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Abstract: Many areas of science rely on simulators that implicitly en-
code intractable likelihood functions of complex systems. Classical statis-
tical methods are poorly suited for these so-called likelihood-free inference
(LFI) settings, especially outside asymptotic and low-dimensional regimes.
At the same time, popular LFI methods — such as Approximate Bayesian
Computation or more recent machine learning techniques — do not nec-
essarily lead to valid scientific inference because they do not guarantee
confidence sets with nominal coverage in general settings. In addition, LFI
currently lacks practical diagnostic tools to check the actual coverage of
computed confidence sets across the entire parameter space. In this work,
we propose a modular inference framework that bridges classical statis-
tics and modern machine learning to provide (i) a practical approach for
constructing confidence sets with near finite-sample validity at any value
of the unknown parameters, and (ii) interpretable diagnostics for estimat-
ing empirical coverage across the entire parameter space. We refer to this
framework as likelihood-free frequentist inference (LF2I). Any method that
defines a test statistic can leverage LF2I to create valid confidence sets
and diagnostics without costly Monte Carlo or bootstrap samples at fixed
parameter settings. We study two likelihood-based test statistics (ACORE
and BFF) and demonstrate their performance on high-dimensional complex
data. Code is available at https://github.com/lee-group-cmu/lf2i.
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1. Introduction

Hypothesis testing and uncertainty quantification are the hallmarks of scientific
inference. Methods that achieve good statistical performance (e.g., high power)
often rely on being able to explicitly evaluate a likelihood function, which re-
lates parameters of the data-generating process to observed data. However, in
many areas of science and engineering, complex phenomena are modeled by for-
ward simulators that implicitly define a likelihood function. For example,1 given
input parameters θ from some parameter space Θ, a stochastic model Fθ may
encode the interaction of atoms or elementary particles, or the transport of radi-
ation through the atmosphere or through matter in the Universe by combining
deterministic dynamics with random fluctuations and measurement errors, to
produce synthetic data X.

Simulation-based inference with an intractable likelihood is commonly referred
to as likelihood-free inference (LFI). The most well-known approach to LFI
is Approximate Bayesian Computation (ABC; see [6, 63, 81] for a review).
These methods use simulations sufficiently close to the observed data D ={
xobs

1 , . . . ,xobs
n

}
to infer the underlying parameters, or more precisely, the pos-

terior distribution p(θ|D). Recently, the arsenal of LFI methods has been ex-
panded with new machine learning algorithms (such as neural density estima-
tors) that instead use the output from simulators as training data. The objective
here is to learn a “surrogate model” or approximation of the likelihood p(D|θ) or
posterior p(θ|D). The surrogate model, rather than the simulations themselves,
is then used for inference. Machine-learning (ML) based methods have revo-
lutionized LFI in terms of the complexity and dimensionality of the problems
that can be tackled (see [23] for a recent review). Nevertheless, neither ABC
nor ML-based LFI approaches guarantee confidence sets with frequentist cover-
age, which are crucial to ensure reliability of downstream scientific conclusions.
Suppose that we have a high-fidelity simulator Fθ, which implicitly encodes the
likelihood, and that we observe data D of finite sample size n. We address two
open challenges in LFI:

i) The first challenge is finding practical procedures for constructing a (1 − α)
confidence set R(D) with nominal coverage2

PD|θ (θ ∈ R(D)) = 1 − α, (1)
1Notation. Let Fθ represent the stochastic forward model for a sample point X ∈ X at

parameter θ ∈ Θ. We refer to Fθ as a “simulator”, as the assumption is that we can sample
data from the model. We denote i.i.d “observable” data from Fθ by D = {X1, . . . ,Xn}, and
the actually observed or measured data by D =

{
xobs

1 , . . . ,xobs
n

}
. The likelihood function is

defined as L(D; θ) =
∏n

i=1 p(xobs
i |θ), where p(·|θ) is the density of Fθ with respect to a fixed

dominating measure ν , which could be the Lebesgue measure.
2We use the notation PD|θ(·) to emphasize the fact that D is random, but θ is fixed.
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where α ∈ (0, 1), regardless of the true value of the unknown parameter θ ∈ Θ
and of the number of observations n. Monte Carlo and bootstrap procedures are
computationally infeasible for continuous parameter spaces Θ, and large-sample
theory does not apply when, e.g., n = 1. The latter n = 1 scenario is very com-
mon in, e.g., large astronomical surveys where each object (e.g., galaxy or star)
has a different parameter value θ and may only be measured once.

ii) The second challenge is finding practical and interpretable procedures to
check that the empirical coverage of the constructed sets R(D) is indeed close
to (and no smaller than) 1−α for any θ ∈ Θ (again, without resorting to costly
Monte Carlo simulations at fixed parameter settings on a fine grid in parameter
space Θ [18, Section 13]). Local validity across the entire parameter space is
essential for reliable scientific inference because the scientist does not actually
know what the true value of θ is for the object of interest.

Novelty and significance In this paper, we introduce a fully modular statis-
tical framework that addresses both problems above. We refer to the general ap-
proach as likelihood-free frequentist inference (LF2I)3. LF2I is fully nonparamet-
ric and targets modern scientific applications, involving, e.g, high-dimensional
data of different modalities, intractable likelihood models, and/or small sample
sizes. Section 7.1 describes how LF2I is related to other work in this area.

At the heart of LF2I is the Neyman construction of confidence sets, albeit
applied to a setting where the test statistic’s distribution is unknown. Frequen-
tist confidence sets and their equivalence to hypothesis tests have a long history
in statistics [36, 69, 70]. While classical statistical procedures have significantly
impacted fields like high-energy physics (see Section 7.1), most simulator-based
methods lack theoretical guarantees for confidence sets beyond low-dimensional
data and large-sample assumptions [35]. Implementing the Neyman construc-
tion for LFI is challenging not only because one cannot evaluate the likelihood,
but also because one needs to test null hypotheses across the entire parameter
space. While Monte Carlo and bootstrap methods estimate critical values and
p-values from a batch of simulations at each null value θ0 [62, 87], they be-
come computationally infeasible for high-dimensional parameters. As a result,
practical implementations might rely on parametric assumptions or asymptotic
theory [71, 92]. For instance, it is often assumed that the likelihood-ratio (LR)
statistic follows a χ2 distribution, but this does not hold for irregular models
or small sample sizes [4, 46, 53]. This work seeks to quickly and accurately esti-
mate critical values and coverage across the parameter space without knowing
the test statistic distribution or relying on large-sample approximations.

The key insight behind LF2I is that the main quantities of interest in frequen-
tist statistical inference — test statistics, critical values, p-values and coverage
of the confidence set — are distribution functions indexed by the (unknown)
parameter θ, which generally vary smoothly over the parameter space Θ. As a
result, one can leverage machine learning methods and data simulated in the
neighborhood of a parameter to improve estimates of quantities of interest with

3Code is available as a Python package at https://github.com/lee-group-cmu/lf2i

https://github.com/lee-group-cmu/lf2i
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fewer total simulations. Figure 1 illustrates the general LF2I inference machin-
ery, which is composed of three modular branches with separate functionalities:

i) The test statistic branch (Figure 1 center and Section 3.2) uses a simu-
lated set T to estimate a test statistic λ(D; θ0) for testing H0,θ0 : θ = θ0 versus
H1,θ0 : θ �= θ0. We study the theoretical and empirical performance of LF2I
confidence sets derived from likelihood-based test statistics learned via the odds
function O(X; θ) (Equation 7).

ii) The calibration branch (Figure 1 left and Section 3.3) uses a left-out set
T ′ to estimate critical values Cθ0 for every level-α test of H0,θ0 via quantile
regression of the estimated test statistic λ(D; θ0) on θ0 ∈ Θ. Once we have
estimated the quantile function Ĉθ0 indexed by θ0, we can directly construct
Neyman confidence sets

R̂(D) :=
{
θ ∈ Θ

∣∣∣λ(D; θ) ≥ Ĉθ

}
(2)

that have approximate (1 − α) finite-n coverage for every value of θ ∈ Θ. LF2I
with critical values is amortized, meaning that once trained it can be evaluated
on an arbitrary number of observations D. Alternatively, we can estimate p-
values p(D; θ0) for every test at θ = θ0 with observed data D.

iii) The diagnostics branch (Figure 1 right and Section 3.4) uses a validation
set T ′′ to assess the empirical coverage PD|θ(θ ∈ R̂(D)) of the constructed confi-
dence sets R̂(D) across the parameter space by regressing the indicator variable
W := I(λ(D; θ) ≥ Ĉθ) on θ. The diagnostics branch is not part of the inference
procedure itself. Its purpose is to provide an independent assessment of local
(instance-wise) coverage of the final constructed confidence sets.

The LF2I approach was first introduced in a conference proceeding [26]. This
preliminary version — ACORE (Approximate Computation via Odds Ratio Esti-
mation) — uses a test statistic that maximizes odds over the parameter space.
In this follow-up paper, we analyze the statistical and computational properties
of LF2I, while also introducing a new test statistic — the Bayesian Frequentist
Factor (BFF) — which is the Bayes Factor [49, 50] treated as a frequentist test
statistic. We show that the validity of LF2I only depends on calibration, whereas
its power depends on the test statistic’s definition and its estimation quality.
In addition to new theoretical results in Section 4, we compare LF2I with ap-
proaches using Monte Carlo methods or Wilks’ theorem (Section 6.1), and we
illustrate how our diagnostics can help scientists in choosing the best tool to
handle nuisance parameters (Section 6.2). Finally, we construct confidence sets
given a high-dimensional particle physics simulation where ABC approaches are
neither computationally feasible nor valid (Section 6.3).
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Fig 1. The three-branch fully modular framework for likelihood-free frequentist infer-
ence (LF2I). Center branch: Draw a sample T of size B from the simulator to estimate
an arbitrary test statistic λ(D; θ). Here we show how to do so by estimating the likelihood
via the odds function O(X; θ). Left branch: Draw a second sample T ′ of size B′ to esti-
mate the critical values Cθ or p-values p(D; θ) for all θ ∈ Θ. Left + Center: Once data
D are observed, we can construct confidence sets R̂(D) with finite-n validity according to
Equation 12. Right branch: The LF2I diagnostics branch independently checks whether the
coverage PD|θ(θ ∈ R̂(D)) of the confidence set is indeed correct across the entire parameter
space.

2. Statistical inference in a traditional setting

We now review the Neyman construction of confidence sets and the definitions
of likelihood ratio and Bayes factor, before moving on to the details of the LF2I
framework and its two instances, ACORE and BFF.

