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Abstract: In causal inference there are often multiple reasonable estima-
tors for a given target quantity. For example, one may reasonably use inverse
probability weighting, an instrumental variables approach, or construct an
estimate based on proxy outcomes if the actual outcome is difficult to mea-
sure. Ideally, the practitioner decides on an estimator before looking at the
data. However, this might be challenging in practice since a priori it might
not be clear to a practitioner how to choose the method. If the final model is
chosen after peeking at the data, naive inferential procedures may fail. This
raises the need for a model selection tool, with rigorous asymptotic guar-
antees. Since there is usually no loss function available in causal inference,
standard model selection techniques do not apply.

We propose a model selection procedure that estimates the squared �2-
deviation of a finite-dimensional estimator from its target. The procedure
relies on knowing an asymptotically unbiased (potentially highly variable)
estimate of the parameter of interest. The resulting estimator is discon-
tinuous and does not have a Gaussian limit distribution. Thus, standard
asymptotic expansions do not apply. We derive asymptotically valid con-
fidence intervals for low-dimensional settings that take into account the
model selection step.

The performance of the approach for estimation and inference for aver-
age treatment effects is evaluated on simulated data sets in low-dimensional
settings, including experimental data, instrumental variables settings and
observational data with selection on observables.
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1. Introduction

Model selection is a fundamental task in statistical practice. Usually, the aim
is to find a model that optimizes overall model fit. Overall model fit is usually
measured with a risk functional that can be estimated unbiasedly.

Model selection is far less developed in settings where one wants to infer a
finite-dimensional parameter on a parametric or semiparametric model, with rig-
orous statistical guarantees. For example, in causal inference researchers might
might want to choose a treatment effect estimate (a potentially one-dimensional
quantity) among a set of candidate estimators. Some of these estimates might
be unbiased, but have high variance. Other estimates might have low variance
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but might be less trustworthy in the sense that they might rely on assumptions
that the researcher has not verified yet. For example, a practitioner might have
a small set of experimental units and a large pool of observational data. Es-
timating the causal effect only based on the experimental data might lead to
high variance. Combining observational and experimental data might result in
improved precision, but can be problematic if the observational units are highly
confounded. There is a growing literature that proposes estimators that com-
bine observational and experimental data, see for example Kallus et al. (2018);
Rosenman et al. (2020); Hussain et al. (2022). If the decision between such es-
timators is made ad-hoc, the resulting estimate might be unreliable or naive
confidence intervals might not cover the parameter of interest. This raises the
need for a reliable model selection tool.

One complicating issue is that causal parameters in general do not admit a
risk, that means they can in general not be written as the minimizer of a risk
functional that can be estimated unbiasedly. Thus, standard model selection
procedures such as loss-based cross-validation, Mallows Cp, or the Bayesian
information criterion do not apply. As a result, there has been interest in model-
selection procedures that are tailored to causal parameter estimation problems
(Van der Laan et al., 2011; Cui and Tchetgen-Tchetgen, 2024).

From a theoretical perspective, model selection can result in non-regular
estimators, which invalidates naive inferential approaches based on Gaussian
asymptotics. Even worse, model selection that “buys” better behaviour in some
parts of the parameter space can be at the expense of erratic behaviour in
other parts of the parameter space. Hodges’ estimator (Le Cam, 1953) is a fa-
mous example where the rescaled excess risk goes to infinity for some parts
of the parameter space. Thus, it is important to carefully study and quan-
tify the resulting behaviour of the final estimate. To summarize, our goal is
to develop a model selection criterion that satisfies the following three desider-
ata:

1. The model selection criterion should not depend on a loss functional.
2. Based on variance estimates of the individual estimators, it should be pos-

sible to quantify the uncertainty of the selected estimator in the sense that
the uncertainty can be propagated through the model selection step.

3. The model selection criterion should be reliable; in the sense that uni-
formly across parts of the parameter space the excess risk should stay
within reasonable bounds.

1.1. Related work

Model selection has a long history in statistics and machine learning. For opti-
mizing loss-based estimators, the most commonly used methods include cross-
validation, the Akaike information criterion, and the Bayesian information cri-
terion (Akaike, 1974; Schwarz, 1978; Friedman et al., 2001; Arlot and Celisse,
2010). Since there is usually no loss function available in causal inference, these
standard model selection techniques do not apply.



Targeted Model Selection 5451

There has been a surge in interest in inference for statistical parameters after
model selection. Selective inference (Fithian et al., 2014; Taylor and Tibshi-
rani, 2015; Loftus and Taylor, 2015; Lee et al., 2016; Yang et al., 2016; Hyun
et al., 2018) conditions on the selection event; and provide valid coverage for
the resulting estimand. Berk et al. (2013) provide uniformly valid coverage by
widening conventional confidence intervals. Different from this line of work, we
consider the target functional as fixed. The main reasoning behind this is that
some of the candidate estimators might have considerable bias. Thus, switching
between different estimands might lead to problematic performance in practice.

In a sequence of papers, Leeb and Pötscher (Leeb and Pötscher, 2003, 2005,
2006) warn that (asymptotic) inference after model selection can hide some
finite-sample issues and is usually not uniformly valid. Their results warrant a
careful investiation of the proposed confidence intervals. Thus, we will study
minimal realized coverage of the proposed confidence intervals in Section 4.

Lepski’s method is a tool to select the bandwidth in nonparametric smooth-
ing problems (Lepskii, 1991). Lepski’s method is usually used to estimate an
infinite-dimensional object. On the other hand, our goal is to estimate a finite-
dimensional (often one-dimensional) parameter such as the average treatment
effect. Even though the overall goals and asymptotic setups are different, Lep-
ski’s procedure can be applied in our setting. We will compare the proposed
procedure to Lepski’s method in Section 4.

The focused information criterion is a model selection criterion which, for a
given focus parameter, estimates the mean-squared error of submodels (Claeskens
and Hjort, 2003, 2008). It relies on knowing an asymptotically unbiased estima-
tor of the parameter of interest. Its theoretical justification is given in a local
misspecification framework.

More recently, in the context of causal inference Cui and Tchetgen-Tchetgen
(2024) introduce a model selection tool for finite-dimensional functionals in a
semiparametric model if a doubly robust estimation function is available. It
is based on a pseudo-risk criterion that has a robustness property if one of
the estimators is biased. However, the final estimate can still be biased, even
asymptotically, if two of the nuisance models are biased. Our approach differs
from Cui and Tchetgen-Tchetgen (2024) in that we assume that the data scientist
trusts one estimator more than some of the other estimators. Our approach
results in a model selection criterion that is robust even if several nuisance
models are biased.

For the task of model selection when estimating heterogeneous treatment
effects, several methods have been developed (Kapelner et al., 2014; Rolling and
Yang, 2014; Athey and Imbens, 2016; Nie and Wager, 2021; Zhao et al., 2017;
Powers et al., 2018). Most of the methodologies are specific to the considered
model class. A comparison of this line of work for individual treatment effects
can be found in Schuler et al. (2018).

Van der Laan and Robins (2003) propose a loss-based approach for parameter-
specific model selection. In this work, the authors recommend minimizing an
empirical estimate of the overall risk R(θ̂(g), η̂), where θ̂(g), g = 1, . . . , G are
candidate estimators and η̂ is an efficient estimator of the nuisance parame-
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ter, computed on the training data set. Our approach is more generic in the
sense that we do not assume that parameter of interest minimizes a known loss
function.

Closest to our work is the sample-splitting criterion developed by Brookhart
and Van Der Laan (2006). Roughly speaking, the data is split into a train-
ing and a test data set. Then, estimators are computed on the training and
the test data set, and the squared deviation of estimators is aggregated across
several splits. The criterion developed by Brookhart and Van Der Laan (2006)
can be seen as a form of Monte Carlo cross-validation. In the following, we
discuss a variant of this approach that splits the data into k folds and thus
mimics k-fold cross-validation procedures, which are popular in practice. The
data D = (D1, . . . , Dn) is randomly split into K disjoint roughly equally-sized
folds D0,1, . . . , D0,K . Define D1,k = D \D0,k. Assuming that the data are i.i.d.,
D1,k and D0,k are independent for each k. Let θ̂(0) be an unbiased estimator of
the parameter of interest θ(0) ∈ R

d. If several unbiased estimators are available,
aggregation procedures such as inverse variance weighting can be used in a pre-
processing step to obtain θ̂(0). Let θ̂(g) be candidate estimators, g = 0, . . . , G.
Then, we can compute the risk criterion

R̃(g) = 1
K

K∑
k=1

‖θ̂(g)(D1,k) − θ̂(0)(D0,k)‖2
2. (1)

Using independence of D1,k and D0,k,

E[R̃(g)] = E[‖θ̂(g)(D1,1) − θ(0)‖2
2] +

d∑
j=1

Var(θ̂(0)
j (D0,1)).

As Var(θ̂(0)(D0,1)) is constant in g, the criterion in equation (1) can be used to
select an estimator θ̂(g) with low mean-squared error for estimating θ(0) among
θ̂(g), g = 0, . . . , G. The criterion in equation (1) is attractive as it is simple and
widely applicable. We will compare the proposed model selection criterion to the
criterion in equation (1), both from a theoretical perspective and in simulations.

1.2. Our contribution

We derive a model selection criterion that estimates the squared �2-deviation of
an estimator from its target. By construction the proposed selection criterion
does not depend on a loss functional. Instead, it relies on knowing an asymptot-
ically unbiased (potentially highly variable) estimate of the target of interest.

