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Abstract: Nowadays, several data analysis problems are high-dimensional,
requiring a complexity reduction for their modeling. Under the sparsity
assumption, variable selection is feasible, removing the non-influential ex-
planatory variables. When factors are present, with their levels being dummy
coded, the number of parameters included in the model grows rapidly, lead-
ing to high-dimensional problems even in cases with moderate number of
factors. This fact emphasizes the need for a drastical parameter reduction,
not only through variable selection but also through fusion of levels of fac-
tors. The levels fused are those not differentiating significantly in terms
of their influence on the response variable. Such fusions, beyond reduc-
ing the dimension of the model, propose scale adjustments for categori-
cal predictors. In this work a new regularization technique is introduced,
called L0-fused group lasso (L0-FGL) for binary logistic regression. It uses
a group lasso penalty for factor selection and for the fusion part it applies
a L0 penalty on the differences among the levels’ parameters of a categori-
cal predictor. Using adaptive weights, the adaptive version of the L0-FGL
method is derived. Theoretical properties, such as existence,

√
n consistency

and oracle properties under certain conditions, are established. In addition,
it is shown that even in the diverging case where the number of param-
eters pn grows with the sample size n,

√
n consistency and a consistency

in variable selection result are achieved, as well as a respective result on
asymptotic normality for an approximate L0-FGL solution. Two computa-
tional methods, the penalized iteratively reweighted least squares (PIRLS)
and a block coordinate descent (BCD) approach using quasi Newton, are
developed and implemented. A simulation study supports the outstanding
performance of L0-FGL, especially in cases with a large number of factors.
Finally, we apply our method on a real dataset corresponding to breast
cancer recurrence events.
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1. Introduction

Regularization methods for generalized linear models (GLMs) have been in the
center of interest for high-dimensional data analysis, especially in the last two
decades. In this framework, factors deserve a special attention. Dimensionality
becomes even higher in presence of factors with many levels, since such a factor,
say Xj of pj + 1 levels, brings pj predictors in the model. Furthermore, factors
allow-dimension reduction not only by eliminating non-significant predictors but
also by fusing levels of a predictor that have the same influence on the response.
Such fusions lead to sparser models strengthening simultaneously their inter-
pretability and may propose scale adjustments for the categorical predictors.
Procedures that allow factor selection and levels fusion at the same time are a
powerful tool for meaningfully reducing the complexity of the model.

The most popular model selection and shrinkage estimation method for GLMs
is the lasso that uses an L1-type penalty and which was initially proposed for
linear regression models ([33]). It is well-known that the lasso estimator is bi-
ased and its model selection can be inconsistent. An attractive alternative that
enjoys selection consistency is the adaptive lasso, proposed by [42], which al-
lows different shrinkage levels for different regression coefficients through the use
of adaptive weights. Other methods leading to nearly unbiased estimators are
the smoothly clipped absolute deviation (SCAD) penalty [6] and the minimax
concave penalty (MCP) [40].

In a variable selection problem with categorical explanatory variables (i.e.
factors), the method needs to be applicable factor-wise, i.e., to exclude or include
in the model all levels of a factor. For this, a natural and suitable extension of the
lasso is the group lasso, originally considered for linear regression ([15], [39]) and
later adjusted for logistic regression ([22]). A review on group lasso is provided
by [14]. The adaptive lasso has also been extended to the adaptive group lasso
[34] while group SCAD [35] and group MCP [14] are the groupwise selection
variants of the SCAD and MCP.

However, the above mentioned methods are not able to perform fusion among
the levels of a categorical predictor. Such a fusion can be achieved in a penalized
regression framework by applying the penalty on the differences of the parame-
ters belonging to the same factor. For the L1 penalty this was first considered by
[1] in an ANOVA framework and by [9] for linear regression models. Since L1-
type penalties lead to biased estimates, penalties with adaptive weights could
be considered. However, the performance of such adaptive methods depends on
the quality of the adaptive weights used. This fact led [25] to consider the so
called L0 norm as penalty function on the parameter differences within a factor
instead. The advantage of this L0 based approach is that an L0-type penalty
just differentiates between an entry (hence a difference) being zero or nonzero
and consequently does not depend on the absolute value of the coefficients’
differences. A disadvantage of this approach is that the resulting optimization
problem is non-convex and thus computationally more involved. Further, since
the L0 norm is not even continuous, it is difficult to investigate theoretical prop-
erties. In [25], the model was fitted with the penalized iteratively reweighted
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least squares (PIRLS) algorithm while theoretical properties were not in the fo-
cus of the paper. This method performs indirectly factor selection as well, since
a factor is excluded when all parameters corresponding to it are set equal to
zero, i.e. to the value of the reference category. Levels fusion based on penalties
imposed on the differences among the parameters of a factor, inducing also fac-
tor selection, has been considered by [29] as well. They intoduced the so called
SCOPE methodology, which uses a non-convex penalty, the MCP.

Nevertheless, it is not clear whether such indirect factor selection procedures
based on the differences of coefficients from the reference category perform well
enough, comparable to a group variable selection approach. As the group lasso
penalty is a natural choice for factor selection while the above described L0 based
approach is a convenient choice for levels fusion, this work introduces a new
regularization technique, called L0-fused group lasso (L0-FGL), that combines
these two penalties for capturing the two different sources of sparsity, namely
variable selection (also called factor selection in the framework of factors) and
fusion of levels for categorical predictors. The use of two penalty functions al-
lows to set the focus on either factor selection or levels fusion, depending on
the application context. If no focus is set, L0-FGL will balance between factor
selection and levels fusion performance. Here, L0-FGL is developed and studied
in the framework of penalized logistic regression with all explanatory variables
being categorical. The method is adjustable to other types of GLMs and cases of
co-existence of continuous and categorical explanatory variables. We will verify
that in our setting the additional group lasso penalty consideration improves
the selection performance compared to the approach based solely on the L0
penalties on the differences, which justifies the consideration of an additional
penalty term to enforce a stronger factor selection performance.

The rest of the paper is organized as follows. After introducing the new L0-
FGL method along with its adaptive variant and pointing out its main character-
istics in Section 2, the theoretical properties of L0-FGL and adaptive L0-FGL are
investigated in Section 3. In particular, the existence, a result on

√
n-consistency

as well as a result on an asymptotic normality property, are proved. Also a result
about consistency in variable selection is provided. All properties in Section 3
are considered (i) for fixed number of parameters, and (ii) for number of pa-
rameters growing with the sample size. The algorithms used for obtaining the
L0-FGL estimates are discussed in Section 4, where also coefficient paths for
different computational methods are analyzed. The computational approaches
of Section 4 are compared in Section 5 in terms of simulation studies and appro-
priate goodness of fit measures. A high-dimensional design is also included in
the simulation studies, which underlines the outstanding performance of the new
proposed approach. We close our work by applying L0-FGL to a real dataset
corresponding to breast cancer recurrence events in Section 6.

2. The L0-fused group lasso for logistic regression

Consider a binary response variable Y and J ∈ N fixed candidate categorical
explanatory variables, i.e. factors, denoted by X1, . . . ,XJ . Y and X1, . . . ,XJ are
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observed on a sample of size n ∈ N. In general, some of the explanatory vari-
ables could also be continuous but since, besides variable selection, our goal is
to perform fusion within the levels of each factor, here we will focus on factors
and neglect the co-existence of continuous explanatory variables. The expan-
sion of the setup and the results for this case is straightforward. Factor Xj ,
j ∈ {1, . . . , J} has pj + 1 levels, coded by 0, . . . , pj , where 0 is chosen to be
the reference category. This results in pj dummy variables Xj,k, k ∈ {1, . . . , pj},
taking values in {0, 1}, for each factor. It holds Xj,+ =

∑
k Xj,k = 1, if for

an item of the sample the level of Xj is in {1, . . . , pj}, or Xj,+ = 0, if its
level is the reference category 0. Consequently, our resulting parameter vec-
tor is β = (β0,β1, . . . ,βJ )T ∈ R

p+1, where p :=
∑J

j=1 pj , β0 denotes the
intercept and βj = (βj,1, . . . , βj,pj ), j ∈ {1, . . . , J}, is the parameter subvec-
tor corresponding to the j-th factor. The fixed design matrix is denoted by
X ∈ R

n×(p+1) and is decomposed in sub-matrices, i.e, X = (1T ;X1; . . . ;XJ ),
where 1 is a n × 1 column vector of ones, while Xj ∈ R

n×pj is the sub-matrix
corresponding to factor Xj and containing the associated dummy variable val-
ues for the n items of our sample. With xi, i ∈ {1, . . . , n}, we denote the
i-th row of the design matrix X, hence the i-th observation of the factors
j = 1, . . . , J , expressed through the corresponding dummy variables. Defining
X = (1,X1,1, . . . ,X1,p1 , . . . ,XJ,1, . . . ,XJ,pJ

) as the vector of all dummy variables
corresponding to an item of the sample (the first entry being one refers to the
intercept), we denote a realization of it as x ∈ R

p+1. Consequently, the rows xi

of the design matrix X arise as fixed realizations of X . Using a generalized lin-
ear model (GLM) considering the canonical link function, the logistic regression
model is given by

E(Y |x) = exp(xβ)
1 + exp(xβ) . (1)

Throughout the whole work, as mentioned above, we consider all candidate
categorical explanatory variables X1, . . . ,XJ as fixed. For an elaboration on the
differences of considering a fixed or a random design, especially in terms of
model misspecification, we refer to [4].

2.1. L0-fused group lasso

In penalized regression, one minimizes the sum of the log-likelihood and an
appropriate penalty function to obtain the resulting estimates. In particular,

Mpen(β) := −Ln(β) + Pλ(β) (2)

is minimized, where Ln(β) denotes the log-likelihood function and Pλ(β) the
penalty function of the chosen method depending on some tuning parameter
λ ≥ 0. The penalized regression estimator β̂ is then defined as a minimizer
of Mpen(β). We note that, depending on the chosen penalty function, a global
minimizer of Mpen(β) is not necessary uniquely determined. That is, if the ob-
jective function is not (strictly) convex, there may exist several local minimizers,
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as for the well-established methods SCAD [6] and MCP [40], as well as the group
variants group SCAD and group MCP [3]. This fact will also play a role in our
setup (see Section 3). For the group lasso (see [39], [22]), Pλ(β) and Mpen(β)
become

PGL
λ1

(β) := λ1

J∑
j=1

||βj ||Kj , and MGL
pen(β) := −Ln(β) + PGL

λ1
(β),

respectively, with Kj for j ∈ {1, . . . , J} being some positive definite and sym-
metric matrices and λ1 ≥ 0. Following [39], for some ξ ∈ R

d, d ∈ N and a
positive definite and symmetric matrix K ∈ R

d×d, the norm ||ξ||K is defined
as ||ξ||K := (ξTKξ) 1

2 .
The L1 penalty applied on the differences among the parameters of a factor’s

levels (see [1], [9]) was initially referred to as CAS in [1]. Later, [25] considered
the L0 penalty for these differences. In a natural way, one can bring up the
name CAS-L0 for the corresponding L0 penalty. In the sequel, we will refer to
it simply as L0, whenever needed for brevity of notation. In this case it holds
for λ0 ≥ 0

PL0
λ0

(β) = PCAS−L0
λ0

(β) := λ0

J∑
j=1

∑
0≤r<s≤pj

w
(j,rs)
0 ||βj,r − βj,s||0,

ML0
pen(β) = MCAS−L0

pen (β) := −Ln(β) + PCAS−L0
λ0

(β).

To simultaneously perform factor selection and fusion of levels in case of
factors, we propose the following penalty, called L0-FGL. For λ := (λ0, λ1) ∈
R

≥0 × R
≥0, the L0-FGL penalty function is given by

Pλ(β) := λ1

J∑
j=1

||βj ||Kj + λ0

J∑
j=1

∑
0≤r<s≤pj

w
(j,rs)
0 ||βj,r − βj,s||0, (3)

which is an intersection between the well known group lasso and the L0 fusion
penalty (CAS-L0). Thus, L0-FGL is balancing factor selection and levels fusion.
It confines from the L0 fusion penalty [25] by adding a group lasso selection
penalty and analogously from the group lasso for logistic regression [22] by
adding an L0 fusion penalty. In the sequel, we denote by ||t||2 for some t ∈ R

n

the euclidean norm ||t||2 =
√∑n

i=1 t
2
i while sometimes we write ||t|| = ||t||2 for

simplicity.
With regard to the choice of Kj , we get with Kj := w̃

(j)
1 Idpj×pj for some

weight w̃
(j)
1 and w

(j)
1 :=

√
w̃

(j)
1

Pλ(β) = λ1

J∑
j=1

w
(j)
1 ||βj ||2 + λ0

J∑
j=1

∑
0≤r<s≤pj

w
(j,rs)
0 ||βj,r − βj,s||0. (4)

In particular, we set w
(j)
1 = √

pj using the convenient choice Kj = pjIdpj×pj

(hence w̃
(j)
1 = pj). The use of adaptive weights leads us to the so called adap-

tive L0-FGL, analogously to the adaptive group lasso. In the following, we will
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use the latter choice of Kj and investigate theoretical properties both for the
L0-FGL and its adaptive version. The weights w

(j,rs)
0 , j ∈ {1, . . . J}, r, s ∈

{1, . . . pj}, s �= r, of the L0 part, as well as the particular choice of adaptive
weights mentioned above, will be specified in Section 5.1.

Recall that the L0 penalty term of the L0-FGL method includes in the sum
differences from the reference category βj,0 = 0, enforcing thus also factor se-
lection. In this setting, factors selection refers to the case when all categories
are fused with the reference category. Nevertheless, it is not clear whether this
indirect factor selection is effective enough, fact that brought us to the idea of
adding a group lasso part for improving factor selection. The L0-FGL estimate
β̂ is defined as (local) minimizer of

Mpen(β) := −Ln(β) + Pλ(β) (5)

= −Ln(β) + λ1

J∑
j=1

w
(j)
1 ||βj ||2 + λ0

J∑
j=1

∑
0≤r<s≤pj

w
(j,rs)
0 ||βj,r − βj,s||0.

Note that, even though β̂ depends on the sample size n ∈ N, in general, we ne-
glect to use a lower sub-index n in β̂n for simplicity. For the tuning parameters
λ0 and λ1, we sometimes write λn

0 and λn
1 , respectively, to express the depen-

dence on the sample size, which plays a significant role discussing asymptotic
properties. As already mentioned, the expressions w

(j)
1 for the group lasso part

and w
(j,rs)
0 for the L0 fusion part are optional weights that allow to put the

factors and their levels on a comparable scale. Using w
(j)
1 = √

pj in the group
lasso part accounts for the fact that the factors may have a different number of
levels.

Figure 1 shows the value of ||β||2, corresponding to the penalty function for
group lasso (left), the L0 norm on the differences ||β1 − β2||0, corresponding
to the L0 penalty (middle), and the sum ||β||2 + ||β1 − β2||0, corresponding to
L0-FGL (right) for a factor of three levels, i.e. p = 2 and β = (β1, β2) (without
intercept). It gets clear that L0-FGL combines both shrinkage and fusion of
levels in one penalty. Further, by adjusting the tuning parameters λ0 and λ1 we
can put the focus on selection or fusion, depending on the application context.

Remark 2.1 (On tuning). Since L0-FGL has two tuning parameters, a stepwise
procedure is proposed for their tuning, according to which

(1) optimal λ∗
1 is determined first with cross-validation (CV) setting λ0 = 0,

(2) for fixed λ1 = λ∗
1, optimal λ∗

0 is determined with CV.

This tuning approach is referred to as stepwise. We further consider an iterative
tuning approach for L0-FGL, performing first the procedure described above,
while after (2), we fix λ0 = λ∗

0 and, based on this fixed tuning parameter for the
L0 part, we determine the optimal λ∗

1. In the sequel, an analogue procedure is
followed for λ0, fixing λ1 = λ∗

1. We iterate this procedure until a pre-specified
number of iterations is reached, or the improvement in predictive deviance does
not exceed a pre-specified tolerance. The use of the iterative tuning approach
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Fig 1. Visualization of ||β||2 (left, corresponding to group lasso), L0 on the differences
||β1 − β2||0 (middle, corresponding to L0 penalty) and the sum ||β||2 + ||β1 − β2||0 (right,
corresponding to L0-FGL), where β1, β2 ∈ [−2, 2] and λ0 = λ1 = 1.

for L0-FGL in Section 5, is indicated by adding iterative at the name of
the corresponding L0-FGL procedure. Otherwise, the first described stepwise
procedure is adopted. However, in both cases (iterative and non-iterative), the
group lasso part (tuning of λ1) is optimized first, since once a factor is excluded
from the model, it has not to be investigated for fusion of categories.

3. Existence and theoretical properties of L0-fused group lasso

Next, the existence and theoretical properties of L0-FGL are investigated, in-
cluding

√
n consistency and asymptotic normality. Furthermore, consistency in

variable selection is analyzed. The case of fixed p and that of diverging number
of parameters, hence Jn and consequently pn depending on the sample size n
will be considered.

