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Abstract: This paper discusses regression analysis of interval-censored
failure time data, and a new deep learning approach is proposed under the
partially linear Cox model. For the analysis, we need to overcome theoretical
and computational challenges arising from complex data structure where
the partial likelihood function is no longer available. We propose to use a
deep neural network and a B-spline function for approximating the nonlin-
ear component and the baseline cumulative hazard function in the model,
respectively. The proposed approach is flexible and able to circumvent the
curse of dimensionality. At the same time, it facilitates the interpretability
of covariate effects. The asymptotic properties of the resulting estimators
are established. In particular, the finite-dimensional estimator of covariate
effects is asymptotically normal and attains the semiparametric efficiency,
while the deep nonparametric estimator achieves the minimax optimal rate
of convergence. A simulation study is conducted to assess the finite-sample
performance of the proposed approach and indicates that it works well in
practical situations. Finally, the proposed method is applied to a set of real
data that motivated this study.
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1. Introduction

Interval-censored failure time data commonly occur in many fields, including
demographical studies, epidemiological studies, medical or public health studies
and social studies [26, 27]. By interval-censored data, we usually mean that the
failure time of interest is observed only to belong to an interval instead of being
observed exactly and in other words, only incomplete information is available on
the failure time of interest. Among others, one area that naturally and routinely
yields interval-censored failure time data is longitudinal or periodic follow-up
studies such as clinical trials.
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An example of interval-censored data that motivated this study is given by the
Atherosclerosis Risk in Communities study, a longitudinal epidemiological study
that started in 1987 and in which the participants’ health status was scheduled
to be examined every three years on average [41]. Of course, as expected for such
studies, real examination or visiting schedules differ from subject to subject and
the occurrence of a disease such as diabetes was known only to belong to be
within two consecutive examinations. In other words, only interval-censored data
on the time to disease were available and more details will be given below. It is
easy to see that there exist many studies similar to the study above and one such
example is the Alzheimer’s Disease Neuroimaging Initiative, a longitudinal study
designed to collect various types of data for the early detection and tracking of
Alzheimer’s Disease as well as for the development of its treatments [30, 35].

Many authors have investigated regression analysis of interval-censored fail-
ure time data under various models, and among them, the most commonly used
model is the Cox model given by Λ(t | Z) = Λ0(t) exp

(
θ′

0Z
)

in terms of the
cumulative hazard function of the failure time of interest [9, 29, 36, 37]. Here Λ0
denotes an unknown baseline cumulative hazard function, Z a p-dimensional
vector of covariates, and θ0 a vector of regression parameters. For example,
Huang [9] investigated the asymptotic properties of the maximum likelihood es-
timators of both the regression parameters and the baseline cumulative hazard
function under the model above. Huang and Rossini [11] and Shen [22] consid-
ered the sieve maximum likelihood estimation for the proportional odds model,
while Sun and Sun [29], Zhang et al. [38], Zhang and Zhao [39] and Zeng et
al. [36] discussed the fitting of linear transformation models to interval-censored
data. For more references on the analysis of interval-censored data, one can refer
to the books by Sun [26] and Sun and Chen [27].

For all of methods mentioned above, one important limitation is that they
all assume that covariate effects are linear and it is apparent that this may
not be true in reality. To deal with this, several authors have considered the
use of partially linear models that allow for nonlinear effects to be described
by unknown smooth functions. For example, Huang [10] generalized the Cox
model above to Λ(t | Z) = Λ0(t) exp

(
θ′

0Z +
∑r

k=1 hk(Xk)
)
, where Λ0, Z and

θ0 are defined as above, X = (X1, . . . , Xr)′ denotes a r-dimensional vector of
covariates that may have nonlinear effects, and the hk’s are unknown smooth
functions. Also Ma and Kosorok [16] investigated the penalized semiparametric
maximum likelihood estimation of partially linear transformation models, and
Cheng and Wang [2] considered efficient estimation in a semiparametric additive
transformation model. Note that all of the work described above focused on
either right-censored data or current status data, a special case of interval-
censored data where the failure time of interest is either left- or right-censored.
Also all methods have some limitations on the type of covariate effects and to
address them, we propose a deep learning-based method.

Deep learning has received increasing attention in failure time analysis and
in particular, it provides an efficient and flexible approach to the estimation of
unknown functions involved in regression models [12, 40]. Among others, Zhong
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et al. [40] considered the following partially linear Cox model

Λ(t | Z,X) = Λ0(t) exp
(
θ′

0Z + g0(X)
)

(1)

where g0 is an unknown function, and developed a deep neural network (DNN)
estimation procedure. In particular, they pointed out that the model above not
only inherits the simple interpretation of the finite-dimensional parameter θ0 in
the Cox model but also models more complex nonlinear effects of the covariate
X, thus more accurately capturing the properties of real data. Also they showed
numerically that model (1) gives more stable results than the partially linear
additive Cox model [10]. However, they only considered right-censored data, and
as pointed out in the literature, the analysis of interval-censored data is quite
different from and much more challenging than that of right-censored data.

Some researchers have also developed some DNN-based methods for regres-
sion analysis of interval-censored data. For example, Sun and Ding [28] and
Meixide et al. [17] considered the nonparametric and partially linear Cox mod-
els. For the problem, they proposed LASSO-based penalized maximum likeli-
hood estimation procedures and in particular, Meixide et al. [17] developed a
LASSO optimization algorithm and demonstrated the usefulness of the DNN-
based method to capture the nonlinear effects of covariates. Also Sun and Ding
[28] used Bernstein polynomials for the estimation of the baseline cumulative
hazard function. However, no theoretical justifications were provided for both
methods. Note that as discussed in Huang [10] and Zhong et al. [40], sometimes
there exist two types of covariates Z and X with Z representing the covariates
that have linear effects and X the covariates that have nonlinear effects. In
such situations, one may be mainly interested in making inferences about the
linear effect and one common, important example is that Z denotes the treat-
ment indicators with the treatment comparison being the focus. In this paper,
we consider the situation where there exists both linear and nonlinear covariate
effects with the focus on simultaneously estimating the linear effects such as
the treatment effect and the nonlinear effects. Also instead of using Bernstein
polynomials, we employ spline functions and provide the asymptotic theory of
the proposed method. In particular, we show that the proposed nonparamet-
ric DNN estimator achieves the minimax optimal rate of convergence (up to
a polylogarithmic factor). Furthermore, we derive that the resulting estimator
of linear covariate effects is

√
n-consistent, asymptotically normal, and attains

semiparametric efficiency.
To achieve the goal described above, we will consider case II interval-censored

data under model (1) and generalize the method given in Zhong et al. [40].
The proposed method combines the statistical method with the DNN method.
As mentioned above, one advantage of the DNN approach is that it can ac-
commodate a rich class of nonlinear functions in the model to avoid the curse
of dimensionality and yield faster convergence rates than usual nonparamet-
ric smoothing methods. A major difference between the proposed method and
that given in Zhong et al. [40] is that we have to deal with much more com-
plicated data structures, which make both computation and theoretical justifi-
cation more difficult among others. In particular, to estimate covariate effects



Deep learning for regression analysis of interval-censored data 4295

in the model above with right-censored data, a simple partial likelihood func-
tion that is independent of the unknown baseline cumulative hazard function is
available and commonly used, while no such function exists for interval-censored
data and a much more complicated full likelihood function has to be handled.
In other words, we have to deal with an extra, unknown function in comparison
to Zhong et al. [40], and one resulting major difficulty is that we have to per-
form the simultaneous estimation of the two unknown functions, one being the
covariate-dependent function and the other being infinite-dimensional baseline
cumulative hazard function of time. In contrast, Zhong et al. [40] only need
to deal with the covariate-dependent function. To estimate the extra unknown
baseline cumulative hazard function, we employ monotone B-spline functions to
approximate it [21]. Due to these factors, in particular, more techniques such
as those used in Wellner and Zhang [34] have to be employed to establish the
asymptotic properties of the proposed estimators.

The remainder of the paper is organized as follows. In Section 2, we first
introduce some notation, data structure, and the likelihood function, and then
present spline, DNN-based sieve maximum likelihood estimation procedure. In
Section 3, the theoretical properties of the resulting estimators are established.
Section 4 presents some results obtained from a simulation study conducted to
assess the finite-sample performance of the proposed method, and they suggest
that the method works well in practical situations. The proposed method is
applied to the Atherosclerosis Risk in Communities study discussed above in
Section 5, and Section 6 concludes with some discussion and concluding remarks.
The technical proofs are provided in the Supplementary Material.

2. Methodology

2.1. Likelihood function

Consider a failure time study and let T denote the failure time of interest. Also
let Z and X be defined as above, representing p- and r-dimensional vectors of
covariates that have linear and nonlinear effects on T , respectively. More com-
ments on this will be given below. Assume that given Z and X, the cumulative
hazard function of T is given by model (1).

In the following, we will focus on the situation where for each study subject,
there exist two observation times denoted by U and V with U < V and one
only observes the indicator functions δ1 = 1[T≤U ], δ2 = 1[U<T≤V ] and δ3 =
1 − δ1 − δ2. That is, only case II interval-censored are available [26]. Define
O = (δ1, δ2, δ3, U, V,Z,X) and let S(· | z,x) denote the survival function of
T given Z = z and X = x. Also assume that conditional on Z and X, T is
independent of (U, V ). That is, we have independent interval censoring. Then
the likelihood contribution of the observation O is proportional to

L(O) = {1 − S(u | z,x)}δ1{S(u | z,x) − S(v | z,x)}δ2S(v | z,x)δ3 .

Suppose that the observed data consist of n i.i.d. samples of O, denoted by
{Oi = (δ1i, δ2i, δ3i, Ui, Vi,Zi,Xi) ; i = 1, 2, . . . , n}. Let φ = log Λ, then under
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model (1), the observed log likelihood function of (θ, g, φ) has the form

ln(θ, g, φ) =
n∑

i=1

(
δ1i log

[
1 − exp

{
−eθ

′Zi+g(Xi)+φ(Ui)
}]

+ δ2i log
[
exp

{
−eθ

′Zi+g(Xi)+φ(Ui)
}
− exp

{
−eθ

′Zi+g(Xi)+φ(Vi)
}]

−δ3ieθ
′Zi+g(Xi)+φ(Vi)

)
. (2)

2.2. DNN-based estimation procedure

In this subsection, we discuss the estimation in model (1). For this, it is apparent
that a natural approach is to maximizie (2) with respect to θ, g and φ. On the
other hand, it is easy to see that the direct maximization would be very difficult
or impossible since it involves the unknown functions g and φ. To deal with this,
we propose first to approximate the function φ by a B-spline function and the
function g by a DNN.

