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Abstract: Isolation forest is a popular method for anomaly detection in-
troduced in Liu, Ting and Zhou (2008, 2012). Nonetheless, its statistical
properties are little understood. We study the scoring function that is in-
duced by the isolation forest over a finite sample at the limit when the
number of trees tends to infinity, based on an analytical expression that
we derive. The isolation forest method is proved to be effective at detect-
ing geometrically isolated points within a finite sample. We then study the
large sample limit of the scoring function in random designs as well as in
sequences of regular designs and we find that the isolation forest method
performs as a detector of the support of the underlying distribution. We
also find that dense clustered anomalies are not detected asymptotically
by the isolation forest method, a phenomenon known as the masking ef-
fect, but that isolation forest anomaly detection is robust to training with
normal data sparsely contaminated by anomalies. Numerical examples are
provided that confirm the theoretical results.
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1. Introduction

Anomaly detection can be defined as the task of identifying those observations
that stand out in some way or another. Precise definition of an anomaly may
vary, and multiple proposals have been formulated in the literature, some quoted
in Samariya and Thakkar (2023), but they all share a concept of deviation from
a reference situation. See also Foorthuis (2021), who assembled a comprehensive
typology of data anomalies. The subject of anomaly detection has a long history
and is an important line of research in statistics and machine learning. Many
methods and algorithms have been introduced so far and applied succesfully in
a wide range of domains, such as intrusion detection in network systems, fraud
detection in credit card, insurance and finance, fault detection in complex sys-
tems, and medical monitoring, to name a few; see for instance the reviews given
in Chandola, Banerjee and Kumar (2009) and more recently in Samariya and
Thakkar (2023). Anomaly detection is also closely related to outlier detection
(Barnett and Lewis, 1994; Aggarwal, 2017) and novelty detection (Markou and
Singh, 2003a,b). In fact, albeit referring to somewhat distinct purposes, these
terms are often used exchangeably and the detection methods typically apply
to either context (Chandola, Banerjee and Kumar, 2009).

Liu, Ting and Zhou (2008, 2012) introduced the isolation forest method for
anomaly dectection. The underlying idea is that anomalies, and even small clus-
ters of anomalies, are somehow more susceptible of being isolated than non-
abnormal data, so that it might be easier to isolate them from the rest of the
data than it is for non-abnormal data (Liu, Ting and Zhou, 2010). In essence,
the isolation forest method consists in building an ensemble of random binary
space partitioning trees, called isolation trees. When an isolation tree is fully
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grown so that each element of the partition induced by the tree contains exactly
one data point, the data points are isolated one from the other at the leaves (ex-
ternal nodes) of the tree (assuming that such a data separation is possible). The
path length from the root of an isolation tree to one of its external node gives
the number of recursive partitioning steps that are needed to isolate the data
point located at that node. Then under the premise that anomalies are easier
to isolate than the other data, anomalies are expected to correspond to shorter
path lengths in the isolation trees than for non-abnormal data. An anomaly
score is then produced for each data point by aggregating the respective path
lengths over the ensemble of isolation trees.

In the algorithm of Liu, Ting and Zhou (2008, 2012) and in practice, the
isolation trees are constructed on subsamples and are subjected to a maximum
height limit. In this case, the leaves of the trees may contain more than one data
point. The subsample size and the maximum height count among the tuning
parameters of the algorithm, together with the number of trees. Based on the
anomaly scores returned by the isolation forest algorithm, observations can then
be labeled as being abnormal or not by simple thresholding. The scoring strategy
proposed in Liu, Ting and Zhou (2008) produces anomaly scores normalized
between 0 and 1, with a score close to 1 indicating evidence of an anomaly
and a score close to 0 indicating confidence in a non-abnormal data. It is worth
noticing that, by the very nature of an isolation tree of being a partitioning tree,
the anomaly scores that are produced by the forest at the data points readily
extend to a scoring function defined on the whole sample space. This offers the
possibity of scoring new, unseen data, based on the forest built on the training
data. An example use case of this mode of operation is in the design of an
anomaly-based intrusion detection system in which the training data is known
to represent the normal state of the system and, as such, does not contain any
anomaly (see for instance Khraisat et al., 2019).

Since its introduction, the isolation forest procedure has gained strong pop-
ularity and several variants and extensions have then been proposed. In the
original algorithm of Liu, Ting and Zhou (2008), the isolation trees are grown
recursively by operating random binary splits along the coordinate axes. The
axis at which the split occurs is selected uniformly at random, and next the value
of the split is selected uniformly at random over the range of the projected data
onto that axis. Partitioning along the axes may induce artifacts in the shape
of the scoring function, as reported in Hariri, Kind and Brunner (2021), who
then proposed a variant called the extended isolation forest, which uses ran-
dom hyperplanes not necessarily orthogonal to the coordinate axes to partition
the data while growing the isolation trees. Considering random hyperplanes has
been mentioned before in Liu, Ting and Zhou (2010) but not furthered, while
these authors focused on optimizing the splitting value so as to improve the
dectection of clustered anomalies. But contrary to the original isolation forest
algorithm, the random hyperplanes generated by the method in Hariri, Kind
and Brunner (2021) are not guaranteed to actually produce a partition of the
data, thus leading to empty branches in the isolation trees. This is observed and
remedied in Lesouple et al. (2021) who propose a modification of the random
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hyperplane generation algorithm to ensure that data are present on both sides
of the hyperplane. Among the other variants of the isolation forest method that
have been introduced, Karczmarek et al. (2020) propose to use the k-means
algorithm to build k-ary trees instead of binary trees. While most extensions
have focused on modifying the splitting mechanism, Mensi and Bicego (2021)
propose to weight the edges of the isolation trees, by accounting for the number
of data points at each node, and they also introduce heuristics for aggregating
the isolation trees in a forest, leading to a modified scoring function using those
weights. Another scoring strategy which relies on a majority vote instead of on
an average is proposed in Chabchoub et al. (2022). Mensi, Tax and Bicego (2023)
introduce an adaptation of the isolation forest method to the case of pairwise
data, and an extension to functional data is proposed in Staerman et al. (2019).

Despite its wide use and various extensions, the statistical properties of the
isolation forest method remain little understood. Recall that the isolation forest
anomaly detection method is a two-stage procedure, comprising a training stage,
where a forest of isolation trees is constructed from a training sample, followed by
a scoring stage, where the induced scoring function is evaluated on the test data
that may, or may not, differ from the training data. The regions of abnormality
produced by an isolation forest then coincide with the upper level sets of the
scoring function. One first question of interest is to determine, and analyze,
the scoring function that is induced by the isolation forest method over a given
finite sample at the population level, meaning at the limit when the number of
trees tends to infinity. In this direction, we are only aware of the recent work
of Morales, Ramírez and Ramos (2022), where they suggest an expression for
the average heights analogous to the one that we obtain in our Theorem 4.3, as
given by equation (11). Another central problem is to determine the behaviour
of this limit scoring function in the large sample regime, that is to say when
the number of data points tends to infinity. It is worth noticing that the large
sample regime is not of mere theoretical interest but corresponds to the practical
situation where the anomaly detector is trained with a large number of data that
are known to be non-abnormal before being applied next to new, unseen data.

In the present paper, we address these questions in non asymptotic and
asymptotic settings. We focus first on the isolation forest methodology in di-
mension one. Building upon work of Seidel and Aragon (1996) on randomized
search trees and treaps (see also Aragon and Seidel, 1989), we start by intro-
ducing a sequential procedure of construction of random trees which have the
structure of a treap and that we relate to the isolation trees (Proposition 3.1).
This connection between isolation trees and the treaps that we introduce fa-
cilitates the analysis and using this, we derive an analytical expression, as a
function of the sample points, for the limit of the scoring function over a fi-
nite sample when the number of trees tends to infinity (Theorem 4.3). Based
on the limit expression obtained in Theorem 4.3, we deduce that the isolation
forest algorithm is effective at detecting geometrically isolated points, although
the efficiency of the dectection may be affected by an effect of scale that we
reveal. Next, we study the large sample limit of the scoring function, as the
number of data points tends to infinity. In this asymptotic regime, we consider
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a random design where points are drawn from an underlying distribution, as
well as sequences of fixed designs. The results that we obtain (Theorem 6.1,
Theorem 6.2, Corollary 6.3, Theorem 6.4 and Theorem 6.5) imply that asymp-
totically the isolation forest method operates as a detector of the support of
the underlying distribution in the same way the method of one-class support
vector machines does, although the design principles differ since one-class sup-
port vector machine are introduced for the specific goal of support recovery
(Schölkopf et al., 2001, 1999). In fact, our initial intuition was that the scoring
function would converge, after proper scaling, towards some kind of data depth
function (see for instance Mosler, 2013) or at least to a function depending on
the underlying density. Our results reveal that this is not the case since the only
dependence on the distribution that remains at the limit is through its support,
and this holds whether the support is simply connected or multiply connected.
This set of results also allows us to derive robustness properties of the isolation
forest methodology when the training set is contaminated by anomalous data.
We take an asymptotic stance and we consider dense and sparse regimes. In
the dense regime, anomalies are clustered and dense at the limit, meaning that
they aggregate in a cluster of positive density. In this case, anomalies are not
detected as such by an isolation forest, a phenomenon known as the masking
effect. On the other hand, in a sparse regime where the proportion of anomalies
tend to zero sufficiently fast, the isolation forest method is found to be robust
to contamination during training in the sense that the support of the normal
data is correctly recovered at the limit.

The rest of the paper is organized as follows. In Section 2, we describe the
isolation forest method and we introduce some notation. The sequential proce-
dure of construction of random trees is introduced in Section 3. The analytical
expression for the limit of the scoring function over a finite sample is exposed in
Section 4 and is studied in Section 5 in a non asymptotic setting. In Section 6,
we present the asymptotic results in the large sample regime, under random de-
signs and fixed designs. We end with Section 7 where we give some concluding
remarks and we make a link with the Hilbert kernel density estimate introduced
in Devroye and Krzyżak (1999). Section 8 is devoted to the proofs and several
technical results are gathered in an Appendix, at the end of the paper.

2. Isolation forest

In this section, we describe the isolation forest algorithm and we introduce some
notation and vocabulary. Following Liu, Ting and Zhou (2008), an isolation tree
over Rd is a binary tree that is grown using a given data set and that represents
a binary recursive partition of Rd. We start with the definition of a binary tree,
which we take as a rooted, ordered and labelled tree in which each node has at
most two children. Next we define a binary recursive partitition of a given set.
Then we formalize the notion of an isolation tree.

Let U =
⋃

n≥0{0, 1}n be the set of labels with the convention that {0, 1}0 =
{∅}. An element of U is a tuple of the form u = (u1, . . . , un) and its length
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is denoted by |u| = n with the convention |∅| = 0. Given u = (u1, . . . , um) ∈
U and v = (v1, . . . , vn) ∈ U , we write uv = (u1, . . . , um, v1, . . . , vn) for the
concatenation of u and v, with the convention that ∅u = u∅ = u. The element
∅ is called the root and the elements of the form u0 and u1 are called the left
and right children of u, respectively. A binary tree T is a finite subset of U such
that:

(i) ∅ ∈ T ,
(ii) uv ∈ T =⇒ u ∈ T .

A binary tree T is called proper, or full, if it satisfies the property u0 ∈ T ⇐⇒
u1 ∈ T . Thus each node of a binary tree has at most two children while each
node of a proper binary tree has either 0 or 2 children. A node without children
is called a leaf, and the other nodes are called internal nodes. The set of leaves
of a tree T is denoted by ∂T . Given a tree T �= {∅}, we denote by T ◦ = T �∂T
the tree composed of the internal nodes of T . For each n ≥ 1, we denote by
Bn the set of proper binary trees of size n, where the size of a tree is defined
as its total number nodes, including the root. Given a tree T , the height of a
node u ∈ T is defined by its length, meaning that it is equal to |u|. From the
perspective of graph theory (see for instance Diestel, 2017), a binary tree, as
defined here, is a connected acyclic graph (V (T ), E(T )) with a special vertex
(the root), where any vertex has at most two children, and that is ordered and
labelled (left and right children are distinguished even when a node has only one
child). Due to this distinction, the definition of a binary tree that we use here
is more convenient for our purposes, but we retain some concepts from graph
theory. In particular, the height of a node u ∈ T corresponds to the length of
the (unique) shortest path from the root of the tree to u, where the path length
is defined as the number of edges in the path.

Given a set S, we define a binary recursive partition of S as a pair (T , πT ),
where T is a proper binary tree, and where πT : T → P(S) is a function
such that πT (∅) = S, and such that {πT (v0), πT (v1)} is a partition of πT (v)
for any internal node v ∈ T ◦, where P(S) denotes the power set of S. The
elements πT (v), for v ∈ T , will be called cells and we note that the collection
{πT (v) : v ∈ ∂T } of cells associated with the leaves of T forms a partition of
S. We denote by P(S) the set of all binary recursive partitions of S. It will be
convenient to restrict a partition to some subset. Given a subset S ′ ⊂ S and a
binary recursive partition (T , πT ) on S, we define the restriction of (T , πT ) to
S ′, as the recursive partition (T ′, πT ′) where T ′ is the subtree of T defined by

T ′ = {v ∈ T : πT (v) ∩ S ′ �= ∅} , (1)

and where πT ′ : T ′ → P(S) is defined by

πT ′(v) = πT (v) ∩ S ′, for v ∈ T ′. (2)

By an isolation tree over R
d we mean a binary recursive partition (T , πT )

of R
d that is designed to isolate each data point at its leaves. Liu, Ting and

Zhou (2008) define isolation trees with cells obtained by partitioning along the
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coordinate axis. Then it holds π(∅) = R
d, and for any internal node v ∈ T ◦,

the cells associated with the left and right children of v may be expressed as⎧⎪⎨⎪⎩
πT (v0) = πT (v) ∩

{
x ∈ R

d : x(j) ≤ τ
}
,

πT (v1) = πT (v) ∩
{
x ∈ R

d : x(j) > τ
}
,

(3)

for some pair (j, τ) composed of a component number j ∈ {1, . . . , d} and of a
split value τ ∈ R, and where x(j) denotes the jth component of x ∈ R

d. When
no risk of confusion may arise, we may simply denote an isolation tree (T , πT )
as T for ease of notation.

Let Dn = {x1, . . . , xn} be a data set composed of n points in R
d. The iso-

lation trees that we consider are grown recursively according to the following
procedure. The structure is initialized with T composed only of the root and
with associated cell Rd. Next, a pair (j, τ) is first generated from Dn by a ran-
dom draw of a component number j uniformly among {1, . . . , d}, followed by a
random draw of a split value τ uniformly over the interval [min{x(j)

i : 1 ≤ i ≤
n},max{x(j)

i : 1 ≤ i ≤ n}]. The two children ∅0 and ∅1 of the root are then
inserted in T and πT (∅0) and πT (∅1) are defined according to (3). Next, Dn

is partitioned into D(0)
n = Dn ∩ πT (∅0) and D(1)

n = Dn ∩ πT (∅1) and the left
and right subtrees of the root node are grown recursively in a similar manner
using D(0)

n and D(1)
n respectively. The recursion on a subtree ends either when

the data set resulting from the sequence of splits contains only one data point,
or when a height limit is reached. When an isolation tree is fully grown, each
cell associated with the leaves of the tree contains exactly one data point; thus,
in this case, the data points are isolated by the tree, which then has n leaves,
n − 1 internal nodes, and so a size of 2n − 1. The procedure is summarized in
Algorithm 1. We also note that, if the projections of the data points along the
coordinate axes are all distinct, then there are as many different isolation tree
structures as there are (proper) binary trees in B2n−1, meaning that the appli-
cation (T , πT ) �→ T from T to B2n−1 is surjective, and the cardinality of B2n−1
is known to be 1

n

(2(n−1)
n−1

)
, as shown for instance in Drmota (2009, Theorem 2.1).

Given an isolation tree T over R
d, let hT be the piecewise-constant function

defined for any x ∈ R
d by

hT (x) =
∑
v∈∂T

|v|1πT (v)(x). (4)

Let T1, . . . , TN be an ensemble of N isolation trees constructed independently
from the data set Dn according to algorithm 1. Liu, Ting and Zhou (2008) define
an anomaly score sN (x) at x by

sN (x) = 2−
1

c(n)N
∑N

�=1 hT�
(x), (5)

where c(n) is the average path length of unsuccessful searches in a binary search
tree and is taken as c(n) = 2Hn−1 − 2(n − 1)/n, where H� =

∑�
k=1

1
k denotes
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the �th harmonic number, for � ≥ 1. Liu, Ting and Zhou (2008) also propose
growing the isolation trees from random subsamples of Dn of size m ≤ n, in
which case c(n) is replaced by c(m) in (5). The rationale behind the isolation
forest algorithm is that anomalies are more suceptible of being isolated earlier
in the recursive partitioning procedure than non abnormal data points. Thus
anomalies are expected to be isolated at shorter heights on average, thereby
receiving a score close to 1, while non abnormal data points are expected to
receive lower score values.
Remark 1. In the definitions given above, two properties are implicitely as-
sumed to hold. The first one is that the data points in Dn may all be isolated
by an isolation tree grown to maximal height. The second one is that the pair
(j, τ) in step 3 of Algorithm 1 produces a proper split, meaning that it ac-
tually creates two children, and this is guaranteed with probability one when
min{x(j)

i : xi ∈ S} < max{x(j)
i : xi ∈ S}. These two properties are satisfied,

for instance, under the condition that the projections of the data points in Dn

over each coordinate axis are distinct, and this holds with probability one when
the data is drawn from a continuous distribution over R

d. When the data are
only assumed to be distinct (but the projections on some coordinate axis may
not be distinct), then Algorithm 1 may be applied by modifying step 2 so that j
is chosen among those components for which the projections {x(j)

i : xi ∈ S} are
not all equal (note that the two conditions are equivalent in dimension 1). We
use this variant in Proposition 4.4 and in our analysis in Section 6.2. As pointed
out by a referee, this setting may result from a discretization of the data, even
leading to duplicated values in Dn. In the case of duplicated data, Algorithm 1
may be applied with the additional condition that the recursion on a leaf node
stops when either that node contains only one data point, or when all the data
at that node are identical, which is in line with the algorithm in Liu, Ting and
Zhou (2008), and this results in the same distribution of scoring functions as
the one that is produced by applying Algorithm 1 without modification to the
subset of distinct data from Dn. Thus it is sufficient to assume that all the data
in Dn are distinct, and the analysis that we develop also applies to the setting
of duplicated values with the effect of reducing the sample size from n to the
number of distinct values in Dn.

Let the data set Dn be fixed. We denote by T ⊂ P(Rd) the set of all possible
isolation trees that may be grown from Dn using Algorithm 1 (the dependence
on Dn is understood) and by μ be the probability measure that is induced
by Algorithm 1 over T. When the objective is to detect anomalies within Dn,
the scoring function needs to be evaluated at the data points only. It will be
convenient to introduce isolation trees restricted to Dn for this purpose, as
well as for the analysis of the distributional properties of the isolation forest
methodology in general, where the restriction to a subset is defined in (1) and
(2). Indeed, we note that each isolation tree yields a binary recursive partition
of Dn which is obtained by filtering down Dn through the tree, as illustrated in
Figure 1.

