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Abstract: In the standard difference-in-differences research design, the
parallel trend assumption can be violated when the effect of some unmea-
sured confounders on the outcome trend is different between the treated
and untreated populations. Progress can be made if there is an exogenous
variable that (i) does not directly influence the change in outcome (i.e.
the outcome trend) except through influencing the change in exposure (i.e.
the exposure trend), and (ii) is not related to the unmeasured exposure -
outcome confounders on the trend scale. Such exogenous variable is called
an instrument for difference-in-differences. For continuous outcomes that
lend themselves to linear modelling, so-called instrumented difference-in-
differences methods have been proposed. In this paper, we will suggest
novel multiplicative structural mean models for instrumented difference-in-
differences, which allow one to identify and estimate the average treatment
effect that is stable over time on the multiplicative scale, in the whole pop-
ulation or among the treated, when (i) a valid instrument for difference-
in-differences is available and (ii) there is no carry-over effect across peri-
ods. We discuss the identifiability of these models, then develop efficient
semi-parametric estimation approaches that allow the use of flexible, data-
adaptive or machine learning methods to estimate the nuisance parame-
ters. We apply our proposal on health care data to investigate the risk of
moderate to severe weight gain under sulfonylurea treatment compared to
metformin treatment, among new users of antihyperglycemic drugs.

Keywords and phrases: Difference-in-differences, instrumental variable,
semi-parametric theory.
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1. Introduction

The estimation of treatment effects in observational studies is often subject to
bias due to unmeasured confounding. For instance, observational pharmacoepi-
demiological studies often utilize data from large administrative claim databases
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or electronic health records, which were not collected for research and may have
incomplete/inaccurate information on potential confounding variables [39]. In
view of this concern, various analytical methods have been proposed to detect
or control for unmeasured confounding [28]. Among these approaches, instru-
mental variable and difference-in-differences designs are very commonly used
[2, 9, 37]. Instrumental variable methods make use of an exogeneous variable that
is associated with the exposure, but that does not directly affect the outcome
and is independent of unmeasured confounders [2]. The difference-in-differences
method is instead based on a comparison of the trends in outcome for two ex-
posure groups, where one group consists of individuals who switch from being
unexposed to exposed and the other group consists of individuals who are never
exposed. Assuming that the outcomes in the two exposure groups evolve in the
same way over time in the absence of the exposure (i.e., the parallel trends as-
sumption), the difference-in-differences method is able to remove time-invariant
bias caused by unmeasured confounders [37].

To further relax assumptions, the instrumented difference-in-differences de-
sign has recently been proposed, which combines the strength of instrumental
variables and difference-in-differences [38]. This method allows one to identify
the treatment effects under a weaker set of assumptions than each parent method
alone. As an example, in the standard difference-in-differences design, the par-
allel trends assumption could be violated when the effect of some unmeasured
baseline confounders on the outcome trend in the treated population is different
from that in the untreated population, even when these unmeasured confounders
do not modify the treatment effect. The instrumented difference-in-differences
method overcomes these challenges by (i) allowing for patients to be treated at
both timepoints, and (ii) leveraging an exogenous variable that does not have
any direct causal impact on the outcome trend except via the exposure trend,
and is not associated with the unmeasured confounders on the trend scale [38].
Importantly, this so-called instrument for difference-in-differences need not itself
be a valid instrumental variable for the considered exposure-outcome associa-
tion. For instance, it can have a direct causal effect on the outcome that is not
mediated through the exposure at each time point.

Thus far, instrumented difference-in-differences has been developed for set-
tings where the exposure and outcome trends are defined on the additive scale
[38]. In many clinical applications with count or binary outcomes, the effect
and trends on the multiplicative scale might be of more interest to applied
researchers. Akin to standard instrumental variables, identifying multiplcative
exposure effects by instrumented difference-in-differences requires non-trivial
adjustments of the underlying causal assumptions. Moreover, the obtained iden-
tification results in these non-linear settings often involve multiple nuisance pa-
rameters that are difficult to estimate. In view of this, extending instrumented
difference-in-differences to non-linear settings, and developing flexible estima-
tion strategies that allow for the use of data-driven algorithms can greatly en-
hance the practical applicability of this method.

In this paper, we aim to improve the utility of instrumented difference-in-
differences by proposing structural mean models for this design. Structural mean
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models were first introduced by Robins [22] and Robins and Tsiatis [23], and
then were extended to instrumental variable and other settings by Vansteelandt
and Goetghebeur [33], Hernán and Robins [11], Tchetgen Tchetgen, Robins and
Rotnitzky [26], among many others. Our contributions to this literature can be
summarized as follows:

First, we propose a set of causal assumptions to identify the average expo-
sure effect among the exposed, defined on the additive scale. We achieve this
via considering additive structural mean models for instrumented difference-in-
differences. The advantage of these models lies in their ability to offer flexibility
in modeling non-linear relationships. Moreover, focusing on the group of ex-
posed individuals also allows one to avoid the assumption of no unmeasured
effect modification (and extensions thereof), which is needed in previous works
to identify the exposure effect in the whole population [38].

Second, we extend instrumented difference-in-differences to settings with a
count outcome or a rare binary outcome. We achieve this by proposing multi-
plicative structural mean models for instrumented difference-in-differences. As
in the additive case, under certain causal assumptions, the proposed multiplica-
tive structural mean models allow one to identify and estimate the average
treatment effect on the multiplicative scale, in the whole population or among
the exposed, when a valid instrument for difference-in-differences is available.

Third, we develop robust and efficient estimation strategies for the parame-
ters indexing the multiplicative structural mean models, using semi-parametric
theory. Proposed estimators can achieve

√
n rate of convergence to the parame-

ters of interest, even when the nuisance functions are estimated at slower rates.
This allows for the utilization of flexible, data-adaptive, or machine learning
methods. We consider two different settings. In the first setting, the impact of
the baseline covariate on the outcome in the structural mean models is charac-
terized by some finite-dimensional parameter vector. In the second setting, it is
left unspecified.

2. Additive structural mean models for instrumented difference-in-
differences

Assume that a random sample of a target population is followed up over two time
points, i.e. t = 0 and t = 1. For each individual i in the sample, we observe Oi =
(Zi, Xi, D0i, Y0i, D1i, Y1i); where Dti and Yti are the respective exposure and
outcome status observed at each time point t (t = 0, 1), Xi is a vector of base-
line covariates and Zi = 0, 1 is a binary instrument for difference-in-differences
observed at baseline. The observations (O1, . . . , On) are independent and iden-
tically distributed realizations of O = (Z,X,D0, Y0, D1, Y1). Note that we allow
the presence of exposed patients in the first time point (i.e. P (D0 = 1) > 0),
which is not permitted in standard difference-in-differences design. In Figure 1a,
we describe the relationship between different variables by a causal diagram.