The next Theorem states the existence of L0-FGL. The proof is provided for
p ≤ n but Remark 3.2 in the sequel argues that the existence is also ensured in
a high-dimensional setup with p > n. Notice that, in proving the existence, p is
always considered fixed since this is not an asymptotic property.

Theorem 3.1 (Existence of L0-FGL). Let λ1 > 0, λ0 ≥ 0 and 0 <
∑n

i=1 yi < n,
where y = (y1, . . . , yn)T with yi ∈ {0, 1}, i ∈ {1 . . . , n} is the vector of observed
binary responses. Then, the set of (local) minimizers

S :=

⎧⎨⎩β̂ | β̂ = arg min
β∈Rp+1

⎛⎝−Ln(β) + λ1

J∑
j=1

||βj ||Kj

+ λ0

J∑
j=1

∑
0≤r<s≤pj

w
(j,rs)
0 ||βj,r − βj,s||0

⎞⎠⎫⎬⎭
is nonempty. Moreover, the value of the objective function Mpen(·) decreases if
coefficients that are close enough to each other are fused.
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Proof. See Appendix A.1.

Remark 3.2 (Existence in high-dimensional case p > n). For the L0-FGL
estimator with λ1 > 0 and λ0 ≥ 0, the proof above is not restricted to p ≤ n,
hence existence can be ensured in the high-dimensional case p > n. For λ1 = 0,
or both λ1 = λ0 = 0, the existence refers to existence of CAS-L0 or of the
maximum likelihood estimator (MLE), respectively, but this is not our focus
here since we consider L0-FGL.

For investigating the theoretical properties, some regularity conditions are
required, which are provided next. We differentiate the cases of p being fixed
and pn allowed to grow with the sample size n. Further, let β∗ be the true
unknown parameter value.

3.1. Regularity conditions (fixed case)

(Reg1) The distribution of the response variable Y belongs to the exponen-
tial dispersion family, i.e., its probability density function (pdf) can be
written as

f(v, θ, φ) = exp
(
yθ − ϕ(θ)

a(φ) + c(y, φ)
)
,

for an observation v = (y,x) ∈ R
p+2 and with θ = θ(x,β) for a given

parameter vector β ∈ R
p+1. For logistic regression Y ∼ bin(1, π), the

natural parameter θ is the logit, hence θ = log(π/(1−π)), which equals
the linear predictor xβ which we also denote by η, i.e. η := xβ = θ.
Further, ϕ(η) = ϕ(xβ) = log(1 + exp(xβ)), a(φ) = 1 and c(y, φ) = 1
since y ∈ {0, 1}.

(Reg2) The Fisher information matrix IF (β) = E

(
−∂2Ln(β)

∂β2

)
is finite and

positive definite in β = β∗.
(Reg3) There exists an open set O ⊆ R

p+1 with β∗ ∈ O such that for all
β ∈ O and observations vi = (y,xi), i = 1, . . . , n, there exists a function
M(v) ∈ R such that the following holds

∂3 log(f(vi,β))
∂βj∂βk∂βl

≤ M(vi) < ∞,

E(M(vi)) < ∞.

These regularity conditions are similar to several other approaches, such as
[6] and [42] (appendix), being necessary for technical derivations. Further, as
mentioned in the appendix of [6], they ensure the asymptotic normality of the
unpenalized MLE.

Remark 3.3 (On the regularity conditions under the canonical link). Under the
use of the canonical link function, the natural parameter θ satisfies θ = xβ = η
(see (Reg1)). In this case we get the following simplifications.



4244 L. Kaufmann and M. Kateri

1. The expected and observed Fisher information matrices coincide, such
that we deduce with (Reg1) and a(φ) = 1

IF (β) = E

(
−∂2Ln(β)

∂β2

)
= −∂2Ln(β)

∂β2

= XTdiag (ϕ′′(x1β), . . . , ϕ′′(xnβ))X, (6)

where we recall that xi, i ∈ {1, . . . , n} are the rows of the design ma-
trix X. Consequently, (Reg2) is satisfied if (6) is finite and positive defi-
nite in β = β∗.
Nevertheless, whenever possible, we will continue working with the ex-
pected Fisher information in favor of generality and for applicability with
other link functions. However, we emphasize that this work deals solely
with logistic regression.

2. The second and third derivatives of the log-likelihood function no further
depend on y. Consequently, (Reg3) is ensured if there exists a function
M(xi) such that

|ϕ′′′(xiβ)| ≤ M(xi) < ∞,

E(M(xi)|xjxkxl|) < ∞ ∀1 ≤ j, k, l ≤ p.

The function M(·) replaces M(·) of (Reg3) that depends on y, neverthe-
less, for simplicity of notation, we avoid using M in the proofs and keep
the M(·). The actual structure of the function plays no role, it is sufficient
to ensure that there exists some function satisfying the above inequalities.

These simplifications for canonical link functions can also be found in [6] (Sec-
tion 3.2).

3.2. Regularity conditions (diverging case)

For the diverging case, assume the following regularity conditions. Since, in this
case, the dimension of the parameter space pn is allowed to grow with the sample
size n, the dimension of the Fisher information matrix will also depend on n,
as well as the dimension of the open set O appearing in (div.Reg3). Clearly,
the dimension of the truth β∗ is also depending on n in the case of diverging
pn. Nevertheless, to keep notation clear, we will not use a lower index n for the
truth β∗. For all of the constants in the following regularity conditions we write
C, even if they are not required to be the same.

(div.Reg1) The distributional assumption for Y is the same as in (Reg1) (3.1)
with p being replaced by pn and the corresponding pdf denoted by
fn.

(div.Reg2) The Fisher information matrix IF,n(β) satisfies the same as in (Reg2)
(3.1) with IF being replaced by IF,n.
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(div.Reg3) There exists an open set On ⊆ R
pn+1 with β∗ ∈On such that for

all β ∈On and observations vi, i = 1, . . . , n there exist a function
Mn,j,k,l(v) ∈ R for which it holds

∂3 log(fn(vi,β))
∂βj∂βk∂βl

≤ Mn,j,k,l(vi) ∀β ∈ On and ∀ j, k, l = 1, . . . , pn

Additionally, we assume that for some constant C < ∞ it holds

E(Mn,j,k,l(vi)) < C < ∞ ∀ j, k, l = 1, . . . , pn.

(div.Reg4) There exists a constant C < ∞ such that

max
1≤i≤n

max
1≤j≤Jn

||xj,i||2 ≤ C,

where we recall that the sub-matrix Xj ∈ R
n×pj of the design matrix

X contains all n samples of the dummy variables corresponding to
factor Xj , so xj,i ∈ R

pj denotes the i-th row of Xj .

These regularity conditions are similar to [7] and [36] being necessary for tech-
nical reasons. For simplifications using the canonical link, as we do here consid-
ering logistic regression, we refer to Remark 3.3 which similarly applies in the
diverging case.

Remark 3.4. The above regularity conditions and their consequences are dis-
cussed next.

1. Alternatively to (div.Reg2) we could have also assumed that all the eigen-
values of the Fisher information matrix are finite and strictly positive
which ensures the positive definite property, see [7].

2. The fact that we assumed in (div.Reg2), and similarly in (Reg2), that the
Fisher information matrix is finite means in particular that we have for a
constant C > 0: [IF,n(β)]2j,k < C < ∞ ∀ j, k = 1, . . . , pn and

[IF,n(β)]j,k = E

(
−∂2 log(fn(v1,β))

∂βj∂βk

)
< C.

3. Condition (div.Reg4) is a technical condition needed for the oracle prop-
erty of the (approximate) L0-FGL which will be shown in Theorem 3.11.
This condition is introduced in [36]. Since we are using a dummy coding
scheme, each row xj,i, j ∈ {1, . . . , Jn}, i ∈ {1, . . . , n} of each sub-matrix
Xj consists of one entry being equal to one, where the others are zero.
Hence, we have ||xj,i||2 = 1 independent of j ∈ {1, . . . , Jn}, i ∈ {1, . . . , n},
so in our setting observing factors in a dummy coding scheme, (div.Reg4)
is not a restriction.

3.3. Asymptotic results

Having discussed the regularity conditions for both cases of p being fixed and
pn being allowed to diverge with n, we can state and proof asymptotic re-
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sults. For
√
n consistency (Theorems 3.5, 3.6) and selection consistency (The-

orems 3.12, 3.13) notice that the results refer to a local minimizer of Mpen(·)
which is the same for both consistencies (

√
n and selection).

We start with a
√
n consistency result for fixed p. Assuming that the amount of

penalization for both, factor selection and levels fusion (expressed with the con-
vergence properties of a1

n and a0
n, respectively) can be controlled, i.e. a1

n/
√
n =

op(1), a0
n = Op(1) (see below), we achieve that there exists a local minimizer of

the L0-FGL objective function satisfying
√
n consistency. For factor selection,

the corresponding assumption is similar to [34] where the adaptive group Lasso
is considered.

Theorem 3.5 (
√
n consistency for fixed p). Let the regularity conditions (Reg1)–

(Reg3) from Section 3.1 hold. Furthermore, assume that p is fixed. Set a1
n :=

max{λn
1w

(j)
1 ; j ∈ {1, . . . J}} and a0

n := max{λn
0w

(j,rs)
0 ; 0 ≤ r < s ≤ pj , j ∈

{1, . . . J}} and assume a1
n/

√
n = op(1), a0

n = Op(1). Then, there exists a local
minimizer β̂ of Mpen(β) satisfying

||β̂ − β∗||2 = Op

(
1√
n

)
.

Proof. See Appendix A.1.

Next, the Theorem above is extended to the case of non-fixed number of
parameters, meaning that J = Jn and p = pn depend on n. Consequently, in
this case, the true active set depends on n as well and is given by A∗

n := {β∗
j ∈

{1, . . . Jn} | ||β∗
j || �= 0}. For proving Theorem 3.6, the regularity conditions of

Section 3.1 need to be slightly modified and are provided in Section 3.2. The
following Theorem shows

√
n
pn

consistency in the case of a diverging number
of parameters, or total number of levels, respectively. We further adjust the
assumptions of Theorem 3.5 corresponding to the amount of penalization; in
particular the number of factors (or levels, respectively) will be included in these
assumptions. Remark 3.7, directly after Theorem 3.6, provides cases satisfying
the assumptions, showing thus that they are not too restrictive. Lastly, we will
require pn = o(n1/4) controlling the ratio of the sample size and the dimension
of the parameter space, which is similar to [7].

Theorem 3.6 (Consistency in the diverging pn case). Let the regularity condi-
tions (div.Reg1)–(div.Reg3) of Section 3.2 hold. In addition, let a1

n and a0
n be de-

fined analogously to Theorem 3.5. With αn :=
√

pn

n we assume αna
1
nJn = op(1)

and a0
n pn(pn − 1) = op(1). Lastly, we assume pn = o(n1/4). Then, there exists

a local minimizer β̂ of Mpen(β) satisfying

||β̂ − β∗||2 = Op(αn).

Proof. See Appendix A.1.

Remark 3.7 (On the assumptions of Theorem 3.6). The assumption pn =
o(n1/4), hence p4

n/n → 0, implies p2
n/

√
n → 0. Consequently, the assumption
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αna
1
nJn = op(1) holds for example if a1

n converges to some constant or is simply

bounded, since αna
1
nJn =

√
pn

n Jna
1
n ≤

√
pn

n pna
1
n = p3/2

n√
n
a1
n ≤ p2

n√
n︸︷︷︸

→0

a1
n. For the

requirement that a0
npn(pn − 1) = op(1), we observe the case of weights chosen

to be constant and equal to one for the L0 part. Thus a0
n = λn

0 and choosing for
example λ0

n = o(1/p2
n), λn

0pn(pn − 1) = op(1) holds.

Having shown the consistency result for the cases of fixed and diverging
number of parameters, oracle properties are investigated next. For this it is
required that the true underlying model is sparse, as defined below.

Definition 3.8. In the case of fixed p, the true underlying structure is said
to be sparse if, without loss of generality, the true active set A∗ := {j ∈
{1, . . . J} |β∗

j �= 0} = {j ∈ {1, . . . J} | ||β∗
j ||2 �= 0} can be written as A∗ =

{1, . . . , j0} with j0 < J . In this case, the Fisher information matrix IF (β∗) is
given in the following form

IF (β∗) =
[
I11 I12
I21 I22

]
,

where I11 ∈ R
p0×p0 and p0 :=

∑j0
j=1 pj . In the case of diverging pn, since the

true active set may depend on the sample size, the underlying model is defined
as sparse as above, but with A∗, J , j0, IF , I11 and p0 being replaced by A∗

n,
Jn, j0,n, IF,n, I11,n and p0,n.

The following Theorem states the asymptotic normality for L0-FGL in the
fixed p case. The requirements on the amount of penalization for the group lasso
part are similar to those imposed by [42] for the tuning in adaptive lasso.

Theorem 3.9 (Existence of estimator satisfying the asymptotic normality prop-
erty for the case fixed p). Assume that (Reg1)–(Reg3) of Section 3.1 hold and
the true underlying structure is sparse (see Definition 3.8). For the group lasso
part we choose the adaptive weights w

(j)
1 = ||β̃j ||−γ

2 for some arbitrarily cho-
sen γ > 0 where β̃ is the unpenalized MLE. Furthermore, let λn

1 · n−1/2 → 0
and λn

1 · n(γ−1)/2 → ∞. For the tuning and weights of the L0 part, we assume
a0
n = op(1). Then, there exists a local minimizer β̂ of Mpen(β) satisfying

√
n
(
β̂A∗ − β∗

A∗

)
→d N(0, I−1

11 ),

where β̂A∗ and β∗
A∗ denote the sub-vectors of β̂ and β∗, respectively, containing

only the components belonging in the true active set A∗.

Proof. See Appendix A.1.

Remark 3.10 (Adaptive weights in the group lasso part). In Theorem 3.9,
we can also use any other initial estimator β̃ (besides the MLE) satisfying
consistency, as we will do in Theorem 3.11 below. Consequently, we could also



4248 L. Kaufmann and M. Kateri

use an initial L0-FGL estimator, setting w
(j)
1 = ||β̃L0−FGL

j ||−γ
2 . Since L0-FGL

enforces factor selection and levels fusion, it may happen that ||β̃L0−FGL
j ||2 = 0.

Thus, following [43] and [38], we set w
(j)
1 =

(
||β̃L0−FGL

j ||2 + 1
n

)−γ

. This will
clearly not affect any shown asymptotic property.

For the extension of Theorem 3.9 to the diverging case, we need to ap-
proximate the L0 part in L0-FGL. In particular, we approximate as ||ξ||0 ≈

2
1+exp(−γ0|ξ|) −1 =: N(ξ); see Section 4.1 for more details. The parameter γ0 > 0
determines the steepness of the approximation and needs to be chosen, see [25].
With that, we define

M̃pen(β) := −Ln(β) + λn
1

Jn∑
j=1

w
(j)
1 ||βj ||2 + λn

0

Jn∑
j=1

∑
0≤r<s≤pj

w
(j,rs)
0 N(βj,r − βj,s)

giving us an approximation of the L0-FGL objective function, i.e. Mpen(β) ≈
M̃pen(β). Theorem 3.11 on asymptotic normality in the diverging case shows
that we can find a local minimizer of M̃pen(β) (which we will call an approximate
L0-FGL solution) satisfying the asymptotic normality property. As mentioned
above, the approximation will make it possible to obtain sub-differentials of the
penalty function which we need for the proof. Using that N(ξ) ≤ 1, we can
show consistency of an approximate L0-FGL estimator under the same assump-
tions as in Theorem 3.6, since in step 2 of the proof of Theorem 3.6 we use
the property of the L0 norm that it is always less or equal to one, which holds
in the same way for the approximation. To sum up, under the assumptions of
Theorem 3.6, we know that there exists some local minimizer β̂ of M̃pen(β) sat-
isfying ||β̂−β∗||2 = Op(αn). For this local minimizer, we will show the asymp-
totic normality property in the following Theorem 3.11. Since we will use the
approximate L0-FGL solution in this particular way only in Theorem, 3.11, we
denote the approximate L0-FGL by β̂ as well, avoiding the introduction of new
notation. The idea of the following Theorem 3.11 originates from [36] who con-
sidered adaptive group lasso, while we adjust it for (approximate) L0-FGL with
two tuning parameters. Besides the regularity conditions (div.Reg1)–(div.Reg4)
we need the assumptions of Theorem 3.6 to ensure that there exists an approx-
imate L0-FGL estimator β̂ satisfying consistency, i.e. ||β̂ − β∗||2 = Op(αn).
Further, we use a condition controlling the size of the minimum of the true
parameter, which corresponds to (A6) in [36] and (8) in [41]. Finally, the as-
sumptions λn

1n
1
2 (2−δ+ 1

4 ) → 0 and λn
1n

1− 1
4 = λn

1n
3
4 → ∞ also correspond to the

assumptions of Theorem 2.3 in [36].