Equivalence of tests and confidence sets A classical approach to con-
structing a confidence set for an unknown parameter θ ∈ Θ is to invert a series
of hypothesis tests [70]. Suppose that for each possible value θ0 ∈ Θ, there is a
level-α test δθ0 of

H0,θ0 : θ = θ0 versus H1,θ0 : θ �= θ0. (3)

That is, a test δθ0 where the type I error (the probability of erroneously rejecting
a true null hypothesis H0,θ0) is no larger than α. For observed data D = D, let
R(D) be the set of all parameter values θ0 ∈ Θ for which the test δθ0 does not
reject H0,θ0 . Then, by construction, the random set R(D) satisfies

PD|θ (θ ∈ R(D)) ≥ 1 − α ∀θ ∈ Θ,

which makes it a (1−α) confidence set for θ. Similarly, we can define tests with
a desired significance level by inverting a confidence set with a certain coverage.
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Likelihood ratio test A general form of hypothesis tests that often leads to
high power is the likelihood ratio test (LRT). Consider testing

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1, (4)

where Θ1 = Θ \ Θ0. For the likelihood ratio (LR) statistic,

LR(D; Θ0) = log
supθ∈Θ0

L(D; θ)
supθ∈Θ L(D; θ) , (5)

the LRT of hypotheses (4) rejects H0 when LR(D; Θ0) < C for some constant
C. Figure 2 illustrates the construction of confidence sets for θ from level α
likelihood ratio tests (3). The critical value for each such test δθ0 is Cθ0 =
sup

{
C : PD|θ0 (LR(D; θ0) < C) ≤ α

}
.

Bayes factor Let π be a probability measure over the parameter space Θ.
The Bayes factor [49, 50] for comparing the hypothesis H0 : θ ∈ Θ0 to its
complement, the alternative H1, is the ratio of the marginal likelihood of the
two hypotheses:

BF(D; Θ0) ≡
P(D|H0)
P(D|H1)

=
∫
Θ0

L(D; θ)dπ0(θ)∫
Θ1

L(D; θ)dπ1(θ)
, (6)

where π0 and π1 are the restrictions of π to the parameter regions Θ0 and
Θ1 = Θc

0, respectively. The Bayes factor is often used as a Bayesian alternative
to significance testing, as it quantifies the change in the odds in favor of H0
when going from the prior to the posterior: P(H0|D)

P(H1|D) = BF(D; Θ0)P(H0)
P(H1) .

3. Likelihood-free frequentist inference via odds estimation

In the typical LFI setting, we cannot directly evaluate the likelihood ratio
LR(D; Θ0) or even the likelihood L(D; θ). In this work, we describe a version of
LF2I that is based on odds estimation. We assume that we have access to (i)
a forward simulator Fθ to draw observable data, (ii) a reference distribution G
that does not depend on θ, with larger support than Fθ for all θ ∈ Θ, and (iii)
a probabilistic classifier to discriminates samples from Fθ and G.

3.1. Estimating an odds function across the parameter space

We start by generating a labeled sample T = {(θi,Xi, Yi)}Bi=1 to compare data
from Fθ with data from the reference distribution G. Here, θ ∼ πΘ (a proposal
distribution over Θ), the “label” Y ∼ Ber(p), X|(θ, Y = 1) ∼ Fθ and X|(θ, Y =
0) ∼ G. We then define the odds at θ and fixed x as

O(x; θ) := P(Y = 1|θ,x)
P(Y = 0|θ,x) . (7)



Likelihood-Free Frequentist Inference 5051

Fig 2. Neyman construction of confidence sets by inverting hypothesis tests. Left: For
each θ0 ∈ Θ, we find the critical value Cθ0 that rejects the null hypothesis H0,θ0 at level α;
that is, Cθ0 is the α-quantile of the distribution of the test statistic under the null (a likelihood
ratio LR(D; θ0) in this case). Right: The horizontal solid lines represent acceptance regions
for each θ0 ∈ Θ. Suppose we observe data D. The confidence set for θ (red vertical solid line)
consists of all θ0-values for which the observed test statistic LR(D; θ0) (black curve) falls in
the acceptance region.

One way of interpreting O(x; θ) is to regard it as a measure of the chance that
x was generated from Fθ rather than from G. That is, a large odds O(x; θ)
reflects the fact that it is plausible that x was generated from Fθ (instead of
G). We call G a “reference distribution” as we are comparing Fθ for different
θ with this distribution. Equation 7 is equivalent to the likelihood p(x|θ) up to
a normalization constant, as shown in [26, Proposition 3.1]. The odds function
O(X; θ) with θ ∈ Θ as a parameter can be estimated with a probabilistic clas-
sifier, such as a neural network with a softmax layer, suitable for the data at
hand. Algorithm 3 in Appendix A summarizes our procedure for simulating a
labeled sample T . For all experiments in this paper, we use p=1/2 and G = FX,
where FX is the (empirical) marginal distribution of Fθ with respect to πΘ.

3.2. Test statistics based on odds

For testing H0,Θ0 : θ ∈ Θ0 versus all alternatives H1,Θ0 : θ /∈ Θ0, we consider
two test statistics: ACORE and BFF. Both statistics are based on O(X; θ), but
whereas ACORE eliminates the parameter θ by maximization, BFF averages over
the parameter space.

3.2.1. ACORE by maximization

The ACORE statistic [26] for testing Equation 3 is given by

Λ(D; Θ0) := log
supθ∈Θ0

∏n
i=1 O(Xi; θ)

supθ∈Θ
∏n

i=1 O(Xi; θ)
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= sup
θ0∈Θ0

inf
θ1∈Θ

n∑
i=1

log (OR(Xi; θ0, θ1)) , (8)

where the odds ratio

OR(x; θ0, θ1) := O(x; θ0)
O(x; θ1)

(9)

at θ0, θ1 ∈ Θ measures the plausibility that a fixed x was generated from θ0
rather than θ1. We use Λ̂(D; Θ0) to denote the ACORE statistic based on T and
estimated odds Ô(X; θ0). When Ô(X; θ0) is well-estimated for every θ and X,
Λ̂(D; Θ0) is the same as the LR(D; Θ0) in Equation 5 [26, Proposition 3.1].

3.2.2. BFF by averaging

Because the ACORE statistics in Equation 8 involves taking the supremum (or
infimum) over Θ, it may not be practical in high dimensions. Hence, in this
work, we propose an alternative statistic for testing (3) based on averaged odds:

τ(D; Θ0) :=
∫
Θ0

∏n
i=1 O(Xi; θ0)dπ0(θ)∫

Θc
0

∏n
i=1 O(Xi; θ)dπ1(θ)

, (10)

where π0 and π1 are the restrictions of the proposal distribution π to the param-
eter regions Θ0 and Θc

0, respectively. Let τ̂(D; Θ0) denote estimates based on
T and Ô(θ0;x). If the probabilities learned by the classifier are well estimated,
then the estimated averaged odds statistic τ̂(D; Θ0) is exactly the Bayes factor:

Proposition 1 (Fisher consistency)
Assume that, for every θ ∈ Θ, G dominates ν. If P̂(Y = 1|θ,x) = P(Y = 1|θ,x)
for every θ and x, then τ̂(D; Θ0) is the Bayes factor BF(D; Θ0).

In this paper, we are using the Bayes factor as a frequentist test statistic. Hence,
our term Bayes Frequentist Factor (BFF) statistic for τ and τ̂ .

3.3. Fast construction of Neyman confidence sets

Instead of a costly MC or bootstrap hypothesis test of H0 : θ = θ0 at each θ0 on a
fine grid (see, e.g., [62] and [87]), we draw only one sample T ′ of size B′. We then
estimate either the critical value Cθ0 via quantile regression (Section 3.3.1), or
the p-value p(D; θ0) via probabilistic classification (Section 3.3.2), for all θ0 ∈ Θ
simultaneously. In Supplementary Material H4, we propose a practical strategy
to choose the number of simulations B′ and the learning algorithm.

4Available at https://lucamasserano.github.io/data/LF2I_supplementary_material.pdf

https://lucamasserano.github.io/data/LF2I_supplementary_material.pdf
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Algorithm 1 Estimate critical values Cθ0 for a level-α test of H0,θ0 : θ = θ0
vs. H1,θ0 : θ �= θ0 for all θ0 ∈ Θ simultaneously.
Input: simulator Fθ; number of simulations B′; πΘ (fixed proposal distribution over
the parameter space); test statistic λ; quantile regression estimator; level α ∈ (0, 1)
Output: estimated critical values Ĉθ0 for all θ0 ∈ Θ

1: Set T ′ ← ∅
2: for i in {1, . . . , B′} do
3: Draw parameter θi ∼ πΘ

4: Draw sample Xi,1, . . . ,Xi,n
iid∼ Fθi

5: Compute test statistic λi ← λ((Xi,1, . . . ,Xi,n); θi)
6: T ′ ← T ′ ∪ {(θi, λi)}
7: end for
8: Use T ′ to learn the conditional quantile function Ĉθ := F̂−1

λ|θ(α|θ) via quantile
regression of λ on θ

9: return Ĉθ0

3.3.1. The critical value via quantile regression

Algorithm 1 describes how to use quantile regression (e.g., [54, 68]) to estimate
the critical value Cθ0 for a level-α test of (3) as a function of θ0 ∈ Θ. To
test a composite null hypothesis H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1, we use
the cutoff ĈΘ0 := infθ∈Θ0 Ĉθ. Although we originally proposed the calibration
procedure for ACORE, the same scheme leads to a valid test (control of type I
error as the number of simulations B′ → ∞) for any test statistic λ (Theorem 8).
Remarkably, this holds even if the test statistic is not well estimated. Note that
in practice, we observe that the number of simulations B′ needed to achieve
correct coverage is usually much lower relative to B, the number of simulations
needed to estimate the test statistic. In addition, Algorithm 1 does not rely on
the observed data D and is therefore amortized, meaning that once the test
statistic and critical values have been estimated, we can compute confidence
sets for any new data set without the need to retrain the model.

3.3.2. The p-value via probabilistic classification

If the data D are observed beforehand, then given any test statistic λ we can
alternatively compute p-values for each hypothesis H0,θ0 : θ = θ0, that is,

p(D; θ0) := PD|θ0 (λ(D; θ0) < λ(D; θ0)) . (11)

The p-value p(D; θ0) can be used to test hypothesis and create confidence
sets for any desired level α. As detailed in Algorithm 5, we can estimate it
simultaneously for all θ ∈ Θ by drawing a training sample T ′ = {(Z1, θ1), . . .,
(ZB′ , θB′)} and using the random variable Z := I (λ(D; θ) < λ(D; θ)) as a label
for each θ. To test the composite null hypothesis H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1,
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Algorithm 2 Estimate empirical coverage PD|θ(θ ∈ R̂(D)), for all θ ∈ Θ
Input: simulator Fθ; number of simulations B′′; πΘ (fixed proposal distribution over
parameter space); test statistic λ; level α; critical values Ĉθ; probabilistic classifier
Output: estimated coverage P̂D|θ(θ ∈ R̂(D)) for all θ ∈ Θ

1: Set T ′′ ← ∅
2: for i in {1, . . . , B′′} do
3: Draw parameter θi ∼ πΘ

4: Draw sample Di := {Xi,1, . . . ,Xi,n} iid∼ Fθi

5: Compute test statistic λi ← λ(Di; θi)
6: Compute indicator variable Wi ← I

(
λi ≥ Ĉθi

)
7: T ′′ ← T ′′ ∪ {(θi,Wi)}
8: end for
9: Use T ′′ to learn P̂D|θ′(θ′ ∈ R̂(D)) across Θ by regressing W on θ

10: return P̂D|θ(θ ∈ R̂(D))

we use
p̂(D; Θ0) := sup

θ∈Θ0

p̂(D; θ).

Note that there is a key computational difference between estimating p-values
versus estimating critical values. The p-value is a function of both θ and the
observed sample D itself. As a result, Algorithm 5 has to be repeated for each
observed D, making the computation of p-values non-amortized.