Denote Y d
t the counterfactual outcome that would be observed at time point

t if the exposure Dt were set to d (d = 0, 1). Throughout the rest of the pa-
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per, we will suppose that the following consistency and sequential ignorability
assumption holds:

Assumption 1. Y d
t = Yt when Dt = d, for all t, d = 0, 1.

Assumption 2. There exists (U0, U1) possibly unmeasured such that (i) Y d
0 ⊥⊥

D0 | U0, X, Z and Y d
1 ⊥⊥ D1 | U0, U1, Z,X, Y0, D0 for d = 0, 1.

It is worth noting that the setups of instrumented difference-in-differerences
and of standard difference-in-differences are not the same. In the latter, no in-
dividuals are exposed at the first time point and some become exposed at the
second time point (due to the introduction of a policy in this group). In instru-
mented difference-in-differences, exposed and unexposed patients may present
at both timepoints. Our Assumption 2 then states that the exposure-outcome
relationship at each time point is confounded by some unmeasured confounders
(U0 and U1), such that when the information on these variables was available,
one would entirely remove confounding bias. Such an assumption is quite stan-
dard in the causal inference literature, and is often made in the analysis of
longitudinal or repeatedly measured data [13, 10].

Fig 1. Data generating mechanism. The baseline covariates X are omitted to simplify the
figure. Of note, some causal assumptions needed for identification are not illustrated on these
causal diagrams. Readers are referred to the main text for a more detailed discussion of all
identification assumptions.

Our first aim is to make inferences about the conditional average exposure
effect given X on the additive scale, assuming that this effect is unchanged over
time, and that there is no carry-over effect across timepoints. In clinical medicine
and epidemiology, such an assumption is arguably reasonable, especially for
treatments of acute conditions, and when the study spans over a short period
of time. For example, [17] considered data from a longitudinal study about the
incidence of human immunodeficiency virus infection in intravenous drug users
from Milan and other areas of northern Italy between 1987 and 1991. As depicted
by their Figure 3, they found constant rate differences for HIV infection for
parenteral and sexual exposure. Denote β(x) the conditional average exposure
effect given X = x, one then has:

β(x) = E(Y 1
t − Y 0

t |X = x)
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for t = 0, 1. When X is empty or when X does not include any effect modifier,
β(x) = β expresses the average exposure effect.

Under causal diagram 1a, Z cannot be used as a standard instrumental vari-
able to estimate β(x). For instance, the exclusion restriction assumption is vio-
lated because Z may have a direct effect on Y that is not via D. Similarly, one
cannot implement a standard covariate adjustment analysis such as regression
on the trend scale, as the exposure trend ΔD = D1 − D0 and the outcome
trend ΔY = Y1 − Y0 is confounded by unmeasured variables U = (U0, U1)
(Figure 1b). Progress can however be made if conditional on X, the variable Z
does not have any direct effect on the outcome trend except via the exposure
trend, and moreover Z is independent of the unmeasured exposure-outcome con-
founders on the trend scale [38]. Such exogenous variable Z is referred to as an
instrument for difference-in-differences. As an example, assume that one wants
to assess the side effect of weight gain due to metformin versus sulfonylurea
among new diabetic patients with hypertension. Here, the clinician’s preference
is used as an instrument. When clinicians who prefer metformine as first-line
anti-diabetic therapy also more often prescribe propranolol and metoprolol (two
medications that might cause weight gain) to treat hypertension, the exclusion
restriction assumption in standard instrumental variable method will be vio-
lated. However, the clinician’s preference may still qualify as an instrument for
diference-in-differences, if the use of metformin/sulfonylurea evolves differently
between the high- and low-preference groups of clinicians over time, but the use
of anti-hypertensive medications that induce weight gain in the two groups does
not change over time.

Quite intuitively, a valid instrument for difference-in-differences as in the
above example will allow one to estimate β(x) by a Wald-type estimator derived
from the identity:

β(x) = E(Y1 − Y0 | X = x, Z = 1) −E(Y1 − Y0 | X = x, Z = 0)
E(D1 −D0 | X = x, Z = 1) −E(D1 −D0 | X = x, Z = 0) (2.1)

provided that E(D1 −D0 | X = x, Z = 1) �= E(D1 −D0 | X = x, Z = 0). In the
discussion below, we will show that this identification result can be obtained
by viewing β(x) as a parameter indexing an additive structural mean model for
instrumented difference-in-differences. The advantage of such model is that it
easily enables extensions, e.g. when the treatment effect on the multiplicative
scale is of more interest. An additive structual mean model can be formally
expressed as:

E(Y d∗

1 − Y d
0 | X = x, Z) = β(x) × (d∗ − d) + m(x), (2.2)

for all d, d∗, where β(x) and m(x) are unknown. This model embodies the as-
sumptions that (i) the average outcome trend given X under the same exposure
over time is unchanged across strata defined by Z, and that (ii) the (time-
independent) average exposure effect is constant across stratum defined by Z.
In other words, Z is assumed to not modify the effect of time and of exposure on
the outcome on the additive scale. Of note, Ye et al. [38] previously proposed the
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assumption that Y d
1 − Y d

0 ⊥⊥ Z | X and that Y d∗
t − Y d

t ⊥⊥ Z | X. This so-called
independence & exclusion restriction will imply both conditions (i) and (ii).

To link β(x) to the observed data, Ye et al. further assume that there are
no unmeasured confounders of the relationship between Z and (Dt, Yt) that
simultaneously modify the effect of Z on Dt and of Dt on Yt, given X [38]. A
similar assumption is also adopted in standard instrumental variable settings
to identify the average exposure effect [7, 36]. In practice, model (2.2) is more
likely to hold when the unmeasured confounders U0 and U1 do not modify the
effect of Dt on Yt on the additive scale. While this so-called no unmeasured
effect modifiers (NUEM) assumption is stronger than the assumption of no
unmeasured common effect modifiers (NUCEM) proposed by Ye et al. (in the
sense that NUEM holds implies that NUCEM holds but not vice versa), the
former does not require knowledge on the exposure assignment at each time
point.

As an example, model (2.2) holds when the outcome generating mechanism
at each time point obeys the following linear models:

Y1 = α1 + β1D1 + β2D1X + γU0 + δZ + ε1,

Y0 = α0 + β1D0 + β2D0X + γU1 + δZ + ε0,

where ε1 and ε0 are mean-zero, normally distributed random errors (conditional
on the variables in these respective models), and U0 and U1 are equal in distri-
bution given X and Z. In the Supplementary Material [34], we show that under
Assumption 1 and 2, β(X) can be linked to the observed data by identification
result (2.1).