Let Πn : T → P(Dn) be the application mapping each isolation tree (T , πT ) ∈
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Algorithm 1 Recursive definition of an isolation tree T on a finite sample of
size n. Nodes of T are denoted by v and their associated cell by πT (v). The tree
is grown until all n points are isolated (this holds under minimal assumptions
on Dn; see Remark 1).

Input: Point set Dn = {x1, . . . , xn} in Rd.
Output: An isolation tree (T , πT ).

Initialization: Set T = {∅} and πT (∅) = R
d.

Recursion on a leaf node v of T :
1: Let S = πT (v) ∩ Dn.
if S contains more than one point then

2: Draw a component j ∈ {1, . . . , d} uniformly.
3: Draw a split point τ uniformly in the interval[
min{x(j)

i : xi ∈ S},max{x(j)
i : xi ∈ S}

]
.

4: Insert nodes v0 and v1 in T as left and right children of v respectively.
5: Set πT (v0) = πT (v)∩

{
x ∈ Rd : x(j) ≤ τ

}
and πT (v1) = πT (v)∩

{
x ∈ Rd : x(j) > τ

}
.

6: Apply this recursion to v0.
7: Apply this recursion to v1.

end if

T to its restriction to Dn, and let Tn = {Πn ((T , πT )) : (T , πT ) ∈ T} be the
set of all such restricted isolation trees. Notice that (T , πT ) and Πn((T , πT ))
carry the same tree structure, so that Πn((T , πT )) = (T , πT ,n), and where
πT ,n : T → P(Dn) is defined according to (2). Indeed, this is due to the fact
that πT (v)∩Dn �= ∅ for all v ∈ T since the recursive growth of T by Algorithm 1
is stopped before the cells associated with the leaves are empty of data points.
Given (T , πT ,n) ∈ Tn, we denote by hT ,n : Dn → N the height function defined
as in (4), meaning that

hT ,n(x) =
∑
v∈∂T

|v|1πT ,n
(x), for x ∈ Dn, (6)

and we note that

(hT (x1), . . . , hT (xn)) = (hT ,n(x1), . . . , hT ,n(xn)) ,

for any (T , πT ) ∈ T such that (T , πT ,n) = Πn ((T , πT )). We denote by μn =
μ ◦ Π−1

n the image measure of μ by Πn on Tn.

3. Isolation tree: from recursive to sequential construction

In this section, we focus on isolation trees in dimension 1. The setting is that
of a data set Dn = {x1, . . . , xn} composed of n distinct points in R indexed in
increasing order x1 < x2 < · · · < xn. For i = 1, . . . , n− 1, we let Ii = [xi, xi+1)
save for In−1 = [xn−1, xn], and we denote by wi = xi+1 − xi its length. We
consider isolation trees grown using Algorithm 1 and that isolate each data
point of Dn at their leaves.
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Fig 1. Construction of an isolation tree on 6 data points in R
2. Top row: induced partition

(left) and isolation tree (right) after the first split. Bottom row: final partition and corre-
sponding isolation tree.

In dimension 1, any isolation tree restricted to Dn satisfies the property
that its partition map is completely determined by its tree. Indeed, consider
the generation of an isolation tree according to Algorithm 1 and suppose that
the first split point (used to partition Dn) falls in the interval Ik, for some
k ∈ {1, . . . , n− 1}. Then the cell of the left child of the root contains the first k
points of Dn and the cell of the right child of the root contains the remaining
n− k points. Conversely, for any Dn-restricted isolation tree (T , πT ,n) ∈ Tn, if
the left subtree of the root of T contains k leaves, for some k ∈ {1, . . . , n− 1},
then necessarily πT ,n(∅0) = {x1, . . . , xk} and πT ,n(∅1) = {xk+1, . . . , xn}. By
recursion on the left and right subtrees, this shows that πT ,n is completely
determined by T . Consequently, in dimension 1, Tn can be identified with B2n−1
through the application ι : Tn → B2n−1 defined by ι ((T , πT ,n)) = T which is
bijective in dimension 1 (but ι fails to be injective in dimension larger than
1 due to the fact that T does not carry information about the coordinate axis
along which the cells are partitioned). Using this observation together with ideas
introduced in Seidel and Aragon (1996) for the study of randomized search trees,
we define a sequential procedure that generates randomized binary search trees
with set of keys {1, . . . , n− 1} and we prove that the two procedures (recursive
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and sequential) generate the same distribution of trees in a sense made precise
in Proposition 3.1.

A binary search tree with set of keys {1, . . . , n−1} is a binary tree T ∈ B2n−1
together with a bijective application LT : T ◦ → {1, . . . , n − 1} that gives the
keys stored at the internal nodes of T , and that satisfies the binary search tree
property that, for any u ∈ T , LT (v) < LT (u) for any v ∈ T ◦ that belongs to
the left subtree of u, and LT (v) > LT (u) for any v ∈ T ◦ that belongs to the
right subtree of u. We denote by BS

n−1 the set of all binary search trees with
set of keys {1, . . . , n− 1}. In fact, when the set of keys is {1, . . . , n− 1}, as we
consider here, LT is completely determined by T , so that each binary search
tree (T , LT ) is canonically identified with the element T of B2n−1, as we argue
below. Binary search trees (T (α), LT (α)) are generated by a permutation α of
{1, . . . , n− 1}. We use the recursive description given in Drmota (2009, chapter
1). Let K = {1, . . . , n−1} and let k0 = minK (so that k0 = 1). The construction
of T (α) starts with the root ∅ and the assignment LT (α)(∅) = α(k0). Next,
α(k0) is taken as a pivot to partition {2, . . . , n− 1} into K0 = {2 ≤ k ≤ n− 1 :
α(k) < α(k0)} and K1 = {2 ≤ k ≤ n − 1 : α(k) > α(k0)}. This procedure is
applied recursively to build the left and right subtrees based on K0 and on K1
respectively. Once the recursion completes, the tree reaches the size of n − 1
and finally, n leaves are added wherever possible to T (α) so as to make T (α) a
proper binary tree of size 2n− 1. Hence the procedure generates T (α) ∈ B2n−1
together with the bijective application LT (α) : T (α)◦ → {1, . . . , n − 1}. Notice
that the generation by permutation produces as many binary search trees as
there are elements in BS

n−1, meaning that the application α �→ Tα from the set
of permutations of {1, . . . , n− 1} to BS

n−1 is surjective. It is also worth noticing
that the application ι̃ : BS

n−1 → B2n−1 defined by ι̃ ((T , LT )) = T is bijective. To
be sure, for each T ∈ B2n−1, denote by k0(v) and k1(v) the number of internal
nodes (including v) in the left and right subtrees at v ∈ T ◦ respectively, and let
LB
T : T ◦ → {1, . . . , n− 1} be the labelling function defined recursively by{

LB
T (v0) = LB

T (v) − k0(v) + k0(v0), for v0 ∈ T ◦,

LB
T (v1) = LB

T (v) + k1(v) − k1(v1), for v1 ∈ T ◦,
(7)

with the initial condition that LB
T (∅) = k0(∅). Then we see that LB

T is bijective
and satisfies the binary search tree property, implying that (T , LB

T ) ∈ BS
n−1 and

so that ι̃ is surjective. Next, for any (T , LT ) and (T ′, LT ′) in BS
n−1 such that

ι̃ ((T , LT )) = ι̃ ((T ′, LT ′)), we then have T = T ′ and since LT and LT ′ both
satisfy the binary search tree property, we necessarily have LT (∅η) = LB

T (∅η) =
LT ′(∅η), for any η ∈ {0, 1}, implying by recursion on the left and right subtrees
that LT = LT ′ , and so that ι̃ is injective.

We now introduce the following randomization of binary search trees with
keys {1, . . . , n − 1}. Let F0 be the cumulative distribution function of the uni-
form distribution over [0, 1] (the particular choice of distribution does not really
matter as long as it is absolutely continuous). Let Z1, . . . , Zn−1 be independent
random variables where Zi is distributed according to Fwi

0 , for i = 1, . . . , n− 1.
Assuming no ties among the Zi’s (since this occurs with probability one), let
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Algorithm 2 Sequential generation of the random binary search trees with set
of keys {1, . . . , n− 1}.

Input: Random variables Z1, . . . , Zn−1.
Output: Randomized binary search tree (T , LT ) with set of keys {1, . . . , n− 1}.

1: Sort the Zi’s by decreasing order Zα(1) > Zα(2) > · · · > Zα(n−1).
2: Set T ′ = {∅} and LT ′ (∅) = α(1).
3: Sequential insertion of the internal nodes:
for j = 2, . . . , n− 1 do

Set the current node v to the root ∅.
while [(v0 ∈ T and α(j) < LT (v)) or (v1 ∈ T and α(j) > LT (v))] do

if α(j) < LT (v) then
v ← v0

else
v ← v1

end if
end while
if α(j) < LT (v) then

T ← T ∪ {v0} and set LT (v0) = α(j).
else

T ← T ∪ {v1} and set LT (v1) = α(j)
end if

end for
4: Add n leaves to complete the tree: T ← T ∪

⋃
v∈T ({v0} ∪ {v1}).

α be the permutation of {1, . . . , n − 1} such that Zα(1) ≥ Zα(2) ≥ . . . Zα(n−1).
Then we consider the randomized binary search tree (T , LT ) (Z1, . . . , Zn−1) :=(
T (α), LT (α)

)
generated from the random permutation α of {1, . . . , n− 1}. The

procedure is summarized in Algorithm 2, where we use the equivalent formula-
tion of generation of a binary search tree by sequential insertion of the nodes (see
Drmota, 2009, chapter 1). This procedure defines a probability measure on BS

n−1
that we denote by μ̃n. Notice that when the interval lengths {w� : 1 ≤ � ≤ n−1}
are all equal, then all permutations are equally likely so that μ̃n corresponds to
the distribution of the standard probabilistic model of binary search trees that
are generated by uniform permutations of the keys.

We may now formalize the connection between the two probability measures
induced by the recursive and sequential random generation procedures.

Proposition 3.1. The image measure of μn by ι̃−1 ◦ ι is equal to μ̃n, that is to
say, it holds μ̃n = μn ◦

(
ι−1 ◦ ι̃

)
.

Hence since ι̃−1 ◦ ι : Tn → BS
n−1 is bijective, the properties of the disti-

bution of the isolation trees restricted to Dn may be deduced from those of
the binary search trees. Given a Dn-restricted isolation tree (T , πT ,n) ∈ Tn,
(ι̃−1 ◦ ι)(T , πT ,n) is the binary search tree in BS

n−1 which stores in its nodes the
indices of the intervals that contain the split points that generate the recursive
partition, as illustrated in Figure 2.
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Fig 2. An isolation tree T is represented in (a) and its associated binary search tree T ′ =(
ι̃−1 ◦ ι

)
(T ) is represented in (b). Edges to the leaves are represented with dashed lines and

the leaves of the binary search tree T ′ are represented with empty boxes.

4. The isolation forest average heights

Equipped with Proposition 3.1, we study the properties of the height function
of isolation trees by first relating it with the height function of the nodes of the
binary search trees. Next in Theorem 4.3, we establish the analytical expres-
sions for the expectation of the heights of the leaves of a random Dn-restricted
isolation tree (T , πT ,n) distributed as μn. The setting is the one of the previous
section, meaning that we consider a finite sample x1 < · · · < xn. Let us em-
phasize that the data points are ordered and fixed (deterministic). In the case
of a random sample, the expressions in Theorem 4.3 remain valid when expec-
tations are replaced by conditional expectations on the sample. This is used in
the asymptotic analysis that we develop in Section 6.

For any T IT := (T , πT ,n) ∈ Tn, denote by H(T IT ) = (hT ,n(x1), . . . , hT ,n(xn))
the vector the components of which are the heights of the n leaves of T ,
where the height function hT ,n is defined in (6). Given a binary search tree
T S := (T̃ , LT̃ ) ∈ BS

n−1, let D(T S) =
(
D1(T S), . . . , Dn−1(T S)

)
, where Di(T S)

is the height of the internal node of T̃ where the key i is stored, meaning
that Di(T S) =

∑
v∈T̃ ◦ |v|1{LT̃ (v) = i}. From the definitions of the bijec-

tions ι : Tn → B2n−1 and ι̃ : BS
n−1 → B2n−1, it follows that whenever T S =

(ι̃−1 ◦ ι)(T IT ), the two height functions are related by

hT ,n(xi) =

⎧⎪⎨⎪⎩
1 + D1(T S) if i = 1,
1 + max

{
Di−1(T S), Di(T S)

}
if 2 ≤ i ≤ n− 1,

1 + Dn−1(T S) if i = n,
(8)

which we write in condensed form as

H(T IT ) = Ψ
(
D
(
(ι̃−1 ◦ ι)(T IT )

))
, (9)

for some adequate function Ψ : R
n−1 → R

n, and this holds for any T IT in
Tn. Indeed, that (8) holds for boundary points (when i = 1 or i = n) is clear,
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and when 2 ≤ i ≤ n − 1, the point xi becomes isolated only once split points
have been drawn in both Ii−1 and Ii. Implicitely, it is assumed here that no
split point coincides exactly with one of the data points, which is not restrictive
since this holds with probability one. Given a random Dn-restricted isolation
tree T IT distributed as μn and a random binary search tree T̃ distributed as
μ̃n, using (9) and applying Proposition 3.1 implies that H(T IT ) has the same
distribution as Ψ(D(T S)), thereby providing the link between the two random
generation procedures.

Now we focus on the height function of the internal nodes of a binary search
tree T S := (T̃ , LT̃ ) ∈ BS

n−1. We refer to each internal node v ∈ T̃ ◦ by the
interval Ii for which i = LT̃ (v). Following Seidel and Aragon (1996), the study
of the heights Di’s is facilitated by the introduction of the binary ancestor
variables Aji := Aji(T S) defined by Aji = 1 if node Ij is an ancestor of node Ii
in T̃ and Aji = 0 otherwise (the dependence of Di and Aji on T̃ is dropped from
the notation for clarity). We recall that a node Ij is said to be an ancestor of node
Ii in T̃ if Ij belongs to the unique path from the root of T̃ to Ii and has a lower
height than that of Ii. At this point, it is worth noting that for any 2 ≤ i ≤ n−1,
we always have Ai−1,i + Ai,i−1 = 1, meaning that either node Ii is an ancestor
of node Ii−1 or node Ii−1 is an ancestor of node Ii in T̃ . Obviously they cannot
be ancestors one of each other simultaneously, but that none of the two is an
ancestor of the other cannot occur too. Indeed, if Ai−1,i = Ai,i−1 = 0, then Ii−1
and Ii belong to different subtrees. Denote by Ik their closest common ancestor,
meaning the node with the largest height belonging to the intersection of the
two unique paths from the root to Ii−1 and Ii. Then i− 1 < k < i necessarily,
hence a contradiction and so the relation Ai−1,i + Ai,i−1 = 1 is true for any
2 ≤ i ≤ n − 1. From this, it follows that the maximum term in (8) may be
expressed as max{Di−1, Di} = Di−1Ai,i−1 + DiAi−1,i.

Recall that the height Di of Ii in T̃ is equal to the length of the (unique)
path from the root of T̃ to Ii, and where the length is defined as the number of
edges in this path. Hence Di may be expressed in terms of the ancestor variables
as Di =

∑n
j=1 Aji and this leads to

max{Di−1, Di} =
n∑

j=1
Aj,i−1Ai,i−1 +

n∑
j=1

AjiAi−1,i. (10)

Given a random binary search tree T S := T S(Z1, . . . , Zn−1) as defined in
Algorithm 2, the following Lemma characterizes the ancestor variables in terms
of the random variables Z1, . . . , Zn−1. It is proved in Seidel and Aragon (1996,
Lemma 4.3) in the context of randomized search trees where it is called the
ancestor lemma. The setting considered in Seidel and Aragon (1996) corresponds
to ours when the interval lengths {w� : 1 ≤ � ≤ n − 1}, are integers. Here,
we provide a statement tailored to our context and a proof in Section 8 for
completeness.
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Lemma 4.1. In any randomized binary search tree T S := T S(Z1, . . . , Zn−1)
generated according to Algorithm 2, node Ii is an ancestor of node Ij if and only
if Zi is the largest among all the Zk’s for k comprised between i and j, included.
Thus

Aij = 1 {Zi ≥ max{Zk i ∧ j ≤ k ≤ i ∨ j}} =
i∨j∏

k=i∧j

1{Zi ≥ Zk}.

Using Lemma 4.1, we may further expand the expression for the maximum
term max{Di−1, Di} in (10).

Lemma 4.2. In the setting of Lemma 4.1, for any 2 ≤ i ≤ n− 1, we have

max{Di−1, Di} = 2 +
∑
j∈J1

Aj,i−1 +
∑
j∈J2

Aji,

where J1 = {j : 1 ≤ j ≤ i− 2} and J2 = {j : i + 1 ≤ j ≤ n− 1}, and where
we use the convention that a sum over an empty set is equal to 0.

Notice that the two sums in Lemma 4.2 are independent as a consequence
of Lemma 4.1. Using the results above, we deduce the distribution and the
analytical expressions for the expectations and the variances of the heights of a
random isolation tree.

Theorem 4.3. Let T IT := (T , πT ) be a random isolation tree distributed ac-
cording to μ. Then for any 1 ≤ i ≤ n, hT (xi) is distributed as

hT (xi)
L= Mi + Ni,

where Mi and Ni are independent random variables such that Mi = 0 if i = 1
and Mi follows a Poisson Binomial distribution with probabilities of successes
given by

{
xj+1−xj

xi−xj
: 1 ≤ j ≤ i− 1

}
if 2 ≤ i ≤ n, and that Ni = 0 if i = n and

Ni follows a Poisson Binomial distribution with probabilities of successes given
by
{

xj−xj−1
xj−xi

: i + 1 ≤ j ≤ n
}

if 1 ≤ i ≤ n− 1. In particular, we have

E[hT (xi)] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
j=2

xj − xj−1

xj − x1
if i = 1,

i−1∑
j=1

xj+1 − xj

xi − xj
+

n∑
j=i+1

xj − xj−1

xj − xi
if 2 ≤ i ≤ n− 1,

n−1∑
j=1

xj+1 − xj

xn − xj
if i = n,

(11)
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and

V[hT (xi)] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
j=2

xj − xj−1

xj − x1

(
1 − xj − xj−1

xj − x1

)
if i = 1,

i−1∑
j=1

xj+1 − xj

xi − xj

(
1 − xj+1 − xj

xi − xj

)
+
∑n

j=i+1
xj−xj−1
xj−xi

(
1 − xj−xj−1

xj−xi

)
if 2 ≤ i ≤ n− 1,

n−1∑
j=1

xj+1 − xj

xn − xj

(
1 − xj+1 − xj

xn − xj

)
if i = n.

(12)

By the law of the large numbers, the expectations of the height function at
the data points obtained in Theorem 4.3 correspond to the limit of the average
of the heights over a forest of isolation trees, as produced by the isolation forest
algorithm. The expression for the variances can be used to bound the number
of trees that are necessary to approximate the average heights with prescribed
confidence, although the computational cost of evaluating the variances is at
least that of evaluating the expectations directly. Nonetheless, we also have the
simple bound V[hT (xi)] ≤ E[hT (xi)], and by using an integral-series comparison
with the function x �→ 1/|x − xi|, each sum in (11) may be upper bounded by
a logarithmic term which leads to the upper bound:

V[hT (xi)] ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 + log xn − x1

x2 − x1
if i = 1,

2 + log xn − xi

xi+1 − xi
+ log xi − x1

xi − xi−1
if 2 ≤ i ≤ n− 1,

1 + log xn − x1

xn − xn−1
if i = n.

