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Abstract: We consider a multiplicative deconvolution problem, in which
the density f or the survival function SX of a strictly positive random
variable X is estimated nonparametrically based on an i.i.d. sample from
a noisy observation Y = X ·U of X. The multiplicative measurement error
U is supposed to be independent of X. The objective of this work is to
construct a fully data-driven estimation procedure when the error density
fU is unknown. We assume that in addition to the i.i.d. sample from Y , we
have at our disposal an additional i.i.d. sample drawn independently from
the error distribution. The proposed estimation procedure combines the
estimation of the Mellin transformation of the density f and a regularisation
of the inverse of the Mellin transform by a spectral cut-off. The derived
risk bounds and oracle-type inequalities cover both – the estimation of the
density f as well as the survival function SX . The main issue addressed in
this work is the data-driven choice of the cut-off parameter using a model
selection approach. We discuss conditions under which the fully data-driven
estimator can attain the oracle-risk up to a constant without any previous
knowledge of the error distribution. We compute convergences rates under
classical smoothness assumptions. We illustrate the estimation strategy by
a simulation study with different choices of distributions.
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1. Introduction

In this work let X and U be strictly positive and independent random variables
both admitting unknown densities f = fX and fU accordingly. We propose
a data-driven estimation procedure for the density f as well as the survival
function SX of X based on an independent and identically distributed (i.i.d.)
sample of size n from a multiplicative measurement model Y = X · U and
an additional sample of size m drawn independently from the unknown error
density fU . In this situation Y admits also a density, given by

fY (y) := [f ©∗ fU ](y) :=
∫
R>0

f(x)fU (y/x)x−1dx. (1)

Estimating f from i.i.d. observations following the law of fY is a statistical
inverse problem called multiplicative deconvolution. Multiplicative censoring is
introduced and studied in [31] and [32]. It corresponds to the particular mul-
tiplicative deconvolution problem with multiplicative error U uniformly dis-
tributed on [0, 1]. [30] motivate and explain multiplicative censoring in survival
analysis. [32] and [2] consider the estimation of the cumulative distribution func-
tion of X. Treating the model as an inverse problem [1] study series expansion
methods. The density estimation in a multiplicative censoring model is consid-
ered in [13] using a kernel estimator and a convolution power kernel estimator.
[15] analyse a projection density estimator with respect to the Laguerre basis
assuming a uniform error distribution on an interval [1−α, 1+α] for α ∈ (0, 1).
A beta-distributed error U is studied in [4]. The multiplicative measurement
error model covers all those three variations of multiplicative censoring. It was
considered by [5] studying the point-wise density estimation and by [11] casting
point-wise estimation as the estimation of the value of a known linear functional.
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In contrast to local, global estimation of the density means estimating the den-
sity as a whole and measuring the accuracy of an estimator by an integrated
mean squared error. Under multiplicative measurement errors it is considered in
[10]. The authors use the Mellin transform and a spectral cut-off regularisation
of its inverse to define an estimator for the unknown density f . In those three
papers the key to the analysis of multiplicative deconvolution is the multiplica-
tion theorem, which for a density fY = f ©∗ fU and their Mellin transformations
M[fY ], M[f ] and M[fU ] (defined below) states M[fY ] = M[f ] M[fU ]. It is used
in [5] and [10] to construct respectively a kernel density estimator and a spectral
cut-off estimator of the density f , while the later serves for a plug-in estimator
in [11]. Under multiplicative measurement errors [8] studies the global multivari-
ate density estimation while the global estimation of the survival function can
be found in [12]. For local and global multiplicative deconvolution [5] and [10]
both comment on the naive approach to apply standard additive deconvolution
methods to the log-transformed data. Essentially, the additive deconvolution
theorem for the log-transformed data equals a special case of the multiplica-
tive convolution theorem. The authors point out that making use of the Mellin
transform leads to a more flexible approach than the naive one.
We now turn to multiplicative deconvolution with unknown error density, which
is inspired by similar ideas for additive deconvolution problems (see for instance
[25] and [20]). Following the estimation strategy in [10] and [12], and borrow-
ing ideas from the inverse problems community (see for instance [19]), we define
spectral cut-off estimators f̂k and pSX

k of f and SX , respectively, by replacing the
unknown Mellin transformations of fY and fU by empirical counterparts based
on the two samples from U and Y and additional thresholding. The accuracy of
the estimators f̂k and pSX

k are measured in terms of the global risk with respect
to a weighted L2-norm on the positive real line R>0, i.e. a weighted integrated
mean squared error. We observe that both global risks can be embedded into a
more general risk analysis, which we then study in detail. The proposed estima-
tion strategy depends on a further tuning parameter k, which has to be chosen
by the user. In case of a known error density [10] and [12] propose a data-driven
choice of the tuning parameter k by model selection exploiting the theory of [3],
where we refer to [23] for an extensive overview. Our aim is to establish a fully
data-driven estimation procedure for the density f and the survival function SX

when the error density is unknown and derive oracle-type upper risk bounds as
well as convergences rates. A similar approach has been considered for additive
deconvolution problems for instance in [16] and [21]. Regarding the two samples
sizes n and m, by comparing the oracle-type risk bounds in the cases of known
and unknown error densities, we characterise the influence of the estimation of
the error density on the quality of the estimation. Interestingly, in case of addi-
tive convolution on the circle and the real line [21] and [16] derive respectively
oracle-type inequalities with similar structure.
The paper is organised as follows. In Section 2 we start with recalling the defi-
nition of the Mellin transform as well stating certain properties. Secondly, sup-
posing the error density to be known we review the spectral cut-off estimators
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of f and SX as respectively proposed by [10] and [12]. We study their global risk
with respect to weighted L2-norms and discuss how to generalise this risk anal-
ysis. Afterwards, we investigate oracle-type inequalities and minimax-optimal
convergences rates under regularity assumptions on the Mellin transformations
of f and fU , respectively. In Sections 3 and 4 we dismiss the knowledge of the
error density. In Section 3 we derive a general risk bound and oracle-type in-
equality. We construct in Section 4 the fully data-driven estimation procedure
and eventually show a upper risk bound. The general theory applies in partic-
ular to the estimation of f and SX . In Section 5 we illustrate the finite sample
properties of the estimators proposed in Sections 3 and 4 by a simulation study
with different choices of distributions.

2. Model assumptions and background

In the following paragraphs we introduce first the multiplicative measurement
model with known error distribution and we recall the definition of the Mellin
transform and its empirical counter part as well as their properties. Secondly,
still assuming the error distribution is known in advance we briefly present a
data-driven density estimation strategy due to [10] which we extend in the sequel
to cover simultaneously the estimation of the density f as well as the survival
function SX of X.

2.1. The multiplicative measurement model

Let (R>0,B>0, λ>0) denote the Lebesgue-measure space of all positive real num-
bers R>0 equipped with the restriction λ>0 of the Lebesgue measure on the
Borel σ-field B>0. Assume that X and U are independent random variables,
both taking values in R>0 and admitting both a (Lebesgue) density f := fX

and fU , respectively. The multiplicative measurement model describes obser-
vations following the law of Y := X · U . In this situation, Y admits a density
fY = f ©∗ fU given as multiplicative convolution of f and fU , which can be
computed explicitly as in (1). For a detailed discussion of multiplicative con-
volution and its properties as operator between function spaces we refer to [9].
However, assuming the error distribution is known, we have in the sequel access
to an independent and identically distributed (i.i.d.) sample {Yi}i∈�n� drawn
from fY , where we have used the shorthand notation �a� := [1, a] ∩ N for any
a ∈ R≥1.

2.2. The (empirical) Mellin transform

In the subsequent, we keep the following objects and notations in mind: Given a
density function v defined on R>0, i.e. a Borel-measurable nonnegative func-
tion v : R>0 → R≥0, let vλ>0 denote the σ-finite measure on (R>0,B>0)
which is λ>0 absolutely continuous and admits the Radon-Nikodym derivative
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v with respect to λ>0. For p ∈ [1,∞] let L
p
+(v) := Lp(R>0,B>0, vλ>0) denote

the usual complex Banach-space of all (equivalence classes of) Lp-integrable
complex-valued function with respect to the measure vλ>0. Similarly, we set
Lp(v) := Lp(R,B, vλ) for a density function v defined on R. If v = 1, i.e. v is
mapping constantly to one, we write shortly L

p
+ := L

p
+(1) and Lp := Lp(1). At

this point we shall remark, that we have used and will further use the termi-
nology density, whenever we are meaning a probability density function (such
as f) and on the other hand side density function, whenever we are meaning
a Radon-Nikodym derivative (such as v). For c ∈ R we introduce the density
function xc : R>0 → R>0 given by x �→ xc(x) := xc. The Mellin transform Mc is
the unique linear and bounded operator between the Hilbert spaces L2

+(x2c−1)
and L2, which for each h ∈ L2

+(x2c−1) ∩ L1
+(xc−1) and t ∈ R satisfies

Mc[h](t) :=
∫
R>0

xc−1+ι2πth(x)dλ>0(x), (2)

where ι ∈ C denotes the imaginary unit. Similar to the Fourier transform the
Mellin transform Mc is unitary, i.e.

〈
h, g

〉
L2
+(x2c−1) =

〈
Mc[h],Mc[g]

〉
L2 for any

h, g ∈ L2(x2c−1). In particular, it satisfies a Plancherel type identity

‖h‖2
L2
+(x2c−1) = ‖Mc[h]‖2

L2 , ∀h ∈ L2
+(x2c−1). (3)

Its adjoined (and inverse) M�
c : L2 → L2

+(x2c−1) fulfils for each g ∈ L2 ∩L1 and
x ∈ R>0

M�
c [g](x) :=

∫
R

x−c−ι2πtg(t)dλ(t). (4)

For a detailed discussion of the Mellin transform and its properties we refer again
to [9]. In analogy to the additive convolution theorem of the Fourier transform
(see [24] for definitions and properties), there is a multiplicative convolution
theorem for the Mellin transform. Namely, for any h1 ∈ L2

+(x2c−1) and h2 ∈
L1

+(xc−1) ∩ L2
+(x2c−1) the multiplicative convolution theorem states

Mc[h1 ©∗ h2] = Mc[h1] Mc[h2]. (5)

Here and subsequently, we assume that f ∈ L2
+(x2c−1) and fU ∈ L1

+(xc−1) ∩
L2

+(x2c−1), hence fY ∈ L2
+(x2c−1), for some c ∈ R, which is from now on fixed.

Note that L2-integrability is a common assumption in additive deconvolution,
which might be here seen as the particular case c = 1/2. We should emphasise
that the particular case c = 0 corresponds to the naive approach to log-transform
the data and apply an additive deconvolution method. However, allowing for dif-
ferent values c ∈ R makes the dependence on c ∈ R of the assumptions stipulated
below visible. For example for the naive approach, i.e. c = 0 the assumptions
below translate to X−1 and U−1 having a finite second moment. Consequently,
if the assumptions we impose below are satisfied for c = 0, then the results also
hold true for the naive approach. In order to simplify the presentation in the
following sections, we introduce some frequently used shorthand notations.
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Notation 2.1. The Mellin transformations of the densities fY , f and fU ,
respectively, we denote briefly by

MY := Mc[fY ], MX := Mc[f ] and MU := Mc[fU ].

The reciprocal of a function w : R → C is well-defined on the set {w �= 0} :=
{t ∈ R : w(t) �= 0} and for each t ∈ R we write for short

w†(t) := 1
w(t)1{w�=0}(t)

where 1{w�=0} denotes an indicator function. Precisely, for any set A ⊆ R we
write 1A for the indicator function, mapping x ∈ R to 1A(x) := 1, if x ∈ A, and
1A(x) := 0, otherwise. Since the Mellin transformation MY of fY is unknown
we follow [10] and introduce an empirical counterpart based on the observations
{Yi}i∈�n�. The empirical Mellin transformation pMY is given by

pMY (t) := 1
n

∑
i∈�n�

Y c−1+ι2πt
i

for any t ∈ R. Observe that pMY is a point-wise unbiased estimator of MY , i.e.
for all t ∈ R, we have E[ pMY (t)] = MY (t), where E denotes the expectation
under the distribution of the observations {Yi}i∈�n�. Let us further introduce
the point-wise scaled variance of pMY defined for each t ∈ R by

V2
Y (t) := nE[| pMY (t) − MY (t)|2] = E[|Y c−1+ι2πt

1 − MY (t)|2]
≤ 1 + E[Y 2(c−1)

1 ] =: σ2
Y ,

whenever E[Y 2(c−1)
1 ] is finite. The estimation procedure we are discussing next

is based on estimating the unknown Mellin transformation MX in a first place.
Having the multiplicative convolution theorem (5) in mind, a estimator of MX

is given by
M̃X(t) := pMY (t)M†

U (t) (6)

for each t ∈ R. To shorten notation we write M̃
k

X := M̃X1[−k,k] for each k ∈ R>0.
Finally, in what follow we denote by C ∈ R>0 universal numerical constants and
by C(·) ∈ R>0 constants depending only on the argument. In both cases, the
values of the constants may change from line to line.

2.3. Nonparametric density estimation - known error distribution

In case of a known error distribution of U we follow [10] in defining a spectral
cut-off density estimator f̃k of f for each x ∈ R>0 and tuning parameter k ∈ R>0
by

f̃k(x) :=
∫

[−k,k]
x−c−ι2πt

pMY (t)M†
U (t)dλ(t) = M−1

c

[
M̃

k

X

]
(x). (7)
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assuming that 1[−k,k] M†
U ∈ L2 for each k ∈ R>0. The last condition ensures

evidently that f̃k is well-defined. Note, in general the estimator f̃k does not
define a probability density. For a simple solution to this problem we refer to
[18], where a L2-projection onto the class of non-negative functions integrating
to one is proposed in (3.1.15) on p. 63. If we require that MU �= 0 a.s. then
we have f = M−1

c [MX ] = M−1
c

[
MY M†

U

]
due to the Mellin inversion formula

and the multiplicative convolution theorem. Intuitively speaking, from the last
identity we obtain the estimator in (7) by truncating and replacing the unknown
Mellin transformation MY of fY by its empirical counter part pMY . In [10] the
L2

+(x2c−1)-risk of f̃k is analysed, which for each k ∈ R>0 is written as

E

[∥∥f̃k − f
∥∥2
L2
+(x2c−1)

]
= E

[∥∥∥M̃k

X − MX

∥∥∥2

L2

]
=
∥∥1[−k,k]C MX

∥∥2
L2 + 1

n

∥∥∥1[−k,k]VY M†
U

∥∥∥2

L2
, (8)

where the first equality follows directly from Plancherel’s identity (see (3)) and
the second equality is due to the usual squared bias and variance decomposition.
Let us emphasise that accessing the estimation accuracy by an integrated mean
squared error, i.e. a L2

+-risk, corresponds in eq. (8) to a special case, namely
choosing c = 1

2 . In this situation, for example, the identity in eq. (5) holds
under the integrability and moment assumptions f ∈ L2

+ and fU ∈ L1
+(x− 1

2 ) ∩
L2

+. However, allowing an arbitrary value c ∈ R makes the dependence on the
developing point visible.

2.4. Nonparametric survival function estimation - known error
distribution

In this paragraph, following [12] we recall an estimator of the survival function
SX of X based on the observation {Yi}i∈�n�, when the error density fU is known.
The survival function of X satisfies

SX :
{
R>0 → [0, 1]
x �→ P[X ≥ x].

As X admits the density f , we evidently for all x ∈ R have

SX(x) =
∫
R>0

1[x,∞)(y)f(y)dλ>0(y).

According to [12] we have f ∈ L1
+(xc−1) ∩ L2

+(x2c−1) if and only if SX ∈
L1

+(xc−2) ∩ L2
+(x2c−3). Further, elementary computations show for each t ∈ R

and c ∈ R>1 that

Mc−1[SX ](t) = (c− 1 + ι2πt)−1 MX(t),
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Exploiting the last identity [12] propose a spectral cut-off estimator of SX given
for all k, x ∈ R>0 by

S̃X
k (x) :=

∫
[−k,k]

x−c+1−ι2πt
pMY (t)M†

U (t)
c− 1 + ι2πt dλ(t)

= M−1
c−1

[
(c− 1 + ι2π·)−1M̃

k

X(·)
]
(x).

and study its L2
+(x2c−3)-risk, which reads as

E

[∥∥S̃X
k − S

∥∥2
L2
+(x2c−3)

]
= E

[∥∥∥(c− 1 + ι2π·)−1(M̃
k

X − MX)
∥∥∥2

L2

]
= E

[∥∥∥M̃k

X − MX

∥∥∥2

L2(tc)

]
=
∥∥1[−k,k]C MX

∥∥2
L2(tc)

+ 1
n

∥∥∥1[−k,k]VY M†
U

∥∥∥2

L2(tc)
, (9)

where the Plancherel’s identity (3) yields the first equality, the second makes
use of the density function tc(t) :=

(
(c− 1)2 + 4π2t2

)−1 for t ∈ R and the third
states the squared bias and variance decomposition. As in Subsection 2.3 before,
the analysis of the L2

+-estimation risk is covered as a special case, namely, by the
choice c = 3

2 . In this situation, for example, the identity in eq. (5) holds under the
integrability and moment assumptions f ∈ L2

+(x2) and fU ∈ L1
+(x 1

2 ) ∩ L2
+(x2).

Thus, again a general choice of c implies a more flexible risk analysis.

2.5. Oracle type inequality and minimax optimal rates

In the previous paragraphs, we have seen that the global L2
+(x2c−1)-risk for f̃k

in (8) and the global L2
+(x2c−3)-risk for S̃X

k in (9) exactly equals

E

[∥∥∥M̃k

X − MX

∥∥∥2

L2(v)

]
=
∥∥1[−k,k]C MX

∥∥2
L2(v) + 1

n

∥∥∥1[−k,k]VY M†
U

∥∥∥2

L2(v)
, (10)

with v = 1 and v = tc accordingly. Therefore we study in the sequel the risk
in (10) with an arbitrary density function v more in detail and consider oracle-
type inequalities as well as minimax-optimal convergences rates. Let us sum-
marise the assumptions we have so far imposed.

