-case guarantee. In
worst-case scenarios, the time complexity can degrade to O(N2) due to hash
collisions. However, with a well-designed hash function and a well-dimensioned
hash table, one can mitigate worst-case scenarios, and the performance remains
efficient in practice.

For the unweighted U-statistic U(D), there is no additional cost for computing
η,υ as they are vectors with each entry equal to one. For the weighted U-
statistics Ua

W (D), U ã
W (D) and Ub

W (D), the weight vectors η,υ are functions of
oq+ and o+r (computed on a separate dataset for Ua

W (D)) and they only require
an additional O(N) time to compute. Thus the overall time complexity is still
linear on average.

4. Theoretical results

Having introduced the test statistics, we are now ready to provide the main the-
oretical results of this paper. In Section 4.1, we establish the sample complexity
of the tests using T , TW , TW∗ and TW,plug under multinomial sampling. In
Section 4.2, we provide and analyze more practical tests based on permutation
procedures.

4.1. Sample complexity without Poissonization

In this subsection, we revisit two main results of [13], namely Theorem 1.1 and
Theorem 1.3 concerning with the sample complexity of a test using T in (3) and
TW in (4), respectively.
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Sample complexity of a test based on T in (3): Suppose that the
test statistic T is constructed using N i.i.d. samples from pX,Y,Z where N ∼
Poisson(n). We reject the null of CI when T > ζ

√
min(n, d) for a sufficiently

large constant ζ > 0. Then for �1 = �2 = 2, Theorem 1.1 of [13] proves that the
resulting test has the sample complexity

O

(
max

{
d1/2

ε2 , min
{
d7/8

ε
,
d6/7

ε8/7

}})
. (9)

They also prove that this sample complexity is rate-optimal by presenting a
matching lower bound.

Sample complexity of a test based on TW in (4): The test based on T is
not necessarily optimal in the high-dimensional regime where �1 and �2 can vary
with other parameters. As shown in Theorem 1.3 of [13], a more general result
of the sample complexity can be derived by using TW . In particular, given N
i.i.d. samples from pX,Y,Z where N ∼ Poisson(n), we reject the null of CI when
TW > ζ ′

√
min(n, d) for a sufficiently large constant ζ ′ > 0. With �1 ≥ �2, the

sample complexity of the resulting test satisfies

O

(
max

{
min

{
d7/8�

1/4
1 �

1/4
2

ε
,
d6/7�

2/7
1 �

2/7
2

ε8/7

}
,

d3/4�
1/2
1 �

1/2
2

ε
,
d2/3�

2/3
1 �

1/3
2

ε4/3 ,
d1/2�

1/2
1 �

1/2
2

ε2

})
.

(10)

Moreover, this upper bound is shown to be optimal, up to constant factors, in
a number of regimes. See [13] for a discussion.

We now depoissonize the previous results and establish the same sample
complexity under multinomial sampling.

Theorem 4.1 (Multinomial sampling). Suppose that we observe Dn =
{(X1, Y1, Z1), . . . , (Xn, Yn, Zn)} i.i.d. samples from pX,Y,Z with nonrandom
sample size n. Then the following three statements hold:

1. Set T ∗ to be either T or TW,plug. Compute T ∗ based on Dn and reject the
null if T ∗ > ζ

√
min(n, d) for a sufficiently large constant ζ > 0. Then the

resulting test has the sample complexity as in (9) when �1, �2 = O(1).
2. Set T ∗ to be either TW or TW∗ . Compute T ∗ based on Dn and reject the

null if T ∗ > ζ ′
√

min(n, d) for a sufficiently large constant ζ ′ > 0. Then
the resulting test has the sample complexity as in (10).

A few remarks are in order.

Remark 3.