Theorem 3.11 (Existence of an approximate L0-FGL estimator satisfying
the asymptotic normality property for the diverging pn case). Assume that
(div.Reg1)–(div.Reg4) and the assumptions of Theorem 3.6 hold. Let the true un-
derlying structure be sparse (see Definition 3.8). With β∗

min := min
j=1,...j0,n

||β∗
j ||2

we assume that there exists some 3
4 < δ ≤ 1 and C > 0 such that n 1

2 (1−δ)β∗
min ≥

C. Additionally, we assume λ1
nn

1
2 (2−δ+ 1

4 ) → 0 and λ1
nn

3
4 → ∞ as n → ∞. For
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the group lasso part we choose the adaptive weights w
(j)
1 = ||β̃j ||−1

2 , where β̃ is
a
√
pn/n consistent initial estimator, hence ||β̃−β∗||2 = Op(

√
pn/n). Finally,

assume that E(Y − ϕ′(x1β
∗))4 < ∞, where ϕ is the cumulant function in the

exponential dispersion family expression for the density function of Y . Then,
there exists a local minimizer β̂ of M̃pen(β) satisfying

en I
1/2
11,n

(
β̂A∗

n
− β∗

A∗
n

)
→d N(0, 1),

where β̂A∗
n

and β∗
A∗

n
denote the sub-vectors of β̂ and β∗, respectively, containing

only the components belonging in the true active set A∗
n, while en is a p0,n

dimensional unit vector.

Proof. See Appendix A.1.

A consistency result concerning factor selection is discussed next. The desired
method should, asymptotically, correctly detect the truly zero parameter vectors
as well as the truly nonzero parameter vectors. The Theorem below is motivated
by the work of [5] where the focus lies on L1 and L1 + L2 penalization in
linear and logistic regression, ignoring the presence of factors. Starting from
the assumptions needed for the proof of

√
n-consistency of the estimator β̂, an

asymptotic upper bound for the probability P(A∗ �⊆ An) is derived, where A∗ is
the true active set in the case of fixed p (to be replaced by A∗

n for diverging p,
see Defintion 3.8) and An := {j ∈ {1, . . . , J} | ||β̂j || �= 0} is the active set of the
estimate, depending on the sample size n (for diverging p, J has to be replaced
by Jn). This is a result on the consistency of factor selection of our approach.

Theorem 3.12 (Selection consistency for fixed p). Assume that the conditions
of Theorem 3.5 are satisfied and that the true underlying structure is sparse.
Then, for the minimizer β̂ of Theorem 3.5 it holds that ∀ε > 0 one can find
N ∈ N such that

P(A∗ �⊆ An) < ε ∀n ≥ N. (7)
Proof. See Appendix A.1.

This result says that, depending on the sample size n, there exists an es-
timator for which the probability that it falsely sets factors to zero (meaning
that we would delete influential factors from our model) can be made arbitrarily
small. This is a property that is really useful in practice, especially for two-step
procedures.

In the same way, an analogue result for selection consistency in case of a
diverging number of parameters can be proved. An additional assumption con-
troling the size of the minimum of the true parameter needs to be added.

Theorem 3.13 (Selection consistency in the diverging pn case). Assume that
the conditions of Theorem 3.6 are satisfied and that ∀n ∈ N it holds min

l∈A∗
n

||β∗
l || ≥

C for some constant C > 0. Then, for the minimizer β̂ of Theorem 3.6 it holds
that for ∀ε > 0 one can find N ∈ N such that

P(A∗
n �⊆ An) < ε ∀n ≥ N. (8)



4250 L. Kaufmann and M. Kateri

Proof. See Appendix A.1.

4. Computational approaches

Two different computational approaches are considered, the penalized iteratively
re-weighted least squares (PIRLS) algorithm and a block coordinate descent
(BCD) procedure.

4.1. PIRLS algorithm

This approach is suitable for a broad variety of existing penalty functions as
discussed in [26]. It is introduced as an applicable algorithm for combinations of
different penalties. Approximating the penalties quadratically, as done for the
non-convex SCAD in [6], the computation is executed by a PIRLS algorithm, as
described in the following. In general, PIRLS can be applied to penalty functions
of the following form

P gen
λ (β) =

L∑
l=1

λlpl(||aT
l β||Nl

). (9)

Here, L ∈ N is the number of penalizations with corresponding tuning parameter
λl ≥ 0, || · ||Nl

is a semi-norm, or at least some term that makes sense to be used
as a penalty. Further, pl : R+ → R

+ are penalty functions where pl(0) = 0 holds
and pl is continuously differentiable on R

+ with positive derivative. Additionally,
pl(ξ) is assumed to be strictly monotonic in ξ. The vectors aT

l transform the
coefficient vector β, for example in the case of fusion penalties for ordinal factors,
this vector will form the differences of adjacent coefficients (if we have nominal
factors we will form all pairwise differences). Most of the time, as explained
in [26], the penalties are of the form P gen

λ (β) =
∑J

j=1
∑Lj

l=1 λjlpjl(||aT
jlβj ||Nl

),
meaning that we penalize each factor j ∈ {1, . . . , J} separately. Keeping this
in mind, we will continue to use the more compact way of writing (9) where
then the quantity L combines the different number of penalizations and the
fact that we may penalize each factor separately. Note that here, pl(·) or pjl(·)
respectively are functions and do not denote the number of categories of factor
j which we also denoted by pj . Since L0-FGL has two penalization functions
(and two tuning parameters), the PIRLS algorithm will have two penalty terms.
In particular, we make the following choices

group lasso part: pl(ζ) = √
pl · ζ, Rlβ = βj, (10)

L0 part: pl(ζ) = w
(j,km)
0 ζ, aT

l β = βj,k − βj,m, 0 ≤ k < m ≤ pj . (11)

The vectors aT
l are responsible for picking the possible differences corresponding

to factor j. The entries of these vectors are contained in the set {−1, 0, 1}. An
extension of this linear transformations aT

l β to vector valued arguments (needed
for group lasso) leads to the corresponding transformation matrices Rl. In our
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particular application, this matrix Rl picks the right sub-vector βj out of the
full vector β. We refer to [26] (Section 2.5) for the detailed steps and more
information. The semi-norms || · ||Nl

appearing in the penalty function P gen
λ

above are approximated by some suitable function Nl(·), in case they are not
twice continuously differentiable. The derivative of Nl(·) is denoted by Dl(·). As
mentioned above, [26] extended the algorithm to penalties with vector valued
arguments, hence Nl(ξ) depends on a vector ξ ∈ R

p instead of ξ ∈ R, like it is
the case for the group lasso penalty which we need for L0-FGL. In particular,
for the approximations of the “norms”, following [26], we have

L0 norm: ||ξ||0 ≈ Nl(ξ) = 2
1 + exp(−γ|ξ|) − 1 , (12)

group lasso ||ξ||2: ||ξ||2 ≈ Nl(ξ) = (ξT ξ + c)1/2. (13)

Note that in the approximation Nl(ξ) of the L0 norm, we further use |ξ| ≈√
ξ2 + c whenever we need to ensure differentiability besides continuity. This

was not the case in the proof of Theorem 3.11, since there sub-differentiability of
Nl(ξ) given in (12) was sufficient. Since we apply the same penalty to each fac-
tor (or difference of levels, respectively) we can also write N(·) instead of Nl(·).
The PIRLS algorithm is sketched in Algorithm 4.1, see [26]. For more compu-
tational details (as details on Aλ, W̃ , ỹ appearing in the following algorithm)
and convergence analysis we refer to Appendix A.2.

Algorithm 4.1 (PIRLS for L0-FGL).

1. Set start value β̂(0) = 0, if not specified otherwise. Set k = 1

2. While ||β̂(k) − β̂(k−1)||2
||β̂(k)||2

> ε and k ≤ maxsteps

2.1 Update approximation of Mpen including updates of Aλ, W̃ , ỹ as
they depend on the value of the coefficient of the current iteration
β̂(k)

2.2 Set β̂(k+1) = (1 − ν)β̂(k) + ν
(
XTW̃ (k)X + Aλ

)−1
XTW̃ (k)ỹ(k)

3. Finally, set β̂L0−FGL = β̂(k+1).

Coefficient Paths (PIRLS)

Next we will compare coefficient paths for CAS-L0, group lasso and L0-FGL, all
computed with the use of the PIRLS algorithm. Consider J = 2 factors where
X1 has 4 and X2 has 3 categories with equal probabilities. All the factors are
sampled from a multinomial distribution. The true coefficient vector is chosen
to be β∗ = (2, 1.2, 1, 0.5,−0.8,−0.5). We used the simulation function from
the package gvcm.cat to simulate our dataset. For the tuning parameters we
made the following choices: for L0-FGL we chose λmax,1 = 10 for the group lasso
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part and λmax,0 = 20 for the L0 part. Furthermore, for the CAS-L0 estimator
we used λmax = 10 and for the group lasso estimator we used λmax = 15.
Because of the different maximum tuning values and the fact that L0-FGL
needs two tuning parameters, the points where the fusion/selection occurs are
not comparable among the methods. Further, we chose the unpenalized MLE
as starting values.

The resulting coefficient paths for the chosen approaches are provided in Fig-
ure 2. We can directly verify that L0-FGL (middle) is an intersection between
CAS-L0 (right) and the group lasso (left). The huge advantage of L0-FGL com-
pared to the other two is that it combines the ability of factor selection and
fusion of levels while the group lasso itself executes factor selection and CAS-L0
fusion of levels. Even if the CAS-L0 approach is able to select factors since we
include reference category zero, we can not be sure of its factor selection per-
formance, the corresponding paths are not smooth. Consequently, the approach
of using L0-FGL seems to be an advantageous tool that combines both worlds,
finding a compromise between factor selection and levels fusion.

Fig 2. Coefficient paths of two factors with 4 and 3 levels, respectively, for group lasso (left),
L0-FGL (middle) and CAS-L0 (right). All methods are computed with PIRLS.

4.2. Block coordinate descent

A block coordinate descent (BCD) approach with a quasi Newton step for ob-
taining the estimates is developed. The idea is to cycle through the factors,
minimizing with respect to (wrt) one factor at a time while keeping the others
fixed, as for example done in [22] and [3]. We start with an approximation of the
objective function where the same function as in PIRLS is used for the L0 part,
whereas the group lasso part is added without approximating it. Details of the
approximation of the first part can be found in Appendix A.3.1. As explained
there, the approximation g(βj , β̂

(k)) is used for the log-likelihood and L0 part
of our penalty while the group lasso part is added afterwards. The resulting
approximation of the L0-FGL penalty function is denoted by

g̃(βj , β̂
(k)) := g(βj , β̂

(k)) + λ1
√
pj ||βj ||2, (14)
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where g(βj , β̂
(k)) is given by (41). The function g̃(βj , β̂

(k)) is minimized wrt
βj while the remaining βi, i �= j are kept fixed. This works because of the
separability property of the penalty function (in terms of factors), which ensures
that building the derivative of g̃ wrt βj , j ∈ {1, . . . , J}, makes the other terms
depending on βi, i ∈ {1, . . . , J}\{j}, vanish. For more details on the separability
property concerning BCD we refer to [13], Section 5.4.1. Note that, since we do
not approximate the group lasso part, problems may occur with the derivative in
zero. As in [22], a solution to that is to check in advance whether the minimum
of the function to be minimized is at the non-differentiable point β = 0. In the
implementation of this algorithm in R, we employ the optim function that uses
the BFGS (Broyden-Fletcher-Goldfarb-Shanno) method and this extra check is
not required, as explained in Section A.3.2. The BCD quasi Newton algorithm
for L0-FGL is described in Algorithm 4.2 below.

Algorithm 4.2 (Block Coordinate Descent for L0-FGL with quasi Newton).

1. Set start value β̂(0) = 0 if not specified otherwise. Set k = 1

2. While ||β̂(k) − β̂(k−1)||2
||β̂(k)||2

> ε and k ≤ maxsteps

2.1 Update approximation of MCAS−L0
pen ≈ g including updates of Aλ, W̃ ,

ỹ as they depend on the value of the coefficient of the current itera-
tion β̂(k) which gives the approximation g(β, β̂(k)).
For j = 1, . . . , J execute the following:

2.1a Set g̃(βj , β̂
(k)) := g(βj , β̂

(k)) + λ1
√
pj ||βj ||2.

Use quasi Newton to obtain β̂
(k+1)
j = arg minβj

g̃(βj , β̂
(k))

2.1b Set β̂(k+1) = (β̂(k+1)
1 , . . . , β̂

(k+1)
j , β̂

(k)
j+1, . . . , β̂

(k)
J )

Set k = k + 1
3. Finally, set β̂L0−FGL = β̂(k+1).

For the execution of the quasi Newton part of this algorithm in our applica-
tions we used the function optim() in R.

Coefficient paths (BCD)

Now we will show resulting coefficient paths for group lasso, CAS-L0 and L0-
FGL where all are computed with the BCD quasi Newton procedure. Assume
we have J = 2 factors with p1 = p2 = 3, hence 4 levels each, drawn from
multinomial distribution with equal probabilities. The true parameter vector
was chosen to be given by β∗ = (−0.5, 2,−1, 2,−0.5,−1, 1). In Figure 3 the
resulting coefficient paths are displayed. We can see that L0-FGL connects the
ability of group lasso to select variables and of CAS-L0 to fuse coefficients when
they are close enough to each other, analogously to the coefficient paths using
PIRLS (Section 4.1). In fact we can see that using BCD and quasi Newton, the
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Fig 3. Coefficient paths of two factors with 4 levels each, for group lasso (left), L0-FGL
(middle) and CAS-L0 (right). All methods are computed with BCD.

paths of group lasso (left) in Figure 3 look less smooth than those in Figure 2
where we used PIRLS (however, we note that the truth β∗ is different for the
coefficient paths for PIRLS and BCD, respectively, for visualization purposes).
This is caused by the fact that PIRLS uses a quadratic approximation of the
whole penalty function while the BCD quasi Newton approach does not use
such an approximation for the group lasso part. To conclude, the methods of
using a BCD approach with quasi Newton as well as PIRLS look promising and
their performance will be investigated more detailed in the following simulation
studies.

5. Simulation studies

L0-FGL procedures, computed with the presented algorithms, have been com-
pared with respect to their computational performance in practice for a rep-
resentative selection of simulation designs. Here, we discuss in detail two of
them, one with 8 factors (B8) and one high-dimensional (highdim), described
in Section 5.3. The following methods in both their versions, adaptive and non-
adaptive, are included in our comparison.

(i) CAS-L0 estimator of [25], computed with PIRLS and the package gvcm.cat,
for which the abbreviation (adaptive) L0 is used (in the simulation studies
we denote this approach by L0.CV and L0.adap.CV, respectively)

(ii) L0-FGL (PIRLS) iterative, which is referred to as (adaptive) L0-FGL
(PIRLS) iterative, where the tuning parameters are determined in an iter-
ative manner, see Remark 2.1 (in the simulation studies we denote this ap-
proach by L0.FGL.PIRLS.iterative and L0.FGL.PIRLS.adap.iterative,
respectively).

(iii) L0-FGL (BCD) and quasi newton, which is referred to as (adptive) L0-
FGL BCD, where the tuning parameter is determined with the stepwise
procedure, see Remark 2.1 (in the simulation studies we denote this ap-
proach by L0.FGL.BCD and L0.FGL.BCD.adap, respectively)
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For the sake of completeness, we also include the maximum likelihood approach
in our studies, which we denote by ML.

5.1. Choice of the weights

Depending on whether the approach under consideration is non-adaptive or
adaptive, the corresponding type of weights is used. The use of adaptive weights
will always be explicitly mentioned. Otherwise, non-adaptive weights are used.
Both types of weights are specified below.

Non-adaptive weights

Weights can be chosen in the group lasso and the L0 part. As already explained,
a common choice for the group lasso part is to set Kj in such a way that
w

(j)
1 = √

pj . The weights used for the L0 fusion part should account for the
number of observations per level, and are chosen along the lines of [9]. Let n

(r)
j

denote the number of observations of level r of the j-th factor, j ∈ {1, . . . , J}.
We have to distinguish between the cases of a nominal or ordinal factor, since in
the latter only adjacent categories have to be compared. To sum up, our choice
for non-adaptive weights is

(i) L0-part

nominal w
(j,rs)
0 = 2(pj + 1)−1

√
n

(r)
j + n

(s)
j

n
,

ordinal w
(j,r)
0 =

√
n

(r)
j + n

(r−1)
j

n

(ii) GL-part w
(j)
1 = √

pj

Note that, even for p > n, if we assume that for every j the number of levels
pj is bounded and in addition n

(r)
j /n → c

(r)
j ∈ (0, 1) for all j ∈ {1, . . . , J} and

r ∈ {1, . . . , pj}, see [9], we can ensure that the weights for the L0 part converge
to a positive constant.