3.3.3. Amortized confidence sets

Finally, we construct an approximate confidence region for θ by taking the set

R̂(D) =
{
θ ∈ Θ

∣∣∣λ(D; θ) ≥ Ĉθ

}
, (12)

or, alternatively,
R̂(D) = {θ ∈ Θ | p̂(D; θ) > α} . (13)

See Algorithm 6 in Appendix C for details. As shown in [26, Theorem 3.3],
the random set R̂(D) has nominal (1 − α) coverage as B′ → ∞ regardless of
the observed sample size n. As noted in Section 3.3.1, the confidence set in
Equation 12 is fully amortized, meaning that once we have λ(D; θ) and Ĉθ as a
function of θ ∈ Θ, we can perform inference on new data without retraining.

3.4. Diagnostics: checking coverage across the parameter space

The LF2I framework has a separate module (“Diagnostics” in Figure 1) for
evaluating “local” goodness-of-fit in different regions of the parameter space
Θ. This estimates the coverage probability PD|θ(θ ∈ R̂(D)) of confidence sets
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R̂(D) across the parameter space via probabilistic classification. As detailed
in Algorithm 2, we first generate a set of size B′′ from the simulator: T ′′ =
{(θ1,D1), . . . , (θB′′ ,DB′′)}. Then, for each sample Di, we check whether or not
the test statistic λi is larger than the estimated critical value Ĉθi (the output
from Algorithm 1). This is equivalent to computing a binary variable Wi for
whether or not the “true” value θi falls within the confidence set R̂(Di) (Equa-
tion 12). Recall that the computations of the test statistic and the critical value
are amortized, meaning that we do not retrain algorithms to estimate these two
quantities. The final step is to estimate empirical coverage as a function of θ
by using W as a label for each θ. This estimation requires a new fit, but af-
ter training the probabilistic classifier, we can evaluate the estimated coverage
anywhere in parameter space Θ.

This diagnostic procedure locates regions in parameter space where estimated
confidence sets might under- or over-cover; see Figures 3, 4 and 6 for examples.
Note that standard goodness-of-fit techniques for conditional densities [9, 16,
79, 84] only check for marginal coverage over Θ.

4. Theoretical guarantees

We now prove consistency of the critical value and p-value estimation methods
(Algorithms 1 and 5, respectively) and provide theoretical guarantees for the
power of BFF. We refer the reader to Appendix D for a proof for finite Θ that
the power of ACORE converges to the power of LRT as B grows (Theorem 7).

In this section, PD,T ′|θ denotes the probability integrated over both D ∼ Fθ

and T ′, whereas PD|θ denotes integration over D ∼ Fθ only. For notational ease,
we do not explicitly state again (inside the parentheses of the same expression)
that we condition on θ.

4.1. Critical value estimation

We start by showing that our procedure for choosing critical values leads to
valid hypothesis tests (that is, tests that control the type I error probability),
as long as the number of simulations B′ in Algorithm 1 is sufficiently large. We
assume that the null hypothesis is simple, that is, Θ0 = {θ0} — which is the
relevant setting for the Neyman construction of confidence sets in the absence
of nuisance parameters. See Theorem 8 in Appendix F for results for composite
null hypotheses.

We assume that the quantile regression estimator described in Section 3.3.1
is consistent in the following sense:

Assumption 1 (Uniform consistency) Let F (·|θ) be the cumulative distri-
bution function of the test statistic λ(D; θ0) conditional on θ, where D ∼ Fθ.
Let F̂B′(·|θ) be the estimated distribution function indexed by θ, implied by a
quantile regression with a sample T ′ of B′ simulations D ∼ Fθ. Assume that
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the quantile regression estimator is such that

sup
λ∈R

|F̂B′(λ|θ0) − F (λ|θ0)| P−−−−−→
B′−→∞

0.

Assumption 1 holds, for instance, for quantile regression forests [68].

Next, we show that Algorithm 1 yields a valid hypothesis test as B′ → ∞.

Theorem 1 Let CB′ ∈ R be the critical value of the test based on an absolutely
continuous statistic λ(D; θ0) chosen according to Algorithm 1 for a fixed α ∈
(0, 1). If the quantile estimator satisfies Assumption 1, then, for every θ0, θ ∈ Θ,

PD|θ0,CB′ (λ(D; θ0) ≤ CB′) a.s.−−−−−→
B′−→∞

α,

where PD|θ0,CB′ denotes the probability integrated over D ∼ Fθ0 and conditional
on the random variable CB′ .

If the convergence rate of the quantile regression estimator is known (As-
sumption 2), Theorem 2 provides a finite-B′ guarantee on how far the type I
error of the test will be from the nominal level.

Assumption 2 (Convergence rate of the quantile regression estimator)
Using the notation of Assumption 1, assume that the quantile regression esti-
mator is such that

sup
λ∈R

|F̂B′(λ|θ0) − F (λ|θ0)| = OP

((
1
B′

)r)
for some r > 0.

Theorem 2 With the notation and assumptions of Theorem 1, and if Assump-
tion 2 also holds, then,

|PD|θ0,CB′ (λ(D; θ0) ≤ CB′) − α| = OP

((
1
B′

)r)
.

4.2. P-value estimation

Next we show that the p-value estimation method described in Section 3.3.2 is
consistent. The results shown here apply to any test statistic λ. That is, these
results are not restricted to BFF.

We assume consistency in the sup norm of the regression method used to
estimate the p-values:

Assumption 3 (Uniform consistency) The regression estimator used in
Equation 11 is such that

sup
θ∈Θ0

|ÊB′ [Z|θ] − E[Z|θ]| a.s.−−−−−→
B′−→∞

0.
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Examples of estimators that satisfy Assumption 3 include [7, 38, 41, 57].
The next theorem shows that the p-values obtained according to Algorithm 5

converge to the true p-values. Moreover, the power of the tests obtained using
the estimated p-values converges to the power one would obtain if the true
p-values could be computed.

Theorem 3 Under Assumption 3 and if p(D; Θ0) is an absolutely continuous
random variable then, for every θ ∈ Θ,

p̂(D; Θ0)
a.s.−−−−−→

B′−→∞
p(D; Θ0)

and
PD,T ′|θ(p̂(D; Θ0) ≤ α) −−−−−→

B′−→∞
PD|θ(p(D; Θ0) ≤ α).

The next corollary shows that as B′ −→ ∞, the tests obtained using the
p-values from Algorithm 5 have size α.

Corollary 1 Under Assumption 3 and if Fθ is continuous for every θ ∈ Θ and
p(D; Θ0) is an absolutely continuous random variable, then

sup
θ∈Θ0

PD,T ′|θ(p̂(D; Θ0) ≤ α) −−−−−→
B′−→∞

α.

Under stronger assumptions about the regression method, it is also possible
to derive rates of convergence for the estimated p-values.

Assumption 4 (Convergence rate of the regression estimator) The re-
gression estimator is such that

sup
θ∈Θ0

|Ê[Z|θ] − E[Z|θ]| = OP

((
1
B′

)r)
.

for some r > 0.

Examples of regression estimators that satisfy Assumption 4 can be found in
[29, 41, 83, 94].

Theorem 4 Under Assumption 4,

|p(D; Θ0) − p̂(D; Θ0)| = OP

((
1
B′

)r)
.

4.3. Power of BFF

In this section, we provide convergence rates for BFF and show that its power
relates to the integrated squared error

L(Ô,O) :=
∫ (

Ô(x; θ) −O(x; θ)
)2

dG(x)dπ(θ), (14)

which measures how well we are able to estimate the odds function.
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We assume that we are testing a simple hypothesis H0,θ0 : θ = θ0, where θ0
is fixed, and that G(x) is the marginal distribution of X ∼ Fθ(x) with respect
to π(θ). We also assume that x contains all observations; that is, X = D. In
this case, the denominator of the average odds is∫

Θ
O(x, θ)dπ(θ) =

∫
Θ1

p · p(x|θ)
(1 − p)g(x)dπ(θ)

= p

1 − p

∫
Θ

p(x|θ)∫
Θ p(x|θ)dπ(θ)

dπ(θ) = p

1 − p
,

(15)

where g is the density of G with respect to ν and therefore there is no need to
estimate the denominator in Equation 10.

We also assume that the odds and estimated odds are both bounded away
from zero and infinity:

Assumption 5 (Bounded odds and estimated odds) There exists 0 < m,

M < ∞ such that for every θ ∈ Θ and x ∈ X , m ≤ O(x; θ), Ô(x; θ) ≤ M .

Finally, we assume that the CDF of the power function of the test based on
the BFF statistic τ in Equation 10 is smooth in a Lipschitz sense:

Assumption 6 (Smooth power function) For every θ0 ∈ Θ, the cumula-
tive distribution function of τ(D; θ0), Fτ , is Lipschitz with constant CL, i.e., for
every x1, x2 ∈ R, |Fτ (x1) − Fτ (x2)| ≤ CL|x1 − x2|.

With these assumptions, we can relate the odds loss with the probability that
the outcome of BFF is different from the outcome of the test based on the Bayes
factor:

Theorem 5 For fixed c ∈ R, let φτ ;θ0(D) = I (τ(D; θ0) < c) and φτ̂B ;θ0(D) =
I (τ̂B(D; θ0) < c) be the testing procedures for testing H0,θ0 : θ = θ0 based on τ
and τ̂B, respectively. Under Assumptions 5-6, for every 0 < ε < 1 and θ ∈ Θ,

∫
PD|θ,T (φτ ;θ0(D) �= φτ̂B ;θ0(D))dπ(θ0) ≤

2MCL ·
√
L(Ô,O)

ε
+ ε,

where T denotes the realized training sample T and PD|θ,T is the probability
measure integrated over the observable data D ∼ Fθ, but conditional on the
train sample used to create the test statistic.

Theorem 5 demonstrates that, on average (over θ0 ∼ π), the probability that
hypothesis tests based on the BFF statistic versus the Bayes factor lead to dif-
ferent conclusions is bounded by the integrated odds loss. This result is valuable
because the integrated odds loss is easy to estimate in practice, and hence pro-
vides us with a practically useful metric. For instance, the integrated odds loss
can serve as a natural criterion for selecting the “best” statistical model out of
a set of candidate models with different classifiers, for tuning model hyperpa-
rameters, and for evaluating model fit.
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Next, we provide rates of convergence of the test based on BFF to the test
based on the Bayes factor. We assume that the chosen probabilistic classifier
has the following rate of convergence:

Assumption 7 (Convergence rate of the probabilistic classifier) The
probabilistic classifier trained with T , P̂(Y = 1|x, θ) is such that

ET

[∫ (
P̂(Y = 1|x, θ) − P(Y = 1|x, θ)

)2
dH(x, θ)

]
= O

(
B−κ/(κ+d)

)
,

for some κ > 0 and d > 0, where H(x, θ) is a measure over X × Θ.

Typically, κ relates to the smoothness of P, while d relates to the number
of covariates of the classifier — in our case, the number of parameters plus the
number of features. In Supplementary Material I, we provide some examples
where Assumption 7 holds.

We also assume that the density of the product measure G × π is bounded
away from infinity.

Assumption 8 (Bounded density) H(x, θ) dominates H ′ := G×π, and the
density of H ′ with respect to H, denoted by h′, is such that there exists γ > 0
with h′(x, θ) < γ, ∀x ∈ X , θ ∈ Θ.