Interestingly, when there are unmeasured exposure effect modifiers that lead
to the violation of model (2.2), one could still identify the conditional average
exposure effect among the exposed, given that some other assumptions are sat-
isfied. When X = x, this effect can be expressed as: β∗(x) = E(Y 1

t − Y 0
t | Dt =

1, X = x) for t = 0, 1, which is also assumed to be unchanged over time. To
estimate β∗(x), we consider the following model:

E(Y d
t − Y 0

t | Dt = d,X = x, Z) = β∗(x) × d for d = 0, 1 (2.3)

which embodies the assumption that Z itself does not modify the exposure effect
among the exposed on the additive scale. Such an assumption is satisfied when
Y 1
t −Y 0

t ⊥⊥ Z | X,Dt = 1 for t = 0, 1. When Z, in addition, does not modify the
effect of time on the outcome in the absence of the exposure, which is satisfied
when:

Assumption 3. Y 0
1 − Y 0

0 ⊥⊥ Z | X,

then β∗(x) can be expressed as the right-hand side of expression (2.1). Notice
that Assumption 3 and the conditional independence assumption Y 1

t − Y 0
t ⊥⊥

Z | X,Dt = 1 that imply model (2.3) are weaker than the independence and
exclusion restriction (i.e. Y d

1 − Y d
0 ⊥⊥ Z | X and Y d∗

t − Y d
t ⊥⊥ Z | X) that imply

model (2.2). This results from the fact that model (2.3) aims to estimate the
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exposure effect in the subgroup of exposed individuals only, while model (2.2)
targets the exposure effect in the whole population, which is more challenging.

In addition to the average exposure effect among the exposed or in the whole
population, other causal parameters can also be linked to the observed data by
the Wald ratio on the trend scale (2.1), under some alternative assumptions.
For instance, assuming monotonicity instead of NUEM or NUCEM implies that
the Wald ratio (2.1) will identify a complier average exposure effect [38]. In
the fuzzy difference-in-differences design, De Chaisemartin and d’Haultfoeuille
[8] show that ratio (2.1) identifies the average exposure effect among patients
switching from unexposed to exposed between period t = 0 and t = 1 due
to the introduction of some public policy. This is under the assumption that
the exposure status can only transition in one direction within each stratum
of Z [8]. Meanwhile, instrumented difference-in-differences allows the exposure
status of each individual to vary in any direction over time, arguably making it
more appropriate to assess medical or epidemiological exposures. For instance,
a patient previously exposed to a medication might become unexposed, or vice
versa, due to the improvement, or worsening, of her clinical status at each time.
Also, fuzzy difference-in-differences requires the percentage of exposed units in
the stratum Z = 0 to remain constant over time (due to this group likely not
affected by the policy), or else the exposure effect at time t = 1 among the
switchers in each stratum of Z would be homogeneous. Instead, instrumented
difference-in-differences requires distinct assumptions on the potential of effect
modification by Z or by baseline covariates to identify the target estimand β(X).
In short, although instrumented difference-in-differences and fuzzy difference-in-
differences achieve similar identification results on the additive scale, they target
different types of exposure effects and consider different causal assumptions that
are specific to the (public policy or healthcare) contexts for which each method
is intended.

Finally, note that estimation strategies based on the identification formula
(2.1) can be developed by using semi-parametric theory [38]. These strategies
rely on a projection of the true function β0(X) of β(X) on a parametric working
model β(X,ψ) for some finite dimensional vector ψ. Particularly, when one
considers β(X,ψ) = ψ, the obtained projection will be the average treatment
effect, i.e. E{β(X)}. Such a strategy have also been considered in standard IV
settings, e.g., see the discussion by Ogburn et al. [19], or Kennedy et al. [16].
Interested readers are thus encouraged to consult these previous works for the
estimation of linear structural mean models with instrumented difference-in-
differences.

3. Multiplicative structural mean models for instrumented
difference-in-differences

3.1. Identification

In this section, we extend the above discussion to a multiplicative structural
mean model for instrumented difference-in-differences. Such an extension is po-
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tentially useful for many reasons. First, discrete outcomes that are count or rare
binary variables often lend themselves to log-linear models rather than linear
models. In addition to that, in some clinical applications, the assumption of the
instrument not modifying the effect of time and of the exposure on the out-
come may be more likely to hold on the multiplicative scale rather than on the
additive scale [32].

Assume that one wants to identify and estimate the average exposure effect
β(x) defined on the multiplicative scale, which is supposed to be unchanged over
time, i.e. β(x) = E(Y 1

t | X = x)/E(Y 0
t | X = x) for t = 0, 1. To achieve this,

we consider the following log-linear model:

E(Y d∗

1 | X = x, Z) = E(Y d
0 | X = x, Z)eβ(x)×(d∗−d)+m(x). (3.1)

Model (3.1) can be viewed as an extension of model (2.2) to the multiplicative
scale. This model embodies the aforementioned assumption that Z does not
modify the effect of time on the outcome on the multiplicative scale, i.e.

E(Y d
1 | X,Z = z)

E(Y d
0 | X,Z = z)

= em(X) (3.2)

nor the effect of the exposure on the outcome on the multiplicative scale, i.e.

E(Y d∗
t | X,Z = z)

E(Y d
t | X,Z = z)

= eβ(X)×(d∗−d) (3.3)

for z = 0, 1 and d, d∗ = 0, 1. As in the linear model setting, the log-linear model
(3.1) is more likely to hold when the unmeasured confounders U0 and U1 do not
modify the exposure effect at each time point, on the multiplicative scale. For
instance, model (3.1) holds when the outcome generating mechanism at each
time point obeys the following log-linear models:

E(Y1|D0, D1, U0, U1, X, Z) = eα1+β1D1+β2D1X+γU1+δZ

E(Y0|D0, U0, X, Z) = eα0+β1D0+β2D0X+γU0+δZ

where U0 and U1 are equal in distribution given X and Z. In the Supplementary
Material, we prove that under Assumptions 1 and 2, β(X) is linked to the
observed data by the following moment condition:

E{Y1e
−β(X)D1 − Y0e

−β(X)D0+m(X) | X,Z} = 0 (3.4)

As for the additive structural mean model, in the presence of unmeasured ex-
posure effect modifiers that lead to the violation of model (3.1), one can alter-
natively target the conditional average exposure effect among the exposed on
the multiplicative scale, i.e.:

β∗(x) = log E(Y 1
t | Dt = 1, X = x)

E(Y 0
t | Dt = 1, X = x)
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for t = 0, 1. This effect is also assumed to be unchanged overtime. To estimate
β∗(x), we consider the following structural mean model:

E(Y d
t | Dt = d,X,Z) = E(Y 0

t | Dt = d,X,Z)eβ
∗(X)d (3.5)

for d = 0, 1 and t = 0, 1. This model assumes that Z does not modify the effect
of the exposure on the multiplicative scale among the exposed, that is:

E(Y 1
t | Dt = 1, X, Z = z)

E(Y 0
t | Dt = 1, X, Z = z) = eβ

∗(X)

Notice that this assumption is weaker than the multiplicative scale assump-
tion 3.3 implied by model (3.1), because the former only requires no effect
modification by Z in the subgroup of exposed individuals, given X.

