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Abstract: The marginal inference of an outcome variable can be improved
by closely related covariates with a structured distribution. This differs
from standard covariate adjustment in randomized trials, which exploits
covariate-treatment independence rather than knowledge on the covariate
distribution. Yet it can also be done robustly against misspecification of the
outcome-covariate relationship. Starting with a standard estimating func-
tion involving only the outcome, we first use a working regression model to
compute its conditional expectation given the covariates, and then remove
the uninformative part under the covariate distribution model. This effec-
tively projects the initial function onto the joint tangent space of the full
data, thereby achieving local efficiency when the regression model is cor-
rect. Importantly, even with a faulty working model, the estimator remains
unbiased as the subtracted term is always asymptotically centered. Fur-
ther improvement is possible if the outcome distribution also has its own
structure. To demonstrate the process, we consider three examples: one
with fully parametric covariates, one with a covariate following a partial
parametric model against others, and another with mutually independent
covariates.
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1. Introduction

Can the inference of an outcome Y benefit from knowledge on a closely related
predictor X? Let Y be an indicator of mortality in COVID-19 patients, for
example, and let X denote patient age. To estimate the overall mortality rate θ =
E(Y ) from a random n-sample (Yi, Xi) (i = 1, . . . , n) of (Y,X), an immediate
estimator is just the sample proportion PnY , where Pn denotes the empirical
measure, i.e., Pnf(Y,X) = n−1∑n

i=1 f(Yi, Xi). However, because mortality rate
differs widely across age groups (Koh, Geller and VanderWeele, 2021), it may
be advantageous to start with the age-specific rates, and then average them by
the age distribution in the population. This leads to θ̂adj =

∑
x px{PnY I(X =

x)}/{PnI(X = x)}, where px is the population proportion of age group x, which
may be obtained from census data, and I(·) is the indicator function. The hope
is that the knowledge of px for the distribution of X helps to improve the
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estimate of E(Y ). Indeed, standard analysis finds that nvar(θ̂adj) → E{var(Y |
X)} = var(Y )−var{E(Y | X)}. In this case, knowing the covariate distribution
does increase efficiency of inference on the outcome, by eliminating outcome
variations between different levels of the covariate.

Generalization of the above example faces two challenges. First, with mul-
tiple, continuous covariates, the curse of dimensionality makes it infeasible to
estimate the covariate-specific mean E(Y | X = x) nonparametrically. Instead,
we need to rely on a lower-dimensional regression model. As a result, we can
only hope for local efficiency when the regression model is correctly specified.
This brings us to the more serious issue of robustness: a wrong model for the
outcome-covariate relationship could not only fail to improve efficiency but also
introduce bias, making information-borrowing counterproductive.

The ideal approach is to develop a robust system that requires only a working
model for the outcome-covariate relationship. Such a system should improve effi-
ciency when the model is correct, while still yielding valid results if the model is
misspecified. In current semiparametric literature (Bickel et al., 1993), this type
of robustness is typically achieved by combining auxiliary data for efficiency
gain with a simple, standard estimator to guard against bias. For example, in a
randomized trial, the inference of E(Ỹ | Z) — with Ỹ representing the response
and Z the randomized group — can be made more efficient by adjusting for
baseline covariates X through a working model. Any bias introduced by mis-
specification of the working model can be corrected by the unadjusted estimator
based on Ỹ and Z alone (Tsiatis et al., 2008; Benkeser et al., 2021). In this case,
with Y = (Ỹ , Z), the additional information comes not from the distribution
of X but from the fact that Z ⊥⊥ X (an aspect of Y -X relationship) due to
randomization. Similar independence conditions underlie most doubly robust
estimators in missing data problems (Robins, Rotnitzky and Zhao, 1994, 1995).

Our problem is fundamentally different. We are agnostic about the Y -X re-
lationship but rather focus on any structure in the distribution of the latter.
Such a structure can come in the form of exact knowledge (e.g., age distribution
from census data), a parametric model with unknown parameters, or even qual-
itative features like independence among components, such as genetic versus
environmental factors (Chatterjee, Kalaylioglu and Carroll, 2005).

To address this new problem, we return to the first principles of semipara-
metric inference (Bickel et al., 1993). Given a target estimand for the outcome,
we first derive its theoretical efficient score by projecting a standard estimating
function onto the joint tangent space of the outcome and covariates. This ef-
ficient score is then approximated under a working regression model and used
as an improved estimating function. To ensure robustness, we modify the es-
timating function so that it remains centered even when the working model is
misspecified.
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2. General theory

2.1. Set-up

Consider estimating a d-dimensional parameter θ ≡ θ(PY ) ∈ Rd, where PY is
the probability measure of Y belonging to some model MY . In the previous
example, θ = PY Y and MY is the nonparametric model M0

Y . From here on,
we use Qf to denote the expectation of function f under a generic probability
measure Q. In addition, let L2(Q) and L0

2(Q) denote the space of Q-square
integrable functions and its subspace of mean-zero ones, respectively.

Without covariates, suppose that we can estimate θ using the Y -sample alone
through a d-dimensional estimating function ψ(Y ; θ) satisfying PY ψ(·; θ0) = 0,
where θ0 is the true value of θ. We can thus obtain a consistent initial esti-
mator θ̂init by solving Pnψ(Y ; θ̂init) ≈ 0. Mild regularity conditions guarantee
that θ̂init is regular and asymptotically linear with expansion n1/2(θ̂init − θ0) =
−V (θ0)−1n1/2Pnψ(Y ; θ0)+op(1), where V (θ) = ∂PY ψ(Y ; θ)/∂θ (van der Vaart,
1998, Ch. 5). This means that the influence function of θ̂init is −V (θ0)−1ψ(Y ; θ0),
whose second moment corresponds to the asymptotic variance of the estimator.
By standard theory, the most efficient estimator is the one with its influence
function lying in the tangent space HY , the closed linear span in L0

2(PY ) of all
score functions generated by perturbing PY within model MY (see, e.g., Bickel
et al., 1993, §3.2). As the influence function is a linear transform of the esti-
mating function, it suffices that ψ(Y ; θ0) ∈ HY component-wise. In the opening
example, the initial estimator PnY is derived from ψ(Y ; θ) = Y −θ, which is effi-
cient since ψ(Y ; θ0) ∈ HY = L0

2(PY ). Any inefficient estimating function can be
made efficient by projecting it orthogonally onto the tangent space HY (Bickel
et al., 1993, §3.3). The projection gains efficiency by removing the noise in the
score that is orthogonal to, and thus uncorrelated with, meaningful variations
in MY .

With concomitant X, the tangent space is no longer HY but needs to be
re-derived. Let PX denote the marginal probability measure of X constrained
in a model MX , with corresponding tangent space HX . Because MX represents
our knowledge about PX , it should be smaller than the nonparametric model
M0

X , so that HX �= L0
2(PX). With P denoting the joint measure of (Y,X), it is

then clear that P ∈ MY ∩MX .

2.2. Joint tangent space and efficient score

Let L0
2(PY |X) = {g ∈ L0

2(P) : E{g(Y,X) | X} = 0} and L0
2(PX|Y ) = {g ∈

L0
2(P) : E{g(Y,X) | Y } = 0}. The next lemma, proved in Section 5, obtains the

overall tangent space in a form amenable to projection operations. Let ⊕ denote
the orthogonal sum.

Lemma 1 (Tangent space). The tangent space for (Y,X) under MY ∩MX is

H =
{
L0

2(PY |X) ⊕HX

}
∩
{
L0

2(PX|Y ) ⊕HY

}
. (1)
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In particular, if MY = M0
Y and thus HY = L0

2(PY ), then H = L0
2(PY |X)⊕HX .

Use HX,⊥ and HY,⊥ to denote the orthocomplements of HX in L0
2(PX) and

HY in L0
2(PY ), respectively. Because L0

2(P) = L0
2(PY |X)⊕L0

2(PX) = L0
2(PX|Y )⊕

L0
2(PY ), the two intersecting spaces on the right hand side of (1) are just the or-

thocomplements of HX,⊥ and HY,⊥ in L0
2(P), respectively. As a result, projection

onto each space can be viewed as removing the noise under the corresponding
marginal model. To carry this out, we will need the following operations.

Definition 1. Define operator A : L2(PY ) → L2(PX) by Aa(X) = E{a(Y ) |
X} and thus its adjoint AT : L2(PX) → L2(PY ) by ATh(X) = E{h(X) | Y }.
Moreover, let ΠHX

and ΠHY
denote the projection operators onto HX and HY

in L2(PX) and L2(PY ), respectively.

Let Π(· | B) denote projection onto a subspace B in L0
2(P).

Lemma 2. Given a(Y ) ∈ L0
2(PY ) and h(X) ∈ L0

2(PX), we have that

Π
{
a(Y ) | L0

2(PY |X) ⊕HX

}
= a(Y ) − (IX − ΠHX

)Aa(X),
Π
{
h(X) | L0

2(PX|Y ) ⊕HY

}
= h(X) − (IY − ΠHY

)ATh(Y ),

where IX and IY are the identity operators in L2(PX) and L2(PY ), respectively.