If the probabilistic classifier has the convergence rate given by Assumption 7,
then the average probability that hypothesis tests based on the BFF statistic
versus the Bayes factor goes to zero has the rate given by the following theorem.

Theorem 6 Let φτ ;θ0(D) and φτ̂B ;θ0(D) be as in Theorem 5. Under Assump-
tions 5-8, there exists K ′ > 0 such that, for any θ ∈ Θ,∫

PD,T |θ(φτ ;θ0(D) �= φτ̂B ;θ0(D))dπ(θ0) ≤ K ′B−κ/(4(κ+d)).

Corollary 2 Under Assumptions 5-8, there exists K ′ > 0 such that, for any
θ ∈ Θ,∫

PD,T |θ(φτ̂B ;θ0(D) = 1)dθ0 ≥
∫

PD,T |θ(φτ ;θ0(D) = 1)dθ0 −K ′B−κ/(4(κ+d)).

Corollary 2 tells us that the average power of the BFF test is close to the
average power of the exact Bayes factor test. This result also implies that BFF
converges to the most powerful test in the Neyman-Person setting, where the
Bayes factor test is equivalent to the LRT.

5. Handling nuisance parameters

In most applications, we only have a small number of parameters that are of
primary interest. The other parameters in the model are usually referred to
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as nuisance parameters. In this setting, we decompose the parameter space as
Θ = Φ×Ψ, where Φ contains the parameters of interest, and Ψ contains nuisance
parameters. Our goal is to construct a confidence set for φ ∈ Φ. To guarantee
frequentist coverage by Neyman’s inversion technique, however, one needs to
test null hypotheses of the form H0,φ0 : φ = φ0 by comparing the test statistics
to the cutoffs Ĉφ0 := infψ∈Ψ Ĉ(φ0,ψ) (Section 3.3.1). That is, one needs to control
the type I error at each φ0 for all possible values of the nuisance parameters.
Computing such infimum can be numerically unwieldy, especially if the number
of nuisance parameters is large [86, 96]. Below we propose approximate schemes
for handling nuisance parameters:

In ACORE, we use a hybrid resampling or “likelihood profiling” method [14, 34,
80] to circumvent unwieldy numerical calculations as well as to reduce compu-
tational cost. For each φ (on a fine grid over Φ), we first compute the “profiled”
value

ψ̂φ = arg max
ψ∈Ψ

n∏
i=1

Ô
(
xobs
i ; (φ, ψ)

)
,

which (because of the odds estimation) is an approximation of the maximum
likelihood estimate of ψ at the parameter value φ for observed data D. By
definition, the estimated ACORE test statistic for the hypothesis H0,φ0 : φ = φ0

is exactly given by Λ̂(D;φ0) = Λ̂(D; (φ0, ψ̂φ0)). However, rather than comparing
this statistic to Ĉφ0 , we use the hybrid cutoff

Ĉ ′
φ0

:= F̂−1
Λ̂(D;φ0)

∣∣(φ0,ψ̂φ0

) (α ∣∣∣φ0, ψ̂φ0

)
, (16)

where F̂−1 is obtained via a quantile regression as in Algorithm 1, but using a
training sample T ′ generated at fixed ψ̂φ0 (that is, we run Algorithm 1 with the
proposal distribution π′((φ, ψ)) ∝ π(φ) × δψ̂φ

(ψ), where δψ̂φ
(ψ) is a point mass

distribution at ψ̂φ). Alternatively, one can compute the p-value

p̂(D;φ0) := Ê

[
I

(
Λ̂ (D;φ0) < Λ̂ (D;φ0)

) ∣∣∣φ0, ψ̂φ0

]
(17)

via probabilistic classification as in Algorithm 5, but with T ′ simulated at fixed
ψ̂φ0 (that is, we run Algorithm 5 with the proposal distribution π′((φ, ψ)) ∝
π(φ) × δψ̂φ

(ψ). Hybrid methods do not always control α, but they are often
a good approximation that lead to robust results [1, 76]. We refer to ACORE
approaches based on Equation 16 or Equation 17 as “h-ACORE” approaches.

In contrast to ACORE, the BFF test statistic averages (rather than maxi-
mizes) over nuisance parameters. Hence, instead of adopting a hybrid resampling
scheme to handle nuisance parameters, we approximate p-values and critical val-
ues, in what we refer to as “h-BFF”, by using the marginal model of the data D
at a parameter of interest φ:

L̃(D;φ) =
∫
ψ∈Ψ

L(D; θ) dπ(ψ).
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We implement such a scheme by first drawing the train sample T ′ from the
entire parameter space Θ = Φ × Ψ, and then applying quantile regression (or
probabilistic classification) using φ only.

Algorithm 7 details our construction of ACORE and BFF confidence sets when
calibrating critical values under the presence of nuisance parameter (construc-
tion via p-value estimation is analogous). In Section 6.2, we demonstrate how
our diagnostics branch can shed light on whether or not the final results have
adequate frequentist coverage.

6. Experiments

We analyze the empirical performance of the LF2I framework under differ-
ent problem settings: unknown null distribution of (known) test statistic (Sec-
tion 6.1); nuisance parameters (Section 6.2); intractable likelihood and high-
dimensional data (Section 6.3).

We use the cross-entropy loss (Eq. 24) when estimating the odds function in
Equation 7 and the empirical coverage probability as in Section 3.4 via prob-
abilistic classification. Moreover, we use the pinball loss [54] when estimating
critical values as in Section 3.3.1 via quantile regression.

6.1. Gaussian mixture model: unknown null distribution

A common practice in LFI is to first estimate the likelihood and then assume
that the LR statistic is approximately χ2 distributed according to Wilks’ the-
orem [31]. However, in settings with small sample sizes or irregular statistical
models, such approaches may lead to confidence sets with incorrect coverage; it
is often difficult to identify exactly when that happens, and then know how to
recalibrate the confidence sets. (See [4] for a discussion of all conditions needed
for Wilks’ theorem to apply, which are often not realized in practice.)

The Gaussian mixture model (GMM) is a classical example where the LR statis-
tic is known but its null distribution is unknown in finite samples. Indeed, the
development of valid statistical methods for GMM is an active area of research
[12, 25, 66, 78, 90]. Here we consider a one-dimensional Normal mixture with
unknown mean but known unit variance:

X ∼ 0.5N(θ, 1) + 0.5N(−θ, 1),

where the parameter of interest θ ∈ Θ = [0, 5]. In this example, the LRT statis-
tic is not estimated but computed exactly. The goal is to analyze three different
approaches for estimating the critical value Cθ0 of a level-α LRT of the hypoth-
esis test H0,θ0 : θ = θ0, for different θ0 ∈ Θ, in a setting where we have removed
potential effects of estimation errors in the test statistic:

• “LR with Monte Carlo samples”, where we draw 1000 simulations at each
point θ0 on a fine grid over Θ and take Cθ0 to be the 1−α quantile of the
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Fig 3. GMM with unknown null distribution. Each panel shows the estimated coverage
across the parameter space of 90% confidence sets for θ. Rows represent experiments with
different observed sample sizes: n = 10, 100, 1000 (top, center, bottom). Columns represent
three different approaches. Left: “LR with Monte Carlo samples” achieves nominal coverage
everywhere but is computationally expensive, especially in higher dimensions. Center: “Chi-
square LRT” clearly under-covers, i.e. confidence sets are not valid even for large n, other
than at θ = 0 where the mixture collapses to one Gaussian. Right: “LR with Cθ0 via quantile
regression” returns finite-sample confidence sets with the nominal coverage of 90% for all
values of θ, but using a total of 1000 simulations, instead of a MC sample of 1000 simulations
at each grid point.

distribution of the LR statistic, computed using the MC samples at each
fixed θ0. This approach is often just referred to as MC hypothesis testing.

• “Chi-square LRT”, where we assume that −2LR(D; θ0) ∼ χ2
1, and hence

take −2Cθ0 to be the same as the upper α quantile of a χ2
1 distribution.

• “LR with Cθ0 via quantile regression”, where we estimate Cθ0 via quantile
regression (Algorithm 1) based on a total of B′ = 1000 simulations of size
n sampled uniformly on Θ.

We then construct confidence sets by inverting the hypothesis tests, and finally
assess their conditional coverage with the diagnostic branch of the LF2I frame-
work (Algorithm 2 with B′′ = 1000).

Figure 3 shows LF2I diagnostics for the three different approaches when the
observed sample size (i.e., the number of observations from each unknown θ) is
n = 10, 100, 1000. Confidence sets from “Chi-square LRT” are clearly not valid
at any n, which shows that Wilks’ theorem does not apply in this setting. The
only exception arises when n is large enough and θ approaches 0, in which case
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Fig 4. Poisson counting experiment with nuisance parameters. The diagnostics branch
provides guidance as to which LFI approach to use for the problem at hand by pinpointing
regions of the parameter space Θ where inference is unreliable. The panels show empirical
coverage as a function of both μ, the parameter of interest, and ν, the nuisance parameter.
Nominal coverage is 90%. Left: h-ACORE, which uses profiled likelihoods, is overly conserva-
tive in terms of actual coverage (≈ 96%) across Θ. Center: h-BFF, which marginalizes over
ν, under-covers in several regions (red crosses). Right: ACORE χ2

1, which uses cutoffs from
the chi-square distribution, has almost no constraining power, yielding empirical coverage
close to 100% everywhere.

the mixture reduces to a unimodal Gaussian whose LR statistic has a known
limiting distribution (see bottom center panel of Figure 3). On the other hand,
“LR with Cθ0 via quantile regression” returns valid finite-sample confidence sets
with conditional coverage equivalent to “LR with Monte Carlo samples”. A key
difference between the LF2I and MC methods is that the LF2I results are based
on 1000 samples in total, whereas the MC results are based on 1000 MC samples
at each θ0 on a grid. The latter approach quickly becomes intractable in higher
parameter dimensions and larger scales.

In Appendix E, we show that critical values are clearly non-constant across the
parameter space, which also provides insight as to why assumptions of a pivotal
test statistic (e.g., a χ2-distributed test statistic asymptotically, or calibration
based on a single point in the parameter space [89]) do not yield correct coverage.
Supplementary Material J gives details on the specific quantile regressor (for
Algorithm 1) and probabilistic classifier (for Algorithm 2) used in Figure 3,
and presents extensions of the above experiments to confidence sets via p-value
estimation and asymmetric mixtures.

6.2. Poisson counting experiment: nuisance parameters and
diagnostics

Hybrid methods, which maximize or marginalize over nuisance parameters, do
not always control the type I error of statistical tests. For small sample sizes,
there is no theorem as to whether profiling or marginalization of nuisance pa-
rameters will give better frequentist coverage for the parameter of interest [18,
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Section 12.5.1]. In addition, most practitioners consider a thorough check of fre-
quentist coverage to be impractical [18, Section 13]. In this example, we apply
the hybrid schemes from Section 5 to a high-energy physics (HEP) counting
experiment [19, 20, 21, 42, 61] with nuisance parameters, which is a simplified
version of a real particle physics experiment where the true likelihood function is
not known. We illustrate how our diagnostics can guide the analyst and provide
insight into which method to choose for the problem at hand.