• The above theorem essentially says that the tests based on T and TW have
the same performance in sample complexity under Poisson sampling and
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multinomial sampling. In particular, it means that they require the same
number of samples, up to a constant factor, to achieve the desired test-
ing error under both Poisson sampling and multinomial sampling. This
result may not come as a surprise given that a Poisson random vari-
able is strongly concentrated around its mean. See empirical evidence in
[29]. However, the proof under multinomial sampling turns out to be non-
trivial, requiring a careful analysis.

• The above result also presents theoretical guarantees for the tests based
on the proposed statistics TW∗ and TW,plug. First of all, we prove that the
test utilizing TW∗ achieves the same sample complexity as TW , while using
the dataset more efficiently. Second, we establish that the test based on
TW,plug achieves the optimal sample complexity when �1, �2 = O(1). Based
on our empirical results, it seems plausible that this plug-in approach
maintains comparable sample complexity as TW∗ even when �1, �2 increase.
However, proving this formally may require different techniques, and is
thus warranted for future work.

• One of the main technical hurdles in the proof is to overcome a lack of
independence between random variables in different bins when the sample
size is no longer Poisson. The independence property is useful in analyzing
the variance of the sum of U-statistics as it leads to zero covariance terms.
We address the lack of independence by employing the negative association
(NA) property of multinomial random vectors [24]. This NA property
ensures that the covariance terms are non-positive, which turns out to be
enough to ensure the same theoretical guarantees hold under multinomial
sampling.

• Another technical challenge arises when analyzing the variance of a non-
linear function of a Binomial random variable, such as Nm1(Nm ≥
4)ωm in (6). Unlike a Poisson random variable, whose moments are
fully determined by a single rate parameter, a Binomial random vari-
able depends on two parameters, making the analysis significantly more
complex. To simplify the variance analysis, we leverage the key ob-
servation that a Binomial random variable can be written as a sum
of i.i.d. Bernoulli random variables. This allows us to employ the
Efron–Stein inequality (Lemma B.10), which is suitable for bound-
ing the variance of a non-linear function of independent random vari-
ables.

• Even though we remove Poissonization, the resulting tests are not neces-
sarily practical. In particular, their critical values depend on unspecified
constants ζ and ζ ′. The choice of these constants, resulting in tight
control of the type I error, is challenging in practice. We take a further
step to address this issue via the permutation method in Section 4.2, and
demonstrate their empirical performance in Section 5.
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Algorithm 2 UCI: U-statistic CI test
1: Input: Sample {(Xi, Yi, Zi)}ni=1, the number of permutations B, significance level α
2: for j ∈ [B] do
3: for m ∈ [d] do
4: Generate π ∼ Uniform(ΠNm ) independent of everything else.
5: Compute U(Dπ

m) as in (2) based on the permuted dataset Dπ
m.

6: end for
7: Set Tj ←

∑
m∈[d] 1(Nm ≥ 4)NmU(Dπ

m).
8: end for
9: Set T ←

∑
m∈[d] 1(Nm ≥ 4)NmU(Dm) computed without permutations.

10: Compute the permutation p-value

pperm =
1

B + 1

[
B∑

j=1
1(Tj ≥ T ) + 1

]
.

11: Output: Reject H0 if pperm ≤ α; otherwise, accept H0.

4.2. Calibration via permutations

As mentioned earlier, the tests used in Theorem 4.1 depend on unspecified con-
stants, which raises the issue of practicality. This section attempts to address
this problem by presenting more practical tests calibrated by the permutation
method, and examine their sample complexity under multinomial sampling. In
particular, we prove that their sample complexity remains the same as the cor-
responding (theoretical) tests in Theorem 4.1. As briefly mentioned earlier, a
similar result was established in Theorem 5 of [29] but under Poisson sampling.
In contrast, we do not assume that the sample size follows a Poisson distribu-
tion and therefore reduce the gap between theory and practice. We start by
describing the testing procedures that we analyze.