Proof. For the first result,

Π
{
a(Y ) | L0

2(PY |X) ⊕HX

}
=Π

{
a(Y ) | L0

2(PY |X)
}

+ Π {a(Y ) | HX}
=a(Y ) − Π

{
a(Y ) | L0

2(PX)
}

+ Π
[
Π
{
a(Y ) | L0

2(PX)
}
| HX

]
=a(Y ) −Aa(X) + ΠHX

Aa(X)
=a(Y ) − (IX − ΠHX

)Aa(X),

where we have used Π
{
a(Y ) | L0

2(PX)
}

= Aa(X). The other result follows sim-
ilarly.

Assume without loss of generality that ψ(Y ; θ0) ∈ HY (otherwise we can
always project it onto HY first). We can improve it in stages by first computing
ψ(1)(Y,X; θ0) = Π

{
ψ(Y ; θ0) | L0

2(PY |X) ⊕HX

}
component-wise. By Lemma 2,

ψ(1)(Y,X; θ0) = ψ(Y ; θ0) − (IX − ΠHX
)Aψ(·; θ0)(X). (2)

This will be our efficient score if MY = M0
Y (see remark below (1)). Otherwise,

we can further project ψ(1)(Y ; θ0) onto L0
2(PX|Y )⊕HY , then back to L0

2(PY |X)⊕
HX , and so forth. That is, for j = 1, 2, . . ., compute

ψ(2j)(Y,X; θ0) = Π
{
ψ(2j−1)(Y,X; θ0) | L0

2(PX|Y ) ⊕HY

}
and ψ(2j+1)(Y,X; θ0) = Π

{
ψ(2j)(Y,X; θ0) | L0

2(PY |X) ⊕HX

}
. (3)
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The iteration will converge to the efficient score Π {ψ(Y ; θ0) | H}. However, if
there is no structure to MX , we have that HX = L0

2(PX) so that ΠHX
= IX .

Consequently, ψ(Y ; θ0) will simply stay the same through (3) and no efficiency
will be gained. The next theorem shows how to carry out the iteration in (3) in
general.

Theorem 1 (Efficient score). If MY = M0
Y , then ψ(1)(Y,X; θ0) is the efficient

score for θ. Otherwise, let κ(1)(X; θ0) = (IX − ΠHX
)Aψ(·; θ0)(X). Then the

projections in (3) are given by ψ(2j)(Y,X; θ0) = ψ(2j−1)(Y,X; θ0) + κ(2j)(Y ; θ0)
and ψ(2j+1)(Y,X; θ0) = ψ(2j)(Y,X; θ0) − κ(2j+1)(X; θ0), where

κ(2j)(Y ; θ0) = (IY − ΠHY
)ATκ(2j−1)(·; θ0)(Y ),

and κ(2j+1)(X; θ0) = (IX − ΠHX
)Aκ(2j)(·; θ0)(X). (4)

Hence for k = 1, 2, . . ., we have that

P

{
ψ(k)(·, ·; θ0)⊗2

}
= P

{
ψ(k−1)(·, ·; θ0)⊗2

}
− P

{
κ(k)(·; θ0)⊗2

}
, (5)

where ψ(0)(Y,X; θ0) = ψ(Y ; θ0) and v⊗2 = vvT for any vector v. Moreover,
P
{
κ(k+1)(·; θ0)⊗2} ≤ P

{
κ(k)(·; θ0)⊗2}, where two symmetric matrices M1 ≤

M2 means that M2−M1 is nonnegative definite. Finally, ‖ψ(k)(·, ·; θ0)−Π{ψ(·; θ0) |
H}‖L2(P) → 0 as k → ∞, where ‖ · ‖ denotes the L2(P) norm.

Proof. To establish the iteration formulas, observe that, inductively,

ψ(2j−2)(Y,X; θ0) ∈ L0
2(PX|Y ) ⊕HY and ψ(2j−1)(Y,X; θ0) ∈ L0

2(PY |X) ⊕HX .

As a result, only the newly added κ(2j−1)(X; θ0) and κ(2j)(Y ; θ0) require pro-
jections through Lemma 2, hence (4). The details are explained in Section 5.
Next, (5) follows by the Pythagorean rule. The inequality P{κ(k+1)(·; θ0)⊗2} ≤
P{κ(k)(·; θ0)⊗2} is a result of the projection operations in (4). The L2(P)-conver-
gence of ψ(k) follows by Theorem 1 of Halperin (1962).

Remark 1. By Theorem 1, each iteration leads to a more efficient score, cul-
minating in the semiparametric efficient one. Moreover, because the iterations
amount to recursive projections between two subspaces, spatial intuition sug-
gests that the convergence rate is geometrically fast, with each projection shrink-
ing the distance by the cosine of the angle between the projectee and the target
space. More formally, let H⊥

1 and H⊥
2 denote the orthocomplements of H in

L0
2(PX|Y )⊕HY and L0

2(PY |X)⊕HX , respectively. We show in the Supplemen-
tary Material (Mao, 2024) that

‖ψ(k)(·, ·; θ0) − Π{ψ(·; θ0) | H}‖L2(P) ≤ c exp (−Mk) for some c > 0, (6)

where M = inf{− log{|E(h1h2)|} : ‖hj‖L2(P) ≤ 1, hj ∈ H⊥
j , j = 1, 2} ∈ R+

and plays the role of the negative log of the “cosine of the angle” between the
two subspaces. In the case with MY = M0

Y , we have that H⊥
1 = {0} so that

M = ∞. Then (6) confirms that the first-step estimator (k = 1) achieves the
efficient score.
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In the opening example, the efficient score for θ is ψ(1)(Y,X; θ0) = Y − θ0 −
{μ(X)− θ0 −ΠHX

μ(X)}, where μ(X) = E(Y | X) is the true age-specific mor-
tality rate. For generality, suppose the age group distribution is not necessarily
known exactly but only up to a model MX indexed by parameter γ, that is,
P(X = x) = px(γ). Then it can be shown easily that this efficient influence
is achieved by θ̂adj =

∑
x px(γ̂){PnY I(X = x)}/{PnI(X = x)}, where γ̂ is

any efficient estimator of γ. Straightforwardly, E{ψ(1)(Y,X; θ0)2} = E{var(Y |
X)}+var{ΠHX

μ(X)}. Compared with the variance of the θ̂adj in Section 1, the
extra term var{ΠHX

μ(X)} reflects the cost of not knowing PX exactly but only
up to MX (equivalently the cost of estimating γ). The term vanishes, of course,
if we do know PX exactly so that HX = {0}.

2.3. Robust augmented estimation

To apply Theorem 1, we need to know, or at least be able to approximate,
operators A and AT, which involve the yet unspecified relationship between Y
and X. Let M∗

Y |X be a working model for PY |X , the conditional measure of Y
given X, indexed by a parameter ξ. We can then calculate Aψ(·; θ)(X) in (2)
by μ(X; θ, ξ) = E∗{ψ(Y ; θ) | X; ξ}, where E∗(· | X; ξ) denotes the conditional
mean under M∗

Y |X . To compute ψ(1), it is tempting to follow its form by taking
ψ(1)∗(Y ; θ, ξ) = ψ(Y ; θ) − {μ(X; θ, ξ) − Π̂HX

μ(X; θ, ξ)}, where Π̂HX
is some

empirical approximation to ΠHX
. This, however, leaves open the possibility that

Pψ(1)∗(Y ; θ0, ξ) �= 0 for any ξ due to Pμ(X; θ0, ξ) �= 0 under a wrong M∗
Y |X .

For robustness, we need to ensure that the subtracted term in the brackets is
always centered. The following lemma provides a solution.

Lemma 3. Given μ(X; θ, ξ) ∈ L2(PX), let ÊMX
μ(X; θ, ξ) be an MX-efficient

estimator of Pμ(X; θ, ξ). Then

n1/2(Pn − ÊMX
)μ(X; θ, ξ)

=n1/2Pn {μ(X; θ, ξ) − Pμ(X; θ, ξ) − ΠHX
μ(X; θ, ξ)} + op(1). (7)

Proof. As a regular estimator of PXμ(X; θ, ξ), Pnμ(X; θ, ξ) has influence func-
tion μ(X; θ, ξ) − Pμ(X; θ, ξ). Then any efficient estimator must have influence
function ΠHX

{μ(X; θ, ξ) − Pμ(X; θ, ξ)} = ΠHX
μ(X; θ, ξ) (Bickel et al., 1993,

§3.3). Combine the two results to obtain (7).

Therefore, ÊMX
μ(X; θ, ξ) plays the dual role of centering Pnμ(X; θ, ξ) and

achieving the desired projection in asymptotic expansion. To interpret the left
hand side of (7), note that it is a difference between the empirical and MX -
based estimators of PXμ(X; θ, ξ), which can be considered as “noise” in light of
the model.

Using Lemma 3, we can now construct a one-step estimator that is always
consistent and asymptotically normal and that achieves the score ψ(1) when
PY |X ∈ M∗

Y |X . This is done essentially by replacing the subtracted term on the
right hand side of (2) with the left hand side of (7). For a rigorous exposition,



4646 L. Mao

we need the following regularity conditions, most of which are standard in Z-
estimation (van der Vaart and Wellner, 1996, Ch. 3.3). Assume that ξ belongs
to some metric space (Ξ, ρ).