Consider a “Poisson counting experiment” where particle collision events are
counted under the presence of both an uncertain background process and a (new)
signal process. The goal is to estimate the signal strength. To avoid identifiabil-
ity issues, the background rate is estimated separately by counting the number
of events in a control region where the signal is believed to be absent. Hence, the
observable data X = (Nb, Ns) contain two measurements, where Nb ∼ Pois(ντb)
is the number of events in the control region, and Ns ∼ Pois(νb + μs) is the
number of events in the signal region. Our parameter of interest is the signal
strength μ, whereas the scaling factor for the background ν is a nuisance pa-
rameter. The hyper-parameters s and b indicate the nominally expected counts
from signal and backgrounds, and τ describes the relationship in measurement
time between the two processes. We treat the three hyper-parameters as known
with values s = 15, b = 70, τ = 1, respectively. The hyper-parameters move
the model away from the Gaussian limiting regime and make the relationship
between data and parameters more complicated [42].

We compare the hybrid methods h-ACORE and h-BFF with ACORE χ2
1 (which

uses cutoffs from the chi-square distribution). We learn the odds using a QDA
classifier with B = 100,000 and estimate critical values for the hybrid methods
via quantile gradient boosted trees with B′ = 10,000. We evaluate the differ-
ent methods on a separate set of size B′′ = 1,000 by estimating coverage and
measuring the length of confidence sets for each of the simulated samples.

Figure 4 shows the estimated coverage as a function of both μ and ν. Con-
fidence sets are considered to be valid when they achieve the nominal coverage
level regardless of the true value of both the parameter of interest and the nui-
sance parameters. Both h-ACORE and ACORE χ2

1 are overly conservative across
the whole parameter space, while h-BFF under-covers in regions of high signal
strength and low background. These results are consistent with the length of
the corresponding confidence sets shown in Figure 5: h-ACORE and ACORE χ2

1
are overly conservative, with the former being almost uninformative for the ma-
jority of evaluation samples. On the other side, while h-BFF seems to provide
tighter parameter constraints, their length can be trusted only in regions where
the method has coverage at least equal to the nominal level. Our LF2I diagnos-
tic branch can pinpoint the regions of the parameter space where inference is
reliable or not.
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Fig 5. Constraining power. Relative size of the confidence sets constructed in Section 6.2.
ACORE χ2

1 and h-ACORE yield the widest intervals (they are indeed overly conservative according
to Figure 4). h-BFF provides tighter confidence sets, but their size cannot be trusted when the
method under-covers. LF2I diagnostics can identify the parameter regions where the approach
is not valid (red crosses in Figure 4). The dark-orange histogram reports h-BFF results after
removing those points.

6.3. Muon energy estimation: intractable likelihood and
high-dimensional data

We now showcase LF2I on a high-energy physics application with intractable
likelihood and very high-dimensional data. The goal is to estimate the energy
of muons using a high-granularity calorimeter in a particle collider experiment.
Muons are subatomic particles that have proven to be excellent probes of new
physical phenomena: their detection and measurement has enabled several cru-
cial discoveries in the last few decades, including the discovery of the Higgs
boson [2, 5, 11, 15, 43]. Traditionally, the energy of a muon is determined from
the curvature of its trajectory in a magnetic field, but curvature-based measure-
ments have proven to be insufficiently precise at high energies. Recently, muon
energy measurements based on their radiative losses in a dense, finely segmented
calorimeter (Figure 6, left) have been shown to be a feasible alternative [30, 53].

In this application, the dimensionality of one data point x (a 3D image) is
of the order of ≈ 50,000 and the observed sample size is n = 1 (as each unique
data point is the output of one experiment with a specific parameter of interest
θ). In total, we have available 886,716 3D “image” inputs x with corresponding
scalar muon energies θ. The data are obtained by accurately mimicking particle
showers with GEANT4 [3], a high-fidelity simulator that has been calibrated
for decades and is trusted to incorporate all the dynamics of the Standard Model
of particle physics. The data are available at [52].

The scientific goal of this experiment is to quantify whether a high-granularity
calorimeter would better constrain the energy of a muon (that is, lead to smaller
confidence sets) than, for example, a detector that only measures the total en-
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Fig 6. Muon energy estimation. LF2I guarantees nominal coverage and yields smaller
confidence intervals relative to SMC-ABC. Left: Data point example of a muon with incoming
energy θ ≈ 3.2 TeV entering a calorimeter with 32×32×50 cells. Center: LF2I (blue, orange,
red in the right two panels) achieves coverage at the nominal level (68.3%), whereas SMC-
ABC (green and purple) is consistently over-covering across the parameter space. Right:
Median lengths of constructed intervals. While being extremely computationally intensive,
SMC-ABC has also the least constraining power regardless of the data set used. SMC-ABC
on the full calorimeter data is not reported as it was computationally infeasible to run.

ergy of the incoming particle. To answer this question, we consider nested ver-
sions of the same energy measurement, where the inputs to our algorithms are
of increasing dimensionality: (i) a 1D input which is equal to the sum over
all the cells of the calorimeter (for each muon with deposited energy E > 0.1
GeV); (ii) 28 custom features extracted from the spatial and energy information
of the calorimeter cells (see [53]); and (iii) the full calorimeter measurement,
x ∈ R51,200. We then construct LF2I confidence sets for each data point using
BFF. On the full calorimeter data, we learn the odds function through a con-
volutional neural network classifier derived from the regressor proposed in [53],
and estimate critical values via quantile gradient boosted trees. For the 1D and
28D data sets, we instead learn odds through a gradient boosting classifier. In
both cases, we use approximately 83% of the data to learn the odds function
(B = 738,930) and 14% to estimate critical values (B′ = 123,155). For compari-
son, we also include results from SMC-ABC [82], a popular LFI algorithm from
the Approximate Bayesian Computation literature. To provide a fair assessment
of the results, SMC-ABC uses all the simulations that LF2I exploits separately
(i.e., B +B′ = 862,085). The remaining data points (B′′ = 24,631) are used for
validation and diagnostics of both methods.

Figure 6 (center) shows that LF2I with the BFF test statistic achieves the nom-
inal level of coverage (68.3%) regardless of the data set used. This is consistent
with Theorem 1: as long as the quantile regression is well estimated, LF2I con-
fidence sets are guaranteed to be valid at the nominal (1−α) level regardless of
how well the test statistic is estimated. On the other hand, SMC-ABC is overly
conservative with credible intervals that strongly over-cover across the whole
parameter space. As to constraining power (interval length), Figure 6 (right)
shows that SMC-ABC credible intervals are significantly wider than LF2I con-
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fidence sets for both the 1D and 28D data sets (running SMC-ABC on the
51,200-dimensional full calorimeter data was computationally infeasible, and we
were not able to report the results). Finally, note how the amount of informa-
tion in the data directly influences the size of LF2I confidence sets: going from
the 1D data set to the full calorimeter leads to noticeably smaller confidence
intervals, and hence higher constraining power.

Remark on validity and computational cost SMC-ABC does not have
the right coverage, because the goal of ABC is to construct Bayesian credible
regions and not valid confidence sets; see, e.g., [45] for other examples of SMC-
ABC under- or over-covering. Furthermore, note that (i) LF2I is amortized: once
training is done, confidence sets can be efficiently computed on an arbitrary
number of observations without having to retrain the algorithms; and (ii) there
is no need for a prior dimension reduction of the data (that is, we can directly
input the three-dimensional image). Specifically, LF2I required approximately
10 and 5 CPU minutes on an AMD’s EPYC 7763 machine to train the odds
classifier and the quantile regressor respectively, and less than a second to obtain
confidence intervals all at once for all observations (in this example, unique
24,631 “test” muons) regardless of their dimensionality. In contrast, SMC-ABC
required approximately 1 CPU hour for each observation even for the lower-
dimensional 1D and 28D data sets.

7. Conclusions and discussion

Validity Our proposed LF2I methodology leads to frequentist confidence sets
and hypothesis tests with finite-sample guarantees (when there are no nuisance
parameters). Any existing or new test statistic – that is, not only estimates of
the LR or BF statistics – can be plugged into our framework to create tests
that control type I error. The implicit assumption is that the null distribution
of the test statistic varies smoothly in parameter space. If that condition holds,
then we can efficiently leverage quantile regression methods to construct valid
confidence sets by a Neyman inversion of simple hypothesis tests, without having
to rely on asymptotic results.

Nuisance parameters and diagnostics For small sample sizes, no theorem
guarantees whether profiling or marginalizing nuisance parameters will provide
better frequentist coverage for the parameter of interest [18, Section 12.5.1].
It is generally believed that hybrid resampling methods return approximately
valid confidence sets, but that a rigorous check of validity is infeasible when the
true solution is not known. Our diagnostic branch presents practical tools for
assessing empirical coverage across the entire parameter space (including nui-
sance parameters). After seeing the results, one can decide which method is most
appropriate for the application at hand. For example, in the Poisson counting
experiment of Section 6.2, LF2I diagnostics revealed that h-BFF (which aver-
ages the estimated odds over nuisance parameters) returned smaller confidence
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intervals, but at the cost of under-covering in some regions of the parameter
space.

Power Statistical power is the hardest property to achieve in practice in LFI.
This is the area where we foresee that most statistical and computational ad-
vances will take place. As shown theoretically in Theorem 5 and empirically
in Supplementary Material K, the power (or size) of LF2I confidence sets de-
pends not only on the theoretical properties of the (exact) test statistics, but
is also influenced by how precisely we are able to estimate it. In the case of
ACORE and BFF, the latter can be divided in (i) how well we are able to esti-
mate the likelihood or odds function (a statistical estimation error), and (ii)
how accurate are the integration or maximization procedures we use (a purely
numerical error); see Supplementary Material H for a more precise breakdown
of the sources of error in LF2I confidence sets, particularly for ACORE and BFF.
Machine learning offers exciting possibilities on both fronts. For example, with
regards to (i), [10] offers compelling evidence that one can can dramatically
improve estimates of the likelihood p(x|θ) for θ ∈ Θ, or the likelihood ratio
p(x|θ1, θ2) for θ1, θ2 ∈ Θ, by a “mining gold” approach that extracts additional
information from the simulator about the latent process. Future work could in-
corporate such an approach into the LF2I framework, with the calibration and
diagnostic branches as separate modules.

Other test statistics Our work presents also another new direction for LF2I:
So far frequentist LFI methods have been estimating either likelihoods or likeli-
hood ratios, and then often relying on asymptotic properties of the LR statistic.
We note that there are settings where it may be easier to either estimate the
posterior p(θ|x) rather than the likelihood p(x|θ) , or alternatively to obtain
point estimates for parameters directly via predictions algorithms. Because the
LF2I framework is agnostic to which algorithms we use to construct the test
statistic itself, we can potentially leverage methods that estimate the condi-
tional mean E[θ|x] and variance V[θ|x] to construct frequentist confidence sets
and hypothesis tests for θ with finite-sample guarantees. For example, [65] uses
T = (E[θ|x]−θ0)2

V[θ|x] , which in some scenarios corresponds to the Wald statistic for
testing H0,θ0 : θ = θ0 against H1,θ0 : θ �= θ0 [88], as an attractive alternative
to get LF2I confidence sets from prediction algorithms and posterior estimators.

See Appendices A-F for proofs and details on the algorithms, and refer to the
separate Supplementary Material file5 for additional experiments and results
referenced in the main text.