Permutation test using T in (3) This first test compares the test statistic T
with its permutation correspondences, and rejects the null if the resulting permu-
tation p-value is less than or equal to significance level α. To further explain, let
ΠNm denote the set of all permutations of [Nm] for each m ∈ [d]. Given π drawn
from ΠNm , we define Dπ

m by rearranging Y values in Dm according to π. More
specifically, suppose that we have Dm = {(X1, Y1), . . . , (XNm , YNm)}. Then the
corresponding permuted dataset becomes Dπ

m = {(X1, Yπ1), . . . , (XNm , YπNm
)}.

Equipped with this notation, we implement Algorithm 2 and make a decision
based on the output. We coin this test as UCI-test.

Permutation test using TW∗ in (6) The second test that we analyze calcu-
lates its p-value by comparing TW with its permutation correspondences. The
overall procedure is similar to the previous one except that it utilizes the half-
permutation procedure for a technical reason. To explain the procedure, we
decompose Dm into D(1),m and D(2),m of size Nm − 4 − �(Nm − 4)/2 and
4 + �(Nm − 4)/2, respectively, as in Section 3.2. Unlike Algorithm 2, we only
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Algorithm 3 wUCI_split: weighted U-statistic CI test using sample splitting
1: Input: Sample {(Xi, Yi, Zi)}ni=1, the number of permutations B, significance level α
2: for j ∈ [B] do
3: for m ∈ [d] do
4: Generate π ∼ Uniform(Π4+�(Nm−4)/2�) independent of everything else.
5: Define Dπ

m = D(1),m ∪ Dπ
(2),m.

6: Compute Ua
W (Dπ

m) as in (5) based on the permuted dataset Dπ
m.

7: end for
8: Set Tj,W∗ ←

∑
m∈[d] 1(Nm ≥ 4)NmωmUa

W (Dπ
m).

9: end for
10: Set TW∗ ←

∑
m∈[d] 1(Nm ≥ 4)NmωmUa

W (Dm) computed without permutations.
11: Compute the permutation p-value

pperm =
1

B + 1

[
B∑

j=1
1(Tj,W∗ ≥ TW∗ ) + 1

]
.

12: Output: Reject H0 if pperm ≤ α; otherwise, accept H0.

permute Y values within D(2),m for each m ∈ [d], resulting in Dπ
(2),m, and then

evaluate the significance of TW∗ . As mentioned in Remark 6 of [29], this half-
permutation procedure greatly simplifies the analysis by preserving the indepen-
dence structure between D(1),m and Dπ

(2),m. Moreover it ensures that the weights
of the U-statistic in (5) remain invariant under permutations, and thus removes
the randomness that would arise from different weights under full permutations.
Additionally, the half-permutation test offers a computational advantage over
the full-permutation test since there is no need to recompute weights for each
permutation. A more detailed procedure is described in Algorithm 3. We refer
to this test as wUCI_split-test.

Permutation test using TW,plug in (8) The third test computes its p-value
by comparing TW,plug with its permutation correspondences. The procedure is
essentially the same as for UCI-test except that we utilize TW,plug as our test
statistic. A more detailed procedure is described in Algorithm 4, and we refer
to this test as wUCI-test.

Having outlined the permutation procedures, we now discuss their sample
complexity. First of all, it is noteworthy that both permutation tests are exact
level α in any finite sample scenarios. This simply follows by the fact that the
original test statistic and their permutation correspondences are exchangeable
under the null. Using this observation, it can be seen that that the resulting
p-values in Algorithms 2, 3 and 4 are super-uniform [e.g., Lemma 1 of 41]. The
next theorem turns to the type II error and establishes their sample complexity.