(C1) (Consistency): θ̂init →p θ0 and ρ(ξ̂, ξ∗) →p 0 for some ξ∗ ∈ Ξ. The limit
ξ∗ is equal to the true parameter ξ0 if PY |X ∈ M∗

Y |X .
(C2) (Donskerness): There exists δ > 0 such that both {ψ(·; θ) : ||θ− θ0|| < δ}

and {μ(·; θ; ξ) : ||θ−θ0||+ρ(ξ, ξ∗) < 2δ} are P-Donsker, where || · || denotes
the Euclidean norm.

(C3) (L2-Continuity): As θ → θ0 and ρ(ξ, ξ∗) → 0, we have that

‖ψ(·; θ) − ψ(·; θ0)‖L2(P) → 0 and ‖μ(·; θ, ξ) − μ(·; θ0, ξ
∗)‖L2(P) → 0.

(C4) (Uniformity): The expansion (7) holds uniformly on {(θ, ξ) : ||θ − θ0|| +
ρ(ξ, ξ∗) < 2δ}.

(C5) (Nonsingularity): V (θ0) = ∂Pψ(Y ; θ)/∂θ|θ=θ0 is nonsingular.

Theorem 2 (One-step estimator). Define the one-step augmented estimating
function

ϕn(θ) = Pnψ(Y ; θ) − (Pn − ÊMX
)μ(X; θ̂init, ξ̂)

and let θ̂ be such that ϕn(θ̂) = op(n−1/2). Then under MY ∩MX and (C1)–(C5),

n1/2(θ̂ − θ0) = −n1/2V (θ0)−1Pn

[
ψ(Y ; θ0)−

{μ(X; θ0, ξ
∗) − Pμ(·; θ0, ξ

∗) − ΠHX
μ(X; θ0, ξ

∗)}
]

+ op(1). (8)

In MY ∩ MX ∩ M∗
Y |X , the influence function on the right hand side of (8)

reduces to
−V (θ0)−1ψ(1)(Y,X; θ0),

which is the efficient influence if MY = M0
Y .

Remarkably, the asymptotic distribution of θ̂ is unaffected by θ̂init and ξ̂
apart from their respective consistency as required in (C1). This is yet expected
of an augmented estimator whose validity does not depend on the augmen-
tation term (see, e.g., Tsiatis, 2006, §10.2). We can thus use (8) to construct
a robust sandwich-type variance estimator v̂ar(θ̂) = n−1V̂ (θ̂)−1Pn[{ψ(Y ; θ̂) −
κ̂(1)(X; θ̂, ξ̂)}⊗2]V̂ (θ̂)T

−1
, where V̂ (θ) = ∂Pnψ(Y ; θ)/∂θ and κ̂(1)(X; θ, ξ) =

μ(X; θ, ξ) − Pnμ(·; θ, ξ) − Π̂HX
μ(X; θ, ξ), with Π̂HX

denoting some empirical
approximation to ΠHX

.
By the same principle, we can construct augmented estimators based on the

ψ(k) (k = 2, 3, . . .) inductively using (4) (needed only when MY �= M0
Y ). The

workflow is detailed in Section 5. Under MY ∩MX , each step-k estimator θ̂(k)

is consistent and asymptotically linear with robustly estimable variance. When
M∗

Y |X is true, the sequence of estimators gain increasing efficiency in the sense
of Theorem 1, achieving local efficiency as k → ∞.
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3. Applications

3.1. Covariates following a parametric model

Suppose that MX consists of a parametric family of distributions, i.e.

MX = {PX : dPX/dη = p(·; γ), γ ∈ Γ ⊂ Rm} (9)

with some dominating measure η. To construct the one-step estimator, let γ̂
denote the maximum likelihood estimator (MLE) of parameter γ. It is then
clear that the efficient estimator for Pμ(X; θ, ξ) is

ÊMX
μ(X; θ, ξ) =

∫
μ(x; θ, ξ)p(x; γ̂)dη(x), (10)

to be evaluated by, e.g., numerical or Monte-Carlo integration. To see the effi-
ciency, recall that by standard theory, the influence function of γ̂ is I−1

γ l̇γ(X),
where l̇γ(X) and Iγ are the score function and Fisher information for γ, respec-
tively. Proceeding heuristically, we have that

n1/2{ÊMX
μ(X; θ, ξ) − Pμ(·; θ, ξ)}

=
∫

μ(x; θ, ξ)n1/2{p(x; γ̂) − p(x; γ)}dη(x)

=
∫

μ(x; θ, ξ)l̇γ(x)p(x; γ)dη(x)n1/2(γ̂ − γ) + op(1)

=P{μ(·; θ, ξ)l̇γ(·)T}I−1
γ n1/2Gn l̇γ(X) + op(1),

where Gn = n1/2(Pn−P). Hence the influence function is indeed ΠHX
μ(X; θ, ξ),

given that HX is the linear span of l̇γ(X) (see Example 2 of Tsiatis, 2006, Ch.
2). In this case, the uniformity condition (C4) holds so long as the model p(·; γ)
is sufficiently smooth. It is also straightforward to estimate the projection by

Π̂HX
μ(X; θ, ξ) = Pn

{
μ(·; θ, ξ)l̇γ̂(·)T

} [
Pn

{
l̇γ̂(·)⊗2}]−1

l̇γ̂(X). (11)

We can now use (10) and (11) to construct ϕn(θ) and estimate the variance of
the resulting θ̂. Write V = V (θ0) and μ(X) = E{ψ(Y ; θ0) | X}. The next result
follows easily from (5).

Proposition 1 (Efficiency gain by parametric covariates). With MX defined
in (9), if M∗

Y |X is correct, then

lim
n→∞

[
nV {var(θ̂init) − var(θ̂)}V T

]
=P

{
μ(X)⊗2}− P

{
μ(X)l̇γ(X)T

}
I−1
γ P

{
l̇γ(X)μ(X)T

}
.

The limit attains maximum P{μ(X)⊗2} if and only if P{μ(X)l̇γ(X)T} = 0 and
minimum 0 if and only if μ(X) = Bl̇γ(X) for some matrix B ∈ Rd×m.
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Fig 1. True quintic curve of μ(x) = Pr(Y = 1 | X = x) versus quartic and linear approxima-
tions.

Example 1 (One Gaussian covariate). In the opening example, suppose that,
instead of a discrete X with known distribution, we have a continuous one
following N(τ, σ2) with unknown parameters. To gain efficiency over θ̂init =
PnY , with ψ(Y ; θ) = Y −θ, we use a working model M∗

Y |X to compute μ(X; ξ) =
E∗(Y | X; ξ), where we drop a constant θ as is obviously allowed in Lemma 3.
With γ = (τ, σ2), compute ÊMX

μ(X; ξ) =
∫
μ(x; ξ)σ̂−1φ{(x− τ̂)/σ̂}dx, where

φ(·) is the density function of the standard normal distribution. Then the one-
step, and also the locally efficient, estimator is just θ̂ = PnY − {Pnμ(X; ξ̂) −
ÊMX

μ(X; ξ̂)}. Moreover, using the score vector l̇γ(X) = {X−τ, (X−τ)2−σ2}T

we can calculate (11) explicitly for robust variance estimation. See Section 5 for
details.

A simulation study is described below, in which the true μ(X; ξ0) is a logistic
function of a 5-degree polynomial of X. With correct or near-correct working
models, θ̂ gains as much as 25% extra efficiency over PnY . Meanwhile, gross
misspecifications, such as fitting a straight line through the quintic curve, incur
no apparent loss in accuracy or precision.

Specifically, we generated X ∼ N(τ, σ2) with τ = 0 and σ2 = 1, and Y from
the quintic logistic regression model

Pr(Y = 1 | X; ξ0) = exp(ξ01 + ξ02X + ξ03X
2 + ξ04X

3 + ξ05X
4 + ξ06X

5)
1 + exp(ξ01 + ξ02X + ξ03X2 + ξ04X3 + ξ05X4 + ξ06X5) ,

(12)
where ξ0 = (−1,−1, 3, 1.4,−0.8,−0.3)T. Under this set-up, we have that θ0 =
0.508. We considered three working models for M∗

Y |X : (a) a correct quintic lo-
gistic model; (b) a wrongly specified quartic, i.e., 4-degree polynomial, logistic
model; and (c) a wrongly specified linear logistic model. Fig 1 shows approx-
imations of the true μ(x) = Pr(Y = 1 | X = x) by the latter two models.
The quartic function is visibly inadequate, though it does capture some rough
patterns of true curve. In comparison, the linear function completely misses
important variations in the curve.



Using information on covariate distribution 4649

Table 1

Simulation results for efficient estimation of Pr(Y = 1) with a Gaussian covariate.

