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Abstract: We propose a penalized least-squares method to fit the linear
regression model with fitted values that are invariant to invertible linear
transformations of the design matrix. This invariance is important, for ex-
ample, when practitioners have categorical predictors and interactions. Our
method has the same computational cost as ridge-penalized least squares,
which lacks this invariance. We derive the expected squared distance be-
tween the vector of population fitted values and its shrinkage estimator
as well as the tuning parameter value that minimizes this expectation. In
addition to using cross validation, we construct two estimators of this op-
timal tuning parameter value and study their asymptotic properties. Our
numerical experiments and data examples show that our method performs
similarly to ridge-penalized least-squares.
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1. Introduction

We will introduce a new shrinkage strategy for fitting linear regression models,
which assume that the measured response for n subjects is a realization of the
random vector

Y = X8 +e, (1)

where X € R™*? is the nonrandom known design matrix with ones in its first
column and with values of the predictors in its remaining columns; 8 € RP is an
unknown vector of regression coefficients; and e has iid entries with mean zero
and unknown variance o2 € (0, 00).

We will consider fitting (1) in both low and high-dimensional settings, where
the second scenario typically has rank(X) < p. If rank(X) < p, then it is well
known that 3 is not identifiable in (1), i.e. there exists a 3 # B such that
X = Xp. Similarly, if rank(X) < p, then there are infinitely many solutions
to the least-squares problem: arg min,cp, [|Y — Xb||?. Given this issue (which
is unavoidable in high dimensions), our inferential target is X3, which is the
expected value of the response for the n subjects.

To describe least squares estimators whether rank(X) < p or rank(X) = p,
we will use the reduced singular value decomposition of X. Let ¢ = rank(X).
Then X = UDV’, where U € R"*? with U'U = I,; V € RP*? with V'V = I;
and D € R9%7 is diagonal with positive diagonal entries. The Moore—Penrose
generalized inverse of X is X~ = VD7!U’ and a least-squares estimator of
B is B = X7Y. The vector of fitted values is XB = XX7Y = PxY, where
Py = XX~ =UU'. If rank(X) = p, then Px = X(X'X)"1X".

A nice property of this least-squares method is that its fitted values are
invariant to invertible linear transformations of the design matrix. lose that we
replace X by X, = XT, where T' € RP*? is invertible. Then X = X,7~!. So (1)
is

Y =XB+e=XT184+¢c=XBe +¢,

where B, = T713. We estimate X3 = X,f8, with PxY = Px, Y, so the fitted
values did not change by changing X to X,.
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Fitting (1) by penalized least-squares has been studied by many scholars.
Well-studied penalties include the ridge penalty [16], the bridge/lasso penalty
[14, 26], the adaptive lasso penalty [34], the SCAD penalty [11], and the MCP
penalty [31]. Unfortunately, these methods’ fitted values are not invariant to
invertible linear transformations of X. The lack of invariance is particularly
problematic when a practitioner wants to find a set of linear combinations of a
subset of the predictors to reduce multicollinearity, because a rotational change
in the model matrix can substantially change the predicted values of the penal-
ized methods that lack invariance. In addition, invariance to invertible linear
transformations is also important in any application that includes categorical
predictors (with three or more categories) and their interactions: the model fit
should not change by changing the coding scheme used to represent these vari-
ables in the design matrix. The Group Lasso [29] and its variants with different
standardization [7, 24] could also be used when there are categorical predictors,
but these methods still lack invariance and our simulation and data examples
illustrate their instability. This lack of invariance is also present in principal
components regression [17], and partial least squares [27].

We illustrate that a change in the reference level coding of categorical pre-
dictors (see Section 5.2) and that a rotational transformation of the design
matrix that removes zeros from the regression coefficient vector (see Section 5.3
and 5.5) leads the regression shrinkage methods that lack this invariance to per-
form worse. In contrast, our method performed the same before and after these
transformations. We also propose a method to estimate the regression’s error
variance in high dimensions that may be of independent interest.

2. A new shrinkage method for linear regression with invariance
2.1. Method description

To preserve the invariance to invertible linear transformations of the design ma-
trix discussed in the previous section, we will use penalties that can be expressed
as a function of the n-dimensional vector Xb, where b is the optimization vari-
able corresponding to 3. To construct our estimator, we start with the following
penalized least squares optimization:

arg min{||Y—Xb||2+)\\|Xb—§71n||2}7 (2)

bERP
where Y = 1/,Y/n; 1/, = (1,...,1) € R*; and X € [0,00) is a tuning parameter.
As X increases, the fitted values are shrunk towards the intercept-only model’s

fitted values Y'1,,. Let v = 1/(1 + \). We can express the optimization in (2) as

B € arg min {y||Y — Xb||* + (1 — )| Xb— Y 1,,||*}, (3)
beERP

where v € [0,1]. The € is used because there are infinitely many global min-
imizers for the optimization in (3) when rank(X) < p. To preserve invariance
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and obtain the minimum 2-norm solution, we define our estimator as
BD =X~ {y¥ +(1-7)V1,},

which is a global minimizer of (3) that uses the Moore-Penrose generalized
inverse of X. Let P; = 1,,(1,'1,,)~*1,,. The estimator of X3 is

XY = 4PxY + (1 —y)PY, (4)

which is simply a convex combination of the least-squares fitted values PxY and
the intercept-only model’s fitted values PY = Y'1,,. Since Px = Px,, where
Xo = XT with T € RP*P invertible, X B(V) is invariant to invertible linear
transformations of X.

Due to its computational simplicity, ﬁA('Y) is a natural competitor to ridge-
penalized least squares, which lacks this invariance property. Both methods can
be computed efficiently when p is much larger than n by using the reduced sin-
gular value decomposition of X [15]. Specifically, they both cost O(n rank?(X))
floating-point operations. If v = 0 for our method and A — oo for ridge-
penalized least squares (without intercept penalization), then both procedures
fit the intercept-only model.

We will derive an optimal value of  that minimizes E[| X5 — X3||? and
propose two estimators of it: one for low dimensions and one for high dimen-
sions. We also explore using cross validation to select v when the response and
predictor measurement pairs are drawn from a joint distribution. Conveniently,
our results generalize to shrinkage towards a submodel’s fitted values Px Y,
where X is a matrix with a proper subset of the columns of X (see Section C
of the Supplementary material [13]).