Theorem 4.2 (Permutation tests). Suppose that we observe Dn =
{(X1, Y1, Z1), . . . , (Xn, Yn, Zn)} i.i.d. samples from pX,Y,Z with nonrandom
sample size n. We also assume that the number of random permutations B sat-
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Algorithm 4 wUCI: weighted U-statistic CI test
1: Input: Sample {(Xi, Yi, Zi)}ni=1, the number of permutations B, significance level α
2: for j ∈ [B] do
3: for m ∈ [d] do
4: Generate π ∼ Uniform(ΠNm ) independent of everything else.
5: Compute Ub

W (Dπ
m) as in (7) based on the permuted dataset Dπ

m.
6: end for
7: Set Tj,W,plug ←

∑
m∈[d] 1(Nm ≥ 4)NmωmUb

W (Dπ
m).

8: end for
9: Set TW,plug ←

∑
m∈[d] 1(Nm ≥ 4)NmωmUb

W (Dm) computed without permutations.
10: Compute the permutation p-value

pperm =
1

B + 1

[
B∑

j=1
1(Tj,W,plug ≥ TW,plug) + 1

]
.

11: Output: Reject H0 if pperm ≤ α; otherwise, accept H0.

isfies B ≥ max{4(1 − α)α−1, 8α−2 log(4β−1)} where α and β are pre-specified
type I and II errors, respectively. Then the following two statements hold:

1. The test from Algorithm 2 or Algorithm 4 has the sample complexity as
in (9) when �1, �2 = O(1).

2. The test from Algorithm 3 has the sample complexity as in (10).

We highlight that the above theorem studies the random permutation tests
where B is not required to increase with the sample size n. This is in con-
trast to full permutation tests considered in [29] that enumerate all possible
permutations. This random permutation approach imposes additional technical
challenges in the theoretical analysis of permutation tests due to the extra ran-
domness inherent in the Monte Carlo procedure. In particular, it is a non-trivial
task to determine the minimum number of Monte Carlo repetitions that en-
sures an error guarantee nearly equivalent to that of the full permutation test.
To tackle this problem, we need to carefully measure the discrepancy between
the full permutation distribution and its Monte Carlo counterpart via sharp
concentration inequalities. To this end, we leverage the recent result of [28] in
our analysis that uses the Dvoretzky–Kiefer–Wolfowitz inequality. We also note
that the constant factors in the condition on B are not tight and can be im-
proved at the expense of inflating a constant factor in the sample complexity.
See Remark 5 in Appendix B for a discussion.

We next turn our attention to χ2- and G-tests and discuss their sub-
optimality.

4.3. Sub-optimality of χ2- and G-tests

Practitioners frequently use χ2- and G-tests for conditional independence, which
have nice asymptotic properties in fixed dimensional settings. In this subsection,
we move beyond this fixed dimensional case and prove that these classical tests
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are markedly sub-optimal in terms of sample complexity. To define the χ2-test
and G-test formally, let us write oqrs =

∑n
i=1 1(Xi = q)1(Yi = r)1(Zi = s)

and eqrs = oq+so+rs/o++s where oq+s =
∑

r∈[�2] oqrs, o+rs =
∑

q∈[�1] oqrs and
o++s =

∑
q∈[�1],r∈[�2] oqrs, respectively, for q ∈ [�1], r ∈ [�2], s ∈ [d]. Given this

notation, the χ2-test and G-test are based on the following test statistics

χ2 =
∑

q∈[�1],r∈[�2],s∈[d]

(oqrs − eqrs)2

eqrs
and

G = 2
∑

q∈[�1],r∈[�2],s∈[d]

oqrs log
(
oqrs
eqrs

)
.

(11)

These test statistics converge to a χ2 distribution with (�1 − 1) × (�2 − 1) × d
degrees of freedom under the null of conditional independence and under some
regularity conditions [45]. Based on this asymptotic result, χ2-test and G-test
reject the null when χ2 and G are larger than the 1 − α quantile of the χ2

distribution with (�1 − 1)× (�2 − 1)× d degrees of freedom. We first emphasize
that these classical tests do not control the type I error uniformly over the null
distributions and their validity guarantee requires that the sample size go to
infinity. This is even true for the simplest case where d = 1, which corresponds
to the unconditional independence problem [see 7, for details]. Moreover, their
asymptotic power can be exactly equal to zero in some regimes where the sample
size is much larger than the bound in (9) as shown below.