To estimate β∗(X), we further adopt the assumption that in the absence of
exposure, Z does not modify the effect of time on the outcome on the multi-
plicative scale, that is:

Assumption 4. There exist a function m(X) such that:

E(Y 0
1 | X,Z = z) = E(Y 0

0 | X,Z = z)em(X).

This assumption is also weaker than Assumption 3.2 enclosed in model (3.1),
since the latter requires no time effect modification by Z in the whole population,
while the former only requires it among the exposed. Under Assumption 4,
β∗(X) can be linked to the observed data by an expression similar to (3.4).

3.2. Estimation without baseline covariates

In the specific setting where m(X) = 0 and β(x) = β, and no adjustment
for observed baseline covariates is needed for the identification assumptions to
hold, the target parameter eβ will express the average exposure effect on the
multiplicative scale. The moment condition (3.4) then implies that:

E(Y1e
−βD1 | Z=1) E(Y0e

−βD0 | Z=0)=E(Y0e
−βD0 | Z=1) E(Y1e

−βD1 | Z=0).
(3.6)

Solving the sample analog of this equation returns a consistent estimator β̂
for β. Obtaining a closed-form expression for β̂ is not possible in general cases.
However, when the exposure is binary (D0, D1 = 0, 1), equation (3.6) can be
rewritten in a quadratic form as:

(E111E000 − E110E001)θ2 − (E11E000 + E111E00 −E10E001 −E110E01)θ
+ E11E00 −E10E01 = 0,

where θ = e−β − 1, Etz = E(Yt | Z = z) and Ettz = E(YtDt | Z = z) for
t, z = 0, 1. The asymptotic distribution of β̂ can be established using standard
M -estimation theory or non-parametric bootstrap sampling.
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3.3. Estimation with baseline covariates

We now discuss estimation strategies when the set of baseline covariates X is
non-empty. For this, we will assume that β(x) = β0 + βT

1 x, but the proposed
methods will work for any other finite-dimensional parametrization of β(x),
provided that this parametrization is correct. With a slight abuse of notation,
we denote βT =

(
β0 βT

1
)

as the k-dimensional vector of parameters indexing
β(x).

We consider the following two settings. In the first setting, we let the covariate
function m(X) in the structural mean model (3.1) be correctly parametrized,
in the sense that m(X) = m(X, γ) for some finite-dimensional parameter γ. In
the second setting, m(X) is unspecified. In both cases, we will denote:

ε = ε(O, β,m(·)) = Y1e
−β(X)D1 − Y0e

−β(X)D0+m(X).

The moment condition (3.4) implies that E(ε | X,Z) = 0.

Setting 1: m(X) specified. Assume that m(X, γ) is correctly specified. To
construct consistent estimators for β and γ, we first note that these parameters
actually index a semi-parametric model M, represented by the class of distribu-
tions P of the observed data satisfying (3.4), i.e. for which

∫
ε(o, β, γ)dP(d0, y0,

d1, y1 | X,Z, β, γ) = 0. From this restriction, one can derive the space of all influ-
ence functions (i.e. the orthogonal nuisance tangent space) of M. Because of the
deep connection between (asymptotically linear) estimators for a given model
and the influence functions under that model, if we can find all the influence
functions for M, we can characterize all regular asymptotic linear estimators
for μ =

(
βT γT

)T up to asymptotic equivalence [27, 15].

Theorem 1. Suppose that Assumption 1, 2 and model (3.1) hold. The space
of all influence functions for μ =

(
βT γT

)T under the proposed specification of
m(X, γ) in model (3.1) is Λ⊥

1 =
{
dq×1(X,Z) ·ε

}
, where q denotes the dimension

of μ and dq×1(X,Z) is an arbitrary q-dimensional vector function of X and Z
that satisfies

E

{
dq×1(X,Z)

(
∂ε

∂μ

)T}
= Iq×q.

Here and below, Iq×q denotes the q × q identity matrix.

Theorem 1 suggests that μ can be estimated by solving the sample equivalent
of the moment condition E{d(X,Z)ε} = 0, where d(X,Z) is an arbitrary non-
trivial q-dimensional vector function of X and Z, e.g. dT(X,Z) =

(
1 XT Z

)
.

A straightforward application of the M -estimation method then allows one to
derive the asymptotic variance of μ̂ obtained from this approach. More precisely,√
n(μ− μ0) converges in distribution to:

N

[
0, E

{
− ∂f

∂μ
(O,μ0)

}
var

{
f(O,μ0)

}
E

{
− ∂f

∂μ
(O,μ0)

}−1,T]
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where μ0 denotes the true values of μ and f(O,μ0) = d(X,Z)ε denotes the
estimating function. Alternatively, one can obtain the asymptotic variance of μ̂
by using non-parametric bootstrap sampling (Table 1).

Table 1

Estimation procedure when m(X) is specified, i.e. m(X) = m(X, γ).

Step Action
1 Obtain an estimate μ̂ for μ = (β, γ) by solving:

n∑
i=1

dq×1(X,Z)[Y1ie
−β(Xi)D1i − Y0ie

−β(Xi)D0i+m(Xi)] = 0q×1,

where dq×1(X,Z) is an arbitrary q × 1 function of (X,Z), and q is
the dimension of μ.

2 Estimate the variance of μ̂ by M-estimation or bootstrap.

For completeness, we also derive in the Supplementary Material the efficient
influence function among the elements of Λ⊥

1 , by projecting the score of θ (under
the true parametric submodel) on Λ⊥

1 . However, we do not recommend the use
of this efficient influence function in practice. First, it involves var(ε | X,Z)−1 =
E−1(ε2 | X,Z) as a nuisance parameter. The efficiency of the resulting estimator
is thus local in the sense that it is only attained when this variance can be
estimated consistently at sufficiently fast rates. Even when a proper estimate can
be obtained for var(ε | X,Z), the inverse of this variance can make the resulting
estimator for θ become very unstable, which makes it difficult to perform well
in practice.