Assumption A.I.
Let X and U be independent and R>0-valued random variables with density f
and fU , respectively. Consider i.i.d. observations {Yi}i∈�n� following the law of
Y = X · U , which admits the density fY = f ©∗ fU . In addition, let

i) fU ∈ L1
+(xc−1) ∩ L2

+(x2c−1), f ∈ L2
+(x2c−1) and fY ∈ L1

+(x2(c−1)), set
σ2
Y := 1 + E[Y 2(c−1)] = 1 +

∥∥fY
∥∥
L1
+(x2(c−1)).

ii) v : R → R≥0 be a (measurable) density function and set vU := |M†
U |2v.
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iii) MX ∈ L2(v), MU �= 0 a.s. and 1[−k,k] ∈ L2(vU ) (hence 1[−k,k] ∈ L2(v))
for each k ∈ R>0.

Remark 2.1. Let us briefly discuss the condition MU �= 0 a.s. in Assump-
tion A.I iii). The estimation procedure relies on the multiplication theorem
eq. (5), which states a decomposition of MY into the product of MX and MU .
Knowing MY , we can recover MX only if MU �= 0 (except on a Lebesgue-null
set). However, if MU �= 0 is not satisfied, one could obtain an estimator of MX

restricted to the subset {MU �= 0} ⊆ R. Alternatively, the condition MU �= 0
could be fulfilled for a different value of the development point c ∈ R. Changing
the development point is similar in spirit to the approach presented in [6], where
the estimation procedure within the additive deconvolution problem on the real
line is analysed on a strip as a subset of the complex plane C. We should empha-
sise that both – the restriction to {MU �= 0} and the change of the development
point c, such that MU �= 0, necessitates the knowledge of MU and hence of the
error density fU . It is not evident how these approaches can be transferred to
the completely unknown error distribution case.
Corollary 2.1. Under Assumption A.I, there exists an optimal tuning param-
eter ko ∈ R>0, such that

E

[∥∥∥M̃ko

X − MX

∥∥∥2

L2(v)

]
= inf

k∈R>0

{∥∥1[−k,k]C MX

∥∥2
L2(v) + 1

n

∥∥∥1[−k,k]VY M†
U

∥∥∥2

L2(v)

}
≤ σ2

Y · inf
k∈R>0

{∥∥1[−k,k]C MX

∥∥2
L2(v) + 1

n

∥∥∥1[−k,k] M†
U

∥∥∥2

L2(v)

}
. (11)

Proof of Corollary 2.1. The claim follows from the elementary risk decomposi-
tion stated in (10) into two terms depending on k ∈ R>0 and observing that the
first term decreases while the second one increases for an increasing k.

Note, that the optimal tuning parameter ko ∈ R>0 provided in Corollary 2.1
is not feasible as it depends directly on the unknown Mellin transformation
MX . Therefore ko is called an oracle and hence the upper bound in (11) is also
called an oracle-type inequality. In the paragraph below, we revisit a data-driven
selection method for k to avoid this lack of information. For this choice we also
obtain a oracle-type inequality similar to (11) up to a different constant. We next
briefly recall minimax-optimal convergences rates for the global L2(v)-risk as for
instance derived in [10] and [12]. To do so, we impose regularity assumptions
on the Mellin transformation MX and MU . Firstly, let us recall the definition of
the Mellin-Sobolev space with regularity parameter s ∈ R>0, given by

Ws :=
{
h ∈ L2(x2c−1) :

∥∥∥t− s
2

2 Mc[h]
∥∥∥
L2

= ‖Mc[h]‖
L2(t−s

2 ) < ∞
}
.

Further, for some radius L ∈ R>0, we consider the associated Mellin-Sobolev
ellipsoid, given by

Ws(L) :=
{
h ∈ Ws : ‖Mc[h]‖

L2(t−s
2 ) ≤ L

}
.
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In the following brief discussion we assume an unknown density f ∈ Ws(L)
of X, where the regularity s is specified below. Regarding the Mellin transfor-
mation MU , we assume in the sequel its ordinary smoothness (o.s.) or super
smoothness (s.s.), i.e. for some decay parameter γ ∈ R>0 and all t ∈ R,

∃cl, cu ∈ R>0 : cl · t
γ
2
2 (t) ≤ |MU (t)| ≤ cu · t

γ
2
2 (t) (o.s.)

and

∃cl, cu ∈ R>0 : exp(−cl · |t|2γ) ≤ |MU (t)| ≤ exp(−cu · |t|2γ), (s.s.)

respectively. In order to discuss the convergences rates for the upper bound of
the L2(v)-risk in (11) under these regularity assumptions, we restrict ourselves
to the choice v = t−a

c for a ∈ R, observing that a = 0 corresponds to the
global risk for estimating the density f and a = −1 corresponds to estimating
the survival function SX of X as discussed in Subsections 2.3 and 2.4. In the
following Corollary 2.2, we derive upper risk bounds provided an optimal choice
of ko.

Corollary 2.2. Under Assumption A.I, let f ∈ Ws(L) for some fixed L ∈ R>0.

1. If MU satisfies eq. (o.s.), choose ko := n
1

2γ+2s+1 . Then,

E

[∥∥∥M̃ko

X − MX

∥∥∥2

L2(t−a
c )

]
≤ C(a, s, c, L, cl, σ2

Y ) · n− 2(s−a)
2γ+2s+1 (12)

for any a ∈ (−1/2 − γ, s).
2. If MU satisfies eq. (s.s.), choose ko := (logn)

1
2γ . Then,

E

[∥∥∥M̃ko

X − MX

∥∥∥2

L2(t−a
c )

]
≤ C(a, s, c, L, cl, σ2

Y ) · (logn)−
s−a
γ (13)

for any a < s.

Proof of Corollary 2.2. Having Corollary 2.1 in mind, we start with the bias
expression, which does not depend on MU . To be more precise, if MX belongs
to the Mellin-Sobolev ellipsoid Ws(L) with a < s then for all k ∈ R>0∥∥1[−k,k]C MX

∥∥2
L2(t−a

c ) ≤ L2 ∥∥1[−k,k]C ts2t−a
c

∥∥
L∞ ≤ C(c, a, s, L)k−2(s−a). (14)

Regarding the variance expression, assume first that MU is ordinary smooth,
i.e. eq. (o.s.) holds, and a + γ + 1

2 > 0. Then for all k ∈ R>0∥∥∥1[−k,k] M†
U

∥∥∥2

L2(t−a
c )

≤ cl ·
∥∥1[−k,k]t−γ

2 t−a
c

∥∥
L1 ≤ C(c, a, s, cl)k2(a+γ)+1.

Selecting ko = n
1

2γ+2s+1 and combining these two estimates together with eq. (11),
we obtain eq. (12). Similarly, if MU is super smooth, i.e. eq. (s.s.) holds, we have
for any a < s and k ∈ R>0
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U

∥∥∥2

L2(v)
≤
∥∥1[−k,k] exp(2cl| · |2γ)t−a

c

∥∥
L1

≤ C(c, a, s, cl)k(1−2(γ−a))+ exp(k2γ).

Selecting ko = (logn)
1
2γ and combining the last bound and eq. (14), we obtain

eq. (13), which completes the proof.

Remark 2.2. Let us briefly discuss the choices of a = 0 and a = −1, which
provide upper bounds for the global estimation risk for the density f and the
survival function SX , respectively:

1. Density estimation: Choosing a = 0 for all f ∈ Ws(L) leads to

E

[∥∥f̃ko
− f

∥∥2
L2
+(x2c−1)

]
� n− 2s

2γ+2s+1

if MU is ordinary smooth, and

E

[∥∥f̃ko
− f

∥∥2
L2
+(x2c−1)

]
� (logn)−

s
γ

if MU is super smooth. In [10] it is shown that these rates are minimax-
optimal for n → ∞.

2. Survival function estimation: Choosing a = −1 for all f ∈ Ws(L) leads to

E

[∥∥S̃X
ko

− S
∥∥2
L2
+(x2c−3)

]
� n− 2(s+1)

2γ+2s+1

if MU is ordinary smooth, and

E

[∥∥S̃X
ko

− S
∥∥2
L2
+(x2c−3)

]
� (logn)−

s+1
γ

if MU is super smooth. In [12] it is shown that these rates are minimax-
optimal for n → ∞.

2.6. Data driven estimation

[10] and [12] propose a data-driven choice of the tuning parameter k by model
selection exploiting the theory of [3], where we refer to [23] for an extensive
overview. More precisely they consider

k̃ :∈ arg min
k∈K

{
−
∥∥∥1[−k,k] pMY M†

U

∥∥∥2

L2(v)
+ penk

}
= arg min

k∈K

{
−
∥∥∥M̃k

X

∥∥∥2

L2(v)
+ penk

}
, (15)

where {penk}k∈R>0 is a family of penalties and K ⊂ R>0 is an appropriate finite
subset specified later. The aim is to analyse the L2(v)-risk, namely

E

[∥∥∥∥M̃k̃

X − MX

∥∥∥∥2

L2(v)

]
.



4806 S. Brenner Miguel et al.

In the sequel we introduce a family of penalties and set of models which differ
from the original works in preparation of the procedure presented in Sections 3
and 4 below. For the upper risk bound we impose slightly stronger assumptions
than Assumption A.I that we state next.

Assumption A.II.
In addition to Assumption A.I let fY ∈ L1

+(x8(c−1))∩L∞
+ (x2c−1) such that there

exists ηY ∈ R≥1 satisfying ηY ≥ max
{∥∥fY

∥∥
L∞
+ (x2c−1) ,

∥∥fY
∥∥
L1
+(x8(c−1))

}
. We set

aY := 6
∥∥fY

∥∥
L∞
+ (x2c−1) /σ

2
Y and kY := 1 ∨ 3a2

Y .

Text-book computations as they can be found for instance in [14] are leading
to the following standard key argument, which for any k◦ ∈ K states∥∥∥∥M̃k̃

X − MX

∥∥∥∥2

L2(v)
≤ 3

∥∥1[−k◦,k◦]C MX

∥∥2
L2(v) + 4 penk◦

+ 8 max
k∈K

{(∥∥∥1[−k,k]( pMY − MY )M†
U

∥∥∥2

L2(v)
− penk

4

)
+

}
, (16)

using the shorthand notation a+ := max{0, a} for any a ∈ R. Recalling vU :=
|M†

U |2v, the last summand in (16) reads as

max
k∈K

{(∥∥∥1[−k,k]( pMY − MY )M†
U

∥∥∥2

L2(v)
− penk

4

)
+

}

= max
k∈K

{(∥∥∥1[−k,k]( pMY − MY )
∥∥∥2

L2(vU )
− penk

4

)
+

}
.

Taking the expectation in the last display, the next proposition allows to control
its value. In its proof we make use of Lemma A.2 in Appendix A, which is based
on a Talagrand inequality, stated in Lemma A.1. Here and subsequently, for an
arbitrary density function w : R → R≥0 satisfying 1[−k,k] ∈ L∞(w) for each
k ∈ R>0, we denote by

Δw
k :=

∥∥1[−k,k]
∥∥
L∞(w) and δw

k := log(Δw
k ∨ (k + 2))

log(k + 2) ∈ R≥1, ∀k ∈ R≥1. (17)

Proposition 2.3 (Concentration inequality). Under Assumption A.II define
ΔvU

k and δvU

k as in (17) with vU := |M†
U |2v. For n ∈ N consider

kn := max{k ∈
�
n2� : kΔvU

k ≤ n2ΔvU
1 }.

We then have

E

[
max
k∈�kn�

{(∥∥∥1[−k,k]( pMY − MY )
∥∥∥2

L2(vU )
− 12σ2

Y ΔvU

k δvU

k kn−1
)

+

}]
≤ C · ηY (1 ∨ kY ΔvU

kY
) · n−1.
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Having Proposition 2.3 at hand we set K := �kn� ⊂ N and define for each
k ∈ �kn�

penvU

k := 48ΔvU

k δvU

k kn−1.

Evidently, choosing penk := σ2
Y penvU

k Proposition 2.3 allows to bound the ex-
pectation of the last summand in (16). Unfortunately, σ2

Y = 1 + E[Y 2(c−1)] is
unknown to us. However, we have at our disposal an unbiased estimator given
by

pσ2
Y := 1 + n−1

∑
i∈�n�

Y
2(c−1)
i .

Hence, replacing subsequently the unknown σ2
Y by its empirical counterpart pσ2

Y

we consider the data driven choice

k̂ :∈ arg min
k∈�kn�

{
−
∥∥∥M̃k

X

∥∥∥2

L2(v)
+ 2pσ2

Y penvU

k

}
. (18)

Corollary 2.4. Under Assumption A.II, we have

E

[∥∥∥∥M̃k̂

X − MX

∥∥∥∥2

L2(v)

]
≤ 6σ2

Y · min
k∈�kn�

{∥∥1[−k,k]C MX

∥∥2
L2(v) + ΔvU

k δvU

k kn−1
}

+ C · ηY (1 ∨ kY ΔvU

kY
) · n−1. (19)

Proof of Corollary 2.4. Similar computations as presented in [10] show a slightly
changed version of the key argument (16), which reads for each k◦ ∈ �kn� as∥∥∥∥M̃k̂

X − MX

∥∥∥∥2

L2(v)
≤ 3

∥∥1[−k◦,k◦]C MX

∥∥2
L2(v) + 2σ2

Y penvU

k◦

+ 4pσ2
Y penvU

k◦
+2(σ2

Y − 2pσ2
Y )+ penvU

kn

+ 8 max
k∈�kn�

{(∥∥∥1[−k,k]( pMY − MY )
∥∥∥2

L2(vU )
− σ2

Y penvU

k

4

)
+

}
. (20)

By applying the expectation on both sides and taking

k◦ :∈ arg min
k∈�kn�

{∥∥1[−k,k]C MX

∥∥2
L2(v) + ΔvU

k δvU

k kn−1
}
, (21)

we immediately obtain the claim eq. (19) due to E[pσ2
Y ] = σ2

Y , Proposition 2.3
as well as

E

[(
σ2
Y

2 − pσ2
Y

)
+

penvU

kn

]
≤ CηY ΔvU

1 n−1.

This completes the proof.

At this point we want to stress out again that specifying v = 1 and v = tc,
respectively, we obtain directly from Corollary 2.4 upper bounds for

E

[∥∥f̃k̂ − f
∥∥2
L2
+(x2c−1)

]
and E

[∥∥S̃X
k̂

− SX
∥∥2
L2
+(x3c−2)

]
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due to Plancherel’s identity (3). Similar to Subsection 2.5 we assume in the fol-
lowing brief discussion a density f ∈ Ws(L) of X, where the regularity s ∈ R>0
is specified below. Regarding the Mellin transformation MU , we subsequently
assume again its ordinary smoothness (o.s.) or super smoothness (s.s.). In or-
der to discuss the convergences rates for the upper bound of the L2(v)-risk in
Corollary 2.4 under these regularity assumptions, we restrict ourselves to the
choice v := t−a

c for a ∈ R, observing that a = 0 and a = −1 correspond to
the global risk for estimating the density f and the survival function SX of X,
respectively.

Corollary 2.5. Under Assumption A.II, let f ∈ Ws(L) for some fixed L ∈ R>0.

1. If MU satisfies eq. (o.s.), then,

E

[∥∥∥∥M̃k̂

X − MX

∥∥∥∥2

L2(t−a
c )

]
≤ C(a, γ, s, c, L, cl, ηY , kY , σ2

Y ) · n− 2(s−a)
2γ+2s+1

for any a ∈ (−1/2 − γ, s).
2. If MU satisfies eq. (s.s.), then,

E

[∥∥∥∥M̃k̂

X − MX

∥∥∥∥2

L2(t−a
c )

]
≤ C(a, γ, s, c, L, cl, ηY , kY , σ2

Y ) · (logn)−
s−a
γ

for any a < s.

Proof of Corollary 2.5. Starting with Corollary 2.4, we use again the bound
eq. (14) as the bias expression is the same as in Corollary 2.2. However the
variance expression differ compared to Corollary 2.2. Assume first that MU is
ordinary smooth, i.e. eq. (o.s.) holds, and a + γ + 1

2 > 0. Then for all k ∈ R>0

ΔvU

k =
∥∥∥1[−k,k]|M†

U |2
∥∥∥
L∞(v)

≤ cl ·
∥∥1[−k,k]t−γ

2 t−a
c

∥∥
L∞ ≤ C(c, a, s, cl)k2(a+γ).

Consequently, it follows δvU

k ≤ C(c, a, s, cl) and hence,

ΔvU

k δvU

k k ≤ C(c, a, s, cl)k2(a+γ)+1. (22)

Selecting ko = �n 1
2γ+2s+1 � ∈ �kn� and combining these two estimates together

with eq. (19), we obtain

min
k∈�kn�

{∥∥1[−k,k]C MX

∥∥2
L2(v) + ΔvU

k δvU

k kn−1
}
≤ C(c, a, s, cl) · n− 2(s−a)

2γ+2s+1 (23)

and thus with Corollary 2.4 follows the claim. Similarly, if MU is super smooth,
i.e. eq. (s.s.) holds, we have for any a < s and k ∈ R>0

ΔvU

k =
∥∥∥1[−k,k]|M†

U |2
∥∥∥
L∞(v)

≤
∥∥1[−k,k] exp(2cl| · |2γ)t−a

c

∥∥
L∞

≤ C(c, a, s, cl)k2(a)+ exp(k2γ).
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Consequently, it follows δvU

k ≤ C(c, a, s, cl)k2γ and hence,

ΔvU

k δvU

k k ≤ C(c, a, s, cl)k2(a)++2γ+1 exp(k2γ). (24)

Selecting ko = �(logn)
1
2γ � ∈ �kn� and combining the last bound and eq. (19),

we obtain

min
k∈�kn�

{∥∥1[−k,k]C MX

∥∥2
L2(v) + ΔvU

k δvU

k kn−1
}
≤ C(c, a, s, cl) · (logn)−

s−a
γ (25)

and thus, with Corollary 2.4 the second claim, which completes the proof.