The expressions obtained in Theorem 4.3 serve as a basis for the non asymptotic
analysis that we develop in Section 5 and for the study of the isolation tree
heights in the large sample regime, whereby the number of samples tends to
infinity, that we expose in Section 6 in the cases of a random design and of a
sequence of fixed designs.

Building upon Theorem 4.3, the following Proposition gives the value of the
average height E[hT (x)] at any point x, while Theorem 4.3 gives the values
of the average heights at the data points only. We state the result in a more
general setting than that of Theorem 4.3 for further use, where the data points
of Dn are arranged as a d-dimensional grid. When d ≥ 2, we apply Algorithm 1
to Dn with the modification that in step 2 the component j along which the
cell is partitioned is drawn uniformly among the components of the affine span
of the set of points within that cell, meaning that if all points are identical in
some dimension, then this dimension is not selected for partitioning. This is
necessary in this case due to the arrangement of the points as a grid parallel
to the coordinate axes. We note that when a cell is partitioned along some
component j, the set of distinct values of the j′-th coordinate of the points
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within that cell changes only for j′ = j. This implies that when d ≥ 2, the
isolation factorizes into several independent univariate isolations. Using this
together with Theorem 4.3, we deduce the analytical expressions of the average
heights at each point in the convex hull of Dn, denoted by Conv(Dn).
Proposition 4.4. Let x�,1 < x�,2 < · · · < x�,n, for � ∈ {1, . . . , d}, be d
collections of points that are arranged in strictly increasing order. Let xi =
(x1,i1 , x2,i2 , . . . , xd,id) for i = (i1, . . . , id) ∈ {1, . . . , n}d, and let Dn = {xi : i ∈
{1, . . . , n}d}. Let (T , πT ) denote a random isolation tree grown from Dn.

1. Let x ∈ Conv(Dn) be a point that belongs to the convex hull of Dn. Let
i(x) = (i1(x), . . . , id(x)) where ij(x) = 1+�(n−1)(x(j)−xj,1)/(xj,n−xj,1)�.
Then E[hT (x)] is a convex combination of {E[hT (xi) : i ∈ I(x)} where
I(x) = {i(x) + δ : δ ∈ {0, 1}d} and we have

E[hT (x)] =
∑

i∈I(x)

αiE[hT (xi)], (13)

with

αi =
d∏

j=1

(
x(j) − xj,ij(x)

wj
δj(i) +

(
1 −

x(j) − xj,ij(x)

wj

)
(1 − δj(i))

)
, (14)

and with δj(i) = ij − ij(x), for i ∈ I(x).
2. Let x ∈ R

d. Then E[hT (x)] = E[hT (x†)], where x† is the projection of x
onto Conv(Dn).

Thus in particular in dimension d = 1, by Proposition 4.4, the average heigth
at any x ∈ R is obtained by linear interpolation of the average heights at the data
points x1, . . . , xn, the expressions of whose are given by Theorem 4.3. This allows
to compute the (theoretical) anomaly score that is produced by the isolation
forest trained on x1, . . . , xn for a new data point x. By Proposition 4.4, we also
see that the average of the height function is continuous over R

d, although for
each isolation tree (T , πT ) ∈ T, the height function x �→ hT (x) is not since it is
piecewise constant. That said, continuity of the average height function is not
preserved at the limit where the number of samples tends to infinity, as we prove
in Section 6.

5. Anomaly detection over a finite sample

In this section we analyze the performance of the isolation forest method as
an outlier detector within a finite sample using the expressions of the average
heights obtained in Theorem 4.3. The setting is that of n ordered distinct and
fixed (deterministic) points x1 < x2 < · · · < xn and we assume, without loss of
generality, that x1 = 0 and xn = 1. We consider several configurations of points
over [0, 1] starting with configurations composed of one outlier and a dense
cluster, and next with a configuration composed of one outlier located between
two dense clusters. The proofs for the bounds stated in equations (15)–(18) are
given in Section A.3.



Statistical properties of isoalation forests 4339

5.1. One outlier and a dense cluster

General configuration Fix ε ∈ (0, 1) and set x2 = 1 − ε. Thus the data is
composed of one isolated point x1 = 0, which is considered as an anomaly, and
of a dense cluster of n − 1 points {x2, . . . , xn} which extends over the interval
[1− ε, 1]. Note that the only assumption on the points forming the dense cluster
is that their range is the interval [1− ε, 1]; in particular, the distribution of the
points inside the interval is unspecified. By applying Theorem 4.3, we obtain
that

E[hT (x1)] ≤ 1 + ε

1 − ε
and E[hT (xi)] ≥ 2 − ε, for i ≥ 2. (15)

Therefore, whenever ε is small enough (in detail, whenever ε < c := (3−
√

5)/2),
we have E[hT (x1)] < E[hT (xi)] for all i ≥ 2. Consequently, when the configura-
tion is such that ε < c, there exists a threshold τ > 0 such that E[hT (x1)] < τ
and E[hT (xi)] > τ for all i ≥ 2, which implies that x1 is correctly detected as
the only anomaly among the n points by thresholding the average heights at τ .
That being said, the range of threshold values that yield perfect anomaly detec-
tion, in the sense that x1 is detected as the only anomaly among {x1, . . . , xn},
vary significantly according to the distribution of {x2, . . . , xn} in [1 − ε, 1]. To
illustrate this point, we define two configurations of points with x1 = 0 and a
dense cluster of n − 1 points in [1 − ε, 1] as before. In the first configuration,
the points forming the dense cluster are evenly spaced in [1− ε, 1], while in the
second configuration the points follow a geometric pattern (while still remaining
in [1 − ε, 1]).

Configuration 1: uniform dense cluster Let ε ∈ (0, 1). We set x1 = 0 and
xi = 1 − ε + (i− 2) ε

n−2 , for i = 2, . . . , n. Using Theorem 4.3, we deduce that

E[hT (x1)] ≤ 1 + ε

1 − ε
and E[hT (xi)] ≥ log(n− 1), for i ≥ 2. (16)

Consequently, x1 is correctly detected as the only anomaly for any choice of
threshold within an interval of length at least log(n− 1) − 2 when ε < c, using
the facts that c < 1/2 and that ε/(1 − ε) < 1 when ε < 1/2.

Configuration 2: geometric dense cluster Given ε ∈ (0, 1), the config-
uration of points {x1, . . . , xn} is defined by the recursion x1 = 0 and xj+1 =
1 − ε(1 − xj). The interval lengths satisfy the geometric recursion wj+1 = εwj

with w1 = 1 − ε, so that wj = (1 − ε)εj−1, for j = 1, . . . , n − 1. Let Δi =
E[hT (xi+1)] − E[hT (xi)], for i = 1, . . . , n − 1. Using Theorem 4.3, we obtain
that

sup
1≤i≤n−1

|Δi − 1| ≤ 2ε and − ε ≤ Δn ≤ 0. (17)

When ε is small enough, all the gaps Δi’s are positive and approximately equal
with Δi ≈ 1, but Δn which is negative with Δn ≈ −ε. Therefore, the average
heights increase with xi but for the last hop from xn−1 to xn. In particular, x1
has the smallest average height but correctly detecting x1 as the only anomaly
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within {x1, . . . , xn} requires a threshold that belongs to an interval of length
Δ1, which is approximately equal to 1, and this holds for any sample size n.
Thus, when comparing the average heights values, E[hT (x1)] is not significantly
separated from {E[hT (xi)] : 2 ≤ i ≤ n}, while geometrically, x1 is isolated from
the cluster points {x2, . . . , xn} which are all packed in the interval [1 − ε, 1].
This stands in sharp contrast with the setting of Configuration 1 and reveals an
effect of scale in the isolation forest methodology. Indeed, if x1 is removed from
the data set, then x2 becomes geometrically isolated from {x3, . . . , xn} in the
same way x1 is isolated from {x2, . . . , xn}. Therefore, that a data point may be
efficiently isolated and diagnosed as an outlier by the isolation forest method
depends not only on such a point being geometrically isolated, but also on the
distribution of the remaining points when looked at comparable scales.

The average heights for the two configurations are represented in Figure 3.
The sample size is taken as n = 20. The values obtained for the average heights
at the data points are comprised between 1.22 and 6.55 for configuration 1 and
between 1.21 and 15.44 for configuration 2. In both cases, the smallest average
height corresponds to x1, illustrating the fact that x1 can be detected as the
only anomaly in both configurations by using a suitable thresholding of the
average heights. We also note that the difference inf2≤i≤n E[hT (xi)]−E[hT (x1)]
is significantly larger in configuration 1 than in configuration 2, as well as the
(almost) constant difference in average height between two consecutive points
in configuration 2.

To interpret the average heights as an anomaly score comprised between 0
and 1, Liu, Ting and Zhou (2008) introduce the scoring function x �→ s(x) as
defined in (4) and propose to operate the detection by thresholding the scoring
function at a fixed threshold t, taken as either t = 0.5 or t = 0.6. In fact,
the average heights obtained for these two configurations suggest that a data
dependent choice of threshold may be required for the perfect detection of x1
as the only anomaly, or at least that the threshold depends on the sample size.
Indeed, at the population level (with respect to the forest), we have s(x) =
exp

(
− log(2)

c(n) E[hT (x)]
)

and so for any t ∈ (0, 1), the inequality s(x) > t is

equivalent to the inequality E[hT ] < τt with τt = log(1/t)
log(2) c(n). For instance with

n = 20, which corresponds to the setting of Figure 3, we have c(n) ≈ 5.20 which
gives τ0.5 ≈ 5.20 and τ0.6 ≈ 3.83. Comparing the heights represented in Figure 3
with these thresholds, we obtain that with t = 0.5, the detected anomalies are
{x1, x2, xn} for configuration 1 and {x1, . . . , x5} for configuration 2, while with
t = 0.6, only x1 is detected as an anomaly in configuration 1 and {x1, x2, x3}
are detected as anomalies in configuration 2. More generally, using the fact that
c(n) ∼ 2 log(n) as n → ∞ together with (16) (for configuration 1) and (15) and
(17) combined (for configuration 2), we see that the property that there exists
some integer n0 and some fixed t ∈ (0, 1) such that s(x1) > t and infi≥2 s(xi) < t
holds for all n ≥ n0 is valid for configuration 1 but not for configuration 2. For
this property to be valid when the points are arranged in configuration 2, the
thresholding of the scoring function must actually depend on n.
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Fig 3. Average heights for n = 20 points with one anomaly at 0 and a dense cluster of points
in [0.8, 1] arranged in uniform configuration (Configuration 1) and in geometric configuration
(Configuration 2).

5.2. One outlier between two dense clusters

Here we consider a configuration of n distinct points x1 < · · · < xn where,
for some integer 3 < k < n − 2, xk = 1

2 , and where {x1, . . . , xk−1} and
{xk+1, . . . , xn} extend over the intervals [0, ε] and [1 − ε, 1], respectively, where
ε ∈ (0, 1/4) is fixed. Thus geometrically, xk is considered as an anomaly located
between two dense clusters. Using Theorem 4.3, we obtain that

E[hT (xk)] ≤ 2 + 8ε and E[hT (xi)] ≥
5
2 − 3ε, for any i �= k. (18)

Therefore, when ε is taken small enough, we have E[hT (xk)] < E[hT (xi)] for
all i �= k and so xk can be correctly detected as the only anomaly among
{x1, . . . , xn}. As for the two configurations considered in the previous section,
the difference inf2≤i≤n E[hT (xi)]−E[hT (x1)] may vary significantly (from being
constant with n to being on the order of log(n)) depending on the distribution
of the points in the two clusters.

6. Asymptotic analysis

In this section we study the average height function as the sample size tends to
infinity, first in a random design (Section 6.1) and next in a sequence of fixed
designs (Section 6.2).

6.1. Random design

We consider an IID random sample X1, . . . , Xn drawn from a distribution F
with probability density function f on R. The isolation forest method is applied
to the sample, and we focus on the average height function of the forest trees as
the number of samples tends to infinity. Let us point out that we do not consider



4342 B. Pelletier

a combined asymptotic regime with a finite number of trees tending to infinity
at the same time as the number of samples. Instead, we build upon Theorem 4.3
and let n → ∞. This amounts at considering the asymptotic of the scoring of
an infinite forest of trees as n goes to inifinity. Arguably this is justified since
in practice the number of trees in an isolation forest can be chosen as large as
desired and is only limited by a time or a computational budget.

Let (T , πT ) be a random isolation tree grown from the random sample
{X1, . . . , Xn}, where the draws of the split points, as described in Algorithm 1,
are independent from the sample. Denote by X(1) ≤ X(2) ≤ · · · ≤ X(n) the
ordered sample. Let H̄i = E

[
hT (X(i)) |X1, . . . , Xn

]
be the conditional expecta-

tion of the height of the leaf of T whose cell contains X(i) given the sample.
Then, by Theorem 4.3 we have, almost surely,

H̄i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
j=2

X(j) −X(j−1)

X(j) −X(1)
if i = 1,

i−1∑
j=1

X(j+1) −X(j)

X(i) −X(j)
+

n∑
j=i+1

X(j) −X(j−1)

X(j) −X(i)
if 2 ≤ i ≤ n− 1,

n−1∑
j=1

X(j+1) −X(j)

X(n) −X(j)
if i = n.

(19)

Among the possible ways of formulating the convergence of the heights, we
find it convenient in dimension one to make use of the quantile function G =
F−1, defined by G(p) = inf{x : F (x) ≥ p} for 0 ≤ p ≤ 1. In the proofs of our
results, a control on the tail probabilities of X ∼ F is needed when the support
of F is unbounded, and so we make the assumption that X is sub-exponential,
meaning that X is integrable and that there exists non-negative parameters
(σ, b) such that E [exp (λ(X − E[X]))] ≤ e

λ2σ2
2 for all |λ| < 1

b , in which case X
satisfies the following tail bound:

P (X ≥ E[X] + u) ≤
{

exp
(
− u2

2σ2

)
if 0 ≤ u ≤ σ2

b

exp
(
− u

2b
)

if u > σ2

b ;
(20)

see for instance Wainwright (2019, Definition 2.7 & Proposition 2.9).
We start with a pointwise convergence result using mild local regularity as-

sumptions on the underlying density f . We cover the cases of a fixed quantile
of order p ∈ (0, 1), and those cases where the support of the density is bounded
from below or from above.
Theorem 6.1. Assume that the distribution F is sub-exponential.

(i) Let p ∈ (0, 1) and let xp = F−1(p). Assume that f is continuously differen-
tiable in an open neighborhood of xp and that f(xp) > 0. Let (in(p))(n≥1)
be a sequence of integers such that 1 ≤ in(p) ≤ n for all n ≥ 1 and such
that in(p)

n → p as n → ∞. Then
1

lognH̄in(p) → 2, almost surely as n → ∞.
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(ii) Let a = inf{x : F (x) > 0}. Assume that a > −∞, that f is continuously
differentiable over (a, a + ε) for some ε > 0 and with a right-continuous
right-derivative at a, and that f(a) > 0. Then

1
lognH̄1 → 1, almost surely as n → ∞.

(iii) Let b = sup{x : F (x) < 1}. Assume that b < ∞, that f is continuously
differentiable over (b − ε, b) for some ε > 0 and with a left-continuous
left-derivative at b, and that f(b) > 0. Then

1
lognH̄n → 1, almost surely as n → ∞.

With a uniform version of the regularity assumption made on f , we establish a
uniform convergence result of the tree heights over a closed interval of quantiles.

Theorem 6.2. Assume that the distribution F is sub-exponential. Let 0 <
p1 < p2 < 1, and let xp1 = F−1(p1) and xp2 = F−1(p2). Assume that f is
continuously differentiable on an open neighborhood of [xp1 , xp2 ] and bounded
away from 0 on [xp1 , xp2 ]. Then

sup
p1≤p≤p2

∣∣∣∣ 1
lognH̄	pn
 − 2

∣∣∣∣→ 0, almost surely as n → ∞.

By Proposition 4.4, the value of E[hT (x)|X1, . . . , Xn] at any x is obtained by
linear interpolation of {(X(i), H̄i) : i = 1, . . . , n} when x is in the range of the
data, and to either H̄1 or H̄n when x < X(1) or x > X(n) respectively. Thus, for
any x ∈ R, we have

E [hT (x)|X1, . . . , Xn]
= H̄11{x < X(1)} + H̄n1{x ≥ X(n)}

+
n−1∑
i=1

[(
1 −

x−X(i)

X(i+1) −X(i)

)
H̄i +

x−X(i)

X(i+1) −X(i)
H̄i+1

]
× 1{X(i) ≤ x < X(i+1)}.

Combining this with Theorem 6.1 and Theorem 6.2 immediately leads to the
following Corollary. We denote by S = {x ∈ R : f(x) > 0} the support of the
density f . The boundary and interior of S are denoted by ∂S and S̊ respectively.
For simplicity, we assume that ∂S contains at most two points. With a bit of
extra work, the conclusions of Corollary 6.3 remain valid if S is a disjoint union of
intervals. In essence, the limit value of E[hT (x)|X1, . . . , Xn] at any x is obtained
by reproducing the steps in the proofs of Theorem 6.1 and Theorem 6.2 using
the observations that belong to the same interval as x, and those latter can
be identified with high enough confidence by means of statistics of the form
X(i+1) − X(i) ≥ εn given a conveniently chosen sequence (εn) that tends to
0 as n → ∞. We elaborate on this setting in Theorem 6.5 in the context of
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a sequence of fixed designs. The setting and assumptions of Corollary 6.3 are
those of Theorem 6.1 and Theorem 6.2 combined, which means that we assume
that F is sub-exponential, and that f is continuously differentiable over S̊, and
if ∂S �= ∅, we assume that, at any x ∈ ∂S, f(x) > 0 and that f admits a
right-continuous right-derivative (resp. left-continuous left derivative) if x is a
left (resp. right) limit point of S.

Corollary 6.3. Let (Xi)i≥1 be a sequence of independent random variables each
with distribution F satisfying the assumptions above. Then

1
log(n)E[hT (x) |X1, . . . , Xn] →

{
1 for any x ∈ ∂S when ∂S �= ∅,
2 for any x ∈ S̊ with f(x) > 0,

almost surely as n → ∞. Moreover, almost surely, the convergence is uniform
over any closed subset K of R included in S̊ such that inf{f(x) : x ∈ K} > 0,
meaning that

sup
x∈K

∣∣∣∣ 1
log(n)E [hT (x)|X1, . . . , Xn] − 2

∣∣∣∣→ 0 almost surely as n → ∞.

Thus in the large sample regime the isolation forest methodology operates
as a detector of the support of the underlying distribution. For instance, con-
sider an isolation forest anomaly detector trained on a number n of data x(1) <
· · · < x(n) drawn from a density f of class C1, supported on a closed inter-
val [a, b] and bounded away from 0 over [a, b]. Then when n is large enough,
E[hT (x) |X1, . . . , Xn]/ log(n) is uniformly close to 2 over any closed interval in-
cluded in (a, b), while E[hT (x) |X1, . . . , Xn]/ log(n) is close to 1 for any x ≤ a
and any x ≥ b. In other words, any upper level set of E[hT (x) |X1, . . . , Xn]
of the form {x ∈ R : E[hT (x) |X1, . . . , Xn] ≥ τ log(n)} with 1 < τ < 2 is a
consistent estimator of [a, b].