Setting 2: m(X) unspecified. We now discuss a more general setting where
the function m(X) in model (3.1) is left unspecified. For this, consider first an
easier case where m(X) is a priori known. By a similar proof as in Theorem 1,
one can show that under Assumption 1 and 2, the orthogonal complement of
the nuisance tangent space in model (3.1) (given that it is correctly specified)
is Λ⊥

1 = {dk×1(X,Z)ε}, where dk×1(X,Z) is arbitrary but satisfies:

E

{
dk×1(X,Z)

(
∂ε

∂β

)T}
= Ik×k.

To recognize that m(X) is unknown, we then need to determine the subspace
of mean-zero functions in Λ⊥

1 that is additionally orthogonal to the nuisance
scores for m(X).

Theorem 2. Suppose that Assumptions 1, 2 and model (3.1) hold. The orthog-
onal complement of the nuisance tangent space of model (3.1) when m(X) is
left unspecified is Λ⊥

2 =
{[
dk×1(X,Z) − d∗,k×1(X,Z)

]
ε
}
, where dk×1(X,Z) is

an arbitrary k-dimensional function of X and Z that satisfies

E

{[
dk×1(X,Z) − d∗,k×1(X,Z)

]( ∂ε

∂β

)T}
= Ik×k
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with:

d∗,k×1(X,Z) = λ(X,Z)σ−2(X,Z)
E
{
λ2(X,Z)σ−2(X,Z) | X

}E{
dk×1(X,Z)λ(X,Z) | X

}

and λ(X,Z) = E(Y0e
−β(X)D0 |Z,X)/E(Y0e

−β(X)D0 |X).

A direct consequence of Theorem 2 is that elements in Λ⊥
2 have mean zero

even when m(X) is misspecified, i.e. m(X) �= m0(X), where m0(X) denotes
the true form of m(X) that is unknown, provided that σ−2(X,Z), λ(X,Z),
E{d(X,Z)λ(X,Z) | X} and E(λ2(X,Z)σ−2(X,Z) | X) are correctly specified.
Note that postulating parametric models for these nuisance parameters is not
entirely satisfactory, as it may easily lead to model misspecification and incom-
patibility. Furthermore, the estimating functions in Λ⊥

2 are highly complex (e.g.
due to the presence of many complicated nuisance parameters), which may lead
to convergence issues in practice.

To remedy this, consider the element ν of Λ⊥
2 corresponding to dk×1(X,Z) =

gk×1(X,Z) − E
{
gk×1(X,Z)λ(X,Z) | X

}
, where gk×1(X,Z) is an arbitrary k-

dimensional vector function of X and Z satisfying the conditions in Theorem 2.
This element ν can be alternatively expressed as:

ν =
{
g(X,Z) − E

(
g(X,Z)λ(X,Z) | X

)}{
Y1e

−β(X)D1 − Y0e
−β(X)D0+m(X)},

Theorem 2 then implies that E(ν) = 0 when m(X) �= m0(X), given that only
λ(X,Z) and E

(
g(X,Z)λ(X,Z) | X

)
are consistently estimated. In our current

setting with binary exposure, by fixing m(X) = 0, the moment condition E(ν) =
0 can be reexpressed as:

E

[{
g(X,Z) − (e−β(X) − 1)a1(X) + a2(X)

(e−β(X) − 1)a3(X) + a4(X)

}
︸ ︷︷ ︸

A(O)

×
{

(Y1D1 − Y0D0)(e−β(X) − 1) + Y1 − Y0

}
︸ ︷︷ ︸

B(O)

]
= 0 (3.7)

Here, we denote a1(X) = E{Y0D0g(X,Z) | X}, a2(X) = E{Y0g(X,Z) | X},
a3(X) = E{Y0D0 | X} and a4(X) = E{Y0 | X}.

We now construct an estimation strategy for the parameter vector βk×1 based
on the moment condition (3.7). Since βk×1 is the zero of this moment condition,
it can be viewed as a well defined model-free population parameter without
reference to the original model (3.1). This suggests that one can work under
the non-parametric model and estimate βk×1 by using semi-parametric theory,
to enable fast

√
n rates of convergence to the parameter of interest. This is

achievable even when nuisance functions a1(X) to a4(X) are estimated at slower
rates, e.g. using flexible data-adaptive or machine learning methods.

In what follows, we will focus on the special case where β(X) = β (i.e. X are
not effect modifiers and k = 1) for the sake of simplicity. In the Supplementary
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Material, we generalize the discussion to more general cases where β(X) is a
non-constant parametric function of X (i.e. k > 1). Denote θ = e−β − 1. To
characterize its influence function under the non-parametric model (so as to
obtain a non-parametric estimator), we first rewrite θ as θ = θ(P) to stress
that θ is a functional of the observed data distribution P. In what follows, we
perturb θ in the direction P̃t of a point mass at single observation õ of O, i.e.
P̃t = (1− t)P+ t1õ where 1õ denotes the Dirac delta function at õ. The efficient
influence function of θ at observation õ under the non-parametric model for the
observed data can then be identified by evaluating the Gateaux derivative of
θ(Pt) with respect to t at t = 0, that is

φ(õ, θ, η) = dθ(Pt)
dt

∣∣∣∣
t=0

where η = c(a1, a2, a3, a4, a5, a6) is the vector of all nuisance parameters. For a
more detailed guidance on influence functions, see Hines et al. [12] and Kennedy
[15].

Proposition 1. Under certain regularity conditions, it can be shown that the
influence function of θ under the non-parametric model is:

φ(O, θ, η) = −C−1A(O)B(O) + C−1×

×
[{

θY0g(X,Z)(D0 + 1) − a1θ − a2

θa3 + a4

− (θa1 + a2)(θY0D0 − θa3 + Y0 − a4)
(θa3 + a4)2

}
E
{
B(O) | X

}]

where C = C(O, θ, η) = E
{
(a2a3 − a1a4)(θa3 + a4)−2B(O) + A(O)(Y1D1 −

Y0D0)
}
.