2.2. Related work

Copas [9] proposed to predict a future value of the response for the ith subject
with a convex combination of its fitted value (from ordinary least squares) and
Y. Although our methods are related, Copas [9] used a future-response-value
prediction paradigm and did not establish a theoretical analysis of his approach.

Azriel and Schwartzman [2] study the estimation of a/f when p > n and
is not sparse. They establish a condition for which a’f is identifiable and show
that using least-squares (with a pseudoinverse) has an optimal property when
the errors are Gaussian. We prove that our shrinkage method outperforms least
squares in same-X prediction and we illustrate it in our numerical examples.
Zhao et al. [32] also study the estimation of a’, but they use procedures that
are not invariant to invertible linear transformations of X.

3. Theoretical properties of the method

Given the lack of identifiability of 8 in high dimensions, we investigate the es-
timation of the n-dimensional vector X3 with X3(). This is an example of
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same-X prediction [23]. It is related to predicting near X when p > n [8, Propo-
sition 3.4]. In contrast to a random-design analysis, our fixed-design analysis
allows a practitioner to control a subset of the columns of X, which would be
essential for designed experiments.

Suppose that the linear regression model specified in (1) is true (this model
did not specify an error distribution, just that they are iid mean 0 and variance
02 € (0,00)). We define p = X3 and we assume that rank(X) > 2 throughout
the paper, so X cannot correspond to an intercept-only model. Then we have
the following result:

Proposition 1. For all (n,p) € {1,2,...} x {1,2,...},
E[IX30) = XB|* = o> (v*r +1=7%) + (1 = 7)?||p = Pop*.

The proof of Proposition 1 is in Section A.1 of the Supplementary material.
When v = 1, which is least squares, E|[| X3! — X3||? = o?rank(X).

The right side of the equality in Proposition 1 is minimized when v = vyopt,
where

| — Pul?
ot = . 5
TPt G2 (ank(X) — 1) + lu — Pugl? ©)

So the best our procedure could do is when ||u— Py u||> = 0 (that is, the intercept-
only model is correct), in which case Yop; = 0 and E[|X3©) — Xj||? = 2. The
expression for y,p¢ enables us to construct a sample-based one-step estimator of
it, which is more computationally efficiency than cross validation.

4. Selection of v
4.1. Low-dimensional case

Let 62 = |Y — PxY||?/(n —rank(X)), which is an unbiased estimator of o2. To
construct an estimator of Yo, we use the ratio of | PxY — P Y||? —62(rank(X ) —
1), which is an unbiased estimator of yopt’s numerator, to ||PxY — P1Y||?, which
is an unbiased estimator of v,pt’s denominator. This ratio estimator can be
expressed as

|PxY — PY|]? — 6%(rank(X) — 1) B 6% (rank(X) — 1)
IPxY — PY|? IPxY — Y2
—1-1/F,

where F' is the F statistic that compares the intercept-only model to the full
model:
(Y — PY|? — Y — PxY|?)/(rank(X) — 1)
Y — PxY|]2/(n — rank(X))
_ |PxY — PY|? (6)
62(rank(X) — 1)

F =
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Since F' could be realized less than one (which corresponds to a fail-to-reject
the intercept-only model situation), we define our estimator of yop to be

A=(1-1/F) 1(F > 1) (7)

If the regression errors in (1) are Normal, n > rank(X), and rank(X) > 1,
then F has a non-central F-distribution with degrees of freedom parameters
rank(X) — 1 and n — rank(X); and noncentrality parameter | — Pul/?/o?.
Larger realizations of F' correspond to worse intercept-only model fits compared
to the full model, which makes 4 closer to 1.

We also explore two additional estimators of yops:

doo = (1 = 1/F) - 1(F > fo.0), (8)
Jos = (1 = 1/F) - 1(F > fo.05), 9)

where fgg and fgs are the 0.9 and 0.95 quantiles of the central F-distribution
with degrees of freedom rank(X) — 1 and n — rank(X). These estimators may
perform better when ¢ is near zero because they have a greater probability
of estimating vopt as zero than 4 has.

Interestingly, Copas [9] proposed to predict a future response value for the
ith subject with (1 — p)3'z; + pY, where p € [0,1] is estimated and f is the
ordinary least-squares estimator. They derived 1/F as an estimator of p from
the normal equations for the regression of Yyew,; on 3’%, (t=1,...,n), where
Yhew,i is an independent copy of Y;. They also discussed using truncation to
ensure their estimator of p is in [0, 1].

4.2. Consistency and the convergence rate of 4

We analyze the asymptotic performance of 4 when the data are generated
from (1) and n and p grow together. Define r = rank(X) and 6% = ||u — Pypl?.
The optimal tuning parameter value is a function of r and 62, so its value in the
limit will depend on these sequences.

Proposition 2. Assume that the data-generating model in (1) is correct, that
the errors have a finite fourth moment, and that r > 2. If p/n — 7 € [0,1) and
either r — 0o or 82 — oo, then 4 — Yopt =P 0 as n — oo.

The proof of Proposition 2 is in Section A.2 of the Supplementary material.
We see that consistency is possible whether the design matrix rank r grows.
If 7 is bounded, then consistency requires §% = |u — Pypul|* — oo, which is
reasonable even when the intercept-only model is a good approximation because
n is growing. One can also show consistency of 499 and 495 with 62 = o(r) added
to the assumptions for Proposition 2.

Next, we establish a bound on the rate of convergence of 4 with further
assumptions on the design matrix X and the error ¢.
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Proposition 3. Suppose that the assumptions of Proposition 2 hold, that the
errors in (1) are Gaussian, and that r > 6 is nondecreasing as n — oco. Then

Op(r=1/?) if 62 = O(r)
Y — Yopt = Op((52/r)’3/4) + Op(n71/2(52/r)*1/2) ifr — o0 andr = 0(52)
Op((6%)~%/*) + Op(n~=1/2(s2)71/2) ifr=0(1).

(10)

The proof of Proposition 3 is in Section A.3 of the Supplementary material.
From the definition of Yopt, we know that yeps — 0 when 6 = o(r), in which
case § — Yopt = Op(n~'/?) provided that r =< n. On the other hand, Yopt — 1
when 7 = 0(02). For example, 4 — Yopt = Op(n~1/2) provided that 62 < n?/3
and r is bounded. When 62 = o(r), 490, Y95 and 4 all have the same convergence
rate bound.