Remark 2.3. Let us briefly revisit the choices of a = 0 and a = −1, which
provide upper bounds for the global estimation risk for the density f and the
survival function SX , respectively:

1. Density estimation: Choosing a = 0 for all f ∈ Ws(L) leads to

E

[∥∥f̃k̂ − f
∥∥2
L2
+(x2c−1)

]
� n− 2s

2γ+2s+1

if MU is ordinary smooth, and

E

[∥∥f̃k̂ − f
∥∥2
L2
+(x2c−1)

]
� (logn)−

s
γ

if MU is super smooth. The rates coincide with the minimax-optimal rates
presented in [10] (compare Corollary 2.2).

2. Survival function estimation: Choosing a = −1 for all f ∈ Ws(L) leads to

E

[∥∥S̃X
k̂

− S
∥∥2
L2
+(x2c−3)

]
� n− 2(s+1)

2γ+2s+1

if MU is ordinary smooth, and

E

[∥∥S̃X
k̂

− S
∥∥2
L2
+(x2c−3)

]
� (logn)−

s+1
γ

if MU is super smooth. The rates coincide with the minimax-optimal rates
presented in [12] (compare Corollary 2.2).

We should emphasise that comparing the rates in Corollaries 2.2 and 2.5 there
is no additional price for adaptation to pay.

3. Estimation strategy for unknown error density

After recapitulating an estimation strategy for the multiplicative deconvolution
problem assuming the error density is known in advance, we dismiss this assump-
tion in this section. Inspired by similar ideas for additive deconvolution problems
(see for instance [25] and [20]), we study estimation in the multiplicative decon-
volution problem with unknown error density. In addition to i.i.d. observations
{Yi}i∈�n� following the law of the multiplicative measurement model Y = X ·U ,
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we have access to additional measurements {Uj}j∈�m�, m ∈ N, which are i.i.d.
drawn following the law of U independently of the first sample {Yi}i∈�n�. We
estimate the Mellin transformation MU by its empirical counterpart given for
each t ∈ R by

pMU (t) := m−1
∑

j∈�m�

U c−1+ι2πt
j .

Similarly to pMY , we observe that E[ pMU (t)] = MU (t) for all t ∈ R, i.e. pMU

is an unbiased estimator of MU . Here and subsequently, the expectation E is
considered with respect to the joint distribution of {Yi}i∈�n� and {Uj}j∈�m�. As
in Section 2 we intend to divide by pMU whenever it is well defined, or in equal
multiply with pM

†
U = 1

xMU
1{xMU �=0} (see Notation 2.1). Note that the indicator

set { pMU �= 0} := {t ∈ R : pMU (t) �= 0} is not deterministic anymore since
it depends on the random variables {Uj}j∈�m�. However, we note that | pM

†
U | is

generally unbounded on the event { pMU �= 0} which would lead to an unstable
estimation. Hence, we truncate pMU sufficiently far away from zero. Recalling
that n and m denote the samples sizes of {Yi}i∈�n� and {Uj}j∈�m�, we thus
define in accordance with [25] the random indicator set

M :=
{

(m ∧ n)| pMU |2 ≥ 1
}

:=
{
t ∈ R : (m ∧ n)| pMU (t)|2 ≥ 1

}
,

which only depends on the additional measurements {Uj}j∈�m�. Similarly as in
Section 2 we have now all ingredients to define an estimator of the unknown
Mellin transformation MX . Indeed, having the convolution theorem (5) in mind
(stating MY = MX ·MU ) we propose as an estimator of MX

pMX := pMY
pM

†
U1M.

To simplify the presentation later, we further write pM
k

X := pMX1[−k,k] and
Mk

X := MX 1[−k,k] for any k ∈ R>0.

3.1. Nonparametric density estimation - unknown error density

Motivated by the estimation strategy in Subsection 2.3 we propose in this para-
graph a thresholded spectral cut-off density estimator for f in the multiplicative
deconvolution problem with unknown error distribution.

Definition 3.1 (Thresholded spectral cut-off estimator). Assuming an un-
known density f ∈ L2

+(x2c−1) of X for some c ∈ R define the thresholded
spectral density estimator f̂k for each k, x ∈ R>0 by

f̂k(x) :=
∫

[−k,k]
x−c−ι2πt

pMY (t) pM
†
U (t)1M(t)dλ(t) = M−1

c

[
pM

k

X

]
(x).
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The next lemma provides a representation of the global L2
+(x2c−1)-risk of the

estimator f̂k similar to the decomposition (8) of the global L2
+(x2c−1)-risk of f̃k

in Subsection 2.3.

Lemma 3.2 (Risk representation). For k ∈ R>0 consider the density estimator
f̂k given in Definition 3.1 and recall the definition of V2

Y (see Notation 2.1).
We then have

E

[∥∥∥f̂k − f
∥∥∥2

L2
+(x2c−1)

]
= E

[∥∥∥ pM
k

X − MX

∥∥∥2

L2

]
=
∥∥MX 1[−k,k]C

∥∥2
L2 + 1

n
E

[∥∥∥ pM
†
U1MVY 1[−k,k]

∥∥∥2

L2

]
+ E

[∥∥∥Mk
X 1MC

∥∥∥2

L2

]
+ E

[∥∥∥ pM
†
U1M(MU − pMU )Mk

X

∥∥∥2

L2

]
.

Proof of Lemma 3.2. Recalling the definition of f̂k as well as Plancherel’s iden-
tity (see eq. (3)), we have∥∥∥f̂k − f

∥∥∥2

L2
+(x2c−1)

=
∥∥∥ pM

k

X − MX

∥∥∥2

L2
=
∥∥∥ pM

k

X − MX(1[−k,k] + 1[−k,k]C )
∥∥∥2

L2

=
∥∥∥MX 1[−k,k] − 1[−k,k] pMY

pM
†
U1M

∥∥∥2

L2
+
∥∥MX 1[−k,k]C

∥∥2
L2

=
∥∥∥ pM

†
U1M( pMY − pMU MX)1[−k,k]

∥∥∥2

L2

+
∥∥MX 1[−k,k]1MC

∥∥2
L2 +

∥∥MX 1[−k,k]C
∥∥2
L2 ,

where we used in the last step that

MX 1[−k,k] = MX 1[−k,k](1M + 1MC )

= pM
†
U

pMU1M MX 1[−k,k] + MX 1[−k,k]1MC .

Studying only the first summand further we obtain for each t ∈ R

nE
[
| pMY (t) − MY (t)|2

]
= E

[
|Y c−1+ι2πt

1 − MY (t)|2
]

= V2
Y (t).

By exploiting the independence of {Yi}i∈�n� and {Uj}j∈�m�, we finally have

E

[∥∥∥ pM
†
U1M( pMY − pMU MX)1[−k,k]

∥∥∥2

L2

]
= E

[∥∥∥ pM
†
U1M(MU − pMU )Mk

X

∥∥∥2

L2

]
+ 1

n
E

[∥∥∥ pM
†
U1MVY 1[−k,k]

∥∥∥2

L2

]
,

which shows the claim.

At this point we want to stress out that the L2
+(x2c−1)-risk representation

of Lemma 3.2 for f̂k has a very similar structure as the corresponding risk
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representation of f̃k in (8) assuming the error density fU to be known. Indeed,
the first term remains the same – it represents the bias term, which can be
specified later, considering different regularity assumptions on f . Later, we see
that the second term actually represents the variance term. The two additional
summands, only depending on the additional measurements {Uj}j∈�m�, occur
in this particular situation, where we estimate the unknown MU as well.

3.2. Nonparametric survival analysis - unknown error density

Considering the survival analysis in Subsection 2.4, we propose now an estimator
for the survival function SX of X under multiplicative measurement errors with
unknown error density fU and additional measurements {Uj}j∈�m�. Indeed, we
follow the definition of S̃k and analogously as for the density estimator f̃k we
replace the unknown Mellin transformation MU by its (sufficiently truncated)
counterpart, which leads to the following definition.

Definition 3.3 (Thresholded spectral cut-off estimator of SX). Assuming an
unknown density f ∈ L2

+(x2c−1) of X for some c ∈ R>1. The thresholded
spectral cut-off estimator pSX

k of the survival function SX of X is defined for
each k, x ∈ R>0 by

pSX
k (x) : =

∫
[−k,k]

x−c+1−ι2πt
pMY (t) pM

†
U (t)

c− 1 + ι2πt 1M(t)dλ(t)

= M−1
c−1

[
(c− 1 + ι2π·)−1

pM
k

X

]
(x).

Similar to (9) we are again interested in quantifying the accuracy of pSX
k

in terms of its global L2
+(x2c−3)-risk. The representation in the next corollary

follows line by line the proof of Lemma 3.2 and is hence omitted.

Corollary 3.4 (Risk Representation). For k ∈ R>0 consider the estimator
Ŝk given in Definition 3.3 and recall that tc : R → R>0 with t �→ tc(t) :=(
(c− 1)2 + 4π2t2

)−1. We then have

E

[∥∥∥pSX
k − SX

∥∥∥2

L2
+(x2c−3)

]
= E

[∥∥∥(c− 1 + ι2π·)−1
(

pM
k

X − MX

)∥∥∥2

L2

]
= E

[∥∥∥ pM
k

X − MX

∥∥∥2

L2(tc)

]
=
∥∥MX 1[−k,k]C

∥∥2
L2(tc)

+ 1
n
E

[∥∥∥ pM
†
U1MVY 1[−k,k]

∥∥∥2

L2(tc)

]
+ E

[∥∥∥Mk
X 1MC

∥∥∥2

L2(tc)

]
+ E

[∥∥∥ pM
†
U1M(MU − pMU )Mk

X

∥∥∥2

L2(tc)

]
.

Analogously to estimating the density f , we obtain in Corollary 3.4 a risk rep-
resentation with very similar structure as the corresponding risk representation
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of S̃k in (9) assuming the error density fU to be known. The first and second
term represents again the bias and variance as seen before. The last two sum-
mands, depending only on the additional measurements {Uj}j∈�m�, occur only
due to the estimation of the unknown Mellin transformation MU . Eventually,
one observes directly, that the risk decomposition of f̂k and pSX

k are identical
up to the density function v = 1 and v = tc, respectively. Hence, we subse-
quently study both cases simultaneously by considering a general L2(v)-risk for
an arbitrary density function v, namely

E

[∥∥∥ pM
k

X − MX

∥∥∥2

L2(v)

]
. (26)

3.3. Oracle type inequalities and rates of convergences

We start by formalising assumptions needed to be satisfied in the subsequent
parts.

Assumption B.I.
In addition to Assumption A.I let {Uj}j∈�m� be i.i.d. copies of U , independently
drawn from the sample {Yi}i∈�n� and let fU ∈ L1

+(x4(c−1)). Moreover suppose
that 1[−k,k] ∈ L2(v) for each k ∈ R>0.

Corollary 3.5. Under Assumption B.I, there exists a optimal tuning parameter
ko ∈ R>0, such that

E

[∥∥∥ pM
ko

X − MX

∥∥∥2

L2(v)

]
≤ 8

(
1 ∨ E[U2(c−1)

1 ]
)2

·
(
1 ∨ E[X2(c−1)

1 ]
)

× inf
k∈R>0

{∥∥MX 1[−k,k]C
∥∥2
L2(v) + 1

n

[∥∥∥1[−k,k] M†
U

∥∥∥2

L2(v)

]}
+ 8

(
1 ∨ CE[U4(c−1)

1 ]
)
·
∥∥∥MX

(
1 ∨ |MU |2m

)−1/2
∥∥∥2

L2(v)
. (27)

Proof of Corollary 3.5. Under Assumption B.I we start with the general L2(v)-
risk representation for k ∈ R>0, given by

E

[∥∥∥ pM
k

X − MX

∥∥∥2

L2(v)

]
=
∥∥MX 1[−k,k]C

∥∥2
L2(v)

+ 1
n
E

[∥∥∥ pM
†
U1MVY 1[−k,k]

∥∥∥2

L2(v)

]
+ E

[∥∥∥Mk
X 1MC

∥∥∥2

L2(v)

]
+ E

[∥∥∥ pM
†
U1M(MU − pMU )Mk

X

∥∥∥2

L2(v)

]
,

where the proof follows line by line of the proof of Lemma 3.2. We upper bound
the last three summands of the last display with the help of Lemma B.1 in
Appendix B and derive for each k ∈ R>0

E

[∥∥∥ pM
k

X − MX

∥∥∥2

L2(v)

]
≤
∥∥MX 1[−k,k]C

∥∥2
L2(v)
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+ 4
(
1 ∨ E[U2(c−1)

1 ]
)2

· E[X2(c−1)
1 ] ·

∥∥∥M†
U 1[−k,k]

∥∥∥2

L2(v)
· n−1

+ 4
(
1 ∨ E[U2(c−1)

1 ]
)
·
∥∥∥Mk

X

(
1 ∨ |MU |2(m ∧ n)

)−1/2
∥∥∥2

L2(v)

+ 4
(
1 ∨ CE[U4(c−1)

1 ]
)
·
∥∥∥Mk

X

(
1 ∨ |MU |2m

)−1/2
∥∥∥2

L2(v)
.

Further, elementary computations show that∥∥∥Mk
X

(
1 ∨ |MU |2(m ∧ n)

)−1/2
∥∥∥2

L2(v)
≤
∥∥∥Mk

X

(
1 ∨ |MU |2m

)−1/2
∥∥∥2

L2(v)

+ E[X2(c−1)
1 ]

∥∥∥M†
U 1[−k,k]

∥∥∥2

L2(v)
· n−1,

such that we finally obtain

E

[∥∥∥ pM
k

X − MX

∥∥∥2

L2(v)

]
≤
∥∥MX 1[−k,k]C

∥∥2
L2(v)

+ 8
(
1 ∨ E[U2(c−1)

1 ]
)2

· E[X2(c−1)
1 ] ·

∥∥∥M†
U 1[−k,k]

∥∥∥2

L2(v)
· n−1

+ 8
(
1 ∨ CE[U4(c−1)

1 ]
) ∥∥∥MX

(
1 ∨ |MU |2m

)−1/2
∥∥∥2

L2(v)
.

The claim follows from the last decomposition, where the first two terms in
the upper bound depend on k ∈ R>0 only, and observing that the first term
decreases while the second one increases for an increasing k.

Observe that in the oracle-type inequality (27) the upper bound consists of
two summands. The first summand is identical up to the constants to the upper
bound in (11) and we refer to its discussion in Subsection 2.5. Again, ko rep-
resents an oracle choice, as it depends on the unknown Mellin transformation
MX . We should emphasise that the first summand only depends on the sample
size n, while the second summand only the size m of the additional sample.
Therefore the second represents the additional cost of estimating MU as well.
In case of additive convolution on the circle and the real line [21] and [25] de-
rive respectively a oracle-type inequality for integrated mean squared error, i.e.
the global L2-risk, with an upper bound consisting also of two terms, each one
depending on one sample size only.
Similar to Subsection 2.5 we assume in the following brief discussion an un-
known density f ∈ Ws(L), where the regularity s is specified below. Regard-
ing the Mellin transformation MU , we subsequently assume again its ordinary
smoothness (o.s.) or super smoothness (s.s.). In order to discuss the convergences
rates for the L2(v)-risk under these regularity assumptions, we restrict ourselves
again to the choice v := t−a

c for a ∈ R, observing that a = 0 corresponds to the
global risk for estimating the density f and a = −1 corresponds to estimating
the survival function SX of X as discussed before.

Corollary 3.6. Under Assumption B.I, let f ∈ Ws(L) for some fixed L ∈ R>0.
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1. If MU satisfies eq. (o.s.), choose ko := n
1

2γ+2s+1 .
Then, for any a ∈ (−1/2 − γ, s),

E

[∥∥∥ pM
ko

X − MX

∥∥∥2

L2(t−a
c )

]
≤ C1 ·

(
n− 2(s−a)

2γ+2s+1 + m−( s−a
γ ∧1)

)
,

where C1 = C1(c, a, s, cl,E[X2(c−1)
1 ],E[U4(c−1)

1 ]) ∈ R>0.
2. If MU satisfies eq. (s.s.), choose ko := (logn)

1
2γ . Then, for any a < s

E

[∥∥∥ pM
ko

X − MX

∥∥∥2

L2(t−a
c )

]
≤ C2 ·

(
(logn)−

s−a
γ + (logm)−

s−a
γ

)
,

where C2 = C2(c, a, s, cl,E[X2(c−1)
1 ],E[U4(c−1)

1 ]) ∈ R>0.

Proof of Corollary 3.6. Starting with Corollary 3.5 the upper bound for the first
term is given in Corollary 2.2. Regarding the second summand, assume first that
MU is ordinary smooth, i.e. eq. (o.s.) holds, and a+γ+ 1

2 > 0. Since MX belongs
to the Mellin-Sobolev ellipsoid Ws(L) with a < s∥∥∥MX

(
1 ∨ |MU |2m

)−1/2
∥∥∥2

L2(t−a
c )

≤ clL
2
∥∥∥ts2t−a

c

(
1 ∨ t−γ

2 m
)−1

∥∥∥
L∞

≤ C(c, a, s, cl, L) ·
∥∥∥∥ts−a

2
(
1 ∨ t−γ

2 m
)−1(1

[−m
1
2γ ,m

1
2γ ]

+ 1
[−m

1
2γ ,m

1
2γ ]C

)
∥∥∥∥
L∞

≤ C(c, a, s, cl, L) · max
{
m

(a−s+γ)+−γ

γ ,m− s−a
γ

}
, (28)

which shows the first claim. Similarly, if MU is super smooth, i.e. eq. (s.s.) holds,
we have for any a < s setting I := [−(logm)

1
2γ , (logm)

1
2γ ]∥∥∥MX

(
1 ∨ |MU |2m

)−1/2
∥∥∥2

L2(t−a
c )

≤ clL
2
∥∥∥ts2t−a

c

(
1 ∨ exp(−2cl| · |2γ)m

)−1
∥∥∥
L∞

≤ C(c, a, s, cl, L) ·
∥∥∥ts−a

2
(
1 ∨ exp(−t−γ

2 )m
)−1(1I + 1IC )

∥∥∥
L∞

≤ C(c, a, s, cl, L) · max
{

(logm)−
s−a
γ , (logm)−

s−a
γ

}
, (29)

which shows the second claim and completes the proof.