As E{φ(O, θ, η)} = 0 by construction, one can obtain an estimate θ̂ by
solving the sample analog of this equation,

∑n
i φ(Oi, θ̂, η̂) = 0, where η̂ =

(â1, â2, â3, â4, â5, â6) denotes an estimate for η, possibly obtained by flexible
data-adaptive or machine learning methods. Assume that η̂ converges in prob-
ability to some η1 that might be potentially different from the true value of
the nuisance parameter η. In the Supplementary Material, we prove that the
remainder term: R(η, η1) := θ(η1) − θ(η) + E{φ(O, η1)} is a second order term
involving only products of the type E[c(η, η1){f(η1)−f(η)}{g(η1)−g(η)}]. This
result will be useful when establishing the asymptotic properties of θ̂, as shown
in the theorem below.

Theorem 3 (Asymptotic normality and efficiency). Assume that (i) the second-
order term R(η̂, η) is oP (n−1/2) and (ii) the class of functions {φ(η, θ′) : |θ′ −
θ| < δ, ||η − η1|| < δ} is Donsker for some δ > 0 and such that pr{φ(η, θ′) −
φ(η1, θ)}2 → 0 as (η, θ′) → (η1, θ), then: θ̂(η̂) = θ(η) + 1

n

∑n
i=1 φ(Oi, η) +

oP (1/
√
n), due to which

√
n(θ̂1−θ) converges in distribution to N(0, ζ2), where

ζ2 = var{φ(O, η)} is the non-parametric efficiency bound.
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The proof of this theorem follows the general proof presented in Chernozhukov
et al. [5]. Some remarks are noteworthy here. First, condition (i) for asymptotic
normality in Theorem 3 requires that all components of η̂ converges in L2(P )
norm to their true counterparts in η at faster than n1/4-rate, to ensure that the
remainder term R(η̂, η) is of second order (see above). Under certain conditions,
this can be satisfied by data-adaptive algorithms such as regression trees [35],
neural networks [4], and highly adaptive lasso [29].

Condition (ii) (i.e. Donsker condition) restricts the flexibility of the nuisance
estimators, but Donsker classes still cover many complex functions such as Lip-
schitz functions and so forth [31, 15]. Alternatively, one can avoid condition
(ii) by using cross-fitting in the estimation procedure, given that the nuisance
estimators η̂ are consistent and satisfy condition (i). The exact steps of this
procedure are described in Table 2.

A direct consequence of Theorem 3 is that the (asymptotic) behavior of the
proposed estimator θ̂ is the same as if the nuisance parameters η were known.
As such, one can quite easily obtain a sandwich estimator of the asymptotic
variance of θ̂ as the sample variance of φ(O, η̂). This variance estimate may be
used to construct Wald-type confidence intervals.

Table 2

Estimation procedure when m(X) is unspecified and β(X) = β.

Step Action
1 Partition the index set {1, . . . , n} into Q set of approximately similar size, i.e.

V1, . . . , VQ.

2 For each q = 1, . . . , Q:
• Obtain an estimator η̂q for η by training the prediction algorithm using

data in the the sample Tq = {1, . . . , n} \ Vq .
• Predict η(Oi) by η̂q(Oi) for each unit i ∈ Vq

3 Obtain the estimate θ̂ for θ = e−β − 1 by solving the equation:
n∑

i=1
φ{Oi, θ̂, η̂

q} = 0

4 Estimate the variance of θ̂ by the sample variance of φ(Oi, θ̂, η̂
q).

4. A simulation study

In this section, we conduct a simulation study to assess the finite sample per-
formance of the proposed approaches. The aim of the analysis is to estimate the
average causal effect of a binary exposure on a count outcome (setting 1 and 3),
or on a rare binary outcome with frequency around 10–12% (setting 2 and 4). As-
sume that each patient is followed up over two time points (i.e. longitudinal data
structure). At each time point, the exposure-outcome relationship is confounded
by an unmeasured variable Ut (t = 0, 1). In settings 3 and 4, adjusting for a base-
line covariate X is needed for the binary instrument for difference-in-differences
Z to be valid. The average treatment effect is β(X) = 0 across all settings.
Other details about the data generating mechanism are provided in Table 3.
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Table 3

Simulation study: Data generating mechanism.
Setting Characteristics Data generating mechanism
1 Baseline Z ∼ B(N, 0.5)

Time t = 0 U0 ∼ N(0.5, 1)
E(D0 | U0, Z) = expit(1 − Z + U0)
E(Y0 | Z,U0, D0) = exp(−1 + 0D0 + 0.5U0 + 0.5Z)

Time t = 1 U1 ∼ N(0.5, 1)
E(D1 | U1, U1, Z) = expit(−1 + Y0 + U1 + Z)
E(Y1 | Z,U1, D1, Y0) = exp(−1 + 0D1 + 0.5U1 + 0.5Z)

2 Baseline Z ∼ B(N, 0.5)
Time t = 0 U0 ∼ U(0, 1)

E(D0 | X,U0, Z) = expit(−0.85 − Z + U0)
E(Y0 | X,Z,U0, D0) = exp(−3.7 + 0D0 + U0 + Z)

Time t = 1 U1 ∼ U(0, 1)
E(D1 | X,U0, U1, Z) = expit(0.272 + Y0 + U1 + Z)
E(Y1 | X,Z,U1, D1, Y0) = exp(−3.9 + 0D1 + U1 + Z)

3 Baseline X = min{P (0.5) + 0.5, 2.5}
E(Z | X) = expit(−0.5 + X)

Time t = 0 U0 ∼ N(0.5, 1)
E(D0 | U0, Z) = expit(1 − Z + U0 + X0)
E(Y0 | Z,U0, D0) = exp[−1 + 0D0 + 0.5U0 + 0.5Z + 0.25X + 0.15 sin(X)]

Time t = 1 U1 ∼ N(0.5, 1)
E(D1 | U1, U1, Z) = expit(−1 + Z + U1 + Y0 + X)
E(Y1 | Z,U1, D1, Y0) = exp[−1 + 0D1 + 0.5U1 + 0.5Z + 0.35X + 1.70 sin(X)]

4 Baseline X = min{P (0.5) + 0.5, 3.5}
E(Z | X) = expit(−0.8 + X)

Time t = 0 U0 ∼ U(0, 1)
E(D0 | X,U0, Z) = expit(−0.85 − Z + U0 + X)
E(Y0 | X,Z,U0, D0) = exp[−1.8+0D0−1.5U0−0.25Z+0.15X+0.15 sin(X)]

Time t = 1 U1 ∼ U(0, 1)
E(D1 | X,U0, U1, Z) = expit(0.272 + Y0 + 0.5U1 + 0.5Z + 0.5X)
E(Y1 | X,Z,U1, D1, Y0) = exp[−3+0D1−1.5U1−0.25Z+0.35X+1.70 sin(X)]

Across all settings, using Z as a standard instrument will return a biased
estimate for β as the exclusion restriction assumption is violated (i.e. Z has a
direct effect on Yt that does not go through Dt). The instrumented difference-
in-differences approach is alternatively used to analyze the data as follow:

In settings 1 and 2 with no observed covariates, we estimate β by solving
equation (3.6).

