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Abstract: Inference for functional linear models in the presence of het-
eroscedastic errors has received insufficient attention given its practical im-
portance; in fact, even a central limit theorem has not been studied in this
case. At issue, conditional mean estimates have complicated sampling dis-
tributions due to the infinite dimensional regressors, where truncation bias
and scaling issues are compounded by non-constant variance under het-
eroscedasticity. As a foundation for distributional inference, we establish
a central limit theorem for the estimated conditional mean under general
dependent errors, and subsequently we develop a paired bootstrap method
to provide better approximations of sampling distributions. The proposed
paired bootstrap does not follow the standard bootstrap algorithm for fi-
nite dimensional regressors, as this version fails outside of a narrow window
for implementation with functional regressors. The reason owes to a bias
with functional regressors in a naive bootstrap construction. Our bootstrap
proposal incorporates debiasing and thereby attains much broader validity
and flexibility with truncation parameters for inference under heteroscedas-
ticity; even when the naive approach may be valid, the proposed bootstrap
method performs better numerically. The bootstrap is applied to construct
confidence intervals for centered projections and for conducting hypothesis
tests for the multiple conditional means. Our theoretical results on boot-
strap consistency are demonstrated through simulation studies and also
illustrated with a real data example.
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1. Introduction

In classical linear models, bootstrap methods have been developed for several
decades under either homoscedastic or heteroscedastic error assumptions. Resid-
ual and paired bootstrap methods were originally studied by [17] for approxi-
mating the distribution of the least square estimator in multiple linear regression
models. These bootstraps are intended, respectively, for handling homoscedastic
or heteroscedastic error cases. Both bootstraps have been investigated in other
contexts as well, such as nonparametric [22] or high-dimensional [16] regression
problems. In a functional linear regression model (FLRM), bootstrap inference
is likewise valuable but also complicated due to the infinite dimensionality of
the underlying function space. A main issue with functional regressors is that a
truncation bias arises in estimators of the conditional mean, due to the infinite
dimensional regressors and slope functions involved, which imposes challenges
for even central limit theorems [11, 44]. Existing works on both the central limit
theorem (CLT) and (residual/wild) bootstrap for functional linear regression
models (FLRMs) have focused exclusively on homogeneous error variance mod-
els [19, 44], while either avoiding or accommodating bias issues. In fact, beyond
homoscedasticity, more stringent conditions of independence between regressors
and errors are also commonly imposed in FLRM literature [4, 5, 21] and espe-
cially for hypothesis testing [7, 10, 24, 32, 33]. However, heteroscedastic error
variances are commonly observed in practice.

For illustration, Figure 1 shows the estimated standard deviations of residu-
als from a FLRM fit to a Canadian weather dataset (cf. Section 6) over different
geographical regions. Each regressor curve represents averaged daily tempera-
tures measured at a different location contained in one of the four regions in
Canada: Atlantic, Continental, Pacific, and Arctic regions, where the associated
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Fig 1. Estimated standard deviations for each region over different truncation levels used in
estimation.

response is the total annual precipitation on the log scale. As variances appear to
differ across regions, it seems natural here to avoid homoscedastic error models.

To the best of our knowledge, heteroscedastic error conditions have not re-
ceived much formal consideration in the FLRM literature, with perhaps the
exception of work on weighted least squares by [15], which does not discuss
distributional inference. For example, while a CLT for projection estimates is
again available for FLRMs in the homoscedastic case [11, 26, 44], a counterpart
foundational result does not yet exist under heteroscedasticity. One might fur-
ther anticipate that previous bootstrap theory under homoscedasticity does not
directly apply for the inference in FLRMs under heteroscedasticity. We show
this to be the case, which necessitates our new development of a CLT and
resampling theorems. As in the homoscedastic setting, resampling approxima-
tions in FLRMs are valuable under heteroscedasticity for capturing complicated
sampling distributions of mean estimators, as current bootstraps from the ho-
moscedastic case become invalid [19, 27, 44].