Remark 3.1. Let us briefly discuss the choices of a = 0 and a = −1, which
provide upper bounds for the global estimation risk for the density f and the
survival function SX , respectively:

1. Density estimation: Choosing a = 0 for all f ∈ Ws(L) leads to

E

[∥∥∥f̂k̂ − f
∥∥∥2

L2
+(x2c−1)

]
� n− 2s

2γ+2s+1 + m−( s
γ ∧1)

if MU is ordinary smooth, and

E

[∥∥∥f̂k̂ − f
∥∥∥2

L2
+(x2c−1)

]
� (logn)−

s
γ + (logm)−

s
γ
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if MU is super smooth.
2. Survival function estimation: Choosing a = −1 for all f ∈ Ws(L) leads to

E

[∥∥∥pSX
k̂

− S
∥∥∥2

L2
+(x2c−3)

]
� n− 2(s+1)

2γ+2s+1 + m−( s+1
γ ∧1)

if MU is ordinary smooth, and

E

[∥∥∥pSX
k̂

− S
∥∥∥2

L2
+(x2c−3)

]
� (logn)−

s+1
γ + (logm)−

s+1
γ

if MU is super smooth.

There is no corresponding lower bound of the additional second term in the up-
per bound given in Corollary 3.6, which only depends on the second sample size
m. Nevertheless, a similar expression occurs in circular additive deconvolution
with unknown error density, where in [21] a matching lower bound is presented.
Moreover, in additive deconvolution on the real line with unknown error distri-
bution the additional second term is also present and [25] derives a matching
lower bound in case a = 0. This suggests that this is also the case in the mul-
tiplicative measurement model with continuous Mellin Transform, although a
proof is missing yet.

4. Data driven estimation

In this section we will provide a fully data-driven selection method for k based
on the construction given in Subsection 2.6 but dismissing the knowledge of the
error density fU . A similar approach has been considered for additive deconvo-
lution problems for instance in [16] and [21]. More precisely, we select

k̂ :∈ arg min
k∈�kn�

{
−
∥∥∥1[−k,k] pMY

pM
†
U1M

∥∥∥2

L2(v)
+ 2pσ2

Y penpv
k

}
= arg min

k∈�kn�

{
−
∥∥∥ pM

k

X

∥∥∥2

L2(v)
+ 2pσ2

Y penpv
k

}
,

where the penalisation term penpv
k depends on a random density function pv,

which is defined and specified later as well as the choice of kn ∈ N. In contrast
to the selection (18) in Subsection 2.6, here we have replaced M†

U by its empirical
counterpart pM

†
U . Our aim is to analyse the global L2(v)-risk again, namely

E

[∥∥∥∥ pM
k̂

X − MX

∥∥∥∥2

L2(v)

]
. (30)

Our upper bounds necessities also slightly stronger assumptions than Assump-
tion B.I, which we formulate next.
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Assumption B.II.
In addition to Assumptions A.II and B.I let inft∈[−1,1]{|MU (t)|} ∈ R>0,
fU ∈ L1

+(x7(c−1)) ∩ L1
+(x2(c−1)| log x|γ) for some γ ∈ R>0, fY ∈ L1

+(x16(c−1)),
and such that there are ηY , ηU , ηX ∈ R≥1 satisfying

i) ηY ≥ max
{∥∥fY

∥∥
L∞
+ (x2c−1) ,

∥∥fY
∥∥
L1
+(x16(c−1))

}
,

ii) ηU ≥ max
{∥∥fU

∥∥1/7
L1
+(x7c−1) ,

∥∥fU
∥∥
L1
+(x2(c−1)| log x|γ)

}
,

iii) ηX ≥ max
{∥∥fX

∥∥
L1
+(x2(c−1)) , ‖MX‖

L2(v)

}
.

We set aY ∈ R>0 and kY ∈ R≥1 as in Assumption A.II.

Motivated by the key argument in (20) in case of a known error density fU ,
the next lemma provides an error bound when fU is unknown. Its proof can be
found in Appendix C.

Lemma 4.1. Consider an arbitrary event � with complement �C , and denote
by AC the complement of the event A := {σ2

Y ≤ 2pσ2
Y }. Given kn ∈ R≥1 and

k̂ :∈ arg min
k∈�kn�

{
−
∥∥∥1[−k,k] pMY

pM
†
U1M

∥∥∥2

L2(v)
+ 2pσ2

Y penpv
k

}
(31)

for any k◦ ∈ �kn� we have∥∥∥∥ pM
k̂

X − MX

∥∥∥∥2

L2(v)
≤ 15

∥∥∥1[−k◦,k◦]( pMY − MY ) pM
†
U1M

∥∥∥2

L2(v)

+ 15
∥∥1[−k◦,k◦]C MX

∥∥2
L2(v) + 24pσ2

Y penpv
k◦ 1� + 6 ‖MX‖2

L2(v) 1�c

+ 15
∥∥∥(MU

pM
†
U1M − 1)Mkn

X

∥∥∥2

L2(v)

+ 12 max
k∈�kn�

{(∥∥∥1[−k,k]( pMY − MY ) pM
†
U1M

∥∥∥2

L2(v)
− σ2

Y

4 penpv
k

)
+

}

+ 3
∥∥∥1[−kn,kn]( pMY − MY ) pM

†
U1M

∥∥∥2

L2(v)
(1�c + 1Ac). (32)

In the sequel, we aim to apply the expectation on both sides of (32) in order
to derive an upper bound for the risk. Therefore, we need to control amongst
others the expectation of

max
k∈�kn�

{(∥∥∥1[−k,k]( pMY − MY ) pM
†
U1M

∥∥∥2

L2(v)
− σ2

Y

4 penpv
k

)
+

}
. (33)

In Subsection 2.6 a similar term was controlled by introducing the density func-
tion vU := |M†

U |2v and providing a concentration inequality in Proposition 2.3.
In contrast, we use in the sequel its empirical counterpart, the random den-
sity function pv := | pM

†
U1M|2v, which depends on the sample {Uj}j∈�m� only.

Then (33) reads as
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max
k∈�kn�

{(∥∥∥1[−k,k]( pMY − MY ) pM
†
U1M

∥∥∥2

L2(v)
− σ2

Y

4 penpv
k

)
+

}

= max
k∈�kn�

{(∥∥∥1[−k,k]( pMY − MY )
∥∥∥2

L2(pv)
− σ2

Y

4 penpv
k

)
+

}
.

The next proposition provides a concentration inequality for the expectation of
the quantity in the last display and its proof can be found in Appendix C.

Proposition 4.2 (Concentration inequality). Under Assumption B.II for v and
pv := | pM

†
U |2v define Δv

k and δv
k as well as Δpv

k and δpv
k as in (17). We consider kn,

n ∈ N, defined by
kn := max{k ∈ �n� : kΔv

k ≤ nΔv
1}. (34)

We then have

E

[
max
k∈�kn�

{(∥∥∥1[−k,k]( pMY − MY )
∥∥∥2

L2(pv)
− 12σ2

Y Δpv
kδ

pv
kkn

−1
)

+

}]
≤ C · ηY (1 ∨ η2

UkY Δv
kY

) · n−1.

Following the argumentation in Subsection 2.6, we choose kn ∈ �n� as in (34).
Consequently, defining penpv

k appropriately, namely for each k ∈ �kn� by

penpv
k := 24Δpv

kδ
pv
kkn

−1, (35)

Proposition 4.2 allows us to upper bound the expectation of eq. (33). Thus, the
data-driven dimension parameter is specified as follows,

k̂ :∈ arg min
k∈�kn�

{
−
∥∥∥ pM

k

X

∥∥∥2

L2(pv)
+ 48pσ2

Y Δpv
kδ

pv
kk

}
,

where pσ2
Y is again the unbiased estimator of σ2

Y given in Subsection 2.6. For any
k◦ ∈ �kn� we intend to apply Lemma 4.1 with the random set

� := �k◦ :=
{

sup
t∈[−k◦,k◦]

∣∣∣ pMU (t)MU (t) − 1
∣∣∣ ≤ 1

3

}

⊆
{

sup
t∈[−k◦,k◦]

∣∣∣ pM
†
U (t)MU (t)

∣∣∣2 ≤ 9
4

}
(36)

where its complement evidently satisfies

�C
k◦ =

{
∃t ∈ [−k◦, k◦] :

∣∣∣ pMU (t) − MU (t)
∣∣∣ > 1

3 |MU (t)|
}
.

The following lemma provides a first upper bound of the risk, which follows
directly by applying the expectation on both sides of Lemma 4.1 as well as the
concentration inequality in Proposition 4.2. The proof with all details can be
found in Appendix C.
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Lemma 4.3. Under Assumption B.II for any k◦ ∈ �kn� we have

E

[∥∥∥∥ pM
k̂

X − MX

∥∥∥∥2

L2(v)

]
≤ C · (η4

UηX + σ2
Y ) min

k∈�kn�

{∥∥1[−k,k]C MX

∥∥2
L2(v) + ΔvU

k δvU

k kn−1
}

+ C · η4
U

∥∥∥MX

(
1 ∨ |MU |2m

)−1/2
∥∥∥2

L2(v)
+ C · ηY (1 ∨ η2

UkY Δv
kY

) · n−1

+ 15 ·
∥∥1[−k◦,k◦]C MX

∥∥2
L2(v) + 6 · (σ2

Y Δv
1 + ηX)P(�C

k◦). (37)

It remains to bound the probability of the event �C
k◦

, which turns out to be
rather involved. The proof of the upper bound is again based on an inequality
due to [28] which in the form of Lemma C.1 in the Appendix C for example
is stated by [7] in equation (5.13) in Corollary 2. However, its application ne-
cessitates to bound the expectation of the supremum of a normalised Mellin
function process which we establish in the next lemma. Its proof follows along
the lines of the proof of Theorem 4.1 in [26] where a similar result for a nor-
malised characteristic function process is shown. The proof of Proposition 4.4
is also postponed to the Appendix C.

Proposition 4.4. Let {Zj}j∈N be a family of i.i.d R>0-valued random variables
and assume there exists a constant η ∈ R≥1, such that η ≥ (E[Z2β

1 ])1/2 and
η ≥ E[Z2β

1 | log(Z1)|γ ] for some β ∈ R and γ ∈ R>0. Define the normalised
Mellin function process by

cm(t) := 1√
m

∑
j∈�m�

{
Zβ+ι2πt
j − E

[
Zβ+ι2πt
j

]}
, ∀t ∈ R, (38)

and for ρ ∈ R>0 the density function w̄ : R → (0, 1] by

w̄(t) := (log(e + |t|))−
1
2−ρ

, ∀t ∈ R. (39)

Then there exists a constant C(η, ρ) ∈ R≥1 only depending on η and ρ, such that

sup
m∈N

{
E

[
‖cm‖

L∞(w̄)

]}
≤ C(η, ρ).

Now, we are in the position to state an upper bound of the probability of the
event �C

k◦
, which is proven in the Appendix C.

Proposition 4.5. Let Assumption B.II be satisfied and let ρ ∈ R>0 be arbi-
trary but fixed. Consider the density function w̄ : R → (0, 1] given in (39) and
let C(ηU , ρ) ∈ R≥1 be given by Proposition 4.4 (with β = c − 1). Given the
universal numerical constant Ctal ∈ R>0 determined by Talagrand’s inequality
in Lemma C.1 we set

τm := τm(ηU , ρ) := 2ηUC−1/2
tal (logm)1/2 + 2C(ηU , ρ) ∀m ∈ N and
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m◦ := m◦(MU , ηU , ρ)

:= min
{
m ∈ N≥3 : inf

t∈[−1,1]
w̄(t)|MU (t)| ≥ 6τmm−1/2 ∧ Ctalη

2
Um ≥ logm

}
.

(40)

For m ∈ �m◦� let km ∈ R>0 be arbitrary while for m ∈ N≥m◦ we set

km := sup
{
k ∈ N : inf

t∈[−k,k]
w̄(t)|MU (t)| ≥ 6τmm−1/2

}
, (41)

where the defining set is not empty for all m ∈ N≥m◦ . For any m ∈ N consider
the event

�C
km

:=
{
∃t ∈ [−km, km] :

∣∣∣ pMU (t) − MU (t)
∣∣∣ > 1

3 |MU (t)|
}
.

then there is an universal numerical constant C := 3 + 11C−3
tal ∈ R≥1 such that

we have
P(�C

km
) ≤ (m2

◦ ∨ CηU )m−2, ∀m ∈ N.

We can now formulate our main result.

Theorem 4.6. Let Assumption B.II be satisfied and let ρ ∈ R>0 be arbitrary
but fixed. Consider m◦ as in (40) and for each m,n ∈ N, kn as in (34) and km
as in (41). Then for all m,n ∈ N we have

E

[∥∥∥∥ pM
k̂

X − MX

∥∥∥∥2

L2(v)

]
≤ C · (η4

UηX + σ2
Y ) min

k∈�kn�

{∥∥1[−k,k]C MX

∥∥2
L2(v) + ΔvU

k δvU

k kn−1
}

+ C · η4
U

∥∥∥MX

(
1 ∨ |MU |2m

)−1/2
∥∥∥2

L2(v)
+ C · ηY (1 ∨ η2

UkY Δv
kY

) · n−1

+ 15 ·
∥∥1[−km,km]C MX

∥∥2
L2(v) + C · (σ2

Y Δv
1 + ηX)(m2

◦ ∨ ηU )m−1.

Proof of Theorem 4.6. By combining Lemma 4.3 with k◦ := kn ∧ km, the ele-
mentary bound

∥∥1[−k◦,k◦]C MX

∥∥2
L2(v) ≤ min

k∈�kn�

{∥∥1[−k,k]C MX

∥∥2
L2(v) + ΔvU

k δvU

k kn−1
}

+
∥∥1[−km,km]C MX

∥∥2
L2(v)

and P(�C
k◦

) ≤ P(�C
km

) ≤ (m2
◦ ∨ CηU )m−2 we immediately obtain the claim,

which completes the proof.

Remark 4.1. Let us briefly compare the upper bound for the risk of the data-
driven estimator with known and unknown error distribution given in (19) and in
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Theorem 4.6, respectively. Up to the constants estimating the error distribution
leads to the three additional terms∥∥∥MX

(
1 ∨ |MU |2m

)−1/2
∥∥∥2

L2(v)
, m−1, and

∥∥1[−km,km]C MX

∥∥2
L2(v) . (42)

Evidently, they depend all on the sample size m only, and the second is negligible
with respect to the first term. Moreover, the first term in (42) is already present
in the upper risk bound (27) of the oracle estimator when estimating the error
density too. Thus the third term in (42) characterises the prize we pay for
selecting the dimension parameter fully data-driven while estimating the error
density. Comparing the first and third term in (42) it is not obvious to us which
one is the leading term. If there exists a constant C ∈ R>1 such that

[−km, km]C ⊂ {w̄2|MU |2m(logm)−1 < C}, ∀m ∈ N, (43)

then both, the first and third term in (42), are bounded up to the constant C

by ∥∥∥MX

(
1 ∨ w̄2|MU |2m/ logm

)−1/2
∥∥∥2

L2(v)
. (44)

Note that the additional condition (43) is satisfied whenever |MU |2 is mono-
tonically decreasing. However, the term in (44) might over estimated both, the
first and third term in (42). Take for example the situation o.s. in Corollary 4.7
below. In case (s − a) > γ all three terms in (42) are of order m−1 while the
term in (44), by similar computations as in the proof of Corollary 3.6, is of
order m−1(logm)2(1+ρ). In contrast in the situation s.s. in Corollary 4.7 be-
low, the first and third term in (42) as well as the term in (44) are of order
(logm)−

s−a
γ .

Continuing the brief discussion in Subsection 3.3 we assume an unknown
density f ∈ Ws(L), where the regularity s is specified below. Regarding the
Mellin transformation MU , we subsequently assume again its ordinary smooth-
ness (o.s.) or super smoothness (s.s.). In order to discuss the convergences rates
for the L2(v)-risk under these regularity assumptions, we restrict ourselves again
to the choice v := t−a

c for a ∈ R, observing that a = 0 corresponds to the global
risk for estimating the density f and a = −1 corresponds to estimating the
survival function SX of X as discussed before.

Corollary 4.7. Under the assumptions and notations of Theorem 4.6, we have
the following rates of convergences.

1. If MU satisfies eq. (o.s.), then,

E

[∥∥∥∥ pM
k̂

X − MX

∥∥∥∥2

L2(t−a
c )

]
≤ C1

(
n− 2(s−a)

2γ+2s+1 +
( (logm)2(1+ρ)

m

)( s−a
γ ) ∨m−1

)
,

for any a ∈ (−1/2 − γ, s), where C1 = C1(c, a, s, L, σ2
Y , ηX , ηU , ηY , kY ).
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2. If MU satisfies eq. (s.s.), then,

E

[∥∥∥∥ pM
k̂

X − MX

∥∥∥∥2

L2(t−a
c )

]
≤ C2 ·

(
(logn)−

s−a
γ + (logm)−

s−a
γ

)
,

for any a < s, where C2 = C2(c, a, s, L, σ2
Y , ηX , ηU , ηY , kY ).