In settings 3 and 4, the function m(X) in the underlying structural mean
model (3.1) has the form m(X) = β0 + β1X + β2sin(X). We consider three
approaches to estimate β.

• Approach (A1): m(X) is mis-specified as m(X) = δ0 + δ1X. The pa-
rameter vector θ =

(
δ0 β δ

)T is estimated by solving the equation∑N
i=1 d(X,Z)ε = 0, where d(X,Z) =

(
1 X Z

)T.
• Approach (A2): m(X) is correctly specified as shown above. The param-

eter vector θ =
(
β0 β β1 β2

)T is estimated by solving the equation∑N
i=1 d(X,Z)ε = 0, where d(X,Z) =

(
1 X Z sin(X)

)T.
• Approach (A3): m(X) is unspecified. β is estimated by the non-

parametric approach discussed in Section 3.3. The nuisance parameters
involved in this approach are estimated by using the super learner algo-
rithm [30], whose library includes the main terms generalized linear model,
the multivariate adaptive regression splines and the highly adaptive lasso.
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Fig 2. Simulation results – Setting 1 and 2. (a): the distribution of
√
n-bias, i.e.

√
n(β̂i −β),

where β̂i denotes the estimate of β obtained from simulation i; (b): the distribution of the
ratio between the variance estimate V̂ (β̂i) and the true variance V (β̂); (c): coverage of the
95% Wald confidence interval for β.

Although cross fitting is required to ensure valid inference for approach
A3 without relying on the Donsker condition, we will not consider it here
to shorten the computational time of the simulation study.

Three sample sizes, n = {5, 10, 15} × 103, are considered in each setting.
In setting 4 (rare binary outcome with observed baseline covariates), two other
sample sizes of n = {20, 25}×103 are additionally considered to further evaluate
the asymptotic properties of the proposed approaches. In each setting, we assess
(i) the

√
n-consistency of the obtained estimator β̂ for β, (ii) the ratio between

the variance estimate of β̂ and the true variance of β̂ (calculated across all
simulations), and (iii) the coverage of the 95% Wald confidence interval for β.
We implement 103 simulations in each setting.

Results of this simulation study are visualized in Figures 2 and 3. Numerical
data to reproduce these figures are also provided in the Supplementary Material.
When X is empty and m(X) = 0 (settings 1 and 2), the proposed method
returns a valid estimate β̂ for β that is

√
n-consistent (Figure 2a). In setting 2

(rare binary outcome), the variance of β̂ is slightly underestimated when the
sample size is small (Figure 2b). This results in a (slight) over-coverage of the
95% CI (Figure 2c). Such a problem, however, disappears when the sample size
is sufficiently large (n = 15 × 103).

When X is non-empty and m(X) �= 0 (settings 3 and 4), the estimation
approach based on Theorem 1 only provides a valid estimate for β (i.e.

√
n-

consistent) when the function m(X) is correctly specified (i.e. approach A2).
In contrast, the non-parametric approach A3 can obtain a valid estimate for β
without having to specify m(X) (Figure 3a). When the outcome is a rare binary
variable (setting 4), the performance of both approaches can be worsened if the
sample size is insufficiently large (Figure 3b–c).



Structural mean models for instrumented difference-in-differences 5149

Fig 3. Simulation results – Setting 3 (S3) and setting 4 (S4). (a) and (d): the distribution of√
n-bias; (b) and (e): the distribution of the ratio between the variance estimate and the true

variance of β. (c) and (f): coverage of the 95% Wald confidence interval for β.

5. Extension to repeated cross-sectional data structure

Thus far, we have discussed the instrumented difference-in-differences method
for longitudinal or panel data, in which each individual is followed-up over two
time points. In this section, we extend the above results to the repeated cross-
sectional, or “pseudo-longitudinal” data structure [20]. In this setting, Dt and
Yt are evaluated on an independent sample at each time point t. For instance,
respondents of an annual survey in one year are different from those in the
prior year. It is thus commonly assumed that there is no overlap in the samples
between different periods [20]. To formalize this, denote O∗ = (Z,X,D, Y, T )
the observed data of each individual in a repeated cross-sectional study, where
T = 0, 1 denotes the time point, Y = Y1I(T = 1) + Y0I(T = 0) and D =
D1I(T = 1) +D0I(T = 0). For every stratum defined by levels of Z and X, the
collected data at each time point is a random sample from the population of
interest, that is:

Assumption 5. T ⊥⊥ (Y1, Y0, D1, D0) | X,Z.
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When X is empty, m(X) = 0 and β(X) = β, Assumption 5 implies that:

E(Y e−βD | T = 1, Z = 1)=E(Y e−βD | T = 0, Z = 1) E(Y e−βD | T = 1, Z = 0)
E(Y e−βD | T = 0, Z = 0)

(5.1)

Solving the sample analog of this equation will return a consistent estimator
β̂ for β. A simple application of the Delta method allows one to establish the
asymptotic properties of β̂.

Consider now the structural mean model (3.1) with X being non-empty and
m(X) = m(X, γ) correctly parameterized by some finite-dimensional parame-
ter γ. To identify the orthogonal nuisance tangent space Λ⊥

3 of model (3.1) under
the repeated cross-sectional data structure O∗, one need to map the elements
in Λ⊥

1 to those in Λ⊥
3 . For this, note that for every UO∗ ∈ Λ⊥

3 , the mean of
UO∗ given O (calculated with respect to the true distribution P of the full data
structure O) must equal some element UO ∈ Λ⊥

1 . The same remark also allows
one to establish the orthogonal nuisance tangent space Λ⊥

4 of model (3.1) in the
repeated cross-sectional setting, when m(X) is left unspecified.

Theorem 4. Suppose that Assumptions 1, 2, 5 and model (3.1) hold. When the
observed data structure is O∗ = (Z,X,D, Y, T ), the orthogonal complement of
the nuisance tangent space of model (3.1) under the parametrization m(X) =
m(X, γ) is:

Λ⊥
3 =

{
dq×1(X,Z) · π(O, θ) + sq×1(X,Z) ·

[
T − pr(T = 1 | Z,X)

]}
,

where
π(O, θ) = TY e−β(X)D

pr(T = 1|Z,X) − (1 − T )Y e−β(X)D+m(X)

1 − pr(T = 1 | Z,X)
and dq×1(X,Z) and sq×1(X,Z) are arbitrary q-dimensional vector functions of
X and Z that satisfies

E

{
dq×1(X,Z)

(
∂π(O, θ)

∂θ

)T}
= Iq×q.