Our main goal is to select models for causal estimation problems. In such
settings, modern ML-based estimation techniques allow for n−1/2-consistent in-
ference of common target parameters (Chernozhukov et al., 2018). Furthermore,
practitioners usually desire confidence intervals for the resulting estimate. Thus,
we study a regime where the individual estimators are n−1/2-consistent for their
target quantity.
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Even if the candidate estimators are asymptotically linear, the model se-
lection procedure is discontinuous and will not result in a regular estimator,
even for n → ∞. Thus, the final estimator does not have a Gaussian limit dis-
tribution. We derive asymptotically valid confidence intervals for the resulting
estimator in low-dimensional settings that takes into account the model selec-
tion step. Furthermore, we compare the asymptotic behaviour of the procedure
to a competing procedure based on sample splitting.

Compared to the baseline procedure, for fixed n, model selection can lead to
increased risk in parts of the parameter space. We provide a finite-sample bound
that reveals that the excess risk due to model selection becomes negligible as
the dimension of the target parameter grows.

In low-dimensional simulation settings, we compare the proposed procedure
to competing procedures, including variants of cross-validation, Lepski’s method,
and selective machine learning. The proposed procedure shows very promising
performance across several settings.

The code can be found at github.com/rothenhaeusler/tms.

1.2.1. Outline

In Section 2, we introduce a method for parameter-specific model selection and
discuss an example. Theory for the method is discussed in Section 3. We evaluate
the performance of the proposed procedure on simulated data in Section 4.

2. Targeted model selection

This section consists of two parts. We briefly discuss the setting in Section 2.1.
Then, we introduce the method in Section 2.2 and discuss basic properties.

2.1. Setting and notation

We observe data D = (Di, i = 1, . . . , n), where the Di are independently
drawn from some unknown distribution P. Suppose we have access to esti-
mators θ̂(g)(D), g = 0, . . . , G, of some unknown parameter θ(0). In the fol-
lowing, to simplify notation, we will write θ̂(g) instead of θ̂(g)(D). We assume
that the baseline estimator θ̂(0) is asymptotically unbiased for θ(0), i.e. that
E[θ̂(0)] = θ(0) + o(n−1/2). In practice, the data scientist may know several esti-
mators that are asymptotically unbiased for the parameter of interest. In this
case, one can use aggregation procedures such as inverse variance weighting to
construct an optimally weighted aggregated estimator θ̂(0).

In addition, the data scientist may have access to estimators θ̂(g) for which
the data scientist is not sure whether they are approximately unbiased for the
effect of interest. The goal is to select among the set of estimators, minimizing
the mean-squared error with respect to the target of interest θ(0). We assume
that E[θ̂(g)] = θ(g) + o(n−1/2) for some unknown θ(g) and that

√
n(θ̂(g) − θ(g))

http://www.github.com/rothenhaeusler/tms
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converges to a non-degenerate random variable. Please note that this assumption
does not preclude modern inferential estimation strategies, such as debiased
inference in high-dimensional settings or estimation based on machine-learning
tools, see for example (Van der Laan et al., 2011; Zhang and Zhang, 2014;
Chernozhukov et al., 2018). We chose this setting mainly due to the fact that
we want to apply the method in causal inference, where it is usually desired
to have asymptotically valid confidence intervals for the resulting parameter
estimates.

We write σ
(g)
j for the asymptotic standard deviation of

√
n(θ̂(g)

j −θ
(g)
j ). Simi-

larly, we assume that
√
n(θ̂(g)−θ̂(0)−(θ(g)−θ(0))) converges to a non-degenerate

random variable for g �= 0 and write τ
(g)
j for the asymptotic standard deviation

of
√
n(θ̂(g)

j − θ
(g)
j − θ̂

(0)
j + θ

(0)
j ).

2.2. The method

We aim to find an estimator g that minimizes

R(g) = E[‖θ̂(g) − θ(0)‖2
2]. (2)

Here and in the following, we suppress the dependence of R(g) and θ̂(g) on n.
As bias and variance of θ̂(g) are unknown, the function R(g) is unknown and
one has to minimize a proxy of the risk R(g) instead. We propose to estimate
R(g) in equation (2) via

R̂(g) = ‖θ̂(g) − θ̂(0)‖2
2 +

d∑
j=1

(σ̂(g)
j )2

n
−

(τ̂ (g)
j )2

n
, (3)

where σ̂(g)
j is an estimator of the asymptotic standard deviation of

√
n(θ̂(g)

j −θ
(g)
j )

and τ̂
(g)
j is an estimator of the asymptotic standard deviation of

√
n(θ̂(g)

j −

θ
(g)
j − θ̂

(0)
j + θ

(0)
j ). The intuition is that for each j, (θ̂(g)

j − θ̂
(0)
j )2 − (τ̂(g)

j )2

n is

an estimate of the squared bias, while (σ̂(g)
j )2

n is an estimate of the variance of
θ̂
(g)
j . If the estimators are asymptotically linear (i.e. in some semi-parametric

or low-dimensional parametric settings), consistent estimators τ̂ (g) and σ̂(g) are
usually available via plug-in estimators of the variance of the influence function
(Van der Vaart, 2000; Tsiatis, 2007). An example will be discussed below. We
propose to choose a final estimate θ̂(ḡ) by solving

ḡ = arg min
g

R̂(g). (4)

Let us consider a linear regression example. This example was mainly chosen for
expository simplicity; the main motivating examples for this method are drawn
from causal inference. The causal inference examples need more discussion and
will be explained in detail in Section 4.
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Example 1 (Model selection for parameter estimation). Usually, when con-
ducting model selection in the context of prediction, the goal is to find a model
that can be estimated well and is a good approximation of some complex model of
interest. However, if the purpose is parameter estimation, fitting complex models
can reduce variance while potentially introducing bias. Such settings appear in
causal inference and will be further discussed in Section 4. Here, we consider the
task where the goal is to fit a regression with just one covariate; but there are ad-
ditional covariates at our disposal that can be used to reduce variance, while po-
tentially introducing some bias for the parameter of interest. Let Yi = Xiθ

(0)+εi,
where Di = (Yi, Xi) are i.i.d. and the εi are centered noise terms that are un-
correlated of the Xi. Furthermore, for simplicity we assume that Yi, Xi and εi
are centered. We are interested in the parameter θ(0) = arg minE[(Y − Xθ)2]
and consider the baseline estimator

θ̂(0) = arg min
θ

n∑
i=1

(Yi −Xiθ)2.

Let us assume that we have access to observations Z1, . . . , Zn from some addi-
tional covariate. One may consider the estimator

θ̂(1) = arg min
θ

min
η

n∑
i=1

(Yi −Xiθ − Ziη)2,

Let (X,Y, Z, ε) denote a generic (Xi, Yi, Zi, εi). If Z is correlated with Y and
only weakly correlated with X, this estimator may reduce asymptotic variance
compared to θ̂(0) since intuitively speaking, adjusting for Z reduces unexplained
variation in the residuals. On the other hand if Z is strongly correlated with X,
θ̂(1) may converge to a different parameter than θ̂(0). Under regularity conditions
(Van der Vaart, 2000, Section 5), θ̂(0) is asymptotically linear and unbiased for
θ(0) := arg minθ E[(Y −Xθ)2], i.e.

√
n(θ̂(0) − θ(0)) = 1√

n

n∑
i=1

E[X2]−1Xiεi + oP (1).

Similarly, under regularity conditions,
√
n(θ̂(1)−θ(1))

= 1√
n

n∑
i=1

eᵀ
1E[(X,Z)ᵀ(X,Z)]−1(Xi, Zi)ᵀ(Yi−Xiθ

(1)−Ziη
(1))+oP (1),

where (θ(1), η(1)) = arg min(θ,η) E[(Y −Xθ−Zη)2] and where ej denotes the j-th
unit vector. Thus,

(σ(0))2 = Var(E[X2]−1Xε),
(σ(1))2 = Var(eᵀ

1E[(X,Z)ᵀ(X,Z)]−1(X,Z)ᵀ(Y −Xθ(1) − Zη(1)),
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(τ (0))2 = 0,

(τ (1))2 = Var
(
eᵀ
1E[(X,Z)ᵀ(X,Z)]−1(X,Z)ᵀ(Y−Xθ(1)−Zη(1))−E[X2]−1Xε

)
.

These quantities can be consistently estimated via plug-in estimators in standard
settings. For example, (σ(1))2 and (σ(0))2 can be consistently estimated via the
sandwich estimator under regularity assumptions (Huber, 1967).

We will study the risk proxy in equation (3) in Section 3. The method is
evaluated on simulated data sets in Section 4.

2.2.1. Improving precision

Recall that the risk criterion can be decomposed into several parts, i.e. R̂(g) =∑d
j=1 R̂bias,j(g) + R̂var,j(g), where

R̂bias,j(g) = (θ̂(g)
j − θ̂

(0)
j )2 −

τ̂
(g)
j

n
,

and

R̂var,j(g) =
σ̂

(g)
j

n
.