7.1. Related work

Classical statistical inference in high-energy physics (HEP) LF2I is
inspired by pioneering work in HEP that adopted classical hypothesis tests and

5Available at https://lucamasserano.github.io/data/LF2I_supplementary_material.pdf

https://lucamasserano.github.io/data/LF2I_supplementary_material.pdf
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Neyman confidence sets for the discovery of new physics [1, 11, 21, 22, 35]. Our
work grew from the discussion in HEP regarding theory and practice, and open
problems such as how to efficiently construct Neyman confidence sets for general
settings [21], how to assess coverage across the parameter space without costly
Monte Carlo simulations [18], and how to choose hybrid techniques in practice
[17]. This paper proposes a general approach to solve the above-mentioned open
problems with a modular framework that can be adapted to fit the data at hand.

Universal inference Recently, [90] proposed a “universal” inference test statis-
tic for constructing valid confidence sets and hypothesis tests with finite-sample
guarantees without regularity conditions. The assumptions are that the like-
lihood L(D; θ) is known and that one can compute the maximum likelihood
estimator (MLE). Our LF2I framework does not require a tractable likelihood,
but it assumes that we have regression methods that can estimate the chosen
test statistic and its critical values. In tractable likelihood settings where both
universal inference and LF2I apply, the LF2I approach leads to more powerful
tests than universal inference (see, e.g., Figure 11 in Supplementary Material).

Simulation-based calibration of Bayesian posterior distributions In
Bayesian inference, the posterior distribution π(θ|x) is fundamental for quanti-
fying uncertainty about the parameter θ given the data x. Recent methods have
been developed to assess the quality of estimated posterior distributions; that is,
assessing whether an estimate π̂(θ|x) is consistent with the posterior distribu-
tion π(θ|x) implied by the assumed prior and likelihood [27, 28, 55, 58, 95]. The
calibration in LF2I is fundamentally different: Even if posteriors are calibrated
in the sense that π̂(θ|x) = π(θ|x) for every x and θ, confidence sets derived from
it will not necessarily have the correct empirical coverage (according to Eq. 1).
LF2I is agnostic to the choice of the test statistic (for instance, whether the test
statistic is formed from likelihoods or posteriors [65]), and provides guarantees
of how well we are able to constrain the true parameters of interest regardless
of the choice of the prior or proposal distribution π(θ).

Likelihood-free inference via machine learning Recent LFI methods
have been using simulators output as training data to learn surrogate models for
inference; see [23] for a review. These techniques use synthetic data simulated
across the parameter space to directly estimate key quantities, such as:

1. posteriors p(θ|x) [8, 13, 39, 48, 60, 64, 72, 77];
2. likelihoods p(x|θ) [33, 40, 51, 59, 67, 74, 75, 91, 93]; or
3. density ratios, such as the likelihood-to-marginal ratio p(x|θ)/p(x) [32, 44,

47, 85],6 the likelihood ratio p(x|θ1)/p(x|θ2) for θ1, θ2 ∈ Θ [10, 24] or the
profile-likelihood ratio [42].7

6In 2014, Izbicki et al. approximate likelihoods for high-dimensional data (such as 2D
images) via density ratios [47, Equation 5] and kernel methods, building on Izbicki’s PhD
thesis work on spectral series approaches to high-dimensional nonparametric inference. The
kernel approximate likelihood approach was later superseded by neural SBI approaches.

7ACORE and BFF are based on estimating the odds O(X; θ) at θ ∈ Θ (Equation 7); this is a
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Recently, there have also been works that directly predict parameters θ of in-
tractable models using neural networks [37, 56] (that is, they do not estimate
posteriors, likelihoods or density ratios). In addition, new methods such as nor-
malizing flows [73] and other neural density estimators are revolutionizing LFI
in terms of sample efficiency and capacity, and will continue to do so.

Nonetheless, although the goal of LFI is inference on the unknown parameters
θ, it remains an open question whether a given LFI algorithm produces reliable
measures of uncertainty, as current methods lack guarantees of local (instance-
wise) validity and power for a finite number of observations. They also have no
practical diagnostics to assess local coverage across the parameter space. Our
framework can be used in combination with any LFI approach that relies on a
test statistic (such as the LRT) to provide both local coverage and diagnostics.
Finally, thanks to the modular structure of LF2I, the diagnostic branch can be
used separately to evaluate whether other approaches (like ABC and posterior
methods that return credible regions) have good frequentist coverage, and in
cases where they do not, LF2I can identify regions of the parameter space of
over- or under-confidence.

Appendix A: Estimating odds

Algorithm 3 shows how to create the training set T for estimating odds. Out of
the total number of simulations B, a proportion p is generated by the stochastic
forward simulator Fθ at different parameter values θ, while the rest is sampled
from a reference distribution G. Note that G can be any distribution that dom-
inates Fθ. If G is the marginal distribution Fx and n = 1, then computations
for BFF are simplified because its denominator equals one. Algorithm 4 shows
how to sample from the marginal distribution Fx. In practice, if the data is pre-
simulated, one can sample from the (empirical) marginal using permutations to
break the relationship between θ and X for X ∼ G = Fx.

Appendix B: Estimating p-values

Given observed data D and a test statistic λ, we can compute p-values p(D; θ0) :=
PD|θ0 (λ(D; θ0) < λ(D; θ0)) for each hypothesis H0,θ0 : θ = θ0. Algorithm 5 de-
scribes how to estimate such p-values for all θ0 ∈ Θ simultaneously.

Appendix C: Constructing confidence sets

Algorithm 6 details the construction of LF2I confidence sets with ACORE and BFF
as defined in Section 3 (the algorithm based on p-value estimation is analogous).

“likelihood-to-marginal ratio” approach, which estimates a one-parameter function as in the
original paper by [47]. The likelihood ratio OR(X; θ0, θ1) at θ0, θ1 ∈ Θ (Equation 9) is then
computed from the odds function, without the need for an extra estimation step.
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Algorithm 3 Generate a labeled sample of size B for estimating odds.
Input: simulator Fθ; reference distribution G; proposal distribution πΘ over
parameter space; number of simulations B; parameter p of Bernoulli distribution
Output: labeled training sample T

1: Set T ← ∅
2: for i in {1, ..., B} do
3: Draw parameter value θi ∼ πΘ
4: Draw Yi ∼ Ber(p)
5: if Yi == 1 then
6: Draw sample Xi ∼ Fθi

7: else
8: Draw sample Xi ∼ G
9: end if

10: T ← T ∪ (θi,Xi, Yi)
11: end for
12: return T = {θi,Xi, Yi}Bi=1

Algorithm 4 Sample from the marginal distribution G = FX.
Input: simulator Fθ; proposal distribution πΘ over parameter space
Output: sample Xi from the marginal distribution FX

1: Draw parameter value θi ∼ πΘ
2: Draw sample Xi ∼ Fθi

3: return Xi

Algorithm 5 Estimate p-values p(D; θ0) given observed data D for a level-α
test of H0,θ0 : θ = θ0 vs. H1,θ0 : θ �= θ0, for all θ0 ∈ Θ simultaneously
Input: observed data D; simulator Fθ; number of simulations B′; πΘ (fixed proposal
distribution over the parameter space Θ); test statistic λ; probabilistic classifier
Output: estimated p-value p̂(D; θ) for all θ = θ0 ∈ Θ

1: Set T ′ ← ∅
2: for i in {1, . . . , B′} do
3: Draw parameter θi ∼ πΘ

4: Draw sample Xi,1, . . . ,Xi,n
iid∼ Fθi

5: Compute test statistic λi ← λ((Xi,1, . . . ,Xi,n); θi)
6: Compute indicator Zi ← I (λi < λ(D; θi))
7: T ′ ← T ′ ∪ {(θi, Zi)}
8: end for
9: Use T ′ to learn the p-value function p̂(D; θ) using Z as the label for each θ

10: return p̂(D; θ0)

Algorithm 7 details the construction of the (hybrid) ACORE and BFF confidence
sets defined in Section 5 for the general setting with nuisance parameters. Note
that the first chunk on estimating the odds and the last chunk with Neyman
inversion are the same for ACORE and BFF. Furthermore, the test statistics are
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Algorithm 6 Construct (1− α) confidence set for θ (no nuisance parameters).
Input: simulator Fθ; proposal distribution π over Θ; parameter p of Bernoulli;
number of simulations B (test statistic); number of simulations B′ (critical values);
probabilistic classifier; observations D = {xobs

i }ni=1; level α ∈ (0, 1); size of evaluation
grid over parameter space ngrid; test statistic λ (ACORE or BFF)
Output: θ evaluation points in confidence set R̂(D)

1: // Estimate odds
2: Generate labeled sample T according to Algorithm 3
3: Apply probabilistic classifier to T to learn P̂(Y = 1|θ,X), for all θ ∈ Θ and X ∈ X
4: Let the estimated odds Ô(X; θ) ← P̂(Y =1|θ,X)

P̂(Y =0|θ,X)
5:
6: // Compute cut-offs for ACORE or BFF
7: if λ == ACORE then
8: Let λ(D; θ) ← Λ̂(D; θ) be the ACORE statistic (Equation 8) with estimated odds
9: else if test_stat == BFF then

10: Let λ(D; θ) ← τ̂(D; θ) be the BFF statistic (Equation 10) with estimated odds
11: end if
12: Learn critical values Ĉθ according to Algorithm 1
13:
14: // Confidence sets for θ via Neyman inversion
15: Initialize confidence set R̂(D) ← ∅
16: Let LΘ be a lattice over Θ with ngrid elements
17: for θ0 ∈ LΘ do
18: if λ(D; θ0) ≥ Ĉθ0 then
19: R̂(D) ← R̂(D) ∪ {θ0}
20: end if
21: end for
22: return confidence set R̂(D)

the same whether or not there are nuisance parameters.