4.3. Tuning parameter selection in high dimensions

Estimating the unknown parameters in vop¢ is challenging when p > n and
rank(X) = n. For example, it is impossible to estimate the regression’s error
variance o2 without assuming something extra about p = X /. This is because
the data-generating model in (1) reduces to

Y=u+e,

where p has n unknown free parameters and € has iid entries with mean zero
and variance 0. So we have a sample size of 1 to estimate each p;, which is not
enough if we also want to estimate 2. An anonymous referee mentioned that
if there are replicated rows in X (which implies rank(X) < n), then one could
estimate o2 using the measured responses corresponding to these the repeated
TOWS.

We explore using cross-validation to choose a value of v that minimizes the to-
tal validation squared error in our numerical experiments. This cross-validation
procedure implicitly assumes that the response and predictor measurement pairs
for each subject are drawn from a joint distribution. As an alternative, we derive
a high-dimensional estimator of y,pt that estimates o2 with an assumption about
i. The following paragraphs introduce this estimator, which is not invariant to
invertible linear transformations of X.

Recall that vopr = 02/(c?(rank(X) — 1) + §2), where 62 = ||u — P ul|?. Since
Px is an identity operator when rank(X) = n,

E|Y — PY|?> =E|PxY — PY||? = o(rank(X) — 1) 4 6°.

So given an estimator &2 of 0%, we study the following plug-in estimator of Yopt:

N Y — PiY||? — 5%(rank(X) — 1)
7(6%) = max <Oa Y = PY|? ) (11)
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where the truncation at 0 is necessary to ensure that 4 € [0, 1]. We continue by
describing the estimator of o2 that we will use in (11).

If one ignores invariance and assumes Gaussian errors, then one could simul-
taneously estimate 8 and o2 by penalized likelihood with the same penalty used
in (2). However, this joint optimization is not convex. We avoid this nonconvex-
ity by modifying a reparametrized penalized Gaussian likelihood optimization
problem proposed by Zhu [33]. Let n = o~ ! and $* = 1. We estimate these
parameters with

Ak A . 1 * *
= angmin { vy - X6 - togtn) +allgn P} (12
(8% mERPx(0,00) L T

where 3* = (87, ...,8,) = (87, 81); and a > 0 be the tuning parameter for the
Ridge penalty. This choice of a was motivated by Liu et al. [22], who verified
that ridge regression (with tuning parameter «) can be used to consistently
estimate o2 provided that «||3||* = o(1). However, Liu et al. [22] use a different
estimator of o2 than the transformed solution to (12). We also examine other
choices for « in the simulations (see section 5.4).

The reparametrized optimization problem in (12) is strongly convex with the
following global minimizer:

~1/2
H= (n—lY’(I -X(X'X + ZnaM)_lX/)Y) ; (13)
B*

where M = diag(0,1,1,...,1) € RPXP, Since = o~ !, which is estimated
using (13), the corresponding estimator of o2 is

(X' X 4+ 2naM) XY,

5 =n"'Y'(I - K)Y, (14)

where K = X(X'X + 2naM)~'X’. Using &2 in (11), we propose a high-
dimensional estimator of 7yt which is given by
rank(X)—1

. Y/(I_ Py — a;an(k())() (I_ K))Y

7= Y'(I-P)Y ’

(15)

where truncation at 0 is not required since the quadratic term on the numer-
ator of (15) is non-negative definite. Liu et al. [22] proposed a bias corrected
version of &2, since the uncorrected estimator does not converge to o? under
the assumptions for Theorem 1 of Liu et al. [22]. Their corrected estimator is
5% = C~15?, where C = 1 — tr(K)/rank(X). Using 52 in (11), we also propose
alternative high-dimensional estimator of vopt by

rank(X)—tr(K)
Y'(I—P)Y

"Hr _ __rank(X)—1 N
Y[ - P — k-1 (g K))Y> "

Yo = max (O,

First, we have the following consistency result for the corrected estimator 7.
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Proposition 4. Assume that the data-generating model in (1) is correct, that
error distribution has a finite fourth moment, 6> = o(n), and dz(na) ™' = op(1),
where dy is the second-largest eigenvalue of XX'. Then 7. — Yopt —p 0 as
n — 0.

The proof is in Section A.4 of the Supplementary material. We see that 7, con-
verges t0 Yopt When Yopt — 0. The assumption that ds(na)™ = op(1) is met
when @ = n3/2
2y — P1Y||2)71, 52 = o(n), and dy = O(n) because

da(na)™t = 207524, ||y — PY|?
= 2n_5/2d2(52 + 2(/.1, — Pl,u)’e + 6’([ — Pl)E) —p 0,

since ||g[|? = Op(n).
We also established the following result for the uncorrected estimator 7.

Proposition 5. Assume that the data-generating model in (1) is correct, that
the error distribution has a finite fourth moment, and at least one of the follow-
ings holds:

e 02 =o(n) and dy(na)~! = op(1),
e n=0(6%) and na(d,)! = op(1),

where do (resp. dy,) is the secondly largest (smallest) eigenvalue of XX'. Then
¥ = Yopt —p 0 as n — oo.

The proof is in Section A.5 of the Supplementary material. Using the uncor-
rected error variance estimator &2 enables us to prove consistency of 4 when
either yopt — 0 or Yopt, — 1. When, ot — 0, we have consistency provided that
dy = O(n) and o = n* (2||Y — P1Y||2)_1 with any ¢ € (1,00). We test t = 2,3
in Section 5.4. On the other hand, when ~y,,¢ — 1, we have consistency provided
that d, <n and o =n (2||Y — P1Y||2)71.

Remark 1. Azriel [1] proved that “general” consistent estimation of the error
variance o? in high-dimensional linear regression is impossible without further
assumptions in fixed-X settings. Their proof is based on a Bayes risk approach
that exploits a prior that requires 62 ~ n, which is not what we assume in
Proposition 5 (6% = o(n) or n = 0(82)).

5. Simulation studies
5.1. Low-dimensional experiments

We conducted a lower-dimensional simulation study in which the data were
generated from the linear regression subjects model (1) with n = 300 and p €
{75,150,250}. Also, €1,...,€, are iid N(0,1). The design matrix X has ones
in its first column and independent draws from N,_;1(0,%) in the remaining
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entries on each row, where ¥, = 0.5 =, We randomly generated the regression
coefficient vector with the following equation:

f=X"(1,+72),

where 7 € {0, 1074,1072,1071,1079%,1,10%5, 10", 10'°, 102}; and Z is N, (0, I).
Then

/J,—PLU,Z(PX—Pl)(1p+TZ)=T(Px—P1)Z.