Adaptive weights

As for other penalties, we can also use adaptive weights to obtain the adaptive
L0-FGL method. This is done by choosing in the group lasso part the weights
w

(j)
1 = ||β̃j ||−1

2 . A more general choice is w
(j)
1 = ||β̃j ||−γ

2 for some chosen γ > 0
as in [42], where the oracle properties for this more general choice are proved.
To keep the adaptive weights on a comparable scale for the group lasso and
the L0 part, we multiply the inverse of the norm of the ML estimate with the
non-adaptive weight √

pj . In the L0 part we multiply the weights chosen above
with the inverse of the difference of the corresponding ML estimates β̃, hence
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we multiply with |β̃j,r − β̃j,s|−1. Note that we take here the absolute value of
the differences of the ML estimates as in [1]. Thus, we propose the following
adaptive weights

(i) L0-part

adaptive nominal: w
(j,rs)
0 = 1

|β̃j,r − β̃j,s|
· 2(pj + 1)−1

√
n

(r)
j + n

(s)
j

n

(15)

adaptive ordinal: w
(j,r)
0 = 1

|β̃j,r − β̃j,r−1|
·

√
n

(r)
j + n

(r−1)
j

n

(16)

(ii) GL-part adaptive w
(j)
1 = √

pj ||β̃j ||−1
2

Remark 5.1. Analogously to the required adjustment of the initial estimator
β̃ discussed in Remark 3.10 for the adaptive group lasso weights, if β̃j,r = β̃j,s

for some j, r, s in (15), then the denominator |β̃j,r − β̃j,s| of (15) is replaced by
|β̃j,r− β̃j,s|+ 1

n . The same adjustment applies to the denominator of (16) for the
ordinal case, if needed. However, in the following designs taking the unpenalized
MLE as initial estimator, this problem did not occur so we used the adaptive
weights as given above.

5.2. Goodness of fit measures

The approaches under investigation will be compared wrt the following measures
(i) mean squared error coefficients MSEC(β̂) = 1

p

∑p
j=1(β∗

j − β̂j)2

(ii) predictive deviance Dev(y, μ̂) = −2
∑n

i=1{yi log(μ̂i)+(1−yi) log(1− μ̂i)}
(iii) false positive (FP)/ false negative (FN) rates factor selection

FPs,fac(β̂) =
|{j ∈ {1, . . . , J} : ||β̂j || �= 0 , ||β∗

j || = 0}|
|{j ∈ {1, . . . , J} : ||β∗

j || = 0}|

FNs,fac(β̂) =
|{j ∈ {1, . . . , J} : ||β̂j || = 0 , ||β∗

j || �= 0}|
|{j ∈ {1, . . . , J} : ||β∗

j || �= 0}|

(iv) FP/FN rates fusion, limited to truly influential factors to ensure that just
levels fusion and no factor selection is measured

FPf,infl.truth =
|{(j, k, l) : β̂j,k �= β̂j,l, β

∗
j,k = β∗

j,l ,
(∑

r |β∗
j,r|
)
�= 0}|

|{(j, k, l) : β∗
j,k = β∗

j,l ,
(∑

r |β∗
j,r|
)
�= 0}|

FNf,infl.truth =
|{(j, k, l) : β̂j,k = β̂j,l, β

∗
j,k �= β∗

j,l ,
(∑

r |β∗
j,r|
)
�= 0}|

|{(j, k, l) : β∗
j,k �= β∗

j,l ,
(∑

r |β∗
j,r|
)
�= 0}|

For ordinal factors we compare the adjacent indices (j, k, k − 1).
(v) practical sparsity (PS) := |{j ∈ {1, .., J} : ||β̂j ||2 �= 0}| and overall sparsity

(OS):= |{k ∈ {1, . . . , p} : β̂k �= 0}|
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5.3. Simulation designs

To investigate the performance of the approaches discussed above, a design of
low and one of high-dimension are considered, as described in detail next.

Design B8

This design is taken from [25], where the sample size was n = 400 while we
consider n = 1000. We have 8 ordinal factors with 4 levels each. Here, 4 factors
are influential and 4 are non-influential. The probabilities for sampling the data
where randomly sampled between 0.12 and 0.44. The true coefficient vector was
chosen to be

β∗ = (2, 0,−0.8,−0.8, 1, 1, 0, 0.4, 0.6, 0.8, −0.7,−1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0)T .

The true overall sparsity is OS∗ = 9 and the practical sparsity PS∗ = 4. Hence
50% of the explanatory variables are not influential.

Design highdim

In this high-dimensional design, we observe 60 ordinal factors where the first 50
have 4 categories and the last 10 have 3 categories each. We draw them from a
multinomial distribution with equal probabilities. We chose that just the first 5
factors are influential, hence just approximately 8% of the factors have influence
on the response. We have p = 171 > n = 100. In particular, the true coefficient
vector was chosen to be

β∗ = (2,−1, 0.5, 2, 1.5, 1.5, 0.5, 1, 2, 2.5,−0.5,−0.3, 0.5, 2, 1, 3, 0, . . . , 0)T .

The true overall and practical sparsity are given by OS∗ = 15 and PS∗ = 5.

5.4. Analysis of the results

For details on tuning, see Appendix A.4.

5.4.1. Results for design B8

Through simulation studies (also other which are not shown here) we verified
that L0.FGL.BCD and L0.FGL.BCD.adap do not perform well, comparatively to
the approaches L0.FGL.PIRLS.iterative and L0.FGL.PIRLS.adap.iterative,
in designs of low to moderate dimension, while they are advantageous in high-
dimensional designs. For this, L0.FGL.BCD and L0.FGL.BCD.adap will not be
discussed for the design B8.
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Fig 4. Predictive deviance and MSEC results for design B8 (n = 1000).

We start by analyzing the predictive deviance and MSEC, shown in Figure 4.
From the first view, we observe that in terms of predictive deviance, all ap-
proaches, including ML, can be ranked on a comparable scale. With respect to
MSEC, the existing L0.CV or its corresponding adaptive version are preferable.
Nevertheless, since the goal of our method is to achieve sparsity through factor
selection and levels fusion, it is clear that the corresponding FP/FN rates as
well as the overall and practical sparsity measures, which we will analyze next,
are of high interest.

Keeping in mind that through L0-FGL we aim to achieve a stronger factor se-
lection performance than through the existing CAS-L0 (L0.CV and L0.adap.CV),
we turn our view to Table 1. Comparing the non-adaptive versions to each other,
namely L0.CV to L0.FGL.PIRLS.iterative, we observe that the FP rate con-
cerning factor selection is highly improved, at the cost of a comparably lower
increase (in absolute differences) of the corresponding FN rate. That is, the de-
crease in FP rate from L0.CV to L0.FGL.PIRLS.iterative is |0.62 − 0.18| =
0.44, whereas the corresponding increase in FN rate is |0.01 − 0.31| = 0.30.
We remark that, for the FN rate, the value for L0.CV is very low (0.01), which
viewed jointly with the corresponding FP rate of 0.62 and the sparsity levels in
Table 2 of L0.CV, indicates that this method performs weak factor selection. On
the other side, L0.FGL.PIRLS.iterative exhibits a more balanced result be-
tween FP and FN rates in terms of factor selection. A similar, but less distinct,
conclusion is derived for the corresponding adaptive versions L0.adap.CV and
L0.FGL.PIRLS.adap.iterative. Consequently, the new method can clearly im-
prove the factor selection rates. Coming to the FP/FN rates concerning fusion
of L0.CV compared to L0.FGL.PIRLS.iterative, we are able to lower the FP
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rate at the cost of a higher FN rate, but this is what we would also expect since
L0.CV (and L0.adap.CV) are penalties directly designed for factor selection and
our new method is balancing factor selection and levels fusion performance,
finding a compromise between both tasks. Overall, in terms of FP/FN rates for
factor selection and fusion, our new method clearly improves the factor selection
performance of CAS-L0.

Table 1

[B8, n=1000] FP/FN rates clustering and selection.

ML L0.CV L0.adapt.CV L0.FGL.PIRLS. L0.FGL.PIRLS.
iterative adap.iterative

FPs,fac 1.00 0.62 0.45 0.18 0.10
FNs,fac 0.00 0.01 0.03 0.31 0.33

FPf,infl.truth 1.00 0.32 0.23 0.22 0.30
FNf,infl.truth 0.00 0.21 0.26 0.48 0.46

Next, we analyze the sparsity measures displayed in Table 2. The true overall
sparsity in this design is OS∗ = 9 and the true practical sparsity PS∗ = 4.
We can directly see that both versions of the L0-FGL with PIRLS algorithm
clearly yield the most sparse model and the sparsity levels are near to the
truth, especially for the non-adaptive version. Compared to the existing L0.CV
and L0.adap.CV, respectively, we are able to evidently increase the sparsity
of the resulting model. To sum up, we saw that L0-FGL increases the factor

Table 2

[B8, n=1000] Overall/Practical Sparsity.

ML L0.CV L0.adapt.CV L0.FGL.PIRLS. L0.FGL.PIRLS.
iterative adap.iterative

OS 24.00 16.11 13.93 8.60 8.0
PS 8.00 6.46 5.68 3.49 3.1

selection performance of CAS-L0 at the cost of a bit worse fusion performance
and MSEC, but with the goal of balancing both factor selection and levels fusion
and achieving a sparse model, near to the true sparsity level, our new method
outperforms the other.

Remark 5.2 (Impact of initial values). Since we apply Newton-type algorithms
and our objective function is not strictly convex in general (requirements for
strict convexity corresponding to PIRLS are given in A.2.2), the estimates may
depend on the choice of initial values, which is similarly remarked in [25] apply-
ing PIRLS and facing non-convexity with the L0 norm. They state that, in the
majority of cases and for the tuning parameter being in a reasonable range, the
results will not differ too much. Following their recommendations further, and
due to the underlying sparsity assumption, it is reasonable to use β(0) = 0 as
initial value, as we also did in our simulation studies. This choice is also recom-
mended by [2] and [3] performing (group) coordinate descent with local linear
approximations in terms of paths for the maximum tuning parameter.
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5.4.2. Results of design highdim

Fig 5. Predictive deviance (left) and MSEC (right) results for the design highdim. The light
colored boxes correspond to algorithms with the lower index extr and are based on part of
the replications, for which the algorithm L0.adap.CV did not fail. In order to get a meaning-
ful boxplot, two further replications for extr in MSEC are omitted (where MSEC value of
L0.adap.CV is ≥ 1000).

In a high-dimensional design we have by construction a high number of non-
influential factors and, comparably, a very low sample size. Thus, we do not
expect from the procedures to identify the true underlying model exactly, but
to be able to differentiate between influential and non-influential factors and
lower the complexity. A procedure being able to shift this high-dimensional de-
sign to a lower dimensional one, keeping (most of) the significant factors, would
be a convenient choice for a two-stage procedure. In this design, it is also impor-
tant to investigate the proportion of replications where the methods fail to yield
an estimate. Since L0 with PIRLS and both versions (adaptive/non-adaptive)
of L0-FGL with PIRLS failed in all R = 100 replications, we neglect these ap-
proaches in our analysis. Further, the adaptive L0 with PIRLS (L0.adap.CV)
algorithm failed in the majority of the replications (87 %). Thus, the corre-
sponding results have to be interpreted with caution, since they are based on
only 13 of the replications. The only approach that never failed in any replica-
tion is L0-FGL with BCD (L0.FGL.BCD). The corresponding adaptive version
(L0.FGL.BCD.adap) fails in 30% of the replications which can be explained by
the fact that it uses the ML estimate which can cause problems especially in the
high-dimensional setting. Figure 5 shows the predictive deviance and MSEC for
the different approaches. The notation extr indicates that only the values of
the replications for which the algorithm L0.adap.CV did not fail were extracted
and used for the construction of the corresponding boxplot. We can see that
L0-FGL with BCD shows a lower variability in the MSEC from which we can
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conclude that it seems to be less sensitive in changes in the data. The same con-
clusions are derived when observing the predictive deviance. Even though the
median MSEC of L0.adap.CV is the lowest among all approaches, we observe
that we have high variability within the replications, while these results need
to be handled with caution, since they are based on very few replications (11
out of 13, since two replications had MSEC values ≥ 1000 and were ignored).
Hence, based on our simulation study we strongly suggest the use of L0-FGL
with BCD for high-dimensional setups.

With respect to overall and practical sparsity (Table 3) we observe that L0
adaptive selects the most sparse model, but since this approach fails in 87% of
the replications, this outcome is not to be trusted. But, L0-FGL BCD (adaptive
and non adaptive), which do not fail in the great majority of replications, clearly
reduce the number of predictors included in the model. Since it is important that
the truly non influential predictors are excluded, we turn our view to Table 4.

Table 3

[highdim] Overall/Practical Sparsity (OS∗ = 15, PS∗ = 5).

ML L0.adapt. L0.FGL. L0.FGL
CV BCD BCD.adap

OS 170.00 15.46 60.00 66.26
PS 60.00 10.00 24.93 27.01

Table 4

[highdim] FP/FN rates clustering and selection.

ML L0.adapt. L0.FGL. L0.FGL
CV BCD BCD.adap

FPs,fac 1.00 0.17 0.41 0.45
FNs,factor 0.00 0.83 0.50 0.50

FPf,infl.truth 1.00 0.08 0.23 0.27
FNf,infl.truth 0.00 0.91 0.71 0.70

We observe that L0-FGL with BCD (adaptive and non adaptive) has a FP
and a FN factor selection rate of about 40% and 50%, respectively. In terms
of fusion, we verify that it tends to be conservative in the sense that it has a
high percentage (70 %) of falsely not fused levels. The very high correspond-
ing FN rates of the adaptive L0 with PIRLS are unsatisfactory but, as already
mentioned, these results are not to be interpreted since the algorithm has con-
vergence problems in high-dimensional setups leading to very few successful
replications.

To sum up, the introduced L0-FGL procedure, computed with the BCD ap-
proach using quasi Newton, is very convenient for such a high-dimensional design
since it highly reduces the complexity of the problem. It is remarkable that it
does not fail in any of the replications, even if the number of predictors highly
exceeds the sample size.
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5.4.3. L0-FGL algorithms: PIRLS vs BCD

Based on conducted simulation studies, we verified that PIRLS is not suitable
for computing the L0-FGL estimates in high-dimensional setups. It is important
to remark though, that the convergence of the PIRLS algorithm depends on the
penalty function used. Thus, our observations hold for L0-FGL and may not
necessarily hold for other penalty functions. As explained in Section A.2, there
are more requirements in high dimensions than in low dimensions for PIRLS
to ensure convergence. This explains the observed performance of PIRLS in
our high-dimensional design. The BCD approach outperforms PIRLS in high-
dimensional designs, since it performs coordinate-wise. For more information on
the convergence analysis of BCD we refer to Sections 4.2 and A.3. On the other
hand, in low-dimensional sparse designs, as e.g., B8, PIRLS outperforms the
BCD procedure and does not have any convergence problems. As we will see in
the real data application in Section 6, if the design is low-dimensional, it may
happen that also the BCD approach is suitable. However, the PIRLS approach
(stepwise tuning) seems to perform slightly better for L0-FGL (at least in this
example). To sum up, we would recommend using PIRLS for L0-FGL in low-
dimensional designs and the BCD approach for L0-FGL in high-dimensional
designs.

6. Real data application

To investigate the performance of L0-FGL, we applied the method to the “Breast
Cancer” data set that has a binary response reporting breast cancer recurrence
and is taken from the UCI Machine Learning Repository [24]. The dataset is
of sample size n = 286 and the number of factors considered is J = 9, being
binary, nominal or ordinal; see Table 5. The factors include patients’ data, which
are described in [24], where further details are given in [32]. After removing
some cases with missing values, we end up with a complete sample of n = 277.
Summing up the number of levels of all factors, after excluding levels of zero
frequency, we obtain p = 33.