As the naming indicates, the first term can be interpreted as an estimate of
the squared bias (θ(g) − θ(0))2, whereas the second term is an estimate of the
variance of θ̂(g). Since we know that squared bias terms are non-negative this
motivates defining the following modified risk criterion:

R̂mod(g) =

⎛
⎝ d∑

j=1
(θ̂(g)

j − θ̂
(0)
j )2 −

(τ̂ (g)
j )2

n

⎞
⎠

+

+
d∑

j=1

(σ̂(g)
j )2

n
. (5)

Then the final estimator θ̂(ḡ) is chosen such that ḡ minimizes equation (5).
We take the positive part of the sum (instead of the sum of positive parts)
as this allows random errors to cancel out for large d. This will be impor-
tant for the theory developed in Section 3.5. If there are ties, we select ḡ as
the one that minimizes ‖θ̂(g) − θ̂(0)‖2

2 among the g that satisfy R̂mod(g) =
ming′ R̂mod(g′). The criterion R̂mod(g) is not asymptotially unbiased for R(g),
but has some favorable statistical properties that we will discuss in the following
section.

3. Theory

In this section we discuss the theoretical underpinnings of the method introduced
in Section 2. First, we show that the criterion R̂(g) is asymptotically unbiased
for estimating the mean-squared error R(g) = E[‖θ̂(g)−θ(0)‖2

2]. Then, we discuss
the asymptotic risk of the resulting estimator. We derive asymptotically valid
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confidence intervals for the parameter of interest that takes into account the
model selection step. Finally, we present a finite-sample bound that shows that
if the dimension of the target parameter is large, the excess risk due to model
selection becomes negligible.

3.1. Assumptions

We make two major assumptions, in addition to the assumptions outlined in
Section 2.1. The first major assumption is a slightly stronger version of asymp-
totic linearity. Asymptotic linearity is an assumption that is commonly made
to justify asymptotic normality of an estimator (Van der Vaart, 2000; Tsiatis,
2007). As our goal is to estimate the mean-squared error of an estimator, we
use a slightly stronger version that guarantees convergence of second moments.
The second major assumption is that the variance estimates are consistent.

Assumption 1. We make two major assumptions.

1. Let θ̂(g), g = 0, . . . , G be estimators such that

θ̂(g) − θ(g) = 1
n

n∑
i=1

ψ(g)(Di) + eg(n),

where ψ(g)(Di) are centered and have finite nonzero second moments, and
E[‖eg(n)‖2

2] = o(1/n). The parameters θ(g) might depend on n (for exam-
ple, one might have θ(g)−θ(0) = cg√

n
, but we suppress this in the notation).

To avoid trivial special cases, in addition we assume that the covariance
matrix of (ψ(0), . . . , ψ(G)) is positive definite.

2. The estimators of variance are consistent, that means

(τ̂ (g))2 = (τ (g))2 + oP (1),
(σ̂(g))2 = (σ(g))2 + oP (1).

Let us compare the first part of the assumption to asymptotic linearity.
Asymptotic linearity assumes that ‖eg(n)2‖2

2 = oP (1/n) while we assume that
E[‖eg(n)2‖2

2] = o(1/n). Thus, our assumption is stronger than asymptotic lin-
earity. Let us now turn to our theoretical results.

3.2. Asymptotic unbiasedness

Let us now turn to the asymptotic behaviour of the proposed procedure. First,
if θ(g) �= θ(0) is fixed, then by Assumption 1 we immediately have R̂(g) p→
‖θ(g) − θ(0)‖2

2 = limn→∞ E[‖θ̂(g) − θ(0)‖2
2]. It is more interesting to study how

the model selection criterion behaves if θ(g) is close to (but different) from θ(0).
Our first result shows that the proposed criterion is asymptotically unbiased for
the mean-squared error, for θ(g) in a neighborhood of θ(0). More specifically, we
allow θ(g) to vary across n and keep θ(0) fixed, but we notationally suppress the
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dependence of θ(g) on n. The proof of the following result can be found in the
supplement.

Theorem 1 (Asymptotic unbiasedness of R̂(g)). Let Assumption 1 hold. If
θ(g) − θ(0) = cg√

n
+ o(1/

√
n), for some fixed cg, then

n(R̂(g) − E[‖θ̂(g) − θ(0)‖2
2])

converges weakly to a random variable with mean zero.

This result shows that the criterion is asymptotically unbiased, which is im-
portant for the interpretation of the risk criterion. However, it does not make
any statement about the validity of the selected model. In the following section,
we study the asymptotic risk of the selected model.

3.3. Asymptotic risk

Here, we focus on the case where the number of models G is small and fixed
and n → ∞. A finite-sample bound that applies to high-dimensional settings
will be discussed in Section 3.5. First, we investigate the asymptotic behaviour
of the proposed procedure in the case where the number of models is fixed and
n → ∞. The proof of the following result can be found in the supplement.

Corollary 1 (Asymptotic risk of selected model). Let Assumption 1 hold and
let θ(0), . . . , θ(G) be fixed. Consider a finite and fixed number of estimators g =
0, . . . , G. Let

ḡ = arg min R̂mod(g).
For n → ∞,

P[θ(ḡ) = θ(0)] → 1,
and

P[R(ḡ) ≤ R(0)] → 1.
Furthermore, if there exists a g that has better asymptotic risk than the baseline
model, meaning that

θ(g) = θ(0) and
d∑

j=1
(σ(g)

j )2 <

d∑
j=1

(σ(0)
j )2,

then for n → ∞ we have R(g) < R(0) with probability exceeding c, where c > 0
is a constant that does not depend on n.

In words, for n → ∞, the proposed method selects models with lower or equal
risk than the baseline estimator θ̂(0). This seems to be a relatively weak property
and heavily desired from a model selection criterion. However, an analogous
result does not hold for the cross-validation procedure (1). Cross-validation is
inconsistent in general, see for example Yang (2007) and references therein.
In the following, for completeness, we discuss an example for which the cross-
validation procedure has higher risk than the baseline estimator, even as n → ∞.
The proof of the following result can be found in the supplement.
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Proposition 1. Consider the case G = 1, that means the case of two inde-
pendent estimators θ̂(1) = 1

n

∑n
i=1 ψ

(1)(Di), where ψ(1)(Di)
i.i.d.∼ N (0, 2) and

θ̂(0) = 1
n

∑n
i=1 ψ

(0)(Di), where ψ(0)(Di)
i.i.d.∼ N (0, 1). Let Asssumption 1 hold.

For simplicity we assume that n is divisible by K. Then there exists c > 0 that
does not depend on n such that with probability exceeding c the cross-validation
procedure (1) selects a model g̃ with R(g̃) > R(0).

The issue with this example is that the alternative estimator, while unbi-
ased, has higher variance than the baseline estimator. This will lead the cross-
validation based procedure to select the alternative estimator with positive prob-
ability, even for n → ∞. For the proposed procedure, we essentially avoid this
issue due to the modification introduced in Section 2.2.1.

In Section 4 we will see in a numerical example that even for relatively large n,
the selected model by cross-validation may have risk that is significantly larger
than the risk of the baseline procedure.

3.4. Confidence intervals

Deriving confidence intervals that are valid in conjuction with a model selection
step is a challenging topic and has attracted substantial interest in recent years,
see for example Berk et al. (2013) and Taylor and Tibshirani (2015). Generally
speaking, statistical inference after a model selection step can be unreliable if
the uncertainty induced by the model selection step is ignored. In this section,
we describe how to construct confidence intervals that take into account the
uncertainty induced by model selection. Intuitively speaking, the challenge is
that the final estimator is a discontinuous function of the data. To be more
precise, the final estimator θ̂(ḡ) is not regular and not asymptotically normal.

The goal in this section is to find I1 and I2 as a function of the data
D1, . . . , Dn such that

P[θ̂(ḡ)
j − I1 ≤ θ

(0)
j ≤ θ̂

(ḡ)
j + I2] → 1 − α,

for some pre-determined α > 0 and j and where

ḡ = arg min
g

R̂mod(g).

The following theorem shows how to construct confidence intervals in low-
dimensional settings; i.e. in settings where the number of models G is fixed
and the sample size goes to infinity.

Theorem 2. Define θ̂ = (θ̂(0), θ̂(1), . . . , θ̂(G)) ∈ R
(G+1)d and let θ = (θ(0),

θ(1), . . . , θ(G)) be fixed. Assume that
√
n(θ̂ − θ) → N (0,Σ),

for some positive definite Σ. Let Σ̂(D) = Σ̂n(D1, . . . , Dn) be a consistent es-
timator of Σ ∈ R

(G+1)d×(G+1)d and σ̂(g) = σ̂(g)(D1, . . . , Dn) be a consistent
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estimator of the asymptotic standard deviation of
√
n(θ̂(g) − θ(g)) and τ̂ (g) =

τ̂ (g)(D1, . . . , Dn) be a consistent estimator of the asymptotic standard deviation
of

√
n(θ̂(g)− θ̂(0)−θ(g)+θ(0)). With some abuse of notation, conditionally on the

data D = (D1, . . . , Dn) draw (Z0, . . . , ZG) ∼ N (
√
nθ̂(D), Σ̂(D)) with Zg ∈ R

d.
We define the event

Aest
g = {max(‖Zg − Z0‖2

2 − ‖τ̂ (g)‖2
2, 0) + ‖σ̂(g)‖2

2

< min
g′ �=g

max(‖Zg′ − Z0‖2
2 − ‖τ̂ (g′)‖2

2, 0) + ‖σ̂(g′)‖2
2}.

Now for some fixed j define

bD1,...,Dn(β) =
∑
g

P[{Zg,j −
√
nθ̂

(0)
j ≤ β} ∩Aest

g |D1, . . . , Dn]. (6)

Then:

1. For n → ∞, with probability converging to one, the inverse b−1
D1,...,Dn

:
(0, 1) → R is well-defined.