So 7 controls the size of % = ||y — Pypu|*.
We used 50 independent replications in each setting. In each replication, we
measured the performance of each estimator SBes using the same-X loss:

n"H X8 — X Best|?- (17)

The candidate estimators Bcst that we considered were the following:

2n-G: Lo-squared penalty with 10-fold cross validation for v (3).

2n-Or: Lo-squared penalty using the oracle vope in (5).

2n-Es: Lo-squared penalty using 4 in (7).

2n-Es90: Ly-squared penalty using 4go in (8).

2n-Es95: Ly-squared penalty using 4os in (9).

2n-Rep: Ly-squared penalty using 62 in (14), a = n(2|Y — P,Y|*)7!
in (12), and the corresponding 4oy = max(0, 1—1/Fyep), where Fiep=||PxY —
PY |2/ (5%(rank(X)—1)).

e O: Ordinary least square (OLS) estimator given by

B = x~v. (18)
e R: Ridge-penalized least squares [16]
Briage = argminyeg, ||Y — Xb||* + Aoy, (19)

where b = (by,b_1) with b_; = RP~!; 10-fold cross validation for the
selection of A.
e L: Lasso-penalized least squares [20]

Brasso = argming g, ||Y — Xb||> + X|[b_1]1, (20)

where 10-fold cross validation is used for the selection of A.

For the methods that require cross validation, A and  were selected from
{1077+0-257 : j = 0,1,--- ,44} and {£& : k= 0,1, ,99}, respectively. To facil-
itate the fairest comparison between our invariant methods and the ridge/lasso
methods, we used the following standardization process, which is the default
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process used by the R package glmnet: the ridge/lasso shrunken coefficient es-
timates are computed using the standardized design matrix X, defined by

1 —Xo8" —X387" ... —X,18 —X,5,]
0 Syt 0 0 0

0 5 : :

Xe=X , _
0 " 0
0 0 : Syh 0
K 0 0 0 Syt
= XT,

where Xj = n! Z;L:l X’Lj and SJQ = (TL — 1)71 Z:':l(Xm — Xj)Q for j €
{2,...,p}. Let e be the shrinkage estimator of the standardized coefficients.
Since all the S;’s will be positive, we invert T to estimate the original 8 with
T _13.. Our proposed fitted-value shrinkage procedures are invariant to this
standardizing transformation of X.

We display side-by-side boxplots of the same-X losses from the 50 replications
when p = 75 in Figure 1. Further numerical summaries of these results are in
Table 4 in Section B.2 of the Supplementary material. Without surprise, our
fitted-value shrinkage with oracle tuning 2n-Or performed the best among these
candidates. Our proposed estimator 2n-Es and its two variants 2n-Es95 and
2n-Es90 followed and generally outperformed OLS, Ridge, and Lasso when 7 >
10793, Of the fitted-value shrinkage estimators, 2n-Es outperformed 2n-Rep.
On the other hand, the modified thresholds 2n-Es90 and 2n-Es95 performed
better than 2n-Es for smaller values of 7 (that correspond to smaller values of
§2). Also, 2n-G outperformed Ridge, Lasso, 2n-ES, and 2n-Es95 for smaller
values of 7. Ridge and Lasso slightly outperformed 2n-Es when 62 was small,
but performed worse when §2 was larger.

In Figure 8 in Section B.1 of the Supplementary material, we graphed the
average same-X loss values over the 50 replications as a function of A:

fevs(N) = | X8 — XBx|*/n, (21)
fridge(N) = | X8 — X Bridgen||*/n, (22)

where 3, and BRidge;,\ are solutions for (2) and (19); and A € {10~7+0-01k . j —
0,1,...,1150}. This allows a further comparison of fitted-value shrinkage (3)
to Ridge regression (19). Further numerical summaries of these results are in
Table 10 in Section B.2 of the Supplementary material. The minimum average
same-X loss for fitted value shrinkage (2) was either less than or nearly equal
to that of Ridge (19). However, the range of values of A that corresponded to
average losses near the minima was much narrower for fitted-value shrinkage
than it was for Ridge when medium to large values of 7 were used.

We also display side-by-side boxplots of the observed same-X losses from the
50 replications when p = 150 in Figure 2 and when p = 250 in Figure 7 in
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F1G 1. Bozplots of the observed same-X loss values from the 50 replications when n = 300
and p = 75. We suppress “2n” from the third to the last estimators to simplify notation.

Section B.1 of the Supplementary material. In addition, graphs of the average
loss values as a function of A over A\ € {10~7+0:01F . j — (0 1,...,1100} when
p = 150 and p = 250 are in Figure 7 in Section B.1 of the Supplementary
material. Further numerical summaries for this simulation with p € {150,250}
are in Table 5-6, and Table 11-12 in Section B.2 of the Supplementary material.
These results with p € {150,250} are similar to results when p = 75: the oracle
method 2n-Or was the best and our proposed estimators 2n-Es90, 2n-Es95,
2n-Es were the most competitive when 7 > 1. However, the performance gap
between our procedure with non-oracle tuning 2n-G and our procedure using
oracle tuning 2n-Es when 7 > 1 has increased (Figure 2c¢, 2d). We expect this
is related to the narrower valley observed in the graph of the average same-X
loss as a function of the tuning parameter. As it was when p = 75, 2n-G was
the most competitive for smaller values of 7.

In Tables 7-8 in Section B.2 of the Supplementary material, we report 95%
simulation-based confidence intervals for the expected squared same-X loss dif-
ference (fitted value shrinkage minus Ridge). The confidence intervals are based
on 50 replications for each pair of (7, p). These differences were statistically in-
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F1G 2. Bozplots of the observed same-X loss values from the 50 replications when n = 300
and p = 150. See the caption of Figure 1 for more details.

significant when 7 was small, but were significant when 7 was larger (with fitted
value shrinkage outperforming Ridge). In Table 9 in Section B.2 of the Supple-
mentary material, we also report the average realization of |4 — vopt|> based on
100 independent replications from the same simulation setting. This quantity
increased with p, but remained stable.