Proposition 2 (Sub-optimality of χ2- and G-tests). Assume that �1 = �2 = 2,
ε = 0.25 and α ∈ (0, 1) is some fixed constant. Further assume that d = n× rn
where rn is an arbitrary positive sequence that increases to infinity as n → ∞.
In this scenario, the worst case power of χ2- and G-tests approach zero as

lim
n→∞

inf
p∈P1(ε)

Pp(χ2 > q1−α,d) = 0 and lim
n→∞

inf
p∈P1(ε)

Pp(G > q1−α,d) = 0,

where q1−α,d denotes the 1 − α quantile of the χ2 distribution with d degrees of
freedom.

We provide some remarks on this result.

Remark 4.

• As shown in Theorem 4.2, the proposed tests can achieve significant power
(indeed rate-optimal when �1 = �2 = 2) under the same scenario and
rn � n1/6. On the other hand, χ2- and G-tests have asymptotically zero
power for any rn that increases to infinity, which highlights sub-optimality
of these classical tests. Moreover, our {UCI, wUCI, wUCI_split} tests are
valid over the entire class of null distributions unlike asymptotic χ2- and
G-tests.

• At a high-level, the reason behind this negative result is that the critical
values of χ2- and G-tests are not adaptive to the underlying distribution.
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More specifically, we can think of a setting where most of conditional
bins are empty with high probability, i.e., the intrinsic dimension of Z is
much smaller than d. In this case, it is more natural to use a critical value
that reflects the intrinsic dimension rather than the ambient dimension.
However, the χ2- and G-tests do not take this intuition into account,
and their test statistics can be much smaller than q1−α,d under the
alternative. This leads to asymptotically zero power as we formally prove
in Appendix C.4.

• This issue can be alleviated by using the permutation approach where
empty bins are ignored in calibration [45]. Nevertheless, it is unknown
whether the permutation-based χ2- and G-tests are optimal or not in
terms of sample complexity. Our numerical results in Section 5 indicate
that the permutation-based χ2-test becomes almost powerless in specific
settings (e.g., Scenario 2), suggesting that it may not achieve optimal sam-
ple complexity. Conversely, the permutation-based G-test demonstrates
more robust performance across various scenarios, although it is signifi-
cantly outperformed by our methods in certain cases (e.g., Scenario 3 and
Scenario 6). Future research is warranted to delve deeper into this topic
and assess the optimality of these permutation-based tests.

5. Numerical analysis

In this section, we provide numerical results that compare the proposed tests
(UCI in Algorithm 2, UCI_split in Algorithm 3 and wUCI-test in Algorithm 4)
with χ2-test and G-test under various scenarios. For a fair comparison, we cali-
brate both χ2-test and G-test using the permutation method and reject the null
when their permutation p-values are less than or equal to the significance level
α. Throughout our simulations, we set α = 0.05 and the number of permuta-
tions B = 199. All the power values reported in this section are estimated by
Monte Carlo simulation with 10,000 repetitions.

5.1. Simulated data examples

We start by comparing the power of the considered tests based on synthetic
datasets. We only focus on the power results given that all of the tests are
calibrated by the permutation procedure, resulting in valid type I error control
in any finite sample sizes. There are eight different scenarios that we consider
under the alternative where the domain sizes of X,Y, Z are set to �1 = �2 = 20
and d = 10, respectively. The considered scenarios are described as follows.

