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Abstract: The analysis of paths in undirected graph models can be used
to quantify the relevance of the strength of association in multiple paths
connecting a pair of vertices of the graph. Some results are available in
multivariate Gaussian settings as the covariance of two variables can be
decomposed into the sum of measures related to paths joining the variables
of the underlying graph. This paper studies the analysis of paths in undi-
rected graph models for binary data, with special focus on Ising models,
where the propagation of the variable status through multiple paths join-
ing a pair of vertices is an aspect of interest. A novel logistic regression
approach for baseline events in multi-way tables is proposed to show that
a parameter of pairwise association can be computed by the sum of com-
ponents related to paths. These components are based on products of odds
ratios which are typically used to measure the dependence represented by
the edges in Ising models. Specifically, two parametric decompositions are
developed to gain insight on a twofold aspect of interest: the relevance of
the multivariate dependence within each path connecting a pair of vertices
and the interaction between the multivariate dependence in each path and
in the rest of the graph. The results are illustrated through an application
to cyber-security risk assessment in industrial networks.

Keywords and phrases: Active path, collpased table, dependence ra-
tio, mean parameter decomposition, odds ratio, undirected graph, Yule’s
measure.
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1. Introduction

Graphical Markov models are extensively used in contexts of high complexity
to reveal independence structures in multivariate distributions; see Wermuth
and Cox (2015) and Maathuis et al. (2019) for recent literature reviews and
applications in several scientific fields. Undirected graph models (Lauritzen,
1996) represent a relevant exception where missing edges between vertices of
the graph correspond to conditional independencies for the variables associated
to the vertex set. Non-missing edges are also relevant for the specification of
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graph attributes as paths or cliques. The set of paths joining two vertices is of
special interest since it gives a picture of the relationship between the related
pair of variables and provides insight to interpret the multivariate dependence
of variables in the path setting (Cox and Wermuth, 2008).

In graphical modeling, path analysis has a long tradition and dates back to
Wright (1921) who studied causal interpretation of directed paths in directed
acyclic graph models. The use of path analysis in Gaussian undirected graph
models has been introduced only more recently by Jones and West (2005) to
quantify the dependence relationships in multiple paths. They propose a decom-
position of the covariance for a pair of variables into the sum of path weights
which are function of the partial correlation coefficients related to the edge set of
each path. A broad analysis and interpretation of this result have been later pro-
vided by Roverato and Castelo (2020) who derive a generalized decomposition
of a measure of association, named the inflated correlation coefficient.

This paper discusses the use of path analysis in undirected graph models for
discrete distributions, which, to the best of our knowledge, is not explored in
the literature. Specifically, an approach for the analysis of paths is proposed in
Ising models (Ising, 1925) for binary data to study the intensity of the propaga-
tion of the variable status in multiple paths (Marsman et al., 2018). The Ising
model, originally introduced to represent the joint distribution of magnetic solid
materials in a lattice (Besag, 1974), is an undirected graph model for atomic
variables where the probability of becoming “active” or “non-active” for each
variable depends only on the status of its neighbours (Ravikumar, Wainwright
and Lafferty, 2010). Regardless of the applications in statistical physics, these
models are increasingly used to study the co-occurrence of patterns of homolo-
gous variables as symptoms, psychological traits or disorders (Kruis and Maris,
2021). They are also employed for the analysis of catastrophic or cybersecurity
risks (Denuit and Robert, 2022), as well as to model multivariate binary autore-
gressive time series in finance (Campajiola et al., 2021). Paths identify special
patterns of variables in a graph and define a multiple way for the transition of
the variable status between two vertices. The proposed approach to path analy-
sis provides a decomposition of a parameter of marginal association between two
variables into the sum of interpretable measures which can be used to compare
the intensity of the transition of the variable status across different paths.

The pairwise marginal probability is a mean parameter for the Ising model
and can be considered as a measure of marginal association whose strength
is determined with respect to the departure from the independence condition,
according to the literature on the dependence ratio parameter (Ekholm, Smith
and McDonald, 1995). Two parametric decompositions for the probability of
the co-occurrence of a couple of variables are derived based on the path setting
joining the related vertices. A novel logistic regression approach for baseline
events in multi-way tables is developed and the properties are formally derived
to prove that the proposed decompositions, based on path dependence measures,
are function of the odds ratio parameters which are typically used to detect
conditional associations in binary undirected graph models (Whittaker, 1990).
In turn, these decompositions are alternative path-dependent mappings between
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the mean and the canonical parameter in Ising models. The first decomposition
provides insight to quantify the relevance of the multivariate dependence in each
path and to interpret the propagation of the variable status in multiple paths.
The second decomposition is complemented by the inclusion of a parameter
inspired on Yule’s measure of association (Yule, 1900) with the aim to shed light
on the relationship between the dependence structure of the variables inside and
outside the path. An application of these results is discussed for the analysis of
cyber-security risk in an industrial network system where the propagation of a
cyber attack can run through the path setting of the underlying graph.

2. Preliminaries

2.1. Background and notation

Given a finite set V , let XV = {Xj}j∈V be a binary random vector with levels
i ∈ IV , where IV = {0, 1}|V | is a 2|V | probability table. Any variable Xj is said
to be active when it takes level 1 and non-active otherwise. Let π = (πD)D⊆V

be the probability parameter for the joint distribution of XV , where the generic
element

πD = P (XD = 1D, XV \D = 0V \D), D ⊆ V

is the probability of the event associated to the cell iD of the table IV ; 1D
defines a vector of 1s of size |D| and 0V \D is defined accordingly. Then, πD is
the probability that the random vector XD is active and the rest of variables
XV \D is non-active. If the vector XV follows a multivariate Bernoulli distri-
bution P (XV ;π), let logψ = (logψD)D⊆V be the log-linear parameter vector
which is the canonical parameter in the exponential family theory; see Barndorff-
Nielsen (1978). The mapping between the probability and canonical parameter
is based on the Möbius transformation (Lauritzen, 1996) that is a log-linear
transformation of the probabilities πD ∈ π,

logψD =
∑

D′⊆D

(−1)|D\D′| log πD′ , log πD =
∑

D′⊆D

logψD′ , D ⊆ V. (1)

Example 1 Given two binary variables {X1, X2}, let π = (π∅, π1, π2, π12)T be
the set of joint probabilities. The vector logψ = (logψ∅, logψ1, logψ2, logψ12)T
of canonical parameters is obtained as a suitable log-linear combination of joint
probabilities:

logψ∅ = log π∅, logψ1 = log π1

π∅
,

logψ2 = log π2

π∅
, logψ12 = log π11 × π∅

π1 × π2
.

The non-active status of the variables is used as baseline event {X1 = 0, X2 = 0}
to compute the log-linear combinations.
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Fig 1. Ising graphical models for the random vector XV = {Xa, Xb, X1, X2, X3}; variables
Xa, Xb represent the pair of interest for the analysis of paths.