5.2. Impact of invariance I: In the presence of categorical variables
with different reference level coding schemes

We generated X € R™*P to have 25 numerical predictors and 3 categorical pre-
dictors, where each categorical predictor had 5 levels, and the 25th numerical
predictor had interactions with the three categorical predictors. The design ma-
trix X had p =1+ 25+ 3 x4 x 2 = 50 columns including the intercept. The
n = 100 observations of the 25 numerical predictors were independent draws
from N5(0,X), where 35, = 0.517=k. Observations of each categorical predic-
tor were independently drawn from a 5-category multinomial distribution with
equal category probabilities. As they were before, €1, ..., €, are iid N(0,1).
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We organize the regression coefficient vector as 8 = (3., By) € R%°, where 3,
corresponds to the first 26 columns of X, which have the numerical predictors;
and By corresponds to the remaining 24 columns of X, which have the categorical
predictors and their interaction with the 25th numerical predictor. Let X, €
R100%26 he the matrix with the first 26 columns of X. We generated 3, =
X (126 4+ 7cZ.); where Z, ~ Nag(0, ). We also generated

By = (14X} Z5) % v,
v=(w,w) eR*,
w = (1,2,0,0,0,2,1,0,0,0,2,1) € R'?,

where * denotes the elementwise product of two vectors of same dimension;
Zp ~ Nog(0,1); Xy ~ Noy(0,%) with X, = 0.5V=*I; Z, is independent of Zy;
and X, is independent of X ;. We consider (7, 7y) in

{(107%,1072), (1,107%9), (1072, 1), (1,1), (10%%, 1), (1,10%), (102, 10°%) }.

The first 12 entries of 8¢ correspond to the 3 * 4 main effects columns for the 3
categorical predictors. The remaining 12 entries of 8¢ correspond to interactions
between the 3 categorical predictors and the 25th numerical predictor.

The first level of each categorical predictor was coded as the reference level
in this design matrix X. We call this “Coding-1". To illustrate the effects of
a coding change, we will also use a “Coding-2” design matrix X,, which is an
invertible linear transformation of X that uses the second, third, and fifth levels
of the three categorical predictors as the reference levels for the first, second,
and third categorical predictor, respectively.

The competitors were 2n-Es, 2n-Es95, 2n-Or, 2n-G, 2n-Rep, O, R, L,
and Group Lasso and its two variants. The Group lasso competitors were the
following:

e GL: Group Lasso estimator proposed by Yuan and Lin [29].

L
BaL = arbg Hrgnin Y — Xb||* + )\Z \/pi”b(i)”?:
ERP

i=1
where ¢ € {1,..., L} is the index of each group except for one intercept
column; p; is the size of the i-th group; and b(¥) is the corresponding

subvector.
e MGL: Modified Group Lasso proposed by Choi et al. [7].

L
Buar = arbg Dgnin |V — Xb||* + )\Z ||b(i)||2-
ERP

=1

e SGL: Standardized Group Lasso proposed by Simon and Tibshirani [24].

L
Bsar = arg min Y — Xb[2 + A3 /B X Db,
beRP

i=1

where X is the i-th submatrix.
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For the estimators that require tuning parameter selection, 10-fold cross valida-
tion was used. For GL, MGL, and SGL, we formed 31 groups: 25 single-member
groups corresponding to the numerical predictors, 3 groups corresponding to the
categorical predictors’ main effects, and 3 groups corresponding to the interac-
tion between the 25th numerical predictor and the three categorical predictors.

We display side-by-side boxplots of the same-X loss values from 50 replica-
tions in Figure 3. Further numerical summaries of these results are in Table 13 in
Section B.3 of the Supplementary material. Except for (7., 7) = (10%5,10%5)
and (10%°,1079%), 2n-Or was the best in Coding-2. Generally, 2n-Es was
second-best in Coding-2. The methods R, L, GL, MGL and SGL generally
performed well in Coding-1, which is not surprising considering the sparsity in
the coeflicient vector; however, in Coding-2, these methods were generally worse
than 2n-Es, which is invariant to this change in coding. This illustrates that
the invariance of our proposed estimators is advantageous.

5.3. Impact of invariance II: General full-rank transformation of
the model matriz (Low dimension)

In this example, the design matrix X € R™ P has ones in its first column
and its n row vectors (excluding the first entry) are drawn independently from
N,_1(0,%) where ¥, = 0.5V and (n,p) = (300,150). We generated the
regression coefficient vector 8 as f = u * v, where each element of v € RP
is an independent draw from the Uniform distribution on (27%~1,27%) with
¢ € {0,1}; and v = (1,v_1) € RP, where each element of v_; € RP7! is an
independent draw from Ber(s) with s € {0.025,0.05,0.1,0.2,0.3}. We generated
Y by (1).

We denote the model fitting scheme with this X as “Coding-1". We also use
a transformed design matrix X, = X7, where T is a Gram-Schmidt orthogo-
nalization of a matrix with all of its entries drawn independently from N(0,1).
We refer the transformed design matrix X, as “Coding-2”.

In Figure 4, we display side-by-side boxplots of the observed same-X losses
from the 50 replications from representative settings when v = 0. Further nu-
merical summaries of the results are in Table 14 in Section B.4 of the Supple-
mentary material. When 7 = 1, Lasso was the best in Coding-1 with Ridge
following next. However, in Coding-2, 2n-Or was the best and 2n-Es was the
second-best regardless of ¢ and s. Ridge and Lasso were significantly worse than
our proposed estimator as well as OLS under Coding 2. This further illustrates
the benefits of invariance.

5.4. High-dimensional experiments

We used the same data generating model as in Section 5.1 except that n = 200,
p = 300, and o € {2,3}. Since 2n-Es is not applicable in high dimensions, we
tested variants of 2n-G that used 5, 10, and n-fold cross validation. However,
except for a few cases, the number of folds used for tuning parameter selection
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F1a 3. Bozplots of the observed same-X loss values from the 50 replications in the simulation
settings of Section 5.2. We suppress “2n” from the third to the last estimators for notational
simplicity. Each plot is labeled with the (¢, 7y, Coding number) value used.

for 2n-G did not have a significant impact on the performance. So we only
present results from 10-fold cross validation with the same label 2n-G as in
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F1c 4. Boxplots of the observed same-X loss values from the 50 replications in the simulation
settings of Section 5.3 when ¢ = 0. We suppress “2n” from the third to the last estimators
for notational simplicity. Each plot is labeled with the (s, Coding number) value used.

the previous sections. In addition, we tried different « values that control the
matrix K in (16) for the following variants of 2n-Rep:
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2n-Repl: Same as original 2n-Rep with a = n(2||Y — P Y||?)~L
2n-Rep2: 7, (16) using &2 with a = n3/2(2||Y — P,Y[]?)~".
2n-Rep3: Same as original 2n-Rep with a = n?(2||Y — P, Y|?)~L.
2n-Rep4: Same as original 2n-Rep with a = n3(2||Y — P Y|?)~L.