6.1. Model selection and quality of fit

After randomly splitting the data in training (70%) and test (30%) datasets, we
conducted R = 100 replications fitting ML and L0-FGL with PIRLS and BCD
(adaptive and non-adaptive versions) on the training dataset. Both adaptive
and non adaptive versions of the existing L0 approach, fitted with gvcm.cat,
failed in all replications, which is the reason why we do not show any results
on CAS-L0 in this application. For tuning details we refer to Appendix A.5.
First, we observed that the adaptive versions of L0-FGL PIRLS and L0-FGL
BCD perform worse than the corresponding non-adaptive versions, which can
be explained by the dependence on the performance of the ML which is the
worst in terms of predictive deviance (reported below). Consequently, we will
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Table 5

Factors of breast cancer recurrence dataset. The abbreviation (n.i.d) stands for not in
dataset, meaning that this level appeared in none of the cases. These levels are excluded

from the analysis.
Factor Levels
age (x1), ordinal 10-19 (n.i.d), 20-29, 30-39, 70-79, 80-89 (n.i.d), 90-99 (n.i.d)
menopause (x2), nominal ge40, lt 40, premeno
tumor size (x3), ordinal 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49,

50-54, 55-59 (n.i.d)
inv nodes (x4), ordinal 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20 (n.i.d), 21-23 (n.i.d),

24-26, 27-29 (n.i.d), 30-32 (n.i.d), 33-35 (n.i.d), 36-39 (n.i.d)
node caps (x5), binary yes, no
deg-malig (x6), ordinal 1,2,3
breast (x7), binary left, right
breast quad (x8), nominal left-up, left-low, right-up, right-low, central
irridat (x9), binary yes, no

analyze the performance of L0-FGL PIRLS (L0.FGL.PIRLS), iterative L0-FGL
PIRLS (L0.FGL.PIRLS.iterative) and L0-FGL BCD (L0.FGL.BCD) with step-
wise tuning (see Remark 2.1). In terms of convergence failures (out of R = 100
replications), we observed 1 failure for L0-FGL PIRLS, 13 failures for L0-FGL
PIRLS iterative and no failure for ML and L0-FGL BCD. We will compare the
methods with respect to predictive deviance and misclassification error, i.e., the
percentage of false predictions (false positive and false negative).

Figure 6 shows the boxplots for the misclassification errors. We can see that
all considered approaches perform in a similar manner while L0-FGL PIRLS
has the lowest misclassification errors among them. Further, Figure 7 shows
the predictive deviance, with the plot on the right hand side providing only
the L0-FGL approaches for better visibility of the values. It is remarkable that
the ML has significantly higher predictive deviance values compared to the L0-
FGL approaches. Comparing L0-FGL PIRLS to the corresponding BCD version,
the L0-FGL PIRLS is performing slightly better. The L0-FGL PIRLS iterative
versions has a bit higher predictive deviance values compared to the other ap-
proaches, but, as we will see in the fit on the full dataset below, it yields the most
sparse model, which explains this fact. Nevertheless, all considered L0-FGL ap-
proaches clearly outperform the existing ML approach. Further, as mentioned
above, L0 fitted with gvcm.cat failed in every replication so it is not an alterna-
tive for this real data application. Having verified the superiority of the newly
proposed approach for this dataset, the L0-FGL approaches will be applied next
on the complete dataset.

6.2. Fit on full dataset

Since the L0-FGL PIRLS, L0-FGL PIRLS iterative and L0-FGL BCD alorithms
were the most promising ones in our foregoing analysis (Section 6.1), we pro-
ceed by applying them on the complete dataset. Thus, we obtain parameters’
estimates for the levels of the influential factors after fusion of levels with statisti-
cally non-significant difference of their effects on the response variable. Table 6
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Fig 6. Misclassification error for real data application.

Fig 7. Predictive deviance for real data application; left hand side: all considered approaches,
right hand side: ML excluded.

provides the coefficient estimates for the corresponding factor levels. L0-FGL
PIRLS and L0-FGL BCD find all factors as influential on the response, so they
perform only levels fusion in this example. In particular, L0-FGL PIRLS fuses
some levels of the factors x4 and x6 while L0-FGL BCD leads to a sparser
model, fusing more levels of x3, x4 and x8. The most sparse model is fitted
by L0-FGL PIRLS iterative. It performs selection of factors (eliminating x5,
x7, x8 and x9) and levels’ fusion for factors x1, x3, x4 and x6, reducing the
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number of their parameters from 5, 10, 6 and 3 to 4, 3, 3 and 2, respectively
(see Table 6). The three considered approaches perform similarly in terms of FP
and FN missclassification errors, which are 0.63/0.67/0.68 and 0.06/0.06/0.04
for L0-FGL PIRLS, L0-FGL BCD and L0-FGL PIRLS iterative, respectively.
The sparsity of models fitted by L0-FGL BCD and L0-FGL PIRLS iterative is
gained at the cost of slightly higher error measures. Thus the model simplifica-
tion with the associated gain in interpretability, comes with a slight increase of
misclassification error and predictive deviance.

It is notable that all approaches outperform the ML in terms of predictive
deviance (see Section 6.1) and also the existing L0 approach (implemented in
gvcm.cat), which failed in every replication. This makes the new introduced
method advantageous for real data applications. In some next steps one could
perform statistical hypothesis tests to investigate the significance of the factors
and the corresponding levels and proceed to associated interpretations. However,
this is beyond the scopes of this work.

7. Conclusion

In this work, a new approach is introduced, the L0-FGL, which performs both,
factor selection and levels fusion of categorical predictors, combining two penalty
terms, one for selection and one for fusion. The motivation for the introduc-
tion of L0-FGL was to obtain an approach not only performing fusion with an
L0 type penalty (as does CAS-L0), but also performing direct factor selection,
balancing thus both tasks. First, we obtained theoretical results for the new
proposed double penalized approach. Having proven the existence, it is further
shown that, under certain regularity conditions, there exists an L0-FGL esti-
mator satisfying

√
n consistency, even when the number of parameters grows

with the sample size. In addition, this L0-FGL estimator satisfies a result con-
cerning consistency in variable selection in both cases, for fixed or sample size
dependent number of parameters. Fixing p, there exists an adaptive L0-FGL
estimator satisfying asymptotic normality, while for the diverging pn case we
showed a similar result for the approximate L0-FGL. Simulation studies veri-
fied that the new L0-FGL approach implemented with PIRLS shows a superior
performance in lower dimensional designs and tends to improve the selection
performance of the classical L0 method due to the incorporation of the group
lasso part. Clearly, L0-FGL balances factor selection and levels fusion perfor-
mance. The performance of L0-FGL computed with BCD in high dimensions
outperformed the other approaches in the grand majority of replications. It is
capable of identifying sparse models and reduces further the dimension of the
problem through possible levels’ fusion of categorical predictors, delivering thus
sound interpretations for the associated effects on the response variable. The
theoretical properties along with the simulation results make L0-FGL a promis-
ing method for modeling high-dimensional data with factors, where sparsity is
achieved not only through variable selection but also through levels’ fusion. In
our real data application we showed that L0-FGL is also able to handle lower
dimensional designs coming from real datasets.
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Table 6

Estimates for fit on full dataset. The abbreviation (r.c.) stands for reference category. Pair
or groups of parameter estimates of successive levels that are equal are in bold (or italics)

and correspond to levels that are fused.
Level L0-FGL PIRLS L0-FGL BCD L0-FGL PIRLS

iterative
Intercept −1.85 1.60 −2.69
age (x1) 20-29 (r.c.) 0.00 0.00 0.00

30-39 0.14 −0.12 0.01
40-49 −0.04 −0.57 0.00
50-59 −0.15 −0.92 0.00
60-69 0.12 −0.63 0.83
70-79 −0.06 −1.11 −2.51

menopause (x2) ge40 (r.c.) 0.00 0.00 0.00
lt40 −0.20 −1.10 −2.92
premeno 0.29 −0.43 0.84

tumor size (x3) 0-4 (r.c.) 0.00 0.00 0.00
5-9 −0.05 −1.03 −1.71
10-14 −0.21 −2.30 −1.73
15-19 −0.05 −0.84 0.48
20-24 0.05 −0.84 0.48
25-29 0.10 −0.41 0.48
30-34 0.20 −0.33 0.48
35-39 −0.01 −0.33 0.48
40-44 −0.05 −0.80 0.48
45-49 −0.01 −0.31 0.48
50-54 0.06 −0.31 0.48

inv nodes (x4) 0-2 (r.c.) 0.00 0.00 0.00
3-5 0.03 0.30 1.25
6-8 0.01 0.30 1.25
9-11 0.02 0.38 1.25
12-14 0.00 0.17 0.68
15-17 0.00 0.17 0.68
24-26 0.00 0.17 2.73

node caps (x5) no (r.c.) 0.00 0.00 −
yes 0.83 0.36 −

deg-malig (x6) 1 (r.c.) 0.00 0.00 0.00
2 0.00 −1.03 0.00
3 1.28 0.18 1.42

breast (x7) left (r.c.) 0.00 0.00 −
right −0.03 −0.69 −

breast quad (x8) central (r.c.) 0.00 0.00 −
left-low 0.06 −0.68 −
left-up −0.08 −0.69 −
right-low −0.04 −0.69 −
right-up 0.12 −0.04 −

irridat (x9) no (r.c.) 0.00 0.00 −
yes 0.54 0.07 −

From a theoretical point of view, [19] established the asymptotic normality
of the maximum likelihood estimator of the parameter vector in the diverging
pn case under mild regularity conditions, allowing pn > n. This procedure may
be exploited in our case, opening the way for asymptotic inference. Approaches
for goodness of fit testing for models estimated by L0-FGL need to be devel-
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oped and are currently under research, taking into account, among others, the
methodology of [31], [30], [37] and [27]. Additionally, since our theoretical prop-
erties hold for a local minimizer, further work can be developed analyzing the
connection to the minimizer obtained by the algorithms, as done e.g. in [8] for
folded concave penalties.

Furthermore, it would be interesting to develop for high-dimensional logistic
regression with fusion an alternative adaptive selection algorithm, of the type
introduced by [28], and compare it with the results discussed here. Finally, the
consideration of levels’ fusion for categorical predictors is crucial also in a lon-
gitudinal context (see [18]) and, to the best of our knowledge, has been ignored
so far. Extension of the approach proposed here towards this direction can be
explored. Additionally, the L0-FGL procedure can be extended for allowing for
order restricted estimation of the levels’ parameters of ordinal factors, which is
of high interpretability value if ordered effects are expected.

Additionally, further investigation in compromising factor selection and lev-
els fusion with L0-FGL can be conducted by performing CV on a (fine) two-
dimensional grid. However, especially by including an L0 penalty, this will be
computationally intensive and requires more research on fast algorithms to han-
dle functions including an L0 penalty on the differences of a factor’s level pa-
rameters.

A possible alternative algorithm to solve the L0-FGL optimization problem
is the penalty decomposition (PD) method, which was introduced in [20] and
applied to L0 norm minimization problems in [21]. Generally speaking, after
re-writing the optimization problem as a rank minimization problem, a penalty
decomposition method is used to solve the optimization problem. Appearing
sub-problems are solved with a BCD method. The optimization problem in-
cluding a L0 norm is formulated in [21]. However, further work has to be done
to investigate the performance and computational details of the PD method
applied to L0-FGL on which we are currently working on.

Appendix

This appendix will provide the proofs of the theorems previously stated. In
addition, details on the approximations used in the computational part will
be obtained. Furthermore, we will provide some details on the algorithms used
for fitting L0-FGL, including some convergence analysis. Finally, details on the
tuning used in our simulation studies and the real data application will be given.

A.1. Proofs

A.1.1. Proof of Theorem 3.1

(1) S �= 0 : Set J = 1, the proof for J > 1 works analogously. We will show
that for J = 1, the group lasso estimator, given by

β̂GL := arg min
β∈Rp+1

−Ln(β) + λ1||β||K ,
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fulfills β̂GL ∈ S. By assumption, 0 <
∑n

i=1 yi < n and by [22] (Lemma 1) we
can follow that the group lasso estimator β̂GL exists. Further, as mentioned
in [22], the function −Ln(β) + λ1||β||K is convex and by Lemma 1 in their
work, the minimum of this function is attained. Nevertheless, there are further
requirements needed to ensure the uniqueness of the group lasso estimator, in
particular the design matrix needs to be of full rank, which we do not require
here. Now, it holds that there exists an ε-neighborhood of β̂GL, where ε =
(ε1, . . . , εp) ∈ R

p, such that β̂GL minimizes the sum −Ln(·) + λ1|| · ||K . Hence

−Ln(β̂GL + ε) + λ1||β̂GL + ε||K ≥ −Ln(β̂GL) + λ1||β̂GL||K .

Consequently, adding λ0
∑

r,s w
(rs)
0 ||β̂GL

r − β̂GL
s + εr − εs||0 on both sides of the

inequality

Mpen(β̂GL + ε)

= −Ln(β̂GL + ε) + λ1||β̂GL + ε||K + λ0
∑
r,s

w
(rs)
0 ||β̂GL

r − β̂GL
s + εr − εs||0

≥ −Ln(β̂GL) + λ1||β̂GL||K + λ0
∑
r,s

w
(rs)
0 ||β̂GL

r − β̂GL
s + εr − εs||0. (17)

For the group lasso estimate we have either β̂GL = 0 or β̂GL
r �= 0∀r, see [22],

in the latter case we further have that β̂GL
r �= β̂GL

s ∀ r, s almost surely. For the
case where we have β̂GL

r �= β̂GL
s ∀ r, s we can choose ε small enough such that

β̂GL
r + εr �= β̂GL

s + εs ∀ r, s. Consequently, we conclude that the L0 norms of
β̂GL
r − β̂GL

s and β̂GL
r − β̂GL

s + εr − εs coincide since all values of the differences
are nonzero. Hence, ||β̂GL

r − β̂GL
s + εr − εs||0 = ||β̂GL

r − β̂GL
s ||0. Then we obtain

that (17) equals

−Ln(β̂GL) + λ1||β̂GL||K + λ0
∑
r,s

w
(rs)
0 ||β̂GL

r − β̂GL
s ||0 = Mpen(β̂GL)

and thus Mpen(β̂GL +ε) ≥ Mpen(β̂GL) for a sufficiently small ε. If β̂GL = 0 we
get with the same arguments as above

Mpen(β̂GL + ε) ≥ −Ln(0) + λ1||0||K + λ0
∑
r,s

w
(rs)
0 ||εr − εs||0︸ ︷︷ ︸

≥ 0

≥ −Ln(0) + λ1||0||K = Mpen(0) = Mpen(β̂GL)

thus Mpen(β̂GL + ε) ≥ Mpen(β̂GL). Hence, the group lasso estimator β̂GL is a
local minimizer of the L0-FGL objective function, thus an element of the set S
giving us that S �= ∅ and the first part of the claim follows.
(2) Mpen(·) decreases if coefficients that are close enough to each other are
fused : as we know that the group lasso estimator is one solution of L0-FGL but
without fusion, we have to show that the objective function Mpen(·) decreases
if fusion occurs. Again, we assume that J = 1 and we start with the case of an
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Fig 8. Location of βnf,r, βnf,r−1 and the fused coefficients βf,r = βf,r−1 for the case
min{βnf,r, βnf,r−1} = βnf,r−1 (other case works analogously).

ordinal factor comparing adjacent categories for fusion. The goal is to show that
the objective function Mpen(·) decreases if coefficients that are close enough to
each other are fused. Note that, since we chose reference category zero, there is
no appearance of the reference category in the coefficient vector β. Write βnf

(not fused), βf (fused) ∈ R
p with

βnf = (βnf,1, . . . , βnf,p) , where βnf,i �= βnf,i−1 ∀i = 2, . . . , p (not fused),
βf = (βf,1, . . . , βf,p) , where βnf,i = βf,i �= βf,i−1 = βnf,i−1

∀i = 2, . . . , r − 1, r + 1, . . . p and βf,r = βf,r−1.

So in βf the categories r and r − 1 are fused and, except for these categories,
βnf and βf coincide.
Note that βf,r = βf,r−1 ∈ [min{βnf,r, βnf,r−1},max{βnf,r, βnf,r−1}]. With-
out loss of generality, we assume min{βnf,r, βnf,r−1} = βnf,r−1. Since we ob-
serve an ordinal factor, this holds by definition but observing nominal factors
one has to differentiate between these two cases but the other case works
in the same way. Thus it holds that βnf,r − βnf,r−1 = ε1 + ε2 = ε > 0
for some (small) ε and βnf,r = βnf,r−1 + ε, see Figure 8. Now we have to
show that Mpen(βf ) < Mpen(βnf ). It depends on the design and the tun-
ing etc. how small ε has to be such that the objective function decreases.
We know that βnf − βf = (0, . . . , 0,−ε1, ε2, 0, . . . , 0). Because of the conti-
nuity of the negative log-likelihood −Ln(β) and the norm ||β||K it holds that
∀δ1, δ2, ∃ε̃1, ε̃2 > 0 such that ∀βnf , βf with ||βnf−βf || < min{ε̃1, ε̃2} it holds

|Ln(βnf ) − Ln(βf )| < δ1,∣∣||βnf ||K − ||βf ||K
∣∣ < δ2.