Naive Locally efficient
n Model Bias SE SEE CP Bias SE SEE CP RE

200 + 0.000 3.52 3.53 0.953 −0.001 3.16 3.11 0.943 1.24
− 0.001 3.55 3.53 0.950 0.001 3.26 3.21 0.943 1.19
× 0.000 3.53 3.53 0.954 0.000 3.53 3.53 0.953 1.00

500 + 0.000 2.23 2.23 0.947 −0.001 1.99 1.97 0.949 1.26
− 0.000 2.25 2.23 0.943 0.000 2.08 2.06 0.945 1.18
× 0.000 2.24 2.23 0.946 0.000 2.24 2.23 0.947 1.00

1000 + 0.000 1.59 1.58 0.947 0.000 1.42 1.40 0.946 1.25
− 0.000 1.58 1.58 0.950 0.000 1.46 1.44 0.949 1.17
× 0.000 1.58 1.58 0.952 0.000 1.58 1.58 0.951 1.00

2000 + 0.000 1.11 1.12 0.952 0.000 1.00 0.98 0.947 1.25
− 0.000 1.12 1.12 0.950 0.000 1.03 1.02 0.948 1.16
× 0.000 1.11 1.12 0.950 0.000 1.11 1.12 0.949 1.00

+, correct quintic model; −, misspecified quartic model; ×, misspecified linear model. SE,
empirical standard error of the estimator; SEE, empirical average of the standard error

estimator; CP, empirical coverage rate of the 95% confidence interval. RE, relative efficiency,
i.e., inverse ratio of the empirical variance, comparing the locally-efficient to the naive

estimator. Each entry is based on 10,000 replicates.

Under each working model, we estimated its parameters ξ by standard logis-
tic regression, and then used the procedures described above to construct the
corresponding θ̂ and its robust variance. This was repeated on simulated sam-
ples of size n = 200, 500, 1000, and 2000. The results for both θ̂ and the naive
θ̂init = PnY are summarized side by side in Table 1. First, it is worth noting
that all estimators are virtually unbiased, including the linear logistic model
which grossly misspecifies the outcome-covariate relationship. In addition, the
robust standard error estimators and associated confidence intervals also appear
to be accurate, especially for the larger sample sizes. By successfully drawing
on information about X, a correct working model allows θ̂ to gain as much as
25% extra efficiency over the naive θ̂init. Interestingly, even the wrong quartic
model results in substantial improvement, though to a lesser extent. Since the
linear model is completely wrong, it fails to gain any efficiency over θ̂init, but it
does not lose any either.

3.2. Covariates following a conditional model

Let X = (X·1, X·2). Suppose X·1 given X·2 follows a parametric model but the
distribution of X·2 is unspecified. This can be suitable setup when X·1 is some
exposure, X·2 is a set of baseline predictors, and both affect the outcome Y .
More formally, let

MX = {PX = PX·1|X·2 × PX·2 :dPX·1|X·2(x1 | x2) = p(x1 | x2; γ)dη(x1),
γ ∈ Γ ⊂ Rm, and PX·2 ∈ M0

X·2}, (13)

with some dominating measure η, where PX·1|X·2 and PX·2 are the conditional
law of X·1 given X·2 and the marginal law of X·2, respectively.
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Let γ̂ denote an efficient estimator (e.g., MLE) of γ. By similar intuition
to (10), we can show that an efficient estimator for μ(X; θ, ξ) is

ÊMX
μ(X; θ, ξ) = Pn

∫
μ(x1, X·2; θ, ξ)p(x1 | X·2; γ̂)dη(x1), (14)

that is, μ(X; θ, ξ) weighted by the model-based conditional distribution of X·1
given X·2, and then averaged by the empirical distribution of the latter.

To show that (14) is indeed efficient, note that (13) entails a tangent space

HX = [l̇γ(X·1 | X·2)] ⊕ L0
2(PX·2),

where [l̇γ(X·1 | X·2)] is the linear span of the conditional score l̇γ(X·1 | X·2) =
∂ log p(X·1 | X·2; γ)/∂γ. As a result, the projection is given by

ΠHX
μ(X; θ, ξ) = Π

{
μ(X; θ, ξ) | [l̇γ(X·1 | X·2)]

}
+ Π

{
μ(X; θ, ξ) | L0

2(PX·2)
}

= {Pμ(·; θ, ξ)l̇γ(· | ·)T}I−1
γ l̇γ(X·1 | X·2)

+ μ2(X·2; θ, ξ, γ) − Pμ(·; θ, ξ),

where Iγ = Pl̇γ(X·1 | X·2)⊗2 and μ2(X·2; θ, ξ, γ) = E{μ(X; θ, ξ) | X·2; γ}.
On the other hand, (14) gives

n1/2{ÊMX
μ(X; θ, ξ) − Pμ(X; θ, ξ)}

=Pn

∫
μ(x1, X·2; θ, ξ)n1/2{p(x1 | X·2; γ̂) − p(x1 | X·2; γ)}dη(x1)

+ n1/2Pn

{∫
μ(x1, X·2; θ, ξ)p(x1 | X·2; γ)dη(x1) − Pμ(·; θ, ξ)

}

=P

∫
μ(x1, ·; θ, ξ)l̇γ(x1 | ·)Tp(x1 | ·; γ)dη(x1)n1/2(γ̂ − γ)

+ Gnμ2(X·2; θ, ξ, γ) + op(1)
={Pμ(·; θ, ξ)l̇γ(· | ·)T}I−1

γ Gn l̇γ(X·1 | X·2) + Gnμ2(X·2; θ, ξ, γ) + op(1)
=GnΠHX

μ(X; θ, ξ) + op(1),

where we have used the fact that n1/2(γ̂ − γ) = I−1
γ Gn l̇γ(X·1 | X·2). For robust

variance estimation, we can approximate the influence function by

Π̂HX
μ(X; θ, ξ) = {Pnμ(·; θ, ξ)l̇γ̂(· | ·)T}

[
Pn l̇γ̂(· | ·)⊗2]−1

l̇γ̂(X·1 | X·2)
+ μ2(X·2; θ, ξ, γ̂) − Pnμ2(·; θ, ξ, γ̂). (15)

Combining (14) and (15) allows us to construct θ̂ and its robust variance esti-
mator using Theorem 2.

Write V = V (θ0), μ(X) = E{ψ(Y ; θ0) | X}, and μ2(X·2) = E{μ(X) | X·2}.
The efficiency gain by θ̂ can be quantified similarly to Proposition 1.
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Proposition 2 (Efficiency gain by a partial model on covariates). With MX

defined in (13), if M∗
Y |X is correct, then

lim
n→∞

[
nV {var(θ̂init) − var(θ̂)}V T

]
=P

{
μ(X)⊗2}− P

{
μ(X)l̇γ(X·1 | X·2)T

}
I−1
γ P

{
l̇γ(X·1 | X·2)μ(X)T

}
− P

{
μ2(X·2)⊗2} .

The limit attains maximum P{μ(X)⊗2} if and only if P
{
μ(X)l̇γ(X·1 | X·2)T

}
=

0 and μ2(X·2) ≡ 0, and minimum 0 if and only if μ(X) = Bl̇γ(X·1 | X·2)+b(X·2)
for some matrix B ∈ Rd×m and some b ∈ L0

2(PX·2)⊗d.
Example 2 (A logistic covariate model). Let X·1 = 1, 0 be a binary exposure
following a logistic regression model against a vector of predictors X·2:

Pr(X·1 = 1 | X·2; γ) = exp(γTX·2)
1 + exp(γTX·2)

, (16)

where we assume X·2 includes 1 as a component to allow for an intercept. As
in Example 1, consider a binary Y with an initial empirical estimator θ̂init =
PnY , so that ψ(Y ; θ) = Y − θ. Under a working model M∗

Y |X , e.g., another
binary regression model for Y against X = (X·1, X·2), the projectee of interest
is μ(X·1, X·2; ξ) = E∗(Y | X; ξ). Let p(X·2; γ̂) = Pr(X·1 = 1 | X·2; γ̂) in (16)
and apply it to (14). We find that

ÊMX
μ(X; ξ) = Pn [p(X·2; γ̂)μ(1, X·2; ξ) + {1 − p(X·2; γ̂)}μ(0, X·2; ξ)]

and that, after some algebraic manipulation, the locally efficient estimator has
the nice form

θ̂ = Pn

[
Y − {X·1 − p(X·2; γ̂)}

{
μ(1, X·2; ξ̂) − μ(0, X·2; ξ̂)

}]
. (17)

We use this setup to explore how the results hold up for a possibly high-
dimensional X·2 in simulations. By (17), we only need two classification models
to calculate θ̂: one for p(X·2; γ̂), the class probability of X·1 = 1 given X·2;
the other for μ(X·1, X·2; ξ̂), the class probability of Y = 1 given X. In the
Supplementary Material (Mao, 2024), we consider two logistic models for X·1
and Y with a p-dimension of X·2, where p = 10, 50, and 500. Under sample size
n = 200, 500, and 1000, we use L1-regularized logistic regression to perform the
classifications. The resulting θ̂ has a clear efficiency gain over the naive estimator
when p << n. While its advantage diminishes as p becomes comparable to
or larger than n, the augmented estimator remains unbiased, suggesting its
robustness even in high-dimensional settings (see Section S2.1 of Supplementary
Material (Mao, 2024)).

3.3. Mutually independent covariates

Suppose that X = (X·1, . . . , X·p) with independent components, i.e.,

MX = {PX = PX·1 × · · · × PX·p : PX·j ∈ M0
X·j , j = 1, . . . , p}, (18)
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where PX·j is the marginal law of X·j and M0
X·j

the corresponding nonpara-
metric model (no restriction on the component-wise distributions). Due to mu-
tual independence, a sample of (X·1, . . . , X·p) is equivalent to p independent
samples of the X·j (j = 1, . . . , p). Intuitively, the expectation of μ(X; θ, ξ) =
μ(X·1, . . . , X·p; θ, ξ) should be efficiently estimated by a p-sample U -statistic.