2n-Repl, 2n-Rep3, and 2n-Rep4 are based on our variance estimator (15);
and 2n-Rep2 is based on the variance estimator proposed by Liu et al. [22].
From Proposition 4, 2n-Repl is suitable when 62 = ||y — Py p|? is large relative
to no?, e.g. Yopt — 1. In contrast, based on Proposition 4 and 5, 2n-Rep2,
2n-Rep3, and 2n-Rep4 are suitable when 6% = || — Py u|? is small relative to
no?, e.g. Yopt — 0. As we will illustrate below, 2n-Rep3 generally outperforms
2n-Rep2 and 2n-Rep4. So we recommend using 2n-Rep1 for stronger signals
and 2n-Rep3 for weaker signals.

In Figure 5, we display side-by-side boxplots of the observed same-X losses
from the 50 replications when n = 200 and p = 300. There are additional box-
plots displayed in Figure 11 in Section B.1 of the Supplementary material. Fur-
ther numerical summaries of the results are in Table 15-17 in Section B.5 of the
Supplementary material. In general, when 62 = || — Py u|? was large relative to
no?, which corresponds to the situation Yopt — 1, 2n-Repl performed substan-
tially better than Ridge, Lasso, 2n-G, 2n-Rep2, and 2n-Rep4 (Figure 5b, 5d).
The method 2n-Rep1 also outperformed 2n-Rep3, but the same-X prediction
difference was relatively smaller than the others. Furthermore, larger §2 led to
improved tuning-parameter selection for 2n-Repl. However, 2n-G, Ridge, and
Lasso performed better when §2 was small relative to no?. In this setting, which
corresponds to Yopt — 0, 2n-Rep2, 2n-Rep3, and 2n-Rep4 performed as well
as or better than Ridge, Lasso, and 2n-G (see Figure 5a, 5c, 5e). On the other
hand, 2n-Rep1l struggled for this case. The method 2n-Rep3 was relatively
more stable than the other 2n-Rep versions, and it consistently outperformed
Ridge and Lasso regardless of 6.

In Figure 12 (see Section B.1 of the Supplementary material), we display aver-
age loss values over the 50 replications as a function of X over A\ € {10~7+0-01F .
j =0,1,...,1100} when n = 200 and p = 300 (see (21) and (22)). Further
numerical summaries of these results are in Table 18 in Section b.5 of the Sup-
plementary material. These results look similar to lower-dimensional results dis-
played in Figures 8-10 (see Section B.1 of the Supplementary material), except
the curve valleys are narrower for fitted-value shrinkage.

5.5. Impact of (approximate) invariance III: General full-rank
transformation of the design matriz (High dimension)

We again generated X € R™*P to have ones in its first column and and its n row
vectors (excluding the first entry) were drawn independently from N,_1(0,X)
where ¥, = 0.5V and (n,p) = (200,300). We used (1) again for the data
generating procedure, where we consider o € {1, 3}.

We generated 8 = uxv, where each element of u € R? is an independent draw
from the Uniform distribution on (1/4,1/2) when ¢ = 1; and on (1/6, 1/3) when
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F1Gc 5. Bozplots of the observed same-X loss values from the 50 replications when (n,p) =
(200, 300). Each plot is labeled with the (o,T) value used.

o=3;v=(1,v_1) € RP, where each element of v_; € RP~! is an independent
draw from Ber(s). When ¢ = 1, we vary s € {0.025,0.05,0.1,0.2,0.3}, and
consider 2n-Rep1 for the proposed estimator. On the other hand, when o = 3,
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we vary s € {0.01,0.02,0.03,0.04,0.05}, and consider 2n-Rep3 for the proposed
estimator as well as 2n-Rep2, which is known to be efficient in the same setting
that 2n-Rep3 is (see Proposition 4). We dropped 2n-Rep4, since it showed
relatively unstable performance in comparison to 2n-Rep3 in Section 5.4.

As in Section 5.3, we denote the model fitting scheme with this X as “Coding-
17. We also use a transformed design matrix X, = XT', where T through a Gram-
Schmidt orthogonalization of a matrix with all of its entries drawn independently
from N(0,1). We refer the transformed design matrix X, as “Coding-2".

In Figure 6, we display side-by-side boxplots of the observed same-X losses
from the 50 replications in few representative settings. Further numerical sum-
maries of the simulation results are in Tables 19-20 in Section B.6 of the Sup-
plementary matrial. When 7 = 1, Lasso was generally the best in Coding-1
and Ridge was second best. However, in Coding-2, 2n-Or was the best and
2n-Repl was second best, regardless of 1) and s. Ridge and Lasso performed
significantly worse than 2n-Repl after transformation.

On the other hand, when o = 3, 2n-Or achieved the best performance for
both Coding 1 and 2 except for s = 0.05 where Ridge was the best for both
Coding 1 and 2. For s € {0.01,0.02,0.03,0.04}, 2n-Rep3 was competitive, so
were 2n-G and 2n-Rep2, which is similar to the pattern observed in Section 5.4
when 62 was low.

Although the 2n-Rep methods lack exact invariance in high dimensions, their
performance difference between Coding 1 and Coding 2 was not significant.

6. Data examples
6.1. Low dimensional data experiments

We compared our proposed fitted-value shrinkage procedures to competitors on
three data sets. We used the same non-oracle estimators as the previous section
except we excluded 2n-Es90 because it performed similarly to 2n-Es95. Each
data example was analyzed using the following procedure: For 50 independent
replications, we randomly selected 70% of the subjects for the training set and
used the remaining subjects as the test set. Tuning parameter selection was done
using the training set and prediction performance was measured using squared
error loss on the test set. The following is the short description of the three
low-dimensional data set we examined.

(FF): The Forest Fire (FF) data are from from Cortez and Morais [10] and are
stored at the UCI Machine learning repository via https://archive.
ics.uci.edu/dataset/162/forest+fires. There are 517 observations
corresponding to forest fires in Portugal from 2000 to 2003. The re-
sponse is the total burned area (in ha) from the fire, which was trans-
formed with z — In(x + 1), which was suggested by Cortez and Morais
[10]. There were originally 13 attributes. However, in the pre-processing
step, since we are not focusing on spatio-temporal methods, we excluded
time, date and location coordinates. After this processing, the full-data
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Fic 6. Boxplots of the observed same-X loss values from the 50 replications in the simulation
settings of Section 5.5. We suppress “2n” from the third to the last estimators for notational

simplicity. Each plot is labeled with the (o, s, Coding number) value used.
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design matrix had (n,p) = (517,9) with 8 numerical-variable columns
and one intercept column.