First we discuss the approximation of the function φ. For this, let a and b de-
note the lower and upper bounds of the observation times {(Ui, Vi) : i = 1, . . . , n}
and a = d0 < d1 < · · · < dKn < dKn+1 = b be a partition of [a, b], where K ≡
Kn ≈ nv is a positive integer such that max1≤k≤K+1 |dk − dk−1| = O (n−v). De-
fine IKt = [dt, dt+1) , t = 0, . . . ,Kn, and Dn = {d1, . . . , dKn}. Following Schu-
maker [21] and Stone [25], we let Sn (Dn,Kn,m) be the space of polynomial
splines of order m ≥ 1 consisting of functions s satisfying: (i) the restriction
of s to IKt is a polynomial of order m for m ≤ K; and (ii) for m ≥ 2 and
0 ≤ m′ ≤ m− 2, s is m′ times continuously differentiable on [a, b].

According to Corollary 4.10 in Schumaker [21], there exists a local basis Bn ≡
{bt, 1 ≤ t ≤ qn}, so-called B-spline, for Sn (Dn,Kn,m), where qn ≡ Kn + m.
These basis functions are non-negative and sum up to one at each point in [a, b],
and each bt is zero outside the interval [dt, dt+m]. To approximate the function
φ, define

Mn(Dn,Kn,m)=

⎧⎨⎩φn(t)=
qn∑
j=1

βjbj(t) ∈ Sn (Dn,Kn,m) : β ∈ Bn, t ∈ [a, b]

⎫⎬⎭ ,

where Bn = {β : β1 ≤ β2 ≤ · · · ≤ βqn} since φ is non-decreasing. For the number
qn above, it is usually set to be a positive integer around nv with 0 < v < 1/2
[5, 15].

To approximate the covariate function g, we first briefly review the DNNs.
A (K+1)-layer DNN with layer-width p is a composite function g : Rp0 → R

pK+1

recursively defined as

g(x) = WKgK(x) + vK ,

gK(x) = σ (WK−1gK−1(x) + vK−1) , . . . , g1(x) = σ (W0x + v0) .
(3)



Deep learning for regression analysis of interval-censored data 4297

Here K ∈ N+ denotes the depth of the network, p = (p0, . . . , pK , pK+1) ∈
N

K+2
+ lists the width of each layer, the matrices Wk ∈ R

pk+1×pk and vectors
vk ∈ Rpk+1 (for k = 0, . . . ,K) are the parameters of the DNN. Chosen a priori,
the activation functions σ

(
(x1, . . . , xpk

)′
)

= (σ (x1) , . . . , σ (xpk
))′, which gives

gk = (gk1, . . . , gkpk
)′ : Rpk−1 → R

pk for k = 1, . . . ,K. The rectified linear unit
(ReLU) [18], the most popular activation function, is given by σ(x) = max{x, 0}.
In the following, we will focus on the ReLU activation.

Note that in reality, a deep feedforward network with fully-connected layers
can contain a huge number of parameters, which can lead to overfitting. This
issue can be mitigated by pruning weights, which reduces the total number of
nonzero parameters such that the network’s layers are only sparsely connected
[8, 20]. Following the similar methodology, for s ∈ N+ and D > 0, we focus on
the following class of sparse neural networks

G(K, s,p, D) :=
{
g ∈ G(K,p) :

K∑
k=1

‖Wk‖0 + ‖vk‖0 ≤ s, ‖g‖∞ ≤ D

}
,

where ‖ · ‖∞ is the sup-norm of a function, and ‖ · ‖0 is the number of non-zero
entries of a matrix or vector. Here G(K,p) is a class of DNN considered as
G(K,p) = {g :g is a DNN with (K + 1) layers and width vector p such that

max(‖Wk‖∞ , ‖vk‖∞) ≤ 1 for all k = 0, . . . ,K}.
Let Θ ∈ Rp denote the feasible domain for the regression parameter θ, and

define Mn = Mn (Dn,Kn,m) and G = G(K, s,p,∞) for simplicity. We propose
to estimate θ, g and φ by the estimator τ̂ =

(
θ̂, ĝ, φ̂

)
defined as the values of

θ, g and φ that maximize the log likelihood function ln(θ, g, φ) over the space
Θ×G ×Mn or ln (θ, g,β) over the space Θ×G ×Bn. For the determination of
τ̂ , it is apparent that one has to choose initial estimates and some parameters
such as the degree of monotone splines m and the cardinality of the interior knot
set Kn. Also one needs to choose the so-called hyperparameters including the
number of hidden layers K, the number of neurons pk in all K hidden layers,
the dropout rate [24], the learning rate [7], and the number of epochs in deep
learning. More details will be provided in Section 4. In the next section, we
establish the asymptotic properties of τ̂ .

3. Asymptotic properties

To establish the asymptotic properties of the estimator τ̂ defined above, we
first describe some needed conditions. Assume that the function g belongs to a
Hölder class of smooth functions defined as

Hα
r (D,M) =

{
g : D → R :

∑
β:|β|<α

∥∥∂βg
∥∥
∞

+
∑

β:|β|=�α�
sup

x,y∈D,x 	=y

∣∣∂βg(x) − ∂βg(y)
∣∣

‖x− y‖α−�α�
∞

≤ M

}
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with respect to the parameters α,M > 0 and domain D ⊂ R
r [20]. In the above,

�α
 is the largest integer strictly smaller than α, ∂β := ∂β1 . . . ∂βr with β =
(β1, . . . , βr), and |β| =

∑r
k=1 βk. Let q ∈ N,M > 0,α = (α0, . . . , αq) ∈ R

q+1
+ ,

and d = (d0, . . . , dq+1) ∈ N
q+2
+ , d̃ =

(
d̃0, . . . , d̃q

)
∈ N

q+1
+ with d̃j ≤ dj , j =

0, . . . , q, where R+ is the set of all positive real numbers. Note that here d
denotes the numbers of the functions in each layer, including the input layer
and output layer, while d̃ represents the numbers of the variables used for the
function in each layer. Furthermore, assume that g0 belongs to a composite
smoothness function class:

H(q,α,d, d̃,M) :=
{
g =gq ◦ · · · ◦ g0 : gi =

(
gi1, . . . , gidi+1

)′ and

gij ∈ Hαt

d̃t

(
[ai, bi]d̃i ,M

])
, for some |ai| , |bi| ≤ M

}
.

Note that the functions in this class are characterized by two kind of dimensions
d and d̃ with the latter representing the intrinsic dimension of the function.

Denote α̃i = αi

∏q
k=i+1 (αk ∧ 1) and γn = maxi=0,...,q n

−α̃i/
(
2α̃i+d̃i

)
, where

a∧b := min{a, b}. For any φ1, φ2 ∈ Φ, define ‖φ1 − φ2‖2
Φ =E {φ1(U) − φ2(U)}2+

E {φ1(V ) − φ2(V )}2, and for any τ 1 = (θ1, g1, φ1) and τ 2 = (θ2, g2, φ2) in the
space of T = Θ × G × Φ, define an L2-metric:

d (τ 1, τ 2) = ‖τ 1 − τ 2‖T =
{
‖θ1 − θ2‖2 + ‖g1 − g2‖2

L2([0,1]r) + ‖φ1 − φ2‖2
Φ

}1/2
.

Also define ‖v‖2
c = (v2

1 , . . . , v
2
p)′ for any vector v = (v1, . . . , vp)′ ∈ Rp. The con-

ditions referred in the theorems below are given in the Supplementary Material.

Theorem 3.1. Assume that the conditions (C1)–(C7) hold. Then there ex-
ists an estimator ĝ satisfying E{ĝ(X)} = 0 such that ‖ĝ − g0‖L2([0,1]r) =
Op(γn log2 n).

Theorem 3.2. Assume that the conditions (C1)–(C7) hold. Then there exists
a constant 0 < c < ∞ such that

inf
ĝ

sup
(θ0,g0,φ0)∈Θ×H0×Φ

E {ĝ(X) − g0(X)}2 ≥ cγ2
n,

where the infimum is taken over all possible estimators ĝ based on the observed
data.

Theorem 3.3. Assume that the conditions (C1)-(C7) hold. Then we have the
efficient score for θ as

	∗θ(τ ) = 	̇θ(τ ) − 	̇φ(τ )[a∗] − 	̇g(τ )[h∗],

where a∗ ∈ Ap and h∗ ∈ Hp are the unique functions that minimize the distance
‖	̇θ(τ )− 	̇φ(τ )[a]− 	̇g(τ )[h]‖2

c, for a ∈ Ap and h ∈ Hp. The information bound
of θ takes the form I(θ) = E {	∗θ(τ )}⊗2.
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Theorem 3.4. Assume that the conditions (C1)–(C7) hold and the informa-
tion matrix I (θ0) is nonsingular. Then if nγ4

n → 0 as n → ∞, we have
n1/2

(
θ̂ − θ0

)
d→ N

{
0, I−1 (θ0)

}
, as n → ∞.

The proof of the results above is sketched in the Supplementary Material. In
particular, we show that the proposed nonparametric DNN estimator achieves
the minimax optimal rate of convergence and the estimator of covariate effects
attains semiparametric efficiency. To carry out the inference about θ0 based
on the results above, it is apparent that one needs to estimate the asymptotic
covariance matrix I−1(θ0). For this, note that

I(θ0) = E
{
[Z − a(U) − h(X)]Q4 + [Z − a(V ) − h(X)]Q5

}⊗2
,

and one may estimate (a∗,h∗) by minimizing empirical objective function

(a∗,h∗) = arg min
(a,h)

1
n

n∑
i=1

‖[Zi−a(Ui)−h(Xi)]Q4i+[Zi−a(Vi)−h(Xi)]Q5i‖2
2,

where Q4 and Q5 are defined in the proof of Theorem 3.3. However, it would
be difficult to obtain the convincing solution by utilizing the classical nonpara-
metric methods due to the high dimensionality of function h. As a result, we
suggest to use a DNN-based method to approximate (a∗,h∗) with the inputs
and outputs being (U, V,X) and {a(U)+h(X), a(V )+h(X)}, respectively. Its
implementation details are similar to the network used above for the maximiza-
tion of the log likelihood function. Thus given the resulting estimate of (a∗,h∗),
the information bound can be estimated by

Î(θ0) = 1
n

n∑
i=1

‖(Zi − a∗(Ui) − h∗(Xi))Q4i + (Zi − a∗(Vi) − h∗(Xi))Q5i‖2
2.