Appendix D: Theoretical guarantees of power for ACORE with
calibrated critical values

Next, we show, for finite Θ, that as long as the probabilistic classifier is consistent
and the critical values are well estimated (which holds for large B′ according to
Theorem 8), the power of the ACORE test converges to the power of the LRT as
B grows.
Theorem 7 For each C ∈ R, let φ̂B,C(D) be the test based on the ACORE statis-
tic Λ̂B with critical value C8 for number of simulations B in Algorithm 3. More-
over, let φC(D) be the likelihood ratio test with critical value C. If, for every
θ ∈ Θ, the probabilistic classifier is such that

P̂(Y = 1|θ,X) P−−−−−→
B−→∞

P(Y = 1|θ,X),

8That is, φ̂B,C(D) = 1 ⇐⇒ Λ̂B(D; Θ0) < C.
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Algorithm 7 Construct confidence set for φ with (approximate) coverage 1−α
under the presence of nuisance parameters.
Input: simulator Fθ; proposal distribution π over Θ = Φ × Ψ; parameter p of
Bernoulli; number of simulations B (test statistic); number of simulations B′ (critical
values); probabilistic classifier; observations D = {xobs

i }ni=1; level α ∈ (0, 1); size of
evaluation grid over parameter space, ngrid; test statistic λ (ACORE or BFF)
Output: φ evaluation points in confidence set R̂(D)

1: // Estimate odds
2: Generate labeled sample T according to Algorithm 3
3: Apply probabilistic classifier to T to learn P̂(Y = 1|θ,X), ∀ θ = (φ, ψ) ∈ Θ,X ∈ X
4: Let the estimated odds Ô(X; θ) ← P̂(Y =1|θ,X)

P̂(Y =0|θ,X)
5:
6: // Compute (hybrid) critical values for h-ACORE or h-BFF
7: if λ == ACORE then
8: Let ψ̂φ ← arg maxψ∈Ψ

∏n
i=1 Ô(xobs

i ; (φ, ψ)) for every φ

9: Let λ(D;φ) ← Λ̂
(
D; (φ, ψ̂φ)

)
be ACORE (Equation 8) with estimated odds

10: Generate T ′ as in Algorithm 1 using the proposal π′((φ, ψ)) ∝ π(φ) × δψ̂φ
(ψ)

11: Learn Ĉφ = F̂−1
λ(D;φ)

∣∣(φ,ψ̂φ

)(α) for every φ as in Algorithm 1 using T ′

12: else if λ == BFF then
13: Let πΨ(ψ) be the restriction of proposal distribution π over Ψ
14: Let λ(D;φ) ← τ̂(D;φ) be the BFF statistic (Equation 10) with estimated odds
15: Learn Ĉφ = F̂−1

λ(D;φ)
∣∣(φ)

(α) for every φ (no ψ) as in Algorithm 1

16: end if
17:
18: // Confidence sets for φ via Neyman inversion
19: Initialize confidence set R̂(D) ← ∅
20: Let LΦ be a lattice over Φ with ngrid elements
21: for φ0 ∈ LΦ do
22: if λ(D;φ0) ≥ Ĉφ0 then
23: R̂(D) ← R̂(D) ∪ {φ0}
24: end if
25: end for
26: return confidence set R̂(D)

where |Θ| < ∞, and ĈB is chosen such that ĈB
D−−−−−→

B−→∞
C for a given C ∈ R,

then, for every θ ∈ Θ,

PD,T |θ

(
φ̂B,ĈB

(D) = 1
)
−−−−−→
B−→∞

PD|θ (φC(D) = 1) .

Proof Because P̂(Y = 1|θ,X) P−−−−−→
B−→∞

P(Y = 1|θ,X), it follows directly from
the properties of convergence in probability that for every θ0, θ1 ∈ Θ

n∑
i=1

log
(
ÔR(Xobs

i ; θ0, θ1)
)

P−−−−−→
B−→∞

n∑
i=1

log
(
OR(Xobs

i ; θ0, θ1)
)
.



5074 N. Dalmasso et al.

The continuous mapping theorem implies that

Λ̂B(D; Θ0)
P−−−−−→

B−→∞
sup

θ0∈Θ0

inf
θ1∈Θ

n∑
i=1

log
(
OR(Xobs

i ; θ0, θ1)
)
,

and therefore Λ̂B(D; Θ0) converges in distribution to supθ0∈Θ0
infθ1∈Θ

∑n
i=1

log
(
OR(Xobs

i ; θ0, θ1)
)
. Now, from Slutsky’s theorem,

Λ̂B(D; Θ0) − ĈB
D−−−−−→

B−→∞
sup

θ0∈Θ0

inf
θ1∈Θ

n∑
i=1

log
(
OR(Xobs

i ; θ0, θ1)
)
− C.

It follows that

PD,T |θ

(
φ̂B,ĈB

(D) = 1
)

= PD,T |θ

(
Λ̂B(D; Θ0) − ĈB ≤ 0

)
−−−−−→
B−→∞

PD|θ

(
sup

θ0∈Θ0

inf
θ1∈Θ

n∑
i=1

log
(
OR(Xobs

i ; θ0, θ1)
)
− C ≤ 0

)
= PD|θ (φC(D) = 1) ,

where the last equality follows from Proposition 1.

Appendix E: Analysis of critical values for experiments 6.1 and 6.2

In this section we visualize how critical values vary across the parameter space
Θ for the experiments of Sections 6.1 and 6.2. Figure 7 compares critical values
for the exact LRT of the Gaussian Mixture Model (GMM) example, where the
distribution of the test statistic is unknown, using three different methods:

i) The first approach is to compute cutoffs via Monte Carlo (MC) simulations
at fixed values of θ. These critical values can be considered the “ground truth”,
since for this one-dimensional example we were able to use a high-resolution
grid and large batches at each grid point. Unfortunately, MC quickly becomes
infeasible if the dimensionality of the parameter space increases. In addition,
a scientist cannot adopt MC samples in practical settings, where one only has
access to a pre-determined data set and not to the simulator itself.

ii) The second approach is to assume that the cutoff is (asymptotically) con-
stant across the parameter space. Here we have computed cutoffs assuming that
Wilks’ theorem holds and that the limiting distribution is a χ2-distribution,
which is not the case. Indeed, the bottom central panel of Figure 3 shows that
the χ2-approximation achieves correct coverage only when θ = 0 (i.e., when the
GMM collapses to one Gaussian).

iii) The third approach is to compute the critical values of the (known) test
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Fig 7. Comparison of critical values obtained via Monte Carlo, the Chi-Square asymptotic
assumption of Wilks’ Theorem, and LF2I Quantile Regression, for the GMM example of
Section 6.1.

statistic via quantile regression (QR). With a very small calibration set (0.1%
of the total simulations used for the MC approach), QR is able to approxi-
mate the quantile surface and achieve nominal coverage for all values of θ (see
Figure 3).

Fig 8. Critical values of h-ACORE estimated via quantile regression as a function of the
parameter of interest μ and the nuisance parameter ν, for the example of Section 6.2. The
figures show the same 2D surface from two different angles.
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Figure 8 shows similar results for the HEP example of Section 6.2; here we
visualize the the critical values of h-ACORE (estimated via LF2I) as a function
of the parameter of interest μ and the nuisance parameter ν. Again, we see
evidence that the quantile surface is far from being constant, and that the test
statistic is not pivotal. Hence, there is a need for a quantile regression that
adapts to the varying distribution of the test statistic.

Appendix F: Additional proofs

Proof [Proof of Proposition 1] Because ν dominates Fθ, G also dominates Fθ.
Let f(x|θ) be the density of Fθ with respect to G. By Bayes rule,

O(x; θ) := P(Y = 1|θ,x)
P(Y = 0|θ,x) = f(x|θ)p

(1 − p) .

If P̂(Y = 1|θ,x) = P(Y = 1|θ,x), then Ô(x; θ0) = O(x; θ0). Therefore,

τ̂(D; Θ0) :=
∫
Θ0

∏n
i=1 Ô(Xobs

i ; θ)dπ0(θ)∫
Θ1

∏n
i=1 Ô(Xobs

i ; θ)dπ1(θ)

=
∫
Θ0

∏n
i=1 O(Xobs

i ; θ)dπ0(θ)∫
Θ1

∏n
i=1 O(Xobs

i ; θ)dπ1(θ)

=
∫
Θ0

∏n
i=1

f(Xobs
i |θ)p

(1−p) dπ0(θ)∫
Θ1

∏n
i=1

f(Xobs
i |θ)p

(1−p) dπ1(θ)

=
∫
Θ0

∏n
i=1 f(Xobs

i |θ)dπ0(θ)∫
Θ1

∏n
i=1 f(Xobs

i |θ)dπ1(θ)

Moreover, the chain rule implies that f(x|θ) = p(x|θ)h(x), where h(x) :=
dν
dG (x). It follows that

τ̂(D; Θ0) =
∫
Θ0

∏n
i=1 f(Xobs

i |θ)dπ0(θ)∫
Θ1

∏n
i=1 f(Xobs

i |θ)dπ1(θ)

=
∫
Θ0

∏n
i=1 p(Xobs

i |θ)h(Xobs
i )dπ0(θ)∫

Θ1

∏n
i=1 p(Xobs

i |θ)h(Xobs
i )dπ1(θ)

=
∫
Θ0

∏n
i=1 p(Xobs

i |θ)dπ0(θ)∫
Θ1

∏n
i=1 p(Xobs

i |θ)dπ1(θ)

=
∫
Θ0

L(D; θ)dπ0(θ)∫
Θ1

L(D; θ)dπ1(θ)
= BF(D; Θ0).
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Proof [Proof of Theorem 1] By definition, for every fixed cB′ , PD|θ0,CB′ (λ(D; θ0)
≤ cB′) = F (cB′ |θ0). It follows that the random variable PD|θ0,CB′ (λ(D; θ0) ≤
CB′) = F (CB′ |θ0). Moreover, by construction, α = F̂B′(CB′ |θ0). It follows that

|PD|θ0,CB′ (λ(D; θ0) ≤ CB′) − α| = |F (CB′ |θ0) − α|
= |F (CB′ |θ0) − F̂B′(CB′ |θ0)|

≤ sup
λ∈R

|F (λ|θ0) − F̂B′(λ|θ0)| P−−−−−→
B′−→∞

0.

The result follows from the fact that convergence in probability to a constant
implies almost sure convergence.

Proof [Proof of Theorem 2] The proof follows from applying the convergence
rate to the last equation in the proof of Theorem 1.

Assumption 9 (Uniform consistency in θ and λ) Let F̂B′(·|θ) be the esti-
mated cumulative distribution function of the test statistic λ(D; Θ0) conditional
on θ based on a sample T ′ with size B′ implied by the quantile regression, and
let F (·|θ) be its true distribution given θ. Assume that the quantile regression
estimator is such that

sup
θ∈Θ0,λ∈R

|F̂B′(λ|θ) − F (λ|θ)| P−−−−−→
B′−→∞

0.

This assumption holds, for instance, for quantile regression forests [68] under
additional assumptions (see Proposition 2).

Proposition 2 If, for every θ ∈ Θ0, the quantile regression estimator is such
that

sup
λ∈R

|F̂B′(λ|θ) − F (λ|θ)| P−−−−−→
B′−→∞

0 (18)

and either

• |Θ| < ∞ or,
• Θ is a compact subset of Rd, and the function gB′(θ) = supt∈R |F̂B′(t|θ)−
F (t|θ)| is almost surely continuous in θ and strictly decreasing in B′,

then Assumption 9 holds.

Proof If |Θ| < ∞, the union bound and Equation 18 imply that

sup
θ∈Θ0

sup
λ∈R

|F̂B′(λ|θ) − F (λ|θ)| P−−−−−→
B′−→∞

0. (19)
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Similarly, by Dini’s theorem, Equation 19 also holds if Θ is a compact subset of
R

d, and the function gB′(θ) is continuous in θ and strictly decreasing in B′.

Theorem 8 Let CB′ ∈ R be the critical value of the test based on a absolutely
continuous statistic λ(D; Θ0) chosen according to Algorithm 1 for a fixed α ∈
(0, 1). If the quantile estimator satisfies Assumption 9, then

CB′
P−−−−−→

B′−→∞
C∗,

where C∗ is such that

sup
θ∈Θ0

PD|θ(λ(D; Θ0) ≤ C∗) = α.

Proof Assumption 9 implies that

sup
θ∈Θ0

|F̂−1
B′ (α|θ) − F−1(α|θ)| P−−−−−→

B′−→∞
0.

The result then follows from the fact that

0 ≤ |CB′ − C∗| = | sup
θ∈Θ0

F̂−1
B′ (α|θ) − sup

θ∈Θ0

F−1(α|θ)|

≤ sup
θ∈Θ0

|F̂−1
B′ (α|θ) − F−1(α|θ)|,

and thus
|CB′ − C∗| P−−−−−→

B′−→∞
0.