Numerical examples are given in Figure 4. We consider the cases of a uniform
distribution over [0, 1], of a standard normal distribution, and of two mixtures
of two normal distributions with variances equal to 1 and means equal to −1.5
and 1.5 respectively. The mixture coefficients are taken as 0.5 and 0.5 in the
first mixture, and as 0.9 and 0.1 in the second mixture. For each sample size n
of the form n = 10k, with k ∈ {2, 3, 4, 5}, we run Monte Carlo simulations based
on N = 200 samples Dn and we estimate the pointwise average and standard
deviation of the scaled average height function x �→ E[hT (x) | Dn]/ log(n) at
200 equally spaced points x. The evaluation points extend over [0, 1] in the
case of the uniform distribution, over [−3, 3] in the case of the standard normal
distribution, and over [−4.5, 4.5] in the cases of the mixtures.

These simulations numerically confirm the uniform convergence of the height
function (scaled by a log(n) factor). In these simulations, that the limit function
is equal to x �→ 1 + 1{x ∈ S} for a distribution with support S is apparent
in the case of the uniform distribution, which illustrates the fact that in the
large sample regime, scoring with an isolation forest essentially amounts at
estimating S. The convergence towards a limit value of 2 is less visible in the
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Fig 4. Numerical examples illustrating the setting of Corollary 6.3. Here N = 200 samples of
sizes nk, with k ∈ {2, 3, 4, 5}, were simulated according to a uniform distribution, a standard
normal distribution, and mixtures of normal distributions with variances equal to 1, means
equal to −1.5 and 1.5, and mixture coefficients equal to 0.5 and 0.5 (mixture 1) and 0.9 and
0.1 (mixture 2). The pointwise average and standard deviation of E[hT (x) |X1, . . . , Xn] were
evaluated on the N samples at 200 equally spaced points x that extend over [0, 1] (uniform
case), over [−3, 3] (standard normal case) and over [−4.5, 4.5] (mixture cases).

cases of the standard normal and of the normal mixtures, especially in the
areas of low density. In fact, as we argue in the next section, the convergence
occurs at a logarithm rate in the sample size, so that large sample sizes may
be necessary for the convergence to be evidenced within a prescribed accuracy
through simulations. We anticipate that for any x ∈ S̊, E[hT (x)] − 2 log(n)
converges towards a constant c(x) such that |c(x)| is all the more large as x is
close to ∂S (when the boundary is non empty) or as f(x) is close to 0, as the
simulations suggest.

Tree height limit We conclude this section with a remark on the asymptotic
effect of imposing a limit condition on the tree height during the growth of
an isolation forest. Indeed following Liu, Ting and Zhou (2008, 2012) trees are
typically built up to a height of log2(n) in practice. More generally, let c > 0 be
a fixed positive real number and suppose that a height limit is imposed on the
isolation trees at c log(n). Then under the setting of Corollary 6.3, the resulting
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average height at any point x ∈ R is given by E [hT (x) ∧ c log(n)|X1, . . . , Xn]. By
Theorem 4.3, we have V [hT (x)|X1, . . . , Xn] ≤ E [hT (x)|X1, . . . , Xn] implying,
when combined with Corollary 6.3, that V

[
1

lognhT (x)|X1, . . . , Xn

]
→ 0 almost

surely as n → ∞. Using this, we deduce that

1
log(n)E [hT (x) ∧ c log(n)|X1, . . . , Xn] →

{
1 ∧ c for any x ∈ ∂S when ∂S �= ∅,
2 ∧ c for any x ∈ S̊ with f(x) > 0,

almost surely as n → ∞. The choice of c = 1/ log(2) ≈ 1.446 corresponds
to a tree height limit set at log2(n). In this case, the set of thresholds that
are admissible for asymptotically detecting the support reduces from [1, 2] to
[1, 1.446]. If c < 1, the limit function is constant equal to c and the support is
not detected at the limit. Finally, if c > 2, then the limit is identical to that of
Corollary 6.3 when no height limit is imposed.

6.2. Fixed design

In this section we consider a configuration of nd points arranged in a full regular
grid over the unit cube of R

d, and we study the asymptotic behavior of the
average height function as the number of samples tends to infinity. This scenario
is prototypical of the case of a random sample that would be drawn from a
distribution that resembles the uniform distribution over the unit cube of Rd, in
the sense that the distribution admits a density that is bounded from below and
from above by strictly positive numbers. The convergence result that we obtain
(Theorem 6.4) also holds in the slightly more general setting of points arranged
in a full irregular grid of a hyperrectangle of Rd, as considered in Proposition 4.4.
In fact, the main technical requirement is to be able to apply Theorem 4.3 by
tensorization, so we only consider a regular design over the unit cube.

Let Dn be the set of nd points defined by

Dn =
{
xi =

(
i1 − 1
n− 1 , . . . ,

id − 1
n− 1

)
∈ R

d : i = (i1, . . . , id) ∈ {1, . . . , n}d
}
.

(21)
As in the setting of Proposition 4.4, for each sample size n, Algorithm 1 is
applied to Dn with the modification that in step 2 the component j along wich
the cell is partitioned is drawn uniformly among the components of the affine
span of the set of points within that cell, and trees are grown until each point
is isolated. Using Theorem 4.3 together with Proposition 4.4, we deduce the
analytical expressions of the average heights at each point in Dn and we derive
their (scaled) limit as n goes to infinity in Theorem 6.4.

For points belonging to the boundary of the cube, the scaled heights are found
to converge to values that depend on the locations of the points on the boundary.
For any k ∈ {0, . . . , d}, let Fk be the set of k-dimensional faces of [0, 1]d, where a
face of the cube is defined as any set of the form [0, 1]d ∩{x ∈ R

d : 〈x, a〉 = a0}
for some x ∈ R

d and a0 ∈ R such that 〈x, a〉 ≤ a0 is a valid inequality for [0, 1]d,
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Fig 5. Numerical example illustrating the setting of Theorem 6.4 showing that the scoring
function admits axis-aligned discontinuities in regions outside the support of the distribution.
Here are represented in subfigure (a) the limit function of Theorem 6.4 for the regular design
(21) over [0, 1]2, and in subfigure (b) the scoring function (normalized between 0 and 1) that
results from applying the isolation forest algorithm to a sample of size n = 120 drawn from a
standard multivariate normal distribution over R

2.

meaning that it is satisfied for all points in [0, 1]d (see Ziegler, 1995, Definition
2.1). The elements of F0 are the vertices of the cube and Fd is the cube itself
(note that, for any k ∈ {1, . . . , d}, the boundary of any face in Fk is an element
of Fk−1).

Theorem 6.4. Let (T , πT ) be a random isolation tree defined using Algorithm 1
with Dn as defined in (21). Then for any k ∈ {0, 1, . . . , d}, any face Fk ∈ Fk,
and any x ∈ F̊k, we have

1
d log(n)E[hT (x)] → 1 + k

d
.

Moreover, the convergence is uniform over any closed subset contained in the
interior of [0, 1]d.

Thus, in this fixed design scenario, the limit of the scoring function admits
axis-aligned discontinuities outside the support of the data (here, the unit cube).
This result explains the artifacts that are observed in practice on the scoring
function that is produced by the isolation forest method and that motivated
the introduction of the extended isolation forest variant by Hariri, Kind and
Brunner (2021). A numerical example is provided in Figure 5, where we used
the scikit-learn toolkit (Pedregosa et al., 2011) for the isolation forest simulation
on normal data.

We also note that the values of the scaled average heights at the limit are
equal to 2 at points belonging to the interior of the cube, and that they extend
over [1, 1 + (d− 1)/d] at points exterior to the cube. So recovering the support
at the limit requires a threshold τ comprised between 1 + (d− 1)/d and 2, thus
within a range of length 1/d which goes to 0 as d → ∞. This suggests a decrease
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in performance in high dimension of anomaly detection by an isolation forest in
a large sample regime where performance is conceived as support recovery.

In the case of the regular design of (21), the expressions of the average heights
obtained in Theorem 4.3 and that we use to prove Theorem 6.4 simplify to sums
of several harmonic numbers H�, where H� =

∑�
k=1

1
k , for any integer � ≥ 1. Us-

ing the asymptotic expansion H� = log(�)+γ+o(1), where γ ≈ 0.5772... denotes
the Euler-Mascheroni constant, it follows directly from (70) in the proof of The-
orem 6.4, that E[hT (x)]− 2d log(n) converges to 2dγ +

∑d
i=1 log (xi(1 − xi)) at

any x = (x1, . . . , xd) belonging to the interior of the unit cube of Rd. Thus, the
convergence rate is logarithmic in the sample size and the limit value depends on
x. In particular when d = 1, E[hT (x)]− 2 log(n) converges to γ + log (x(1 − x))
at any x ∈ (0, 1), and | log (x(1 − x)) | increases with the distance from x to
1/2; compare with the plots given in Figure 4a for the case of a uniform ran-
dom design where the estimated value of |E[hT (x)]/ log(n)− 2| shows a pattern
increasing with |x− 1/2|.

6.3. Multiply connected support, the masking effect, and robustness

In this section, we consider the case of n points spread over K disjoint intervals
of the real line. We consider regular designs where within each interval the
points are equally spaced, arguing as in the previous section that, from the
point of view of the asymptotic analysis, this setting is representative of the
case of a random sample that would be drawn from a mixture distribution with
components resembling the uniform distribution.

Given K ≥ 2 an integer, we consider K disjoint intervals I1 ≤ · · · ≤ IK of
the real line. For each k ∈ {1, . . . ,K}, we denote by Lk ∈ R the length of Ik,
and we let δk > 0 be the gap between Ik and Ik+1, for k ∈ {1, . . . ,K − 1}. We
design a configuration x1 < x2 < · · · < xn of n = n1 + · · · + nK points, where
nk denotes the number of points that belong to Ik, for each k ∈ {1, . . . ,K},
that we scale over the unit interval by requiring that

∑K
k=1 Lk +

∑K−1
k=1 δk = 1.

Thus the points are defined in each interval Ik, for k ∈ {1, . . . ,K}, by

xi =
k−1∑
�=1

(L� + δ�) +
i− 1 −

∑k−1
�=1 n�

nk − 1 , for i =
k−1∑
�=1

n� + 1, . . . ,
k∑

�=1

n�, (22)

where we use the convention that a sum over an empty range of integers is
equal to 0. Then we have I1 = [x1, xn1 ] and Ik = [xn1+···+nk−1+1, xn1+···+nk

] for
k ∈ {2, . . . ,K}, and δk = xk′+1−xk′ with k′ =

∑k
�=1 n�, for k ∈ {1, . . . ,K−1}.

We consider first a dense asymptotic regime whereby

nk

n
→ αk > 0 as n → ∞ for each k ∈ {1, . . . ,K}. (23)

Theorem 6.5. Let Dn = {x1 < · · · < xn} be a configuration of n points as
defined in (22). Let (T , πT ) be a random isolation tree defined using Algorithm 1
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Fig 6. Numerical examples illustrating the masking effect (a) and the robustness to training
under the presence of anomalies (b). Here, samples of sizes nk, with k ∈ {1, . . . , k}, are
generated according to (22) with K = 3 intervals set as I1 = [0, 0.25], I2 = [0.4, 0.5] and
I3 = [0.7, 1]. In the dense regime, the asymptotic proportions are taken as α1 = 0.5, α2 = 0.1
and α3 = 0.4. In the sparse regime, we set α1 = α3 = 0.5 and log(n2)/ log(n) → 0.35. The
values of the scaled average heights for points in the second interval converge to 2 in the
dense regime, illustrating the masking effect, should the second component be considered as
anomalous, while they reach a value smaller than 1 (which is the minimal asymptotic threshold
for support recovery) in the sparse regime, illustrating the robustness to contamination during
training.

with Dn. Then for any x ∈ R, in the dense asymptotic regime (23), we have

1
log(n)E[hT (x)] →

{
2 if x ∈ ∪K

k=1I̊k,
1 otherwise.

Moreover, the convergence is uniform over any closed subset of R included in
∪K
k=1I̊k.
From Theorem 6.5, it follows that in the dense regime the isolation forest

method also detects the support of the underlying distribution in the case where
the support is composed of multiple connected components. Interestingly, the
function obtained at the limit does not depend on the geometry of the support,
in the sense that it admits only two distinct values (either 1 or 2) and that this
holds for any choice of interval lengths and gaps. Therefore in the context of
anomaly detection, Theorem 6.5 implies that if one of these components should
be considered as anomalous, then points originating from this component will
not be detected as anomalies, a phenomenom known as the masking effect. A
numerical example is provided in Figure 6a.

We also note that the convergence stated in Theorem 6.5 does not depend on
the asymptotic proportions of the components as defined in (23). In fact, as may
be seen from the proof, any component with a number of points nk satisfying
log(nk)/ log(n) → 1 will be detected as being non abnormal asymptotically.
Elaborating a bit on the topic, if we consider a regime in which a component,
say the kth on the interval Ik, is such that nk → ∞ and that log(nk)/ log(n) → κ,
for some κ ∈ [0, 1], then we obtain that E[〈T (x)]/ log(n) → 2κ for any x ∈ I̊k
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and E[〈T (x)] log(n) → κ for any x ∈ ∂Ik. In particular, if κ ≤ 1/2, then the
scaled average height at any x ∈ Ik is smaller than 1 at the limit, which is the
limit value of the scaled average height for points not belonging to the support
in the dense regime. More generally, if a dectector is conceived by thresholding
E[hT (x)]/ log(n) at some threshold τ ∈ (1, 2), then points belonging to Ik will
be detected as anomalies whenever nk satisfies lim sup log(nk)/ log(n) ≤ τ/2.
From this, we conclude that the training of an isolation forest is robust to the
presence of anomalies in the training set provided anomalies aggregate in sparse
clusters, in the sense that the proportion of abnormal data decays at least at
the rate of n−(1−τ/2) for τ ∈ (1, 2). A numerical example is given in Figure 6b.

The training of an isolation forest is also robust to contamination by sparse
anomalies even if abnormal data do not aggregate in sparse clusters, as we
illustrate by the following example over the unit interval. Fix a ∈ (1/2, 1)
and ν ∈ (0, 1), and let α = (1/a)/n1−ν . Consider a configuration of n points
where n1 := �nαa� points extend evenly over [0, a], n1 points extend evenly
over [1 − a, 1], and the remaining points are positioned evenly in (a, 1 − a),
which is representative of a mixture distribution of the form (1 − α)U([a, 1 −
a]) + αU([0, 1]), composed of a main component generating the normal data
over [a, 1 − a] contaminated by anomalies that extend over [0, 1]. Under the
asymptotic regime considered here, we have α → 0 and log(n1)/ log(n) → ν as
n → ∞. By using Theorem 4.3 and arguing as in the proof of Theorem 6.5, we
find that lim supn→∞ E[hT (x)]/ log(n) ≤ 3ν for any x ∈ [0, a) ∪ (1 − a, 1], that
E[hT (x)]/ log(n) → 1 + ν if x = a or x = 1 − a, and E[hT (x)]/ log(n) → 2 for
any x ∈ (a, 1 − a), with convergence being uniform over any closed subset of
[0, 1] included in either (0, a), or (a, 1 − a) or (1 − a, 1). Since 3ν ∨ (1 + ν) < 2
when ν < 2/3, with a choice of threshold τ satisfying 3ν ∨ (1 + ν) < τ < 2, the
thresholding map x �→ 1{x ∈ [0, 1] : E[hT (x) ≤ τ log(n)]} correctly recovers
asymptotically the support [a, 1− a] of the normal data. Therefore the training
of an isolation forest is robust to sparse contamination by anomalies (where
performance in an asymptotic setting is apprehended as support recovery, as in
the previous section).

7. Discussion

We discuss first a simple variant to the original isolation forest algorithm of
Liu, Ting and Zhou (2008, 2012) in dimension 1 that leads to a connection
with the Hilbert density estimate introduced in Devroye and Krzyżak (1999).
Next we comment on subsampling and on the normalization factor used in the
definition of the scoring function of an isolation forest. Then we conclude with
multi-dimensional considerations.

Weighted path lengths We consider the setting of Theorem 4.3 where we
are given n ordered points x1 < · · · < xn of R. Given an isolation tree (T , πT ),
the path length E[hT (xi)] at each data point xi gives the number of recursive
partitioning operations that are needed to isolate xi from the remaining points
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using (T , πT ). A simple variant consists in weighting the edges of T to produce
weighted path lengths as basis elements to the definition of the scoring function.
Among the variety of weighting mechanisms that may be envisioned, we consider
the following one where the weights are in one-to-one correspondance with the
intervals I1, . . . , In−1. Given a set of positive weights {αi : 1 ≤ i ≤ n− 1}, each
edge connecting an internal node v ∈ T ◦ to one of its children vη, η ∈ {0, 1} is
weighted by αi(v), where i(v) is such that the value at which πT (v) is partitioned
belongs to Ii(v). We denote by (T̄ , πT̄ ) an isolation tree weighted using this
assignment. This changes the depth Di =

∑n
j=1 Aji of Ii on the binary search

tree into D̄i =
∑n

j=1 αjAji, and proceeding as in the proof of Theorem 4.3, this
leads to

E[hT̄ (xi)] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
j=2

αj(xj − xj−1)
xj − x1

if i = 1,

i−1∑
j=1

αj(xj+1 − xj)
xi − xj

+
n∑

j=i+1

αj(xj − xj−1)
xj − xi

if 2 ≤ i ≤ n− 1,

n−1∑
j=1

αj(xj+1 − xj)
xn − xj

if i = n.