Lemma 4. For MX in (18), HX = L0
2(PX1) ⊕ · · ·L0

2(PXp). Hence,

ΠHX
μ(X; θ, ξ) =

p∑
j=1

μj(X·j ; θ, ξ),

where μj(xj ; θ, ξ) = E{μ(X·1, . . . , X·,j−1, xj , X·,j+1 . . . , X·p; θ, ξ)}. In addition,
an efficient estimator for Pμ(X; θ, ξ) is

ÊMX
μ(X; θ, ξ) = (PX·1,n × · · · × PX·p,n)μ(X; θ, ξ), (19)

where PX·j ,n denotes the empirical measure based on the n-sample of X·j.

Proof. The form of H is a simple consequence of the product measure. The
projection formula follows immediately from Hájek (1968). That the right hand
side of (10) yields the efficient influence

∑p
j=1 μj(X·j ; θ, ξ) can be proved di-

rectly using Theorem 11.2 of van der Vaart (1998). The details can be found in
Section 5.

With (19), the condition (C4) is implied by the Donskerness of μ(X; θ, ξ)
in (C2) by standard U -process theory (Arcones and Giné, 1993). We can esti-
mate the projection by Π̂HX

μ(X; θ, ξ) =
∑p

j=1 μ̂j(X·j ; θ, ξ), where μ̂j(xj ; θ, ξ) =
Pnμ(X·1, . . . , X·,j−1,

xj , X·,j+1 . . . , X·p; θ, ξ). This along with (19) will allow us to construct θ̂ and
estimate its variance.

Proposition 3 (Efficiency gain by independent covariates). With MX defined
in (18), if M∗

Y |X is correct, then

lim
n→∞

[
nV {var(θ̂init) − var(θ̂)}V T

]
= P

{
μ(X)⊗2}−

p∑
j=1

P
{
μj(X·j)⊗2} ,

where μj(xj) = E{μ(X·1, . . . , X·,j−1, xj , X·,j+1 . . . , X·p)}. The limit attains max-
imum P{μ(X)⊗2} if and only if the μj(X) ≡ 0, and minimum 0 if and only if
μ(X) =

∑p
j=1 μj(X·j).

Example 3 (Two independent covariates). Let Y be a trinomial random vari-
able denoting a diploid genotype in {GG,Gg, gg}, with distribution following
the Hardy–Weinberg law (basically assuming the two alleles are independent)
(Edwards, 2008). Consider θ = Pr(Y = gg) = q2, where q is the allele frequency
of g. The maximum likelihood estimator of q is q̂init = 2−1{Pn(Y1 − Y2) + 1},
where Y1 = I(Y = gg) and Y2 = I(Y = GG). Let X·1 and X·2 be two indepen-
dent predictors of Y . We can then compute χk(X; ξ) = E∗(Yk | X; ξ) (k = 1, 2)
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by, e.g., a multinomial logistic regression. With details relegated to Section 5,
we obtain the one-step estimator q̂ = q̂init−2−1(Pn−Un){χ1(X; ξ̂)−χ2(X; ξ̂)},
where Unh(X) = (PX·1,n × PX·2,n)h(X·1, X·2). Then θ̂ = q̂2.

Because the distribution of Y is constrained by a one-parameter model, there
is potential gain in the subsequent step-k estimators, whose calculations are
derived in Section 5. In a simulation study described below, however, we see
efficiency gain plateau at θ̂ (somewhat expected given Remark 1). But if we
start with an inefficient estimator, θ̂(2) can still improve upon θ̂, mainly by
regaining the efficiency initially lost in the outcome space.

Specifically, we generated X·j ∼ N(0, 1) and Y from the following model:

Pr(Y1 = 1 | X; ξ0) = Φ(ξT
01X̃)

1 + Φ(ξT
01X̃) + Φ(ξT

02X̃)

and Pr(Y2 = 1 | X; ξ0) = Φ(ξT
02X̃)

1 + Φ(ξT
01X̃) + Φ(ξT

02X̃)
, (20)

where X̃ = (1, X·1, X·2, X·1X·2)T, Φ(·) is the cumulative distribution func-
tion of the standard normal distribution, ξ01 = (−1.35,−1,−1, 2)T, ξ02 =
(2.48, 1, 1,−1.5)T. This set-up yields Pr(Y1 = 1) = q2

0 = 0.16 and Pr(Y2 =
1) = (1 − q0)2 = 0.36 with q0 = 0.4. So the marginal Hardy–Weinberg model
holds.

Instead of (20), we used a trinomial logistic regression model for M∗
Y |X .

This means replacing the Φ(·) in (20) with exp(·) and thus gives rise to a rather
different model (as exp(·) amplifies rather than constrains large values of the
linear predictor). Then we used the procedures described earlier as well as in
Section 5.8 to compute θ̂(k) for k = 1, 2, 3. This was done with the HY -efficient
initial estimator θ̂init = q̂2

init and also the simple but inefficient estimator PnY1.
The simulation results with sample size n = 200, 500, 1000, and 2000 are sum-
marized in Table 2. The relative efficiencies of the different estimators with
reference to θ̂init are plotted in Fig 2. The sequence starting with θ̂init gains
about 20% extra efficiency at step 1, but plateaus thereafter. By contrast, the
one that starts with the inefficient PnY1, which is almost only half as efficient as
θ̂init, keeps improving until step 2, where the initial loss of efficiency is regained.
However, its eventual gain is slightly lower than that of the first sequence, likely
an artifact due to the misspecified M∗

Y |X . Simulations in the Supplementary
Material (Mao, 2024) confirm that an HY -inefficient initial estimator can gain
full efficiency under a correctly specified M∗

Y |X .

4. Discussions

Clearly, the extent of efficiency gain depends on the size of MX , which reflects
how restrictive the covariate model is. If MX is a singleton, meaning PX is
known exactly, the efficiency gain is maximized. At the other extreme, when
MX = M0

X—where no information about PX is available—no improvement
can be made. Yet another key factor is the alignment of the HY -efficient score
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Table 2

Simulation results for iterative augmented estimation of Pr(Y1 = 1) under a
Hardy-Weinberg model with two independent covariates.

Step 0: HY -efficient Step 0: HY -inefficient
n S Bias SE SEE CP RE Bias SE SEE CP RE

200 0 0.001 1.97 1.95 0.945 1.00 0.000 2.60 2.58 0.945 0.57
1 0.000 1.80 1.78 0.947 1.20 0.000 2.44 2.41 0.948 0.65
2 0.000 1.80 1.78 0.946 1.20 0.001 1.86 1.84 0.943 1.12
3 0.000 1.80 1.78 0.946 1.20 0.001 1.87 1.85 0.943 1.11

500 0 0.000 1.23 1.24 0.951 1.00 0.000 1.64 1.64 0.948 0.56
1 0.000 1.12 1.13 0.954 1.21 0.000 1.52 1.53 0.951 0.65
2 0.000 1.12 1.13 0.953 1.21 0.000 1.15 1.17 0.954 1.14
3 0.000 1.12 1.13 0.953 1.21 0.000 1.16 1.17 0.953 1.13

1000 0 0.000 0.88 0.88 0.948 1.00 0.000 1.17 1.16 0.950 0.57
1 0.000 0.81 0.80 0.947 1.20 0.000 1.09 1.09 0.951 0.65
2 0.000 0.81 0.80 0.947 1.20 0.000 0.83 0.83 0.947 1.13
3 0.000 0.81 0.80 0.947 1.20 0.000 0.84 0.83 0.947 1.12

2000 0 0.000 0.63 0.62 0.946 1.00 0.000 0.83 0.82 0.947 0.58
1 0.000 0.57 0.57 0.949 1.20 0.000 0.77 0.77 0.947 0.66
2 0.000 0.57 0.57 0.948 1.20 0.000 0.59 0.59 0.946 1.14
3 0.000 0.57 0.57 0.948 1.20 0.000 0.59 0.59 0.946 1.13

See note to Table 1. S, step; RE, relative efficiency with respect to the HY -efficient initial
estimator.

Fig 2. Empirical relative efficiency of step-k estimator θ̂(k) with respect to the HY -efficient
initial estimator based on 10,000 replicates. Solid line, starting with an HY -efficient initial
estimator; dotted line, starting with an HY -inefficient initial estimator.
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with the structure of HX . If the conditional mean of the former lies entirely
within the latter, meaning the initial estimator is already fully compatible with
MX , then there would be no residual noise to reduce, regardless of how restric-
tive MX might be. Lastly, the efficiency gain also depends on the strength of
the association between Y and X, and how well this relationship is captured by
M∗

Y |X . The stronger the association and the more accurately M∗
Y |X approxi-

mates it, the more information can be drawn from the covariates to improve the
outcome estimation.

The marginal inference of Y should be broadly understood as any inference
that is not conditioned on X, including inferences on the relationship between
its components. For example, with Y = (Ỹ , Z), the current framework can be
applied to the estimation in a restricted mean model E(Ỹ | Z) = θTZ, where θ
contains the regression coefficients of Z. More details can be found in Section 5.