• Scenario 1. Set pZ to be uniform over [d]. For each z ∈ [d], (i) first let
pX,Y |Z(x, y | z) ∝ x−2y−2, (ii) then replace pX,Y |Z(�1, �2 | z) with 0.015,
and (iii) finally normalize pX,Y |Z to have its sum to be one. This setting
results in a strong signal in χ2 divergence but relatively weaker signal in
the L2 distance over bins.
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• Scenario 2. Set pZ to be uniform over [d]. For each z ∈ [d], (i)
let pX,Y |Z(x, y | z) ∝ x−2y−2, (ii) set δ = min{pX,Y |Z(x, y | z) : x ∈
[2], y ∈ [2]}, and (iii) perturb pX,Y |Z by replacing pX,Y |Z(x, y | z) with
pX,Y |Z(x, y | z) + (−1)x+yδ for x ∈ [2] and y ∈ [2]. The resulting proba-
bility vector has a small signal in χ2 divergence, but relatively stronger
signal in the L2 distance over bins.

• Scenario 3. Set pZ to be uniform over [d]. For each z ∈ [d], (i)
set pX,Y |Z(x, y | z) = 0 for all x ∈ [�1] and y ∈ [�2], (ii) set
pX,Y |Z(1, 1 | z) = (1 − q)2, pX,Y |Z(1, y | z) = (1 − q)q(�1 − 1)−1 for
y ∈ [�2] \ {1}, pX,Y |Z(x, 1 | z) = (1 − q)q(�1 − 1)−1 for x ∈ [�1] \ {1},
pX,Y |Z(x, y | z) = q2(�1 − 1)−1 for x = y ∈ [�1]\{1} where q = 0.2. This
simulation setting is borrowed from [50].

• Scenario 4. Set pZ to be uniform over [d]. For each z ∈ [d], let
pX,Y |Z(x, y | z) = {1 + (−1)x+y}�−1

1 �−1
2 be a perturbed uniform distri-

bution. This is the setting where χ2-test, G-test and UCI-test perform
similarly for unconditional independence testing. See Figure 5 of [7].

• Scenario 5. Set pZ to be uniform over [d]. For z = 1, let
pX,Y |Z(x, y | z) = 0.25 for x ∈ [2], y ∈ [2] and zero otherwise. In other
words, there is no signal in the first category of Z. On the other hand,
for z ∈ [d]\{1}, set pX,Y |Z(x, y | z) = {1+(−1)x+y}�−1

1 �−1
2 as in Scenario 4.

• Scenario 6. Set pZ to be uniform over [d]. For z = 1, pX,Y |Z(1, 1 | z) =
pX,Y |Z(2, 2 | z) = 0.4, pX,Y |Z(1, 2 | z) = pX,Y |Z(2, 1 | z) = 0.1 and zero oth-
erwise. On the other hand, for z ∈ [d]\{1}, set pX,Y |Z(x, y | z) = �−1

1 �−1
2 ,

i.e., X |= Y for z ∈ [d]\{1}, resulting in a sparse alternative.
• Scenario 7. Set pZ(z) ∝ z−1. For z ∈ [d], let pX,Y |Z(x, y | z) =
{1 + (−1)x+yz−1}�−1

1 �−1
2 . By construction, the signal becomes weaker as

z increases and the sample size Nz tends to be smaller as z increases.
• Scenario 8. pZ(z) ∝ z−1. For z ∈ [d], let pX,Y |Z(x, y | z) = {1 +

(−1)x+y(d− z + 1)−1}�−1
1 �−1

2 . Note that the signal becomes stronger as z
increases, and the sample size Nz tends to be smaller as z increases. To
put it in another way, this is the reverse setting of Scenario 7.