(24)
When αi = 1 for all 1 ≤ i ≤ n− 1, we recover the unweighted case and (24)

reduces to (11). Interestingly, when the weights are taken as the reciprocals of
the interval lengths, so that αi = w−1

i for any 1 ≤ i ≤ n− 1, the numerators in
the sums in (24) are all equal to one and this yields

E[hT̄ (xi)] =
n∑

j=1
j =i

1
|xj − xi|

, for all 1 ≤ i ≤ n. (25)

As it turns out, when the xi’s are random variables, expression (25) for E[hT̄ (xi)]
is that of the value at xi of the Hilbert kernel density estimate introduced in
Devroye and Krzyżak (1999), and where the estimate is defined on all the data
but xi. This is a one-of-a-kind kernel density estimate since it does not have
a bandwidth parameter, so it automatically scales with the sample size. The
Hilbert name was coined after the Hilbert transform and it is shown to be
weakly consistent in Devroye and Krzyżak (1999), following previous work in the
regression setting (Devroye, Györfi and Krzyżak, 1998). On the other hand, the
Hilbert density estimate is not strongly consistent, has poor rate of convergence
as well as infinite peaks at the data points, though this last issue is mitigated
through a modified version of the estimate (Devroye and Krzyżak, 1999). Still,
we find it interesting in the context of anomaly detection that weighting the
edges may lead to introducing some dependence on the underlying density in
the resulting scoring function. This contrasts with the unweighted case since at
the limit the scoring function is agnostic to the density inside the support (the
only remaining dependence is through the support).
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Subsampling and scoring normalization Subsampling is a central compo-
nent of the isolation forest method for anomaly detection. It is proposed in Liu,
Ting and Zhou (2008) as a means of reducing the computational complexity of
the method without drastically affecting the detection performance, and Liu,
Ting and Zhou (2012) further advocate for using subsampling to mitigate the
swamping and masking effects. In practice, a forest of isolation trees may be
grown from subsamples of different sizes and the definition of normalized and
interpretable anomaly scores requires proper scaling of the tree heights. This
is the purpose of the normalization term c(n) in the definition of the scoring
function given in (5) that Liu, Ting and Zhou (2008), using an analogy be-
tween the structure of isolation trees and that of binary search trees, propose
to take as c(n) = 2Hn−1 − 2(n − 1)/n = 2Hn − 2 as given in Preiss (1999) as
the value of the average path length of unsuccesful searches in a binary search
tree with n terminal nodes and which is understood as an estimation of the
average heights in isolation trees. It is to be noted that, as such, c(n) is ac-
tually defined as the average of the terminal nodes’ heights further averaged
according to the distribution of a binary search tree generated under the uni-
form random permutation model, where the binary search trees are grown by
sequential insertion of a uniform random permutation of {1, . . . , n}, and the
value of c(n) is derived in Hibbard (1962). Although isolation trees and binary
search trees share a binary recursive structure, their distribution differ in gen-
eral. However, under a regular design in dimension 1, by Theorem 4.3 we have
E[hT (x1)] = E[hT (xn)] = Hn−1 and E[hT (xi)] = Hi−1 +Hn−i for 2 ≤ i ≤ n−1,
and this leads to 1

n

∑n
i=1 E[hT (xi)] = 2

n

∑n−1
i=1 Hi = 2Hn−1 − 2(n− 1)/n, where

we used the relation
∑�

i=1 Hi = (�+1)H� − �. Therefore, the values of c(n) and
1
n

∑n
i=1 E[hT (xi)] do agree in a one-dimensional regular design but this is not

the case in an irregular design. That being said, c(n) is equivalent to 2 log(n) as
n → ∞ and the same equivalence holds for 1

n

∑n
i=1 E[hT (xi)] in either a random

or fixed design by Corollary 6.3 and Theorem 6.4. Therefore 2 log(n) is the cor-
rect asymptotic scaling and Theorem 6.4 suggests an extra d factor in dimension
d leading to a normalization by 2d log(n) and to a range of asymptotic scoring
values equal to [0, 1/2] instead of [0, 1].

Multi-dimensional considerations Our proof techniques are tied with the
dimension being equal to one, as this induces a monotony property on the re-
cursive partitioning that does not export well in dimension larger than one.
Indeed, in proving Theorem 4.3 we make use of the fact that given n ordered
points x1 < · · · < xn, the isolation of an interior point xi (with 2 ≤ i ≤ n− 1)
is effective if and only if the recursive partition sequence contains a split be-
tween xi−1 and xi and a split between xi and xi+1. This is also apparent in
the bijection that we introduced between isolation tree restricted to the data
and binary search trees used to store the indices of the intervals that contain
the split points. But in dimension larger than one, even in a design with n
points that project on each axis to n distinct values, the isolation of an interior
point x does not necessarily require the occurence of a split between x and all
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its immediate neighbours. In fact, the isolation of a data point may become
effective in a number of ways and so a multivariate analogue to Theorem 4.3
giving explicit expressions for the average heights in the case of a generic con-
figuration of points seems difficult to obtain due to the combinatorial nature
of the problem. However we conjecture that a convergence result along the line
of Theorem 6.4 would hold in arbitrary dimension. For instance in the case of
a random sample drawn from a distribution with a regular density f over R

d

with compact support S and satisfying inf{f(x) : x ∈ S} > 0, we conjecture
that E[hT (x)]/(d log(n)) would converge almost surely to 2 when x ∈ S̊ and to
a value strictly smaller than 2 when x /∈ S◦, although we anticipate that the
function x �→ E[hT (x)]/(d log(n)) would exhibit a complex pattern, with po-
tential discontinuities, even in the case of a smooth enough boundary ∂S. One
possible route may lie in considering a regular design in S that would serve as
quantization points for the random sample and to derive perturbation bounds.
We leave this interesting question as a perspective for future work.

8. Proofs

This section is organized as follows. Section 8.1 is devoted to the proofs of the
non asymptotic results. This includes Proposition 3.1, Lemma 4.1, Theorem 4.3
and Proposition 4.4. The proofs for the asymptotic results in a random de-
sign (Theorem 6.1 and Theorem 6.2) are exposed in Section 8.2, and those of
the asymptotic results in a fixed design (Theorem 6.4 and Theorem 6.5) are
presented in Section 8.3.

8.1. Non asymptotic setting

8.1.1. Proof of Proposition 3.1

We recall first the bijections ι : Tn → B2n−1 and ι̃ : BS
n−1 → B2n−1. We also

recall the labelling LB
T : T ◦ → {1, . . . , n − 1} defined for each T ∈ B2n−1 by

(7), and we point out that it is consistent both with the Dn-restricted isolation
trees in Tn and with the binary search trees in BS

n−1 in the following sense.
For any (T , πT ,n) in Tn, at any internal node v ∈ T ◦ we have LB

T (v) = k
if and only if there exists τ ∈ Ik that partitions the cell at v into the cells
associated with its two children, meaning that πT ,n(v0) = πT ,n(v) ∩ (−∞, τ)
and πT ,n(v1) = πT ,n(v)∩ (τ,∞). And for a binary search tree (T , LT ) ∈ BS

n−1,
we have LB

T = LT , so that LB
T recovers the keys that are stored in the internal

nodes of T . We also note that during the generation of an isolation tree according
to Algorithm 1 or a randomized binary search tree according to Algorithm 2,
the construction of the left and right subtrees of a node v are conditionally
independent given the path from the root to v.

For any integer k, we define the intervals J0(k) = (−∞, k] and J1(k) =
(k,+∞). Given a subset A ⊂ R and η ∈ {0, 1}, we denote by Aη the set defined
by Aη = A if η = 1 and Aη = ∅ if η = 0.
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Let (T �, πT �,n) ∈ Tn be a Dn-restricted isolation tree and let (T̃ �, LT̃ �) =
(ι̃−1 ◦ ι) ((T �, πT �,n)) be its image by ι̃−1 ◦ ι. Note that T̃ � = T � and that
LT̃ � = LB

T � . We shall prove by recursion on the internal nodes that

μn ([(T �, πT �,n)]) = μ̃n

([(
T̃ �, LT̃ �

)])
. (26)

Let (T , πT ,n) ∼ μn be a generic random Dn-restricted isolation tree taking
values in Tn and let (T̃ , LT̃ ) := (T̃ , LT̃ )(Z1, . . . , Zn−1) ∼ μ̃n be a random binary
search tree taking values in BS

n−1 and generated from independent random vari-
ables Z1, . . . , Zn−1 where Zi is distributed according to Fwi

0 , for 1 ≤ i ≤ n− 1.
Let i�0 = LB

T �(∅). To initate the recursion, we need to prove that the event
that the cell of the root node of T is partitioned at some point that belongs to
Ii�0 and the event that the key stored at the root of T̃ is i�0 occur with the same
probability, meaning that

P
(
LB
T (∅) = i�0

)
= P

(
LT̃ (∅) = i�0

)
. (27)

On the one hand, the event that the first split point belongs to Ii�0 occurs with
probability

wi�0∑n−1
�=1 w�

. On the other hand, by Lemma 4.1, the first key stored in

T̃ is i�0 if and only if Zi�0 is the largest among Z1, . . . , Zn−1, and this occurs with
probability

wi�0∑n−1
�=1 w�

by Lemma A.1. This proves (27).
Next, given k ≥ 1, let v�k ∈ T �,◦ be an internal node of T � and with height

equal to k, so that |vk| = k. Denote by ∅ = v�0 , v
�
1 , . . . , v

�
k the (unique) shortest

path from the root to v�k (notice that each v�� , for each 0 ≤ � ≤ k is the �-tuple
composed of the first � components of v�k since v�k is a k-tuple in the set of labels
U). Along this path in (T �, πT ∗,n), each cell πT �,n(v�� ) is partitioned by a point
that belongs to the interval at index LB

T (v�� ), for 0 ≤ � ≤ k, and along this same
path in (T̃ �, LT̃ �), the key that is stored at v�� is LB

T (v�� ), for 0 ≤ � ≤ k. Let
Ωk = [v�k ∈ T ] be the event that T contains v�k and likewise, let Ω̃k =

[
v�k ∈ T̃

]
be the event that T̃ contains v�k.

On the event Ωk, we have LB
T (v�� ) = LT �(v�� ) for all 0 ≤ � ≤ k and similarly

on the event Ω̃k, we have LT̃ (v�� ) = LT �(v�� ) for all 0 ≤ � ≤ k. Moreover, on the
event Ωk, for any η ∈ {0, 1}, if v�kη ∈ T �,◦ then v�kη ∈ T ◦. Likewise, on the event
Ω̃k, for any η ∈ {0, 1}, if v�kη ∈ T �,◦ then v�kη ∈ T̃ ◦. Therefore, the recursion
will be established if we show that for any η ∈ {0, 1}, whenever v�kη ∈ T �,◦, we
have

P
(
LB
T (v�kη) = LB

T �(v�kη) |Ωk

)
= P

(
LT̃ (v�kη) = LB

T �(v�kη) | Ω̃k

)
, (28)

meaning that the conditional probability that the cell πT ,n(v�kη) is partitioned
by some point falling in the interval with index LB

T �(v�kη) given Ωk is equal to
the conditional probability that the key LB

T �(v�kη) is stored in the node v�kη of
T̃ given Ω̃k.
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Now letting i�� = LT �(v�� ), for 0 ≤ � ≤ k, on the event Ωk, for any η ∈ {0, 1}
such that v�kη ∈ T �,◦, the cell πT ,n(v�kη) may be expressed explicitely in terms
of the data points as πT ,n(v�kη) = {x� : � ∈ Kη}, where

Kη = {1, . . . , n} ∩

⎛⎝k−1⋂
j=1

(
J0(i�j )1{i

�
j+1<i�j } ∪ J1(i�j )1{i

�
j+1>i�j }

)⎞⎠
∩
(
J0(i�k)1−η ∪ J1(i�k)η

)
.

Notice that j� := LB
T �(v�kη) belongs to Kη � (maxKη). Consequently, the con-

ditional probability that πT ,n(v�kη) is partitioned by some point that belongs
to the interval Ij� given Ωk is equal to wj�∑

�∈Kη�(max Kη) w�
. Next, given Ω̃k, the

key stored at node v�k happens to be j� if and only if Zj� is the largest among
{Z� : � ∈ Kη} by Lemma 4.1, and by Lemma A.1, the conditional probability
that this occurs given Ω̃k is equal to wj�∑

�∈Kη�(max Kη) w�
. This proves (28) and

the recursion is established. Then (27) and (28) yields (26) and the proof is
complete.

8.1.2. Proof of Lemma 4.1

We consider that the Zk’s are all distinct since this holds with probability one.
We expand the notation T S(Z1, . . . , Zn−1) into

T S(Z1, . . . , Zn−1) = (T , LT )(Z1, . . . , Zn−1),

and we refer to the internal nodes of T by the intervals I1, . . . , In−1, meaning
that node v ∈ T ◦ is referred to as Ii with i = LT (v). Let I = {� : i ∧ j ≤ � ≤
i ∨ j}.

Suppose that Zi is the largest among {Z� : � ∈ I}. If Ii is the root of T , then
obviously Ii is an ancestor of Ij . Else, denote by Im the root of T , and by T0
and T1 the (possibly empty) left and right subtrees of Im in T , respectively. By
construction of T , the internal nodes of T0 (respectively T1) are those intervals
I� with � < m (respectively � > m). Therefore necessarily either m < i ∧ j or
m > i ∨ j, implying that the set of nodes {I� : � ∈ I} lies entirely in T0 or in
T1. We then proceed recursively on either T0 or T1 accordingly until Ii is found
to be the root of the considered subtree, to conlude that Ii is an ancestor of Ij .

Conversely, suppose that Ii is an ancestor of Ij . If Ii is the root of T , then
Zi is the largest of all the Z�’s, and in particular among {Z� : � ∈ I}. Else,
denote by Im the root of T , and by T0 and T1 the (possibly empty) left and right
subtrees of Im in T , respectively, as above. Then necessarily either m < i∧ j or
m > i ∨ j, for otherwise Ii∧j lies in T0 while Ii∨j lies in T1, implying that Ii is
not an ancestor of Ij , hence a contradiction. Thus the set of nodes {I� : � ∈ I}
lies entirely in T0 or in T1, and by proceeding recursively on either T0 or T1 until
Ii is found to be the root, we conlude that Zi is the largest among {Z� : � ∈ I}.
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8.1.3. Proof of Lemma 4.2

Recall the two sets J1 = {j : 1 ≤ j ≤ i− 2} and J2 = {j : i + 1 ≤ j ≤ n− 1}
of integers, and that we use the convention that a sum over an empty set is
equal to 0. Using (10), we have

max{Di−1, Di} = 1 +
∑
j∈J1

Aj,i−1Ai,i−1 + Ai,i−1 +
∑
j∈J2

Aj,i−1Ai,i−1

+
∑
j∈J1

AjiAi−1,i + Ai−1,i +
∑
j∈J2

AjiAi−1,i

= 2 +
∑
j∈J1

(Aj,i−1Ai,i−1 + AjiAi−1,i)

+
∑
j∈J2

(Aj,i−1Ai,i−1 + AjiAi−1,i) ,

where we used the fact that Ai,i−1 + Ai−1,i = 1.
Recall that 2 ≤ i ≤ n − 1 and note that J1 = ∅ when i = 2 and that

J2 = ∅ when i = n − 1. When J1 is not empty, for any j ∈ J1, we have
that AjiAi−1,i = 1 if and only if Aj,i−1Ai−1,i = 1, meaning that Ij and Ii are
common ancestors of Ii−1 occurs if and only if Ij is an ancestor of Ii−1 and Ii−1
is an ancestor of Ii. This follows from the natural ordering of the intervals. To
be sure, using the characterization of Lemma 4.1, we have

[AjiAi−1,i = 1] =
[
Zj ≥ max

j≤�≤i
Z�

]
∩ [Zi−1 ≥ Zi]

=
[
Zj ≥ max

j≤�≤i−1
Z�

]
∩ [Zi−1 ≥ Zi]

= [Aj,i−1Ai−1,i = 1] .

Therefore, we have∑
j∈J1

(Aj,i−1Ai,i−1 + AjiAi−1,i) =
∑
j∈J1

Aj,i−1 (Ai,i−1 + Ai−1,i)

=
∑
j∈J1

Aj,i−1.

Likewise, when J2 is not empty, for any j ∈ J2, Aj,i−1Ai,i−1 = 1 if and only if
AjiAi,i−1 = 1, and this leads to

∑
j∈J2

(Aj,i−1Ai,i−1 + AjiAi−1,i) =
∑

j∈J2
Aji.

Combining the above leads to the desired result.

8.1.4. Proof of Theorem 4.3

Recall first the operator Πn : (T , πT ) �→ (T , πT ,n) mapping an isolation tree
(T , πT ) in T to its restriction (T , πT ,n) to Dn, and that (hT (x1), . . . , hT (xn)) =
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(hT ,n(x1), . . . , hT ,n(xn)) for any (T , πT ) ∈ T such that (T , πT ,n) = Πn ((T , πT )).
We use this in conjunction with Proposition 3.1, equations (8) and (9) and
Lemma 4.2 to relate the expectations of hT ,n(xi), 1 ≤ i ≤ n, with the expec-
tations of the ancestor variables and some of their products, to deduce that

hT (xi)
L=

⎧⎪⎨⎪⎩
1 +

∑n
j=1 Aj1 if i = 1,

2 +
∑i−2

j=1 Aj,i−1 +
∑n−1

j=i+1 Aji if 2 ≤ i ≤ n− 1,
1 +

∑n−1
j=1 Aj,n−1 if i = n,

(29)

where we use the convention that a sum over an empty set of indices is equal to 0.
We recall that the statements involving ancestor variables relate to a generic
random binary search tree T S := T S(Z1, . . . , Zn−1) where Z1, . . . , Zn−1 are
independent random variables with Zi ∼ Fwi

0 , for 1 ≤ i ≤ n− 1, so that T S is
distributed according to μ̃n.

Using the characterization of the ancestor variables given in Lemma 4.1, we
note that the two sums in the right hand side of (29) for the case where 2 ≤ i ≤
n−1 are independent. In addition, Lemma 4.1 and Lemma A.2 combined imply
that the set of ancestor variables involved in each sum in (29) are independent
as well. To complete the proof, there remains to evaluate the expectations of
the ancestor variables. Applying Lemma A.1, we directly obtain that

E[Aji] = P

(
Zi ≥ max

i∧j≤�≤i∨j
Z�

)
= wj∑

i∧j≤�≤i∨j w�
.

Using this together with (29) leads to the expressions given in (11) and (12).

8.1.5. Proof of Proposition 4.4

Let x = (x(1), . . . , x(d)) ∈ Conv(Dn) be a point in the convex hull of Dn. Note
first that Conv(Dn) is an orthotope (meaning a hyperrectangle) of dimension
d, and that x is included in the orthotope with vertices {xi : i ∈ I(x)}. We
denote by wj = xj,ij(x)+1 − xj,ij(x), for j ∈ {1, . . . , d} the side lengths of this
orthotope, where we recall that ij(x) = 1 + �(n− 1)(x(j) − xj,1)/(xj,n − xj,1)�,
for j ∈ {1, . . . , d}. For i ∈ I(x), we let δj(i) = ij − ij(x) and we note that
δj(i) ∈ {0, 1}.

Let VI(x)(T ) = {v ∈ ∂T : πT (v)∩{xi : i ∈ I(x)} �= ∅} be the set of leaves in
T the attached cells of whose contain the points xi, for i ∈ I(x) (each of those
cells contain exactly one point). Notice that x necessarily belongs to one of the
cells πT (v) for v ∈ VI(x), so that hT (x) is equal to hT (xi) for some i ∈ I(x),
which depends on T . To compute the expectation of hT (x), we first condition
on isolation trees restricted to Dn, which prescribes the tree structure leaving
free only the random draws of the split values. Indeed, recall that an isolation
tree and its restriction to Dn carry the same tree structure, meaning that for
any (T0, πT0) ∈ T and (T ′

0 , πT ′
0 ,n

) ∈ Tn such that (T ′
0 , πT ′

0 ,n
) = Πn ((T0, πT0)),

we have T ′
0 = T0.
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We have

E[hT (x)] =
∑

(T ′,πT ′,n)∈Tn

E [hT (x)| [Πn ((T , πT )) = (T ′, πT ′,n)]]

× P (Πn ((T , πT )) = (T ′, πT ′,n)) . (30)

Let (T ′, πT ′,n) be a Dn-restricted isolation tree in Tn and let VI(x),n(T ′) =
{v ∈ ∂T ′ : πT ′,n(v) ∩ {xi : i ∈ I(x)} �= ∅}. For any interior node v ∈ T ◦ of
T , denote by j(v) ∈ {1, . . . , d} and τ(v) ∈ R respectively the split component
and split value associated with v. Likewise, for any interior node v ∈ T ′◦, let
j′(v) ∈ {1, . . . , d} and i′(v) ∈ {1, . . . , n−1} be such that πT ′,n(v) is split between
xj′(v),i′(v) and xj′(v),i′(v)+1.