2. For all α > 0,

P

[
θ̂
(ḡ)
j −

b−1
D1,...,Dn

(1 − α/2)
√
n

≤ θ
(0)
j ≤ θ̂

(ḡ)
j −

b−1
D1,...,Dn

(α/2)
√
n

]
→ 1 − α.

Note that by definition the conditional distribution of Z given D1, . . . , Dn

is known to the researcher. Also, the researcher often can construct estimators
of the variances in parametric and semi-parametric settings via plug-in estima-
tors of the influence function, see e.g. Van der Vaart (2000); Tsiatis (2007). In
these cases, bi,α(D1, . . . , Dn) can be computed by the researcher, for example by
Monte-Carlo simulation. Thus, Theorem 2 allows us to construct asymptotically
valid confidence intervals for the final estimator θ̂(ḡ) in many parametric and
semi-parametric settings.

This result is different from standard asymptotic arguments in the sense that
θ̂(ḡ) − θ(0) is not asymptotically Gaussian. However, as the result shows, it is
possible to recover the exact asymptotic distribution of θ̂(ḡ) in low-dimensional
scenarios and use this information to conduct asymptotically valid statistical
inference. We will evaluate the empirical performance of confidence intervals
constructed via Theorem 2 in Section 4.

Inference after model selection, is usually not uniformly valid see Leeb and
Pötscher (2005) for an overview. Our proposal falls into what Leeb and Pötscher
call “Conservative Model Selection Framework”, since model selection is asymp-
totically not consistent. Thus, one has to use these inferential tools with caution.
In simulation settings (Section 4), we will investigate the coverage of confidence
intervals uniformly across parts of the parameter space.

3.5. Finite-sample bound

In this section, we discuss a finite-sample bound that can be applied to high-
dimensional settings. In particular, we will not need to assume that the para-
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metric rates described in Section 2.1 hold, and instead give a risk bound that
depends on tail bounds of the candidate estimators.

As discussed in Section 3.3, the proposed method selects a model that is
asymptotically no worse than the baseline estimator. However, there is no free
lunch. In transitional regimes, for fixed n, the estimator can perform worse than
the baseline estimator θ̂(0). This is to be expected from statistical theory, see for
example the discussion of the Hodges-Le Cam estimator on page 110 in Van der
Vaart (2000). This makes it important to understand in which cases we can
expect reliable performance of the proposed model selection procedure. In the
case d = 1, a Bayesian bound (Gill and Levit, 1995) reveals that improving over
the Cramér-Rao bound in some parts of the parameter space must lead to de-
teriorating performance in other parts of the parameter space. In the following,
we will provide a finite-sample bound that shows that under strong regularity
assumptions, for large d the excess risk becomes negligible, uniformly over a set
of distributions.

Theorem 3. Let θ̂(g) = θ(g) + ε(g) = θ(0) + δ(g) + ε(g) where δ(g) ∈ R
d is

a constant vector and G > 1. We assume that the ε
(g)
j are centered, indepen-

dent and sub-Gaussian random variables with variance proxy η
(g)
j /

√
n,1 i.e. that

E[exp
(
sε

(g)
j

)
] ≤ exp

(
(η(g)

j )2s2

2n

)
for all g = 1, . . . , G and j = 1, . . . , d and s ∈ R.

Define τ
(g)
j as the standard deviation of

√
n(ε(g)j − ε

(0)
j ) and σ

(g)
j as the stan-

dard deviation of
√
nε

(g)
j . We define b∞ = maxg ‖δ(g)‖2 and s∞ = maxj,g η

(g)
j .

Define ιn,d := max(supg,j |(σ̂
(g)
j )2 − (σ(g)

j )2|, supg,j |(τ̂
(g)
j )2 − (τ (g)

j )2|) and M =
supg ‖θ̂(g) − θ(0)‖2 + ‖δ(0)‖2. Furthermore, assume that logG/d ≤ c1 for some
constant c1 > 0. Then, for every κ > 0 there exists a constant C that may de-
pend on c1, and κ (but not on δ, s∞ or b∞) such that with probability exceeding
1 − κ,

1
d

d∑
j=1

(θ̂(ḡ)
j − θ

(0)
j )2 ≤ min

g

1
d

d∑
j=1

(θ̂(g)
j − θ

(0)
j )2

+ C

(
s2
∞
n

√
logG
d

+ s∞b∞√
n

√
logG
d

)
+ 6ιn,d

n
+ 2M

d
‖δ(0)‖2.

A few comments are in order. First, the candidate estimators θ̂(g) usually
have smaller variance than the baseline estimator θ̂(0) – otherwise one would
not consider model selection. Thus, usually one has s∞ = maxj η

(0)
j . Secondly,

θ̂(0) should have small bias ‖δ(0)‖2 – otherwise it is not justified to use θ̂(0) as
the baseline estimator. The excess risk due to model selection goes to zero as

d
n logG → ∞ and if supg,j |(σ̂

(g)
j )2 − σ

(g)
j | → 0 and supg,j |τ̂

(g)
j − τ

(g)
j | → 0 and if

1The η
(g)
j can be arbitrarily large. In modern causal inference, it is common to de-bias

high-dimensional or semi-parametric estimators to arrive at a componentwise
√
n-rate. Thus,

the re-scaling of the variance proxy with
√
n is to facilitate interpretation of the bound.
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the bias ‖δ(0)‖2 is negligible. Note that the latter is a strong requirement - for
a high-dimensional estimation procedures tuned via standard cross-validation,
the bias ‖δ(0)‖2 would not be negligible. In Section 4 we will see in an example
that the excess risk declines for growing dimension of the estimand.

4. Applications

In this section, we discuss applications of the proposed method. As we will see,
model selection can lead to drastic improvements in the mean-squared error.
However, there is no free lunch. Compared to the baseline procedure, for fixed
n, model selection can lead to increased risk in parts of the parameter space.
Thus, in this section, we study the excess risk of the procedures across the
parameter space. Leeb and Pötscher (2005) warn that pointwise valid confidence
intervals after model selection are usually not uniformly valid. Thus, in addition
to average coverage, we will also report minimal realized coverage.

In the following we will use potential outcomes to define causal effects (Rubin,
1974; Splawa-Neyman et al., 1990). We are interested in the causal effect of a
treatment T ∈ {0, 1} on an outcome Y . Let Y (1) denote the potential outcome
under treatment T = 1 and Y (0) the potential outcome under treatment T = 0.
We assume a superpopulation model, i.e. Y (1) and Y (0) are random variables.
In the following, the goal is to estimate the average treatment effect within
several subgroups,

θ(0)
s = E[Y (1) − Y (0)|S = s]. (7)

Many methods have been designed to estimate (7) and these methods operate
under a variety of assumptions. We present several applications that are based
on different sets of assumptions for identifying (7). In each of the cases, we
compare the proposed method (5, termed “targeted selection”) with the cross-
validation procedure (1), with selective machine learning (Cui and Tchetgen-
Tchetgen, 2024), with Lepski’s method (Lepski et al., 1997), and with a base-
line estimator. In addition, we compare with reverse K-fold cross-validation,
which has shown promise for comparing close candidates (Shao, 1993; Yang,
2007; Zhang and Yang, 2015; Zhan and Yang, 2022). The code can be found at
github.com/rothenhaeusler/tms.

4.1. Observational studies

In observational studies, it is common practice to estimate causal effects un-
der the assumption of unconfoundedness and under the overlap assumption.
Roughly speaking, the overlap assumption states that treatment assignment
probabilities are bounded away from zero and one, conditional on covariates
X. If these assumptions are met, it is possible to identify the average treat-
ment effect via matching, inverse probability weighting, regression adjustment,
or doubly robust methods (Hernan and Robins, 2020; Imbens and Wooldridge,
2009). However, if the overlap is limited, estimating the average treatment effect
can be unreliable.

http://www.github.com/rothenhaeusler/tms
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To deal with the issue of limited overlap, researchers sometimes switch to dif-
ferent estimands such as the average effect on the treated (ATT) or the overlap
weighted effect (Crump et al., 2006). This raises issues of post selection infer-
ence. We will see that the proposed model selection tool results in trustworthy
statistical inference, even in conjunction with the model selection step. In the
following, we will focus on the overlap-weighted effect as it is the causal contrast
that can be estimated with the lowest asymptotic variance in certain scenarios
(Crump et al., 2006). The overlap-weighted effect is defined as

θ(1) = E[p(T = 1|X)(1 − p(T = 1|X))τ(X)]
E[p(T = 1|X)(1 − p(T = 1|X))] ,

where τ(x) = E[Y (1) − Y (0)|X = x]. Note that if the treatment effect is ho-
mogeneous τ(x) ≡ const., then the overlap-weighted effect and the average
treatment effect coincide, that means θ(1) = θ(0). Thus, shrinkage towards an
efficient estimator of the overlap effect is potentially beneficial under treatment
effect homogeneity.

We investigate shrinking between estimators of the average treatment effect
and the overlap-weighted effect in a data-driven way. The proposed model se-
lection tool will be used to trade off bias and variance.