(GDP): The GDP data (GDP) are from Barro and Lee [4]. These data consist
of 161 observations of GDP growth rates for the two periods 1965-1975
and 1975-1985. The data are also in the R package quantreg [20]. The
response is Annual change per capita GDP. There are 13 numerical
predictors, e.g. Initial per capita GDP, Life expectancy. We also added
a quadratic term for the predictor Black Market Premium. After
processing, the full-data design matrix has (n,p) = (161, 15).

(FC): The Forecast data set (FC) is from Cho et al. [6] for the purpose of

bias correction for the Local Data Assimilation and Prediction System
(LDAPS), which is a numerical weather report model used by Korea Ad-
ministration (KMA), Seoul, South Korea. It has a public access through
https://archive.ics.uci.edu/dataset/514/bias+correction+of+
numerical+prediction+model+temperature+forecast.
The data are regional observations from 2013 to 2017, from which
we randomly selected 500. We used the true maximal temperature of
the next day as the response and removed date, station ID, and true
minimal temperature of the next day. The full-data design matrix had
(n,p) = (500, 20).

In Table 1, we display mean squared prediction errors averaged over 50 train-
ing/test set splits for the three data examples (FF), (GDP), and (FC). Our
fitted-value shrinkage estimators performed similarly to Ridge and Lasso, which
both lack invariance to invertible linear transformations of the design matrix.

TABLE 1
The performance comparison table for three data examples in Section 6.1. The values are
the mean squared prediction errors averaged over 50 training/test set splits. The numbers in
parentheses are normalized sample standard deviations. The column labels are defined in
Section 5.1. Boldface indicates the best model. Underlined is our main proposed estimator.

Performance comparison table

Data set 2n-Rep 2n-G 2n-Es 2n-Es95 OLS Ridge LASSO

Forest Fire 2.0031 2.0160 2.0017 1.9792 2.1834 2.0189 2.0572

(FF) (0.0301) (0.0316) (0.0300) (0.0293) (0.0551) (0.0322) (0.0411)
GDP growth 3.106e-04 3.125e-04 3.139¢-04 3.139e-04 3.231e-04 3.112e-04 3.149e-04
(GDP) (7.465e-06) | (7.615e-06) | (7.706e-06) | (7.706e-06) | (8.120e-06) | (8.126e-06) | (8.307e-06)

Forecast 1.9045 1.8997 1.9028 1.8933 2.0489 1.8990 1.8978

(FC) (0.0327) (0.0325) (0.0327) (0.0318) (0.0371) (0.0321) (0.0318)

6.2. Low dimensional data analyses with categorical variables and
their interactions

We analyzed two data sets from existing R packages to illustrate the perfor-
mance of our estimators when categorical variables with interactions are present
in the model. The competitors and setup for the data experiments are nearly
identical to the previous Section 5.2, except we added three new fitted-value
shrinkage estimators that shrink toward the submodel without interactions in-
stead of the intercept-only model. We refer the readers to Section C of the
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Supplementary material for the definition of the submodel shrinkage. These
new submodel shrinkage methods are labeled 2n-Repsb, 2n-Gsb, 2n-Essb,
2n-Es95sb, and they respectively correspond to 2n-Rep, 2n-G, 2n-Es, and
2n-Es95.

The following is a description of the data examples:

(Dia-1): The Diamonds data set is from Diamonds data frame in the R package
Stat2Data [5], and it was obtained from https://awesomegems. com/.
The are n = 351 subjects and the response is the price of the diamond
(in dollars). We divided price per 1000 and used it for the response
variable. We further removed total price from the predictors. There
are 2 categorical predictors: color (with levels D to J) and clarity (with
levels IF, VVS1, VVS2, VS1, VS2, SI1, SI2, and SI3). We divided color
into 5 levels (D, E, F, G, and (H, I, J)), and categorized the clarity
into 3 levels ((IF, VVS1, VVS2), (VS1, VS2), (SI1, SI2, SI3)). We
used reference-level coding in the design matrix, where (H, I, J) was
the reference level for color; and (SI1, SI2, SI3) was the reference level
for clarity. Interactions between color and depth as well as clarity and
depth were added. The full design matrix has (n,p) = (351, 15) and
the submodel with linear terms only has p = 9.

(Dia-2): The setting is identical to that of (Dia-1), except we used the category
(VS1, VS2) as the reference level for coding the categorical predictor
clarity.

(NG-1): The NaturalGas data is from Baltagi [3], and is in the R package
AER [19]. There are 138 observations on 10 variables. We removed
state name and year and added an interaction between state code and
heating degree days. We set the response as consumption divided by
10000. The reference level for state code, which is the only categorical
predictor, was set to 35 (NY). The full-data design matrix had (n,p) =
(138,17) and the submodel without interactions had p = 12.

(NG-2): This is the same as (NG-1), except the reference level for state code
was set to 5 (CA).

We display mean squared prediction errors averaged over 50 training/test set
splits for these data examples in Table 2. Our proposed estimators performed
similarly or better than Ridge and Lasso. We also notice that changing the
way that categorical predictors were encoded in the design matrix changes the
performance of Ridge and Lasso, which lack invariance. Furthermore, Group
Lasso and its two standardized versions had unstable performance when the
base level coding was changed, which does not happen to our invariant methods.