For any j ∈ V , the parameter ψj is the odds for the variable Xj , for any pair
j, k ∈ V , the parameter ψjk is the conditional odds ratio for the variables Xj , Xk,
both computed in the full table IV . The odds ratio measures the strength of
association between Xj and Xk given a fixed value, the baseline non-active level
XV \jk = 0V \jk, of the remaining set of variables. The odds ratio is often in-
terpreted on the log-scale because logψjk > 0 denotes a positive association
between Xj and Xk as well as a negative association is given by logψjk < 0.
Parameters ψD, with D ⊆ V and |D| > 2, are higher-order measures of associa-
tion based on combination of odds ratios. Independence models can be specified
by imposing zero constraints on log-linear parameters (Whittaker, 1990), specif-
ically, for any pair j, k ∈ V ,

Xj⊥⊥Xk|XV \jk if and only if logψD = 0, j, k ∈ D ⊆ V.

Given the product Ψ =
∏

D⊆V ψD, let ΨD be any sub-product including only
terms ψE with E ⊆ D, for any D ⊆ V . From equation (1), πD = ΨD is the
probability that only variables in XD are active. The mean parameter of the
joint distribution of XV is defined by the vector μ = (μD)D⊆V where

μD = P (XD = 1D), D ⊆ V,

is the probability that the event iD in the marginal table ID = {0, 1}|D| occurs,
that is, the probability that variables in XD are active regardless of the status
of other variables. For any pair D,E of disjoint subsets of V , the conditional
probability

πD|E = P (XD = 1D, XV \D∪E = 0V \D∪E |XE = 1E), D,E ⊆ V, D ∩E = ∅,

denotes the probability of the event iD in the slice of the table IV defined by
iE ∈ IE . Then, πD|E is the probability that only variables in XD are active
given that variables in XE are active as well.

The random vector XV is associated with a given undirected graph G = (V, E)
where V is a set of vertices/nodes and E is a set of pairs of vertices; if the couple
{j, k} ∈ E , the vertices j and k of the graph are joined by an undirected edge; see
Figure 1. A path δ is defined by an ordered sequence (δ1, δ2, . . . , δm) of distinct
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vertices, with δ1, δ2, . . . , δm ∈ V , such that any couple of adjacent vertices in the
sequence is joined by an edge in G. Repetition of vertices is not allowed in this
definition of paths. Let Δab be the set of all paths with endpoints a, b ∈ V where
the generic element of the set is a path δ = (δ1, . . . , δm) with {δj , δj+1} ∈ E ,
for any couple of adjacent vertices. The set of paths joining a and b in the
graph of Figure 1(a) is {(a, b), (a, 1, 2, b), (a, 2, b)}. An active path occurs when
all variables along the path are active.

2.2. Ising model

The Ising model is a special type of independence model for the binary vector
XV over an undirected graph G.

Definition 1 Given a random vector XV of binary variables associated to an
undirected graph G = (V, E), the Ising model is the family of Ising probability
distributions PG(XV ;ψ) where log(ψjk) = 0 for every pair {j, k} /∈ E. The
probability parameters are

πD ∝
{ ∏

j∈D

ψ
xj

j ×
∏

j,k∈D:{j,k}∈E
ψ
xjxk

jk

}
, xj , xk ∈ {0, 1}, D ⊆ V. (2)

The Ising model was originally introduced by Ising (1925) to model solid mag-
netic materials where each variable represents an atom having a spin in one
of two states, active or non-active. It is a special case of hierarchical log-linear
model for binary random vectors where log(ψjk) = 0 if {j, k} /∈ E and logψD = 0
for any |D| > 2 with D ⊆ V . Ising models represent a class of graphical
independence models where, for any pair {j, k} /∈ E , logψjk = 0 and then
Xj⊥⊥Xk|XV \jk.

Example 2 The Ising model in Figure 1(a) is defined by the independence
statements X3⊥⊥X1|{X2, Xa, Xb}, X3⊥⊥Xa|{X1, X2, Xb}, X3⊥⊥Xb|{X1, X2, Xa}
and X1⊥⊥Xb|{Xa, X2, X3}. The model parameters are the odds ψa, ψb, ψ1, ψ2, ψ3
and the odds ratios ψab, ψa1, ψa2, ψb2, ψ12, ψ23 for the probability table IV .

Based on the ferromagnetism principle in statistical physics, magnets have
the general tendency to be aligned as well as a set of atomic homologous variables
(e.g., symptoms, risk factors) may tend to have a synchronized behavior of their
status. The tendency for pattern of variables to be aligned depends on the
intensity of the propagation or of the transition of their status in the graph
which is measured by positive edge parameters logψjk. Nowadays, there is an
increasing use of Ising models to study the co-occurrence of the active status for
patterns of variables; see Marsman et al. (2018) for an interesting interpretation
of Ising models in network psychometrics.

A path represents a special pattern of variables in a graph since it shows a
specific track for the status propagation. More generally, the set of all paths
joining a pair of vertices a, b ∈ V represents the multiple propagation track
between variables Xa and Xb. Studying the intensity of the transition across
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active paths provides insight on the co-occurrence of Xa and Xb and on the
simultaneous behavior of variables along the paths.

This paper studies path-based mappings between the mean parameter μ and
the canonical parameter log(ψ) to derive a decomposition of the marginal prob-
ability μab of Xa and Xb to be active. These decompositions are based on sums
of comparable measures directly related to the strength of association and to the
intensity of the status transition in multiple paths joining the vertices a, b ∈ V .

2.3. A preliminary result

The mapping between the mean parameter μab and the canonical parameter
vector log(ψ) is analytically available since for any a, b ∈ V ,

μab =
∑

E⊆V \ab
πabE =

∑
E⊆V \ab

( ∏
F⊆abE

ψF

)
, (3)

where abE is used as shorthand notation for the set a∪b∪E. This equation does
not directly provide insights in terms of path analysis since the contribution of
each path δ ∈ Δab to compute μab is intrinsically embedded in equation (3).
The following lemma, instead, derives a decomposition of μab which depends on
the graphical path setting.

Lemma 1 Let PG(XV ;ψ) be an Ising model. The marginal probability μab is

μab =
∑

δ∈Δab
πδab∑

δ∈Δab
πδ|ab

, (4)

where Δab is the set of paths joining the pair a, b ∈ V of vertices.

Proof. From the definition of conditional probability we have

μab = πδab

πδ|ab
, δ ∈ Δab. (5)

The result follows by averaging equation (5) across all paths δ ∈ Δab including
the normalized weights

πδ|ab∑
δ∈Δab

πδ|ab
, δ ∈ Δab. (6)

�
The marginal probability μab is decomposed into the sum of the joint prob-

abilities πδab that the path δ and the vertices a, b are active and the rest of the
network is non-active, normalized with the sum of the conditional probabilities
πδ|ab that, given the vertices a, b active, only the path δ is active, with δ ∈ Δab.