The augmented estimator in Theorem 2 ensures robustness against misspec-
ification of M∗

Y |X , but not against misspecification of MX . In fact, if the true
distribution PX does not lie in MX , the bias in the estimating function ϕn(θ)
is given by the likely nonzero (P∗

X −PX)μ(X; θ0, ξ
∗) for some P∗

X ∈ MX . More-
over, this bias persists even when M∗

Y |X is correctly specified, because in general
P∗
Xμ(X; θ0, ξ

∗) �= 0 even though PXμ(X; θ0, ξ
∗) = 0. This means that the aug-

mented estimator is not doubly robust. On the other hand, if P∗
X is estimated

using (some version of) the MLE, as in all three examples in Section 3, it should
be the closest element in MX to PX in terms of the Kullback–Liebler (KL) di-
vergence. This allows us to bound the bias using this minimized KL divergence
via its relationship with the total variation distance between P∗

X and PX . Such
bounds are particularly useful if the estimating function is uniformly bounded
(as in all three examples). Some details are provided in Section 5.10.

Since the validity of the new estimator depends on the correctness of MX , it is
crucial that the covariate model be justifiable based on substantive knowledge.
In this paper we have assumed the model as given, and have provided only
simple examples to illustrate the technical derivation. Real applications may
involve more complex scenarios. One application we have in mind, for example,
is to use multiple quantitative imaging markers (e.g., those measuring fat or iron
content in the liver) to improve disease diagnosis. The fact that these markers
are obtained under strictly controlled conditions and by well-defined algorithms
often makes certain models (e.g., linear mixed effects models) a natural fit (see,
e.g., Hernando et al., 2023). While these more elaborate models present no new
theoretical challenges, their derivations and computations would be far more
involved than any of the examples in Section 3. A future study is needed to
explore them in greater depth.

In practice, covariates may not only exhibit complex relationships but also be
high-dimensional. Such scenarios are not fully addressed by the current theory,
which relies on first-order asymptotics under a fixed dimension. Our experimen-
tation in Example 2, however, suggests that an extension to high-dimensional
settings may be feasible. Given recent advances in double machine learning and
cross-fitting (see, e.g., Díaz et al., 2021), an appealing approach would be to
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build a nonparametric model for Y | X and solve it using methods like cross-
fitted targeted maximum likelihood estimation (TMLE) (van der Laan and Rose,
2018). If validated, these techniques could help automate variable and model
selection, thereby enabling efficiency gain in more complex, high-dimensional
contexts.

5. Proofs and technical details

5.1. Variance of θ̂adj in opening example

We want to show that

n1/2(θ̂adj − θ) →d N [0, E{var(Y | X)}] . (21)

Proof. Write p̂x = PnI(X = x) and μ(x) = E(Y | X = x). Then θ̂adj =∑
x pxp̂

−1
x PnY I(X = x) and θ =

∑
x pxμ(x). The left hand side of (21) is thus

n1/2
∑
x

px
{
p̂−1
x PnY I(X = x) − μ(x)

}
=n1/2

∑
x

pxp̂
−1
x {PnY I(X = x) − μ(x)PnI(X = x)}

=n1/2
∑
x

pxp̂
−1
x PnI(X = x) {Y − μ(x)}

=n1/2
∑
x

PnI(X = x) {Y−μ(x)}+n1/2
∑
x

(pxp̂−1
x − 1)PnI(X = x) {Y−μ(x)}

︸ ︷︷ ︸
Op(n−1/2)

=n1/2Pn {Y − μ(X)} + op(1),

with asymptotic variance

E
[
{Y − μ(X)}2

]
= E

(
E
[
{Y − μ(X)}2 | X

])
= E{var(Y | X)}.

This completes the proof.

5.2. Proof of Lemma 1

Let p0(y | x) denote the true conditional density of Y given X with respect
to some dominating measure ν and p0(x) the true marginal density of X with
respect to some dominating measure η. Then the joint density of Y,X with
respect to ν × η is p0(y, x) = p0(y | x)p0(x). For simplicity, we assume that all
scores are generated by taking pointwise derivatives of the log-density functions
with respect to smoothly indexed parameters. For a fully general version based
on differentiation in the quadratic mean, see §3.3 of Bickel et al. (1993).

Given a joint score g ∈ H generated by g(y, x) = ∂ log{pε(y, x)}/∂ε|ε=0,
where {pε(y, x)} ⊂ MY ∩ MX is a one-dimensional submodel parametrized



Using information on covariate distribution 4657

by ε and passing through p0(y, x) at ε = 0. Let pε(x) =
∫
pε(y, x)dν(y) and

pε(y | x) = pε(y, x)/pε(x) denote the corresponding marginal density of X and
conditional density of Y | X, respectively. Since pε(y, x) = pε(y | x)pε(x), we
have that

g(y, x) = ∂ log{pε(y | x)}/∂ε|ε=0︸ ︷︷ ︸
∈L0

2(PY |X)

+ ∂ log{pε(x)}/∂ε|ε=0︸ ︷︷ ︸
∈HX

,

where the first containment can be seen by
∫
pε(y | x)dν(y) ≡ 1 and the second

follows as the implied marginal model {pε(x)} ⊂ MX . This shows that H ⊂
L0

2(PY |X) ⊕HX . By symmetry between Y and X, we thus have that

H ⊂
{
L0

2(PY |X) ⊕HX

}
∩
{
L0

2(PX|Y ) ⊕HY

}
.

To show the reverse containment, let a ∈ L0
2(PY |X) and h ∈ HX . Suppose

that the latter is generated by h(x) = ∂ log{pε(x)}/∂ε|ε=0 for some submodel
{pε(x)} ⊂ MX . If a(y, x) is uniformly bounded, then we can construct the joint
density

pε(y, x) = p0(y | x){1 + εa(y, x)}︸ ︷︷ ︸
conditional density for small ε

pε(x),

which generates the score ∂ log{pε(y, x)}/∂ε|ε=0 = a(y, x) + h(x). The uni-
form boundedness of a(y, x) can be relaxed since such functions are dense in
L0

2(PY |X). Therefore,

H ⊃ L0
2(PY |X) ⊕HX ⊃

{
L0

2(PY |X) ⊕HX

}
∩
{
L0

2(PX|Y ) ⊕HY

}
.

This completes the proof.

5.3. Details for proof of Theorem 1

We prove inductively that

ψ(2j)(Y,X; θ0) = Π
{
ψ(2j−1)(Y,X; θ0) | L0

2(PX|Y ) ⊕HY

}
= ψ(2j−1)(Y,X; θ0) + κ(2j)(Y ; θ0)

and ψ(2j+1)(Y,X; θ0) = Π
{
ψ(2j)(Y,X; θ0) | L0

2(PY |X) ⊕HX

}
= ψ(2j)(Y,X; θ0) − κ(2j+1)(X; θ0). (22)

To start, we show it holds for j = 1. Indeed,

ψ(2)(Y,X; θ0)

=Π
{
ψ(1)(Y,X; θ0) | L0

2(PX|Y ) ⊕HY

}
=Π

{
ψ(Y ; θ0) | L0

2(PX|Y ) ⊕HY

}
− Π

{
κ(1)(X; θ0) | L0

2(PX|Y ) ⊕HY

}
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=ψ(Y ; θ0) −
{
κ(1)(X; θ0) − (IY − ΠHY

)ATκ(1)(·; θ0)(Y )
}

=
{
ψ(Y ; θ0) − κ(1)(X; θ0)

}
+ (IY − ΠHY

)ATκ(1)(·; θ0)(Y )

=ψ(1)(Y,X; θ0) + κ(2)(Y ; θ0),

where the third equality follows by ψ(Y ; θ0) ∈ HY and Lemma 2. Likewise,

ψ(3)(Y,X; θ0)

=Π
{
ψ(2)(Y,X; θ0) | L0

2(PY |X) ⊕HX

}
=Π

{
ψ(1)(Y,X; θ0) | L0

2(PY |X) ⊕HX

}
+ Π

{
κ(2)(Y ; θ0) | L0

2(PY |X) ⊕HX

}
=ψ(1)(Y,X; θ0) +

{
κ(2)(Y ; θ0) − (IX − ΠHX

)Aκ(2)(·; θ0)(X)
}

=
{
ψ(1)(Y,X; θ0) + κ(2)(Y ; θ0)

}
− (IX − ΠHX

)Aκ(2)(·; θ0)(X)

=ψ(2)(Y,X; θ0) − κ(3)(X; θ0),

where the third equality follows by ψ(1)(Y,X; θ0) = Π{ψ(Y ; θ0) | L0
2(PY |X) ⊕

HX} ∈ L0
2(PY |X) ⊕ HX and Lemma 2. Now, suppose that (22) holds for any

particular j, we can use similar arguments to show that it also holds for (j+1).
This proves the result.