4.1.1. The data set

We observe 1000 independent and identically distributed draws (Yi(Ti), Ti, Xi,
Si) of a distribution P, where the Xi are covariates. The data generating process
was chosen such that there is limited overlap, i.e. P[T = 1|X = 0] ≈ 0 and that
the unconfoundedness assumptions, that means (Y (0), Y (1)) ⊥ T |X (Rosen-
baum and Rubin, 1983). As discussed above, the causal effect can be estimated
via doubly robust methods such as augmented inverse probability weighting,
among others (Hernan and Robins, 2020). The data are generated according to
the following equations:

S drawn from {1, 2, 3} uniformly at random
εY ∼ N (0, 1)
X ∼ Ber(.5)

T ∼
{

Ber(.7) if X = 1,
Ber(.05) if X = 0,

Y (t) = X

2 + t + 3tγ2X + .1t · 1S=1 + .2t · 1S=2 − .1t · 1S=3 + εY ,

(8)

where γ ∈ [0, 1]. For γ = 0, the treatment effect is homogeneous across X. Thus,
for γ = 0, the overlap-weighted effect coincides with the average treatment effect.
In the Appendix, we present a variant of this simulation with a 10-dimensional
covariate vector.
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4.1.2. The estimators

In the following, we compute the estimators for each group S = s separately on
the data set {i : Si = s}. For reasons of readability, notationally we suppress the
dependence of the conditional probabilities and conditional expectations on s.
We can estimate that average treatment effect via augmented inverse probability
weighting (Robins et al., 1994),

θ̂(0)
s = μ̂1 − μ̂0,

where

μ̂a = 1
n

n∑
i=1

Yi1Ti=a

p̂(Ti = a|Xi)
− 1Ti=a − p̂(Ti = a|Xi)

p̂(Ti = a|Xi)
Q̂(Xi, a),

and where Q̂(x, t) is the empirical mean of Y given X = x and T = t and p̂(·|·)
are empirical probabilities. Similarly as above, we can estimate the overlap effect
by

θ̂(1)
s = η̂1 − η̂0

1
n

∑
i p̂(Ti = 1|Xi)(1 − p̂(Ti = 1|Xi))

,

where

η̂a = 1
n

n∑
i=1

Yi1Ti=a(1 − p̂(Ti = a|Xi))

− (1Ti=a − p̂(Ti = a|Xi))(1 − p̂(Ti = a|Xi))Q̂(Xi, a).

For w ∈ {1/10, . . . , 9/10} we define

θ̂(w) = (1 − w)θ̂(0) + wθ̂(1). (9)

For γ ≈ 0, due to treatment effect homogeneity we expect E[(θ̂(1) − θ(0))2] <
E[(θ̂(0) − θ(0))2]. For γ ≈ 1, we expect E[(θ̂(1) − θ(0))2] > E[(θ̂(0) − θ(0))2]. In
the first case, the optimal estimator is θ̂(w) with w ≈ 1. In the second case the
optimal estimator is θ̂(w) with w ≈ 0.

4.1.3. Results

The mean-squared error of the estimator selected by targeted selection (the
proposed procedure), 10-fold cross-validation, reverse 10-fold cross-validation,
selective machine learning and Lepski’s method is depicted in Figure 1. To
study the influence of dimension d on the performance of the model selection
procedure, we show how the method performs on the full data set (left-hand side)
and how the method performs if it only has access to the subset of observations
i for which Si = 1 (right-hand side). Results are averaged across 100 simulation
runs.
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Fig 1. Several model selection procedures are used to shrink between the AIPW ATE estimator
and the AIPW overlap estimator. The proposed procedure is referred to as “targeted selection”.
On the left-hand side, we show the error ‖θ̂(g)

• − θ
(0)
• ‖2

2/3. On the right-hand side the method
is run on the subset of observations i for which Si = 1. The data are drawn according to
equation (8).

We evaluate the realized coverage of confidence intervals with nominal cov-
erage 95% as described in Section 3.4. Equation 6 is estimated using the non-
parametric bootstrap. Across γ ∈ [0, 1], the minimal realized coverage is 93%
and the maximal realized coverage is 97%. Averaged across all γ ∈ [0, 1], the
overall coverage is 94.9%.

4.2. Instrumental variables and data fusion

The instrumental variables approach is a widely-used method to estimate causal
effect of a treatment T on a target outcome Y in the presence of confounding
(Wright, 1928; Bowden and Turkington, 1990; Angrist et al., 1996). Roughly
speaking, the method relies on a predictor I (called the instrument) of the
treatment T that is not associated with the error term of the outcome Y . We
will not discuss the assumptions behind instrumental variables in detail, but
refer the interested reader to Hernan and Robins (2020). We will focus on the
case, where I, T and Y are one-dimensional. Under IV assumptions and linearity,
the target quantity can be re-written as

θ(0) = E[Y (1) − Y (0)] = Cov(I, Y )
Cov(I, T ) .

Estimating this quantity can be challenging if the instrument is weak, i.e. if
Cov(I, T ) ≈ 0. In this case, the approach can benefit from shrinkage towards
the ordinary least-squares solution (Nagar, 1959; Theil, 1961; Rothenhäusler
et al., 2021; Jakobsen and Peters, 2022). Doing so may decrease the variance
but generally introduces bias. We will focus on the case where we have some
additional observational data, where we observe T and Y , but where the instru-
ment I is unobserved.
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4.2.1. The data set

We draw 500 i.i.d. observations according to the following equations:

S drawn from {1, 2, 3} uniformly at random
I,H, εT , εY ∼ N (0, 1)

T = I

2 + H + εT

Y (t) = t− γ2H + .1t · 1S=1 + .2t · 1S=2 − .1t · 1S=3 + εY

(10)

We vary γ ∈ [0, 2], which corresponds to the strength of confounding between
T and Y . We observe (Ti, Yi(Ti), Ii) for i = 1, . . . , 500. We also assume that we
have access to a larger data set i = 501, . . . , 1000 with incomplete observations.
To be more precise, on this data set we only observe X and Y , but not the
instrument I. Formally, for i = 501, . . . , 1000 we observe (Ti, Yi(Ti)) drawn
according to equation (10).

4.2.2. The estimators

In the linear case, for each subset S = s, the instrumental variables estimator
can be written as

(b̂IV )s = Ĉov(I, Y |S = s)
Ĉov(I, T |S = s)

,

where Ĉov denotes the empirical covariance over the observations i = 1, . . . , 500.
To deal with the weak instrument, we will consider shrinking the instrumental
variables estimator torwards ordinary least-squares,

(b̂OLS)s = argmin
b

min
c

Ê[(Y − Tb− c)2|S = s],

where Ê denotes the empirical expectation over the observations i = 1, . . . , 1000.
Shrinking towards the ordinary least-squares solution will introduce some bias
if γ �= 0, but potentially decreases variance. As candidate estimators, for any
w ∈ {0/10, 1/10, . . . , 10/10} we consider convex combinations of OLS and IV,

θ̂(w) = wb̂OLS + (1 − w)b̂IV.

Cross-validation was performed similarly as in the previous section.

4.2.3. Results

The results can be found in Figure 2. To summarize, in this setting the proposed
procedure (targeted selection) performs better than the competing procedures.
Compared to the baseline procedure (the green dotted line), targeted selection
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Fig 2. The model selection procedures are used to stabilize the instrumental variables approach
by shrinking the estimate towards ordinary least-squares. On the y-axis, we report the mean-
squared error R(ŵ) where ŵ is selected via cross-validation, reverse cross-validation, targeted
selection (the proposed method), selective machine learning, or Lepski’s method. The data are
drawn according to equation (10).

performs better under strong confounding and if the confounding is weak, but
has slightly larger MSE in the transitional regime where s ≈ .5. Similarly as
discussed before, we evaluate the coverage of confidence intervals with nominal
coverage .95. Since the confidence intervals are not uniformly valid, a drop in
the realized coverage is expected in transitional regimes. Across all γ ∈ [0, 2] the
minimal realized coverage is 89%, while the overall realized coverage is 93%.

4.3. Experiment with proxy outcome

One of the most popular estimators for causal effects in experimental set-
tings is difference-in-means. To improve variance, it is possible to adjust for
pre-treatment covariates, see for example Lin (2013). This raises the question
whether post-treatment covariates can be used to improve the precision of causal
effect estimates. This is indeed the case under additional assumptions. For ex-
ample, in some cases, the treatment effect can be written as the product

θ(0) = E[Y |T = 1] − E[Y |T = 0] = θT→P · θP→Y , (11)

where θT→P = E[P |T = 1] − E[P |T = 0] is the effect of the treatment on some
surrogate or proxy outcome P ∈ {0, 1}; and θP→Y = E[Y |P = 1] − E[Y |P = 0]
is the effect of the proxy on the outcome. It is well-known that estimators that
make use of such decompositions can outperform the standard difference-in-
means estimator in terms of asymptotic variance (Tsiatis, 2007; Athey et al.,
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2019; Guo and Perković, 2022). However, doing so can introduce bias if equa-
tion (11) does not hold. We will use the proposed model selection procedure
to shrink between difference-in-means and an estimator that is unbiased if the
treatment effect decomposition in equation (11) holds.

4.3.1. The data set

We consider a simple experimental setting with a post-treatment variable P . For
simplicity, let us consider an experiment with binary treatment T ∈ {0, 1}, a bi-
nary proxy outcome P ∈ {0, 1} and outcome Y . We draw 200 i.i.d. observations
according to the following equations:

S drawn from {1, 2, 3} uniformly at random
T ∼ Ber(.5)

εP , εY ∼ N (0, 1)
P (t) = 1εp≤t

Y (t) = P (t) + γ2 (.1t · 1S=1 + .2t · 1S=2 − .1t · 1S=3) + εY

(12)

For γ = 0, the outcome Y (T ) is conditionally independent of the treatment,
given the proxy P (T ). In this case, the average treatment effect can be written
in product form, θ(0) = θT→P · θP→Y , and this decomposition can be leveraged
for estimation. For γ �= 0, this decomposition does not hold.