To bootstrap FLRMs in the presence of heteroscedastic errors, a paired boot-
strap method can be considered, similar to the paired bootstrap for usual mul-
tiple linear regression models [17]. Paired bootstrap has indeed been applied for
different functional regression models [35, 38, 42], though without any theoreti-
cal development or justification. This latter point is important, because we show
here that, surprisingly, a naive/standard implementation of paired bootstrap,
adopted directly from the usual multiple regression case, can fail to provide
valid inference for mean estimates under FLRMs if the truncation parameters
are not set appropriately in a certain narrow and restricted way, in contrast to
the case of finite-dimensional multiple linear regression [17]. In fact, as sample
sizes increase the distance between naive paired bootstrap and true sampling
distributions may not converge to zero as typically expected, but rather to a
random number, unless associated tuning parameters are set in a specific man-
ner. The problem arises from a construction bias in the bootstrap world with
FLRMs which relates to, but is a separate issue from, the truncation bias inher-
ent to the functional principal component regression estimator β̂hn of the slope
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(cf. Section 2). Such failure of bootstrap due to bias issues has been observed
in other bootstrap works with complicated regressions, such as nonparametric
[22, 23, 47], quantile [41], penalized linear [6, 12, 13], and high-dimensional lin-
ear [16] regression models, though the approaches of correcting bootstrap bias
can differ. In some problems, the extent of the bias in paired bootstrap is such
that this bootstrap must be discarded (cf. [22, 23]). This motivates our new
development of paired bootstrap for FLRMs with heteroscedastic errors, which
remedies the bias problem by modifying a bootstrap estimating equation to
define a bootstrap estimator.

Under a general heteroscedastic error assumption, we study asymptotic in-
ference in FLRMs with scalar response. In particular, we first establish a CLT
for the estimator of the conditional mean μ(X0) ≡ α+ 〈β,X0〉 with X0 being a
(random) new regressor function. This provides a foundation for our bootstrap
results and, more broadly, supports inference for FLRMs under dependent er-
rors. Our main bootstrap result is to develop a modified paired bootstrap to
approximate the sampling distribution of mean estimators based on the func-
tional principal component regression (FPCR) estimator β̂hn of the slope func-
tion β [4, 8, 11, 19, 21, 26, 27, 44], where hn denotes a truncation level involved
in the estimation procedure. For flexibility and better practical performance,
the modified paired bootstrap incorporates an important debiasing step. In het-
eroscedastic cases, our numerical studies suggest that the paired bootstrap per-
forms better than the residual bootstrap and normal approximation, while also
maintaining good coverage in homoscedastic cases. The proposed paired boot-
strap also numerically outperforms the naive version even when the latter is
appropriately tuned.

As an application of the paired bootstrap method, we also treat a testing
problem about evaluating the constancy of conditional means over a collection
of target functional regressors; this assesses a null hypothesis that the slope func-
tion has no effect on (or, in a sense, is orthogonal to) some specified regressors.
In this problem, the bootstrap combines several simultaneous estimation steps
into one test, which would otherwise be distributionally intractable through nor-
mal approximations. The bootstrap also has the advantage of enforcing the null
hypothesis in re-creating a reference distribution for testing, which can be useful
for controlling size and boosting power. Our development in this testing prob-
lem is distinguishable from the previous works on hypothesis testing in FLRMs
[7, 10, 24, 32, 33]: the latter tests are limited to independent error scenarios and
often restrict claims to global nullity β = 0 based on certain basis functions. In
contrast, our testing method also allows hypotheses about β to be defined with
more arbitrarily specified functional regressors along with dependence between
regressors and errors. This is useful in practice for assessing how projections of
β (or conditional means) may differ as predictor levels are varied, which may
not be addressable by a global test of β.

Section 2 provides background on FLRMs and the paired bootstrap method
under heteroscedasticity. Section 3 presents the main distributional results re-
garding the consistency of the paired bootstrap method and the failure of the
naive bootstrap. With suitable scaling, a general CLT is also established for con-
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ditional mean estimators. We then give a bootstrap procedure in Section 4 for
hypothesis testing of multiple conditional means. Numerical results are provided
in Section 5, while Section 6 illustrates the paired bootstrap method with a real
dataset having potential heteroscedasticity Concluding remarks are offered in
Section 7. Some proofs for the main results are given in Appendix, while fur-
ther details of the proofs and extended numerical results can be found in the
supplement [45]. An R package [43] is provided to construct confidence intervals
for FLRM response means and test multiple projections of β based on paired
bootstrap.

2. Description of FLRMs and bootstrap

We start with the description of functional linear regression models (FLRMs)
under heteroscedastic error variances in Section 2.1, and the paired bootstrap
for estimated conditional means appears in Section 2.2.