4. Simulation studies

In this section, we present some results obtained from a simulation study con-
ducted to evaluate the finite-sample performance of the DNN-based estimation
approach proposed in the previous sections. In the study, we considered the
situation with one single covariate Z generated from the Bernoulli distribution
with the success probability 0.5 and the covariate X = (X1, . . . , X5)′ generated
from the multivariate normal distribution with mean zero, variance 1 and cor-
relation 0.5 and truncated over the interval [0, 2]. With respect to the regression
function g0(x) and the baseline cumulative hazard function Λ0(t), four different
cases were considered and they are

• Case 1 (Linear): g0(x) = x1
2 + x2

3 + x3
3 + x4

4 + x5
5 − 0.63, Λ0(t) =

√
t/5;

• Case 2 (Additive): g0(x) = x2
1
3 + log(x2+1)

2 +
√
x3
4 + ex4

3 + x5
2 −1.18, Λ0(t) =

log
(
1 + t4/5

6

)
;
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Table 1

Hyperparameter settings.
Number of layers 1 2 3 4 5

Number of neurons 30 50 100 150 200
Dropout rate 0.0 0.1 0.2 0.3 0.4
Learning rate 1e-5 5e-5 1e-4 1e-3 1e-2

Number of epochs 200 300 500 800 1000

• Case 3 (Deep 1): g0(x) = x1x
2
2

4 +
√
x3x4
5 + log(x4+1)

4 + ex5

2 − 1.11, Λ0(t) =
2
√
t/9;

• Case 4 (Deep 2): g0(x) = 1
6{

x1x
2
2

4 +
√
x3x4
5 + log(x4+1)

4 + ex5

2 }2 − 0.36,
Λ0(t) = 4

√
t/17.

Note that the various intercept terms 0.63, 1.18, 1.11 and 0.36 were added to
g0 to satisfy the assumption Eg0(X) = 0. Given the covariates (Z,X), the event
time T was generated under model (1). To generate interval-censored data, for
each of the four cases above, the U and V were generated as follows:

(i) Case 1: U ∼ Uniform(0, τ
10 ) and V ∼ min{ τ

5 + U + τ
2Exponetial(1), τ};

(ii) Case 2: U ∼ Uniform(0, τ
6 ) and V ∼ min{ τ

4 + U + τ
2Exponetial(1), τ};

(iii) Case 3: U ∼ Uniform(0, τ
10 ) and V ∼ min{ τ

4 + U + τ
2Exponetial(1), τ};

(iv) Case 4: U ∼ Uniform(0, τ
9 ) and V ∼ min{ τ

5 + U + τ
2Exponetial(1), τ}.

It was suggested to select the end time τ = 20 to control the censoring rate
with 30-35% left-censored observations and 30-35% right-censored ones on av-
erage in all simulation studies. We considered using cubic monotone B-splines
(i.e., m = 4) to estimate Λ0(·). We selected the cardinality of the interior knot
set Kn = [n1/3] and divided the support set [0, τ ] equally. Here the symbol [·]
represents rounding. For the initial values of spline coefficients βj ’s, we suggest
setting them as a vector with all components being one. The initial value of θ
was chose to be zero. Regarding the initialization of the neural network param-
eters (Wk’s and vk’s), we used Pytorch’s default random initialization [6, 19].
Selecting good initial values for these matrices and vectors is not straightfor-
ward. The hyperparameters include the number of hidden layers K, the number
of neurons pk in each hidden layer, the number of epochs, the dropout rate, and
the learning rate in deep learning. These hyperparameters need to be specified
for implementing g0. In our simulations, we consider the same number of neu-
rons in each hidden layer (i.e., pk = pj for 1 ≤ k, j ≤ K). The dropout rate
refers to randomly ignoring some neurons during training, and the learning rate
determines the step size in the Adam optimization algorithm. The candidates
of hyperparameters for DNNs in the simulations and data application can be
found in Table 1.

In our simulations, the negative log-likelihood function was considered as
the loss function, and the parameters were updated iteratively. The detailed
estimation procedure is as follows:

• Step 1. Given the initial values of θ and spline parameters βj ’s, the negative
log-likelihood function was minimized by Pytorch to obtain the DNN
parameters’ estimates Ŵk’s and v̂k’s.
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Table 2

Simulation results of θ̂ by the DNN-based, CPH, and PLACM methods with 200 replications.
DNN-based CPH PLACM

n Bias SSE ESE CP Bias SSE ESE CP Bias SSE ESE CP
Case 1 1000 0.030 0.088 0.088 0.950 0.014 0.086 0.086 0.955 0.043 0.092 0.089 0.910

2000 0.015 0.067 0.065 0.930 0.002 0.066 0.064 0.945 0.017 0.067 0.065 0.930
Case 2 1000 0.020 0.089 0.088 0.960 −0.448 0.160 0.087 0.050 0.041 0.093 0.094 0.930

2000 0.006 0.069 0.067 0.930 −0.464 0.156 0.061 0.045 0.014 0.070 0.067 0.930
Case 3 1000 0.005 0.091 0.089 0.935 −0.269 0.158 0.083 0.205 0.125 0.198 0.085 0.505

2000 −0.000 0.067 0.065 0.935 −0.299 0.143 0.058 0.095 0.117 0.188 0.058 0.435
Case 4 1000 0.016 0.086 0.086 0.940 −0.324 0.232 0.082 0.220 0.055 0.194 0.060 0.420

2000 0.008 0.065 0.064 0.930 −0.294 0.253 0.057 0.110 0.054 0.177 0.042 0.365

• Step 2. Plugging the obtained values of Ŵk and v̂k into the loss function,
the negative log-likelihood function was minimized again by the package
scipy.optimize.minimize to obtain parameter estimates θ̂ and β̂j .

• Step 3. The iteration steps were repeated until convergence.

For comparison, we also include the numerical results from two alternative
models: the Cox proportional hazards model (CPH) proposed by Cox [3, 4], as
well as the partially linear additive Cox model (PLACM) introduced by Huang
[10].

Table 2 shows the simulation results for θ̂ given by the DNN-based, CPH
and PLACM estimation procedures, with the true value θ0 = 1. This table
includes the estimated bias (Bias) is given by the mean of the estimates minus
the true value, the sample standard error of the estimates (SSE), the mean of the
estimated standard errors (ESE), and the 95% empirical coverage probability
(CP). In all simulations, the performance of the proposed estimator improves as
the sample size increases from 1000 to 2000. It is noteworthy that the DPLCM
method significantly outperforms the CPH method and PLACM method in
cases 3–4, where overly restrictive models may lead to large biases. However,
in the simpler Case 1 where the CPH and PLACM assumptions are met, the
DPLCM method remains very competitive with little efficiency loss. In addition,
the coverage of the proposed DPLCM method’s confidence intervals is generally
close to the desired 95% level, especially as the sample size n increases. In
contrast, the confidence intervals obtained using the CPH method have poor
coverage in cases 2–4, while the PLACM confidence intervals have poor coverage
in cases 3–4. This suggests that the uncertainty quantification provided by these
alternative methods may not be reliable in practical applications.

Furthermore, we plot the estimates of the cumulative baseline hazard func-
tion obtained from the three different methods. As illustrated in Figure 1, the
estimate produced by the DPLCM method converges to the true cumulative
baseline function with only minimal bias. Conversely, the CPH estimates under
cases 2–4 and the PLACM estimates under cases 3–4 display substantial biases.

For the evaluation of the performance of the proposed method on estimation
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Fig 1. Estimates of Λ0(·) by the DNN-based (dashed line), CPH (dotted line), and PLACM
(dash-dotted line) methods with 200 replications.

of the covariate function g0, we calculated the relative error given by

RE(ĝ) =
[ 1

n1

∑n1
i=1{(ĝ(Xi) − ¯̂g) − g0(Xi)}2

1
n1

∑n1
i=1{g0(Xi)}2

]1/2

,

where ĝ and g0 were evaluated on the covariates of the testing set {Xi : i =
1, . . . , n1} and ¯̂g =

∑n1
i=1 ĝ(Xi)/n1 with n1 = 200. Note that since the maxi-

mizer of the log likelihood function is only unique up to a constant, we subtracted
the mean of ĝ on the testing set. Table 3 lists the RE given by the proposed
DNN-based method, CPH method and PLACM method as well as the standard
deviation (SD) of RE. They stated that, as expected, the proposed DNN-based
method yielded better performance in terms of estimation. As the sample size
n increases, the relative error of the DNN-based estimate generally decreases, a
phenomenon that is theoretically guaranteed by Theorem 3.1.

Moreover, Figure 2 intuitively predicts the errors on the testing set between
the function ĝ estimated by the above three methods and the true function g0,
respectively, in four cases. The errors produced by the proposed DNN-based
method for Case 1 are generally small across the whole testing set, with only
a few outliers. Likewise, for more complex cases 2–4, the errors produced by
the DPLCM method remain small except for a few outliers. However, the CPH
method in case 2–4 and the PLACM method in case 3–4 produce larger errors.



Deep learning for regression analysis of interval-censored data 4303

Table 3

The relative error (RE) and standard deviation (SD) of ĝ by the DNN-based, CPH, and
PLACM methods on the testing data.

DNN-based CPH PLACM
n RE SD RE SD RE SD

Case 1 1000 0.227 0.045 0.128 0.041 0.401 0.062
2000 0.190 0.035 0.094 0.029 0.266 0.037

Case 2 1000 0.213 0.033 0.212 0.029 0.343 0.070
2000 0.177 0.024 0.205 0.026 0.217 0.037

Case 3 1000 0.298 0.051 0.375 0.023 0.526 0.199
2000 0.234 0.039 0.374 0.020 0.387 0.161

Case 4 1000 0.402 0.053 0.634 0.032 0.530 0.168
2000 0.317 0.046 0.628 0.022 0.426 0.129

Fig 2. Prediction errors between ĝ estimated by the DDN-based (circle), CPH (square), and
PLACM (triangle) methods and the true function g0 on the testing data.