Consider the event Ω′ = [Πn ((T , πT )) = (T ′, πT ′,n)]. On Ω′, we have T = T ′,
as well as hT (xi) = hT ′,n(xi) for any i ∈ {1, . . . , n}d, and so in particular for
any i ∈ I(x). On Ω′ it also holds that VI(x)(T ) = VI(x),n(T ′), that j(v) = j′(v)
and that xj′(v),i′(v) ≤ τ(v) ≤ xj′(v),i′(v)+1, for any v ∈ T ◦ = T ′◦.

Let v� be the least common ancestor to all the nodes in VI(x),n(T ′), mean-
ing the node with largest height which is an ancestor in T ′ of every node in
VI(x),n(T ′). Notice that v� is the node at which the points {xi : i ∈ I(x)} part
ways, so to speak, meaning some of these points belong to πT ′,n(v�0) while the
remaining points belong to πT ′,n(v�1), where we recall that v�0 and v�1 denote
the left and right children of v�. Therefore we have i′(v�) = ij′(v�)(x).

Then, letting j� = j′(v�) and i� = ij′(v�)(x) to ease notation, we obtain
that the conditional probability that πT (v�0) contains x given Ω′ is equal to 1−
(x(j�)−xj�,iv�)/wj�) and similarly, that the conditional probability that πT (v�1)
contains x is equal to (x(j�) − xj�,i�)/wj� , due to the fact that the conditional
distribution of τ(v�) given Ω′ is a uniform distribution over [xj�,i� , xj�,i�+1]. By
proceeding recursively on each subtree of v� as we just did, we deduce that

E[hT (x)|Ω′] =
∑

i∈I(x)

αihT ′,n(xi), (31)

where αi is given by (14) and where we used the fact that the split values τ(v) for
all v ∈ T ◦ are conditionally independent given Ω′. Importantly, the expression
of αi in (14) does not depend on (T ′, πT ′,n) but only on x. By reporting (31) in
(30), we obtain that

E[hT (x)] =
∑

i∈I(x)

αi
∑

(T ′,πT ′,n)∈Tn

hT ′,n(xi)P (Πn ((T , πT )) = (T ′, πT ′,n))

=
∑

i∈I(x)

αiE[hT (xi)],

and this proves (13).
We now prove the second statement. Denote by Ψ : R

d → Conv(Dn) the
projection operator onto the convex hull of Dn. During the construction of
any isolation tree (T , πT ) according to Algorithm 1, the cells are partitioned
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based on a hyperplane orthogonal to one of the coordinate axis. This implies
that for any leaf v ∈ ∂T , the cell πT (v) extends outside Conv(Dn) in such
a way that πT (v) ⊃

{
x ∈ R

d : Ψ(x) ∈ πT (v) ∩ Dn

}
. Consequently, since the

points in Dn are arranged as a grid parallel to the coordinate axes, we have
E[hT (x)] = E [hT (Ψ(x))] for any x ∈ R

d.

8.2. Asymptotics in a random design

In this section we prove Theorem 6.1 and Theorem 6.2. First of all, we recall that
G = F−1 denotes the quantile function defined by G(p) = inf{x : F (x) ≥ p},
for 0 ≤ p ≤ 1. Also, for any p ∈ (0, 1) at which G′ and G′′ exist, their expressions
are given by G′(p) = f(G(p))−1 and G′′(p) = −f ′(G(p))/f(G(p))3 respectively.

8.2.1. Proof of Theorem 6.1, statement (i)

For ease of notation, we denote in(p) by i, the dependence on n and on p being
understood. Suppose that n is large enough that 2 ≤ i ≤ n−1. Then from (19),
we have

H̄i =
i−1∑
j=1

X(j+1) −X(j)

X(i) −X(j)
+

n∑
j=i+1

X(j) −X(j−1)

X(j) −X(i)
=: Ai + Bi. (32)

We prove that both 1
log(n)Ai and 1

log(n)Bi converge to 1 almost surely as n → ∞.
Since the two series Ai and Bi have analogous expressions, we only prove the
convergence for the right series Bi.

Let r := rn = �n/ log(n)� and suppose that n is large enough that 3 ≤ r ≤
n− i. Then we decompose Bi into

Bi =
i+r∑

j=i+1

X(j) −X(j−1)

X(j) −X(i)
+

n∑
j=i+r+1

X(j) −X(j−1)

X(j) −X(i)
=: Bi,1 + Bi,2, (33)

and we prove that

1
log(n)Bi,1 → 1 almost surely as n → ∞, (34)

and that
1

log(n)Bi,2 → 0 almost surely as n → ∞. (35)

To this aim, we use the connection between the order statistics of {X1, . . . , Xn}
and that of a uniform sample. Let Uj = F (Xj), for j = 1, . . . , n. Then the
random variables U1, . . . , Un are independent and identically distributed ac-
cording to a uniform distribution over [0, 1], and for any 1 ≤ j ≤ n, we have
U(j) = F (X(j)), where U(1) ≤ U(2) ≤ · · · ≤ U(n) denote the order statistics of
the sample U1, . . . , Un.
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Proof of (34): convergence of 1
log(n)Bi,1 We have

Bi,1 =
i+r∑

j=i+1

G(U(j)) −G(U(j−1))
G(U(j)) −G(U(i))

= 1 +
i+r∑

j=i+2

G(U(j)) −G(U(j−1))
G(U(j)) −G(U(i))

.

By continuity of f in a neighborhood of xp, there exists δ > 0 such that the
application y �→ f(G(y)) is continuous and bounded away from 0 over the closed
interval [p − δ, p + δ]. Hence G′ and G′′ are well defined over [p − δ, p + δ]. We
define the following constants:

κ1 = inf{f(G(y)) : p− δ ≤ y ≤ p + δ},
κ2 = sup{f(G(y)) : p− δ ≤ y ≤ p + δ},
κ3 = sup{|f ′(G(y))| : p− δ ≤ y ≤ p + δ},

(36)

and we note that κ1 > 0 and κ2 < ∞. Then, for any p− δ ≤ y ≤ p+ δ, we have

|G′(y)| ≥ 1/κ2 and |G′′(y)| ≤ κ3/κ
3
1.

Let En,1 be the event defined by

En,1 =
[
U(i) ≥ p− δ

]
∩
[
U(i+r) ≤ p + δ

]
.

On the event En,1, we have p− δ ≤ U(j) ≤ p+ δ for any i ≤ j ≤ i+ r, and using
Taylor expansions at U(j−1) and U(i) for each i + 2 ≤ j ≤ i + r, we obtain that

G(U(j)) = G(U(j−1)) + G′(U(j−1))(U(j) − U(j−1)) + Rj ,

G(U(j)) = G(U(i)) + G′(U(i))(U(j) − U(i)) + R̃j ,

where the remainder terms Rj and R̃j are expressed respectively as

Rj = 1
2G

′′(ξj)(U(j) − U(j−1))2 and R̃j = 1
2G

′′(ξ̃j)(U(j) − U(i))2,

for some random variables ξj and ξ̃j taking values in [p − δ, p + δ]. Therefore,
on the event En,1, we have

Bi,1 = 1 +
i+r∑

j=i+2

G′(U(j−1))(U(j) − U(j−1))
G′(U(i))(U(j) − U(i)) + R̃j

+
i+r∑

j=i+2

Rj

G(U(j)) −G(U(i))
. (37)

For each integer j with i + 2 ≤ j ≤ i + r, we have

G′(U(j−1))(U(j) − U(j−1))
G′(U(i))(U(j) − U(i)) + R̃j

=
G′(U(j−1))
G′(U(i))

U(j) − U(j−1)

U(j) − U(i)

1
1 + R̃j

G′(U(i))(U(j)−U(i))

,

(38)
and ∣∣∣∣ R̃j

G′(U(i))(U(j) − U(i))

∣∣∣∣ ≤ 1
2

∣∣G′′(ξ̃j)
∣∣ (U(j) − U(i))2

G′(U(i))(U(j) − U(i))
≤ κ2κ3

2κ3
1

(U(j) − U(i)),
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where we used the bounds in (36). Let En,2 be the event defined by

En,2 =
[
U(i+r) − U(i) ≤

κ3
1

κ2(κ3 ∨ 1)

]
. (39)

(We use the maximum κ3∨1 in (39) since κ3 may be equal to 0 if f ′ vanishes in
a neighborhood of xp). Then, on the event En,2, we have κ2κ3

2κ3
1

(U(j) − U(i)) ≤ 1
2 ,

and using the inequality |1/(1 + x) − 1| ≤ 2|x| over [−1/2, 1/2], this yields∣∣∣∣∣∣ 1
1 + R̃j

G′(U(i))(U(j)−U(i))

− 1

∣∣∣∣∣∣ ≤ κ2κ3

κ3
1

(U(j) − U(i)). (40)

By combining (40) and (38), and by summing over j, we obtain that on the
event En,1 ∩ En,2,∣∣∣∣∣∣

i+r∑
j=i+2

G′(U(j−1))(U(j) − U(j−1))
G′(U(i))(U(j) − U(i)) + R̃j

−
i+r∑

j=i+1

G′(U(j−1))
G′(U(i))

U(j) − U(j−1)

U(j) − U(i)

∣∣∣∣∣∣
≤

i+r∑
j=i+2

G′(U(j−1))
G′(U(i))

U(j) − U(j−1)

U(j) − U(i)

∣∣∣∣∣∣ 1
1 + R̃j

G′(U(i))(U(j)−U(i))

− 1

∣∣∣∣∣∣
≤ κ2

κ1

i+r∑
j=i+2

κ2κ3

κ3
1

(U(j) − U(j−1))

≤ κ2
2κ3

κ4
1

(U(i+r) − U(i)). (41)

For each i+2 ≤ j ≤ i+ r, on the event En,1, a Taylor expansion of G′ at U(i)
yields

G′(U(j−1)) −G′(U(i)) = G′′(ηj−1)(U(j−1) − U(i)),

for some random variables ηj−1 taking values in [p − δ, p + δ], so that on the
event En,1, we have∣∣∣∣∣∣

i+r∑
j=i+2

G′(U(j−1))
G′(U(i))

U(j) − U(j−1)

U(j) − U(i)
−

i+r∑
j=i+2

U(j) − U(j−1)

U(j) − U(i)

∣∣∣∣∣∣
≤

i+r∑
j=i+2

∣∣∣∣G′(U(j−1)) −G′(U(i))
G′(U(i))

∣∣∣∣ U(j) − U(j−1)

U(j) − U(i)

≤ κ2κ3

κ3
1

i+r∑
j=i+2

(U(j−1) − U(i))
U(j) − U(j−1)

U(j) − U(i)

≤ κ2κ3

κ3
1

i+r∑
j=i+2

(U(j) − U(j−1))
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≤ κ2κ3

κ3
1

(U(i+r) − U(i)), (42)

where we used the facts that U(j) − U(i) ≥ 0 and that U(j−1)−U(i)
U(j)−U(i)

≤ 1. By
combining (41) and (42), it follows that on En,1 ∩ En,2,∣∣∣∣∣∣

i+r∑
j=i+2

G′(U(j−1))(U(j) − U(j−1))
G′(U(i))(U(j) − U(i)) + R̃j

−
i+r∑

j=i+2

U(j) − U(j−1)

U(j) − U(i)

∣∣∣∣∣∣ ≤ c1
(
U(i+r) − U(i)

)
,

(43)
for some constant c1 > 0 depending only on f and which can be taken as
c1 = κ2κ3

κ3
1

(
1 + κ2

κ1

)
.

Now we bound the second sum in the expression of Bi,1 given in (37). On
the event En,1, we have

i+r∑
j=i+2

|Rj |
G(U(j)) −G(U(i))

= 1
2

i+r∑
j=i+2

|G′′(ξj)|(U(j) − U(j−1))2

G(U(j)) −G(U(i))

≤ κ3

2κ3
1

i+r∑
j=i+2

(U(j) − U(j−1))2

G(U(j)) −G(U(j−1))
,

where we used the bounds (36) together with the fact that G(U(j))−G(U(i)) ≥
G(U(j)) − G(U(j−1)). On the event En,1, for each i + 2 ≤ j ≤ i + r, the ratio

U(j)−U(j−1)
G(U(j))−G(U(j−1)) , which is positive, is bounded from above by κ2 by the mean
value theorem. Therefore, on En,1 ∩ En,2, we have

i+r∑
j=i+2

|Rj |
G(U(j)) −G(U(i))

≤ κ2κ3

2κ3
1

i+r∑
j=i+2

(U(j) − U(j−1)) ≤
κ2κ3

2κ3
1

(U(i+r) − U(i)).

(44)
Thus, by combining (43) and (44), we have shown that there exists constants
c2 > 0 and c3 > 0 depending only on f such that, on En,1 ∩ En,2,∣∣∣∣∣∣Bi,1 −

i+r∑
j=i+1

U(j) − U(j−1)

U(j) − U(i)

∣∣∣∣∣∣ ≤ c2
(
U(i+r) − U(i)

)
≤ c3, (45)

where we used the fact that U(i+r) − U(i) ≤ 2 κ3
1

κ2(κ3∨1) ∧ 2δ on En,1 ∩ En,2, and
where c2 and c3 can be taken respectively as c2 = c1 + κ2κ3

2κ3
1

and as c3 = 2δc2.
For any real number t > 0, and for all n large enough that 3 ≤ r ≤ n − i

(which we assumed in (33)), we have

P

(∣∣∣∣ Bi,1

log(n) − 1
∣∣∣∣ > t

)
≤ P

([∣∣∣∣ Bi,1

log(n) − 1
∣∣∣∣ > t

]
∩ En,1 ∩ En,2

)
+ P

(
Ec
n,1
)

+ P
(
Ec
n,2
)
. (46)
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Using (45), we bound the first term in (46) as

P

([∣∣∣∣ Bi,1

log(n) − 1
∣∣∣∣ > t

]
∩ En,1 ∩ En,2

)

≤ P

⎛⎝∣∣∣∣∣∣ 1
log(n)

i+r∑
j=i+1

U(j) − U(j−1)

U(j) − U(i)
− 1

∣∣∣∣∣∣ > t

2

⎞⎠ , (47)

for all n large enough that c3/ log(n) < t/2. With our choice of r = �n/ log(n)�,
we have log(r) < log(n), so that∣∣∣∣∣∣ 1

log(n)

i+r∑
j=i+1

U(j) − U(j−1)

U(j) − U(i)
− 1

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1
log(r)

i+r∑
j=i+1

U(j) − U(j−1)

U(j) − U(i)
− 1

∣∣∣∣∣∣
+
∣∣∣∣1 − log(n)

log(r)

∣∣∣∣ .
Hence, since log(r)/ log(n) → 1 as n → ∞, we obtain that for any t > 0 and for
all n large enough that |1 − log(n)

log(r) | < t/4,

P

⎛⎝∣∣∣∣∣∣ 1
log(n)

i+r∑
j=i+1

U(j) − U(j−1)

U(j) − U(i)
− 1

∣∣∣∣∣∣ > t

2

⎞⎠
≤ P

⎛⎝∣∣∣∣∣∣ 1
log(r)

i+r∑
j=i+1

U(j) − U(j−1)

U(j) − U(i)
− 1

∣∣∣∣∣∣ > t

4

⎞⎠ . (48)

To bound the probability above, we use the representation of uniform order
statistics with exponential random variables (see for instance Ahsanullah, Nev-
zorov and Shakil, 2013, Chapter 4). Let (νj)(j≥1) be an IID sequence of standard
exponential random variables. Then(

U(1), . . . , U(n)
) L=

(
ν1

ν1 + · · · + νn+1
, . . . ,

ν1 + · · · + νn
ν1 + · · · + νn+1

)
, (49)

so that
i+r∑

j=i+1

U(j) − U(j−1)

U(j) − U(i)

L=
i+r∑

j=i+1

νj
νi+1 + · · · + νj

L=
r∑

j=1

νj
ν1 + · · · + νj

, (50)

where L= means that the terms on each side of the equal sign have the same
distribution. Using this, together with Lemma A.3, we obtain that, for any
t > 0 and for all n large enough,

P

⎛⎝
∣∣∣∣∣∣ 1
log(r)

i+r∑
j=i+1

U(j) − U(j−1)

U(j) − U(i)
− 1

∣∣∣∣∣∣ > t

4

⎞⎠
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≤ 2 exp
(
− t

16 log(r) log
(

1 + 3t log(r)
4π2

))
. (51)

When n is large enough that log(r) > log(n)/2, the right-hand side in (51) is
bounded by 2 exp

(
− t

32 log(n) log
(
1 + 3t log(n)

8π2

))
, which in turn is bounded by

2
n2 when n is large enough that t

32 log
(
1 + 3t log(n)

8π2

)
> 2. Using this bound

together with (48) and (51), we deduce that for any t > 0,∑
n≥1

P

([∣∣∣∣ Bi,1

log(n) − 1
∣∣∣∣ > t

]
∩ En,1 ∩ En,2

)
< ∞. (52)

Now we prove that both series
∑

n≥1 P(Ec
n,1) and

∑
n≥1 P(Ec

n,2) are conver-
gent. To this aim, we introduce the uniform empirical quantile process F−1

n (p) =
inf{y : Fn(y) ≥ p}, for 0 ≤ p ≤ 1, where Fn(t) = 1

n

∑n
j=1 1{Uj ≤ t}

for 0 ≤ t ≤ 1. We start with the event En,1. We have U(i) = F
−1
n

(
i
n

)
=

F
−1
n

(
i
n

)
− i

n + i
n − p + p ≥ −‖F−1

n − I‖∞ − δ
2 + p, where the inequality holds

for all n large enough that | in − p| ≤ δ
2 . Hence, for all n large enough

P
(
U(i) ≥ p− δ

)
≥ P

(
‖F−1

n − 1‖∞ ≤ δ

2

)
.

Likewise, U(i+r) = F
−1
n

(
i+r
n

)
≤ ‖F−1

n − I‖∞ + δ
2 + p, where the inequality holds

for all n large enough that | i+r
n − p| ≤ δ

2 , and this yields

P
(
U(i+r) ≤ p + δ

)
≥ P

(
‖F−1

n − 1‖∞ ≤ δ

2

)
,

for all n large enough. Hence, for all n large enough, we have

P
(
Ec
n,1
)
≤ 2P

(
‖F−1

n − 1‖∞ ≥ δ

2

)
≤ 4 exp

(
−nδ2

2

)
,

where we used Proposition A.4 to bound the supremum of the empirical quantile
process. Consequently, ∑

n≥1
P
(
Ec
n,1
)
< ∞. (53)

Now we turn to the sequence of events En,2. Set c = κ3
1

κ2(κ3∨1) , and we recall that
En,2 is the event that U(i+r) − U(i) ≤ c. We have U(i+r) − U(i) = F

−1
n

(
i+r
n

)
−

F
−1
n

(
i
n

)
≤ 2‖F−1

n − I‖∞ + r
n , and using Proposition A.4 as above, we obtain

that for all n large enough that r
n ≤ c

3 ,

P
(
Ec
n,2
)
≤ P

(
‖F−1

n − 1‖∞ ≥ c

3

)
≤ 2 exp

(
−2nc2

9

)
,

which yields that ∑
n≥1

P
(
Ec
n,2
)
< ∞. (54)
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Combining (52), (53), and (54) with (46), we deduce that, for any t > 0,∑
n≥1

P

(∣∣∣∣ Bi,1

log(n) − 1
∣∣∣∣ > t

)
< ∞,

and from this, we conlude with the Borel-Cantelli lemma that 1
log(n)Bi,1 → 1

almost surely as n → ∞.