6.3. High dimensional data experiments

For high-dimensional data examples, we randomly selected subjects from exist-
ing data sets so that there were fewer subjects than predictors. We used the
same splitting and evaluation procedure that we used in Sections 6.1 and 6.2.
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TABLE 2
The performance comparison table for two data sets in Section 6.2 with two different coding
strategies. The values are mean squared prediction errors averaged over 50 training/test
splits. The numbers in parentheses are normalized sample standard deviations. The labels
are defined in Section 5.1 except that last three are illustrated in Section 6.2. The suffix “sb”
for each estimator corresponds to shrinking towards the submodel without interactions
instead of shrinking towards the intercept-only model (see Section C for details). Boldface
indicates the best model. Underlined are our main estimator and its submodel shrinkage

variant.
Performance comparison table

Data set 2n-Rep 2n-Repsb 2n-G 2n-Gsb’ 2n-Es 2n-Essb | 2n-Es95 | 2n-Es95sh OLS Ridge LASSO GL MGL SGL
Diamonds 1.2538 1.2557 1.2545 1.2501 1.2507 1.2599 1.2587 1.2668 1.2675 1.2699 1.2693 1.2569

(Dia-1) (0.0303) | (0.0300) | (0.0298) | (0.0293) | (0. (0.0294) (0.0294) | (0.0293) | (0.0297) | (0.0297) | (0.0290) | (0.0290) | (0.0301)
Diamonds 1.2538 1.2557 1.2545 1.2501 1.2557 1.2507 1.2599 1.2587 1.2615 1.2624 1.2697 1.2677 1.2592

(Dia-2) (0.0303) | (0.0300) | (0.0298) | (0.0293) | (0.0295) | (0.0294) (0.0294) | (0.0293) | (0.0296) | (0.0299) | (0.0286) | (0.0287) | (0.0296)
Natural gas 5.2558 5.2485 5.2899 5.2711 5 5.2523 5.2545 5.2913 5.1254 5.2972 5.3010 5.1584

(NG (0.2285) | (0.2262) | (0.2282) | (0.2217) 5 (0.2285) | (0.2257) | (0.2279) | (0.2195) | (0.2285) | (0.2241) | (0.2242) | (0.2216)
Natural gas 5.2558 5.2486 5.2899 5.2711 5.2559 5.2523 5.2559 5.2523 5.2545 5.3563 5.2889 5.2261 5.2010 6.7549

(NG-2) (0.2285) | (0.2262) | (0.2282) | (0.2217) | (0.2285) | (0.2257) | (0.2285) | (0.2257) | (0.2279) | (0.2195) | (0.2285) | (0.2171) | (0.2168) | (0.2877)

The competitors are same as those considered in Section 5.4 except that we
excluded 2n-Rep4 which had nearly identical performance to 2n-Rep3 in the
simulation study. The following is a description of the examples:

(mtp): The data set mtp comes from Karthikeyan et al. [18] and is available at
the OpenML repository via https://www.openml.org/search?type=
data&status=\active&id=405. There are 4450 subjects with 203 nu-
merical measurements. The response is 0z203. We randomly selected
120 subjects and removed the 23 predictors that had fewer than 30 dis-
tinct values, which ensured that there were no constant columns in the
120-row design matrix other than the intercept column. The full-data
design matrix had (n,p) = (120, 180).

(topo): The topo.2.1 data set is from Feng et al. [12] and is available through
the OpenML repository via https://www.openml.org/search?type=
data&sort=runs&id=422\&status=active. There are 8885 subjects
with 267 numerical measurements. The response is 0z267. We randomly
selected 180 subjects and removed the 22 predictors that had fewer than
30 distinct values. After this, there were 34 constant columns (other
than the intercept) that were also removed. The R code for this pro-
cessing is in Section D.0.1 of the Supplementary material. The full-data
design matrix has (n,p) = (180, 214).

(tecator): The tecator data set comes from Thodberg [25], and is also avail-
able from OpenML repository via https://www.openml.org/search?
type=data&status=active&sort=\runs&order=desc&id=505. We ran-
domly selected 100 subjects and removed 22 principal components.
The response is fat content. The full-data design matrix had (n,p) =
(100, 103).

In Table 3, we report the mean squared prediction errors averaged over 50
training/test set splits for these data examples. We see that 2n-Rep2, 2n-
Rep3 had similar prediction performance compared to 2n-Repl. In contrast
to its same-X loss performance in simulations, the cross validation version of our
method 2n-G gave reasonable out-of-sample prediction performance. Generally,


https://www.openml.org/search?type=data&status=\active&id=405
https://www.openml.org/search?type=data&status=\active&id=405
https://www.openml.org/search?type=data&sort=runs&id=422\&status=active
https://www.openml.org/search?type=data&sort=runs&id=422\&status=active
https://www.openml.org/search?type=data&status=active&sort=\runs&order=desc&id=505
https://www.openml.org/search?type=data&status=active&sort=\runs&order=desc&id=505
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2n-Repl and 2n-Rep2 performed competitively compared with Ridge and
Lasso, and 2n-Rep3 followed the next within 2n-Reps.

TABLE 3
The performance comparison table for three high dimensional real data sets in Section 6.3.
The values are mean squared prediction errors averaged over 50 replications. The numbers
in parentheses are normalized sample standard deviations. The labels are defined in Section
5.4. Boldface indicates the best model.

Performance comparison table

Data set OLS 2n-G Ridge LASSO 2n-Repl 2n-Rep2 2n-Rep3
mtp 0.5075 0.0266 0.0262 0.0227 0.0257 0.0261 0.0258
(mtp) (0.0592) (0.0010) (0.0027) (0.0017) (0.0008) (0.0009) (0.0008)

topo.2.1 || 0.07524 0.00085 0.00096 0.00087 0.00084 | 0.00083 | 0.00084
(topo) || (2.72e-02) | (2.75¢-05) | (7.71e-05) | (3.27¢-05) | (3.08¢-05) | (2.73¢-05) | (3.08¢-05)
tecator 2.4400 2.4592 2.7251 2.7120 2.4266 2.4318 2.4733

(tecator) || (0.2359) | (0.2348) | (0.1913) | (0.1940) | (0.2202) | (0.2188) | (0.2148)

7. Discussion

Lasso and ridge-penalized least squares are popular and powerful in practice.
However, their fitted values lack invariance to invertible linear transformations
of the design matrix, which is undesirable when there are categorical predictors
and interactions. Our simulation studies and data analyses illustrated that our
proposed method performed comparably to ridge-penalized least squares, and
so we recommend that practitioners use our method in any problem that they
would use ridge-penalized least squares. Our method serves as a companion to
ridge-penalized least squares, with the advantage of preserving invariance to
invertible linear transformations of the design matrix.

The fitted-value shrinkage idea presented here to fit linear regression models
with invariance can be extended to more complicated settings. For example, one
could fit a logistic regression model by minimizing the negative loglikelihood plus
the penalty \|| X3 — @1,]|?, where 1 is the sample log-odds that the response
takes its first category. We are currently developing this procedure.

A Bayesian formulation of our method may also be interesting. In addition,
one could study methods that combine our proposed invariant shrinkage penalty
with regular shrinkage penalties like the lasso or ridge.
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