It is worth noting that in real-world scenarios, CPH and PLACM methods often
face limitations due to their specific model assumptions. Therefore, the DNN-
based approach provides a more flexible alternative.

Our method has great flexibility, and when we do not need to interpret the
effect sizes of certain covariates, we can include all covariates in a nonparamet-
ric form. A neural network on interval-censored data (DNN-IC) was developed
by Sun and Ding [28] to handle the nonlinear effects of high-dimensional co-
variates within the Cox model. Their approach was designed to estimate both
the covariate-dependent function and the infinite-dimensional baseline hazard
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function simultaneously. To tackle the problem of potential overfitting in neural
networks, the authors employed an L1 norm penalty on the parameters of the
neural network. This penalty term was incorporated into the loss function and
served to regulate the complexity of the model. We adopt the simulation setup
from Sun and Ding [28] to compare with the DNN-IC method. Assume that
given the covariate vector X = (X1, . . . , Xp)′, the cumulative hazard function
of T has the form

Λ(t|X) = Λ0(t)eg0(X). (4)

We consider the following scenarios:
Scenario 1: g0(X) =

∑p
j=1 βjXj ,

Scenario 2: g0(X) =
∑p

j=1 βjXj + X2
1 + X2

2 ,
Scenario 3: g0(X) =

∑p
j=1 βjXj + X3X4,

Scenario 4: g0(X) =
∑p

j=1 βjXj + X2
1 + X2

2 + X3X4,
Scenario 5: g0(X) =

∑p
j=1 βjXj +I({X1 < −0.5}∪{X2 < −0.5})−I({X1 ≥

−0.5} ∩ {X2 ≥ −0.5} + X3X4).
We consider the Weibull cumulative hazard function Λ0(t) = (λt)k with

λ = 0.01 and k = 10. We will generate the vector X from a multivariate
normal distribution MVN(0,Σ), where Σ is a covariance matrix defined as
σjj′ = exp(−|j − j′|), 1 ≤ j, j′ ≤ p.

Next, we will transform the components of X according to the following rules:

• The first 20% of Xj will remain continuous.
• The second 20% of Xj will be transformed into binary predictors using

the indicator function I(Xj > 0).
• The remaining 60% of Xj will be transformed into multinomial predictors

using the indicator function I(Xj > −0.5) + I(Xj > 0.5).

For the continuous and binary predictors, we set βj = 0.2. However, for the
multinomial predictors, we generate βj from a multivariate normal distribution
MVN(μ, 0.01 × Σ′). Here, μ is a [0.6p]-dimensional vector with all elements
equal to 0.2, and Σ′ is a covariance matrix defined as σjj′ = exp(−|j − j′|),
1 ≤ j, j′ ≤ [0.6p].

To complete the data generation process, we set the end time τ ′ = 100 and
the sample size n = 1000. We aim to achieve the desired right censoring rate
of 50%, and we generate two observation times under five scenarios using the
following approach:

(i) Scenario 1: U ∼ min{ τ ′

5 Exponetial(1), 5
6τ

′} and V ∼ min{ τ ′

3 + U +
τ ′

4 Exponetial(1), τ ′};
(ii) Scenario 2: U ∼ min{ τ ′

5 Exponetial(1), 5
6τ

′} and V ∼ min{ τ ′

5 + U +
τ ′

4 Exponetial(1), τ ′};
(iii) Scenario 3: U ∼ min{ τ ′

6 Exponetial(1), 5
6τ

′} and V ∼ min{ τ ′

3 + U +
τ ′

4 Exponetial(1), τ ′};
(iv) Scenario 4: U ∼ min{ τ ′

6 Exponetial(1), 5
6τ

′} and V ∼ min{ τ ′

3 + U +
τ ′

4 Exponetial(1), τ ′};
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Table 4

The mean squared prediction error (MSPE) averages, standard deviations (SD), and
running times (RT) from 200 replications for the DNN-based method (our method) and

DNN-IC method under five scenarios. The number of predictors is set as p = 20, 50.
DNN-based Method DNN-IC Method

p MSPE SD RT (second) MSPE SD RT (second)
Scenario 1 20 0.022 0.011 4340.301 0.039 0.006 51801.682

50 0.029 0.017 3791.598 0.041 0.013 58893.634
Scenario 2 20 0.038 0.009 4640.448 0.051 0.006 56501.376

50 0.044 0.013 3573.554 0.045 0.010 57141.779
Scenario 3 20 0.030 0.010 4324.937 0.046 0.010 48229.062

50 0.035 0.016 3816.450 0.043 0.012 58575.708
Scenario 4 20 0.039 0.009 4538.649 0.055 0.007 56239.042

50 0.047 0.012 3784.508 0.046 0.010 57241.471
Scenario 5 20 0.035 0.010 4816.534 0.049 0.009 55579.757

50 0.039 0.016 3911.719 0.047 0.011 57410.442

(v) Scenario 5: U ∼ min{ τ ′

4 Exponetial(1), 5
6τ

′} and V ∼ min{ τ ′

3 + U +
τ ′

5 Exponetial(1), τ ′}.
The model will be trained on the training dataset and then evaluated on the

testing dataset. To obtain reliable results, we will repeat this process 200 times.
In simulation studies where the true survival function and event time T are
known, the mean square prediction error (MSPE) is employed as a performance
metric. The MSPE quantifies the average integrated L2 distance between the
true survival function and the estimated survival function, denoted as

L(Ŝ) = 1
n

n∑
i=1

1
Ti

∫ Ti

0
{S0(t|Xi) − Ŝ(t|Xi)}2dt,

where S0(t|Xi) = exp{−Λ0(t)eg0(Xi)} and Ŝ(t|Xi) = exp{−Λ̂n(t)eĝn(Xi)}.
Obviously, smaller values of these indicators suggest better prediction per-
formance. Additionally, we compared the computational efficiency of the two
methods across various configurations and recorded their respective running
times.

In the study conducted by Sun and Ding [28], they chose the following hy-
perparameters for five scenarios: two hidden layers, 50 nodes per hidden layer,
activation function SeLU (scaled exponential linear unit), L1 penalty 0.5, batch
size 50, epoch size 1000, learning rate 0.01, uniformly distributed initial values,
the degree of Bernstein polynomials mn = 3. For the same dataset, our hyperpa-
rameters are selected as follows: three hidden layers, 50 (p = 20) and 75 (p = 50)
nodes per hidden layer, activation function ReLU, epoch size 1000, learning rate
0.001, uniformly distributed initial values, the order of splines m = 4, the car-
dinality of the interior knot set Kn = 8. The specific comparison results are
presented in Table 4. It is not difficult to see that in all cases, the prediction
accuracy of our method is slightly higher than that of the DNN-IC method, and
moreover, our method is obviously faster in computation.
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Table 5

Summary of the subjects in the full dataset, dataset 1 and dataset 2.
Complete (n = 12204) Dataset 1 (n = 11000) Dataset 2 (n = 1204)

Censoring type Number Rate Number Rate Number Rate
Left-censored 210 0.017 189 0.017 21 0.018

Interval-censored 3294 0.270 2971 0.270 323 0.268
Right-censored 8700 0.713 7840 0.713 860 0.714

Table 6

Analysis results for the Atherosclerosis Risk in Communities study.
DDN-based CPH PLACM

Covariates Est. SE p-value Est. SE p-value Est. SE p-value
Body mass index 0.272 0.016 0.000 0.264 0.015 0.000 0.260 0.016 0.000

Glucose level 0.574 0.019 0.000 0.568 0.018 0.000 0.571 0.019 0.000
High-density Lipoprotein cholesterol −0.297 0.021 0.000 −0.288 0.020 0.000 −0.296 0.021 0.000

Total cholesterol 0.042 0.018 0.020 0.046 0.017 0.007 0.045 0.018 0.012
Age 0.050 0.019 0.008 0.051 0.016 0.001 0.054 0.019 0.004

5. Application

Now we apply the methodology proposed in the previous sections to the epi-
demiological follow-up study, the Atherosclerosis Risk in Communities study.
The data set is available at BioLINCC https://biolincc.nhlbi.nih.gov/
studies/aric. It consists of the participants with ages between 45 to 64 at the
beginning and recruited from four locations in the US, Forsyth County of North
Carolina, Jackson of Mississippi, Minneapolis suburbs of Minnesota, and Wash-
ington County of Maryland. As mentioned before, the participants are examined
only at discrete time times and the examination or visiting times differ from sub-
ject to subject. In consequence, only interval-censored data are available for the
occurrence time of any event such as the onset of diabetes, the failure event of
interest here. At each examination, the medical, social and demographic data
are collected and in the following, we are interested in estimating the effects of
various risk factors on the onset of diabetes.

For the analysis, we focus on the 12204 participants after excluding the sub-
jects with prevalent diabetes, unknown status at baseline or missing values for
risk factors or covariates. Among them, about 27% gives interval-censored ob-
servations and 71% right-censored observations. We randomly divide the full
dataset into two parts: dataset 1 and dataset 2, where dataset 1 contains 90%
of the full dataset and dataset 2 contains the remaining 10%. The characteristics
of the subjects in the full dataset, dataset 1 and dataset 2 are summarized in
Table 5.

For each subject, the data consist of the following risk factors, body mass
index, glucose level, high-density lipoprotein cholesterol level, total cholesterol
level, age, systolic blood pressure, diastolic blood pressure, race, gender, and
location. Next, we consider fitting the dataset with model (1). We are mainly
interested in estimating the effects of the first five risk factors (body mass index,
glucose level, high-density lipoprotein cholesterol level, total cholesterol level,
and age) on the risk of diabetes, we set Z to represent these five risk factors
and X the remaining risk factors. We adopt a 5-fold cross-validation procedure.

https://biolincc.nhlbi.nih.gov/studies/aric
https://biolincc.nhlbi.nih.gov/studies/aric
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Fig 3. Estimated effects θ̂1 (body mass index), θ̂2 (glucose level), θ̂3 (high-density lipoprotein
cholesterol), θ̂4 (total cholesterol) and θ̂5 (age) along with the 95% confidence intervals for
five folds.