4.3.2. The estimators

The standard estimator to estimate causal effects from experiments is difference-
in-means,

θ̂(0) = 1∑
Ti

∑
i:Ti=1

Yi −
1∑

(1 − Ti)
∑

i:Ti=0
Yi. (13)

If the proxy outcome is a valid surrogate, i.e. if

Y ⊥ T |P,

we can rewrite θ(0) as

θ(0) = E[Y |T = 1] − E[Y |T = 0]
= E[E[Y |P = 1]P + E[Y |P = 0](1 − P )|T = 1]

− E[E[Y |P = 1]P + E[Y |P = 0](1 − P )|T = 0]
= (E[Y |P = 1] − E[Y |P = 0]) (E[P |T = 1] − E[P |T = 0])
= θT→P · θP→Y .
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Fig 3. Cross-validation, reverse cross-validation, selective ML, Lepski’s method and targeted
selection (our proposal) is used to stabilize the difference-in-means estimator by shrinking
towards an estimator that makes use of a proxy outcome. The data are drawn according to
equation (12).

Thus, in this case, we can also consider the product estimator

θ̂(1) =
(

1∑
Ti

∑
i:Ti=1

Pi −
1∑

(1 − Ti)
∑

i:Ti=0
Pi

)

·
(

1∑
Pi

∑
i:Pi=1

Yi −
1∑

(1 − Pi)
∑

i:Pi=0
Yi

) (14)

On each subset {i : Si = s} we compute (13) and (14), yielding θ̂
(1)
s and θ̂

(0)
s for

s = 1, 2, 3. We shrink between these two vectors, i.e. for w ∈ {1/10, . . . , 9/10}
we define

θ̂(w) = (1 − w)θ̂(0) + wθ̂(1).

4.3.3. Results

The results are depicted in Figure 3. Similarly as above, targeted selection per-
forms similar or better than cross-validation. Overall, selective ML performs
similar compared to the proposed procedure. Lepski’s method performs well for
small γ, but is suboptimal for most of the parameter space. The minimal realized
coverage of 95% confidence intervals is 93% and the overall realized coverage is
94.6%.
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5. Conclusion

In causal inference, there are often multiple reasonable estimators for a given
target quantity. Ideally, the practitioner decides on an asymptotically regular
estimator before looking at the data and conducts inference as usual. However,
this might be challenging in practice since a priori it might not be clear to
a practitioner which method is the best. If the final model is chosen ad-hoc
after peeking at the data, naive inferential procedures will fail. This necessi-
tates the development of model selection tools, with rigorous inferential guar-
antees.

We have introduced a method that allows to conduct targeted parameter
selection by estimating the bias and variance of candidate estimators. The the-
oretical justification of the method relies on a linear expansion of the estimator.
The method can be used in both parametric and semi-parametric settings. Un-
der regularity conditions, we showed that the proposed criterion provides an
asymptotically unbiased estimate of the risk. In addition, we showed that for
n → ∞, the modified risk criterion selects models with lower or equal risk
than the baseline estimator θ̂(0). Furthermore, we derived asymptotically valid
confidence intervals in low-dimensional settings.

In low-dimensional simulation settings, we showed that the method selects
reasonable models and performs similarly or better than cross-validation, se-
lective ML and Lepski’s method in simulations. The proposed method can de-
crease variance if the competing estimators are approximately unbiased. How-
ever, there is no free lunch. In transitional regimes, for fixed n, the estimator
can perform worse than the baseline estimator θ̂(0). This is to be expected from
statistical theory, see for example Van der Vaart (2000, page 110). However,
as the finite-sample bound shows, the excess risk can go to zero in settings
where the bias of the base procedure θ̂(0) is negligible. The simulations cover
the cases of one-dimensional and three-dimensional target parameters. Such
low-dimensional target parameters are common in causal inference, where the
target parameter often represents the causal effect for a (sub-)population. For
the three-dimensional target parameters the excess risk is smaller than for the
one-dimensional parameter. A simulation with a 10-dimensional covariate vector
can be found in Appendix A.

Since the confidence intervals are not uniformly valid, we expect the minimal
coverage to be below .95 (Leeb and Pötscher, 2005). However, in simulations,
the drop in coverage seems to be limited.

The theoretical justification of the proposed method relies on a linear ap-
proximation of the estimator in a neighborhood of the parameter values θ(g).
Thus, it would be important to understand the performance of the method in
scenarios where parameter estimates of some of the estimators are far from the
parameter values. In Section 4.2, we have seen some preliminary evidence that
the proposed methodology may be used to combine knowledge across data sets.
The proposed method is not tailored to this special case. Thus, we believe that
it would be exciting to investigate whether the model selection can be further
improved for data fusion tasks.
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Fig 4. Several model selection procedures are used to shrink between the AIPW ATE estimator
and the AIPW overlap estimator. The proposed procedure is referred to as “targeted selection”.
The data are drawn according to equation (15).

Appendix A: Additional numerical results

In this section, we present a variant of the simulation in Section 4.1, with a
10-dimensional covariate vector. To be specific, the data is generated according
to

S drawn from {1, 2, 3} uniformly at random
εY ∼ N (0, 1)
X ∼ N (0, Id10)
T ∼ Ber(expit(Xᵀβ))

Y (t) = Xᵀβ + 3tγ2(X1 + 1) + .1t · 1S=1 + .2t · 1S=2 − .1t · 1S=3 + εY .

(15)

Here, β is a vector of coefficients randomly drawn from the unit sphere in R
10.

Analogously as in Section 4.1, we interpolate between augmented inverse prob-
ability weighting and the overlap effect. The results can be found in Figure 4.

Appendix B: Proofs

This appendix contains proofs for the theoretical results in the main paper.
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B.1. Proof of Theorem 1

Proof. First, note that

n(R̂(g)−E[‖θ̂(g) − θ(0)‖2
2]) =

d∑
j=1

n(θ̂(g)
j − θ̂

(0)
j )2 − τ̂

(g)
j + σ̂

(g)
j −E[(θ̂(g)

j − θ
(0)
j )2].

Thus, it is sufficient to show that for each j

n(θ̂(g)
j − θ̂

(0)
j )2 − τ̂

(g)
j + σ̂

(g)
j − E[(θ̂(g)

j − θ
(0)
j )2],

converges in distribution to a centered random variable. Thus, without loss of
generality, we assume d = 1. As E[eg(n)2] = o(1/n) and as E[θ̂(g)] − θ(g) =
cg√
n

+ o(1/
√
n),

R̂(g) =
c2g
n

+ 2 cg√
n

1
n

n∑
i=1

ψ(g)(Di) − ψ(0)(Di) + 1
n

(
1√
n

n∑
i=1

ψ(g)(Di) − ψ(0)(Di)
)2

− (τ (g))2

n
+ (σ(g))2

n
+ oP ( 1

n
),

and
E[(θ̂(g) − θ(0))2] =

c2g
n

+ 1
n

Var(ψ(g)(D)) + o(1/
√
n).

Thus,

n(R̂(g) − E[(θ̂(g) − θ(0))2]) = 2cg
1√
n

n∑
i=1

ψ(g)(Di) − ψ(0)(Di)

+
(

1√
n

n∑
i=1

ψ(g)(Di) − ψ(0)(Di)
)2

− (τ (g))2 + oP (1)

(16)

Using the CLT, 1√
n

∑n
i=1 ψ

(g)(Di) − ψ(0)(Di) converges in distribution to a
centered Gaussian random variable with variance (τ (g))2. Using this fact in
equation (16) concludes the proof.

B.2. Proof of Corollary 1

Proof. By assumption, we have θ̂(g) − θ̂(0) = θ(g) − θ(0) + OP (1/
√
n). If θ(g) −

θ(0) �≡ (0, . . . , 0), then

R̂mod(g) = ‖θ(g) − θ(0)‖2
2 + OP (1/

√
n),

with ‖θ(g) − θ(0)‖2
2 > 0. On the other hand, if θ(g) = θ(0),

R̂mod(g) = OP (1/n).
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Thus,
P[θ(ḡ) = θ(0)] → 1.

Now consider any g with θ(g) = θ(0) and
∑

j Var(ψ(g)
j ) >

∑
j Var(ψ(0)

j ). Then,
using Assumption 1,

R̂mod(g) ≥
∑
j

1
n

Var(ψ(g)
j ) + oP (1/n),

and
R̂mod(0) =

∑
j

1
n

Var(ψ(0)
j )) + oP (1/n).

Recall that by assumption
∑

j Var(ψ(g)
j ) >

∑
j Var(ψ(0)

j ). Thus, P[R̂mod(0) <

R̂mod(g)] → 1 for n → ∞. As this holds for all g with
∑

j Var(ψ(g)
j )

>
∑

j Var(ψ(0)
j ) for n → ∞, this concludes the proof of the first statement.