Proof of Corollary 4.7. Starting with Theorem 4.6 the upper bounds for the
first summand is given in the proof of Corollary 2.5 and for the second in
Corollary 3.6. It remains to upper bound the fourth summand, by using eq. (14)∥∥1[−km,km]C MX

∥∥2
L2(v) ≤ C(c, a, s, L)k−2(s−a)

m , (45)

since MX belongs to the Mellin-Sobolev ellipsoid Ws(L) with a < s. The value
of km ∈ N is determined by eq. (41) in Proposition 4.5. We note that there
are finite constants C1 = C1(ηU , ρ) ∈ R>0 and C2 = C2(ρ) ∈ R>0, such that
τm ≤ C1(logm) 1

2 for all m ∈ N≥m◦ and

inf
t∈[−k,k]

|w̄(t)|(log k) 1
2+ρ ≥ C2,

for all k ∈ R≥3. Assume that MU is ordinary smooth, i.e. eq. (o.s.) is satisfied,
then there exists a finite constant C3 = C3(cl, γ) ∈ R>0, such that

inf
t∈[−k,k]

|MU (t)|kγ ≥ C3,

for all k ∈ R≥1. Consequently, there exists a constant C4 = C4(cl, γ, ηU , ρ) ∈ R>0

small enough, such that for k =
⌊
C4m

1
2γ (logm)

−1−ρ
γ

⌋
inf

t∈[−k,k]
|w̄(t)||MU (t)| ≥ C2C3k

−γ(log k)− 1
2−ρ

≥ 6m− 1
2C1(logm) 1

2 ≥ 6τmm− 1
2 .

Therefore, exploiting eq. (41), i.e. km ≥ k and eq. (45), we obtain

∥∥1[−km,km]C MX

∥∥2
L2(v) ≤ C5(c, a, s, L, cl, γ, ηU , ρ)

(
(logm)2+2ρ

m

) s−a
γ

.

Considering Theorem 4.6 and combining the last upper bound and the upper
bounds in eqs. (23) and (28) in the proofs of Corollaries 2.5 and 3.6, respectively,
we obtain the first claim. Secondly, assume that MU is supper smooth, i.e.
eq. (s.s.) is satisfied, then

inf
t∈[−k,k]

|MU (t)| exp(clk2γ) ≥ 1,

for all k ∈ R≥1. Consequently, there exists a constant C4 = C4(cl, γ, ηU , ρ) ∈ R>0

small enough, such that for k =
⌊(

1
2cl log C4·m

(logm)2+2ρ

) 1
2γ
⌋
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inf
t∈[−k,k]

|w̄(t)||MU (t)| ≥ C2 exp(−clk
2γ)(log k)− 1

2−ρ

≥ 6m− 1
2C1(logm) 1

2 ≥ 6τmm− 1
2 .

Therefore, exploiting eq. (41), i.e. km ≥ k and eq. (45), we obtain∥∥1[−km,km]C MX

∥∥2
L2(v) ≤ C5(c, a, s, L, cl, γ, ηU , ρ)(logm)−

s−a
γ .

Considering Theorem 4.6 and combining the last upper bound and the upper
bounds in eqs. (25) and (29) in the proofs of Corollaries 2.5 and 3.6, respectively,
we obtain the second claim, which completes the proof.

Remark 4.2. Let us briefly revisit the choices of a = 0 and a = −1, which
provide upper bounds for the global estimation risk for the density f and the
survival function SX , respectively:

1. Density estimation: Choosing a = 0 for all f ∈ Ws(L) leads to

E

[∥∥∥f̂k̂ − f
∥∥∥2

L2
+(x2c−1)

]
≤ C1

(
n− 2s

2γ+2s+1 +
( (logm)2(1+ρ)

m

)( s
γ ) ∨m−1

)
if MU is ordinary smooth, and

E

[∥∥∥f̂k̂ − f
∥∥∥2

L2
+(x2c−1)

]
≤ C2

(
(logn)−

s
γ + (logm)−

s
γ

)
if MU is super smooth.

2. Survival function estimation: Choosing a = 1 for all f ∈ Ws(L) leads to

E

[∥∥∥pSX
k̂

− S
∥∥∥2

L2
+(x2c−3)

]
≤ C1

(
n− 2(s+1)

2γ+2s+1 +
( (logm)2(1+ρ)

m

)( s+1
γ ) ∨m−1

)
if MU is ordinary smooth, and

E

[∥∥∥pSX
k̂

− S
∥∥∥2

L2
+(x2c−3)

]
≤ C2

(
(logn)−

s+1
γ + (logm)−

s+1
γ

)
if MU is super smooth.

The oracle- and fully data-driven rates in Corollaries 3.6 and 4.7, respectively,
coincide in case s.s. for all s > a and in case o.s. for s−a > γ. In other words we
do not pay an additional prize for the fully data-driven selection of the dimension
parameter. In case s.s. for s − a ≤ γ the rates differ, but the fully data-driven
rate features only a deterioration by a factor (logm)2(1+ρ)(a−s)/γ .

5. Numerical study

In this section we are going to illustrate the performance of the data-driven esti-
mation procedure as presented in section 4. Eventually, we want to highlight the
behaviour of f̂k̂ under the influence of an increase of additional measurements
for different types of unknown probability functions f of X. Particularly, we are
interested in four different densities f of X, we aim to estimate, namely
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i) Gamma – distribution, Γ(q, p):

f1(x) = qp

Γ(p)x
p−1 exp(−qx)1R>0(x)

with q = 1 and p = 3.
ii) Weibull – distribution, Weib(l, k):

f2(x) = s · k · (s · x)k−1 exp(−(s · x)k)1R>0(x)

with s = 1 and k = 3.
iii) Beta – distribution, Beta(a, b):

f3(x) = 1
B(a, b)x

a−1(1 − x)b−11(0,1)(x)

with a = 10 and b = 5.
iv) Log-Normal – distribution, LogN(μ, σ2):

f4(x) = 1√
2πσx

exp
(
− (ln(x) − μ)2

2σ2

)
1R>0(x)

with μ = 0 and σ2 = 1.

Moreover, as the unknown error distribution of U , we consider a Pareto distri-
bution, Pareto(l, xmin),

fU (x) = lxl
min

xl+1 1[xmin,∞)(x)

with l = 1 and xmin = 1. Elementary computations show that this choice
of error distribution actually satisfies the ordinary smoothness conditions (o.s.)
with γ = 1. In a first place we document how an increasing number of additional
measurements m has an impact on the statistical behaviour of f̂k̂. To do so, we
consider first f1 as target density and generate a sample {Yi}i∈�1000� following
the law of Y = X · U with independent X ∼ Γ(1, 3) and U ∼ Pareto(1, 1).
Moreover, we have sampled m ∈ {100, 1000, 4000} additional observations of
U ∼ Pareto(1, 1). With those samples we have computed the data driven choice
k̂ and afterwards f̂k̂ according to the estimation strategies presented in section 3
and section 4, where we have chosen c = 1

2 and 0.3 as constant in the penalty.
As note by several authors (see for instance [17]) the constant 48 in (35), though
convenient for deriving the theory, is far too large in practise. In order to capture
the randomness, we have repeated this procedure for N = 500 Monte-Carlo
iterations, meaning we have computed a family of data driven spectral cut-
off density estimators {f̂ j

k̂j
}j∈�N�. For a direct comparison to the situation of

knowing the error density fU , we have also computed a family {f̃ j

k̂j
}j∈�N� of

spectral cut-off density estimators of f1 as presented in section 2 with c = 1
2 and

0.6 as constant in the penalty. The true density f1, the family of estimators,
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Fig 1. Unknown error distribution, n = 1000, m = 100. Black line: true density f1, Blue
lines: N Monte-Carlo estimations of f1, Red Line: point-wise median. eMISE = 0.00575.

Fig 2. Unknown error distribution, n = 1000, m = 1000. Black line: true density f1, Blue
lines: N Monte-Carlo estimations of f1, Red Line: point-wise median. eMISE = 0.00458.

as well as a point-wise computed median are depict in fig. 1 – fig. 4, where
also the corresponding empirical mean integrated squared errors (eMISE) are
stated. As the theory indicates, the estimation becomes more accurate for an
increasing sample size m = 100 to 1000, while for m = 1000 to m = 4000 there
is no significant improvement. And the accuracy corresponds nearly to the case
of a known error density. Secondly, we illustrate the behaviour of f̂k̂ for a fixed
number of samples n and m, but for different target densities of X, namely
for f1, . . . , f4. We fix n = m = 2000 and sample n observations of Y i, i ∈ �4�
according to the relation Y i = Xi ·U , where Xi follows the law of fi, i ∈ �4� and
U is still Pareto(1, 1) distributed. Again, given m additional measurements as
i.i.d copies of U we compute afterwards k̂ as well as f̂k̂ as before, following the
definitions in section 3 and section 4 with choosing again c = 1

2 and constant 0.3
for the penalty. Repeating this procedure for N := 500 Monte-Carlo iterations
we obtain four families of estimators {f̂ i,j

k̂i,j
}i∈�4�,j∈�N�. The results as well as

the empirical mean integrated squared error can be found in fig. 5 – fig. 8.
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Fig 3. Unknown error distribution, n = 1000, m = 4000. Black line: true density f1, Blue
lines: N Monte-Carlo estimations of f1, Red Line: Point-wise median. eMISE = 0.00449.

Fig 4. Known error distribution, n = 1000. Black line: true density f1, Blue lines: N Monte-
Carlo estimations of f1, Red Line: point-wise median. eMISE = 0.00299.

Fig 5. Unknown error distribution, n = m = 2000. Black line: true density f1, Blue lines: N
Monte-Carlo estimations of f1, Red Line: point-wise median. eMISE = 0.00184.

Fig 6. Unknown error distribution, n = m = 2000. Black line: true density f2, Blue lines: N
Monte-Carlo estimations of f2, Red Line: point-wise median. eMISE = 0.0241.
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Fig 7. Unknown error distribution, n = m = 2000. Black line: true density f3, Blue lines: N
Monte-Carlo estimations of f3, Red Line: point-wise median. eMISE = 0.129.

Fig 8. Unknown error distribution, n = m = 2000. Black line: true density f4, Blue lines: N
Monte-Carlo estimations of f4, Red Line: point-wise median. eMISE = 0.00179.

Appendix A: Proofs of Section 2

In the end of this section we prove Proposition 2.3. The proof is based on
Lemma A.2 below, which is formulated slightly more general, such that it can
be reused again in the proof of Proposition 4.2 in Section 4. The next assertion
and the subsequent Remark A.1 provide our key arguments in order to prove
the concentration inequality in Lemma A.2. The next inequality is due to [28]
and in this form for example given in [22].

Lemma A.1 (Talagrand’s inequality). Let (Zi)i∈�n� be independent Z-valued
random variables and let {νh : h ∈ H} be countable class of Borel-measurable
functions. For h ∈ H setting νh = n−1 ∑

i∈�n� {νh(Zi) − E (νh(Zi))} we have

E

[(
sup
h∈H

{|νh|2} − 6Ψ2
)

+

]
≤ Ctal

[
τ

n
exp

(
−nΨ2

6τ

)
+ ψ2

n2 exp
(
−nΨ
100ψ

)]
(46)

for some universal numerical constants Ctal ∈ R>0 and where

sup
h∈H

{
sup
z∈Z

{|νh(z)|}
}

≤ ψ, E

[
sup
h∈H

{|νh|}
]
≤ Ψ, sup

h∈H

{
nE

[
|νh|2

]}
≤ τ.

Remark A.1. Consider an arbitrary density function w : R → R≥0 such that
1[−k,k] ∈ L∞(w) for each k ∈ R>0. For k ∈ R>0 let us briefly reconsider the
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orthogonal projection ( pMY −MY )1[−k,k]. Introduce the subset Sk := {h1[−k,k] :
h ∈ L2(w)} of L2(w) and the unit ball Bk := {h ∈ Sk : ‖h‖

L2(w) ≤ 1} in Sk.
Clearly, setting κ : R>0 × R → C with (y, t) �→ κ(y, t) := yc−1yι2πt we have
pMY (t) = 1

n

∑
i∈�n� κ(Yi, t) and MY (t) = E

[
κ(Yi, t)

]
for each t ∈ R. Introducing

κy : R → C with t �→ κy(t) := κ(y, t), y ∈ R>0, for each h ∈ Sk the function
νh : R>0 → C with y �→ νh(y) :=

〈
κy, h

〉
L2(w) is Borel-measurable, where

evidently 1
n

∑
i∈�n� νh(Yi) =

〈
pMY , h

〉
L2(w) and hence νh =

〈
pMY − MY , h

〉
L2(w).

Consequently, we obtain∥∥∥( pMY − MY )1[−k,k]

∥∥∥2

L2(w)
= sup{|

〈
pMY − MY , h

〉
L2(w)|

2 : h ∈ Bk}

= sup{|νh|2 : h ∈ Bk}.
Note that, the unit ball Bk is not a countable set, however, it contains a count-
able dense subset, say Bk, since L2(w) is separable. Exploiting the continuity of
the inner product it is straightforward to see that∥∥∥( pMY − MY )1[−k,k]

∥∥∥2

L2(w)
= sup{|νh|2 : h ∈ Bk} = sup{|νh|2 : h ∈ Bk}.

The last identity provides the necessary argument to apply below Talagrand’s
inequality (A.1) where we need to calculate the three constants ψ, Ψ and τ .
We note that the function κ : R>0 × R → C is not bounded. Therefore we
decompose κ = κb +κu into a bounded function κb : R>0×R → C with (y, t) �→
κb(y, t) := yc−11(0,d)(yc−1)yι2πt and an unbounded function κu : R>0 ×R → C

with (y, t) �→ κu(y, t) := yc−11[d,∞)(yc−1)yι2πt where d := n1/3. For j ∈ {b,u}
setting pM

j
Y (t) = 1

n

∑
i∈�n� κ

j(Yi, t) and Mj
Y (t) = E

[
κj(Yi, t)

]
for each t ∈ R it

follows pMY − MY = pM
b
Y − Mb

Y + pM
u
Y − Mu

Y . Introducing further νb
h : R>0 →

C with y �→ νb
h(y) :=

〈
κb
y , h

〉
L2(w) and νu

h : R>0 → C with y �→ νu
h(y) :=〈

κu
y , h

〉
L2(w) we evidently have νh = νb

h + νu
h and thus∥∥∥( pMY − MY )1[−k,k]

∥∥∥2

L2(w)
= sup{|νh|2 : h ∈ Bk} = sup{|νb

h + νu
h|2 : h ∈ Bk}

≤ 2 sup{|νb
h|2 : h ∈ Bk} + 2 sup{|νu

h|2 : h ∈ Bk}

= 2
∥∥∥( pM

b
Y − Mb

Y )1[−k,k]

∥∥∥2

L2(w)
+ 2

∥∥∥( pM
u
Y − Mu

Y )1[−k,k]

∥∥∥2

L2(w)
. (47)

In Lemma A.2 below we bound the expectation of the first term on the right
hand side with the help of Talagrand’s inequality (Lemma A.1) and the expec-
tation of the second term.
Lemma A.2. Let w : R → R≥0 be a density function with 1[−k,k] ∈ L∞(w)
for each k ∈ R>0. Setting σ2

Y := 1 + E[Y 2(c−1)
1 ], aY := 6

σ2
Y

∥∥fY
∥∥
L∞(x2c−1),

kY := 1 ∨ 3a2
Y ,

Δw
k :=

∥∥1[−k,k]
∥∥
L∞(w) and δw

k := log(Δw
k ∨ (k + 2))

log(k + 2) ∈ R≥1, ∀k ∈ R≥1,
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there exists an universal numerical constant C ∈ R>0 such that for all n ∈ N

and k ∈ R≥1 we have

E

[(∥∥∥1[−k,k]( pM
b
Y − Mb

Y )
∥∥∥2

L2(w)
− 6σ2

Y Δw
k δ

w
k kn

−1
)

+

]

≤ n−1C

[
(1∨

∥∥fY
∥∥2
L∞(x2c−1))(1 +

∥∥1[−kY ,kY ]
∥∥2
L2(w))

1
aY

exp
(−k

aY

)
+n−4kΔw

k

]
(48)

and E

[∥∥∥1[−k,k]( pM
u
Y − Mu

Y )
∥∥∥2

L2(w)

]
≤ 2E

[
Y

8(c−1)
1

]
n−3kΔw

k .

Proof of Lemma A.2. Consider first the second claim. For each t ∈ R we have
E
[

pM
u
Y (t)

]
= Mu

Y (t) = E
[
κu(Y1, t)

]
which in turn implies

nE
[
| pM

u
Y (t) − Mu

Y (t)|2
]

= Var
(
κu(Y1, t)

)
≤ E

[
|κu(Y1, t)|2

]
= E

[
Y

2(c−1)
1 1[d,∞)(Y c−1

1 )] ≤ d−2lE
[
Y

2(c−1)(1+l)
1

]
and thus making use of d = n1/3 we obtain the claim, that is

E

[∥∥∥1[−k,k]( pM
u
Y − Mu

Y )
∥∥∥2

L2(w)

]
≤ 1

nd6E
[
Y

2(c−1)(1+3)
1

] ∥∥1[−k,k]
∥∥2
L2(w)

≤ n−3E
[
Y

8(c−1)
1

]
2kΔw

k .

Secondly consider (48). Given the identity (see Remark A.1)∥∥∥( pM
b
Y − Mb

Y )1[−k,k]

∥∥∥2

L2(w)
= sup{|νb

h|2 : h ∈ Bk}

we intent to apply Talagrand’s inequality (Lemma A.1) where we need to cal-
culate the three quantities ψ, Ψ and τ . Consider ψ first. Evidently, for each
k ∈ R≥1 we have

sup
h∈Bk

{
sup

y∈R>0

{
|νb

h(y)|2
}}

= sup
y∈R>0

{
sup
h∈Bk

{
|
〈
κb
y , h

〉
L2(w)|

2
}}

= sup
y∈R>0

{∥∥κb
y1[−k,k]

∥∥2
L2(w)

}
≤ d2 ∥∥1[−k,k]

∥∥2
L2(w) ≤ 2d2kΔw

k =: ψ2.

Consider next Ψ. Evidently, for each t ∈ R we have

nE
[
| pM

b
Y (t) − Mb

Y (t)|2
]

= Var
(
κb(Y1, t)

)
≤ E

[
|κb(Y1, t)|2

]
≤ E

[
Y

2(c−1)
1

]
≤ σ2

Y

which for each k ∈ R≥1 implies

E

[
sup
h∈H

|νb
h|2

]
= E

[∥∥∥( pM
b
Y − Mb

Y )1[−k,k]

∥∥∥2

L2(w)

]
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≤ 1
nσ

2
Y

∥∥1[−k,k]
∥∥2
L2(w) ≤

1
nσ

2
Y 2kΔw

k δ
w
k =: Ψ2.