Here, q denotes the dimension of the parameter vector θ =
(
βT γT

)T. In con-
trast, the orthogonal complement of the nuisance tangent space of model (3.1)
under the data structure O∗, when m(X) is left unspecified is:

Λ⊥
4 =

{[
dk×1(X,Z)−d∗,k×1(X,Z)

]
·π(O, β)+qk×1(X,Z)·

[
T−pr(T = 1 | Z,X)

]}
,

where dk×1(X,Z) and qk×1(Z,X) are arbitrary k-dimensional functions of X
and Z that satisfy:

E

{[
dk×1(X,Z) − d∗,k×1(X,Z)

]∂π(O, β)
∂β

}
= Ik×k

and d∗,k×1(X,Z) is defined as in Theorem 2, but with:

λ(X,Z) =
E
[
(1 − T )Y e−β(X)D | Z,X

]/
pr(T = 0 | X,Z)

E
[
(1 − T )Y e−β(X)D | X

]
/pr(T = 0 | X)

.
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A consequence of Theorem 4 is that to estimate the parameters indexing
model (3.1), one needs to additionally model the nuisance parameter pr(T =
1|X,Z). The estimation strategies that we have previously discussed in Section 3
can then be easily extended to this setting. Details on this are thus omitted.

6. Application to antihyperglycemic drugs on weight gain

We now apply our proposed methods to investigate the risk of moderate to severe
weight gain of metformin versus sulfonylureas as initial therapy for new users
of antihyperglycemic drugs (i.e. prescribed for patients with diabetes) during
the period of 1995 to 2011. The data for this analysis were extracted from The
Health Improvement Network [18]. From this database, we select patients who
were present for at least 180 days before receiving any antihyperglycemic drugs,
and then were started on an initial therapy with either metformin (D = 1) or
a sulfonylurea (D = 0), with a baseline glycosylated hemoglobin (HbA1c) of
≥ 7% [9]. The outcome of interest Y is a binary variable, which indicates an
increase of at least 10% of BMI at two years of follow-up compared to each pa-
tient’s baseline. This cut-off value is chosen based on the definition of moderate-
to-severe weight gain (i.e. Grade 2–3) of the common terminology criteria for
adverse events [25]. Although the cut-offs are proposed for weight, we use the
same thresholds for BMI as this measure is a linear function of weight. The fre-
quency of the outcome among patients treated with metformin and sulfonylurea
is 3.6% and 11.7%, respectively.

During the research period, the use of metformin rose very quickly, while the
use of sulfonylureas declined quite dramatically. Beginning in 2000, metformin
became more commonly used than sulfonylurea. We thus choose the time point
t = 0 to be the period of 1995 to 1999 (i.e. sulfonylurea more commonly used),
and t = 1 to be the period of 2000 to 2011 (i.e. metformin more commonly
used). We make the assumption that at each time point, a random sample
of patients was taken from the population of interest (i.e. Assumption 4). The
aforementioned variability in the prescription trends of both drugs also led us to
define our instrument for difference-in-differences based on provider preference.
For this, we first calculated the proportion of patients starting on metformin
within each general practitioner practice in 1995. We then assigned Z = 1 if
this proportion is larger than the median of all practices and Z = 0 otherwise.
We did not consider baseline covariate adjustment in this analysis.

Table 4

Data characteristics across two timepoints.
Characteristics Time 0 Time 1
Number of patients 1656 15234
P (Dt = 1) 0.46 0.86
P (Z = 1|T = t) 0.58 0.53
P (Yt = 1|Dt = 1) 0.03 0.04
P (Yt = 1|Dt = 0) 0.10 0.12

Data from 16890 patients (117 practices) are finally included. By solving the
sample analog of equation (5.1), we obtain an estimate of of β = −1.27 for the
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treatment effect on the log relative risk scale, with a 95% confidence interval
ranging from −3.07 to 0.53. This suggests that the risk of moderate to serious
weight gain from metformin is e−1.27 = 0.281 times as low compared with
sulfonylurea. Although this finding is not statistically significant, the direction
of the result agrees with prior findings, which also suggests an increase risk of
weight gain by sulfonylurea compared to other oral antihyperglycemic drugs
[21, 6]. Here we focus though on the incidence of moderate to severe weight
gain.

7. Conclusion

Instrumented difference-in-differences is a new addition to the range of ap-
proaches for improving causal inference in the evaluation of interventions and
exposures when a randomised trial is impractical [14, 1, 37, 9, 2, 3]. In this paper,
we have proposed novel additive and multiplicative structural mean models for
the instrumented difference-in-differences design. By applying semi-parametric
theory, we also develop multiple estimation approaches for the parameters in-
dexing such models, thereby enabling the estimation of the average exposure
effect in the whole population or among the exposed, on the additive and mul-
tiplicative scales. In the special case where the outcome indicates a rare event
with a small success probability (i.e. around 10% or less as a rule of thumb),
the multiplicative structural mean models can also be good approximations for
the true structural mean models that have a logistic link function. However,
the estimation of the treatment effect in this setting often requires a quite large
sample size to obtain valid inference.

A potential direction for future research is to develop estimation strategies
when a working model, defined by a least squares projection, is used to sum-
marize β(X). This aims to further relax the parametric assumption made on
β(X), which has been considered in the additive setting [38]. In the current mul-
tiplicative setting, one important challenge is that we do not have a closed-form
expression of β(X). Instead, β(X) is linked to the observed data by a moment
equation when all causal assumptions are satisfied. The possibilities of projecting
β(X) on a parametric working model in the absence of its closed-form expression
will be further explored in future research. It is also important to develop estima-
tion strategies for structural mean models with a logistic link function, without
having to assume the binary outcome is rare. The difficulty with constructing
consistent estimators for such logistic models is in finding a residual ε(O, β) satis-
fying a moment condition similar to (3.4), i.e. E{ε(O, β) | X,Z} = 0. Extension
to a logistic link may thus require a rather different line of thinking. Finally,
while we here focus on two time points, the proposed models should also be
extended to multiple time points settings where many additional complications
may also present [24].
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Supplementary Material

Supplement for “Structural mean models for instrumented difference-
in-differences”
(doi: 10.1214/24-EJS2313SUPP; .pdf). Supplement A: Identification results.
Proofs of the identification results. Supplement B: Estimation strategies. Proofs
of the estimating strategies proposed in Section 3
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