2.1. FLRMs under heteroscedasticity

Consider the following FLRM

Y = α + 〈β,X〉 + ε, (1)

where Y is a scalar-valued response; X is a regressor function taking values in
an infinite-dimensional separable Hilbert space H with inner product 〈·, ·〉; α is
the intercept; and β ∈ H is the slope function. The error term ε has E[ε|X] = 0
but its distribution can otherwise depend on X; for example, heterogeneous
conditional variances of the error ε given the regressor X is allowed, that is,
σ2(X) ≡ E[ε2|X] may depend on the regressor X.

Define the tensor product x⊗ y : H×H → H between two elements x, y ∈ H

as a bounded linear operator z �→ (x ⊗ y)(z) = 〈z, x〉y for z ∈ H and denote
x⊗2 ≡ x⊗ x for x ∈ H. Under the assumption E[‖X‖2] < ∞, where ‖ · ‖ is the
induced norm in H, the covariance operator Γ ≡ E[(X−E[X])⊗2] is self-adjoint,
non-negative definite, and Hilbert–Schmidt, and hence, compact (cf. [25]). Then,
Γ admits the following spectral decomposition

Γ =
∞∑
j=1

γjπj

with πj ≡ φj ⊗φj , where γj and φj are the j-th eigenvalue and eigenfunction of
Γ for j = 1, 2, . . . . Here, the set {φj} of eigenfunctions is an orthonormal system
of H and {γj} is a non-negative non-increasing sequence with γj → 0 as j → ∞.
The functional version of normal equations can be written as

Δ = Γβ (2)

from the model (1), where Δ ≡ E[(Y −E[Y ])(X −E[X])] is the cross-covariance
function between X and Y . Under the model identifiability assumption ker Γ =
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{0} [8, 9, 11] (see Condition (A1) of Section 3.1), the slope function is then
given as

β = Γ−1Δ.

The functional principal component regression (FPCR) estimator of β has
been widely studied in the literature [4, 8, 11, 21]. To define the estimator,
we suppose that the data pairs {(Xi, Yi)}ni=1 are independently and identically
distributed under the FLRM (1), that is,

Yi = α + 〈β,Xi〉 + εi, i = 1, . . . , n. (3)

The sample versions of Γ and Δ are defined as Γ̂n ≡ n−1∑n
i=1(Xi − X̄)⊗2

and Δ̂n ≡ n−1∑n
i=1(Yi − Ȳ )(Xi − X̄), where X̄ ≡ n−1∑n

i=1 Xi and Ȳ ≡
n−1∑n

i=1 Yi. The sample covariance operator Γ̂n also admits spectral decom-
position Γ̂n =

∑n
j=1 γ̂j π̂j with π̂j ≡ φ̂j ⊗ φ̂j , where γ̂j ≥ 0 is the j-th sample

eigenvalue and φ̂j ∈ H is the corresponding eigenfunction. By regularizing the
inversion of Γ̂n, the FPCR estimator of β is defined as

β̂hn ≡ Γ̂−1
hn

Δ̂n, (4)

where Γ̂−1
hn

≡
∑hn

j=1 γ̂
−1
j π̂j is a finite approximation of Γ−1 ≡

∑∞
j=1 γ

−1
j πj , and

the intercept is estimated by α̂hn ≡ Ȳ − 〈β̂hn , X̄〉. Here, hn is the number of
eigenpairs used in estimation, which represents a truncation level [4, 8, 11, 21].

2.2. Paired bootstrap procedure

For FLRMs with homoscedastic errors, the residual bootstrap is natural [19, 44],
where this bootstrap re-creates data, e.g., Y ∗

i = α̂hn + 〈β̂hn , Xi〉 + ε∗i , through
bootstrap error terms ε∗ as independent draws from an appropriate set of resid-
uals. However, under heteroscedastic errors, a different bootstrap approach is
necessary, akin to the regression case with Euclidean vectors [17]. Similar to
that setting for capturing response variances that may differ conditionally over
regressors, we consider a paired bootstrap (PB) method for inference in FLRMs.
To the best of our knowledge, the theory for PB in FLRMs has been studied
only once by [18], but their application does not consider slope functions and
the errors therein are homoscedastic. For estimating conditional means or pro-
jections under the FLRM with heteroscedastic errors, we explain next how the
PB generally requires careful consideration in order to be valid.