Finally, consider τ . For each h ∈ Bk we have

nE
[
|νb

h|2
]

= Var
[〈
κb(Y1, ·), h

〉
L2(w)

]
≤ E

[
|
〈
κb(Y1, ·), h

〉
L2(w)|

2]
≤ E

[
|
〈
κ(Y1, ·), h

〉
L2(w)|

2] = E
[
|νh|2

]
.

Since hw ∈ L2 ∩ L1 and |νh(y)|2 = |
〈
h, κy

〉
L2(w)|

2 = |M−1
1−c[hw](y)|2 for all

y ∈ R>0 we have νh ∈ L2(x1−2c). Consequently, using Parseval’s identity we
obtain

‖νh‖2
L2(x1−2c) = ‖M1−c[νh]‖2

L2 = ‖wh‖2
L2 ≤

∥∥w1[−k,k]
∥∥
L∞ ‖h‖2

L2(w) ≤ Δw
k

which in turn for each h ∈ Bk implies

E
[
|νh|2

]
≤
∥∥fY

∥∥
L∞(x2c−1) ‖νh‖

2
L2(x1−2c) ≤

∥∥fY
∥∥
L∞(x2c−1) Δw

k .

On the other hand side for each h ∈ Bk we have also

E
[
|νh|2

]
≤
∥∥1[−k,k]

∥∥2
L2(w) E[Y 2(c−1)

1 ] ≤
∥∥1[−k,k]

∥∥2
L2(w) σ

2
Y ,

and hence

nE
[
|νb

h|2
]
≤
∥∥fY

∥∥
L∞(x2c−1) Δw

k ∧ σ2
Y

∥∥1[−k,k]
∥∥2
L2(w) =: τ.

Given aY = 6
∥∥fY

∥∥
L∞(x2c−1) /σ

2
Y and kY = 1 ∨ 3a2

Y for any k ≥ kY we have

Δw
k exp

(
−σ2

Y δ
w
k k

6 ‖fY ‖
L∞(x2c−1)

)
= Δw

k exp
(−δw

k

aY
k
)
≤ exp(− δw

k

aY
(k−aY log(k+2)) ≤ 1

by exploiting that x ≥ a log(x+ 2) for all a > 0 and x ≥ 1∨ 3a2. Consequently,
for any k ≥ kY we obtain (keep δw

k ≥ 1 in mind)

τ

n
exp

(
−nΨ2

6τ

)
≤

∥∥∥fY
∥∥∥
L∞(x2c−1)

Δw
k

n exp
(

−σ2
Y δ

w
k k

3 ‖fY ‖
L∞(x2c−1)

)

≤
∥∥∥fY

∥∥∥
L∞(x2c−1)
n exp

(−k

aY

)
while for any k < kY we conclude (using again δw

k ≥ 1)

τ

n
exp

(
−nΨ2

6τ

)
≤

σ2
Y

∥∥1[−k,k]
∥∥2
L2(w)

n exp
(

−σ2
Y δ

w
k k

3 ‖fY ‖
L∞(x2c−1)

)

≤
σ2
Y

∥∥∥1[−kY ,kY ]

∥∥∥2
L2(w)

n exp
(−k

aY

)
.
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Combining both cases k ≥ kY and k < kY we obtain for any k ∈ R≥1

τ

n
exp

(
−nΨ2

6τ

)
≤

∥∥∥fY
∥∥∥
L∞(x2c−1)

+σ2
Y

∥∥∥1[−kY ,kY ]

∥∥∥2
L2(w)

n exp
(−k

aY

)
.

Evaluating the bound given by Talagrand’s inequality (A.1) there exists an
universal numerical constant Ctal ∈ R>0 such that for each k ∈ R≥1 we have
(keep d = n1/3, σ2

Y ≥ 1 and δw
k ≥ 1 in mind)

E

[(∥∥∥1[−k,k]( pM
b
Y − Mb

Y )
∥∥∥2

L2(w)
− 6σ2

Y Δw
k δ

w
k kn

−1
)

+

]

≤ n−1Ctal

[
n−1/3kΔw

k exp
(
−n1/6

100

)
+ (

∥∥fY
∥∥
L∞(x2c−1) + σ2

Y

∥∥1[−kY ,kY ]
∥∥2
L2(w)) exp

(−k

aY

)]
≤ n−1C

[
n−4kΔw

k n
11/3 exp

(
−n1/6

100

)
+ (1 ∨

∥∥fY
∥∥2
L∞(x2c−1))(1 +

∥∥1[−kY ,kY ]
∥∥2
L2(w))

1
aY

exp
(−k

aY

)]
,

which together with nb exp(−an1/c) ≤ ( cb
ae )

cb for all a, b, c ∈ R>0, and hence
n11/3 exp(−n1/6

100 ) ≤ (1100)22 shows (48) and completes the proof.

Proof of Proposition 2.3. From the decomposition (47) in Remark A.1 (with
w = vU ) we obtain

E

[
max
k∈�kn�

{(∥∥∥1[−k,k]( pMY − MY )
∥∥∥2

L2(vU )
− 12σ2

Y ΔvU

k δvU

k kn−1
)

+

}]

≤ 2E
[∥∥∥1[−kn,kn]( pM

u
Y − Mu

Y )
∥∥∥2

L2(vU )

]
+ 2E

[
max
k∈�kn�

{(∥∥∥1[−k,k]( pM
b
Y − Mb

Y )
∥∥∥2

L2(vU )
− 6σ2

Y ΔvU

k δvU

k kn−1
)

+

}]
,

where we bound the two right hand side terms separately with the help of
Lemma A.2. Therewith we obtain

E

[
max
k∈�kn�

{(∥∥∥1[−k,k]( pMY − MY )
∥∥∥2

L2(vU )
− 12σ2

Y ΔvU

k δvU

k kn−1
)

+

}]

≤ n−1C

[
E
[
Y

8(c−1)
1

]
n−2knΔvU

kn
+ n−4k2

nΔvU

kn

+ (1 ∨
∥∥fY

∥∥2
L∞(x2c−1))(1 +

∥∥1[−kY ,kY ]
∥∥2
L2(vU ))

∑
k∈�kn�

1
aY

exp
(−k

aY

)]
. (49)
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Exploiting that
∑

k∈N
exp(−k/aY ) ≤ aY and the definition of kn ∈

�
n2� we

have

E

[
max
k∈�kn�

{(∥∥∥1[−k,k]( pMY − MY )
∥∥∥2

L2(vU )
− 12σ2

Y ΔvU

k δvU

k kn−1
)

+

}]

≤ n−1C

[
(1∨E

[
Y

8(c−1)
1

]
)ΔvU

1 +(1∨
∥∥fY

∥∥2
L∞(x2c−1))(1+

∥∥1[−kY ,kY ]
∥∥2
L2(vU ))

]
,

which together with E
[
Y

8(c−1)
1

]
=
∥∥fY

∥∥
L1(x8(c−1)),

∥∥1[−kY ,kY ]
∥∥2
L2(vU ) ≤ 2kY ΔvU

kY
,

ΔvU
1 ≤ kY ΔvU

kY
and the definition of ηY shows the claim and completes the

proof.

Appendix B: Proofs of Section 3

Lemma B.1. There exists an universal numerical constant C ∈ R≥1 such that
for any k ∈ R>0 we have

E

[∥∥∥1[−k,k] pM
†
U1M

∥∥∥2

L2(v)

]
≤ 4

(
1 ∨ E[U2(c−1)

1 ]
) ∥∥∥1[−k,k] M†

U

∥∥∥2

L2(v)
,

E

[∥∥1[−k,k] MX 1MC

∥∥2
L2(v)

]
≤ 4

(
1 ∨ E[U2(c−1)

1 ]
) ∥∥∥1[−k,k] MX

(
1 ∨ |MU |2(m ∧ n)

)−1/2
∥∥∥2

L2(v)
,

E

[∥∥∥1[−k,k] MX(MU − pMU ) pM
†
U1M

∥∥∥2

L2(v)

]
≤ 4

(
1 ∨ CE[U4(c−1)

1 ]
) ∥∥∥1[−k,k] MX

(
1 ∨ |MU |2m

)−1/2
∥∥∥2

L2(v)
.

Proof of Lemma B.1. We start our proof with the observation that for each
t ∈ R we have E[ pMU (t)] = MU (t), mE

[
| pMU (t) − MU (t)|2

]
≤ E[U2(c−1)

1 ], and
m2E

[
| pMU (t) − MU (t)|4

]
≤ CE[U4(c−1)

1 ] for some universal numerical constant
C ∈ R≥1 by applying Theorem 2.10 in [27]. We use those bounds without further
reference. Below we show that for each t ∈ R we have

E

[
|MU (t) pM

†
U (t)|21M(t)

]
≤ 4

(
1 ∨ E[U2(c−1)

1 ]
)

(50)

E [1MC (t)] = P

(
(n ∧m)| pMU (t)|2 < 1

)
≤ 4

(
1 ∨ E[U2(c−1)

1 ]
)(

1 ∨ |MU (t)|2(m ∧ n)
)−1 (51)

E

[
|MU (t) − pMU (t)|2| pM

†
U (t)|21M(t)

]
≤ 4

(
1 ∨ CE[U4(c−1)

1 ])
)
(1 ∨ |MU (t)|2m)−1 (52)
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Evidently, by applying Fubini’s theorem from the last bounds follow immediatly
Lemma B.1. It remains to show (50-52). Let t ∈ R be fixed. Consider (50) first.
Exploiting | pMU (t) pM

†
U (t)|21M(t) = 1M(t) and 2| pMU (t)|2 +2|MU (t)− pMU (t)|2 ≥

|MU (t)|2 we have

E

[
|MU (t) pM

†
U (t)|21M(t)

]
≤ 2E

[
|MU (t) − pMU (t)|2| pM

†
U (t)|21M(t) + 1M(t)

]
≤ 2

(
(m ∧ n)E[|MU (t) − pMU (t)|2] + 1

)
≤ 2

(
E[U2(c−1)

1 ] + 1
)
≤ 4

(
1 ∨ E[U2(c−1)

1 ]
)

which shows (50). Secondly, (51) is trivially satisfied if 1 ≤ 4(1∨E[U2(c−1)
1 ])(1∨

|MU (t)|2(n∧m))−1. Otherwise, from (1∨|MU (t)|2(n∧m)) > 4(1∨E[U2(c−1)
1 ]) ≥

4 follows (n∧m)−1 < |MU (t)|2/4 which using Markov’s inequality implies (51),
that is

P

(
| pMU (t)|2 < (n ∧m)−1

)
≤ P

(
| pMU (t) − MU (t)| > |MU (t)|/2

)
≤ 4E

[
| pMU (t) − MU (t)|2

]
|MU (t)|−2

≤ 4E[U2(c−1)
1 ](|MU (t)|2m)−1

≤ 4(1 ∨ E[U2(c−1)
1 ])(1 ∨ |MU (t)|2(n ∧m))−1.

Finally, consider (52). Evidently, we have on the one hand

E

[
|MU (t) − pMU (t)|2| pM

†
U (t)|21M(t)

]
≤ (n ∧m)m−1E[U2(c−1)

1 ] ≤ E[U2(c−1)
1 ]

while on the other hand

E

[
|MU (t) − pMU (t)|2| pM

†
U (t)|21M(t)

]
≤ 2E

[
|MU (t) − pMU (t)|2| pM

†
U (t)|21M(t)

( |MU (t) − pMU (t)|2
|MU (t)|2 + | pMU (t)|2

|MU (t)|2
)]

≤ 2
(m ∧ n)E

[
|MU (t) − pMU (t)|4

]
|MU (t)|2 + 2

E
[
|MU (t) − pMU (t)|2

]
|MU (t)|2

≤ 2(CE[U4(c−1)
1 ] + E[U2(c−1)

1 ])(|MU (t)|2m)−1.

Combining both bounds we obtain (52), which completes the proof.

Appendix C: Proofs of Section 4

We first recall an inequality due to [28] which in this form for example is stated
by [7] in equation (5.13) in Corollary 2. We make use of it in the proof of
Proposition 4.5 below.
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Lemma C.1 (Talagrand’s inequality). Let (Zi)i∈�m� be independent and iden-
tically distributed Z-valued random variables and let {νt : t ∈ T } be countable
class of Borel-measurable functions. For t ∈ T setting

νt = m−1
∑

i∈�m�

{νt(Zi) − E (νt(Zi))}

we have

P

[
sup
t∈T

|νt| ≥ 2Ψ + κ

]
≤ 3 exp

(
−Ctalm

(κ2

τ
∧ κ

ψ

))
(53)

for some universal numerical constant Ctal ∈ R>0 and where

sup
t∈T

{
sup
z∈Z

{|νt(z)|}
}

≤ ψ, E

[
sup
t∈T

|νt|
]
≤ Ψ, sup

t∈T

{
E
[
|νt(Z1)|2

]}
≤ τ.

Proof of Lemma 4.1. Let k◦ ∈ K := �kn� be arbitrary but fixed. Introduce
pMX := pMY

pM
†
U1M and qMX := MY

pM
†
U1M = MX MU

pM
†
U1M, for each k ∈ R>0

we write shortly pM
k

X := pMX1[−k,k], qM
k

X := qMX1[−k,k] and Mk
X := MX 1[−k,k].

Consider the disjoint decomposition K = K<k◦ ∪ K≥k◦ where K<k◦ := {k ∈
K : k < k◦} and K≥k◦ := {k ∈ K : k ≥ k◦}, and similarly K = K≤k◦ ∪ K>k◦ .
Evidently, we have

1[−k̂,k̂]
pMY

pM
†
U1M − MX = pM

k̂

X − qM
k̂

X + ( qM
k̂

X − qM
k◦
X )1k̂∈K<k◦

+ ( qM
k◦
X − MX)1k̂∈K<k◦

+ ( qM
k̂

X − MX)1k̂∈K≥k◦

which in turn implies∥∥∥∥ pM
k̂

X − MX

∥∥∥∥2

L2(v)
≤ 3

∥∥∥∥ pM
k̂

X − qM
k̂

X

∥∥∥∥2

L2(v)
+ 3

∥∥∥∥ qM
k̂

X − qM
k◦
X

∥∥∥∥2

L2(v)
1k̂∈K<k◦

+ 3
( ∥∥∥ qM

k◦
X − MX

∥∥∥2

L2(v)
1k̂∈K<k◦

+
∥∥∥∥ qM

k̂

X − MX

∥∥∥∥2

L2(v)
1k̂∈K≥k◦

)
.

Combining the last bound and the elementary estimate (keep in mind that
kn := maxK)

∥∥∥ qM
k◦
X − MX

∥∥∥2

L2(v)
1k̂∈K<k◦

+
∥∥∥∥ qM

k̂

X − MX

∥∥∥∥2

L2(v)
1k̂∈K≥k◦

≤
∥∥∥ qM

kn

X − Mkn

X

∥∥∥2

L2(v)
+
∥∥∥Mk◦

X −MX

∥∥∥2

L2(v)

we have
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k̂

X − MX

∥∥∥∥2

L2(v)
≤ 3

∥∥∥∥ pM
k̂

X − qM
k̂

X

∥∥∥∥2

L2(v)
+ 3

∥∥∥∥ qM
k̂

X − qM
k◦
X

∥∥∥∥2

L2(v)
1k̂∈K<k◦

+ 3
∥∥∥ qM

kn

X − Mkn

X

∥∥∥2

L2(v)
+ 3

∥∥∥Mk◦
X −MX

∥∥∥2

L2(v)

which together with the estimate∥∥∥∥ pM
k̂

X − qM
k̂

X

∥∥∥∥2

L2(v)
=
∥∥∥∥ pM

k̂

X − qM
k̂

X

∥∥∥∥2

L2(v)
(1k̂∈K≤k◦

+ 1k̂∈K>k◦
)

≤
∥∥∥ pM

k◦
X − qM

k◦
X

∥∥∥2

L2(v)
+
∥∥∥∥ pM

k̂

X − qM
k̂

X

∥∥∥∥2

L2(v)
1k̂∈K>k◦

implies the upper bound∥∥∥∥ pM
k̂

X − MX

∥∥∥∥2

≤ 3
∥∥∥ pM

k◦
X − qM

k◦
X

∥∥∥2

L2(v)
+ 3

∥∥∥MX −Mk◦
X

∥∥∥2

L2(v)
+ 3

∥∥∥ qM
kn

X − Mkn

X

∥∥∥2

L2(v)

+ 3
∥∥∥∥ pM

k̂

X − qM
k̂

X

∥∥∥∥2

L2(v)
1k̂∈K>k◦

+ 3
∥∥∥∥ qM

k̂

X − qM
k◦
X

∥∥∥∥2

L2(v)
1k̂∈K<k◦

. (54)

We bound separately the last two terms on the right hand side in (54) next.

Consider
∥∥∥∥ qM

k̂

X − qM
k◦
X

∥∥∥∥2

L2(v)
1k̂∈K<k◦

first. Introduce the random decomposition

K<k◦ = K− ∪ Kc
− with index set

K− := {k ∈ K<k◦ :
∥∥∥ qM

k◦
X − qM

k

X

∥∥∥2

L2(v)
> 8pσ2

Y penpv
k◦} (55)

and its complement Kc
− := K<k◦ \K−. If Kc

− �= ∅ then for each k ∈ Kc
− we have∥∥∥ qM

k◦
X − qM

k

X

∥∥∥2

L2(v)
≤
∥∥∥ qM

kn

X

∥∥∥2

L2(v)
≤ 2

∥∥∥ qM
kn

X − Mkn

X

∥∥∥2

L2(v)
+ 2 ‖MX‖2

L2(v)

and also
∥∥∥ qM

k◦
X − qM

k

X

∥∥∥2

L2(v)
≤ 8pσ2

Y penpv
k◦

, which together imply

∥∥∥∥ qM
k̂

X − qM
k◦
X

∥∥∥∥2

L2(v)
1k̂∈Kc

−

≤
(
2
∥∥∥ qM

kn

X − Mkn

X

∥∥∥2

L2(v)
+ 2 ‖MX‖2

L2(v) 1�c + 8pσ2
Y penpv

k◦ 1�

)
1k̂∈Kc

−
.