The results are presented in Figure 2 and Figure 3. It is clear from the results
that no test outperforms the others over all scenarios. In particular, χ2-test has
the highest power when the underlying distribution has a strong signal in χ2

divergence such as Scenario 1, and similarly, UCI-test performs well when there
is a strong signal in the L2 distance such as Scenario 2. It is also interesting
to observe that wUCI-test and wUCI_split-test show an impressive performance
compared to the others in Scenario 3, and all of the tests except wUCI_split-
test perform similarly in Scenario 4 where the corresponding null distribution of
(X,Y ) |Z is uniform over bins. In Scenario 5 and Scenario 6, we are essentially in
a situation where �1 = �2 = 2 for z = 1 and �1 = �2 = 20 for z ∈ [d]\{1}. In these
scenarios, the first bin of Z plays a less important role than the other bins in
determining the value of χ2 and G statistics (these statistics have higher variance
when �1 and �2 are large). In contrast, the test statistic for the UCI-test is mostly
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Fig 2. Power comparisons of the considered tests in Scenarios 1–4 described in Section 5.1.

dominated by the data from the first bin of Z in the same scenarios. This explains
the outstanding performance of χ2-test and G-test in Scenario 5 where signals
are spread out over bins except the first one. On the other hand, χ2-test and
G-test have low power in Scenario 6 where only the first bin of Z has a signal.
Under the same scenarios, UCI-test behaves in the opposite way, attaining high
power when the first bin is significant. Another interesting observation is that
wUCI-test performs as powerful as G-test in Scenario 5 whereas it outperforms
both χ2- and G-tests in Scenario 6 when the sample size is large. This may be
explained by the choice of weights in its statistic that roughly interpolate χ2

weights and uniform weights as explained in Remark 2. We also note that the test
statistic for UCI-test is a linear combination of U-statistics weighted by sample
sizes over bins. This explains the relatively lower power of UCI-test than χ2-
and G-tests in Scenario 7 where the bins with smaller sample sizes tend to have
stronger signals. In contrast, we observe the opposite behavior in Scenario 8.
On the other hand, wUCI-test performs the second best in both Scenario 7 and
Scenario 8. Lastly, we highlight that the performance of wUCI_split closely
follows that of wUCI-test when the sample sizes in bins with a strong signal are
sufficiently large such as in Scenarios 1–3. However, its performance degrades
when the sample size is small as observed in other scenarios. Based on these
findings, we recommend using the wUCI-test over the wUCI_split-test, despite
the additional theoretical guarantees provided by the latter.
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Fig 3. Power comparisons of the considered tests in Scenarios 5–8 described in Section 5.1.

To summarize, we observe that different tests perform better than the others
under different scenarios. The proposed tests often dominate the classical ones
when there are strong signals, especially in the L2 distance, over bins with
large sample sizes. On the other hand, it is possible to design situations such
as Scenario 1 where the proposed tests attain lower power than the classical
ones. Nevertheless, the classical tests, especially χ2-test, can fail badly in terms
of the worst-case performance. By contrast, our proposals, especially wUCI-test,
demonstrate robust performance across different scenarios, indicating that they
can work as practical tools that complement classical χ2-test and G-test under
various scenarios.

5.2. Real-world data examples

We next provide numerical illustrations based on real-world datasets.

Admission dataset The first dataset that we look at is the Berkeley ad-
missions dataset, which is a well-known example of Simpson’s paradox [9]. As
summarized in Table 1, the dataset consists of 4,526 applications with 3 vari-
ables (X,Y, Z) where X and Y are binary variables, representing the gender
(male or female) and the admission status (admitted or rejected), respectively.
The conditional variable Z takes the department name among {A, B, C, D,
E, F}. When the dataset is aggregated over the departments, it appears that
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male applicants are more likely to be admitted than woman applicants. How-
ever, as reported by [9], there seems to exist a bias in favor of women when
looking at the individual departments, indicating the existence of conditional
dependence. We assess this claim of conditional dependence by implementing
the considered permutation tests. For this dataset, the corresponding p-values
are computed as follows: 0.005 for both χ2- and G-tests, 0.04 for UCI, 0.03 for
both wUCI and 0.05 for wUCI_split, respectively. All the p-values are significant
at level α = 0.05, revealing evidence of conditional dependence.

Table 1

Admissions data at University of California, Berkeley from the six largest departments in
1973.