Because of the definition of βnf (no categories fused) and βf (category r and
r − 1 fused) we know that

∑p
i=1 w

(i)
0 ||βnf,i − βnf,i−1||0 =

∑
i w

(i)
0 =: c and for

the fused version we know
∑p

i=1 w
(i)
0 ||βf,i − βf,i−1||0 = c − w

(r)
0 . Furthermore

Ln(βnf )−Ln(βf ) > −δ1 and ||βnf ||K − ||βf ||K > −δ2. Thus, for βnf ,βf with
||βnf − βf || = ε < min{ε̃1, ε̃2} we deduce

Mpen(βnf ) −Mpen(βf )

= −Ln(βnf ) + λ1||βnf ||K + λ0

p∑
i=1

w
(i)
0 ||βnf,i − βnf,i−1||0
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+Ln(βf ) − λ1||βf ||K − λ0

p∑
i=1

w
(i)
0 ||βf,i − βf,i−1||0

= −Ln(βnf ) + λ1||βnf ||K + Ln(βf ) − λ1||βf ||K + λ0 · w(r)
0

> −δ1 − λ1δ2 + λ0 · w(r)
0 (18)

Now, if we choose λ0 (tuning for fusion) large enough and δ1, δ2 small enough
such that λ0 · w(r)

0 > δ1 + λ1δ2, we get with the above equation

Mpen(βnf ) −Mpen(βf ) > 0 ⇔ Mpen(βnf ) > Mpen(βf )

and consequently the value of the objective function in βf is less than in βnf ,
hence the objective function decreases if we fuse coefficients that are close enough
to each other. The proof can directly be extended to the case where we fuse more
categories and also for the nominal case. It is clear that λ0 controls fusion since
larger λ0 values enforce fusion for categories that are further apart.

A.1.2. Proof of Theorem 3.5

In the proof of Theorem 3.5, we will use the following Lemma.

Lemma A.1. Let Mpen(β) be the objective function of L0-FGL see (5). Assume
that we can show for some x∗ ∈ R

p and c ∈ R
>0 that

inf
||u||2=c

Mpen(x∗ + u) > Mpen(x∗). (19)

Then, there exists at least one local minimum of Mpen(β) inside D := {x∗ +
u | ||u||2 ≤ c}, where inside means in the domain D̊ = {x∗ + u | ||u||2 < c}.
Proof. (of Lemma A.1)
Initial Remark: If the function Mpen was continuous, this would be clear since a
continuous function attains its minimum and maximum in a compact set, hence
in D, and then we could use (19) to show that the infimum (minimum) is not
attained at the boundary of D. But, since Mpen consists, among other parts,
of a L0 part, it is not continuous. Since we do not penalize the intercept and
the intercept just appears in the log-likelihood, we neglect it hence we observe
Mpen(β) for β ∈ R

p and x∗ ∈ R
p (instead of Rp+1). Consequently, we have to

show that Mpen attains its infimum in D. Having that, we use (19) to show that
the infimum is not attained at the boundary, hence it is in D̊.

Returning to the proof of Lemma A.1, we will prove it for the case p = 2
and J = 1. Cases of higher dimensions work in a similar manner, although we
get more possible cases for the infimum to occur (see below). In this setting of
choosing p = 2 and J = 1, we just have one weight w0 in the L0 part (see (5)).
We start by partitioning D into two subsets in the following way

D1 := D\{β = (β1, β2) : β1 < β2},
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Fig 9. Partition of the ball D into D1 and D2. The red line shows the 1-dimensional hyper-
plane where f(β) is not continuous, hence β1 = β2.

D2 := D\{β = (β1, β2) : β2 < β1}.

So the hyperplane satisfying β1 = β2 is included in both subsets. We clearly
have that D = D1 ∪ D2. This partition is displayed in Figure 9.

We can write by definition of the objective function Mpen(β) = g(β) + f(β)
where, for β = (β1, β2), g(β) := −Ln(β) + λ1||β||K is the sum of the log-
likelihood and group lasso part and f(β) := λ0w0||β1 − β2||0 the L0 part (these
abbreviations are just used within this proof). Note that, by definition of the
L0 norm applied to differences, this norm is equal to zero if the object on which
we apply the norm is zero and one otherwise, hence it is zero if the difference is
zero and it is one if the difference is nonzero. Keep in mind that we multiply the
resulting value with the weight w0. For g(β) we know that it attains a (local)
minimum in D, we write βg = (βg,1, βg,2) = arg minβ∈D g(β). Without loss of
generality, we assume that βg ∈ D1, the other case works completely analogous.
There are two possible cases that may occur.

Case (1): βg,1 �= βg,2
Here, we have that f(βg) = f((βg,1, βg,2)) = 1 · w0 = w0. Conse-
quently, the infimum of the objective function either occurs in D1
without the hyperplane (β1 = β2) or it occurs on this hyperplane. In
particular, this means

inf
β∈D

Mpen(β) ∈ {g(βg) + w0, inf
b∈[b1,b2]

g((b, b))}

so the infimum of Mpen is either attained in βg or in (b, b) for some
b ∈ [b1, b2]. Later, we will show that with our additional assumption
(19), we know that the infimum is not at the boundary hence b ∈
(b1, b2) but this is not important at this point since we just want to
show that the infimum is attained somewhere in D.
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Case (2): βg,1 = βg,2
In this case we have that f(βg) = f((βg,1, βg,1)) = 0. Consequently

inf
β∈D

Mpen(β) = inf
β∈D

g(β)

and hence the infimum of Mpen is attained in βg.

In both cases, there exists some β̃ ∈ D for which the infimum is attained, hence
it equals the minimum

arg min
β∈D

Mpen(β) = β̃.

Note that, in Figure 9 it can of course also occur the case that the red hyper-
plane does not go through the domain D hence there is no intersection of the
hyperplane and D. If this is the case, we are finished since then the function f
will be equal to one everywhere, hence Mpen would be continuous. It remains
to show that β̃ ∈ D̊. Assume that β̃ is on the boundary of D, hence β̃ ∈ D\D̊.
Consequently, it holds by definition of the infimum that

inf
||u||2=c

Mpen(x∗ + u) = Mpen(β̃) ≤ Mpen(β) ∀β ∈ D

and this also holds for β = x∗ ∈ D which is a contradiction to the assumption
(19). Therefore, it holds that β̃ ∈ D̊, hence there exists a local minimum of
Mpen in D̊.

Proof. (of Theorem 3.5) The L0-FGL penalty function Pλ(β) is given by (4),
replacing λ0 by λn

0 and λ1 by λn
1 , respectively. Mpen(β) is given by (5). Following

the ideas of [6] and [34] we have to show that ∀ε > 0 we can find a suitable
c > 0 such that the following holds

P

(
inf

u∈Rp,||u||2=c
Mpen

(
β∗ + 1√

n
u

)
> Mpen(β∗)

)
≥ 1 − ε. (20)

In contrast to [6], we minimize the sum of the negative log-likelihood and the
chosen penalty where they maximize the negative objective function which is
clearly equivalent. We will transfer the idea of [6] to our case of L0-FGL. Hav-
ing shown (20), we get that there exists a local minimum inside the ball {β∗ +
1√
n
u where ||u||2 < c} using Lemma A.1. This yields that we can find a local

minimizer such that ||β∗−β̂||2 = Op(1/
√
n) which is the claim. We start by plug-

ging in the definition of Mpen(β) giving us with Hn(u) := Mpen

(
β∗ + 1√

n
u
)
−

Mpen(β∗)

Hn(u)

= −Ln

(
β∗ + 1√

n
u

)
+ Ln(β∗) + λn

1

J∑
j=1

w
(j)
1 (||β∗

j + 1√
n
u||2 − ||β∗

j ||2) (21)

+λn
0

J∑
j=1

∑
0≤r<s≤pj

w
(j,rs)
0

(
||β∗

j,r − β∗
j,s + 1√

n
(ur − us)||0 − ||β∗

j,r − β∗
j,s||0

)
.
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We will observe the three parts from the right hand side of the equation seper-
ately. Like in [42] (proof of Theorem 4) we will investigate the behavior of
the first part −Ln

(
β∗ + 1√

n
u
)

+ Ln(β∗) with a Taylor expansion of fn(u) :=

−Ln

(
β∗ + 1√

n
u
)

+ Ln(β∗) around u = 0 which gives us using fn(0) = 0

−Ln

(
β∗ + 1√

n
u

)
+ Ln(β∗) = T1,n + T2,n + T3,n. (22)

In particular, it holds with αn := 1√
n

T1,n = −αn∇TLn(β∗)u = −
n∑

i=1
[yi − ϕ

′
(xiβ

∗)]xT
i uαn

T2,n = −1
2u

T∇2Ln(β∗)uα2
n =

n∑
i=1

1
2ϕ

′′(xiβ
∗)uTxix

T
i uα2

n

T3,n = −1
6

p∑
i,j,k=1

∂Ln(β∗)
∂βi∂βj∂βk

uiujukα
3
n = α3

n

n∑
i=1

1
6ϕ

′′′(xiβ
∗)(xT

i u)3.

These equalities can be directly seen by straightforward calculations. Plugging in
that αn = 1√

n
(the quantity αn is just introduced here for consistency with the

proof of Theorem 3.6), we obtain the following asymptotics using (Reg1)–(Reg3)

T1,n = −
n∑

i=1
[yi − ϕ

′
(xiβ

∗)]x
T
i u√
n

→d N(0,uT IF (β∗)u) (using CLT),

T2,n =
n∑

i=1

1
2ϕ

′′(xiβ
∗)uT xix

T
i

n
u →p

1
2u

T IF (β∗)u (using LLN), (23)

T3,n = n−1/2 1
6

1
n

n∑
i=1

ϕ′′′(xiβ
∗)(xT

i u)3︸ ︷︷ ︸
→pE(M(x)|xTu|3)<∞ by (Reg3)

(using LLN)

thus 6
√
nT3,n < ∞, see also [42] (proof of Theorem 4). With these properties

we can conclude that the likelihood part of the objective function, hence (22),
is asymptotically dominated by (23), thus by the expression uT IF (β∗)u.
Since by the triangle inequality ||β∗

j − 1√
n
u||2 ≤ ||β∗

j ||2 + || 1√
n
u||2 we obtain

||β∗
j − 1√

n
u||2 − ||β∗

j ||2 ≤ || 1√
n
u||2. Consequently we admit

λn
1

J∑
j=1

w
(j)
1

(
||β∗

j + 1√
n
u||2 − ||β∗

j ||2
)

≤ a1
n

1√
n
||u||2J.

Therefore, λn
1
∑J

j=1 w
(j)
1

(
||β∗

j + 1√
n
u||2 − ||β∗

j ||2
)

= op(1)||u||, which is also
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obtained in [34]. Further it holds

λn
0

J∑
j=1

∑
0≤r<s≤pj

w
(j,rs)
0

(
||β∗

j,r − β∗
j,s + 1√

n
(ur − us)||0 − ||β∗

j,r − β∗
j,s||0

)
(24)

≤
J∑

j=1

∑
0≤r<s≤pj

w
(j,rs)
0 λn

0︸ ︷︷ ︸
≤a0

n=Op(1)

(25)

giving us that (24) is Op(1). Note that p and J are fixed in this theorem thus
they do not grow with the sample size n. All in all, we can write

Mpen

(
β∗ + 1√

n

)
−Mpen(β)

= T1,n + T2,n + T3,n + λn
1

J∑
j=1

w
(j)
1

(
||β∗

j + 1√
n
u||2 − ||β∗

j ||2
)

+λn
0

J∑
j=1

∑
0≤r<s≤pj

w
(j,rs)
0

(
||β∗

j,r − β∗
j,s + 1√

n
(ur − us)||0 − ||β∗

j,r − β∗
j,s||0

)
= T1,n︸︷︷︸

→dN(...)

+ T2,n︸︷︷︸
→p

1
2u

T IF (β∗)u

+ T3,n︸︷︷︸
bounded

+op(1)||u|| + Op(1) (26)

We conclude that the expression Hn(u) = Mpen(β∗ + 1√
n
) −Mpen(β) is dom-

inated (asymptotically) by 1
2u

T IF (β∗)u > 0 where this expression is positive
since the Fisher information matrix was assumed to be positive definite at β∗.
Hence, for n large enough, we can choose c in such a way (in particular it has to
be large enough) that (26) > 0 hence (20) holds so there exists a local minimizer
β̂ being

√
n-consistent.

A.1.3. Proof of Theorem 3.6

Remark A.2 (Initial Remark on Theorem 3.6). In the assumptions of Theo-
rem 3.6, instead of a0

nJnpn(pn − 1) = op(1), one could also assume that (i) the
number of levels is bounded, hence max{pj |j = 1, . . . , Jn} = clevels < ∞ for
some constant clevels > 0 and (ii) a0

nJn = op(1), see (∗∗) in the following proof.

Proof. The proof is related to the proof of Theorem 1 in [7], where such a
theorem is shown for nonconcave penalties as SCAD. We will transfer the idea
to our case of L0-FGL. In [7] (Theorem 1) the weights are chosen to be equal to
one. The first part of the proof, where the log-likelihood is observed, is similar
to [7]. As in the proof of Theorem 3.5, we will show that for any given ε > 0,
(20) is satisfied, where we replace 1√

n
by αn. As in the proof of Theorem 3.9, we

define Hn(u) := Mpen(β∗+αnu)−Mpen(β∗), where in the proof of Theorem 3.9
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αn corresponds to 1√
n
, and obtain

Hn(u) = −Ln(β∗ + αnu) + Ln(β∗) + λn
1

Jn∑
j=1

(w(j)
1 ||β∗

j + αnuj ||2 − w
(j)
1 ||βj ||2)

+λn
0

Jn∑
j=1

∑
0≤r<s≤pj

(w(j,rs)
j ||β∗

j,r−β∗
j,s+αn(ur−us)||0−w

(j,rs)
0 ||β∗

j,r−β∗
j,s||0).

(27)

We will observe the log-likelihood part and the penalty part of the objective
function separately.
Step 1 (Log Liklelihood): for the log-likelihood part we perform a Taylor ex-
pansion as in the proofs of Theorems 3.5 and 3.9 but since we are in the case
that pn grows with n, the asymptotic behavior of the components of the Taylor
expansion will differ from the mentioned theorems. In particular, we get for the
Taylor expansion of fn(u) := −Ln(β∗ +αnu)+Ln(β∗) around u = 0 using the
fact that fn(0) = 0

−Ln(β∗ + αnu) + Ln(β∗) = T1,n + T2,n + T3,n. (28)

Here, the quantities T1,n, T2,n, T3,n are similar to the proof of Theorem 3.5 with
general αn. For T1,n we get using the Cauchy-Schwartz inequality (C.S.) and
(div.Reg2)

|T1,n| = |αn∇TLn(β∗)u|
(C.S.)
≤ αn||∇TLn(β∗)||2 ||u||2

(div.Reg2)= Op(αn
√
npn)||u||2 = Op(α2

nn)||u||2 = Op(pn)||u||2

since

||∇TLn(β∗)||22 =
pn∑
j=1

∂Ln(β∗)
∂βj

∂Ln(β∗)
∂βj

= n

pn∑
j=1

1
n

n∑
i=1

∂ log fn(vi,β∗)
∂βj

∂ log fn(vi,β∗)
∂βj︸ ︷︷ ︸

→p E

(
∂ log fn(vi,β∗)

∂βj

∂ log fn(vi,β∗)
∂βj

)
=[IF (β∗)]j,j <C

= pn nOp(1).

Hence ||∇TLn(β∗)||2 = Op(
√
n pn). In particular we can write T1,n = Op(pn)

||u||2 since α2
nn = pn = αn

√
npn. For the second summand T2,n it holds as in [7]

T2,n = −1
2u

T∇2Ln(β∗)uα2
n

= −1
2u

T∇2Ln(β∗)uα2
n +1

2u
T IF (β∗)unα2

n − 1
2u

T IF (β∗)unα2
n︸ ︷︷ ︸

=0
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= −1
2u

T

[
1
n

(∇2Ln(β∗) + IF (β∗))
]
unα2

n + 1
2u

T IF (β∗)unα2
n

= −1
2u

T

[
1
n

(∇2Ln(β∗) −E(∇2Ln(β∗))
]
unα2

n + 1
2u

T IF (β∗)unα2
n

= n

2α
2
nu

T op(1/pn)u + n

2α
2
nu

T IF (β∗)u

where we used that IF (β∗) = −E(∇2Ln(β∗)) and || 1n∇2Ln(β∗) + IF (β∗)|| =
op( 1

pn
) following Lemma 8 of [7] which needs the assumption p4

n/n → 0 as
n → ∞. Since we have || 1n∇2Ln(β∗) + IF (β∗)|| = op( 1

pn
) we know that, by

definition, || 1n∇2Ln(β∗) + IF (β∗)|| pn converges to zero in probability so using
pn ≥ 1 we get || 1n∇2Ln(β∗) + IF (β∗)|| pn ≥ || 1n∇2Ln(β∗) + IF (β∗)|| hence
|| 1n∇2Ln(β∗) + IF (β∗)|| = op(1). Consequently,

T2,n = n

2α
2
nu

T op(1)u + n

2α
2
nu

T IF (β∗)u = 1
2pnu

T (IF (β∗) + op(1))u.