In detail, we randomly split the dataset 1 into five folds and use four folds
as the training set, and the remaining one fold as the validation set to select
hyperparameters, conducting a total of five operations.

Table 6 presents the estimated effects of the five risk factors (body mass
index, glucose level, high-density lipoprotein cholesterol level, total cholesterol
level, and age), by the proposed DNN-based estimation procedure, the CPH
method, and the PLACM method along with the estimated standard errors and
p-values. They suggest that all of the five risk factors have significant effects
on the risk of diabetes. Figure 3 presents the estimated values of γ1, γ2, γ3,
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Fig 4. Predictions of survival functions by the DDN-based (dashed line), CPH (dotted line),
and PLACM (dash-dotted line) methods. The solid horizontal line in all plots represents a
survival probability of 0.5. The five plots from top to bottom on the left (or right) side repre-
sent the survival curves of individuals, where the event occurred (not occurred) in the popu-
lation of the test set with observation times at the 15th, 30th, 45th, 60th and 75th quantiles,
respectively.

γ4, and γ5, which represent the effects of body mass index, blood glucose level,
high-density lipoprotein cholesterol level, total cholesterol level, and age, respec-
tively. The figure also shows the corresponding 95% confidence intervals across
all five folds. Note that all confidence intervals obtained from the DNN-based
method do not cover zero, while those obtained from the CPH and the PLACM
methods include zero in a few cases. We also evaluate the performance of the
above three methods in prediction. We use dataset 2 as the test set and clas-
sify the one into two categories: Δ3 = 0 (with 344 observations) and Δ3 = 1
(with 860 observations), which indicates that the event of interest occurred and
did not occur, respectively. In each category, we consider five subjects with
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the second observation time at the 15th, 30th, 45th, 60th, and 75th quantiles,
respectively. Figure 4 depicts the predictions of survival functions of the ten
representative subjects by the DNN-based, the CPH, and the PLACM meth-
ods. Note that if an event occurs, its survival probability is lower than 0.5, and
vice versa. In Figure 4, the solid horizontal line in all plots represents a survival
probability of 0.5. In the case of Δ3 = 1, the predicted values of the survival
functions obtained by the three methods are above 0.5 at all five observation
moments. In the case of Δ3 = 0, the predicted values for all five observation
times are below 0.5 except for the 60th observation time which is slightly above
0.5.

Overall, the results indicate that body mass index, glucose level, total choles-
terol level, and age all exhibit positive effects on the risk of diabetes. Conversely,
high-density lipoprotein cholesterol level has a negative effect on the risk of di-
abetes. Furthermore, we can conclude that the DNN-based method is more
reliable and stable than the CPH and the PLACM methods when analyzing
real data and estimating treatment effects.

6. Concluding remarks

In this article, we proposed a DNN-based sieve semiparametric maximum like-
lihood method for the partially linear Cox model with Case II interval-censored
data. The method not only inherits the simple interpretation of the finite-
dimensional parameters but also provides a powerful tool to remedy the curse
of dimensionality with many covariates and capture complicated nonlinear ef-
fects. The estimators of the resulting regression parameters were shown to be
asymptotically normal and efficient and the estimator of the unknown nonlin-
ear covariate function g0 to have the optimal convergence rate. The proposed
method combines the statistical method with a deep learning approach and fa-
cilitates a practical and easy-to-implement inference for the partially linear Cox
model based on interval-censored data.

As mentioned above, the proposed method can be seen as a generalization
of that given in Zhong et al. [40] although both the situation and the employed
objective function considered here are much more complicated than these in
Zhong et al. [40]. As a consequence, we have to deal with much more difficult
computation and theoretical issues. In addition, the proposed approach can also
be regarded as a generalization of that proposed by Sun and Ding [28] in that we
also considered the existence of linear covariate effects in addition to nonlinear
covariate effects. The proposed method can be used not only for prediction but
also for treatment comparison. Furthermore, we investigated the asymptotic
properties of the proposed method and showed that the proposed nonparametric
DNN estimator achieves the minimax optimal rate of convergence.

In the above, we have assumed that there exist two types of covariates Z
and X that have linear and nonlinear effects, respectively, and there is no in-
teraction between them. In practice, of course, this may not be known and in
general, one usually chooses them based on the question of interest. For exam-
ple, if the prediction is of main interest, one may include all covariates into X
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or Z into the deep neural network. If the treatment comparison is the major
goal of the study, one may set Z to be treatment indicator as discussed above
and let X include all other covariates. For the situation where there may exist
some interaction between Z and X, we can consider interaction terms into the
unknown nonparametric effect form for a more comprehensive analysis.

There exist several directions for future research. One is that in the above,
the failure time of interest has been assumed to be independent of the obser-
vation process and it is apparent that this may be not true in some situations.
Therefore it would be useful to generalize the proposed method to the case of
informatively interval-censored data under model (1). Another related direction
for future research is to consider more generalized models or other models rather
than model (1), which may not be proper sometimes. One such choice could be
the partially linear transformation mode Λ(t) = G(Λ0(t) exp(θ′

0Z + g0(X))),
where G is a pre-specified link function. A third direction is to consider the
situation where Z is a high-dimensional covariate vector and one is interested
in identifying a small number of key or significant risk factors. For this, some
penalized methods may be developed.

Appendix A: Additional simulations

We consider a model:
Λ(t | X) = Λ0(t)eg0(X).

Here we set Λ0(t) =
√
t

7 and g0(X) = 1
2 log(X1X2 + 1) + 1

3 (X3 + X4)2 +√
X5
4 + 1

5eX6/2. The two observation times were generated as follows: U ∼
Uniform(0, τ

6 ), V ∼ min{ τ
3 + U + τ

2 Exponetial(1), τ}. When we continue to
use our method, that is, Λ(t | X) = Λ0(t)eθ0X1+h0(X2,X3,X4,X5,X6), to estimate
parameters, it is the misspecified model. The estimation and prediction results
by our method are illustrated in Figure 5, which show that when the model
structure assumption is incorrect, the estimated results are significantly biased
and the predictions are inaccurate.

Fig 5. Estimates of Λ0(·) and prediction errors between ĝ and the true function g0 under two
sample sizes 1000 and 2000.
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Supplementary material

(C1) K = O(logn), s = O(nγ2
n logn) and

nγ2
n � min

{k=1,...,K}
pk ≤ max

{k=1,...,K}
pk � n.

(C2) The covariate (Z,X) takes value in a bounded subset of Rp+r with joint
probability density function bounded away from zero. Without loss of
generality, we assume that the domain of X is taken to be [0, 1]r. And Θ
is a compact subset of Rp.

(C3) (a) There exists a positive number η such that P (V − U ≥ η) = 1; and
(b) the union of the supports of U and V is contained in an interval [a, b],
where 0 < a < b < ∞, and 0 < Λ0(a) < Λ0(b) < ∞.

(C4) φ0 = log Λ0 belongs to Φ, a class of functions with bounded p th derivative
in [a, b] for p ≥ 1 and the first derivative of φ0 is strictly positive and
continuous on [a, b].

(C5) The conditional density g(u, v | z,x) of (U, V ) given Z and X has bounded
partial derivatives with respect to (u, v). The bounds of these partial
derivatives do not depend on (u, v,z,x).

(C6) For some κ ∈ (0, 1),aT var(Z | U)a ≥ κaT
E

(
ZZT | U

)
a and aT var(Z |

V )a ≥ κaT
E

(
ZZT | V

)
a a.s. for all a ∈ Rp.

(C7) The nonparametric function g0 is an element of H0 = {g ∈ H(q,α,d, d̃,M):
E{g(X)} = 0}.

Condition (C1) determines the structure of a neural network family G(K, s,p, D).
Conditions (C2)-(C5) are common conditions in the context of survival analysis.
Condition (C6) is a technical assumption which is similar to condition (C6) in
Zhang and Hua [37]. Condition (C7) ensures the identifiability of the proposed
model.

We first introduce some more notation. For any vector v = (v1, . . . , vp)′ ∈ Rp,
let ‖v‖2

c be defined as above, ‖v‖ =
(∑p

i=1 v
2
i

)1/2 and ‖v‖∞ = maxi |vi|, and for
any matrix W = (wij) ∈ R

m×n, ‖W‖∞ = maxi,j |wij |. For any function h, ‖h‖∞
and ‖h‖L2 are the sup-norm and L2-norm of h respectively, and for any vector
function h = (h1, . . . , hp)′ , ‖h‖∞ = maxi ‖hi‖∞. Denote an � bn as an ≤ cbn
for some c > 0 and any n. And an � bn means an � bn and bn � an.

Denote τ = (θ, g, φ), the true value of τ , τ 0 = (θ0, g0, φ0), f(Z,X, t) =
exp{θ′Z + g(X) + φ(t)} and f0(Z,X, t) = exp{θ′

0Z + g0(X) + φ0(t)}. Define
m(τ ) = δ1 log{1 − exp[−f(Z,X, U)]}

+ δ2 log[exp(−f(Z,X, U)) − exp(−f(Z,X, V ))]
− δ3f(Z,X, V )

and then ln(τ ) = Pnm(τ ) and l(τ ) = Pm(τ ).

Proof of Theorem 3.1. Before deriving the convergence rate, we need to show
that d(τ̂ , τ 0)

p→ 0 as n → ∞. This can be accomplished by verifying the condi-
tions of Theorem 5.7 in van der Vaart [32].
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For some D > 0, let R
p
D = {θ ∈ Θ : ‖θ‖∞ < D}, GD := G(K, s,p, D), and

MD =
{
φn : φn(t) =

∑qn
j=1 βjbj(t), β1 ≤ β2 ≤ · · · ≤ βqn ≤ D, t ∈ [a, b]

}
. Define

τ̂D =
(
θ̂D, ĝD, φ̂D

)
= arg max

(θ,g,φ)∈R
p
D×GD×MD

ln(θ, g, φ). (5)

Note that P (d (τ̂ , τ 0) < ∞) = 1. Thus, it suffices to show that d (τ̂D, τ 0)
p→ 0

as n → ∞ for some large enough D.
According to the bracketing number calculations developed by Shen and

Wong [23] and Lu et al. [14], for any η > 0 and 0 < ε < η, the logarithm of the
bracketing number of MD, computed with L2(P ), is bounded by Mqn log(η/ε).
Based on the Lemma 6 in Zhong et al. [40], the logarithm of the bracketing
number of GD with L2(P ) is bounded by s log(U/ε), where U = K

∏K
k=0(pk +

1)
∑K

k=0 pkpk+1. It is known that the neighborhood {θ : ‖θ − θ0‖ ≤ η} can be
covered by M(η/ε)p balls with radius ε. In view of Theorem 9.23 of Kosorok
[13], the bracketing number of

{
θ′Z : ‖θ − θ0‖ ≤ η

}
is bounded by M(η/ε)p.