For the second statement, please note that due to the first part of the proof,
without loss of generality we can assume that θ(g) = θ(0) for all g = 1, . . . , G.
Thus, asymptotically

√
n(θ̂(g)− θ̂(0)) converge to non-degenerate centered Gaus-

sians Z(1), . . . , Z(G). Please note that Z(0) ≡ 0. Now let there exist a g with∑d
j=1(σ

(g)
j )2 <

∑d
j=1(σ

(0)
j )2. Thus, for n → ∞, the probability that model g

gets selected converges to the probability of the event

p = P

[
max

(
‖Zg‖2

2 −
∑
j

(τ (g)
j )2, 0

)
+

∑
j

(σg
j )

2

< min
g �=g

max
(
‖Zg‖2

2 −
∑
j

(τ (g)
j )2, 0

)
+

∑
j

(σg
j )

2
] (17)

We now want to show that this probability is non-zero. Let’s choose a fixed
number z that is strictly larger than

∑
j(σ

g
j )2 and strictly smaller than

∑
j(σ

g
j )2.

Then,

p ≥ P

[
max

(
‖Zg‖2

2 −
∑
j

(τ (g)
j )2, 0

)
+
∑
j

(σg
j )

2

< z and z < min
g �=g

max
(
‖Zg‖2

2 −
∑
j

(τ (g)
j )2, 0

)
+

∑
j

(σg
j )

2
] (18)

Since the Z(g) are non-degenerate for g �= 0, this probability is non-zero.

B.3. Proof of Proposition 1

Proof. Note that we have n = K|D0,1|. Then,

nR̃(1) = n

K

K∑
k=1

(
1

|D0,k|
∑

i∈D0,k

ψ(0)(Di) −
1

K − 1
∑
k′ �=k

1
|D0,k′ |

∑
i∈D0,k′

ψ(1)(Di)
)2
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=
K∑

k=1

(
1√

|D0,k|
∑

i∈D0,k

ψ(0)(Di) −
1

K − 1
∑
k′ �=k

1√
|D0,k′ |

∑
i∈D0,k′

ψ(1)(Di)
)2

Thus, the distribution does not depend on n. In particular,

nR̃(1) d=
K∑

k=1

(
ψ(0)(Dk) −

1
K − 1

∑
k′ �=k

ψ(1)(Dk′)
)2

(19)

Similarly,

nR̃(0) d=
K∑

k=1

(
ψ(0)(Dk) −

1
K − 1

∑
k′ �=k

ψ(0)(Dk′)
)2

(20)

Furthermore, the joint distribution of the left-hand side of equations (19) and (20)
is equal to the joint distribution of the right-hand side of equations (19) and (20).
Thus, we have reduced the problem to the question whether

K∑
k=1

(
ψ(0)(Dk)−

1
K − 1

∑
k′ �=k

ψ(1)(Dk′)
)2

<
K∑

k=1

(
ψ(0)(Dk)−

1
K − 1

∑
k′ �=k

ψ(0)(Dk′)
)2

(21)
with positive probability. This is indeed easy to prove. First, almost surely
we have

∑K
k=1(ψ(0)(Dk)− 1

K−1
∑

k′ �=k ψ
(0)(Dk′))2 > 0. Secondly, if ψ(1)(Dk) =

ψ(0)(Dk′) for k, k′ = 1, . . . ,K, the inequality holds. Thus, there exist a nonempty
subset of configurations of ψ(0)(D1), . . . , ψ(0)(DK), ψ(1)(D1), . . . , ψ(1)(DK) ∈
R

2K for which the inequality holds. By continuity, the set of configurations
for which this inequality holds is a nonempty open subset of R

2K . Since the
density of

ψ(0)(D1), . . . , ψ(0)(DK), ψ(1)(D1), . . . , ψ(1)(DK)

is positive on R
2K , the probability of the event (21) must be nonzero.

B.4. Proof of Theorem 2

Proof. We will first prove the first statement. Note that if Σ̂ is positive definite,
β �→ bD1,...,Dn(β) is continuous and strictly increasing and limβ→∞ bD1,...,Dn(β)
= 1, limβ→−∞ bD1,...,Dn(β) = 0. As Σ̂ converges in probability to a positive
definite matrix, the inverse b−1

D1,...,Dn
: (0, 1) → R is well-defined, except on an

event with vanishing probability as n → ∞.
Let us now turn to the second statement. We use the decomposition

P[
√
n(θ̂(ḡ)

j − θ
(0)
j ) ≤ β] =

∑
g

P[
√
n(θ̂(g)

j − θ
(0)
j ) ≤ β; ḡ = g]. (22)

Define the event

Ag = {ḡ = g}
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= {max(n‖θ̂(g) − θ̂(0)‖2
2 − ‖τ̂ (g)‖2

2, 0) + ‖σ̂(g)‖2
2

< min
g′ �=g

max(n‖θ̂(g′) − θ̂(0)‖2
2 − ‖τ̂ (g′)‖2

2, 0) + ‖σ̂(g′)‖2
2}.

It is crucial to understand how this event behaves in the limit.
√
n(θ̂ − θ) con-

verges to a centered Gaussian distribution with covariance matrix Σ. Thus,
define

Alim
g = max(‖Z0

g − Z0
0‖2

2 − ‖τ (g)‖2
2, 0) + ‖σ(g)‖2

2

< min
g′ �=g;θ(g′)=θ(0)

max(‖Z0
g′ − Z0

0‖2
2 − ‖τ (g′)‖2

2, 0) + ‖σ(g)′‖2
2,

where (Z0
0 , . . . , Z

0
G) ∼ N (0,Σ), independent of the data {Dj}j∈N. Before we

investigate the large-sample behaviour of equation (22), let us fix some notation.

fg(β) := P[{
√
n(θ̂(g)

j − θ
(0)
j ) ≤ β} ∩Ag]

f lim
g (β) :=

{
P[{(Z0

g )j ≤ β} ∩Alim
g ] if θ(g) = θ(0),

0 else.

f comp
g (β,D1, . . . , Dn) := P[Zg,j −

√
nθ̂

(0)
j ≤ β; max(‖Zg − Z0‖2

2

− ‖τ̂ (g)‖2
2, 0) + ‖σ̂(g)‖2

2

< min
g′ �=g

max(‖Zg − Z0‖2
2 − ‖τ̂ (g)‖2

2, 0)

+ ‖σ̂(g)‖2
2|D1, . . . , Dn],

where (Z0, . . . , ZG) ∼ N (
√
nθ̂(D), Σ̂(D)), conditionally on the data D. In the

first step, let us consider g for which θ(g) = θ(0). Recall that σ̂(g) → σ(g),
τ̂ (g) → τ (g), and Σ̂ → Σ. Also,

√
n(θ̂ − θ) converges weakly to a distribution

that is equal to the distribution of Z0. By weak convergence, for all β,

lim
n

fg(β) = f lim
g (β) = lim

n
f comp
g (β,D1, . . . , Dn), (23)

where the limit on the right-hand side is in probability. Now, let us focus on g
for which θ(g) �= θ(0). Note that for all g with θ(g) �= θ(0), n‖θ̂(g) − θ̂(0)‖2

2 → ∞.
Thus, for all g with θ(g) �= θ(0),

P[
√
n(θ̂(g)

j − θ
(0)
j ) ≤ β; ḡ = g]

≤ P[max(n‖θ̂(g) − θ̂(0)‖2
2 − ‖τ̂ (g)‖2

2, 0) + ‖σ̂(g)‖2
2

< min
g′ �=g

max(n‖θ̂(g) − θ̂(0)‖2
2 − ‖τ̂g‖2

2, 0) + ‖σ̂(g)‖2
2]

≤ P[max(n‖θ̂(g) − θ̂(0)‖2
2 − ‖τ̂ (g)‖2

2, 0) + ‖σ̂(g)‖2
2 < ‖σ̂(0)‖2

2].

Since σ̂(0) → σ(0) and σ̂(g) → σ(g) and τ̂ (g) → τ (g) and n‖θ̂(g) − θ̂(0)‖2
2 → ∞, for

all g with θ(g) �= θ(0) we have P[
√
n(θ̂(g)

j − θ
(0)
j ) ≤ β; ḡ = g] → 0. Thus for all g
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with θ(g) �= θ(0), fg(β) → 0. Analogously it can be shown that f comp
g (β,D) → 0

for all g with θ(g) �= θ(0). Thus, for g with θ(g) �= θ(0),

lim
n

fg(β) = f lim
g (β) = lim

n
f comp
g (β), (24)

where the limit on the right-hand side is in probability. By equation (23) and
equation (24), for all g,

lim
n

fg(β) = f lim
g (β) = lim

n
f comp
g (β,D1, . . . , Dn),

Now note that as Σ is positive definite, (Z0
0 , . . . , Z

0
G) has positive density on

R
dG and thus

β �→ f lim
0 (β)

is strictly increasing. By definition, for all g = 1, . . . , G, β �→ f lim
g (β) is non-

decreasing. Thus, the function

β �→
∑
g

f lim
g (β)

is strictly increasing. Note that by construction {Alim
g : θ(g) = θ(0)} form a

disjoint partition of the sample space. Thus, using the definition of f lim
g ,

lim
β→∞

∑
g

f lim
g (β) = 1 and lim

β→−∞

∑
g

f lim
g (β) = 0.

Similarly, by definition, β �→
∑

g fg(β) and β �→
∑

g f
comp
g (β) are increasing

with 0 ≤
∑

g fg(β) ≤ 1 and 0 ≤
∑

g f
comp
g (β) ≤ 1. Invoking Polya’s theorem

with equation (24), supβ |fg(β) − f lim
g (β)| → 0 in probability. Analogously,

supβ |f comp
g (β,D1, . . . , Dn) − f lim

g (β)| converges to zero in probability.
Consider a sequence n �→ cn := b−1

D1,...,Dn
(1 − α/2) such that

∑
g

f comp
g (cn, D1, . . . , Dn) = 1 − α/2.