Equation (4) does not completely satisfy the purpose of this work. The prob-
ability πδab cannot be uniquely assigned to an active path δ ∈ Δab. For instance,
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in the graph in Figure 1(b), paths (a, 1, 2, b) and (a, 2, 1, b) have the same prob-
ability π12ab to be active, however these paths invoke different pairwise associa-
tions and different multivariate dependence structures. The interpretation of the
weights in equation (6) is interesting because they enable the comparison of the
probabilities of active path events. However, the conditional probability πδ|ab is
a non-trivial function of the parameter ψ used to model pairwise associations
detected by edges in Ising models. A suitable decomposition of both probabili-
ties πδab and πδ|ab involved in equation (4) is required to compare the intensity
of the propagation status for the variables Xa, Xb across different paths.

3. Logistic regression parameters for baseline events in multi-way
tables

This section proposes a logistic regression approach for modeling the probability
of a baseline event {Xδ = 1δ, X\δ = 0\δ|Xa = 1, Xb = 1} in the conditional
distribution of XV \ab|{Xa, Xb}, where X\δ is adopted as shorthand notation
of XV \aδb, for any δ ∈ Δab. This baseline event represents the active status of
the variables along the path δ, the non-active status for the remaining set of
variables, given that variables Xa and Xb are active. The main intent is proving
that the conditional probability πδ|ab is a function of the parameter ψ, for any
δ ∈ Δab. First we define a suitable transformation of the variables.

Definition 2 Given the set XV of the variables associated to an undirected
graph G = (V, E), for any path δ ∈ Δab with a, b ∈ V , let Yδ be a binary variable
which takes level 1 if the event associated to the baseline cell iδ ∈ IV \ab realizes,
and 0 otherwise.

For any δ ∈ Δab, consider the partition {Xa, Xb, Xδ, X\δ} of the random vector
XV . The random variable Yδ derives from a dichotomization of the marginal
table IV \ab with respect to the cell associated to the event {Xδ = 1δ, X\δ = 0\δ}.
Then, Yδ takes level 1 if only path δ is active in the network structure, regardless
of the status of the extremes a, b; the level 0 occurs when path δ is not fully
active, regardless of the rest of the network, for any δ ∈ Δab:

Yδ = 1 if {Xδ = 1δ, X\δ = 0\δ}, and Yδ = 0 otherwise.

Any path δ ∈ Δab induces a set of three binary variables WK = (Yδ, Xa, Xb)
indexed by K = {δ, a, b} and related to a 23 probability table IK following a
trivariate Bernoulli distribution with probability parameter πδ = (πδ

E)E⊆K with
elements

πδ
E = πE , if δ ∈ E ⊆ K, (7)

πδ
E =

∑
F⊆V \abδ

πEF , if δ /∈ E ⊆ K, (8)

where E denotes a generic subset of {a, b, δ}. When E includes the path set δ,
the probability πδ

E of the induced random vector WK coincides with the joint
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probability πE of the random vector XV . The mapping π 	→ πδ is based on a
linear surjective function defined by equations (7) and (8). The corresponding
log-linear parameter is log θδ = (log θδE)E⊆K with generic element

log θδE =
∑

E′⊆E

(−1)|E\E′| log πδ
E′ , E ⊆ K. (9)

The vector log θδ is the canonical parameter of the probability table IK ob-
tained by collapsing cells of IV . The following example gives some insight on
the probability and on the log-linear parameter of the distribution of WK which
is, in general, not an Ising model.

Example 3 Consider the path (a, 2, b) in Figure 1(b). It induces the table IK
associated to three binary variables {Y(2), Xa, Xb} where δ = (2). The variable
Y(2) takes level 1 if the baseline event {X2 = 1, X1 = 0, X3 = 0} occurs and
level 0 otherwise. The probability parameter π(2) is

π(2) = (π(2)
∅ , π(2)

a , π
(2)
b , π

(2)
2 , π

(2)
ab , π

(2)
a2 , π

(2)
b2 , π

(2)
ab2)

T

where π
(2)
2 = π2, π(2)

2a = π2a, π(2)
2b = π2b, π(2)

2ab = π2ab according to equation (7);
other elements are obtained as sums of joint probabilities of XV across the events
associated to Y(2) = 0, for instance, following equation (8),

π(2)
a = πa + πa1 + πa3 + πa13 + πa12 + πa13 + πa123.

The log-linear parameter is

θ(2) = (θ(2)
∅ , θ(2)

a , θ
(2)
b , θ

(2)
2 , θ

(2)
ab , θ

(2)
a2 , θ

(2)
b2 , θ

(2)
a2b)

T

where the generic element is an odds-based measure of association, e.g.,

θ
(2)
∅ = P (Xa = 0, Xb = 0, Y(2) = 0), θ(2)

a =
P (Xa = 1, Xb = 0, Y(2) = 0)
P (Xa = 0, Xb = 0, Y(2) = 0) ,

θ
(2)
ab =

P (Xa = 1, Xb = 1, Y(2) = 0)P (Xa = 0, Xb = 0, Y(2) = 0)
P (Xa = 1, Xb = 0, Y(2) = 0)P (Xa = 0, Xb = 1, Y(2) = 0) ,

θ
(2)
2ab =

P (Xa = 1, Xb = 1, Y(2) = 1)P (Xa = 0, Xb = 0, Y(2) = 1)
P (Xa = 1, Xb = 0, Y(2) = 1)P (Xa = 0, Xb = 1, Y(2) = 1) × 1

θ
(2)
ab

.

To study the relationship between θδ and ψ parameters, let us consider the
logit of Yδ given {Xa, Xb}, for any δ ∈ Δab. The logistic regression parameters
are, for any δ ∈ Δab,

log P (Yδ = 1|Xa = 1, Xb = 1)
1 − P (Yδ = 1|Xa = 1, Xb = 1) = βδ + βδaXa + βδbXb + βδabXaXb. (10)

The following theorem proves that logistic regression coefficients in equa-
tion (10) formally depend on parameter ψ.