Lemma 1 Let g1, g2, . . . be a sequence of random functions such that gi : Z −→
R, and let Z be a random quantity defined over Z, independent of the random
functions. Assume that g(Z) is absolutely continuous with respect to the Lebesgue
measure. If, for every z ∈ Z,

gm(z) a.s.−−−−−→
m−→∞

g(z),

then
gm(Z) L−−−−−→

m−→∞
g(Z).

Proof Fix y ∈ R and let Ay = {z ∈ Z : g(z) �= y}. Notice that P(Z ∈ Ay) =
1. Moreover, the almost sure convergence of gm(z) implies its convergence in
distribution. It follows that for every z ∈ Ay,

lim
m

P(gm(z) ≤ y) = P (g(z) ≤ y) . (20)
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Now, using Equation 20 and Lebesgue’s dominated convergence theorem, notice
that

lim
m

P(gm(Z) < y) = lim
m

∫
Z
P(gm(Z) < y|Z = z)dPZ(z)

=
∫
Z

lim
m

P(gm(Z) < y|Z = z)dPZ(z)

=
∫
Az

lim
m

P(gm(z) < y)dPZ(z) =
∫
Az

P(g(z) < y)dPZ(z)

=
∫
Z
P(g(Z) < y|Z = z)dPZ(z) = P(g(Z) < y),

which concludes the proof.

Proof [Proof of Theorem 3] Assumption 3 implies that, for every D,

0 ≤ |p̂(D; Θ0) − p(D; Θ0)| = | sup
θ∈Θ0

p̂(D; θ) − sup
θ∈Θ0

p(D; θ)|

≤ sup
θ∈Θ0

|p̂(D; θ) − p(D; θ)| a.s.−−−−−→
B′−→∞

0,

and therefore p̂(D; Θ0) converges almost surely to p(D; Θ0). It follows from
Lemma 1 that p̂(D; Θ0) converges in distribution to p(D; Θ0). Conclude that

PD,T ′|θ(p̂(D; Θ0) ≤ α) = Fp̂(D;Θ0)|θ(α) −−−−−→
B′−→∞

Fp(D;Θ0)|θ(α)

= PD|θ(p(D; Θ0) ≤ α),

where FZ denotes the cumulative distribution function of the random variable
Z.

Proof [Proof of Corollary 1] Fix θ ∈ Θ. Because Fθ is continuous, the defi-
nition of p(D; θ) implies that its distribution is uniform under the null. Thus
PD|θ (p(D; θ) ≤ α) = α. Theorem 3 therefore implies that

PD,T ′|θ(p̂(D; θ) ≤ α) −−−−−→
B′−→∞

PD|θ (p(D; θ) ≤ α) = α. (21)

Now, for any θ ∈ Θ0, uniformity of the p-value implies that

PD|θ(p(D; Θ0) ≤ α) = PD|θ

(
sup

θ0∈Θ0

p(D; θ0) ≤ α

)
≤ PD|θ (p(D; θ) ≤ α)

= α.

Conclude from Theorem 3 that

PD,T ′|θ(p̂(D; Θ0) ≤ α) −−−−−→
B′−→∞

PD|θ(p(D; Θ0) ≤ α) ≤ α. (22)
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The conclusion follows from putting together Equations 21 and 22.

Proof [Proof of Theorem 4]

|p̂(D; Θ0) − p(D; Θ0)| = | sup
θ∈Θ0

p̂(D; θ) − sup
θ∈Θ0

p(D; θ)|

≤ sup
θ∈Θ0

|p̂(D; θ) − p(D; θ)|

= OP

((
1
B′

)r)
,

where the last line follows from Assumption 4

Lemma 2 Under Assumption 5, for every θ, θ0 ∈ Θ

E
2
D|θ,T [|τ(D; θ0) − τ̂B(D; θ0)|] ≤ M2

∫
(O(x; θ0) − Ô(x; θ0))2dG(x).

Proof For every θ ∈ Θ,

E
2
D|θ,T [|τ(D; θ0) − τ̂B(D; θ0)|]

=
(∫

|τ(D; θ0) − τ̂B(D; θ0)| dF (x|θ)
)2

=
(∫

|O(x; θ0) − Ô(x; θ0)| dF (x|θ)
)2

=
(∫

|O(x; θ0) − Ô(x; θ0)|O(x; θ)dG(x)
)2

≤
(∫

(O(x; θ0) − Ô(x; θ0)2dG(x)
)(∫

O
2(x; θ)dG(x)

)
,

where the last inequality follows from Cauchy-Schwarz. Assumption 5 implies
that ∫

O
2(x; θ)dG(x) ≤ M2,

from which we conclude that

E
2
D|θ,T [|τ(D; θ0) − τ̂B(D; θ0)|] ≤ M2

∫
(O(x; θ0) − Ô(x; θ0))2dG(x).

Lemma 3 For fixed c ∈ R, let φτ ;θ0(D) = I (τ(D; θ0) < c) and φτ̂B ;θ0(D) =
I (τ̂B(D; θ0) < c) be the testing procedures for testing H0,θ0 : θ = θ0 obtained
using τ and τ̂B. Under Assumptions 5-6, for every 0 < ε < 1,

PD|θ,T (φτ ;θ0(D) �= φτ̂B ;θ0(D)) ≤
2MCL ·

√∫
(O(x; θ0) − Ô(x; θ0))2dG(x)

ε
+ ε.
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Proof [Proof of Lemma 3] It follows from Markov’s inequality and Lemma 2
that with probability at least 1 − ε, D is such that

|τ(D; θ0) − τ̂(D; θ0)| ≤
M ·

√∫
(O(x; θ0) − Ô(x; θ0))2dG(x)

ε
(23)

Now we upper bound PD|θ,T (φτ ;θ0(D) �= φτ̂ ;θ0(D)). Define A as the event that
Eq. 23 happens and let h(θ0) :=

∫
(O(x; θ0) − Ô(x; θ0))2dG(x). Then:

PD|θ,T (φτ ;θ0(D) �= φτ̂ ;θ0(D))
≤ PD|θ,T (φτ ;θ0(D) �= φτ̂ ;θ0(D), A) + Pθ(Ac)
≤ PD|θ,T (I (τ(D; θ0) < c) �= I (τ̂(D; θ0) < c) , A) + ε

≤ PD|θ,T

(
c− M ·

√
h(θ0)
ε

< τ(D; θ0) < c +
M ·

√
h(θ0)
ε

)
+ ε

Assumption 6 then implies that

PD|θ,T (φτ ;θ0(D) �= φτ̂ ;θ0(D)) ≤ K ′ ·
√

h(θ0)
ε

+ ε

where K ′ = 2MCL, which concludes the proof.

Proof [Proof of Theorem 5] Follows directly from Lemma 3 and Jensen’s in-
equality.

Lemma 4 Under Assumptions 5-8, there exists C > 0 such that

ET
[
L(Ô,O)

]
≤ CB−κ/((κ+d)).

Proof Let p̂ = P̂(Y = 1|x, θ) and p = P(Y = 1|x, θ) be the probabilistic
classifier and true classification function, respectively, on the training sample T .
Let h(y) = y

1−y for 0 < y < 1. A Taylor expansion of h implies that

(h(p̂) − h(p))2 = (h(p) + R1(p̂) − h(p))2 = R1(p̂)2,

where R1(p̂) = h′(ξ)(p̂ − p) for some ξ between p and p̂. Also note that due to
Assumption 5,

∃a > 0 s.t. p, p̂ > a, ∀x ∈ X , θ ∈ Θ.

Thus,

ET

[∫∫
(h(p̂) − h(p))2 dG(x)dπ(θ)

]
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= ET

[∫∫ 1
(1 − ξ)4 (p̂− p)2 dG(x)dπ(θ)

]
≤ 1

(1 − a)4ET

[∫∫
(p̂− p)2 dG(x)dπ(θ)

]
= 1

(1 − a)4ET

[∫ (
P̂(Y = 1|x, θ) − P(Y = 1|x, θ)

)2
h′(x, θ)dH(x, θ)

]
≤ γ

(1 − a)4ET

[∫ (
P̂(Y = 1|x, θ) − P(Y = 1|x, θ)

)2
dH(x, θ)

]
= O

(
B−κ/(κ+d)

)
.

Proof [Proof of Theorem 6] It follows from Theorem 5 that∫
PD,T |θ(φτ ;θ0(D) �= φτ̂B ;θ0(D))dπ(θ0)

= ET

[∫
PD|θ,T (φτ ;θ0(D) �= φτ̂B ;θ0(D))dπ(θ0)

]

≤
2MCL · ET

[√
L(Ô,O)

]
ε

+ ε

≤
2MCL ·

√
ET

[
L(Ô,O)

]
ε

+ ε,

where the last step follows from Jensen’s inequality. It follows from this and
Lemma 4 that∫

PD,T |θ(φτ ;θ0(D) �= φτ̂B ;θ0(D))dπ(θ0) ≤
KB−κ/(2(κ+d))

ε
+ ε,

where K = 2MCL

√
C. Notice that taking ε∗ =

√
KB−κ/(4(κ+d)) optimizes the

bound and gives the result.

Proof [Proof of Corollary 2] The result follows from noticing that

PD,T |θ(φτ̂B ;θ0(D) = 1) ≥ PD,T |θ(φτ ;θ0(D) = 1) − PD,T |θ(φτ ;θ0(D) �= φτ̂B ;θ0(D)),

and therefore∫
PD,T |θ(φτ̂B ;θ0(D) = 1)dθ0 ≥

∫
PD,T |θ(φτ ;θ0(D) = 1)dθ0

−
∫

PD,T |θ(φτ ;θ0(D) �= φτ̂B ;θ0(D))dθ0



Likelihood-Free Frequentist Inference 5083

≥
∫

PD,T |θ(φτ ;θ0(D) = 1)dθ0 −K ′B−κ/(4(κ+d)),

where the last inequality follows from Theorem 6.

Appendix G: Loss functions

In this work, we use the cross-entropy loss to train probabilistic classifiers. Con-
sider a sample point {θ,x, y} generated according to Algorithm 3. Let p be
a Bernoulli(y) distribution, and q be a Ber

(
P̂(Y = 1|θ,x)

)
= Ber

(
Ô(x;θ)

1+Ô(x;θ)

)
distribution. The cross-entropy between p and q is given by

LCE(Ô; {θ,x, y}) = −y log
(

Ô(x; θ)
1 + Ô(x; θ)

)
− (1 − y) log

(
1

1 + Ô(x; θ)

)
= −y log

(
Ô(x; θ)

)
+ log

(
1 + Ô(x; θ)

)
. (24)

For every x and θ, the expected cross-entropy E[LCE(Ô; {θ,x, y})] is minimized
by Ô(x; θ) = O(x; θ). If the probabilistic classifier attains the minimum of the
cross-entropy loss, then the estimated ACORE statistic Λ̂(D; Θ0) will be equal to
the likelihood ratio statistic in Equation 5, as shown in [26]. Similarly, as stated
in Proposition 1, at the minimum, the estimated BFF statistic τ̂(D; Θ0) is equal
to the Bayes factor in Equation 6.
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