If K− �= ∅ then for each k ∈ K− we have

1
2

∥∥∥ qM
k◦
X − qM

k

X

∥∥∥2

L2(v)
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≤
∥∥∥( qMX − pMX)(1[−k◦,k◦] − 1[−k,k])

∥∥∥2

L2(v)
+
∥∥∥ pM

k◦
X − pM

k

X

∥∥∥2

L2(v)

≤
∥∥∥ qM

k◦
X − pM

k◦
X

∥∥∥2

L2(v)
+
∥∥∥ pM

k◦
X

∥∥∥2

L2(v)
−
∥∥∥ pM

k

X

∥∥∥2

L2(v)

which using for the last estimate the definition (31) and (55) of k̂ and K−,
respectively, implies∥∥∥∥ qM

k̂

X − qM
k◦
X

∥∥∥∥2

L2(v)
1k̂∈K−

≤ 4
∥∥∥ qM

k◦
X − pM

k◦
X

∥∥∥2

L2(v)
1k̂∈K−

+ 4
( ∥∥∥ pM

k◦
X

∥∥∥2

L2(v)
−
∥∥∥∥ pM

k̂

X

∥∥∥∥2

L2(v)
− 2pσ2

Y penpv
k̂

)
1k̂∈K−

+ 4
(
2pσ2

Y penpv
k̂
−1

4

∥∥∥∥ qM
k◦
X − qM

k̂

X

∥∥∥∥2

L2(v)
)1k̂∈K−

≤ 4
∥∥∥ qM

k◦
X − pM

k◦
X

∥∥∥2

L2(v)
1k̂∈K−

.

Combining both cases k̂ ∈ K− and k̂ ∈ Kc
− we obtain the bound∥∥∥∥ qM

k̂

X − qM
k◦
X

∥∥∥∥2

L2(v)
1k̂∈K<k◦

≤ 1k̂∈K<k◦

(
4
∥∥∥ qM

k◦
X − pM

k◦
X

∥∥∥2

L2(v)
+ 2

∥∥∥ qM
kn

X − Mkn

X

∥∥∥2

L2(v)

+ 2 ‖MX‖2
L2(v) 1�c + 8pσ2

Y penpv
k◦ 1�

)
. (56)

Secondly, consider the term
∥∥∥∥ pM

k̂

X − qM
k̂

X

∥∥∥∥2

L2(v)
1k̂∈K>k◦

in (54). Introduce the

random decomposition K>k◦ = K+ ∪ Kc
+ with index set

K+ := {k ∈ K>k◦ :
∥∥∥ pM

k

X − qM
k

X

∥∥∥2

L2(v)
> 2pσ2

Y penpv
k◦} (57)

and its complement Kc
+ := K>k◦ \K+. If Kc

+ �= ∅ then for each k ∈ Kc
+ we have∥∥∥ pM

k

X − qM
k

X

∥∥∥2

L2(v)
≤

∥∥∥ pM
kn

X − qM
kn

X

∥∥∥2

L2(v)
and

∥∥∥ pM
k

X − qM
k

X

∥∥∥2

L2(v)
≤ 2pσ2

Y penpv
k◦

,
which together imply∥∥∥∥ pM

k̂

X − qM
k̂

X

∥∥∥∥2

L2(v)
1k̂∈Kc

+
≤
( ∥∥∥ pM

kn

X − qM
kn

X

∥∥∥2

L2(v)
1�c + 2pσ2

Y penpv
k◦ 1�

)
1k̂∈Kc

+
.

If K+ �= ∅ then for each k ∈ K+ we have
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−
∥∥∥ pM

k◦
X

∥∥∥2

L2(v)
+
∥∥∥ pM

k

X

∥∥∥2

L2(v)
− 2

∥∥∥ pM
k

X − qM
k

X

∥∥∥2

L2(v)
− 2

∥∥∥ qM
k

X − qM
k◦
X

∥∥∥2

L2(v)

=
∥∥∥ pM

k

X − pM
k◦
X

∥∥∥2

L2(v)
− 2

∥∥∥ pM
k

X − qM
k

X

∥∥∥2

L2(v)
− 2

∥∥∥ qM
k

X − qM
k◦
X

∥∥∥2

L2(v)

≤
∥∥∥ pM

k

X − pM
k◦
X

∥∥∥2

L2(v)
−
∥∥∥ pM

k

X − pM
k◦
X

∥∥∥2

L2(v)
= 0

which together with the definition (31) of k̂ implies

1k̂∈K+

(
− 2

∥∥∥∥ pM
k̂

X − qM
k̂

X

∥∥∥∥2

L2(v)
− 2pσ2

Y penpv
k◦ +2pσ2

Y penpv
k̂
−2

∥∥∥∥ qM
k̂

X − qM
k◦
X

∥∥∥∥2

L2(v)

)
≤ 1k̂∈K+

( ∥∥∥ pM
k◦
X

∥∥∥2

L2(v)
− 2pσ2

Y penpv
k◦ +2pσ2

Y penpv
k̂
−
∥∥∥∥ pM

k̂

X

∥∥∥∥2

L2(v)

)
≤ 0.

From the last elementary bound we obtain (keep the definition (57) of K+ and
A := {σ2

Y ≤ 2pσ2
Y } in mind)

∥∥∥∥ pM
k̂

X − qM
k̂

X

∥∥∥∥2

L2(v)
1k̂∈K+

1A

= 1k̂∈K+
1A

(
4
∥∥∥∥ pM

k̂

X − qM
k̂

X

∥∥∥∥2

L2(v)
− 2pσ2

Y penpv
k̂
+2

∥∥∥∥ qM
k̂

X − qM
k◦
X

∥∥∥∥2

L2(v)

)
+ 1k̂∈K+

1A

(
−
∥∥∥∥ pM

k̂

X − qM
k̂

X

∥∥∥∥2

L2(v)
+ 2pσ2

Y penpv
k◦

)
+ 1k̂∈K+

1A

(
− 2

∥∥∥∥ pM
k̂

X − qM
k̂

X

∥∥∥∥2

L2(v)
+ 2pσ2

Y penpv
k̂

− 2pσ2
Y penpv

k◦ −2
∥∥∥∥ qM

k̂

X − qM
k◦
X

∥∥∥∥2

L2(v)

)
≤ 1k̂∈K+

1A

(
4
∥∥∥∥ pM

k̂

X − qM
k̂

X

∥∥∥∥2

L2(v)
− 2pσ2

Y penpv
k̂
+2

∥∥∥∥ qM
k̂

X − qM
k◦
X

∥∥∥∥2

L2(v)

)
≤ 1k̂∈K+

1A

(
4
∥∥∥∥ pM

k̂

X − qM
k̂

X

∥∥∥∥2

L2(v)
− σ2

Y penpv
k̂
+2

∥∥∥∥ qM
k̂

X − qM
k◦
X

∥∥∥∥2

L2(v)

)
≤ 1k̂∈K+

(
4 max
k∈K+

{( ∥∥∥ pM
k

X − qM
k

X

∥∥∥2

L2(v)
− σ2

Y

4 penpv
k

)
+

}
+ 2

∥∥∥ qM
kn

X − qM
k◦
X

∥∥∥2

L2(v)

)
.

which together with the elementary bounds

∥∥∥ qM
kn

X − qM
k◦
X

∥∥∥2

L2(v)
≤ 2

∥∥∥ qM
kn

X − Mkn

X

∥∥∥2

L2(v)
+ 2

∥∥∥Mk◦
X −MX

∥∥∥2

L2(v)
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and
∥∥∥∥ pM

k̂

X − qM
k̂

X

∥∥∥∥2

L2(v)
1k̂∈K+

1Ac ≤
∥∥∥ pM

kn

X − qM
kn

X

∥∥∥2

L2(v)
1k̂∈K+

1Ac implies

∥∥∥∥ pM
k̂

X − qM
k̂

X

∥∥∥∥2

L2(v)
1k̂∈K+

≤ 1k̂∈K+

(∥∥∥ pM
kn

X − qM
kn

X

∥∥∥2

L2(v)
1Ac

+ 4 max
k∈K+

{(∥∥∥ pM
k

X − qM
k

X

∥∥∥2

L2(v)
− σ2

Y

4 penpv
k

)
+

}
+ 4

∥∥∥ qM
kn

X − Mkn

X

∥∥∥2

L2(v)
+ 4

∥∥∥Mk◦
X −MX

∥∥∥2

L2(v)

)
.

Combining both cases k̂ ∈ K+ and k̂ ∈ Kc
+ we obtain the bound∥∥∥∥ pM

k̂

X − qM
k̂

X

∥∥∥∥2

L2(v)
1k̂∈K>k◦

≤ 1k̂∈Kc
+

( ∥∥∥ pM
kn

X − qM
kn

X

∥∥∥2

L2(v)
1�c + 2pσ2

Y penpv
k◦ 1�

)
+ 1k̂∈K+

(∥∥∥ pM
kn

X − qM
kn

X

∥∥∥2

L2(v)
1Ac + 4 max

k∈K+

{( ∥∥∥ pM
k

X − qM
k

X

∥∥∥2

L2(v)
− σ2

Y

4 penpv
k

)
+

}
+ 4

∥∥∥ qM
kn

X − Mkn

X

∥∥∥2

L2(v)
+ 4

∥∥∥Mk◦
X −MX

∥∥∥2

L2(v)

)
≤ 1k̂∈K>k◦

(∥∥∥ pM
kn

X − qM
kn

X

∥∥∥2

L2(v)
(1�c + 1Ac) + 2pσ2

Y penpv
k◦ 1�

+ 4 max
k∈K+

{( ∥∥∥ pM
k

X − qM
k

X

∥∥∥2

L2(v)
− σ2

Y

4 penpv
k

)
+

}
+ 4

∥∥∥ qM
kn

X − Mkn

X

∥∥∥2

L2(v)
+ 4

∥∥∥Mk◦
X −MX

∥∥∥2

L2(v)

)
. (58)

Making use of (56) and (58) we obtain∥∥∥∥ qM
k̂

X − qM
k◦
X

∥∥∥∥2

L2(v)
1k̂∈K−

+
∥∥∥∥ pM

k̂

X − qM
k̂

X

∥∥∥∥2

L2(v)
1k̂∈K>k◦

≤ 1k̂∈K<k◦

(
4
∥∥∥ qM

k◦
X − pM

k◦
X

∥∥∥2

L2(v)

+ 2
∥∥∥ qM

kn

X − Mkn

X

∥∥∥2

L2(v)
+ 2 ‖MX‖2

L2(v) 1�c + 8pσ2
Y penpv

k◦ 1�

)
+ 1k̂∈K>k◦

(∥∥∥ pM
kn

X − qM
kn

X

∥∥∥2

L2(v)
(1�c + 1Ac) + 2pσ2

Y penpv
k◦ 1�

+ 4 max
k∈K+

{( ∥∥∥ pM
k

X − qM
k

X

∥∥∥2

L2(v)
− σ2

Y

4 penpv
k

)
+

}
+ 4

∥∥∥ qM
kn

X − Mkn

X

∥∥∥2

L2(v)
+ 4

∥∥∥Mk◦
X −MX

∥∥∥2

L2(v)

)
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≤ 4
∥∥∥Mk◦

X −MX

∥∥∥2

L2(v)
+ 4

∥∥∥ qM
k◦
X − pM

k◦
X

∥∥∥2

L2(v)
+ 8pσ2

Y penpv
k◦ 1�

+ 4
∥∥∥ qM

kn

X − Mkn

X

∥∥∥2

L2(v)
+ 4 max

k∈K+

{( ∥∥∥ pM
k

X − qM
k

X

∥∥∥2

L2(v)
− σ2

Y

4 penpv
k

)
+

}
+
∥∥∥ pM

kn

X − qM
kn

X

∥∥∥2

L2(v)
(1�c + 1Ac) + 2 ‖MX‖2

L2(v) 1�c

which together with (54) implies the claim∥∥∥∥ pM
k̂

X − MX

∥∥∥∥2

L2(v)

≤ 3
∥∥∥ pM

k◦
X − qM

k◦
X

∥∥∥2

L2(v)
+ 3

∥∥∥MX −Mk◦
X

∥∥∥2

L2(v)
+ 3

∥∥∥ qM
kn

X − Mkn

X

∥∥∥2

L2(v)

+ 3
∥∥∥∥ pM

k̂

X − qM
k̂

X

∥∥∥∥2

L2(v)
1k̂∈K>k◦

+ 3
∥∥∥∥ qM

k̂

X − qM
k◦
X

∥∥∥∥2

L2(v)
1k̂∈K<k◦

≤ 15
∥∥∥ pM

k◦
X − qM

k◦
X

∥∥∥2

L2(v)
+ 15

∥∥∥MX −Mk◦
X

∥∥∥2

L2(v)
+ 24pσ2

Y penpv
k◦ 1�

+ 15
∥∥∥ qM

kn

X − Mkn

X

∥∥∥2

L2(v)
+ 12 max

k∈K+

{( ∥∥∥ pM
k

X − qM
k

X

∥∥∥2

L2(v)
− σ2

Y

4 penpv
k

)
+

}
+ 3

∥∥∥ pM
kn

X − qM
kn

X

∥∥∥2

L2(v)
(1�c + 1Ac) + 6 ‖MX‖2

L2(v) 1�c

and completes the proof.

Proof of Proposition 4.2. Since pv := | pM
†
U1M|2v depends on the sample {Uj}j∈�m�

only, we apply the law of total expectation leading to

E

[
max
k∈�kn�

{(∥∥∥1[−k,k]( pMY − MY )
∥∥∥2

L2(pv)
− σ2

Y

penpv
k

4

)
+

}]

= E

[
E

[
max
k∈�kn�

{(∥∥∥1[−k,k]( pMY − MY )
∥∥∥2

L2(pv)
− σ2

Y

penpv
k

4

)
+

}∣∣∣∣{Uj}j∈�m�

]]
.

Evidently, conditioning on {Uj}j∈�m� the density function pv is deterministic,
thus similar to the proof of (49) making again use of the decomposition (47) in
Remark A.1 (with w = pv) and applying Lemma A.2 we obtain

E

[
max
k∈�kn�

{(∥∥∥1[−k,k]( pMY − MY )
∥∥∥2

L2(pv)
− 12σ2

Y Δpv
kδ

h
kkn

−1
)

+

}∣∣∣∣{Uj}j∈�m�

]

≤ n−1C

[
E
[
Y

8(c−1)
1

]
n−2knΔpv

kn
+ n−4k2

nΔpv
kn

+ (1 ∨
∥∥fY

∥∥2
L∞(x2c−1))(1 +

∥∥1[−kY ,kY ]
∥∥2
L2(pv))

∑
k∈�kn�

1
aY

exp
(−k

aY

)]
.
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Observing that Δpv
k ≤ (m∧n)Δv

k and exploiting
∑

k∈N
exp(−k/aY ) ≤ aY as well

as the definition (34) of kn ∈ �n�, we have

E

[
max
k∈�kn�

{(∥∥∥1[−k,k]( pMY − MY )
∥∥∥2

L2(pv)
− 12σ2

Y Δpv
kδ

pv
kkn

−1
)

+

}∣∣∣∣{Uj}j∈�m�

]

≤ n−1C

[
(1 ∨ E

[
Y

8(c−1)
1

]
)Δv

1 + (1 ∨
∥∥fY

∥∥2
L∞(x2c−1))(1 +

∥∥1[−kY ,kY ]
∥∥2
L2(pv))

)]
.

The last upper bound does not depend on the additional measurements {Uj}j∈�m�

up to the last norm, namely
∥∥1[−kY ,kY ]

∥∥2
L2(pv) =

∥∥∥1[−kY ,kY ] pM
†
U1M

∥∥∥2

L2(v)
. Its ex-

pectation under the distribution of {Uj}j∈�m� is bounded in Lemma B.1 as
follows

E

[∥∥1[−kY ,kY ]
∥∥2
L2(pv)

]
≤ 4

(
1 ∨ E[U2(c−1)

1 ]
)∥∥1[−kY ,kY ]

∥∥2
L2(v) .

Computing the total expectation together with
∥∥1[−kY ,kY ]

∥∥2
L2(v) ≤ 2kY Δv

kY
,

Δv
1 ≤ kY Δv

kY
and the definition of ηY and ηU leads to the claim.

Proof of Lemma 4.3. We start the proof with taking the expectation on both
sides of the upper bound given in Lemma 4.1 and making use of the concentra-
tion inequality in Proposition 4.2, which for each k◦ ∈ �kn� leads to (similar to
the proof of Lemma 3.2)

E

[∥∥∥∥ pM
k̂

X − MX

∥∥∥∥2

L2(v)

]

≤ 15 1
n
E

[∥∥∥1[−k◦,k◦]VY
pM

†
U1M

∥∥∥2

L2(v)

]
+ 15

∥∥1[−k◦,k◦]C MX

∥∥2
L2(v)

+ 24E
[
pσ2
Y penpv

k◦ 1�k◦

]
+ 15E

[∥∥∥1MC Mkn

X

∥∥∥2

L2(v)

]
+ 15E

[∥∥∥ pM
†
U1M(MU − pMU )Mkn

X

∥∥∥2

L2(v)

]
+ C · ηY (1 ∨ η2

UkY Δv
kY

) · n−1

+ 3E
[∥∥∥1[−kn,kn]( pMY − MY ) pM

†
U1M

∥∥∥2

L2(v)
(1�C

k◦
+ 1AC )

]
+ 6 ‖MX‖2

L2(v) P(�C
k◦).