It is shown that the class {l(τ ) : τ ∈ R
p
D × GD × MD} is Glivenko-Cantelli.

Therefore,

sup
τ∈R

p
D×GD×MD

|ln(τ ) − l(τ )| p→ 0. (6)

Some algebra yields that

l (τ 0) − l(τ ) =E

(
[1 − exp {−f0(Z,X, U)}] log 1 − exp {−f0(Z,X, U)}

1 − exp{−f(Z,X, U)}
+ [exp {−f0(Z,X, U)} − exp {−f0(Z,X, V )}]

× log exp {−f0(Z,X, U)} − exp {−f0(Z,X, V )}
exp{−f(Z,X, U)} − exp{−f(Z,X, V )}

+exp {−f0(Z,X, V )} log exp {−f0(Z,X, V )}
exp{−f(Z,X, V )}

)
=E

(
[1 − exp{−f(Z,X, U)}]h

[
1 − exp {−f0(Z,X, U)}
1 − exp{−f(Z,X, U)}

]
+ [exp{−f(Z,X, U)} − exp{−f(Z,X, V )}]

× h

[
exp {−f0(Z,X, U)} − exp {−f0(Z,X, V )}
exp{−f(Z,X, U)} − exp{−f(Z,X, V )}

]
+exp{−f(Z,X, V )}h

[
exp {−f0(Z,X, V )}
exp{−f(Z,X, V )}

])
,

where h(x) = x log x− x+ 1 ≥ (x− 1)2/4 for 0 ≤ x ≤ 5. Further analysis by
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using Taylor expansion and conditions (C2)-(C4) leads to

l (τ 0) − l(τ )

≥CE

(
1

1 − exp{−f(Z,X, U)} [exp {−f0(Z,X, U)} − exp{−f(Z,X, U)}]2

+ 1
exp{−f(Z,X, V )} [exp {−f0(Z,X, V )} − exp{−f(Z,X, V )}]2

)
≥CE

[{
(θ0 − θ)′ Z + (g0 − g)(X) + (φ0 − φ) (U)

}2

+
{
(θ0 − θ)′ Z + (g0 − g)(X) + (φ0 − φ) (V )

}2]
Let w1(Z) = (θ − θ0)′ Z and w2(U, V,X) = (φ− φ0)(U) + (φ− φ0)(V ) + (g −
g0)(X). The Cauchy-Schwarz inequality and the law of total expectation yield

[E {w1(Z)w2(U, V,X)}]2

≤ EU,V,X

{
w2

2(U, V,X)
}
EU,V,X

[
EZ|U,V,X {w1(Z) | U, V,X}

]2
.

Using the similar arguments as those in Wellner and Zhang [34] and Lemma
25.86 of van der Vaart [32] yields

l (τ 0) − l(τ ) ≥ C
(
‖θ − θ0‖2 + ‖g − g0‖L2([0,1]r) + ‖φ− φ0‖2

Φ

)
= Cd2 (τ 0, τ ) .

Then, it implies that

sup
τ :d(τ ,τ0)≥ε

l(τ ) ≤ l (τ 0) − Cε2 < l (τ 0) . (7)

.
For φ0 ∈ Φ, Lu [14] has shown that there exists a φ0,n ∈ Mn of order

m ≥ p + 2 such that

‖φ0,n − φ0‖∞ ≤ Cq−p
n = O

(
n−pv

)
.

This also implies that ‖φ0,n − φ0‖Φ ≤ Cq−p
n = O (n−pv). By the proof of Theo-

rem 1 in Schmidt-Hieber [20], we know ‖g0,n − g0‖L2 = O(γn log2 n). Using the
fact that the function h(x) = x log x − x + 1 ≤ (x − 1)2 in the neighborhood
of x = 1, it can be easily be argued that l(τ 0) − l(τ ) ≤ Cd2 (τ 0, τ ). Thus, it
follows that l(τ0) − l(τ) � d2 (τ 0, τ ). Then, by this, (6) and the law of large
numbers, we have

|ln (θ0, g0,n, φ0,n) − ln (θ0, g0, φ0)|
≤ |ln (θ0, g0,n, φ0,n) − l (θ0, g0,n, φ0,n)| + |l (θ0, g0,n, φ0,n) − l (θ0, g0,n, φ0)|

+ |l (θ0, g0,n, φ0) − l (θ0, g0, φ0)| + |l (θ0, g0, φ0) − ln (θ0, g0, φ0)|
=op(1).

Since τ̂D is the maximizer of (5), we obtain

ln

(
θ̂D, ĝD, φ̂D

)
≥ ln (θ0, g0,n, φ0,n) = ln (θ0, g0, φ0) − op(1),
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which gives
ln (τ̂D) ≥ ln (τ 0) − op(1). (8)

Therefore, the conditions in Theorem 5.7 of van der Vaart [32] follows from (6),
(7) and (8), and this implies that d (τ̂D, τ 0) → 0 as n → ∞.

Next, we show the convergence rates d (τ̂D, τ 0) = Op

(
γn log2 n

)
. We need to

verify the conditions of Theorem 3.4.1 of van der Vaart and Wellner [33]. Let
Aη = {τ = (θ, g, φ) ∈ R

p
D × GD ×MD : η/2 ≤ d (τ , τ 0) ≤ η}. We first need to

show that
E
∗ sup
τ∈Aη

√
n |(ln − l) (τ ) − (ln − l) (τ 0)| � ϕn(η).

Let L1(η) = {m(τ ) −m (τ 0) : τ ∈ Aη}. Note that, for any τ , τ 1 ∈ Aη,

E [m(τ ) −m(τ 1)]2 � d2 (τ , τ 1) .

Then, by Lemma 6 in Zhong et al. [40], it follows, if p, qn ≤ s and η ≤ U ,

logN[] (ε,L1(η), L2(P)) � p log η

ε
+ qn log η

ε
+ s log U

ε
� s log U

ε
.

This leads to

J[] (η,L1(η), L2(P)) :=
∫ η

0

√
1 + logN[] (ε,L1(η), L2(P ))dε

�
∫ η

0

√
1 + s log

(
U

ε

)
dε

=
√

s

2U
∫ ∞√

2 log U
η

v2e−v2/2dv

� η

√
s log U

η

Based on Lemma 3.4.2 in van der Vaart and Wellner [33], we have

E
∗ ‖Gn‖L1(η) � J[] (η,L1(η), L2(P))

{
1 +

J[] (η,L1(η), L2(P))
η2√n

}

� η

√
s log U

η
+ s√

n
log U

η
.

Thus, the key function ϕn(η) is given by

ϕn(η) = η

√
s log U

η
+ s√

n
log U

η
.

Furthermore, we have shown that l(τ 0) − l(τ ) � d2 (τ 0, τ), which leads to

sup
τ∈Aη

[l(τ ) − l (τ 0)] � −η2.
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Denote δn = γn log2 n. By assumption (C1), it is clear that

δ−2
n ϕn (δn) ≤

√
n.

On the other hand,

|ln (θ0, g0,n, φ0,n) − ln (θ0, g0, φ0)|

� Op

(
n−1/2ϕn (δn)

)
+ |l (θ0, g0,n, φ0,n) − l (θ0, g0, φ0)|

� Op

(
n−1/2ϕn (δn)

)
+ ‖g0,n − g0‖2

L2([0,1]r) + ‖φ0,n − φ0‖2
Φ

= Op

(
δ2
n

)
Since, by the definition of τ̂D in (5), we have

ln

(
θ̂D, ĝD, φ̂D

)
≥ ln (θ0, g0,n, φ0,n) = ln (θ0, g0, φ0) −Op

(
δ2
n

)
.

Thus, by Theorem 3.4.1 in van der Vaart and Wellner [33], we have

d (τ̂D, τ 0) = Op (δn) .

This gives d (τ̂ , τ 0) = Op (δn). Furthermore, we have
∥∥∥θ̂ − θ0

∥∥∥ = Op (δn),∥∥∥φ̂− φ0

∥∥∥
Φ

= Op (δn), and ‖ĝ − g0‖L2 = Op (δn).

Proof of Theorem 3.2. Denote P(θ0,g0,φ0) be the probability distribution with
respect to the parameter θ0, φ0, and nonparametric function g0. For (θ0, φ0) ∈
Θ × Φ and g(0), g(1) ∈ H0, let P0 and P1 be the joint probability distribution
of the observed data {(δ1i, δ2i, δ3i, Ui, Vi,Z,X), i = 1, . . . , n} under P(

θ0,g(0),φ0
)

and P(
θ0,g(1),φ0,

), respectively.
The Kullback-Leibler distance between P1 and P0 is

KL (P1, P0) = EP1 log P1

P0

= nEP1

(
[1 − exp{−f(0)(Zi,Xi, Ui)}]h

[
1 − exp

{
−f(1)(Zi,Xi, Ui)

}
1 − exp{−f(0)(Zi,Xi, Ui)}

]
+ [exp{−f(0)(Zi,Xi, Ui)} − exp{−f(0)(Zi,Xi, Vi)}]

× h

[
exp

{
−f(1)(Zi,Xi, Ui)

}
− exp

{
−f(1)(Zi,Xi, Vi)

}
exp{−f(0)(Zi,Xi, Ui)} − exp{−f(0)(Zi,Xi, Vi)}

]

+exp{−f(0)(Zi,Xi, Vi)}h
[

exp
{
−f(1)(Zi,Xi, Vi)

}
exp{−f(0)(Zi,Xi, Vi)}

])
,

where f(0)(Zi,Xi, t) = exp{θ′
0Zi + g(0)(Xi) + φ0(t)} and f(1)(Zi,Xi, t) =

exp{θ′
0Zi + g(1)(Xi)+φ0(t)}. Using the fact that the function h(x) = x log x−

x + 1 ≤ (x − 1)2 in the neighborhood of x = 1 and Taylor expansion, we have
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that KL (P1, P0) ≤ cn
∥∥g(1) − g(0)

∥∥2
L2 . Therefore, there exist a constant c > 0,

such that
KL (P1, P0) ≤ cn

∥∥∥g(1) − g(0)
∥∥∥2

L2
, (9)

By the proof of Theorem 3 of Schmidt-Hieber [20], there exist g(0), . . . , g(N) ∈ H0
and constant c1, c2 > 0, such that∥∥∥g(j) − g(k)

∥∥∥
L2

≥ 2c1γn > 0 (10)

and
cn

N

N∑
j=1

∥∥∥g(j) − g(0)
∥∥∥2

L2
≤ c2 logN. (11)

Then with (9)-(11), Theorem 2.5 in Tsybakov [31] implies that

inf
ĝ

sup
g0∈H0

P (‖ĝ − g0‖L2 ≥ c1γn) ≥
√
N

1 +
√
N

(
1 − 2c2 −

√
2c2

logN

)
.