The last summand T3,n is treated as follows.

|T3,n|=
1
6

∣∣∣∣∣∣
pn∑

i,j,k=1

∂3Ln(β∗)
∂βi∂βj∂βk

uiujukα
3
n

∣∣∣∣∣∣ = 1
6

∣∣∣∣∣∣
n∑

l=1

pn∑
i,j,k

∂3 log fn(vl,β
∗)

∂βi∂βj∂βk
uiujukα

3
n

∣∣∣∣∣∣
≤ 1

6α
3
n

n∑
l=1

∣∣∣∣∣∣
pn∑
i,j,k

∂3 log fn(vl,β
∗)

∂βi∂βj∂βk
uiujuk

∣∣∣∣∣∣︸ ︷︷ ︸
(∗)

,

where, using the Cauchy Schwarz inequality we obtain

(∗) =
n∑

l=1

∣∣∣∣∣∣
pn∑
i,j,k

∂3 log fn(vl,β
∗)

∂βi∂βj∂βk
uiujuk

∣∣∣∣∣∣
(C.S.)
≤

n∑
l=1

||(log fn(vl,β
∗))′′′||2 · ||u||32.

Following (div.Reg3), we know that we can bound every component in
||(log fn(vl,β

∗))′′′||2 by some function Mn,i,j,k(xl), hence

n∑
l=1

||(log fn(vl,β
∗))′′′||2 ≤

n∑
l=1

⎛⎝ pn∑
i,j,k=1

M2
n,i,j,k(xl)

⎞⎠1/2

so consequently

(∗) ≤
n∑

l=1
||(log fn(vl,β

∗))′′′||2 · ||u||32 ≤ ||u||32
n∑

l=1

⎛⎝ pn∑
i,j,k=1

M2
n,i,j,k(xl)

⎞⎠1/2

.

(29)
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Now we have to observe the asymptotic behavior of the r.h.s. of the inequality
(29). Using the Cauchy Schwarz inequality we obtain⎛⎝ pn∑

i,j,k=1

M2
n,i,j,k(xl) · 1

⎞⎠2

≤

⎛⎝ pn∑
i,j,k=1

M2
n,i,j,k(xl)

⎞⎠ p3
n

⇒
pn∑

i,j,k=1
M2

n,i,j,k(xl) ≤ p3
n ⇒

⎛⎝ pn∑
i,j,k=1

M2
n,i,j,k(xl)

⎞⎠1/2

≤ p3/2
n (30)

With (30) we can write using αn =
√
pn/n

|T3,n| ≤
1
6α

3
n||u||32

n∑
l=1

⎛⎝ pn∑
i,j,k=1

M2
n,i,j,k(xl)

⎞⎠1/2

≤ 1
6α

3
n||u||32

n∑
l=1

p3/2
n = 1

6α
3
n||u||32np3/2

n = 1
6 ||u||

3
2
p3
n√
n

Since we assumed p4
n

n → 0 we get using 0 ≤ p2
n√
n

=
√

p4
n

n ≤ p4
n

n → 0 that p2
n√
n
→ 0.

Consequently, it holds that p3
n√
n

= op(pn). So T3,n = op(pn)||u||32.
Step 2 (Penalty): it holds that

|λn
1

Jn∑
j=1

(w(j)
1 ||β∗

j + αnuj ||2 − w
(j)
1 ||β∗

j ||2)|

≤ λn
1

Jn∑
j=1

w
(j)
1 αn||uj ||2 ≤ ||u||2 αn

Jn∑
j=1

λn
1w

(j)
1 ≤ ||u||2 αna

1
nJn = op(1)||u||2

since by assumption αna
1
nJn = op(1). Lastly, since ||β∗

j,r−β∗
j,s+αn(ur−us)||0−

||β∗
j,r − β∗

j,s||0 ≤ 1, we obtain

λn
0

Jn∑
j=1

∑
0≤r<s≤pj

(w(j,rs)
0 ||β∗

j,r − β∗
j,s + αn(ur − us)||0 − w

(j,rs)
0 ||β∗

j,r − β∗
j,s||0)

≤
Jn∑
j=1

∑
0≤r<s≤pj

λn
0w

(j,rs)
j ≤ a0

n

Jn∑
j=1

∑
0≤r<s≤pj

1 := (∗∗)

The quantity
∑Jn

j=1
∑

0≤r<s≤pj
1 is equal to the number of differences including

all Jn predictors of the model. Of course, this depends on the design whether we
observe ordinal or nominal factors, or mixtures. The highest number of possible
differences occurs when all factors are nominal, hence it can be bounded by
pn(pn−1)

2 . Additionally, we assumed that a0
npn(pn − 1) = op(1), hence

(∗∗) = a0
n

Jn∑
j=1

∑
0≤r<s≤pj

1 ≤ a0
n

pn(pn − 1)
2 = op(1)
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so the L0 part of the penalty function is op(1).
We conclude with the steps above, as well as (27) and (28)

Hn(u) = T1,n︸︷︷︸
=Op(pn)||u||

+ T2,n︸︷︷︸
= 1

2pnuT (IF (β∗)+op(1))u.

+ T3,n︸︷︷︸
=op(pn)||u||2

+ op(1)||u||2 + op(1)

We can see that all the summands are dominated by 1
2pnu

T IF (β∗)u > 0 where
the last inequality holds since we assumed that the Fisher information matrix
is positive definite in β = β∗ in (div.Reg2). So choosing c large enough, we can
ensure that Hn(u) > 0.

A.1.4. Proof of Theorem 3.9

Proof. The proof follows [42] where the oracle properties for the adaptive lasso
are shown. We write β = β∗+ u√

n
and remember that Hn(u) := Mpen

(
β∗ + u√

n

)
−Mpen(β∗). We aim to minimize û = arg minu Hn(u), then û =

√
n(β̂ − β∗).

Although û depends on n, we neglect to use a lower index in û for simplicity,
as we do with β̂. Since Hn(u) is the same as (21) in the proof of Theorem 3.5,
the first steps performing a Taylor expansion of the log-likelihood resulting in
T1,n, T2,n, T3,n and observing the asymptotic behavior of those using the regular-
ity conditions are similar. Hence, it remains to analyze the asymptotic behavior
of the penalties, which we denote by PGL

λn
1

and PL0
λn

0
in this proof for simplicity.

Writing

PGL
λn

1
= λn

1

J∑
j=1

[
w

(j)
1 ||β∗

j + uj√
n
||2 − w

(j)
1 ||β∗

j ||2
]

= λn
1
∑
j∈A∗

[
w

(j)
1 ||β∗

j + uj√
n
||2 − w

(j)
1 ||β∗

j ||2
]

+ λn
1
∑
j /∈A∗

[
w

(j)
1 ||β∗

j + uj√
n
||2 − w

(j)
1 ||β∗

j ||2
]

we get for the case that β∗
j �= 0, hence j ∈ A∗, the following (recall that β̃ is

the unpenalized MLE)

w
(j)
1 = 1

||β̃j ||γ2
→p ||β∗

j ||−γ
2

√
n{||β∗

j + uj√
n
||2 − ||β∗

j ||2} ≤
√
n{||β∗

j ||2 + 1√
n
||uj ||2 − ||β∗

j ||2} = ||uj ||2 < ∞
√
n{||β∗

j + uj√
n
||2 − ||β∗

j ||2} ≥
√
n{||β∗

j ||2 − || uj√
n
||2 − ||β∗

j ||2} = −||uj ||2 > −∞

This gives us

−||uj ||2 ≤
√
n{||β∗

j + uj√
n
||2 − ||β∗

j ||2} ≤ ||uj ||2. (31)
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Using Slutsky we end up with (note that we call the summands of PGL
λn

1
for j ∈ A∗

in the following
(
PGL
λn

1

)
A∗

, the analogous notation is used for the summands
where j /∈ A∗)(

PGL
λn

1

)
A∗

= λn
1
∑
j∈A∗

[
w

(j)
1 ||β∗

j + uj√
n
||2 − w

(j)
1 ||β∗

j ||2
]

= λn
1√
n︸︷︷︸

→0

∑
j∈A∗

w
(j)
1︸︷︷︸

→p||β∗
j ||

−γ
2

||β∗
j ||−γ

√
n

[
||β∗

j + uj√
n
||2 − ||β∗

j ||2
]

︸ ︷︷ ︸
bounded using (31)

→p 0

for the case that β∗
j �= 0. Now we come to the case that β∗

j = 0, hence j /∈ A∗.
In this case we get with w

(j)
1 = ||β̃j ||−γ

2 = nγ/2||β̃j
√
n||−γ

2(
PGL
λn

1

)
(A∗)c

= λn
1
∑

j∈(A∗)c
w

(j)
1 || uj√

n
||2 = λn

1√
n

∑
j∈(A∗)c

√
nw

(j)
1 || uj√

n
||2

= λn
1n

(γ−1)/2︸ ︷︷ ︸
→∞

∑
j∈(A∗)c

||β̃j

√
n||−γ

2︸ ︷︷ ︸
Op(1)

||uj ||2,

which goes to ∞ for ||uj ||2 �= 0 and equals 0 otherwise. Hence we get for the
j-th summand of PGL

λn
1

, denoted by PGL
λn

1 ,j
, for n → ∞

PGL
λn

1 ,j
→p

⎧⎪⎨⎪⎩
0 if ||uj ||2 = 0, β∗

j = 0,
∞ if ||uj ||2 �= 0, β∗

j = 0,
0 if β∗

j �= 0.
(32)

As in the proof of Theorem 3.5 using (24) we get (in this theorem we require
a0
n = op(1) where in Theorem 3.5 we require a0

n = Op(1))

PL0
λn

0
≤

J∑
j=1

∑
0≤r<s≤pj

w
(j,rs)
0 λn

0︸ ︷︷ ︸
≤ a0

n =op(1)

p

︸ ︷︷ ︸
=op(1)

⇒ PL0
λn

0
→p 0.

To sum up

Hn(u) = T1,n︸︷︷︸
→duTN(0,IF (β∗))

+ T2,n︸︷︷︸
→p

1
2u

T IF (β∗)u

+ PGL
λn

1︸︷︷︸
see (32)

+ T3,n︸︷︷︸
→p0

+PL0
λn

0︸︷︷︸
→p0

holds which yields (note that for j ∈ A∗ it holds that ||β∗
j ||2 �= 0, thus β∗

j �= 0,
and for j /∈ A∗ it holds that ||β∗

j ||2 = 0 , thus β∗
j = 0, by definition of the active

set A∗)

Hn(u) →d H(u) =
{
uT
A∗I11uA∗ − 2uT

A∗WA∗ , if uj = 0∀j /∈ A∗

∞, otherwise
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where W ∼ N (0, IF (β∗)) and consequently WA∗ ∼ N (0, I11). The unique
minimum of H(u) is clearly at umin = (umin

A∗ ,umin
(A∗)c) = (I−1

11 WA∗ ,0)T which
can be obtained by straightforward calculations. We conclude that there exists
an û = arg minu Hn(u) satisfying ûA∗ →d I−1

11 WA∗ and û(A∗)c →d 0 with the
same arguments provided in [16] for the non-convex Bridge estimator. Now, as
we can see above, WA∗ ∼ N (0, I11), so the asymptotic normality follows.

A.1.5. Proof of Theorem 3.11

Proof. The proof corresponds to [36] (Theorem 2.3), where a related theorem is
shown for adaptive group lasso. First, we introduce the following abbreviations,
solely for this proof

f1(β) := λ1
n

Jn∑
j=1

w
(j)
1 ||βj ||2 and f0(β) := λ0

n

Jn∑
j=1

∑
0≤r<s≤pj

w
(j,rs)
0 N(βj,r − βj,s).

Using an approximate L0-FGL estimator β̂ being a minimum of M̃pen(β) by
definition, we know that ∇M̃pen(β̂) = 0, giving us

∂Ln(β̂)
∂βA∗

n

= ∂f1(β̂)
∂βA∗

n

+ ∂f0(β̂)
∂βA∗

n

.

A Taylor expansion of the left hand side ∂Ln(β̂)
∂βA∗

n

and re-arranging gives us

∂f1(β̂)
∂βA∗

n

+ ∂f0(β̂)
∂βA∗

n

(33)

=
∂Ln(β∗

A∗
n
)

∂βA∗
n

+ ∇A∗
n

(
∂Ln(β∗

A∗
n
)

∂βA∗
n

)T

(β̂A∗
n
− β∗

A∗
n
)

+ 1
2(β̂A∗

n
− β∗

A∗
n
)T∇2

A∗
n

(
∂Ln(ξA∗

n
)

∂βA∗
n

)
(β̂A∗

n
− β∗

A∗
n
),

where ξA∗
n

is between β̂A∗
n

and β∗
A∗

n
Since the assumed regularity conditions of

[36] also hold in our case, in particular (div.Reg2)–(div.Reg4) for the following
equality, and β̂ is consistent (see Theorem 3.6 and the explanations right before
Theorem 3.11), we can follow the lines of [36], equation (4.5), giving us∣∣∣∣∣∣∣∣12(β̂A∗

n
− β∗

A∗
n
)T∇2

A∗
n

(
∂Ln(ξA∗

n
)

∂βA∗
n

)
(β̂A∗

n
− β∗

A∗
n
)
∣∣∣∣∣∣∣∣2

2
= op(1).

Similarly, we follow [36] (below equation (4.5)), where it is shown that for the

sub-differential of the (adaptive) group Lasso part it holds
∣∣∣∣∣∣∂f1(β̂)

∂βA∗
n

∣∣∣∣∣∣2
2

= op
( 1
n

)
.

For the approximation of the L0 part we also get a sub-differential. At this point
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it gets clear why the approximation of the L0 part is necessary, since otherwise
it is not differentiable and not even continuous. Since N(ξ) includes |ξ|, the
function is not differentiable in zero. Nevertheless, it is sub-differentiable with
|∂|ξ|∂ξ | ≤ 1. Consequently, it holds

∂N(ξ)
∂ξ

=
γ exp(−γ|ξ|)∂|ξ|∂ξ

(1 + exp(−γ|ξ|))2 ⇒
∣∣∣∣∣∣∣∣∂N(ξ)

∂ξ

∣∣∣∣∣∣∣∣2
2
≤ γ.

This gives us

∣∣∣∣∣
∣∣∣∣∣∂f0(β̂)
∂βA∗

n

∣∣∣∣∣
∣∣∣∣∣
2

2

=

∣∣∣∣∣∣
∣∣∣∣∣∣λ0,n

Jn∑
j=1

∑
0≤r<s≤pj

w
(j,rs)
0

∂

∂βA∗
n

N(βj,r − βj,s)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

=

∣∣∣∣∣∣
∣∣∣∣∣∣λ0,n

j0,n∑
j=1

∑
0≤r<s≤pj

w
(j,rs)
0

∂

∂βA∗
n

N(βj,r − βj,s)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

≤
∣∣∣∣∣∣∣∣12p0,n(p0,n − 1) · γ · max

j∈{1,...j0,n},r,s∈{0,...pj}
w

(j,rs)
0 λ0,n

∣∣∣∣∣∣∣∣2
2

≤
(
|a0

n|γ
1
2p0,n(p0,n − 1)

)2

= op(1)op(1) = op(1),

where the latter equalities hold since p0,n < pn and a0
npn(pn − 1) = op(1) by

the assumptions of the consistency theorem (Theorem 3.6). We further see that

∇A∗
n

(
∂Ln(β∗

A∗
n

)
∂βA∗

n

)T
= −I11,n. Putting all together we deduce by (33)

op(1) + en I
−1/2
11,n

∂Ln(β∗
A∗

n
)

∂βA∗
n

= enI
1/2
11,n(β̂A∗

n
− β∗

A∗
n
), (34)

where we know by (div.Reg2) that the Fisher information matrix is finite. It
remains to show that the second summand on the l.h.s. of (34) converges in
distribution to a standard normal. Again, since the regularity conditions of [36]
hold, we refer to their work showing that by Lindeberg-Feller

en I
−1/2
11,n

∂Ln(β∗
A∗

n
)

∂βA∗
n

→d N(0, 1)

as n → ∞. Now the claim follows.