To implement the PB, we define bootstrap data pairs {(X∗
i , Y

∗
i )}ni=1 by uni-

form draws from the original data {(Xi, Yi)}ni=1 with replacement. The boot-
strap counterparts of sample moments are then given as Γ̂∗

n ≡ n−1∑n
i=1(X∗

i −
X̄∗)⊗2 and Δ̂∗

n ≡ n−1∑n
i=1(Y ∗

i − Ȳ ∗)(X∗
i − X̄∗) where X̄∗ ≡ n−1∑n

i=1 X
∗
i

and Ȳ ∗ ≡ n−1∑n
i=1 Y

∗
i . From the spectral decomposition of Γ̂∗

n, we define a
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regularized inverse of Γ̂∗
n with truncation level hn as

(Γ̂∗
hn

)−1 ≡
hn∑
j=1

(γ̂∗
j )−1(φ̂∗

j ⊗ φ̂∗
j ),

where γ̂∗
j and φ̂∗

j are the j-th eigenvalue and the corresponding eigenfunction of
Γ̂∗
n. This represents a direct bootstrap analog of Γ̂−1

hn
in (4).

An initial, though naive, bootstrap version β̂∗
hn,naive

of the FPCR estimator
β̂hn can be found as

β̂∗
hn,naive ≡ (Γ̂∗

hn
)−1Δ̂∗

n (5)

by directly imitating the definition of β̂hn in (4) with bootstrap data. The va-
lidity of this naive bootstrap, though, requires caution. The issue is that, in the
bootstrap world, we require a bootstrap version β∗ of the true parameter β and,
for flexibility, one might consider a FPCR estimator β∗ ≡ β̂gn ≡ Γ̂−1

gn Δ̂n deter-
mined by a general truncation level gn in (4). It turns out that the naive boot-
strap estimator β̂∗

hn,naive
must restrictively use a bootstrap parameter β∗ ≡ β̂gn

defined by gn = hn due to a construction bias in the naive bootstrap. Unless
the bootstrap parameter β∗ is specifically chosen as β̂hn , which imposes limita-
tions for implementation and numerical performance, the naive bootstrap will
be provably biased with an adverse effect on inference (cf. Proposition 1).

In order to define a more versatile bootstrap version β̂∗
hn

of the FPCR es-
timator β̂hn , let β̂gn again denote a FPCR estimator, similar to β̂hn from (4)
but based on a truncation gn rather than hn, in order to play the role β∗ of
the true slope function β in the bootstrap world. The level of truncation gn
used in a bootstrap version β∗ = β̂gn of β becomes a consideration because
β is infinite dimensional while any FPCR estimator β̂gn is finite-dimensional.
While possible to choose gn = hn, more flexibility with β∗ = β̂gn for gn smaller
than hn can later provide better PB approximations. For any estimator β̂gn

version used to mimic β, the PB analog β̂∗
hn

of the original-data estimator β̂hn

needs to be appropriately defined to avoid a construction bias in resampling.
To correct this bias, we adapt a modification of [39] for defining bootstrap M-
estimators through adjusted bootstrap estimating equations; see also [29, 31] or
[30, Section 4.3].

To define a modified bootstrap version β̂∗
hn

of the FPCR estimator β̂hn , we
first observe that the slope function β = Γ−1Δ can be prescribed as the solution
to the estimating equation E[Ψi(β;μX , μY )] = 0, where

Ψi(β;μX , μY ) ≡ (Xi − μX)(Yi − μY ) − (Xi − μX)⊗2β (6)

is an estimating function with μX ≡ E[X] and μY ≡ E[Y ]. A direct bootstrap
counterpart of this estimating function is given by, say,

Ψ̌∗
i (β; X̄, Ȳ ) ≡ (X∗

i − X̄)(Y ∗
i − Ȳ ) − (X∗

i − X̄)⊗2β,



Bootstrap in FLRM under heteroscedasticity 3597

where X̄ ≡ n−1∑n
i=1 Xi and Ȳ ≡ n−1∑n

i=1 Yi. A key observation is that, while
β = Γ−1Δ is the solution to the equation E[Ψi(β;μX , μY )] = 0, an estimator
β̂gn ≡ Γ̂−1

gn Δ̂n, playing the role of β in the bootstrap world, will not generally
be a solution to the equation