4390 M. Lupparelli and G. M. Marchetti

Theorem 1 Let PG(XV ;ψ) be an Ising model. For any δ ∈ Δab with a, b ∈
V , consider the set {Yδ, Xa, Xb} of binary variables and the logistic regression
parameters in equation (10) for the conditional distribution of Yδ|{Xa, Xb}. The
following equivalences hold:

βδ = log
(∏

j,k∈δ ψjk

θδ∅

)
, (11)

βδa = log
(∏

j∈δ ψaj

θδa

)
, (12)

βδb = log
(∏

j∈δ ψbj

θδb

)
, (13)

βδab = log
(
ψab

θδab

)
. (14)

Proof. The proof is based on the fact that logistic regression coefficients are
equal to log-linear interaction terms in the joint distribution of the explanatory
and the response variables (Bishop, Fienberg and Holland, 1975). Given βδ =
log θδδ = log πδ

δ/π
δ
∅, we obtain

θδδ = πδ

πδ
∅

=
∏

j,k∈δ ψjk

θδ∅
;

since πδ
δ = πδ from equation (7), πδ is a product of exponential canonical

interaction terms in ψ and πδ
∅ = θδ∅ by definition. Given βδa = log θδδa =

log(πδ
δa × πδ

∅)/(πδ
a × πδ

δ), we obtain

θδδa =
πδa × πδ

∅
πδ × πδ

a

=
∏

j,k∈δ∪a ψjk∏
j∈a ψj

× 1
θδa

since πδ
δa = πδa form equation (7) and πδ

a = θδa by definition. The same argument
is used to prove βδb = log θδδb = log

∏
j∈δ ψbj/θ

δ
b since θδδb = (πδ

δb×πδ
∅)/(πδ

b ×πδ
δ).

For the interaction term βδab = θδδab, we have

θδδab = πδ
δab × πδ

δ

πδ
δa × πδ

δb

× 1
θδab

= πδab × πδ

πδa × πδb
× 1

θδab
.

The result follows since ψab = πδab×πδ

πδa×πδb
. �

The following example is illustrative of the result of Theorem 1.

Example 4 (follows Example 3). Let us consider the logistic regression param-
eters of Y(2)|{Xa, Xb}, where π

(2)
2|ab = π2|ab:

log
π2|ab

1 − π2|ab
= β2 + β2aXa + β2bXb + β2abXaXb.
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From the result of Theorem 1, we have

log
π2|ab

1 − π2|ab
= log ψ∅ψ2

θ
(2)
∅

+ log ψaψa2

θ
(2)
a

+ log ψbψb2

θ
(2)
b

+ log ψab

θ
(2)
ab

.

Under the undirected graph model in Figure 1(b), ψab = 1, then the logistic
regression model simplifies to

log
π2|ab

1 − π2|ab
= log ψ∅ψ2

θ
(2)
∅

+ log ψaψa2

θ
(2)
a

+ log ψbψb2

θ
(2)
b

− log θ(2)
ab .

Theorem 1 is employed as a technical result in the next section to derive a
path-based decomposition. However, the logistic regression model for baseline
events is essentially an univariate logistic regression where the response variable
is obtained by collapsing a multivariate response vector with respect to a specific
event of interest. It can be used to simplify a multivariate regression framework
when the interest is only in modeling the probability of a baseline configuration
of response variables.

4. Path-based decomposition of the mean parameter

A path-based decomposition in Ising models is derived for the mean parameter
μab. The result is discussed through an example.

4.1. The main result

The following theorem provides a path-based decomposition of the marginal
probability μab by using the result of Theorem 1 to compute the conditional
probability πδ|ab in Lemma 1 for any path δ ∈ Δab.

Theorem 2 Let PG(XV ;ψ) be an Ising model. Given the set Δab of paths join-
ing the pair a, b ∈ V of vertices,

μab =
∑

δ∈Δab

ωδ

Ψδab\ωδ

1Tπ(Δab)
, (15)

where
ωδ = ψaδ1ψδ1δ2 . . . ψδmb, δ ∈ Δab, (16)

Ψδab\ωδ
is the sub-product of parameters ψjk, j, k ∈ δab with entries omitted in

ωδ, and π(Δab) is a column vector with generic element

Ψδab

Ψδab + Θδ
ab

, δ ∈ Δab,

with Θδ
ab =

∏
E⊆ab θ

δ
E.
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Proof. We preliminary need to prove that, given the Ising model PG(XV ;ψ), for
any δ ∈ Δab,

πδ|ab = Ψδab

Ψδab + Θδ
ab

. (17)

Firstly, consider that, for any δ ∈ Δab, Yδ|{Xa = 1, Xb = 1} is a binary vari-
ables which follows a Bernoulli distribution with probability parameter πδ|ab
as P (Yδ = 1|Xa = 1, Xb = 1) = P (Xδ = 1, X\δ = 0|Xa = 1, Xb = 1) for
Definition 2. Consider the logit of Yδ given {Xa, Xb} to compute πδ|ab:

πδ|ab = exp(βδ + βδa + βδb + βδab)
1 + exp(βδ + βδa + βδb + βδab)

= θδδθ
δ
δaθ

δ
δbθ

δ
δab

1 + θδδθ
δ
δaθ

δ
δbθ

δ
δab

.

Then, the result follows from Theorem 1 since

θδδθ
δ
δaθ

δ
δbθ

δ
δab = Ψδab

Θδ
ab

and, by using simple algebra,

πδ|ab = Ψδab

Θδ
ab

× Θδ
ab

Ψδ
ab + Θδab

= Ψδ
ab

Ψδ
ab + Θδab

.

Considering that 1Tπ(Δab) =
∑

δ∈Δab
πδ|ab, and given that πδab = ωδ(Ψδab\ωδ

)
for the Möbius inversion in equation (1), the result follows since equation (15)
is an application of the equation (4) of Lemma 1. �

We prove that the parametric decomposition provided by Theorem 2 is an
explicit function of parameter ψ and it may be used to define a path-based
mapping between mean and canonical parameter for Ising models.

Corollary 1 In an Ising model PG(XV ;ψ), for any δ ∈ Δab, with a, b ∈ V ,

Θδ
ab =

∑
E⊆V \ab:E �=δ

ΨabE , δ ∈ Δab. (18)

Proof. Given an undirected graph G associated to a multivariate binary random
vector XV = {Xa, Xb, Xδ, X\δ}, for any δ ∈ Δab,

Θδ
ab = πδ

ab = P (Yδ = 0, Xa = 1, Xb = 1)

from the inverse mapping of equation (9) and, specifically, from equation (8),

Θδ
ab =

∑
E⊆V \ab:E �=δ

πabE

where, for any E ⊆ V \ ab : E �= δ, πabE = ΨabE . �
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For any δ ∈ Δab, the decomposition in equation (15) includes the measure
ωδ in equation (16) which is an interpretable parameter of multivariate depen-
dence able to quantify the intensity of the propagation of the variable status
since it is a product of the odds ratios associated to the edge set of the path.
The term Ψδab\ωδ

represents the residual strength of association to compute the
joint probability of the active path event, but it does not directly influence the
transition of the variable status along the path. Finally, 1Tπ(Δab) is a normal-
izing measure given by the sum over all δ ∈ Δab of the probability πδ|ab that
Xa and Xb are active only because of variables of a specific path δ are active.