Since f comp
g (β) converges to f lim

g (β) uniformly, we have that
∑

g f
lim
g (cn) → 1−

α/2 in probability. Since β �→
∑

g f
lim
g (β) is strictly increasing and continuous,

cn converges in probability to the unique c0 ∈ R with
∑

g f
lim
g (c0) = 1 − α/2.

Thus, for all ε > 0,

P[
√
n(θ̂(ḡ)

j − θ
(0)
j ) ≤ b−1

D1,...,Dn
(1 − α/2)]

= P[
√
n(θ̂(ḡ)

j − θ
(0)
j ) ≤ cn]

≤ P[
√
n(θ̂(ḡ)

j − θ
(0)
j ) ≤ c0 + ε] + P[|cn − c0| ≥ ε]

=
∑
g

fg(c0 + ε) + o(1).
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Now, letting ε → 0 and using that β �→ f lim
g (β) is continuous and supβ |fg(β)−

f lim
g (β)| → 0,

lim sup
n→∞

P[
√
n(θ̂(ḡ)

j −θ
(0)
j ) ≤ b−1

D1,...,Dn
(1−α/2)] ≤

∑
g

f lim
g (c0) = 1−α/2. (25)

Analogously,

P[
√
n(θ̂(ḡ)

j − θ
(0)
j ) ≤ b−1

D1,...,Dn
(1 − α/2)]

= P[
√
n(θ̂(ḡ)

j − θ
(0)
j ) ≤ cn]

≥ P[
√
n(θ̂(ḡ)

j − θ
(0)
j ) ≤ c0 − ε] + P[|cn − c0| ≥ ε]

=
∑
g

fg(c0 − ε) + o(1).

Thus,

lim inf
n→∞

P[
√
n(θ̂(ḡ)

j − θ
(0)
j ) ≤ b−1

D1,...,Dn
(1 − α/2)] ≥

∑
g

f lim
g (c0) = 1 − α/2.

(26)

Combining equation (25) and equation (26),

lim
n→∞

P[
√
n(θ̂(ḡ)

j − θ
(0)
j ) ≤ b−1

D1,...,Dn
(1 − α/2)] = 1 − α/2.

Analogously, it can be shown that

lim
n→∞

P[
√
n(θ̂(ḡ)

j − θ
(0)
j ) ≥ b−1

D1,...,Dn
(α/2)] = 1 − α/2.

Thus,

lim
n→∞

P[b−1
D1,...,Dn

(α/2) ≤
√
n(θ̂(ḡ)

j − θ
(0)
j ) ≤ b−1

D1,...,Dn
(1 − α/2)] = 1 − α.

This completes the proof.

B.5. Proof of Theorem 3

Proof. Let us first prove the result for the special case where δ(0) = 0. With
probability exceeding 1 − exp (−t),∣∣∣∣nd ‖θ̂(g) − θ̂(0)‖2

2 −
n

d
‖δ(g)‖2

2 −
1
d
‖τ (g)‖2

2

∣∣∣∣
=

∣∣∣∣nd ‖θ̂(g) − θ̂(0) − δ(g)‖2
2 −

1
d
‖τ (g)‖2

2 + 2n
d

(θ̂(g) − θ̂(0) − δ(g)) · δ(g)
∣∣∣∣

=
∣∣∣∣nd ‖ε(g) − ε(0)‖2

2 −
1
d
‖τ (g)‖2

2 + 2n
d

(ε(g) − ε(0)) · δ(g)
∣∣∣∣
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≤ s2
∞C1

t

d
+ s2

∞C1

√
t

d
+ s∞C2

b∞
√
tn√
d

,

for some constants C1 and C2. Here, we used sub-Gaussian and subexponen-
tial tail bounds, see for example Chapter 2 in Wainwright (2019). More pre-
cisely, we used that n

d (ε(g) − ε(0)) · δ(g) is sub-Gaussian with variance proxy
db2∞n 4

d2 maxg,j(η(g)
j )2 and that n‖ε(g) − ε(0)‖2

2 − (τ (g))2 is subexponential with
parameter 64dmaxg,j(η(g)

j )2. Using a union bound, for every κ > 0 there exists
a constant C3(κ), such that with probability exceeding 1 − κ,

sup
g

∣∣∣∣nd ‖θ̂(g) − θ̂(0)‖2
2 −

n

d
‖δ(g)‖2

2 −
1
d
‖τ (g)‖2

2

∣∣∣∣
≤ C3

(
s2
∞

√
logG
d

+ s2
∞

logG
d

+ s∞b∞

√
n logG√

d

)

Since log(G)/d ≤ c1, for all κ > 0 there exists a constant C4(c1, κ) such that
with probability exceeding 1 − κ/2,

sup
g

∣∣∣∣nd ‖θ̂(g) − θ̂(0)‖2
2 −

n

d
‖δ(g)‖2

2 −
1
d
‖τ (g)‖2

2

∣∣∣∣
≤ C4

(
s2
∞

√
logG
d

+ s∞b∞

√
n logG√

d

) (27)

Analogously, it can be shown that there exists a constant C5 such that with
probability exceeding 1 − κ/2,

sup
g

∣∣∣∣nd ‖θ̂(g) − θ(0)‖2
2 −

n

d
‖δ(g)‖2

2 −
1
d
‖σ(g)‖2

2

∣∣∣∣
= sup

g

∣∣∣∣nd ‖ε(g)‖2
2 −

1
d
‖σ(g)‖2

2 + 2n
d
ε(g) · δ(g)

∣∣∣∣
≤ C5

(
s2
∞

√
logG
d

+ s∞b∞

√
n logG√

d

)
.

(28)

Combining equation (27) and equation (28), with probability 1 − κ,

sup
g

∣∣∣n
d
‖θ̂(g) − θ(0)‖2

2 −
n

d
R̂mod(g)

∣∣∣
= sup

g

∣∣∣∣∣∣
n

d
‖θ̂(g)−θ(0)‖2

2−max

⎛
⎝n

d
‖θ̂(g)−θ̂(0)‖2

2−
1
d

d∑
j=1

(τ̂ (g)
j )2, 0

⎞
⎠−1

d

d∑
j=1

(σ̂(g)
j )2

∣∣∣∣∣∣
≤ 2ιn,d+ sup

g

∣∣∣∣∣nd ‖θ̂(g)−θ(0)‖2
2−max

(
n

d
‖θ̂(g)−θ̂(0)‖2

2

−1
d

d∑
j=1

(τ (g)
j )2, 0

)
−1
d

d∑
j=1

(σ(g)
j )2

∣∣∣∣∣
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≤ 2ιn,d+C6

(
s2
∞

√
logG
d

+s∞b∞

√
n logG√

d

)
+ sup

g

∣∣∣∣1d
d∑

j=1
(σ(g)

j )2+n

d
‖θ(g)−θ(0)‖2

2

− max

⎛
⎝n

d
‖θ(g) − θ(0)‖2

2 + 1
d

d∑
j=1

(τ (g)
j )2 − (τ (g)

j )2, 0

⎞
⎠− 1

d

d∑
j=1

(σ(g)
j )2

∣∣∣∣
≤ 2ιn,d + C6

(
s2
∞

√
logG
d

+ s∞b∞

√
n logG√

d

)
,

for some constant C6 that depends on c1 and κ. Thus, on that event,∣∣∣∣min
g

n

d
‖θ̂(g) − θ(0)‖2

2 −
n

d
min
g

R̂mod(g)
∣∣∣∣

≤ 2C6

(
s2
∞

√
logG
d

+ s∞b∞

√
n logG√

d

)
+ 4ιn,d.

Furthermore, on that event,

∣∣∣n
d
R̂mod(ḡ) − n

d
‖θ̂(ḡ) − θ(0)‖2

2

∣∣∣ ≤ C6

(
s2
∞

√
logG
d

+ s∞b∞

√
n logG√

d

)
+ 2ιn,d.

Thus,

n

d
‖θ̂(ḡ) − θ(0)‖2

2

≤ min
g

n

d
‖θ̂(g) − θ(0)‖2

2 + 3C6

(
s2
∞

√
logG
d

+ s∞b∞

√
n logG√

d

)
+ 6ιn,d.

Here, we used that ming R̂
mod(g) = R̂mod(ḡ). This proves the special case with

δ(0) = 0. For the more general case, we have just shown that

n

d
‖θ̂(ḡ) − θ(0) − δ(0)‖2

2

≤ min
g

n

d
‖θ̂(g)−θ(0)−δ(0)‖2

2+3C6

(
s2
∞

√
logG
d

+s∞b∞

√
n logG√

d

)
+6ιn,d.

(29)

Let C ′′ = maxg ‖θ̂(g) − θ(0)‖2 + ‖δ(0)‖2. Using that

‖θ̂(ḡ) − θ(0)‖2
2 ≤ ‖θ̂(ḡ) − θ(0) − δ(0)‖2

2 + C ′′‖δ(0)‖2,

and
‖θ̂(g) − θ(0) − δ(0)‖2

2 ≤ ‖θ̂(g) − θ(0)‖2
2 + C ′′‖δ(0)‖2

in equation (29) completes the proof.
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