A.1.6. Proof of Theorem 3.12

Proof. The beginning of the proof follows [5] (Proof of Lemma 3.1) but we will
transfer the proof to the more general case of βj being a sub-vector instead



4282 L. Kaufmann and M. Kateri

of a single entry. Having that, we will use the proven
√
n-consistency of the

estimator β̂ of Theorem 3.5 to show the inequality. We have that

P(A∗ �⊆ An) ≤ P(j /∈ An for some j ∈ A∗)

≤ P(β̂j = 0 and β∗
j �= 0 for some j ∈ A∗)

≤ P(||β̂j − β∗
j ||2 = ||β∗

j ||2 for some j ∈ A∗)

≤ P(||β̂j − β∗
j ||2 ≥ min

l∈A∗
||β∗

l ||2 for some j ∈ A∗)

≤ P(||β̂ − β∗||2 ≥ min
l∈A∗

||β∗
l ||2). (35)

Note that min
l∈A∗

||β∗
l ||2 is a minimum over a bounded set, since we assumed that

the true underlying structure is sparse, thus the minimum always exists. Now
our goal is to bound (35) by some ε. Since we know from Theorem 3.5 that
||β̂ − β∗||2 = Op(1/

√
n) we get that ∀ε > 0 there exists constants M, Ñ > 0

such that
P(||

√
n(β̂ − β∗)||2 > M) < ε ∀n > Ñ. (36)

Hence, for n > Ñ we have P

(
||β̂ − β∗||2 >

M√
n

)
< ε. Now, with ε > 0 and

constants M, Ñ > 0, we can always choose some N ′ > 0 such that M√
n

≤
min
l∈A∗

||β∗
l ||2 for all n ≥ N ′. Note that by definition we have that ||β∗

l ||2 �= 0 ∀ l ∈
A∗. Now we can write expression (35) as

P(||β̂ − β∗||2 ≥ min
l∈A∗

||β∗
l ||2) ≤ P

(
||β̂ − β∗||2 >

M√
n

)
< ε ∀n > max{Ñ ,N ′}.

Consequently, ∀ε > 0 we can find some N := max{Ñ ,N ′} such that

P (A∗ �⊆ An) < ε ∀n > N

which completes the proof.

A.1.7. Proof of Theorem 3.13

Proof. The idea of the proof works analogously to the proof of Theorem 3.12
replacing A∗ by A∗

n, hence showing P(A∗
n �⊆ An) ≤ P(||β̂−β∗||2 ≥ min

l∈A∗
n

||β∗
l ||2).

Having that, (36) is modified using Theorem 3.6 (here, β̂ is the minimizer from
Theorem 3.6)

P(||α−1
n (β̂ − β∗)||2 > M) < ε ∀n > Ñ.

with αn =
√

pn

n . Now, since by assumption there exists some C > 0 such that

min
l∈A∗

n

||β∗
l || ≥ C ∀n ∈ N , we can find N ′ ∈ N for which 0 < M

√
pn
n

≤ C ≤

min
l∈A∗

n

||β∗
l || ∀n ≥ N ′ holds, since

√
pn/n → 0 by the assumptions. The rest works

analogously to Theorem 3.12.
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A.2. Computational details and convergence of PIRLS

In the following, we will provide some further details on the PIRLS algorithm,
concerning the approximations used and its convergence.

A.2.1. Details on approximation used in PIRLS

Some computational details of the PIRLS algorithm are provided next, aiming at
understanding of its chances and limitations, especially in the high-dimensional
setting. The arguments of this subsection follow [26] and [25]. In the unpenalized
case (λ0 = λ1 = 0), when the goal is to minimize the negative log-likelihood
function, a common approach is to use a Taylor approximation and then solve at
iteration step k ∈ N a linearized problem, which can be solved by a Fisher scor-
ing or Newton Raphson algorithm. Since we chose the canonical link function in
our application, the Fisher scoring and Newton Raphson algorithms are equiva-
lent since the observed and the expected Fisher information matrices are equal.
Nevertheless, we will keep it more general and use in the sequel the expected
Fisher information matrix, to allow the applicability of the results for other link
functions as well. Now, since we want to minimize a penalized objective function,
the goal is to construct penalized versions of the score function spen(·) and the
Hessian Hpen(·), or the Fisher information IF,pen(·), respectively, meaning that
we need (approximations of) the derivatives of the objective function. Having
that, we just need to solve the linearized problem as explained above. To ob-
tain these penalized versions, the first step is, as in [6], to obtain a quadratic
approximation of P gen

λ (β) (see (9)) at some β̂(k) resulting in the following, for
details on the derivation we refer to [26], [25]

P gen
λ (β) ≈ P gen

λ (β̂(k)) + 1
2

(
βTAλβ + β̂(k)Aλ(β̂(k))T

)
,

where

Aλ :=
L∑

l=1

λlAl and Al := p′l(||alβ̂
(k)||Nl

) · Dl(aT
l β̂

(k))
aT
l β̂

(k)
· ala

T
l .

Since the objective function Mpen(β) to be minimized is given by the sum of the
penalty function Pλ(β) and the negative log-likelihood, the penalized versions
of the score and the Hessian, and Fisher information, respectively, based on the
approximation of P gen

λ (β) above are given by

spen(β) = s(β) −Aλβ, Hpen(β) = H(β) −Aλ,

IF,pen(β) = −E(H(β) −Aλ) = XTW̃ (k)X + Aλ,

where the latter equation, corresponding to the penalized Fisher information
matrix, can be derived by straightforward calculations. IF (β̂(k)) = XTW̃ (k)X

is the unpenalized Fisher information matrix. The matrix W̃ (k) is a diagonal
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matrix with weights, in particular W̃ (k) = diag(μ(k)(1 − μ(k))) with μ(k) =
exp(Xβ̂(k))/(1 + exp(Xβ̂(k))). Further, ỹ(k) = (W̃ (k))−1(y −μ(k)) +Xβ̂(k) is
the working response. Now, as in the unpenalized case we get at iteration step
k + 1 replacing the (penalized) Hessian by the (penalized) Fisher information

β̂(k+1) = β̂(k) − IF,pen(β̂(k))−1spen(β̂(k)).

Introducing a stepsize ν ∈ (0, 1] and executing straightforward calculations, the
iteration step can be re-written as follows, see [25]

β̂(k+1) = (1 − ν)β̂(k) + ν
(
XTW̃ (k)X + Aλ

)−1
XTW̃ (k)ỹ(k).

A.2.2. Convergence of PIRLS

Now, we can understand the limitations of the PIRLS algorithm. In particular,
as explained in [26], the convergence of PIRLS is not always ensured, it depends
on the penalized Fisher information matrix IF,pen . If we can ensure that IF,pen is
positive definite, the convergence of the algorithm, independently of the starting
point, is guaranteed if a solution exists, since in this case the optimization
problem is strictly convex. We differentiate between the following cases.

(i) n > p: in this case we know that, since by assumption the response distri-
bution belongs to the exponential dispersion family, the unpenalized Fisher
information matrix IF is positive definite, consequently the penalty ma-
trix Aλ has to be at least positive semi-definite to ensure that IF,pen is
positive definite so ensuring convergence of the algorithm

(ii) n ≤ p: analogously to (i) above, the unpenalized Fisher information matrix
IF is positive semi-definite and thus the penalty matrix Aλ has to be at
least positive definite to ensure that IF,pen is positive definite.

If we can not ensure that IF,pen is positive definite, it may happen that the al-
gorithm finds non-unique descent directions. Naturally arises thus the question,
what happens if strict convexity can not be ensured and multiple local minimiz-
ers may exist. As the name PIRLS indicates, we are using a penalized iteratively
re-weighted least-squares (IRLS) step by using a Taylor approximation of the
log-likelihood function. Hence, following the arguments of [12] (Section 4.4.1)
as well as [13] (Section 5.4.3) analyzing the IRLS algorithm, it is natural that
we can not guarantee convergence of PIRLS in general. Nevertheless, PIRLS is
applying similar steps as done in [6] for SCAD using local quadratic approxi-
mations and the Newton algorithm. Hence, when the algorithm converges, the
resulting estimator β̂ satisfies the penalized likelihood equations (with the ap-
proximations) for nonzero elements of β̂ so we have (at least) a local minimizer.
As we can see above, the convergence of PIRLS clearly depends on the cho-
sen penalty function, which is also what we expect. This can be seen in the
real data application in Section 6, where the PIRLS algorithm (with gvcm.cat)
failed in every replication for the L0 penalty, while the PIRLS algorithm worked
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in this example for L0-FGL (with our own code). As we can see above, in the
high-dimensional case, there are more restrictions that the penalty matrix has
to fulfill, which explains the problems we faced with PIRLS in our simulation
studies. Another problem that occurred in our simulation studies is that, es-
pecially in the high-dimensional case, some matrices that need to be inverted
during the iteration process may not be invertible, causing failure of the whole
algorithm. Nevertheless, in lower dimensional problems, our simulation studies
show that this approach is suitable for L0-FGL. To sum up, even though we
can not ensure that PIRLS finds a global optimum by the nature of the chosen
penalty function, we can find local minima by applying the Newton algorithm
with local quadratic approximations.

A.3. Computational details and convergence of BCD

A.3.1. Details on approximation used in BCD

For the approximation of the objective function g̃(βj ,β
(k)) used in the factor-

wise BCD approach, we provide next the details on the derivation of the func-
tion g(βj ,β

(k)), which is part of g̃(βj ,β
(k)). In general, we use the following

quadratic approximation of the L0 part at some β̂(k) (see also [25])

PL0
λ (β) ≈ PL0

λ (β̂(k)) + 1
2(βTAλβ + β̂(k),TAλβ̂

(k)), (37)

where details on the construction of Aλ can be found in [25]. For the factor-
wise approach we obtain Aλ,j , on which details can be found in Remark A.4.
We proceed as follows: since our penalty function shows a separable structure,
we obtain the solution coodinate-wise. With the help of a Taylor approximation
of the log-likelihood, we approximate the L0 penalty function PL0

λ (βj) sepa-
rately for each j ∈ {1, . . . , J} such that it is possible to follow a coordinate-wise
procedure for minimization. So, we will obtain an approximation as in (37) for
PL0
λ (βj) for each j ∈ {1, . . . , J}.

Now it remains to obtain an approximation of the log-likelihood. In particular,
we approximate the negative log-likelihood with Taylor as in [2] yielding an
approximation of −Ln(β) given by

−Ln(β) ≈ 1
2n (ỹ(k) −Xβ)TW̃ (k)(ỹ(k) −Xβ). (38)

Here, W̃ (k) is a diagonal matrix of weights, see below for details.

Remark A.3 (On the factor of 1
2n in the log-likelihood). In the literature, the

log-likelihood, or the squared difference in the linear model case respectively, is
sometimes divided by the factor 1

2n , as for example in [2] and [11]. Since it does
not change the solution of the minimum of the log-likelihood it is a convenient
choice because it stabilizes the algorithm and it ensures that the impact of the
tuning parameter λ does not depend on the sample size n. Note that one can
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also neglect this factor but in this case one has to be careful when comparing two
solutions for different tuning parameters and different sample sizes respectively,
but basically it works the same way. We will use this factor in the sections about
computation with block coordinate descent (BCD) and keep in mind that it is
not used by [25] in PIRLS.

For the matrix with weights, already introduced in Appendix A.2, it holds
W̃ (k) = diag(wi) ∈ R

n×n, wi = πi(1−πi) for i = 1, . . . , n where πi= exp(ηi)/(1+
exp(ηi)) and ηi = (Xβ̂(k))i thus πi is evaluated at the current iteration k.
Furthermore, the working response ỹ(k), also introduced in Appendix A.2, is
given by ỹ(k) = Xβ̂(k) +

(
W̃ (k)

)−1
(y − π) where, π = (π1, . . . , πn) is evalu-

ated at β̂(k). For each j ∈ {1, . . . , J} we get the following approximation of the
penalty term in some iteration step β̂

(k)
j , analogously to (37)

PL0
λ (βj) ≈ PL0

λ (β̂(k)
j ) + 1

2(βT
j Aλ,jβj + (β̂(k)

j )TAλ,jβ̂
(k)
j ). (39)

Note that, in particular one has to write A
(k)
λ,j instead of Aλ,j since this quantity

depends on the iteration step k, but we will leave the upper index out for
simplicity.

Remark A.4. [Details on Aλ,j for L0] For factor j ∈ {1, . . . , J} with pj +1
levels (including the reference category), the components of the approximation
look as follows where we assume observing a nominal factor. For an ordinal one
the value for |Lj | will change as we just compare adjacent categories for ordinal
factors. Let Lj be the set containing the row numbers of the matrix A with
rows al that correspond to the (pairwise) differences for factor j. We have with
al,j (l ∈ {1, . . . , |Lj |}) being the columns of some matrix Aj that produces the
differences of the entries in β

(k)
j that

|Lj | = pj +
(
pj
2

)
= pj(pj − 1)

2 (number of differences of entries in β
(k)
j )

Aλ,j = λ0

|Lj |∑
l=1

p′l(||aT
l,jβ̂

(k)
j ||0)

Dl(aT
l,jβ̂

(k)
j )

aT
l,jβ̂

(k)
j

al,ja
T
l,j

= λ0

|Lj |∑
l=1

(
1

1 + exp(−γ|aT
l,jβ̂

(k)
j |)

)(
1 − 1

1 + exp(−γ|aT
l,jβ̂

(k)
j |)

)

·
2γal,ja

T
l,j√

(aT
l,jβ̂

(k)
j )2 + c

(40)

We have that the columns al,j ∈ R
pj×1 so they produce the differences of the

coefficients and since they also include a columns in the shape of
(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1), they also build the differences of
each coefficient with reference category zero. It holds that Aλ,j ∈ R

pj×pj and
Aλ,j is symmetric. Aλ,j depends on β̂

(k)
j at iteration step k.
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So the following function g(βj ,β
(k)) will be the factor-wise approximation of

the log-likelihood and L0 penalty part that we use in the BCD procedure

g(βj , β̂
(k)) := 1

2n (ỹ(k) −Xβ)TW̃ (k)(ỹ(k) −Xβ) + PL0
λ (β̂(k)

j )

+ 1
2(βT

j Aλ,jβj + β
(k),T
j Aλ,jβ̂

(k)
j ). (41)

A.3.2. Convergence of BCD

Recall that, proceeding factor-wise, we use a quasi Newton method for mini-
mization (BFGS method). In general, the theory for the BFGS method ensuring
convergence is developed for twice continuously differentiable, convex functions
[23]. It is generalized in [10] for non-smooth functions under reasonable condi-
tions, including analyses on the euclidean norm. This exactly suits our applica-
tion, since the part of the objective function g̃ (14) to be minimized which is
not differentiable in 0 is the group lasso part being the euclidean norm of the
corresponding factor. Consequently, by [10], the BFGS method is applicable for
our function to be optimized g̃, since it is the sum over a quadratic function g
(including the quadratic approximations of the L0 part and the log-likelihood),
which is clearly twice continuous differentiable and convex and the euclidean
norm, which is convex, but not differentiable in 0. To sum up, following [10],
we can ensure convergence of the quasi Newton algorithm in the blockwise up-
dates. We will see in our simulation studies that this approach is convenient for
high-dimensional problems. There also exist low-dimensional problems where
the BCD approach is competetive to PIRLS, see the real data application in
Section 6. Further analyses on the behavior of quasi Newton methods applied
to non-smooth (and not necessarily convex) functions can be found in [17].

A.4. Details on simulation study

A.4.1. Details on tuning

We used cross-validation (CV) for all penalties to determine the tuning param-
eters λ0 and λ = (λ0, λ1) for the L0-FGL approach, respectively. In particular,
we used k = 5 fold CV, where we used λlower = (λlower,1, λlower,0) = (0, 0) and
for λupper we chose a value which excludes all variables from the model. Note
that, as for the lower values, for L0-FGL we need two upper values for lambda,
hence λupper = (λupper,1, λupper,0). So for the case of two tuning parameters, we
chose them in a way such that for λupper = (λupper,1, λupper,0) all parameters
are excluded from the model where we took λupper,1 = λupper,0 to avoid that we
set the focus on selection or fusion. Between these two values, the CV procedure
fitted the model for nλ = 10 different values of λ0 and λ1 in highdim design
and nλ = 30 different values of λ0 and λ1 in B8 design. For the CV of L0 with
PIRLS, we used the stored functions in gvcm.cat. As explained at the beginning
of this work (Remark 2.1), for the cross validation procedure for L0-FGL, which
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includes two tuning parameters, we considered two approaches: a stepwise and
an iterative procedure. In highdim, we used the stepwise procedure for the L0-
FGL approaches, while in B8 we used the iterative procedure for the L0-FGL
approaches. The parameters for the approximation of the L0 part, which is used
in all of our considered methods, were chosen equally in all approaches c = 10−5

and γ = 10 (recommended in [25]). Even if L0-FGL with BCD do not require
a stepsize, we used a stepsize of ν = 0.05 for all considered approaches. This is
done to stabilize the algorithm and to obtain comparable results.

A.5. Details on real data application

For tuning of L0-FGL (L0-FGL PIRLS, L0-FGL PIRLS iterative, L0-FGL BCD)
we used a total number of nλ = 10 values for λ1 and λ0. Since we divide the
log-likelihood in the BCD computing approach by 2n, we use different tuning
ranges for L0-FGL PIRLS and L0-FGL PIRLS iterative as for L0-FGL BCD, in
particular we used λ0,lower = λ1,lower = 0 for L0-FGL BCD, L0-FGL PIRLS and
L0-FGL PIRLS iterative and as maximum values for L0-FGL PIRLS and L0-
FGL PIRLS iterative we chose λ0,upper = λ1,upper = 1 and for the corresponding
BCD approach λ0,upper = λ1,upper = 0.01.
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