This shows that

inf
ĝ

sup
(θ0,g0,φ0)∈Θ×H0×Φ

EP(θ0,g0,φ0) {ĝ(X) − g0(X)}2 ≥ c3γ
2
n,

for some constant 0 < c3 < ∞. Therefore, the proof is completed.

Proof of Theorem 3.3. Let

	(τ ) =δ1 log{1 − exp[−f(Z,X, U)]}
+δ2 log{exp[−f(Z,X, U)] − exp[−f(Z,X, V )]} − δ3f(Z,X, V ).

be the log-likelihood for a sample of size one. We define functions Qi, i=1, 2, 3,
by

Q1(U, V,Z,X) = exp (−f(Z,X, U)) f(Z,X, U)
1 − exp (−f(Z,X, U)) ,

Q2(U, V,Z,X) = exp (−f(Z,X, U)) f(Z,X, U)
exp (−f(Z,X, U)) − exp (−f(Z,X, V )) ,

and
Q3(U, V,Z,X) = exp (−f(Z,X, V )) f(Z,X, V )

exp (−f(Z,X, U)) − exp (−f(Z,X, V )) .

The score function for θ is

	̇θ(τ ) = ∂	(τ )
∂θ

=Z{δ1Q1 − δ2Q2 + δ2Q3 − δ3f(Z,X, V )}

=ZQ4(U, V,Z,X) + ZQ5(U, V,Z,X),

where Q4(U, V,Z,X) = δ1Q1−δ2Q2 and Q5(U, V,Z,X) = δ2Q3−δ3f(Z,X, V ).
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Consider a parametric smooth submodel (φt, gs), such that φt|t=0 = φ and
gs|s=0 = g, with ∂φt

∂t |t=0 = a and ∂gs
∂s |s=0 = h. The score operators for φ and g

are defined as

	̇φ(τ )[a] = ∂	 (θ, φt, gs)
∂t

∣∣∣∣
t=s=0

=δ1a(U)Q1 − δ2[a(U)Q2 − a(V )Q3] − δ3f(Z,X, V )a(V )
=a(U)Q4(U, V,Z,X) + a(V )Q5(U, V,Z,X).

and
	̇g(τ )[h] = ∂	 (θ, φt, gs)

∂s

∣∣∣∣
t=s=0

=h(X){δ1Q1 − δ2[Q2 −Q3] − δ3f(Z,X, V )}
=h(X)Q4(U, V,Z,X) + h(X)Q5(U, V,Z,X).

Define A =
{
a : Ea2 < ∞

}
and H =

{
h : E{h(X)} = 0, E

{
h2(X)

}
< ∞

}
. For

h = (h1, . . . , hp)′ ∈ Hp, define 	̇g(τ )[h] =
(
	̇g(τ ) [h1] , . . . , 	̇g(τ ) [hp]

)′, and sim-
ilarly for a = (a1, . . . , ap)′ ∈ Ap define 	̇φ(τ )[a] =

(
	̇φ(τ ) [a1] , . . . , 	̇φ(τ ) [ap]

)′.
According to Bickel et al. [1], the efficient score vector for θ is

	∗θ(τ ) = 	̇θ(τ ) − 	̇φ(τ )[a∗] − 	̇g(τ)[h∗],

where a∗ ∈ Ap and h∗ ∈ Hp satisfies that

E{(	̇θ(τ ) − 	̇φ(τ )[a∗] − 	̇g(τ )[h∗])	̇φ(τ )[a]} = 0

and
E{(	̇θ(τ ) − 	̇φ(τ ) [a∗] − 	̇g(τ )[h∗])	̇g(τ )[h]} = 0

for any a ∈ A and h ∈ H. The information bound of θ takes the form

I(θ) = E {	∗θ(τ )}⊗2
.

Lemma A.1. Assume that
(i) Pn{	̇θ(τ̂ )} = op(n−1/2) and Pn{	̇φ(τ̂ ) [a∗]} = Pn

{
	̇g(τ̂ ) [h∗]

}
= op(n−1/2),

(ii) (Pn − P ) {	∗θ(τ̂ ) − 	∗θ (τ 0)} = op
(
n−1/2),

(iii) P {	∗θ(τ̂ ) − 	∗θ (τ 0)} = −I (θ0) (θ̂−θ0)+op

(∥∥∥θ̂ − θ0

∥∥∥)+op
(
n−1/2) and

I (θ0) is nonsingular. Then

n1/2
(
θ̂ − θ0

)
= n1/2I−1 (θ0)Pn {	∗θ (τ 0)} + op(1)

d

−→ N
(
0, I−1 (θ0)

)
, n → ∞.

Proof of Lemma A.1. Combining (ii) and (iii), we have

Pn{	∗θ(τ̂ ) − 	∗θ (τ 0)} = −I (θ0) + op

(∥∥∥θ̂ − θ0

∥∥∥) + op

(
n−1/2

)
.

By Condition (i), it follows that

Pn	
∗
θ (τ 0) = I (θ0) (θ̂ − θ0) + op

(∥∥∥θ̂ − θ0

∥∥∥) + op

(
n−1/2

)
.
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Because I (θ0) is nonsingular, and Pn	
∗
θ (τ 0) = Op

(
n−1/2) owing to the ordinary

large sample theory, one has
∥∥∥θ̂ − θ0

∥∥∥ = Op

(
n−1/2). Thus, op

(∥∥∥θ̂ − θ0

∥∥∥) =
op

(
n−1/2) and therefore

Pn	
∗
θ (τ 0) = I (θ0) (θ̂ − θ0) + op

(
n−1/2

)
.

The result follows.

Proof of Theorem 3.4. Now we verify the conditions in Lemma A.1 to show the
asymptotic normality of θ̂. By the definition of τ̂ , Pn

{
	̇θ(τ̂ )

}
= 0. It can be

easily shown that there exists a an ∈ Mn such that ‖an − a∗‖Φ = 0(q−1
n ) =

O(n−ν), and Pn

{
	̇φ(τ̂ )[an]

}
= 0. Therefore, we can write Pn

{
	̇φ(τ̂ )[a∗]

}
=

I1,n + I2,n, where I1,n = (Pn − P )
{
	̇φ(τ̂ ) [a∗ − an]

}
and I2,n = P{	̇φ(τ̂ )[a∗ −

an] − 	̇φ(τ 0)[a∗ − an]}. Let

L2 =
{
	̇φ(τ ) [a∗ − a] : φ, a ∈ Mn, g ∈ GD, d(τ , τ 0) < η, ‖a∗ − a‖Φ ≤ η

}
.

It can be similarly argued that the ε-bracketing number associated with L2(P )-
norm is bounded by C(η/ε)p(η/ε)Cqn(U/ε)s, which leads to L2 being Donsker.
Furthermore, for any r(τ ) ∈ L2, Pr2 → 0 as n → ∞. Hence I3,n = op

(
n−1/2)

by corollary 2.3.12 of van der Vaart and Wellner [33]. The Cauchy-Schwatz
inequality yields I2,n = Cd(τ̂ , τ0)‖a∗ − an‖Φ = op(n−1/2). Thus, we have
Pn

{
	̇φ(τ̂ ) [a∗]

}
= op(n−1/2). The proof of Pn

{
	̇g(τ̂ ) [h∗]

}
= op

(
n−1/2) is

similar. According to Schmidt-Hieber [20], there exist hn,j ∈ GD such that
‖h∗

j − hn,j‖L2 = O(γn log2 n). By the definition of τ̂ , Pn

{
	̇g(τ̂ ) [h]

}
= 0 for any

h ∈ GD. Therefore, it suffices to show Pn

{
	̇g(τ̂ )

[
h∗
j − hn,j

]}
= op

(
n−1/2). The

term Pn

{
	̇g(τ̂ )

[
h∗
j − hn,j

]}
can be written as I3,n+I4,n, where I3,n = (Pn − P ){

	̇g(τ )
[
h∗
j − hn,j

]}
and I4,n = P

{
	̇g(τ )

[
h∗
j − hn,j

]}
. The proofs of I3,n =

op(n−1/2) and I4,n = op(n−1/2) is similar to the proofs of I1,n and I2,n.
For 0 < ε < η, it can be shown that L3 = {	∗θ(τ ) − 	∗θ (τ 0) : φ ∈ Mn, g ∈

GD, d(τ , τ 0) ≤ η} is P-Donsker and for r(τ ) ∈ L3, Pr2 → 0 as η → 0. Using
Taylor expansion, the convergence rate and assumption n1/2γ2

n → 0 as n → ∞,
P {	∗θ(τ̂ ) − 	∗θ (τ 0)} = −I (θ0) (θ̂−θ0)+op

(
n−1/2) can be easily established.

Acknowledgments

The authors would like to thank the Editor, the Associate Editor and the two
reviewers for their constructive and insightful comments and suggestions that
greatly improved the paper.

Funding

This research was supported in part by the National Natural Science Foundation
of China (12271459, 12101522, 12371622), the CAS AMSS-PolyU Joint Labo-
ratory of Applied Mathematics, and The Hong Kong Polytechnic University
(P0038663, P0043955, P0045385).