The parameter μab is dependent on the variable coding by definition, then
a large measure ωδ of the propagation status results when positive associations
logψδjδk run along the path and, more generally, when the strength of positive
association prevails over the negative one. This feature is coherent with the
research question addressed by Ising models for ferromagnetism and generalized
to contexts when the interest is modeling the joint occurrence of patterns of
variables (Marsman et al., 2018). An alternative mean parameter-based measure
is discussed in the next section to replace μab as outcome of interest in the path-
based decomposition, however it is well-established that mean parameterizations
for binary variables are code dependent; see Ekholm, Smith and McDonald
(1995). The marginal odds ratio could be also considered as measure of marginal
association, nevertheless this is not a representative mean parameter and the
mapping between the marginal and the joint odds ratio may rise some challenges
(Didelez, Kreiner and Keiding, 2010; Stanghellini and Doretti, 2019).

4.2. An example

Consider the set of Reinis data from a prospective study of coronary heart
disease carried out in Czechoslovakia in 1981 and discussed in Reinis et al.
(1981). The data set includes six risk factors observed on a sample of 1841 car-
workers: A: systolic blood pressure less than 140mm (yes, no); B: ratio of beta
to alpha litoproteins less than 3 (yes, no); C: smoker (no, yes); D: work mentally
strenuous (no, yes); E: work physically strenuous (no, yes) and F : familiarity
with heart coronary disease (no, yes). The variables have been suitably relabelled
to be homologous so that any path is active when risk factors along the path
jointly occur. These data are also analyzed in Edwards (2000) who selects a log-

A B

C

D

E

F

Fig 2. Ising model for Reinis data
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Table 1

The analysis of paths for Reinis data

Path size ω̂δ ŝe(ω̂δ) ψ̂δ1δ2 ψ̂δ2δ3 ψ̂δ3δ4 Ŷ∗
δ

(1) (B,A,C,E) 4 3.568 0.710 1.460 1.424 1.716 0.42
(2) (B,C,E) 3 1.055 0.349 0.615 1.716 - 0.25
(3) (B,D,E) 3 0.047 0.274 0.765 0.062 - 0.06
(4) (B,E) 2 1.339 0.370 1.339 - - 0.27

linear graphical model with cliques ABC, BCE, CDE and DF with deviance
equal to 51.36 and 46 degrees of freedoms. Since all the three-order log-linear
interactions are not significant, an Ising model is considered and the model
represented in Figure 2 is selected using a stepwise procedure. The model has a
deviance 55.03 with 49 degree of freedoms and all significant pairwise log-linear
associations. The association between blood pressure, smoking and lipoproteins
(cholesterol) are unsurprisingly positive, as well as most of the associations
between other risk factors. As noted in Edwards (2000), physical work E can
influence both directly and indirectly the cholesterol level B; the estimated odds
ratio is ψ̂BE = 1.339 which shows a positive association between the two risk
factors; the marginal odds ratio under the selected model is still greater than
one, i.e. 1.47, but the marginal association, unlike the conditional one, is poorly
significant. The proposed path-based decomposition may provide insight in the
role of different active paths of risk factors on the joint occurrence of the factors
B and E under the focus, with estimated probability μ̂BE = 0.237. The set
ΔBE includes a direct path between B and E and other three paths, that, when
active, define different risk factor profiles of car workers: (B,A,C,E), (B,C,E)
and (B,D,E).

The estimates of the path measure ωδ are collected in Table 1 with their
estimated standard errors computed using the delta method. Path (1) shows
the highest propagation intensity of the active status and defines the profile
of workers which also have high blood pressure and are smokers. For path (3)
the estimate of the active status propagation is lower than 1 mainly because
the pairwise association between D and E is negative showing that car workers
are rarely both physically and mentally stressed. Following the Jones and West
(2005) interpretation, estimates for ωδ lower than 1 identify ‘moderating’ profiles
which reduce or mitigate the probability of having risk factors B and E; on the
other hand, estimates higher than 1 identify ‘mediating’ profiles which tend to
increase the co-occurrence of B and E. We consider that the higher estimate of
ωδ, the higher the propagation intensity of the active status between risk factors.
These terms are not referred to causal effects but to association relationships,
since in principle path-based decompositions can be applied regardless of the
type of variables and the type of graph. Path analysis in undirected graph models
is useful because it does not require to include information about the ordering
of the variable set. It is based only on the graph skeleton and, for this reason,
consistent with each variable ordering.
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5. An alternative parametric decomposition

The above decomposition provides a tool to assess and compare the intensity
of propagation in active paths quantified through the strength of association
between variables. However, it does not consider the multivariate dependence
between the variables along the path and the variables outside the path, which
so far, have been assumed to be in a non-active status. This section proposes
an alternative decomposition with the intention of shedding light on how the
propagation intensity along the path can be influenced by status changes in the
rest of the graph. The possibility of applying this decomposition to a measure of
marginal association between two variables rather than to marginal probability
is also discussed.

5.1. Yule’s measure for path-based analysis

For a pair of binary variables X1 and X2, Yule’s measure (Yule, 1900) is a
nonlinear one-to-one function of the odds ratio ψ12:

Y12 =
√
ψ12 − 1√
ψ12 + 1

. (19)

Since 0 < ψ12 < ∞, we have that −1 ≤ Y12 ≤ 1. Specifically, ψ12 = 1 if and
only if X1⊥⊥X2 and if and only if Y12 = 0, also Y12 > 0 if ψ12 > 1 and Y12 < 0
if 0 < ψ12 < 1. A suitable two-way table is defined to apply Yule’s measure for
our purposes.

For any path, two binary variables are defined in order to collapse the full ta-
ble IV into a two-way table providing information on the status of the variables
both along and outside the path. Any δ ∈ Δab induces a 2× 2 probability table
for the set {Zδ, Zδ̄} of binary variables where Zδ and Zδ̄ are defined considering
a partition of the variable set XV into {Xδab} and {XV \δab}, respectively. Zδ

takes level 1 if variables along the path (a, δ, b) are active and Zδ̄ takes level 1
if variables out of the path are active. Then,

Zδ = 1 if Xδab = 1δab, and Zδ = 0 otherwise,

Zδ̄ = 1 if XV \δab = 1V \δab, and Zδ̄ = 0 otherwise.

The random vector (Zδ, Zδ̄)T follows a bivariate Bernoulli distribution where
the mean parameter denoted by μ̃δ is a sub-vector of mean parameter μ of XV ,
so that

μ̃δ = (μ∅, μδab, μV \δab, μV )T , δ ∈ Δab, (20)

where μ∅ = 1. The probability parameter π̃δ and the log-linear parameter log θ̃δ
of (Zδ, Zδ̄)T can be analytically computed using the inverse transformation,
respectively,

π̃δ = Mμ̃δ,

log θ̃δ = MT log π̃δ,
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where M is a 4 × 4 Möbius matrix

M =

⎛
⎜⎜⎝

1 −1 −1 1
0 1 0 −1
0 0 1 −1
0 0 0 1

⎞
⎟⎟⎠ .