5.4. Proof of Theorem 2

With established regularity conditions on ψ(Y ; θ), such as those in Theorem
5.9 of van der Vaart (1998), it is easy to see that θ̂ is consistent because
||(Pn − ÊMX

)μ(X; θ̂init, ξ̂)|| →p 0 by (C2) and (C4). Therefore, we focus on
the asymptotic expansion in (8). Use Gn = n1/2(Pn − P) to denote the stan-
dardized empirical process. By (C1)–(C3) and θ̂ →p θ0, the following stochastic
continuity properties hold (see, e.g., van der Vaart and Wellner, 1996, Ch. 3.3):

Gn

{
μ(X; θ̂init, ξ̂) − ΠHX

μ(X; θ̂init, ξ̂)
}

= Gn {μ(X; θ0, ξ
∗) − ΠHX

μ(X; θ0, ξ
∗)}

+ op(1)
and Gnψ(Y ; θ̂) = Gnψ(Y ; θ0) + op(1), (23)

where the continuity of Gn on the projected class {ΠHX
μ(X; θ, ξ) : ||θ − θ0|| +

ρ(ξ, ξ∗) < 2δ} can be verified directly by tightness arguments.
By assumption,

op(1) = n1/2ϕn(θ̂)
= n1/2Pnψ(Y ; θ̂) − (Pn − ÊMX

)μ(X; θ̂init, ξ̂)
= n1/2Pnψ(Y ; θ̂)

− n1/2Pn

{
μ(X; θ̂init, ξ̂) − Pμ(X; θ̂init, ξ̂) − ΠHX

μ(X; θ̂init, ξ̂)
}

+ op(1)
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= Gnψ(Y ; θ̂) −Gn

{
μ(X; θ̂init, ξ̂) − ΠHX

μ(X; θ̂init, ξ̂)
}

+ n1/2Pψ(Y ; θ̂) + op(1)
= Gnψ(Y ; θ0) −Gn {μ(X; θ0, ξ

∗) − ΠHX
μ(X; θ0, ξ

∗)}
+ n1/2Pψ(Y ; θ̂) + op(1)

= Gnψ(Y ; θ0) −Gn {μ(X; θ0, ξ
∗) − ΠHX

μ(X; θ0, ξ
∗)}

+ V (θ0)n1/2(θ̂ − θ0) + op

(
1 + n1/2||θ̂ − θ0||

)
,

where the third equality follows by (C4), the fourth by PΠHX
μ(X; θ̂init, ξ̂) = 0

as a result of ΠHX
μ(X; θ, ξ) ∈ L0

2(PX) for all θ and ξ, and the fifth by (23). By
(C5), the above display implies that n1/2||θ̂ − θ0|| = Op(1) and that

n1/2(θ̂−θ0) = −V (θ0)−1Gn [ψ(Y ; θ0) − {μ(X; θ0, ξ
∗) − ΠHX

μ(X; θ0, ξ
∗)}]+op(1).

This proves (8). When PY |X ∈ M∗
Y |X , we have that μ(X; θ0, ξ

∗) = μ(X; θ0, ξ0) =
Aψ(·; θ0)(X) ∈ L0

2(PX). Thus the influence function becomes

− V (θ0)−1 [ψ(Y ; θ0) − {Aψ(·; θ0)(X) − PAψ(·; θ0)(X) − ΠHX
Aψ(·; θ0)(X)}]

= − V (θ0)−1 [ψ(Y ; θ0) − (IX − ΠHX
)Aψ(·; θ0)(X)]

= − V (θ0)−1ψ(1)(Y,X; θ0).

This completes the proof.

5.5. Details for step-k estimators

For projection back on the outcome space, we will need a working model to
implement AT. If M∗

Y |X specifies a class of densities p(y | x; ξ), then we can use
the Bayes rule to estimate ATh(y) by {Pnp(y | X; ξ)h(X)}/Pnp(y | X; ξ) for any
h(X) ∈ L2(PX). Likewise, we will need ÊMY

a(Y ) as an MY -efficient estimator
of Pa(Y ) for any a(Y ) ∈ L2(PY ) and an empirical Π̂HY

to approximate ΠHY
.

To initialize, let ϕ
(1)
n (θ) = ϕn(θ), μ̂(1)(X; θ, ξ) = μ(X; θ, ξ), and Ψ̂(1)(Y,X) =

ψ(Y ; θ̂) − κ̂(1)(X; θ̂, ξ̂).
Given ϕ

(2j−1)
n (θ), μ̂(2j−1)(X; θ, ξ), κ̂(2j−1)(X; θ, ξ), and Ψ̂(2j−1)(Y,X), com-

pute

ϕ(2j)
n (θ) = ϕ(2j−1)

n (θ) + (Pn − ÊMY
)μ̂(2j)(Y ; θ̂n, ξ̂),

and ϕ(2j+1)
n (θ) = ϕ(2j)

n (θ) − (Pn − ÊMX
)μ̂(2j+1)(X; θ̂n, ξ̂), (24)

where μ̂(2j)(y; θ, ξ) = {Pnκ̂
(2j−1)(·; θ, ξ)p(y | ·; ξ)}/Pnp(y | ·; ξ), κ̂(2j)(Y ; θ, ξ) =

μ̂(2j)(Y ; θ, ξ) − Pnμ̂
(2j)(·; θ, ξ) − Π̂HY

μ̂(2j)(Y ; θ, ξ), and μ̂(2j+1)(X; θ, ξ) =
E∗{κ̂(2j)(Y ; θ, ξ) | X; ξ}. Then compute θ̂(2j) and θ̂(2j+1) by solving

ϕ(2j)
n

{
θ̂(2j)

}
= op(n−1/2) and ϕ(2j+1)

n

{
θ̂(2j+1)

}
= op(n−1/2),
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respectively. Also compute

Ψ̂(2j)(Y,X) = Ψ̂(2j−1)(Y,X) + κ̂(2j)
{
Y ; θ̂(2j), ξ̂

}
and Ψ̂(2j+1)(Y,X) = Ψ̂(2j)(Y,X) − κ̂(2j+1)

{
X; θ̂(2j+1), ξ̂

}
,

where κ̂(2j+1)(X; θ, ξ) = μ̂(2j+1)(X; θ, ξ)−Pnμ̂
(2j+1)(·; θ, ξ)−Π̂HX

μ̂(2j+1)(X; θ, ξ).
Now that we have the needed ϕ

(2j+1)
n (θ), μ̂(2j+1)(X; θ, ξ), κ̂(2j+1)(X; θ, ξ), and

Ψ̂(2j+1)(Y,X), we can move on to the next cycle.
The step-k estimators θ̂(k) (k = 1, 2, 3, . . .) satisfy the stated robustness and

efficient properties. To estimate their variances, use the sandwich-type estimator

v̂ar
{
θ̂(k)

}
= n−1V̂

{
θ̂(k)

}−1
Pn

{
Ψ̂(k)(Y,X)⊗2

}
V̂
{
θ̂(k)

}T−1

5.6. Details for Example 1

Clearly, l̇γ(X) = {X− τ, (X− τ)2−σ2}T is the influence function of (τ̂ , σ̂2) and
is thus the efficient influence. Since the efficient influence is a linear transform
of the score function, it can be used in place of the latter. We then have that

Iγ = E{l̇γ(X)⊗2} =
(

σ2 0
0 2σ4

)
,

where the second diagonal element is calculated from E[{(X − τ)2 − σ2}2] =
E{(X − τ)4}− σ4 = 3σ4 − σ4 = 2σ4 (see, e.g., Papoulis and Pillai, 2002). Then
for any h(X) ∈ L2(PX), the projection formula is given by

ΠHX
h(X) = P{h(·)lγ(·)T}I−1

γ l̇γ(X)
= b1(γ)(X − τ) + b2(γ){(X − τ)2 − σ2},

where b1(γ) = σ−2cov{h(X), X} and b2(γ) = 2−1σ−4cov{h(X), (X − τ)2}. We
can thus estimate ΠHX

h(X) by plugging in the estimators (τ̂ , σ̂2) and replacing
the covariances in b1(γ) and b2(γ) with their empirical analogs.

5.7. Details for proof of Lemma 4

We want to show that

n1/2(PX·1,n×· · ·×PX·p,n−P)μ(X; θ, ξ) = Gn

⎧⎨
⎩

p∑
j=1

μj(X·j ; θ, ξ)

⎫⎬
⎭+op(1) (25)

Write Xi = (Xi1, . . . , Xip) (i = 1, . . . , n), where the Xij are independent copies
of X·j . Let PXij denote the underlying measure of Xij . We show that the pro-
jection of the left hand side of (25) onto Ṗ = ⊕n

i=1 ⊕
p
j=1 L

0
2(PXij ), where PXij

is the measure for Xij , is the first term on the right hand side. Indeed,

Π
{
n1/2(PX·1,n × · · · × PXp,n − Pn)μ(X; θ, ξ) | Ṗ

}
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=n1/2n−p
n∑

i1=1
· · ·

n∑
ip=1

Π
{
μ(Xi11, . . . , Xipp; θ, ξ) | Ṗ

}

=n1/2n−p
n∑

i1=1
· · ·

n∑
ip=1

p∑
j=1

{
μj(Xijj ; θ, ξ) − Pμ(X; θ, ξ)

}
(by Hájek (1968))

=n1/2
p∑

j=1
n−1

n∑
ij=1

{
μj(Xijj ; θ, ξ) − Pμ(X; θ, ξ)

}

=n1/2
p∑

j=1
Pn {μj(X·j ; θ, ξ) − Pμ(·; θ, ξ)}

=Gn

⎧⎨
⎩

p∑
j=1

μj(Xj ; θ, ξ)

⎫⎬
⎭ .