Proof of (35): convergence of 1
log(n)Bi,2 We start with an integral-series

comparison with the function x → 1/(x−X(i)) to bound Bi,2 as

0 ≤ Bi,2 ≤ log
(
X(n) −X(i)

)
− log

(
X(i+r) −X(i)

)
. (55)

The first term in (55) is bounded as log
(
X(n) −X(i)

)
≤ log

(
X(n) −X(1)

)
. Let

μ = E[X]. For any t > 0, we have

P

(
1

log(n) log
(
X(n) −X(1)

)
> t

)
= P

(
X(n) −X(1) > nt

)
≤ P

(
|X(n) − μ| > nt

2

)
+ P

(
|X(1) − μ| > nt

2

)
,

and

P

(
|X(n) − μ| > nt

2

)
≤ nP

(
X > μ + nt

2

)
+ P

(
X < μ− nt

2

)n

,

as well as

P

(
|X(1) − μ| > nt

2

)
≤ nP

(
X < μ− nt

2

)
+ P

(
X > μ + nt

2

)n

,

where we used the union bound twice. Since X is sub-exponential with param-
eters (σ, b) by assumption, it satisfies the concentration bounds stated in (20)
and we deduce from the above that, for any t > 0 and for all n large enough,

P

(
log
(
X(n) −X(1)

)
log(n) > t

)
≤ 2n exp

(
−nt

4b

)
+ 2 exp

(
−n1+t

4b

)
,

and since for any t > 0 the sum over n ≥ 1 of the term in the right-hand side
of the equation above is finite, we conclude by the Borel-Cantelli lemma that

lim sup
n

1
log(n) log

(
X(n) −X(1)

)
≤ 0 almost surely. (56)

Now we bound the second term in (55). For any t > 0, we have

P

(
1

log(n) log
(

1
X(i+r) −X(i)

)
> t

)
= P

(
X(i+r) −X(i) <

1
nt

)
. (57)
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On the event En,1 we may expand G at X(i), so that there exists some [p−δ, p+δ]-
valued random variable ξ such that, on the event En,1, we have X(i+r) −X(i) =
G′(ξ)

(
U(i+r) − U(i)

)
≥ 1

κ2

(
U(i+r) − U(i)

)
. Hence, for any t > 0,

P

(
X(i+r) −X(i) <

1
nt

)
≤ P

(
U(i+r) − U(i) <

κ2

nt

)
+ P

(
Ec
n,1
)
. (58)

We have U(i+r) − U(i) = F
−1
n

(
i+r
n

)
− F

−1
n

(
i
n

)
≥ r

n − 2‖F−1
n − I‖∞, as well as

1/nt

r/n → 0 as n → ∞, which we use to bound the first term in (58) as

P

(
U(i+r) − U(i) <

κ2

nt

)
≤ P

(
‖F−1

n − I‖ >
r

4n

)
,

for all n large enough that κ2
nt ≤ r

2n . By Proposition A.4,

P

(
‖F−1

n − I‖ >
r

4n

)
≤ 2 exp

(
− r2

8n

)
,

which implies that
∑

n≥1 P
(
U(i+r) − U(i) <

κ2
nt

)
< ∞ for any t > 0 since r2

8n >

2 log(n) for all n large enough. We have shown in (53) that
∑

n≥1 P
(
Ec
n,1
)
< ∞.

Consequently, with (58), we obtain that for any t > 0,∑
n≥1

P

(
X(i+r) −X(i) <

1
nt

)
< ∞,

and with the Borel-Cantelli lemma, this yields

lim sup
n

1
log(n) log

(
1

X(i+r) −X(i)

)
≤ 0 almost surely. (59)

Finally, combining (56) and (59) with the bound (55), we conclude that Bi,2
log(n) →

0 almost surely as n → ∞.

8.2.2. Proof of Theorem 6.1, statements (ii) and (iii)

We start by proving the convergence when the support admits a left endpoint
(statement (ii)). By continuity of f over [a, a + ε) and the assumption that
f(a) > 0, there exists a positive real number δ > 0 such that f(G(y)) is bounded
away from 0 over [0, δ] and we let

κ1 = inf{f(G(y)) : 0 ≤ y ≤ δ},
κ2 = sup{f(G(y)) : 0 ≤ y ≤ δ},
κ3 = sup{|f ′(G(y))| : 0 ≤ y ≤ δ}.

(60)

By (19), we have

H̄1 =
n∑

j=2

X(j) −X(j−1)

X(j) −X(1)
,
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so that H̄1 = B1, where B1 is the right series Bi defined in (32) taken with
i = 1 (the expression given there for Bi with 2 ≤ i ≤ n − 1 is valid for i = 1).
The arguments used in proving the convergence of Bi apply here, with the use
of the constants κ1, κ2 and κ3 in (60) to deduce that 1

lognB1 → 1 almost surely
as n → ∞. In the same way, we may express H̄n as H̄n = A1, where A1 is the
left series defined in (32) taken with i = 1 to conclude that 1

lognH̄n → 1 almost
surely as n → ∞, thereby proving that statement (iii) holds.

8.2.3. Proof of Theorem 6.2

We start by defining uniform versions of the constants introduced in (36). Since
f is bounded away from 0 on [xp1 , xp2 ] and continuous on a neighborhood of
this interval, there exists a positive real number δ > 0 such that y �→ f(G(y))
is bounded away from 0 and continuous over [p1 − δ, p2 + δ], and we define the
following constants:

κ1 = inf{f(G(y)) : p1 − δ ≤ y ≤ p2 + δ},
κ2 = sup{f(G(y)) : p1 − δ ≤ y ≤ p2 + δ},
κ3 = sup{|f ′(G(y))| : p1 − δ ≤ y ≤ p2 + δ},

and we let η = δ ∧ κ3
1

2κ2(κ3∨1) . Let In = {i : �p1n� ≤ i ≤ �p2n�}. As in (32), H̄i

decomposes into H̄i = Ai + Bi for any i ∈ In, and we only prove that

max
{∣∣∣∣ Bi

log(n) − 1
∣∣∣∣ : i ∈ In

}
→ 0 almost surely as n → ∞, (61)

given that a similar convergence result may be established for Ai by using the
same arguments, as in the proof of Theorem 6.1. Let r := rn = �n/ log(n)�.
For each i ∈ In, we decompose Bi into Bi = Bi,1 + Bi,2, where Bi,1 =∑i+r

j=i+1
X(j)−X(j−1)
X(j)−X(i)

and where Bi,2 =
∑n

j=i+r+1
X(j)−X(j−1)
X(j)−X(i)

, and we prove (61)
by showing that

1
log(n)

∣∣∣∣max
i∈In

Bi,1 − 1
∣∣∣∣→ 0 almost surely as n → ∞, (62)

and that
1

log(n) max
i∈In

Bi,2 → 0 almost surely as n → ∞. (63)

Letting Ui = F (Xi), for 1 ≤ i ≤ n, we define the following event:

E(n) =
[
U(	p1n
) ≥ p1 − δ

]
∩
[
U(	p2n
) ≤ p2 + δ

]
∩
(
∩i∈In

[
U(i+r) − U(i) ≤ η

])
,

and we prove first that ∑
n≥1

P (Ec
n) < ∞. (64)
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The event
[
U(	p1n
) ≥ p1 − δ

]
contains the event

[
F
−1
n

(
p1 − 1

n

)
> p1 − δ

]
, which

in turn is implied by the event
[
‖F−1

n − I‖∞ ≤ δ − 1
n

]
. Likewise, the event[

U(	p2n
) ≤ p2 + δ
]

contains the event
[
F
−1
n (p2) ≤ p2 + δ

]
, which is implied by

the event
[
‖F−1

n − I‖∞ ≤ δ
]
. Next, for each i ∈ In, we have

[
U(i+r) − U(i) ≤ η

]
=[

F
−1
n

(
i+r
n

)
− F

−1
n

(
i
n

)
≤ η

]
which contains the event

[
‖F−1

n − I‖∞ ≤ η−r/n
2

]
.

Consequently, for all n large enough that 1
n ≤ δ

2 and r
n ≤ η

2 ,

P (E(n)) ≥ P

(
‖F−1

n − I‖∞ ≤ δ

2 ∧ η

4

)
, (65)

and using Proposition A.4 this yields (64).
Reproducing the steps used in proving statement (i) of Theorem 6.1, we ob-

tain that (45) holds uniformly over i ∈ In, meaning that there exists a constant
c̃1 > 0 depending only on f , on δ and on η such that, on the event E(n),

max
i∈In

∣∣∣∣∣∣Bi,1 −
i+r∑

j=i+1

U(j) − U(j−1)

U(j) − U(i)

∣∣∣∣∣∣ ≤ c̃1,

which implies that∣∣∣∣∣∣max
i∈In

Bi,1 − max
i∈In

i+r∑
j=i+1

U(j) − U(j−1)

U(j) − U(i)

∣∣∣∣∣∣ ≤ c̃1.

Hence for any t > 0, and for all n large enough that c̃1
log(n) < t/2 and that∣∣∣1 − log(n)

log(r)

∣∣∣ < t/4,

P

(
max
i∈In

∣∣∣∣ 1
log(n)Bi,1 − 1

∣∣∣∣ > t

)
≤ P

⎛⎝max
i∈In

∣∣∣∣∣∣ 1
log(r)

i+r∑
j=i+1

U(j) − U(j−1)

U(j) − U(i)
− 1

∣∣∣∣∣∣ > t

4

⎞⎠
+ P(Ec

n). (66)

Using the representation of the uniform order statistics in terms of exponential
variables given in (49), it follows that jointly,⎧⎨⎩

i+r∑
j=i+1

U(j) − U(j−1)

U(j) − U(i)
: i ∈ In

⎫⎬⎭
L=

⎧⎨⎩
i+r∑

j=i+1

νj
νi+1 + · · · + νj

: i ∈ In

⎫⎬⎭
L=

⎧⎨⎩
i+r∑

j=i+1

νj
νi+1 + · · · + νj

: 0 ≤ i ≤ �(p2 − p1)n�

⎫⎬⎭ .
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Applying Lemma A.3 together with the union bound, we obtain the bound

P

⎛⎝max
i∈In

∣∣∣∣∣∣ 1
log(r)

i+r∑
j=i+1

U(j) − U(j−1)

U(j) − U(i)
− 1

∣∣∣∣∣∣ > t

4

⎞⎠
≤ 2n exp

(
− t log(r)

16 log
(

1 + 3t log(r)
4π2

))
,

which holds for any t > 0 and for all n large enough, and for any t > 0, this
bound is in turn bounded by 2

n2 for all n large enough that log(r) > log(n)/2
and that t

32 log
(
1 + 3t log(n)

8π2

)
−1 > 2. Using this in (66) together with (64), and

applying the Borel-Cantelli lemma, we deduce that maxi∈In

∣∣∣ 1
log(n)Bi,1 − 1

∣∣∣→ 0
almost surely as n → ∞ which proves (62).

To prove (63), we start with the bound

0 ≤ max
i∈In

Bi,2 ≤ log
(
X(n) −X(1)

)
+ log

(
max
i∈In

1
X(i+r) −X(i)

)
, (67)

which is a uniform version of (55) over In, and where we used the monotony of
the logarithm function. We have proved in (56) that 1

log(n) log
(
X(n) −X(1)

)
→ 0

almost surely as n → ∞ so we only need to prove that the limit superior of the
last term in (67) is bounded by 0 with probability one. Proceeding as in the
proof of Theorem 6.1, we obtain that, for any t > 0 and for all n large enough,

P

(
1

log(n) log
(

max
i∈In

1
X(i+r) −X(i)

)
> t

)
≤ P

(
min
i∈In

(
U(i+r) − U(i)

)
<

κ2

nt

)
+ P (Ec

n) . (68)

We have U(i+r) − U(i) ≥ r
n − 2‖F−1

n − I‖ for all i ∈ In, so that, for any t > 0,
and for all n large enough that κ2

nt ≤ r
2n ,

P

(
min
i∈In

(
U(i+r) − U(i)

)
<

κ2

nt

)
≤ nP

(
‖F−1

n − I‖ >
r

8n

)
≤ 2n exp

(
− r2

4n

)
,

where we used the union bound and then Proposition A.4 in the last inequality.
Therefore,

∑
n≥1 P

(
mini∈In

(
U(i+r) − U(i)

)
< κ2

nt

)
< ∞ for any t > 0 and with

(64), (68) and the Borel-Cantelli lemma, we obtain that

lim sup
n

1
log(n) log

(
max
i∈In

1
X(i+r) −X(i)

)
≤ 0 almost surely.

Then using the bounds in (67), we conlude that 1
log(n) maxi∈In Bi,2 → 0 almost

surely as n → ∞, which proves (63).

8.3. Asymptotics in a fixed design

In this section we prove Theorem 6.4 and Theorem 6.5. We recall that H� denotes
the �th harmonic number defined by H� =

∑�
k=1

1
k .
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8.3.1. Proof of Theorem 6.4

We first prove the pointwise statement. When d = 1, applying Theorem 4.3
leads to {

E[hT (x1)] = E[hT (xn)] = Hn−1, and
E[hT (xi)] = Hi−1 + Hn−i, for 2 ≤ i ≤ n− 1,

(69)

where xi = (i − 1)/(n − 1) for i ∈ {1, . . . , n}. By Proposition 4.4, we have
E[hT (0)] = E[hT (x1)] and E[hT (1)] = E[hT (xn)], and for any 0 < x < 1,
for all n large enough, E[hT (x)] is a convex combination of E[hT (xi(x))] and
E[hT (xi(x)+1)], with i(x) = 1 + �(n − 1)x�. The result then follows using the
inequalities log(� + 1) ≤ H� ≤ 1 + log(�), for any � ≥ 1.

We now assume that d ≥ 2. Let i = (i1, . . . , id) ∈ {1, . . . , n}d, and let xi =
(x(1)

i , . . . , x
(d)
i ), where x(j)

i = ij/(n−1), for any j ∈ {1, . . . , d}. For � ∈ {1, . . . , d},
we denote by P (�) : Rd → R the projection operator acting as P (�)(x) = x(�).

We recall first that during the growth of (T , πT ) with Algorithm 1, if j
is selected as the split component to partition πT (v) at a node v, then the
split value τ is drawn uniformly between the minimal and maximal value of
P (j) (πT (v) ∩ Dn). In this case for each child vη of v, with η ∈ {0, 1}, we have
P (�) (πT (vη) ∩ Dn) = P (�) (πT (v) ∩ Dn) for any � �= j, due to the fact that the
points in Dn are arranged as a regular grid, thus leaving unchanged the support
of the distribution of a subsequent split value along a component different from j,
as well as the number of distinct points in each set P (�) (πT (vη) ∩ Dn) for � �= j.
It follows from this that hT (xi) is distributed according to hT1(x

(1)
i ) + · · · +

hTd
(x(d)

i ), where T1, . . . , Td denote d independent univariate random isolation
trees defined using Algorithm 1 using the set D(1)

n := {(i− 1)/(n− 1) : 1 ≤ i ≤
n}.

Let J0 = {1 ≤ j ≤ d : ij ∈ {2, . . . , n− 1}} and let J1 = {1, . . . , d}�J0. Note
that xi is an interior point of [0, 1]d if all the components of i are in J0 and a
boundary point otherwise. Using (69), we deduce that

E[hT (xi)] =
∑
j∈J0

(
Hij−1 + Hn−ij

)
+ (#J1)Hn−1, (70)

where we use the convention that a sum over an empty set is equal to 0.
Let x be an interior point of [0, 1]d. For any j ∈ {1, . . . , d}, let ij(x) =

1 + �(n − 1)x(j)�, and let i(x) = (i1(x), . . . , id(x)). Then x belongs to the
cube with vertices {xi : i ∈ I(x)} where I(x) :=

{
i(x) + δ : δ ∈ {0, 1}d

}
. By

Proposition 4.4, the value of E[hT (x)] is a convex combination (with coeffi-
cients depending on x) of {E[hT (xi)] : i ∈ I(x)}. Since x is an interior point,
J0 = {1, . . . , d} and J1 = ∅ for each n so that ij(x)/n → x as n → ∞ for each
j ∈ {1, . . . , d}. Using this, together with the fact that H�/ log(�) → 1 as � → ∞
yields E[hT (xi)]/ log(n) → 2d as n → ∞. This proves the result when k = d
since Fd contains only [0, 1]d.

Suppose now that x ∈ F̊k for some face Fk ∈ F , with 0 ≤ k < d. We ar-
gue as above inside the face Fk. Let i(x) = (i1(x), . . . , id(x)) where ij(x) =
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1 + �(n − 1)x(j)� if j ∈ J0 and where ij(x) = ij when j ∈ J1. Then x belongs
to the k-dimensional cube with vertices {xi : i ∈ I(x)} where I(x) = {i(x)+ δ :
δ ∈ {0, 1}}. Notice that this cube is included in the interior of Fk, which is
also a k-dimensional cube. Since #J0 = k and #J1 = d − k, using Proposi-
tion 4.4 together with the relation H�/ log(�) → 1 as � → ∞, it follows that
E[hT (xi)]/ log(n) → 2k + (d − k) = d + k as n → ∞, which yields the desired
result.

To prove that the convergence is uniform over any closed subset contained
in the interior of [0, 1]d, it suffices to show that this holds in dimension d = 1
and to argue as above. Let 0 < x1 < x2 < 1 and let i1 = 1 + �(n − 1)x1�
and i2 = 2 + �(n − 1)x2�. By (70), we have E[hT (xi)] = Hi−1 + Hn−i for all
i1 ≤ i ≤ i2. Using the inequalities log(� + 1) ≤ H� ≤ 1 + log(�) for any � ≥ 1
yields

sup
i1≤i≤i2

∣∣∣∣ 1
log(n) (Hi−1 + Hn−i) − 2

∣∣∣∣→ 0, as n → ∞. (71)

Using this together with Proposition 4.4 we conclude that

sup
x1≤x≤x2

∣∣∣∣ 1
log(n)E[hT (x)] − 2

∣∣∣∣→ 0 as n → ∞.