For any δ ∈ Δab, Yule’s measure applied to the odds ratio θ̃δδ̄ ∈ θ̃δ provides a
measure of the strength of the interaction between the multivariate dependence
of variables inside and outside the path. This measure is comparable across the
set Δab of all paths. Then, for any δ ∈ Δab, let us consider

Yδ =

√
θ̃δδ̄ − 1√
θ̃δδ̄ + 1

, δ ∈ Δab, (21)

where θ̃δδ̄ = (π̃δ
∅ × π̃δ

δδ̄
)/(π̃δ

δ × π̃δ
δ̄
). Parameter Yδ measures the association be-

tween the status of the two sub-networks induced by any δ ∈ Δab. A value
of Yδ close to zero can be interpreted as a poor dependence between the two
sub-network models because the probability of having an active path δ barely
depends on the active or non-active status of the rest of the network. An alter-
native decomposition for μab is proposed which is complemented with additional
information provided by the measure Yδ, for each path δ ∈ Δab.

Theorem 3 Consider an Ising model PG(XV ;ψ). Given the set Δab of paths
joining the pair a, b ∈ V of vertices,

μab =
∑

δ∈Δab

(Ψδ + Θδ
ab)Y∗

δ , (22)

where, for any δ ∈ Δab,

Y∗
δ = | Yδ |∑

δ∈Δab
| Yδ | . (23)

Proof. Firstly, we need to prove that

μab = Ψδ + Θδ
ab. (24)

Considering the probability table for {Yδ, Xa, Xb}, we compute μab = πδ
δab+πδ

ab

marginalizing over Yδ. The equation (24) is verified since πδ
δab = πδab = Ψδ

from equation (7) and πδ
ab = Θδ

ab from the inverse mapping in equation (9).
Then, the result follows because μab is averaged across all paths in Δab using
the normalized Yule’s measure Y∗

δ for any δ ∈ Δab. �
For each path δ ∈ Δab, the result in equation (22) includes the probability Ψδ

for the path to be fully active when the rest of the network is non-active and
the complementary probability Θδ

ab that the path is not fully active, weighted
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with a normalized value Y∗
δ of Yule’s measure which quantifies the intensity of

the interaction between the two sub-networks induced by the path δ.
Theorem 3 can be easily generalized to compute the dependence ratio τab

which is a marginal parameter of association. Given the pair Xa, Xb of variables,
the dependence ratio is

τab = μab

μaμb
, a, b ∈ V, (25)

where μa = P (Xa = 1) and μb = P (Xb = 1). The parameter τ takes value 1 if
and only if Xa⊥⊥Xb; see Ekholm, Smith and McDonald (1995).

Corollary 2 In an Ising model PG(XV ;ψ), given the set Δab of paths joining
the pair a, b ∈ V of vertices,

τab =
∑

δ∈Δab
(Ψδ + Θδ

ab)Y∗
δ

(Ψa + Θ∅
a)(Ψb + Θ∅

b)
, (26)

Proof. The result follows since μj , for j ∈ V , can be obtained by applying the
logistic regression approach for the baseline event {Xj = 1, XV \j = 0}, so that
μj = (Ψj + Θ∅

j ). �
A decomposition of a marginal measure of association rather than of a

marginal probability might be useful in case of effect reversal (Cox and Wer-
muth, 2003) to explore whether the graphical path structure may explain the
different direction between marginal and conditional pairwise associations, or
even when the variables of interest are not adjacent in the graph, and so condi-
tionally independent, but marginally associated; see Section 5.3 for an example.

5.2. The case of rare baseline events

In case of large tables, the baseline event {Xδ = 1δ, X\δ = 0\δ} and Yδ, defined
accordingly in Section 3, could be reasonably rare for each δ ∈ Δ. Then, the
decompositions provided by Theorems 2 and 3 can be approximated using a log-
linear rather than logistic regression parameters (Bishop, Fienberg and Holland,
1975). If the outcome Yδ is rare, we have

logP (Yδ = 1|Xa = 1, Xb = 1) ≈ log θδδ + log θδδa + log θδδb + log θδδab, δ ∈ Δab,

where ≈ stands for approximately equal. The conditional probability πδ|ab can
be approximated as

πδ|ab ≈
Ψδab

Θδ
ab

(27)

and this simplifies the parametric decomposition in Theorem 2, since

1Tπ(Δab) ≈
∑

δ∈Δab

Ψδab

Θδ
ab

.

We also derive an approximation of the result of Theorem 3.



4398 M. Lupparelli and G. M. Marchetti

Theorem 4 Consider an Ising model PG(XV ;ψ). Given the set Δab of paths
joining the pair a, b ∈ V of vertices, let P (Yδ = 1, Xa = 1, Xb = 1) ≈ 0 for any
δ ∈ Δab. Then,

μab ≈
∑

δ∈Δab

Θδ
abY∗

δ . (28)

Proof. For any δ ∈ Δab, by definition we have μab = P (Yδ = 1, Xa = 1, Xb =
1) + P (Yδ = 0, Xa = 1, Xb = 1). If P (Yδ = 1, Xa = 1, Xb = 1) ≈ 0, then
μab ≈ P (Yδ = 0, Xa = 1, Xb = 1) = Θδ

ab from Corollary 1. The result follows
since μab ≈ 1

|Δab|
∑

δ∈Δab
Θδ

ab and the same average can be computed including
normalized weights | Yδ | /(

∑
δ∈Δab

| Yδ |) for any path δ ∈ Δab. �
The previous result can be generalized in terms of dependence ratio.

Corollary 3 Consider an Ising model PG(XV ;ψ). Given the set Δab of paths
joining the pair a, b ∈ V of vertices, let P (Yδ = 1, Xa = 1, Xb = 1) ≈ 0 for any
δ ∈ Δab. Then,

τab ≈
∑

δ∈Δab
Θδ

abY∗
δ

Θ∅
aΘ∅

b

. (29)

Proof. The result direclty follows from Theorem 4 since μa ≈ Θ∅
a and μb ≈ Θ∅

b .
�

5.3. An example

The proposed measure of Yule is used to extend the Reinis data example in
Section 4.2. The last column of Table 1 shows the estimates of Y∗

δ for any
δ ∈ ΔBE . The highest estimate is for the sub-networks induced by path (1); this
estimate becomes lower for sub-networks induced by paths (2) and (4), instead
it is close to zero when path (3) is considered. The association between variables
D and E has an important role to interpret the results since the absolute value
of log ψ̂DE is at least five times larger than the estimates of other log odds ratios.
When this edge is not involved in the path structure, the association between
the sub-networks is strong and the co-occurrence of the related path is affected
by the active or non-active status of the rest of the network, as the case of paths
(1), (2), (4). Conversely, when the edge joining D and E belongs to the path,
the probability of this path to be active is less influenced by the status of the
rest of the network.