Now by Theorem 11.2 of van der Vaart (1998), it suffices to show that the vari-
ance of the left hand side of (25) tends to

∑p
j=1 var{μj(X·j ; θ, ξ)}, the asymp-

totic variance of the right hand side. We can do so by extending the methods
used in Theorems 12.3 and 12.6 of van der Vaart (1998) for one- and two-sample
U -statistics. Specifically,

var
{
n1/2(PX·1,n × · · · × PX·p,n − P)μ(X; θ, ξ)

}

=n1−2pvar

⎡
⎣ n∑
i1=1

· · ·
n∑

ip=1
μ(Xi11, . . . , Xipp; θ, ξ)

⎤
⎦

=n1−2p

[
n(n2)p−1

×
p∑

j=1
cov{μ(Xi11, . . . , Xijj , . . . , Xipp; θ, ξ), μ(Xi∗11, . . . , Xijj , . . . , Xi∗pp; θ, ξ)︸ ︷︷ ︸

ik �=i∗k(k �=j)

}

+
p∑

k=2
O
{
nk(n2)p−k

}]

=
p∑

j=1
var{μj(X·j ; θ, ξ)} + O(n−1),

where the second equality follows by first laying out the covariances between
terms that share a single Xijj , and then those that share two and more. This
completes the proof.

5.8. Details for Example 3

Write
Dn(c1, c2; ξ) = (Pn − Un){c1χ1(X; ξ) + c2χ2(X; ξ)}.
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It is then clear that the one-step estimator for q is q̂ = q̂init −Dn(2−1,−2−1; ξ̂).
Moreover, define

κ̂(c1, c2)(X; ξ)=
2∑

s=1
cs

⎡
⎣χs(X; ξ) − Pnχs(·; ξ) −

2∑
j=1

{χ̂sj(X·j ; ξ) − Unχs(·; ξ)}

⎤
⎦ ,

where χ̂s1(x1; ξ) = Pnχs(x1, X·2; ξ) and χ̂s2(x2; ξ) = Pnχs(X·1, x2; ξ). Then we
have that

κ̂(1)(X; ξ) = κ̂(2−1,−2−1)(X; ξ), Ψ̂(1)(Y,X) = 2−1(Y1−Y2+1)− q̂−κ̂(1)(X; ξ̂),
(26)

and thus v̂ar(q̂) = n−1Pn{Ψ̂(1)(Y,X)2}. Use the delta method to compute the
variance of θ̂ = q̂2.

Now, we construct the step-k estimator q̂(k), and thus θ̂(k) = q̂(k)2, following
the instructions in Section 5.5. Write Y3 = 1−Y1−Y2, χ3(X; ξ) = 1−χ1(X; ξ)−
χ2(X; ξ), δ1n = PnY1 − q̂2

init, and δ2n = PnY2 − (1 − q̂init)2. The latter two are
the differences between the empirical and MY -efficient estimators of PY1 and
PY2, respectively.

Given q̂(2j−1), κ̂(2j−1)(X; ξ), and Ψ̂(2j−1)(Y,X), compute

ĉ(2j)s (ξ) = Pnκ̂
(2j−1)(X; ξ)χs(X; ξ)

Pnχs(X; ξ) − Pnκ̂
(2j−1)(X; ξ)χ3(X; ξ)

Pnχ3(X; ξ) (s = 1, 2).

Then the model-based conditional expectation of κ̂(2j−1)(X; ξ) given Y is up to
a constant

μ̂(2j)(Y ; ξ) = ĉ
(2j)
1 (ξ)Y1 + ĉ

(2j)
2 (ξ)Y2. (27)

So the next step estimator is just

q̂(2j) = q̂(2j−1) +
2∑

s=1
ĉ(2j)s (ξ̂)δsn.

The approximated influence function of the added term is

κ̂(2j)(Y ; ξ) = μ̂(2j)(Y ; ξ)−Pnμ̂
(2j)(·; ξ)−2−1σ̂−2

{
Pnμ̂

(2j)(·; ξ)l̇(·)
}

(Y1−Y2+1),
(28)

where l̇(Y ) = 2−1(Y1−Y2 +1)− q̂init and σ̂2 = Pn{l̇(Y )2}, and so Ψ̂(2j)(Y,X) =
Ψ̂(2j−1)(Y,X)+ κ̂(2j)(Y ; ξ̂). As a result, we can estimate the variance of q̂(2j) by
v̂ar{q̂(2j)} = n−1Pn{Ψ̂(2j)(Y,X)2}.

Proceeding to step (2j + 1), we can see from (27) and (28) that κ̂(2j)(Y ; ξ) is
up to a constant ĉ

(2j+1)
1 (ξ)Y1 + ĉ

(2j+1)
2 (ξ)Y2, where

ĉ
(2j+1)
1 (ξ) = ĉ

(2j)
1 (ξ) − 2−1σ̂−2

{
Pnμ̂

(2j)(·; ξ)l̇(·)
}
,

ĉ
(2j+1)
2 (ξ) = ĉ

(2j)
2 (ξ) + 2−1σ̂−2

{
Pnμ̂

(2j)(·; ξ)l̇(·)
}
,
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As a result, the next-step estimator is just

q̂(2j+1) = q̂(2j) −Dn

{
ĉ
(2j+1)
1 (ξ̂), ĉ(2j+1)

2 (ξ̂); ξ̂
}
.

Then similarly to (26),

κ̂(2j+1)(X; ξ) = κ̂
{
ĉ
(2j+1)
1 (ξ), ĉ(2j+1)

2 (ξ)
}

(X; ξ),

Ψ̂(2j+1)(Y,X) = Ψ̂(2j+1)(Y,X) − κ̂(2j+1)(X; ξ̂).

This completes the cycle.

5.9. Details on restricted mean model

Assume the general restricted mean model

E(Ỹ | Z) = g(Z; θ)

for some known function g indexed by θ. By standard result (e.g., Tsiatis, 2006,
§4.5), the HY -efficient score for θ is

ψ(Y ; θ0) = D(Z)Σ(Z)−1{Ỹ − g(Z; θ0)},

where D(Z) = ∂g(Z; θ)|θ=θ0 and Σ(Z) = var(Ỹ | Z). We then have that

Aψ(·; θ)(X) = E
[
D(Z)Σ(Z)−1{Υ(Z,X) − g(Z; θ)} | X

]
,

where Υ(Z,X) = E(Ỹ | Z,X). Given this form, it is convenient to posit a two-
step working model, first M∗

Ỹ |Z,X
for the conditional distribution of Ỹ | Z,X

and then M∗
Z|X for the conditional distribution of Z | X, indexed by ξ1 and ξ2,

respectively. Then we can compute the working model-based Aψ(·; θ)(X) by

μ(X; θ, ξ) = E∗ [D(Z)Σ(Z)−1{Υ(Z,X; ξ1) − g(Z; θ)} | X; ξ2
]
,

where Υ(Z,X; ξ1) = E∗(Ỹ | Z,X; ξ1) and ξ = (ξ1, ξ2). Provided that μ(X; θ, ξ)
can be calculated from the above, depending on what MX is, we can then derive
the augmented estimators similarly to the three examples in Section 3.

5.10. Bias under a misspecified MX

Proposition 4. Suppose PX /∈ MX , and the “efficient” estimator ÊMX
μ(X; θ,

ξ) is constructed by ÊMX
μ(X; θ, ξ) = P̂Xμ(X; θ, ξ), where

P̂X = arg max
P̃X∈MX

Pn log dP̃X(X).

As a measure of distance between MX and PX , define

KL(MX | PX) = inf
P
∗
X∈MX

KL(P∗
X | PX) := inf

P
∗
X∈MX

PX

{
log dPX

dP∗
X

(X)
}
.
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Further suppose that ‖ψ(Y ; θ)‖ ≤ M0 for all Y and θ, where ‖ · ‖ denotes the
Euclidean or matrix norm, whenever appropriate. Then as n → ∞, we have
that θ̂ →p θ∗ with

‖θ∗ − θ0‖ ≤ M0‖V (θ0)‖−1
√

2KL(MX | PX). (29)

Proof. By a standard result on the MLE, P̂X → P∗
X for some P∗

X ∈ MX that
minimizes the KL divergence with PX (Shao, 2003), that is, KL(P∗

X | PX) =
KL(MX | PX). But by the form of θ̂ in Theorem 2 and the discussion in
Section 4, we have that

‖θ∗ − θ0‖ ≤ ‖V (θ0)‖−1‖(P∗
X − PX)μ(X)‖

≤ M0‖V (θ0)‖−1
∫

|dP∗
X − dPX |

≤ M0‖V (θ0)‖−1
√

2KL(P∗
X | PX)

= M0‖V (θ0)‖−1
√

2KL(MX | PX),

where the third inequality uses the Pinsker inequality that bounds the total
variation by the KL divergence (see, e.g., Csiszár and Körner, 2011)

In Example 1, for instance, we have that M0 = 1 and ‖V (θ0)‖ = 1. Then
we can use (29) to bound the bias when the true PX is, say, exponential rather
than Gaussian.
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