8.4. Proof of Theorem 6.5

For k ∈ {1, . . . ,K}, let Nk = n1 + · · ·+ nk and let N0 = 0. Using Theorem 4.3,
we first prove that for each k ∈ {1, . . . ,K} we have

E[hT (xi)] =

⎧⎪⎨⎪⎩
Hnk−1 + Ri if i = Nk−1 + 1,
Hi−Nk−1−1 + HNk−i + Ri if Nk−1 + 2 ≤ i ≤ Nk − 1,
Hnk−1 + Ri if i = Nk,

(72)

where the Ri’s are remainder terms satisfying

sup
n≥1

sup
1≤i≤n

|Ri| ≤ CR, (73)

for a constant CR > 0 depending only on the interval lengths L1, . . . , LK and
the gaps δ1, . . . , δK−1. Notice that the expressions involving harmonic numbers
in (72) corresponds those obtained in (69) for the case of nk equally spaced
points. The remainder terms account for the fact that the summation range in
the series in Theorem 4.3 extends over all the intervals. By Proposition 4.4,
the value of E[hT (x)] at any x ∈ R is obtained by linear interpolation of
{(xi, hT (xi)) : 1 ≤ i ≤ n}. Therefore if (72) and (73) hold, then using Propo-
sition 4.4 together with the fact that log(nk)/ log(n) → 1 since nk/n → αk as
n → ∞ for each k ∈ {1, . . . ,K} and the fact that H�/ log(�) → 1 as � → ∞
leads to the desired result. The conlusion that the convergence is uniform then
follows by the same arguments as those used in proving (71).
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There remains to prove (72) and (73). We do so for the first interval only, the
reasoning being identical for the other intervals. Recall that the configuration is
scaled to extend over [0, 1], so that x1 = 0 and xn = 1. For the first boundary
point x1 of I1, by Theorem 4.3, we have

E[hT (x1)] =
n−1∑
j=1

xj+1 − xj

xj+1 − x1
,

which decomposes into

E[hT (x1)] =
n1−1∑
j=1

xj+1 − xj

xj+1 − x1
+

n−1∑
j=n1

xj+1 − xj

xj+1 − x1
. (74)

The points in I1 being equally spaced, the first sum in the right hand side of
(74) is equal to

∑n1−1
j=1

1
j = Hn1−1, and by an integral-series comparison, the

second sum in (74) is bounded from above by log(xn) − log(xn1) = log(1/L1).
Therefore E[hT (x1)] = H\∞−∞+R1 where R1 satisfies supn≥1 |R1| ≤ log(1/L1).

For 2 ≤ i ≤ n1 − 1, by Theorem 4.3, we have

E[hT (xi)] =
i−1∑
j=1

xj+1 − xj

xi − xj
+

n∑
j=i+1

xj − xj−1

xj − xi
. (75)

The first sum in the right hand side of (75) is equal to Hi−1, and the second
sum decomposes into

n∑
j=i+1

xj − xj−1

xj − xi
=

n1∑
j=i+1

xj − xj−1

xj − xi
+ xn1+1 − xn1

xn1+1 − xi
+

n∑
j=n1+2

xj − xj−1

xj − xi
. (76)

The first term in the right hand side of (76) is equal to Hn1−i, while the second
term is smaller than 1, and by an integral-series comparison, the last sum is
bounded from above by log(xn − xi) − log(xn1+1 − xi) ≤ log(1/δ1). This yields
E[hT (xi)] = Hi + Hn1−i + Ri where Ri satisfies supn≥1 sup2≤i≤n1−1 |Ri| ≤
1 + log(1/δ1).

At last, for i = n1, by Theorem 4.3, we have

E[hT (xn1)] =
n1−1∑
j=1

xj+1 − xj

xn1 − xj
+

n∑
j=n1+1

xj − xj−1

xj − xn1

= Hn1−1 +
n∑

j=n1+1

xj − xj−1

xj − xn1

,

and the last sum is bounded by 1 + log(xn − xn1+1) − log(xn1+1 − xn1) ≤
1 + log(1/δ1), which yields

E[hT (xn1)] = H\∞−∞ + Rn1 ,

where supn≥1 |Rn1 | ≤ 1 + log(1/δ1). Hence we have shown that E[hT (xi)] =
Hi−1 + Hn1−1 + Ri for any 1 ≤ i ≤ n1 where {Ri : 1 ≤ i ≤ n1} satisfy
supn≥1 sup1≤i≤n1

|Ri| ≤ log(1/L1) ∨ (1 + log(1/δ1)). Reasoning along the same
lines leads to similar bounds for points in the other intervals and this proves
(72) and (73).
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Appendix A: Auxiliary results

In this appendix we collect auxiliary results. This includes three technical Lem-
mas (Section A.1), a concentration inequality that relate to the uniform empir-
ical process (Section A.2), and proofs for the bounds on the average heights for
the configurations of points studied in Section 5 (Section A.3).

A.1. Technical lemmas

Lemma A.1. Let F0 be an absolutely continuous cumulative distribution func-
tion over R. Given n strictly positive real numbers w1, . . . , wn, let Z1, . . . , Zn be
n independent random variables where Zi has distribution Fwi

0 for any 1 ≤ i ≤
n. Let i ∈ {1, . . . , n} and let K be a subset of {1, . . . , n} containing i. Then

P

(
Zi ≥ max

k∈K
Zk

)
= wi∑

k∈K wk
.

Proof. We have

P

(
Zi ≥ max

k∈K
Zk

)
= E

⎡⎣ ∏
k∈K�{i}

P (Zk ≤ Zi|Zi)

⎤⎦
= E

[
F0(Zi)

∑
k∈K�{i} wk

]
=
∫
R

wiF
′
0(z)F0(z)

∑
k∈K wk−1dz

= wi∑
k∈K wk

.

The following Lemma states an independence property for the records asso-
ciated with the random variables Z1, . . . , Zn of Lemma A.1. This property is
well known when the sequence of random variables is IID.

Lemma A.2. In the setting of Lemma A.1, let Bi = [Zi ≥ max1≤�≤i Z�], for
i = 1, . . . , n. Then the events B1, . . . , Bn are independent.

Proof. In this proof, we use the convention that a sum over an empty set of
indexes is equal to 0, and that a product over an empty set of indexes is equal
to 1.

Let 2 ≤ k ≤ n be an integer and let 1 ≤ i1 < i2 < · · · < ik ≤ n be k integers.
Let I� = {1, . . . , i�} for 1 ≤ � ≤ k. Let J� = I� � I�−1 for 2 ≤ � ≤ k and set
J1 = I1. We have

P (Bi1 ∩ · · · ∩Bik) = P ([Zi1 < Zi2 < · · · < Zik ] ∩A1 ∩ · · · ∩Ak) ,

where A� = ∩i∈J�
[Zi ≤ Zi� ], for 1 ≤ � ≤ k. We have

P ([Zi1 < Zi2 < · · · < Zik ] ∩A1 ∩ · · · ∩Ak)
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= E [1 {Zi1 < Zi2 < · · · < Zik}P (A1 ∩ · · · ∩Ak|Zi1 , . . . , Zik)]

= E

[
1 {Zi1 < Zi2 < · · · < Zik}

k∏
�=1

F0(Z�)
∑

j∈J��{i�}
wj

]

By conditioning on Zi2 , . . . , Zik , we obtain that

P ([Zi1 < Zi2 < · · · < Zik ] ∩A1 ∩ · · · ∩Ak)

= E

[
1{Zi2 < · · · < Zik}

k∏
�=2

F0(Z�)
∑

j∈J��{il}
wj

× E

[
1{Zi1 < Zi2}F0(Zi1)

∑
j∈J1�{i1} wj |Zi2 , . . . , Zik

] ]
. (77)

We have

E

[
1{Zi1 < Zi2}F0(Zi1)

∑
j∈J1�{i1} wj |Zi2 , . . . , Zik

]
=
∫ Zi2

−∞
F0(z)

∑
j∈J1�{i1} wjwi1F

′
0(z)F0(z)wi1−1dz

= wi1∑
j∈J∞

wj
F0(Zi2)

∑i1
j=1 wj . (78)

Reporting (78) in (77) yields

P ([Zi1 < Zi2 < · · · < Zik ] ∩A1 ∩ · · · ∩Ak)

= P(Bi1)E
[
1{Zi2 < · · · < Zik}F0(Zi2)

∑i2−1
j=1 wj

k∏
�=3

F0(Z�)
∑

j∈J��{i�}
wj

]
,

where we used the fact that P(Bi1) = wi1∑
j∈I1

wj
by Lemma A.1 together with

the fact that J1 = I1. Iterating in the same way, we deduce that

P (Bi1 ∩ · · · ∩Bik) = P(Bi1) × · · · × P(Bik).

The following lemma gives a concentration bound on a sum that arises in
the proofs of Theorem 6.1 and Theorem 6.2 when representing the uniform
order statistics in terms of exponential random variables. We recall that Hn

denotes the nth harmonic number defined by Hn =
∑n

i=1
1
n and that it satisfies

Hn

log(n) → 1 as n → ∞.

Lemma A.3. Let (νi)(i≥1) be a sequence of independent random variables and
identically distributed according to an exponential distribution with mean equal
to 1. Let Sn = ν1 + · · · + νn. For any t > 0, and for all n large enough that
|Hn/ log(n) − 1| ≤ t/2,

P

(∣∣∣∣∣ 1
log(n)

n∑
i=1

νi
Si

− 1

∣∣∣∣∣ > t

)
≤ 2 exp

(
− t log(n)

4 log
(

1 + 3t log(n)
π2

))
.
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Proof. For any i ≥ 1, let Yi = νi

Si
, and note that Yi = 1− Si−1

Si
for any i ≥ 2. We

first prove the somewhat surprising fact that Y2, . . . , Yn are independent. Since
the random variables ν1, . . . , νn are independent and identically distributed ac-
cording to an exponential distribution with mean equal to 1, the distribution
of the random vector (S1, . . . , Sn) admits a probability density function fS,n
defined by

fS,n(s1, . . . , sn) = e−sn1{(s1, . . . , sn) ∈ DS,n},
where DS,n = {(s1, . . . , sn) ∈ R

n : 0 ≤ s1 ≤ s2 ≤ · · · ≤ sn}. Consider
the transformation Φ : DS,n → R+ × [0, 1]n−1 defined by Φ(s1, . . . , sn) =(
s1, 1 − s1

s2
, . . . , 1 − sn−1

sn

)
. Its inverse function is defined over R+ × [0, 1]n−1

by

Φ−1(y1, . . . , yn) =
(
y1,

y1

1 − y2
,

y1

(1 − y2)(1 − y3)
, . . . ,

y1

(1 − y2) . . . (1 − yn)

)
,

with Jacobian equal to yn−1
1∏n

k=2(1−yk)n+2−k . Then (ν1, Y2, . . . , Yn) = Φ(S1, . . . , Sn)
so that the random vector (ν1, Y2, . . . , Yn) admits a probability density function
f(ν1,Y2,...,Yn) given by

f(ν1,Y2,...,Yn)(u, y2, . . . , yn) = un−1∏n
k=2(1 − yk)n+2−k

exp
(
− u∏n

k=2(1 − yk)

)
× 1

{
(u, y2, . . . , yn) ∈ R+ × [0, 1]n−1} ,

from which we deduce the probability density function f(Y2,...,Yn) of (Y2, . . . , Yn)
which is expressed as

f(Y2,...,Yn)(y2, . . . , yn) = (n− 1)!
n∏

k=2

(1 − yk)k−21
{
(y2, . . . , yn) ∈ [0, 1]n−1} .

Therefore the variables Y2, . . . , Yn are independent.
Also, for each i ≥ 1, Yi follows a Beta distribution Beta(1, i−1), since Yi = νi

Si

by definition, and so E[Yi] = 1
i and Var(Yi) = i−1

i2(i+1) ≤ 1
i2 . Hence for any n ≥ 2,

we have
n∑

i=1
E

[
νi
Si

]
= Hn and σ2

n :=
n∑

i=1
Var

(
νi
Si

)
≤

n∑
i=2

1
i2

≤ π2

6 . (79)

For any t > 0 and for all n large enough that |Hn/ log(n) − 1| ≤ t/2, we have

P

(∣∣∣∣∣ 1
log(n)

n∑
i=1

νi
Si

− 1

∣∣∣∣∣ > t

)
≤ P

(∣∣∣∣∣
n∑

i=1

νi
Si

−Hn

∣∣∣∣∣ > t log(n)
2

)
. (80)

Using Bennett’s inequality, for any t > 0, we have

P

(∣∣∣∣∣
n∑

i=1

νi
Si

−Hn

∣∣∣∣∣ > t log(n)
2

)
≤ 2 exp

(
−σ2

nh

(
t log(n)

2σ2
n

))
,
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where h is the function defined by h(u) = (1 + u) log(1 + u) − u, and where
we used the facts that 0 ≤ νi

Si
≤ 1 almost surely for all i ≥ 1, that ν1/S1 = 1,

and that the variables ν2/S2, . . . , νn/Sn are independent. Using the inequality
h(u) ≥ 1

2u log(1 + u) for any u ≥ 0 and the bound σ2
n ≤ π2/6 in (79), this leads

to

P

(∣∣∣∣∣
n∑

i=1

νi
Si

−Hn

∣∣∣∣∣ > t log(n)
2

)
≤ 2 exp

(
− t log(n)

4 log
(

1 + 3t log(n)
π2

))
,

which, combined with (80), yields the desired result.

A.2. The uniform empirical quantile process

The following Proposition gives an exponential inequality for the uniform em-
pirical process and the uniform quantile process, using the DKW inequality
(Dvoretzky, Kiefer and Wolfowitz, 1956) with the tight constant due to Massart
(1990).

Proposition A.4. Let U1, . . . , Un be IID random variables distributed according
to a uniform distribution over [0, 1]. Let Fn(t) = 1

n

∑n
i=1 1{Ui ≤ t} for 0 ≤ t ≤ 1

and F
−1
n (p) = inf{y : Fn(y) ≥ p}, for 0 ≤ p ≤ 1. Then for any λ > 0,

P

(
sup

p∈[0,1]

√
n|F−1

n (p) − p| > λ

)
= P

(
sup

t∈[0,1]

√
n|Fn(t) − t| > λ

)
≤ 2 exp(−2λ2).

(81)

A.3. Average heights of the deterministic configurations

In this section we prove the inequalities on the average heights of each config-
uration of points studied in Section 5. For clarity, we start each paragraph by
recalling the definition of each configuration of points.

Proof of (15) The n points are such that x1 = 0 and 1− ε = x2 < x3 < · · · <
xn−1 < xn = 1. Using Theorem 4.3, we have

E[hT (x1)] = 1 +
n∑

j=3

xj − xj−1

xj − x1
≤ 1 +

n∑
j=3

xj − xj−1

x2 − x1
= 1 + xn − x2

x2 − x1
= 1 + ε

1 − ε
.

For 2 ≤ i ≤ n − 1, we note that each of the two sums given in Theorem 4.3
for the expression of E[hT (xi)] contains one term equal to 1, implying that
E[hT (xi)] ≥ 2. At last,

E[hT (xn)] = 1 +
n−2∑
j=1

xj+1 − xj

xn − xj
≥ 1 +

n−2∑
j=1

(xj+1 − xj) ≥ 2 − ε.

Therefore E[hT (xi)] ≥ 2 − ε for any 2 ≤ i ≤ n.



Statistical properties of isoalation forests 4377

Proof of (16) The point configuration is such that x1 = 0 and that x2, . . . , xn

extend uniformly over [1−ε, 1], so that xj+1−xj = ε/(n−2) for any 2 ≤ j ≤ n−1.
Applying Theorem 4.3, we obtain that

E[hT (x1)] = 1 +
n∑

j=3

ε/(n− 2)
1 − ε + (j − 2)ε/(n− 2) ≤ 1 + ε

1 − ε
,

and that

E[hT (x2)] = 1 +
n∑

j=3

xj − xj−1

xj − x2
= 1 +

n∑
j=3

1
j − 2 = 1 + Hn−2.

For 3 ≤ i ≤ n− 1, we have

E[hT (xi)] ≥
i−1∑
j=2

xj+1 − xj

xi − xj
+

n∑
j=i+1

xj − xj−1

xj − xi
= Hi−2 + Hn−i.

At last, we have

E[hT (xn)] = 1 − ε +
n−1∑
j=2

xj+1 − xj

xn − xj
= 1 − ε + Hn−2.

Using the inequality Hn ≥ log(n+1), simple calculations leads to Hi−2+Hn−i ≥
log((i−1)(n− i+1)) ≥ log(2n−4) ≥ log(n−1) for any 2 ≤ i ≤ n−1. Therefore
we conclude that E[hT (xi)] ≥ log(n− 1) for any 2 ≤ i ≤ n.

Proof of (17) In this configuration the points are defined by the recursion
xj+1 = 1 − ε(1 − xj) with x1 = 0, so that xj = 1 − εj for any 1 ≤ j ≤ n, and
that xj+1 − xj = εj−1 − εj , for any 1 ≤ j ≤ n − 1. Applying Theorem 4.3, we
obtain that

E[hT (x1)] = 1 + (1 − ε)
n∑

j=3

εj−2

1 − εj−1 .

and that for any 2 ≤ i ≤ n− 1,

E[hT (xi)] = (1 − ε)

⎡⎣i−1∑
j=1

1
1 − εj

+
n−1−i∑
j=0

εj

1 − εj+1

⎤⎦ ,

and finally that

E[hT (xn)] = (1 − ε)
n−1∑
j=1

1
1 − εj

.

We recall that Δi is defined as Δi = E[hT (xi+1)]−E[hT (xi)], for i = 1, . . . , n−1.
From the above relations we obtain that

Δ1 = (1 − ε)
[

1
1 − ε

− εn−2

1 − εn−1

]
= 1 − (1 − ε) εn−2

1 − εn−1 ,
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that for any 2 ≤ i ≤ n− 2,

Δi = (1 − ε)
[

1
1 − εi

− εn−1−i

1 − εn−i

]
,

and that
Δn−1 = (1 − ε)

[
1

1 − εn−1 − 1
1 − ε

]
= −ε

1 − εn−2

1 − εn−1 .

Therefore |Δ1 − 1| ≤ εn−2 and −ε ≤ Δn−1 ≤ 0 and for any 2 ≤ i ≤ n− 2,

|Δi − 1| ≤
∣∣∣∣ 1 − ε

1 − εi
− 1

∣∣∣∣+ εn−1−i ≤ 2ε.

Using this, we conclude that |Δi − 1| ≤ 2ε for any 1 ≤ i ≤ n − 2 and that
−ε ≤ Δn−1 ≤ 0.

Proof of (18) Given some integer 3 < k < n − 2, the points in this configu-
ration are such that xk = 1

2 and such that {x1, . . . , xk−1} and {xk+1, . . . , xn}
extend over the intervals [0, ε] and [1− ε, 1] respectively. For the average height
of xk, using Theorem 4.3, we have

E[hT (xk)] = 2 +
k−2∑
j=1

xj+1 − xj

xk − xj
+

n∑
j=k+2

xj − xj−1

xj − xk

≤ 2 + log
(

xk − x1

xk − xk−1

)
+ log

(
xn − xk

xk+1 − xk

)
,

where the inequality follows from integral-series comparison with the function
x �→ 1/(x−xk). Since xk −xk−1 = xk+1 −xk = 1

2 − ε and xn−xk+1 = ε as well
as xk−1 − x1 = ε, we obtain that

E[hT (xk)] ≤ 2 + 2 log
(

1 + ε
1
2 − ε

)
≤ 2 + 2 ε

1
2 − ε

≤ 2 + 8ε,

where the last inequality holds since ε < 1/4. For i = 1, we have

E[hT (x1)] ≥ 1 +
k+1∑
j=k

xj − xj−1

xj − x1
= 1 + 1/2 − ε

1/2 + 1/2 − ε

1 − ε
≥ 5

2 − 3ε,

and for any 2 ≤ i < k, we have

E[hT (xi)] ≥ 1 +
n∑

j=i+1

xj − xj−1

xj − xi
≥ 2 + xk+1 − xk

xk+1 − xi
≥ 5

2 − ε.

Therefore E[hT (xi)] ≥ 5
2−3ε for any 1 ≤ i ≤ k−1 and by symetry this inequality

holds for any k + 1 ≤ i ≤ n.
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