Deep learning for regression analysis of interval-censored data 4319

References

[1] Bickel, P.J., Klaassen, C.A.J., Ritov, Y. and Wellner, J.A. (1993).
Efficient and Adaptive Estimation for Semiparametric Models. Johns Hop-
kins Series in the Mathematical Sciences. Johns Hopkins University. Press,
Baltimore, MD. MR1245941

[2] Cheng, G. and Wang, X. (2011). Semiparametric additive transforma-
tion model under current status data. Electronic Journal of Statistics,
5:1735–1764. MR2870149

[3] Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal
Statistical Society: Series B, 34(2):187–202. MR0341758

[4] Cox, D. R. (1975). Partial likelihood. Biometrika, 62(2):269–276.
MR0400509

[5] Deng, S., Liu, L. and Zhao, X. (2015). Monotone spline-based least
squares estimation for panel count data with informative observation times.
Biometrical Journal, 57(5): 743–765. MR3394808

[6] Glorot, X. and Bengio, Y.(2010). Understanding the difficulty of train-
ing deep feedforward neural networks. In Proceedings of the Thirteenth In-
ternational Conference on Artificial Intelligence and Statistics, 249–256.

[7] Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep Learning
(Adaptive Computation and Machine Learning Series). MIT Press, Cam-
bridge, MA. MR3617773

[8] Han, S., Pool, J., Tran, J. and Dally, W. (2015). Learning both
weights and connections for efficient neural network. In Advances in Neural
Information Processing Systems, 1135–1143.

[9] Huang, J. (1996). Efficient estimation for the proportional hazards
model with interval censoring. The Annals of Statistics, 24(2):540–568.
MR1394975

[10] Huang, J. (1999). Efficient estimation of the partly linear additive Cox
model. The Annals of Statistics, 27(5):1536–1563. MR1742499

[11] Huang, J. and Rossini, A. J. (1997). Sieve estimation for the
proportional-odds failure-time regression model with interval censor-
ing. Journal of the American Statistical Association, 92(439):960–967.
MR1482126

[12] Katzman, J. L., Shaham, U., Cloninger, A., Bates, J., Jiang, T.

and Kluger, Y. (2018). DeepSurv: personalized treatment recommender
system using a Cox proportional hazards deep neural network. BMC Med-
ical Research Methodology, 18:1–12.

[13] Kosorok, M. R. (2008). Introduction to Empirical Processes and Semi-
parametric Inference. Springer Science and Business Media. MR2724368

[14] Lu, M. (2007). Monotone Spline Estimations for Panel Count Data. PhD
Dissertation, Department of Biostatistics, University of Iowa.

[15] Lu, M., Zhang, Y. and Huang, J. (2009). Semiparametric estimation
methods for panel count data using monotone B-splines. Journal of the
American Statistical Association, 104(487):1060–1070. MR2750237

[16] Ma, S. and Kosorok, M. (2005). Penalized log-likelihood estimation for

https://mathscinet.ams.org/mathscinet-getitem?mr=1245941
https://mathscinet.ams.org/mathscinet-getitem?mr=2870149
https://mathscinet.ams.org/mathscinet-getitem?mr=0341758
https://mathscinet.ams.org/mathscinet-getitem?mr=0400509
https://mathscinet.ams.org/mathscinet-getitem?mr=3394808
https://mathscinet.ams.org/mathscinet-getitem?mr=3617773
https://mathscinet.ams.org/mathscinet-getitem?mr=1394975
https://mathscinet.ams.org/mathscinet-getitem?mr=1742499
https://mathscinet.ams.org/mathscinet-getitem?mr=1482126
https://mathscinet.ams.org/mathscinet-getitem?mr=2724368
https://mathscinet.ams.org/mathscinet-getitem?mr=2750237


4320 M. Du et al.

partly linear transformation models with current status data. The Annals
of Statistics, 33(5):2256–2290. MR2211086

[17] Meixide, C. G., Matabuena, M. and Kosorok, M. R. (2022). Neu-
ral interval-censored Cox regression with feature selection. arXiv preprint
arXiv:2206.06885.

[18] Nair, V. and Hinton, G. E. (2010). Rectified linear units improve re-
stricted boltzmann machines. In International Conference on Machine
Learning, 807–814.

[19] Saxe, A. M., McClelland, J. L. and Ganguli, S. (2013). Exact solu-
tions to the nonlinear dynamics of learning in deep linear neural networks.
arXiv preprint arXiv:1312.6120.

[20] Schmidt-Hieber, J. (2020). Nonparametric regression using deep neu-
ral networks with ReLU activation function. The Annals of Statistics,
48(4):1875–1897. MR4134774

[21] Schumaker, L. (1981). Spline Function: Basic Theory. John Wiley, New
York. MR0606200

[22] Shen, X. (1998). Proportional odds regression and sieve maximum likeli-
hood estimation. Biometrika, 85(1):165–177. MR1627289

[23] Shen, X. and Wong, W. H. (1994). Convergence rate of sieve estimates.
The Annals of Statistics, 22(2):580–615. MR1292531

[24] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and
Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural
networks from overfitting. The Journal of Machine Learning Research,
15(1):1929–1958. MR3231592

[25] Stone, C. J. (1985). Additive regression and other nonparametric models.
The Annals of Statistics, 13(2):689–705. MR0790566

[26] Sun, J. (2006). Statistical Analysis of Interval-Censored Failure Time
Data. New York: Springer. MR2287318

[27] Sun, J. and Chen, D. (2022). Emerging Topics in Modeling Interval-
Censored Survival Data. Springer Nature.

[28] Sun, T. and Ding, Y. (2023). Neural network on interval-censored data
with application to the prediction of Alzheimer’s disease. Biometrics,
79(3):2677–2690. MR4644024

[29] Sun, J. and Sun, L. (2005). Semiparametric linear transformation models
for current status data. The Canadian Journal of Statistics, 33(1):85–96.
MR2155000

[30] Tian, T. and Sun, J. (2023). Variable selection for nonparametric
additive Cox model with interval-censored data. Biometrical Journal,
65(1):2100310. MR4534397

[31] Tsybakov, A. B. (2009). Introduction to Nonparametric Estimation.
Springer Series in Statistics. Springer, New York. MR2724359

[32] van der Vaart, A. W. (2000). Asymptotic Statistics. Cambridge Series
in Statistical and Probabilistic Mathematics. Cambridge University. Press,
Cambridge. MR1652247

[33] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence
and Empirical Processes: With Applications to Statistics. Springer Series in

https://mathscinet.ams.org/mathscinet-getitem?mr=2211086
https://arxiv.org/abs/2206.06885
https://arxiv.org/abs/1312.6120
https://mathscinet.ams.org/mathscinet-getitem?mr=4134774
https://mathscinet.ams.org/mathscinet-getitem?mr=0606200
https://mathscinet.ams.org/mathscinet-getitem?mr=1627289
https://mathscinet.ams.org/mathscinet-getitem?mr=1292531
https://mathscinet.ams.org/mathscinet-getitem?mr=3231592
https://mathscinet.ams.org/mathscinet-getitem?mr=0790566
https://mathscinet.ams.org/mathscinet-getitem?mr=2287318
https://mathscinet.ams.org/mathscinet-getitem?mr=4644024
https://mathscinet.ams.org/mathscinet-getitem?mr=2155000
https://mathscinet.ams.org/mathscinet-getitem?mr=4534397
https://mathscinet.ams.org/mathscinet-getitem?mr=2724359
https://mathscinet.ams.org/mathscinet-getitem?mr=1652247


Deep learning for regression analysis of interval-censored data 4321

Statistics. Springer, New York. MR1385671
[34] Wellner, J. A. and Zhang, Y. (2007). Two likelihood-based semipara-

metric estimation methods for panel count data with covariates. The Annals
of Statistics, 35(5):2106–2142. MR2363965

[35] Wu, Q., Zhao, H., Zhu, L. and Sun, J. (2020). Variable selection for
high-dimensional partly linear additive Cox model with application to
Alzheimer’s disease. Statistics in Medicine, 39(23):3120–3134. MR4151923

[36] Zeng, D., Mao, L. and Lin, D. (2016). Maximum likelihood estima-
tion for semiparametric transformation models with interval-censored data.
Biometrika, 103(2):253–271. MR3509885

[37] Zhang, Y. and Hua, L. (2010). A spline-based semiparametric maximum
likelihood estimation method for the Cox model with interval-censored
data. Scandinavian Journal of Statistics, 37(2):338–354. MR2682304

[38] Zhang, Z., Sun, L., Zhao, X. and Sun, J. (2005). Regression analysis
of interval-censored failure time data with linear transformation models.
Canadian Journal of Statistics, 33(1):61–70. MR2154998

[39] Zhang, Z. and Zhao, Y. (2013). Empirical likelihood for linear transfor-
mation models with interval-censored failure time data. Journal of Multi-
variate Analysis, 116:398–409. MR3049912

[40] Zhong, Q., Mueller, J. and Wang, J. (2022). Deep learning for the
partially linear Cox model. The Annals of Statistics, 50(3):1348–1375.
MR4441123

[41] Zhou, Q., Zhou, H. and Cai, J. (2017). Case-cohort studies with interval-
censored failure time data. Biometrika, 104(1):17–29. MR3626480

https://mathscinet.ams.org/mathscinet-getitem?mr=1385671
https://mathscinet.ams.org/mathscinet-getitem?mr=2363965
https://mathscinet.ams.org/mathscinet-getitem?mr=4151923
https://mathscinet.ams.org/mathscinet-getitem?mr=3509885
https://mathscinet.ams.org/mathscinet-getitem?mr=2682304
https://mathscinet.ams.org/mathscinet-getitem?mr=2154998
https://mathscinet.ams.org/mathscinet-getitem?mr=3049912
https://mathscinet.ams.org/mathscinet-getitem?mr=4441123
https://mathscinet.ams.org/mathscinet-getitem?mr=3626480

	Introduction
	Methodology
	Likelihood function
	DNN-based estimation procedure

	Asymptotic properties
	Simulation studies
	Application
	Concluding remarks
	Additional simulations
	Supplementary material
	Acknowledgments
	Funding
	References