Δ̂n − Γ̂nβ ≡ E∗[Ψ̌∗
i (β; X̄, Ȳ )] = 0

due to the finite dimensionality of β̂gn , where E∗[·] ≡ E[·|Dn] denotes the boot-
strap expectation conditional on the data Dn ≡ {(Xi, Yi)}ni=1. In other words,
Γ̂−1
gn does not generally match the inverse of Γ̂n ≡ n−1∑n

i=1(Xi − X̄)⊗2 for any
finite truncation gn. However, by starting from an estimator β̂gn ≡ Γ̂−1

gn Δ̂n, we
may adjust a bootstrap-level estimating function to be

Ψ∗
i (β; X̄, Ȳ ) ≡ Ψ̌∗

i (β; X̄, Ȳ ) − E∗[Ψ̌∗
i (β̂gn ; X̄, Ȳ )]

= (X∗
i − X̄)(Y ∗

i − Ȳ ) − (X∗
i − X̄)⊗2β − Ûn,gn ,

by subtracting the bootstrap expectation

E∗[Ψ̌∗
i (β̂gn ; X̄, Ȳ )] = Ûn,gn ≡ 1

n

n∑
i=1

(Xi − X̄)(ε̂i,gn − ¯̂εgn), (7)

where the latter has a closed form expression based on the cross covariance be-
tween the regressors {Xi}ni=1 and the residuals {ε̂i,gn}ni=1, ε̂i,gn ≡ Yi−〈β̂gn , Xi〉
arising from the estimator β̂gn , with ¯̂εgn ≡ n−1∑n

i=1 ε̂i,gn above. These cor-
rected bootstrap estimating functions have bootstrap expectation of

E∗[Ψ∗
i (β; X̄, Ȳ )] = Δ̂n − Γ̂nβ − Ûn,gn ,

which equals zero at β = β̂gn in the bootstrap world. Consequently, β̂gn as the
solution to E∗[Ψ∗

i (β; X̄, Ȳ )] = 0 mimics true slope function β = Γ−1Δ solving
E[Ψi(β;μX , μY )] = 0.

By replacing X̄ and Ȳ in Ψ∗
i (β; X̄, Ȳ ) with bootstrap data counterparts X̄∗ ≡

n−1∑n
i=1 X

∗
i and Ȳ ∗ ≡ n−1∑n

i=1 Y
∗
i (in analog to the original estimator β̂hn

defined by using X̄ and Ȳ in place of μX and μY ), a PB version β̂∗
hn

of the
FPCR estimator β̂hn is defined by the solution of the empirical bootstrap-data
estimating equation

0 = 1
n

n∑
i=1

Ψ∗
i (β; X̄∗, Ȳ ∗) = Δ̂∗

n − Γ̂∗
nβ − Ûn,gn ,

upon regularization of (Γ̂∗
n)−1, where Γ̂∗

n ≡ n−1∑n
i=1(X∗

i − X̄∗)⊗2 and Δ̂∗
n ≡

n−1∑n
i=1(Y ∗

i − Ȳ ∗)(X∗
i − X̄∗) are averages from the bootstrap sample. Hence,

the PB re-creation of the FPCR estimator is then given by

β̂∗
hn

≡ (Γ̂∗
hn

)−1(Δ̂∗
n − Ûn,gn), (8)
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and the PB estimator of the intercept is then given by α̂∗
hn

≡ Ȳ ∗−〈β̂∗
hn

, X̄∗〉 in
the same manner as for the original intercept estimator α̂hn . The construction in
(8) matches how the original estimator β̂hn = Γ̂−1

hn
Δ̂n from (4) is the solution of

0 = n−1∑n
i=1 Ψi(β; X̄, Ȳ ) = Δ̂n−Γ̂nβ, based on (6), upon similar regularization

with truncation level hn. The combination (β̂∗
hn

, β̂gn) in PB then serves to mimic
(β̂hn , β) for inference about the FLRM.

3. Distributional results under heteroscedasticity

Section 3.1 describes a CLT for estimated conditional means μ̂hn(X0) ≡ α̂hn +
〈β̂hn , X0〉 under the FLRM with heteroscedasticity. While of potential inter-
est in its own right, the CLT helps to develop the appropriate scaling needed
for statistics and to also frame some baseline assumptions that are useful for
bootstrap. Section 3.2 establishes the consistency of PB for distributional ap-
proximations. For comparison, Section 3.3 then provides a formal result to show
that the naive implementation of bootstrap is generally invalid without restric-
tive conditions on truncation parameters. We close this section by discussing
some theoretical aspects of our bootstrap results in Section 3.4.