The dependence ratio τ̂BE = 1.11 under the selected model is weakly greater
than 1 and the chi-square test for the 2× 2 marginal table of B and E supports
the hypothesys that these variables are marginally independent. On the other
hand, the conditional odds-ratio computed in the model shows a significant pos-
itive association between the cholesterol level and the physical stress given the
other risk factors. In this case, the use of a measure of association is more infor-
mative than the marginal probability because this is an example of Simpson’s
paradox (Simpson, 1951), where the selected model suggests that variables B
and E are conditionally associated, but marginally independent. The use of a
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Fig 3. Ising model in a cyber-security case-study

measure of association is also useful to disclose collapsibility conditions and of
effect reversal which arise, respectively, when marginal and conditional associ-
ation are comparable and when marginal and conditional associations have a
different direction.

6. Application

Protecting industrial networks from sophisticated and modern cyber attacks is
a serious issue and cyber-security risk assessment represents an active area of
research in several fields. Inspired by the recent stream of the literature on attack
graphs (Lallie, Debattista and Bal, 2020), graphical models have proven to be
a valuable tool for providing information on the propagation of cyber attacks
in a network, in particular on the risk propagation in multiple paths. Despite
Bayesian networks (also known as directed acyclic graphs) are often used, in
some contexts the attack propagation does not have a unique direction, so an
undirected graph model might be preferable. Denuit and Robert (2022) recently
discuss the use of Ising models in actuarial sciences and, more specifically, for
cyber-security analysis where the risk rises from the interconnections and inter-
dependencies of a network system. This section shows the potential use of path
analysis in Ising models for industrial networks with the focus on cyber-security
in operational technology (OT) systems.

6.1. Case study

Let us consider the undirected graph in Figure 3 as an illustrative case study.
The vertices of the graph represent items of an industrial network, as servers,
firewalls, computers, devises, able to monitoring the industrial equipments, as-
sets and processes. The structure of the graph is a priori defined depending
on the connections/interactions between items and a basic assumption in OT
systems is that a cyber attack propagation can run only through the paths of
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Table 2

Path-based analysis of attack propagation risk in a cyber-security case-study
Path size ωδ ψδ1δ2 ψδ2δ3 ψδ3δ4 ψδ4δ5 ψδ5δ6 π∗

δ|BF Y∗
δ

(1) (B,A,C,D,E, F ) 6 9.03 1.22 2.23 1.49 1.35 1.65 0.33 0.14
(2) (B,A,C,D, F ) 5 4.95 1.22 2.23 1.49 1.22 - 0.07 0.21
(3) (B,A,C,E,D, F ) 6 8.16 1.22 2.23 1.82 1.35 1.22 0.33 0.14
(4) (B,A,C,E, F ) 5 8.17 1.22 2.23 1.82 1.65 - 0.12 0.20
(5) (B,A,C, F ) 4 6.69 1.22 2.23 2.46 - - 0.04 0.22
(6) (B,H, I,G, F ) 5 24.59 2.23 2.46 2.23 2.01 - 0.11 0.09

the graph. The variables associated to items are binary and take level 1 if the
item receives a cyber attack, and 0 otherwise. For any pair {j, k} /∈ E of not ad-
jacent vertices, we have that the probability of Xj to be attacked/non-attacked
is independent of the probability of Xk to be attacked/non-attacked, given the
status of their neighbors. An Ising model is assumed and the following matrix
includes the log-linear parameters logψ which have been assigned on the ba-
sis of subject-matter considerations supported by the expertise of collaborators
working in cyber-security field:

A
B
C
D
E
F
G
H
I

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.1 0.2 0.8 0 0 0 0 0 0
. 0.3 0 0 0 0 0 0.8 0
. . −0.2 0.4 0.6 0.9 0 0 0
. . . 0.1 0.3 0.2 0 0 0
. . . . 0.1 0.5 0 0 0
. . . . . 0.2 0.7 0 0
. . . . . . −0.6 0 0.8
. . . . . . . 0.1 0.9
. . . . . . . . 0.2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

:

the elements in the main diagonal represent the propensity of each item to be
attacked depending on its vulnerabilities; the off-diagonal terms are related to
the graph edges and reveal the risk of a local attack propagation which depends
on the intensity and on the type of interaction between the items, on their own
vulnerabilities and of their neighbours.

Suppose that item B received an attack which spread to item F . We are
interested in measuring the propagation risk of this attack over all paths starting
from B to F . The same reasoning holds for an attack going from F to B. The
path-based decomposition of the probability μBF provides insights to assess and
to mitigate, at the same time, the risk of the attack propagation; under this Ising
model, μBF = 0.64.

Table 2 includes the list of six paths running between vertices B and F with
the related risk measures ωδ of attack propagation computed using the decom-
position in Theorem 2. Path (6) has the highest risk since it includes edges with
high scores showing great interconnections between vertices. The table includes
the conditional probability π∗

δ|BF , normalized over all the possible paths as in
equation (6), that, since B,F have beed attacked, the attack propagation oc-
curred through path δ ∈ ΔBF ; paths (1) and (3) show the highest probability.
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Notice that paths (1) and (3), sharing the same vertices with different orderings,
have the same probability π∗

δ|BF but different propagation risks ωδ; conversely,
paths (3) and (4) have very similar risks, since they show similar intensity of
interconnection along the path, but different probabilities. A naive risk assess-
ment for the network system focused on the pair of items B and F can be
obtained by averaging the propagation risk ωδ weigthed with the probabilities
π∗
δ|BF across all paths, i.e,

RBF =
∑

δ∈ΔBF

ωδ × π∗
δ|BF = 9.95.

The last column of the table includes the normalized measure of Yule which re-
flects the sensitivity of each path with respect to the network structure external
to the path. Path (6) with the highest propagation risk shows the lowest sen-
sitivity. Interestingly, in this example where all associations are positive (with
ψjk > 1), Yule’s measure seems to be inversely related with the magnitude
of the propagation risk ωδ. So, the probability that the attack occurs through
paths with high propagation risk, as path (6), poorly depends on the active or
non-active status of the rest of the network; conversely, the probability that the
attack realizes through paths with low propagation risk, as paths (2) or (5), is
more affected by the status of the rest of the network. Intuitively, this reverse
relation may be explained by the fact that all associations are quite strong and
positive, then, once an attack is running along a path, the greater its propaga-
tion intensity, the less impact the status of the rest of the network has on this
propagation.