The first, fourth and fifth term in the last upper bound we estimate with the help
of Lemma B.1 (line by line as in Subsection 3.3 and using

∥∥∥M†
U 1[−k◦,k◦]

∥∥∥2

L2(v)
≤

ΔvU

k◦
δvU

k◦
k◦ as well as the definition of ηU ), which implies

E

[∥∥∥∥ pM
k̂

X − MX

∥∥∥∥2

L2(v)

]
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≤ Cη4
U · E[X2(c−1)

1 ] · ΔvU

k◦
δvU

k◦
k◦n

−1 + 15
∥∥1[−k◦,k◦]C MX

∥∥2
L2(v)

+ 24E
[
pσ2
Y penpv

k◦ 1�k◦

]
+ Cη4

U

∥∥∥MX

(
1 ∨ |MU |2m

)−1/2
∥∥∥2

L2(v)

+ C · ηY (1 ∨ η2
UkY Δv

kY
) · n−1

+ 3E
[∥∥∥1[−kn,kn]( pMY − MY ) pM

†
U1M

∥∥∥2

L2(v)
(1�C

k◦
+ 1AC )

]
+ 6 ‖MX‖2

L2(v) P(�C
k◦).

Since Δpv
k◦
1�k◦ ≤ (9/4)ΔvU

k◦
it follows δpv

k◦
1�k◦ ≤ δvU

k◦
(log(9/4)/ log(3) + 1) and

hence penpv
k◦

1�k◦ ≤ CΔvU

k◦
δvU

k◦
k◦n

−1, which together with E[pσ2
Y ] = σ2

Y implies

E

[∥∥∥∥ pM
k̂

X − MX

∥∥∥∥2

L2(v)

]
≤ 15

∥∥1[−k◦,k◦]C MX

∥∥2
L2(v) + C(η4

U · E[X2(c−1)
1 ] + σ2

Y ) · ΔvU

k◦
δvU

k◦
k◦n

−1

+ Cη4
U

∥∥∥MX

(
1 ∨ |MU |2m

)−1/2
∥∥∥2

L2(v)
+ C · ηY (1 ∨ η2

UkY Δv
kY

) · n−1

+ 3E
[∥∥∥1[−kn,kn]( pMY − MY ) pM

†
U1M

∥∥∥2

L2(v)
(1�C

k◦
+ 1AC )

]
+ 6 ‖MX‖2

L2(v) P(�C
k◦). (59)

Since
∥∥∥ pM

†
U1M

∥∥∥2

L∞
≤ m and

∥∥1[−kn,kn]
∥∥2
L2(v) ≤ 2knΔv

kn
≤ 2nΔv

1 due to the
definition (34) of kn we obtain

E

[∥∥∥1[−kn,kn]( pMY − MY ) pM
†
U1M

∥∥∥2

L2(v)
1�C

k◦

]
≤ E

[∥∥∥1[−kn,kn]( pMY − MY )
∥∥∥2

L2(v)

]
mP(�C

k◦)

≤ σ2
Y n

−1 ∥∥1[−kn,kn]
∥∥2
L2(v) mP(�C

k◦) ≤ 2σ2
Y Δv

1mP(�C
k◦).

Moreover, for each t ∈ R we have

E

[
| pMY (t) − MY (t)|21AC

]
≤ Cn−1(E(Y 4(c−1)

1 )1/2(P(AC)1/2

≤ Cn−1η
1/2
Y (P(AC)1/2

and hence by exploiting
∥∥∥ pM

†
U1M

∥∥∥2

L∞
≤ n and

∥∥1[−kn,kn]
∥∥2
L2(v) ≤ 2nΔv

1 we
obtain

E

[∥∥∥1[−kn,kn]( pMY − MY ) pM
†
U1M

∥∥∥2

L2(v)
1AC

]
≤ Cη

1/2
Y Δv

1n(P(AC)1/2.
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Since AC ⊆ {|σ̂Y − σY | > σY /2} and σY ≥ 1 by Markov’s inequality we have
P(AC) ≤ CE[Y 16(c−1)

1 ]n−4 ≤ CηY n
−4. Combining the last bounds we conclude

E

[∥∥∥1[−kn,kn]( pMY − MY ) pM
†
U1M

∥∥∥2

L2(v)
(1�C

k◦
+ 1AC )

]
≤ 2σ2

Y Δv
1mP(�C

k◦) + CηY Δv
1n

−1

which together with (59) and the definition of ηX implies

E

[∥∥∥∥ pM
k̂

X − MX

∥∥∥∥2

L2(v)

]
≤ 15 ·

∥∥1[−k◦,k◦]C MX

∥∥2
L2(v) + C · (η4

UηX + σ2
Y ) · ΔvU

k◦
δvU

k◦
k◦n

−1

+ C · η4
U

∥∥∥MX

(
1 ∨ |MU |2m

)−1/2
∥∥∥2

L2(v)
+ C · ηY (1 ∨ η2

UkY Δv
kY

) · n−1

+ 6(σ2
Y Δv

1 + ηX)mP(�C
k◦).

Since the last bound is valid for all k◦ ∈ �kn� we immediately obtain the
claim (37), which completes the proof.

Proof of Proposition 4.4. The proof follows along the lines of the proof of The-
orem 4.1 in [26]. In order to show the claim, we need some definitions and
notations. For two functions l, u : R → R with l ≤ u introduce the bracket

[l, u] := {f : R → R : l ≤ f ≤ u}.

For a set of functions G and ε ∈ R>0 we denote by N[·](ε,G ) the minimum
number of brackets [li, ui], satisfying E[(ui(Z1)− li(Z1))2] ≤ ε2, that are needed
to cover G . The associated bracking entropy integral is defined as

J[·](δ,G ) :=
∫

(0,δ)

√
log N[·](ε,G )dλ(ε), ∀δ ∈ R>0.

Further, a function f̄ is called an envelope of G , if |f | ≤ f̄ for all f ∈ G .
Analogously as presented in [26], we aim to apply Lemma 19.34 and Corollary
19.35 from [29]. Hence, we start by decomposing cm into its real and imaginary
part, namely

Re(cm(t)) = 1√
m

∑
j∈�m�

{
Zβ
j cos(log(2πtZj)) − E

[
Zβ
j cos(2πt log(Zj))

]}
and

Im(cm(t)) = 1√
m

∑
j∈�m�

{
Zβ
j sin(log(2πtZj)) − E

[
Zβ
j sin(2πt log(Zj))

]}
,
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such that cm(t) = Re(cm(t)) + ι · Im(cm(t)) for all t ∈ R. Therefore, define the
following class of functions

Gβ :=
{
R>0 � z �→ w̄(t)zβ cos(2πt log(z)) ∈ R : t ∈ R

}
∪
{
R>0 � z �→ w̄(t)zβ sin(2πt log(z)) ∈ R : t ∈ R

}
,

whose envelope is given by f(z) := zβ . Now applying Lemma 19.34 of [29] and
following the argumentation of the proof of Corollary 19.35 within, we conclude

E

[
‖cm‖

L∞(w̄)

]
≤ C

(√
E[Z2β

1 ] + J[·](
√

E[Z2β
1 ],Gβ)

)
≤ C

(
η + J[·](η,Gβ)

)
.

As η ∈ R>0, it suffices to show that the entropy integral is finite. Hence, inspired
by [33], we set

Bε := inf
{
b ∈ R>0 : E[Z2β

1 1{| log(Z1)|>b}] ≤ ε2
}

≤
(
E[Z2β

1 | log(Z1)|γ ]
ε2

) 1
γ

≤
( η

ε2

) 1
γ (60)

due to the generalised Markov inequality. Furthermore, for grid points tj ∈ R

specified below, we define

g±j (z) :=
(
w̄(tj)zβ cos(2πtj log(z)) ± εzβ

)
1[0,Bε](| log(z)|)

± ‖w̄‖∞ zβ1(Bε,∞)(| log(z)|),

as well as

h±
j (z) :=

(
w̄(tj)zβ sin(2πtj log(z)) ± εzβ

)
1[0,Bε](| log(z)|)

± ‖w̄‖∞ zβ1(Bε,∞)(| log(z)|).

We obtain

E

[(
g+
j (Z1) − g−j (Z1)

)2]
≤ 4ε2E

[
Z2β

1 1[0,Bε](| log(Z1)|)
]

+ 4 ‖w̄‖2
∞ E

[
Z2β

1 1{| log(Z1)|>Bε}

]
≤ 4ε2

(
E[Z2β

1 ] + ‖w̄‖2
∞

)
.

and analogously

E

[(
h+
j (Z1) − h−

j (Z1)
)2] ≤ 4ε2

(
E[Z2β

1 ] + ‖w̄‖2
∞

)
It remains to choose the grid points tj in such a way that the brackets cover
the set Gβ . Let t ∈ R be arbitrarily chosen and take some arbitrary grid point
tj . Then with the Lipschitz constant Lw̄ of the density function w̄, we have for
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z ∈ R>0 evidently |w̄(t)zβ cos(2πt log(z))−w̄(tj)zβ cos(2πtj log(z))| ≤ zβ(w̄(t)+
w̄(tj)) and

|w̄(t)zβ cos(2πt log(z)) − w̄(tj)zβ cos(2πtj log(z))|
≤ |w̄(t) − w̄(tj)| · zβ · | cos(2πt log(z))|

+ |w̄(tj)| · zβ · | cos(2πtj log(z)) − cos(2πt log(z))|
≤ Lw̄|t− tj | · zβ + 2π ‖w̄‖∞ · zβ · |t− tj | ·Bε.

Hence, the function R>0 � z �→ w̄(t)zβ cos(2πt log(z)) is contained in the bracket
[g−j , g

+
j ], if

min {|tj − t|(Lw̄ + 2π ‖w̄‖∞ Bε), w̄(t) + w̄(tj)} ≤ ε. (61)

Thus, for integer j ∈ [−Jε, Jε] we are choosing the grid points in the following
way:

tj = jε

(Lw̄ + 2π ‖w̄‖∞ Bε)
where Jε is the smallest integer such that tJε is greater than or equal to

Tε := inf
{
t ∈ R>0 : sup

v:|v|≥t

w̄(v) ≤ ε/2
}

satisfying log(Tε) = O(ε−κ) with κ := 1/(ρ+ 1/2). Evidently, there are at most
2Jε + 1 of those grid points and, hence N[·](ε,G ) ≤ 2(2J(ε) + 1). Keeping the
bound (60) in mind we also have log(Bε/ε) = O(log(ε−1−2/γ)) and thus from
the inequality

Jε ≤ Tε(Lw̄ + 2π ‖w̄‖∞ Bε)ε−1 + 1

we obtain log N[·](ε,G ) = O(log(J(ε))) = O(ε−κ + log(ε−1−2/γ)) = O(ε−κ).
Since κ < 2 we conclude∫

(0,δ)

√
log N[·](ε,Gβ)dλ(ε) < ∞, ∀δ ∈ R>0

which completes the proof.

Proof of Proposition 4.5. For m ∈ �m◦� we trivially have P(�C
km

) ≤ m2
◦m

−2.
Therefore, let m ∈ N≥m◦ . We decompose pMU = pMZ + pM

ub
U into a bounded part

pMZ and an unbounded part pM
ub
U (similar to Remark A.1). Precisely, for b ∈ R≥1

(to be specified below) introduce the random variables

Zj := Uj1(0,b](U c−1
j ) + 1(b,∞)(U c−1

j ), ∀j ∈ �m�
and form accordingly for each t ∈ R the empirical Mellin transform

pMZ(t) := 1
m

∑
j∈�m�

Zc−1+ι2πt
j
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= 1
m

∑
j∈�m�

{U c−1
j exp(ι2πt log(Uj))1(0,b](U c−1

j ) + 1(b,∞)(U c−1
j )}.

Evidently, the unbounded part pM
ub
U := pMU − pMZ satisfies

pM
ub
U (t) = 1

m

∑
j∈�m�

(U c−1+ι2πt
j − 1)1(b,∞)(U c−1

j ), ∀t ∈ R.

Exploiting the decomposition we obtain the elementary bound

P(�C
km

) ≤ P

(
∃t ∈ [−km, km] : | pMZ(t) − E[ pMZ(t)]| > 1

6 |MU (t)|
)

+ P

(
∃t ∈ [−km, km] : | pM

ub
U (t) − E[ pM

ub
U (t)]| > 1

6 |MU (t)|
)

(62)

where we estimate separately the two terms of the bound starting with the
first one. Evidently, multiplying with the density function w̄ given in (39) and
making use of the definition of km given in (41) we have

P

(
∃t ∈ [−km, km] : | pMZ(t) − E[ pMZ(t)]| > 1

6 |MU (t)|
)

≤ P

(
∃t ∈ [−km, km] : w̄(t)| pMZ(t) − E[ pMZ(t)]| > 1

6 inf
s∈[−km,km]

w̄(s)|MU (s)|
)

≤ P

(
∃t ∈ [−km, km] : w̄(t)| pMZ(t) − E[ pMZ(t)]| > τmm−1/2

)
.

By continuity of t �→ w̄(t)( pMZ(t) − E[ pMZ(t)]) we obtain

P

(
∃t ∈ [−km, km] : w̄(t)| pMZ(t) − E[ pMZ(t)]| > τmm−1/2

)
≤ P

(
sup
t∈Tm

|νt| > τmm−1/2
)

setting Tm := [−km, km] ∩ Q and νt = m−1 ∑
i∈�m� {νt(Zi) − E (νt(Zi))} with

νt(z) := zc−1+ι2πtw̄(t) for z ∈ R. Observe that each Zi takes values in Z :=
{z ∈ R>0 : zc−1 ∈ (0, b]} only. Since Tm ⊂ R is countable we eventually apply
Talagrand’s inequality given in Lemma C.1 where we need to determine the
three quantities ψ, Ψ and τ . Consider ψ first. Evidently, since ‖w̄‖∞ = 1 we
have

sup
t∈R

{
sup
z∈Z

|νt(z)|
}

≤ b ‖w̄‖∞ = b =: ψ.

Consider next τ . Making use of

E[Z2(c−1)
1 ] = E[U2(c−1)

1 1(0,b](U c−1
1 ) + 1(b,∞)(U c−1

1 )] ≤ E[U2(c−1)
1 ] ≤ η2

U
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(keep in mind that b ∈ R≥1 and ‖w̄‖2
∞ = 1) for each t ∈ R we have

E
[
|νt(Z1)|2] ≤ ‖w̄‖2

∞ E
[
Z

2(c−1)
1

]
≤ η2

U =: τ.

Finally, consider Ψ. Recalling the normalised Mellin function process cm defined
in (38) (with β = c − 1) for all t ∈ R we have m−1/2w̄(t)cm(t) = νt. Since
(E[Z2(c−1)

1 ])1/2 ≤ (E[U2(c−1)
1 ])1/2 ≤ ηU and

E[Z2(c−1)
1 | log(Z1)|γ ] = E[U2(c−1)

1 | log(U1)|γ ]1(0,b](U c−1
j )]

≤ E[U2(c−1)
1 | log(U1)|γ ] ≤ ηU

from Proposition 4.4 it follows

E

[
sup
t∈Tm

|νt|
]

= m−1/2E

[
sup
t∈Tm

w̄(t)|cm(t)|
]

≤ m−1/2E
[
‖cm‖

L∞(w̄)

]
≤ m−1/2C(ηU , ρ) =: Ψ.

Due to Lemma C.1 with κm := (τm − 2C(ηU , ρ))m−1/2 ∈ R>0 we obtain

P

(
∃t ∈ [−km, km] : | pMZ(t) − E[ pMZ(t)]| > 1

6 |MU (t)|
)

≤ P

(
sup
t∈Tm

|νt| > τmm−1/2
)

= P

(
sup
t∈Tm

|νt| > m−1/22C(ηU , ρ) + κm

)
≤ 3 exp

(
−Ctal

( (τm − 2C(ηU , ρ))2

η2
U

∧ m1/2(τm − 2C(ηU , ρ))
b

))
.

Setting b = 2m1/2η2
U/(τm−2C(ηU , ρ)) = m1/2(logm)−1/2ηUC

1/2
tal ∈ R≥1 (keep (40)

in mind) it follows

P

(
∃t ∈ [−km, km] : | pMZ(t) − E[ pMZ(t)]| > 1

6 |MU (t)|
)

≤ 3 exp
(
−Ctal

(τm − 2C(ηU , ρ))2

2η2
U

)
= 3m−2. (63)

Consider the second term on the right hand side of (62). For each t ∈ R (keep
b ∈ R≥1 in mind) we have

| pM
ub
U (t)]| ≤ 1

m

∑
j∈�m�

|U c−1+ι2πt
j − 1|1(b,∞)(U c−1

j )

≤ 1
m

∑
j∈�m�

(U c−1
j + 1)1(b,∞)(U c−1

j ) ≤ 2
m

∑
j∈�m�

U c−1
j 1(b,∞)(U c−1

j )
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and hence |E[ pM
ub
U (t)]| ≤ 2b−1E[U2(c−1)

1 ] ≤ 2b−1η2
U = m−1/2(τm − 2C(ηU , ρ)).

Multiplying the density function w̄ : R → (0, 1] given in (39) and making use of
the definition (41) of km it follows (with C(ηU , ρ) ∈ R≥1)

P

(
∃t ∈ [−km, km] : | pM

ub
U (t) − E[ pM

ub
U (t)]| > 1

6 |MU (t)|
)

≤ P

(
∃t ∈ [−km, km] : | pM

ub
U (t)| > 1

6w̄(t)|MU (t)| − |E[ pM
ub
U (t)]|

)

≤ P

(
2
m

∑
j∈�m�

U c−1
j 1(b,∞)(U c−1

j ) > 1
6 inf

v∈[−km,km]
w̄(v)|MU (v)|

−m−1/2(τm − 2C(ηU , ρ))
)

≤ P

⎛⎝ ∑
j∈�m�

U c−1
j 1(b,∞)(U c−1

j ) > C(ηU , ρ)m1/2

⎞⎠
≤ m1/2E

[
U c−1

1 1(b,∞)(U c−1
1 )

]
≤ m1/2b−6E[U7(c−1)

1 ]
≤ C

−3
talηUm

−1/2(logm)3m−2 ≤ (6/e)3C−3
talηUm

−2 ≤ 11C−3
talηUm

−2.

Combining the last upper bound, the upper bound (63) and the decomposi-
tion (62) we obtain the claim which completes the proof.
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