3.1. CLT for the conditional means under heteroscedasticity

Let X0 denote a new regressor under the model, which is independent of data
{(Xi, Yi)}ni=1 and identically distributed as X1. For an observed or given value
of X0 (i.e., conditional on X0), we consider the sampling distribution of the
difference √

n

shn(X0)
{μ̂hn(X0) − μ(X0)}, (9)

between estimated μ̂hn(X0) ≡ α̂hn + 〈β̂hn , X0〉 and true μ(X0) ≡ α + 〈β,X0〉
conditional means. Above shn(X0) denotes a scaling factor, based on Γ−1

hn
≡∑hn

j=1 γ
−1
j πj , which is defined as

shn(x) ≡ 〈ΛΓ−1
hn

(x− E[X]),Γ−1
hn

(x− E[X])〉 = ‖Λ1/2Γ−1
hn

(x− E[X])‖2 (10)

for x ∈ H, and involves the covariance operator Λ ≡ E[(Xε)⊗2] of Xε, where
T 1/2 denotes a self-adjoint square-root operator of a non-negative definite and
bounded linear operator T on H such that (T 1/2)2 = T 1/2T 1/2 = T . A sample
counterpart of (10) is given as

ŝhn(x) ≡ ‖Λ̂1/2
n,kn

Γ̂−1
hn

(x− X̄)‖2, x ∈ H, (11)

where Λ̂n,kn ≡ n−1∑n
i=1

(
Xiε̂i,kn − n−1∑n

i=1 Xiε̂i,kn

)⊗2 is an estimate of Λ
based on residuals ε̂i,kn ≡ Yi−μ̂kn(Xi); for generality, here kn represents another
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tuning parameter used only to compute residuals {ε̂i,kn}ni=1 for estimated scaling
ŝhn(x) in (11).

Under either scaling factors shn(X0) or ŝhn(X0), we next show a CLT for
the conditional mean μ(X0) ≡ α + 〈β,X0〉 in Theorem 1, where the limiting
distribution is standard normal under the scaling. For describing the CLT, some
technical assumptions are listed.

(A1) ker Γ = {0}, where ker Γ ≡ {x ∈ H : Γx = 0};
(A2) supj∈N γ−2

j E[〈X − E[X], φj〉4] < ∞;
(A3) γj is a convex function of j ≥ J (which implies that γj−γj+1 is decreasing)

for some integer J ≥ 1;
(A4) supj∈N γjj log j < ∞;
(A5) n−1∑hn

j=1 δ
−2
j → 0 as n → ∞;

(A6) hnshn(X)−1 = OP(1);
(A7) there exists δ ∈ (0, 2] such that supj∈N λ

−(2+δ)/2
j E[|〈Xε,ψj〉|]2+δ < ∞,

where (λj , ψj) is the j-th eigenvalue–eigenfunction pair of Λ;
(A8) supj∈N γ−1

j ‖Λ1/2φj‖2 < ∞.

Condition (A1) is necessary for the model identifiability [8, 9, 11]. Condi-
tions (A2) and (A7) ensure that X and Xε respectively have finite fourth and
(2 + δ)-th moments. Conditions (A3)-(A5) are technical assumptions related to
the decay behaviors of eigenvalues {γj} and eigengaps {δj}, where for (A4) we
define δ1 ≡ γ1 − γ2 and δj ≡ min{γj − γj+1, γj−1 − γj} for j ≥ 2; such condi-
tions are weak and are generally used to simplify proofs involving perturbation
theory for functional data [44]. Condition (A6) provides a mild lower bound for
scaling shn(X0), where a similar assumption is needed in the homoscedastic set-
ting [44]. Condition (A8) is a technical condition that balances the eignedecay
of Γ and the decay rate of Λ in terms of {φj}∞j=1. When Condition (A2) holds,
sufficient conditions for (A8) can also be developed by assuming moment struc-
tures on the error and regressors; for example, Condition (A8) follows if either
E[ε4] < ∞ or σ2(X) ≡ E[ε2|X] =

∑∞
j=1 ρ

2
j 〈X,φj〉2 for some {ρj}∞j=1 such that∑∞

j=1 γjρ
2
j < ∞. The statement of the CLT also involves the following condition,

Condition B(u): supj∈N j−1m(j, u)〈β, φj〉2 < ∞,

depending on a generic constant u > 0 and function m(j, u) of integer j ≥ 1
defined as

m(j, u) = max
{
ju,

j∑
l=1

δ−2
l

}
. (12)

Condition B(u) is generally mild and helps to remove bias in the limiting distri-
bution of the statistics from (9) by balancing the decay rates of eigenvalues and
the Fourier coefficients of the slope function β, as described further in Remark 3.