We also explore the effect of risk mitigation in the network structure. Suppose
that we are able to protect both item B and the interconnection H − I such
that the parameters become logψB = −0.1 and logψHI = 0.3, respectively.
Then, the propagation risks for paths (1)-(5) are unchanged since the edge
H − I appears only in the last path where the risk reduces from 24.54 to 13.46.
Similarly, the normalized probabilities of paths (1)-(5) slightly change, whereas
the conditional probability that path (6) is active goes from 11% to 6%. The
naive risk assessment becomes RBF = 8.49. Another possible action could be
devoted to protecting the interconnection represented by the edge A−C which
is crucial for five paths. If the log-linear parameter becomes logψAC = 0.4, then
the propagation risks ωδ for paths (1)-(5) reduce to 6.04, 3.32, 5.47, 5.47 and
4.48, respectively. The related conditional probabilities slightly decreases with
the exception of the last one that increases from 11% to 16%. The overall risk is
almost the same, i.e. RBF = 8.43. In this setting, the mitigation of the pairwise
parameter provides a reduction of the risk propagation ωδ; however this action
does not reduce the overall risk which also depends on main effect parameters
revealing the propensity of each item to be attacked/non-attacked. The R code
to implement and reproduce the proposed results is made available at https://
github.com/StaThin/Ising_paths.

https://github.com/StaThin/Ising_paths
https://github.com/StaThin/Ising_paths
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Fig 4. A Bayesian network and an undirected graph with the same skeleton.

6.2. On path-based decompositions in Bayesian networks

The choice of graph to represent industrial networks necessarily depends on the
case study. When an attack can only propagate in one direction, the use of
a Bayesian network can be preferred to that of an undirected graph (Kaynar,
2016). In the literature, there are various metrics to define the riskiness of an
attack when the industrial system is represented through a graphical Markov
model, specifically a Bayesian network. A review on this would also require
introducing technical aspects on directed acyclic graphs, on their Markov prop-
erties and on the related independence model, which is beyond the scope of this
article. However, we consider it useful to mention a classical approach directly
comparable with the topic treated here and to discuss the possible generalization
of the methods we propose to the case of directed networks.

Based the approach discussed in Dacier, Deswarte and Kaâniche (1996), the
riskiness of an attack path is quantified inversely to the Mean Time To Failure
(MTTF) founded on the principle that the higher the MTTF, the greater the
security. Let us consider the following graph representing the simple case where
there is only one direct path from the first vertex that received the attack to
the fifth target vertex:

1 2 3 4 5
π2|1 π3|2 π4|2 π5|4

In this example, MTTF is computed by
∑5

i=1(1/λi) where each λi is the suc-
cess rate of the attack obtained as a function of the mean sojourn time in item
i weighted with the conditional probability πi|i−1 of transition from item i− 1
to item i, with πi|i−1 = πi when i = 1. These conditional probabilities are the
parameters associated to the edges in a Bayesian network, e.g. π2|1 is the proba-
bility to transition from node 1 to node 2 computed by ignoring the status of the
rest of the network; see Dacier, Deswarte and Kaâniche (1996) and references
therein. Intuitively, the MTTF and the related system security are positively
related to the path length. Given a path length, the MTTF is positively related
to the mean sojourn time and inversely related to the transition probability.
The same approach could be also applied when the network is represented by
an undirected Ising model without imposing a specific attack direction. Given a
physical criterion to compute the mean sojourn time in item i, the edge param-
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eters ψij can be used as weights to compute the MTTF, since they represent
the intensity of the status propagation.

Following a similar argument, we conjecture that the path-based decompo-
sition proposed in this paper could be reformulated and applied to the case of
Bayesian networks with appropriate differences in terms of the interpretation
of the model parameters. In the undirected case, edge parameters of interest
are function of conditional probabilities related to the distribution of the full
network. The directed case, on the other hand, implies an ordering of vertices,
so edge parameters are usually computed in marginal distributions involving
the variable associated with the receiving vertex of an arrow and the variables
related to the preceding vertices from which the attack may have originated. An
important aspect is the definition of edge parameters of interest so that they
are comparable across different paths.

Let us consider the Bayesian network in Figure 4 to represent a system where
each cyber attack can only propagate along the directed paths of the graph, and
the corresponding undirected graph with the same skeleton where any direction
is allowed. The two graphs define the same connections but the propagation of
the attack is quite different because oriented networks do not consider all prop-
agation paths. In fact, the main difference between the two graphical choices is
given by the path sets joining a pair for vertices. For instance, let us compare the
paths from item B to item C, under the Bayesian and the undirected network,
respectively,

Δ→
BC = {{B,C}, {B,D,C}}

ΔBC = {{B,C}, {B,D,C}, {B,D,E,C}, {B,A,C}}.

These sets are different, specifically Δ→
BC is strictly included in ΔBC . It is worth

remarking that, in this example, the two graphs are Markov equivalent (Lau-
ritzen, 1996), that is they define the same independence model. However, as
discussed earlier, the parameters associated to the edges of the graphs and
their interpretation are quite different. Consequently, the risk assessment might
be also different. Then, the graphical representation, from our perspective, is
mainly a model choice that must faithfully reproduce the case study and allow
for the appropriate assignment of edge parameters which, in general, is based
on expert knowledge (Xie et al.).

6.3. Discussion

Cyber-security risk assessment rises serious challenges for future research de-
velopments involving also computer science expertises. The industrial network
is typically huge, not sparse and implementing efficient algorithms to derive all
attack paths is a fundamental and preliminary aspect of any risk assessment.
Most of the time, considering all possible paths is not feasible and the risk anal-
ysis is limited to a reduced sets of short paths that are more likely to occur. Any
methodology for risk assessment needs to be scalable and able to handle very
large tables. From this side, the proposed decompositions directly work on the
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rectangular log-linear parameter space, rather than on the probability space,
and this represents a technical gain since log-linear parameters are variation in-
dependent. A relevant issue consists in the assignment of model parameters that
should be dynamically inferred from the activity of the network which rapidly
and continuously changes over the time, as well as the vulnerability of vertices
and of their interactions. In particular, the learning of model parameters should
be performed both from historical attack data and from online data (Huang
et al., 2017) where temporal dependence cannot be a priori neglected.

7. Conclusion

Path analysis in undirected graph models is useful to have a full description of
the relationship between two variables and to compare the strength of associa-
tion in multiple paths. It provides an interesting decomposition of the marginal
association into measures of multivariate dependence that are consistent with
any ordering of the variables. Nevertheless, any path-based methodology needs
to be tailored to the nature of the variables and the interpretation of the mea-
sures related to paths becomes crucial to gain insight on the problem at hand.

The mean parameter decompositions developed in this paper aim to answer
research questions typically rising in models for binary data, in particular in
Ising models, and also to provide a first approach for the analysis of paths in
non-Gaussian settings. These results could be generalized to non-Ising binary
models and to models for categorical data where the complexity of the parameter
space increases as well as the interpretation of the measures related to paths.

In principle, these results could be also extended to non-graphical models
to study the strength of association in patterns of variables of interest. In the
example on the risk factors illustrated in Section 4.2, given a log-linear model
for the joint probability table (not necessarily a graphical model), we might
be interested in measures that quantify the propagation intensity of the active
status in patterns of factors, regardless of any transition ordering induced by
a path. This generalization becomes not relevant when the research question
is related to the graph structure of an independence model, as in the cyber-
security application illustrated in Section 6, where the propagation of a cyber
attack in OT systems can only run through the paths of the industrial network.
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