Men Women

Major Applicants Admitted Applicants Admitted

A 825 62 108 82
B 560 63 25 68
C 325 37 593 34
D 417 33 375 35
E 191 28 393 24
F 373 6 341 7

Diamonds dataset Next we consider the diamonds dataset available in R
package ggplot2. The dataset contains the information of 53,940 diamonds in-
cluding their price, clarity, color, quality of the cut, etc. In our analysis, the
price variable is partitioned into 100 intervals of equal size. We set the corre-
sponding categorized price variable as X and set the clarity variable as Y . The
clarity variable has 8 categories (I1, SI2, SI1, VS2, VS1, VVS2, VVS1, IF) and
it measures the purity of a diamond. The conditional variable Z is chosen to be
either the cut variable or the color variable in our analysis. Both variables are
discrete with 5 (Fair, Good, Very Good, Premium, Ideal) and 7 (D, E, F, G,
H, I, J) categories, respectively. In the experiments, we treat the entire dataset
as the population (thereby the ground truth is known to us)4 from which we
randomly draw n observations without replacement. Based on this subsample of
size n, we compute the permutation p-values of the considered tests and we re-
peat this process 10,000 times to estimate their power. The results can be found
in Figure 4 where we collect the power of {UCI, wUCI, wUCI_split, χ2, G}-tests
by changing the sample size n. The left panel of Figure 4 provides the power
results when the conditional variable is set to be the color variable. As can be
seen, χ2-test has the significantly lower power than the others. Among the other
three tests, wUCI has the highest power followed by UCI while the difference is
minor. We can see a similar pattern from the right panel of Figure 4 where
the conditional variable is set to be the cut variable. These results highlight
the practical value of the proposed tests in analyzing real-world datasets where
classical tests potentially suffer from low power.

4We verified numerically that X and Y are conditionally dependent on Z by comparing
the distribution of pX,Y,Z and pX|ZpY |ZpZ .
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Fig 4. Power comparisons of the considered tests based on the diamonds dataset. Both panels
analyze independence between the (categorized) price and clarity variables conditional on the
color variable and the cut variable, respectively. All of the tests have increasing power as the
sample size increases. Markedly, χ2-test and wUCI_split-test have significantly lower power
than the other tests, whereas wUCI-test seems to perform the best for this dataset.

6. Discussion

In this paper, we have revisited recent developments of CI testing for discrete
data. Despite attractive theoretical properties, these recent tests have limited
practical value, relying on Poissonization and unspecified constants in their crit-
ical values. In this work, we have made an attempt to bridge the gap between
theory and practice by removing Poissonization and utilizing the Monte Carlo
permutation method to calibrate test statistics. We have also complemented our
theoretical results with a thorough numerical analysis and demonstrated certain
benefits of the proposed tests over classical χ2- and G-tests. Finally, we have
developed R package UCI that implements the proposed methods.

Our work leaves several important avenues for future research. One prominent
direction is to depoissonize other sample complexity results in the literature us-
ing the tools developed in this paper. For instance, one can reproduce the results
of [35, 29] for continuous CI testing without Poissonization. Another direction
which may be fruitful to pursue is to devise a CI test that incorporates prior in-
formation about potential alternative distributions. For example, suppose that
we are in an alternative setting where only a handful of conditional categories
are significant. In this case, it is possible to obtain a substantial power gain
by using sparse weights in the proposed statistics, and one could analyze the
resulting tests. Additionally, one could attempt to further bridge the gap be-
tween practice and theory. While our results suggest that wUCI-test achieves the
optimal sample complexity when �1, �2 = O(1), it is currently unknown whether
it can achieve the optimal sample complexity in general regimes with increasing
�1, �2. On the other hand, wUCI_split-test attains the general sample complex-
ity as in (10), but it loses practical power due to inefficient use of the data. It is
therefore interesting to explore the theoretical foundation of wUCI-test or other
tests without sample splitting. We leave these interesting questions for future
work.
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