A CLT for the conditional mean in FLRMs under heteroscedasticity is a new
development in the FLRM literature, as given in the following theorem.
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Theorem 1. Suppose that Conditions (A1)-(A7) hold along with

h−1
n + n−1/2h7/2

n (log hn)3 → 0 as n → ∞.

We further suppose n = O(m(hn, u)) along with Condition B(u) for some u > 7.
Then, as n → ∞, we have the following:

(i)

sup
y∈R

∣∣∣∣P
(√

n

shn(X0)
{μ̂hn(X0) − μ(X0)} ≤ y

∣∣∣X0

)
− Φ(y)

∣∣∣∣ P−→ 0,

where Φ denotes the standard normal distribution function;
(ii) additionally, if ‖β̂kn − β‖ P−→ 0 and Condition (A8) hold, ŝhn(X0) and

shn(X0) are asymptotically equivalent in that, for any η > 0,

P
(∣∣∣∣ ŝhn(X0)

shn(X0)
− 1

∣∣∣∣ > η
∣∣∣X0

)
P−→ 0,

and (i) also holds upon replacing shn(X0) by the sample version ŝhn(X0).

Theorem 1 generalizes the CLT for projections in FLRMs [11, 44] from the
homoscedastic case to broader heteroscedastic cases. When the errors are ho-
moscedastic, i.e., E[ε2|X] ≡ σ2

ε ∈ (0,∞), then the covariance operator of εX
becomes Λ = σ2

εΓ and the scaling in (11) reduces to shn(X0) = σ2
εthn(X0),

where thn(x) ≡ ‖Γ−1/2
hn

x‖2 for x ∈ H. In this case, Theorem 1 matches the CLT
under homoscedasticity [11, 44].

From Theorem 1, estimated conditional mean μ̂hn(X0) ≡ α̂hn + 〈β̂hn , X0〉
with data-based scaling ŝhn(X0) are asymptotically pivotal and, hence, a nor-
mal approximation may be applied to calibrate inference about true conditional
mean μ(X0) ≡ α + 〈β,X0〉. However, resampling becomes useful for improv-
ing distributional approximations in FLRMs under heteroscedasticity, due to
the complicated impacts of truncation hn in finite samples. The next section
establishes the validity of the proposed PB method.

Remark 1. A sufficient condition for the consistency of β̂kn for β in Theorem 1
(ii) is that k−1

n +n−1/2k2
n log kn → 0 as n → ∞; see also Theorem S1, [45]. The-

orem 1(ii) may be further generalized by replacing β̂kn in the estimated scaling
ŝhn(X0) with a general consistent estimator of β.

Remark 2. Under conditions on the error structure, the rate on the truncation
level hn can be weakened to a lesser rate sufficient for obtaining a CLT under
homoscedasticity. For instance, the rate h−1

n + n−1/2h
5/2
n (log hn)2 → 0 is suffi-

cient for Theorem 1 if either E[ε4] < ∞ or E[ε2|X] =
∑∞

j=1 ρ
2
j 〈X,φj〉2 for some

{ρj}∞j=1 with
∑∞

j=1 γjρ
2
j < ∞. This rate matches ones assumed for the CLT

under homoscedasticity provided in [11, 44]. See also Remark S1 in [45].

Remark 3. In Theorem 1 and Theorem 2 to follow, the Conditions n = O(m
(hn, u)) (or n = O(m(gn, u))) and B(u) are necessary only for removing bias in
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limit distribution of
√

n/shn(X0){μ̂hn(X0)−μ(X0)} due to truncation hn; that
is, without these conditions, the asymptotic results would hold upon replacing
μ(X0) ≡ α + 〈β,X0〉 with a biased centering μhn(X0) ≡ α + 〈Πhnβ,X0〉, where
Πhn denotes the projection on the first hn eigenfunctions {φj}hn

j=1 of Γ and
Πhnβ ≡

∑hn

j=1〈β, φj〉φj is a truncated version of the slope β ≡
∑∞

j=1〈β, φj〉φj.
Such conditions are common for balancing the decay rates of eigenvalues and the
Fourier coefficients of the slope function in the removal of bias 〈(Πhn −I)β,X0〉
from truncation; see [11, 44] for further discussion.

Remark 4. Related to the previous remark, if we additionally assume polyno-
mial decay rates as δj ≡ γj − γj+1  j−a and |〈β, φj〉|  j−b for a ∈ (2,∞)
and b ∈ (5/2,∞) (though Condition B(u) with u > 7 implies 〈β, φj〉 = o(j−3)),
our balancing conditions along with rate of the tuning parameters can be reduced
to the condition hn  n1/v for some v ∈ (max{7, 2a + 1}, a + 2b − 1), which
depends on the decay rates a and b; here, for sequences {r1n} and {r2n} of pos-
itive real numbers, we use r1n  r2n to denote that ratios r1n/r2n and r2n/r1n
are bounded away from zero. Such specific decay rates of δj (or γj) and 〈β, φj〉
are allowed and may provide a more familiar understanding of the growth rate
conditions on truncation levels. See [4, 21, 32, 33, 44, 46] for similar growth
rates of truncation parameters.

3.2. Consistency of the paired bootstrap (PB)

Based on the CLT for conditional means in (13), we next consider PB approxi-
mations for the distribution of the studentized-type quantity

Tn(X0) ≡
√

n

ŝhn(X0)
{μ̂hn(X0) − μ(X0)} (13)

conditional on a given regressor X0 with estimated scaling ŝn(X0) from (11).
A studentized bootstrap counterpart of (13), with estimated bootstrap scaling
ŝ∗hn

(X0), is given as

T ∗
n,ŝ∗(X0) ≡

√
n

ŝ∗hn
(X0)

{μ̂∗
hn

(X0) − μ̂gn(X0)}, (14)

with the same fixed X0, where (β̂∗
hn

, β̂gn) denote the bootstrap analogs (8) of the
FPCR estimator β̂hn and true slope β. Here, for x ∈ H, μ̂∗

hn
(x) ≡ α̂∗

hn
+ 〈β̂∗

hn
, x〉

denotes the bootstrap estimated mean response, where α̂∗
hn

≡ Ȳ ∗ − 〈β̂∗
hn

, X̄∗〉
with X̄∗ ≡ n−1∑n

i=1 X
∗
i and Ȳ ∗ ≡ n−1∑n

i=1 Yi. To define the bootstrap scaling
ŝ∗hn

in (14), recall that construction of ŝhn in (11) involves residuals from a FPCR
estimator β̂kn with a generic bandwidth kn. A bootstrap version of scaling factor
is then defined, in analog to (11), as

ŝ∗hn
(x) ≡ ‖(Λ̂∗

n,kn,gn)1/2(Γ̂∗
hn

)−1(x− X̄∗)‖2, x ∈ H, (15)
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where Λ̂∗
n,kn,gn

≡ n−1∑n
i=1(X∗

i ε̂
∗
i,kn

− n−1∑n
i=1 X

∗
i ε̂

∗
i,kn

)⊗2 is a bootstrap esti-
mator of the covariance Λ based on bootstrap residuals ε̂∗i,kn

≡ Y ∗
i − μ̂∗

kn
(X∗

i ) =
Y ∗
i − α̂∗

kn
− 〈β̂∗

kn
, X∗

i 〉 from bootstrap estimators α̂∗
kn

≡ Ȳ ∗ − 〈β̂∗
kn
, X̄∗〉 and

β̂∗
kn

≡ (Γ̂∗
kn

)−1(Δ̂∗
n − Ûn,gn); the latter is akin to (8) with tuning parameter kn.

Using the scaling factor ŝn(X0) in place of estimated scaling ŝ∗n(X0) within
bootstrap, another bootstrap counterpart of (13) can also be given as

T ∗
n,ŝ(X0) ≡

√
n

ŝhn(X0)
{μ̂∗

hn
(X0) − μ̂gn(X0)}. (16)

Due to the shared scaling in (13) and (16), this bootstrap version essentially
approximates μ̂hn(X0) − μ(X0) with μ̂∗

hn
(X0) − μ̂gn(X0).

In formal results next, the validity of the bootstrap in FLRMs depends on
the asymptotic relationship between truncation levels hn and gn through the
following limiting ratio:

τ ≡ lim
n→∞

hn/gn. (17)

We show that our modified paired bootstrap is generally flexible in the sense
that bootstrap consistency holds even when hn is asymptotically bigger than
gn, i.e., τ ≥ 1 (cf. Theorem 2); in contrast, the naive paired bootstrap is more
restricted, as described in Section 3.3.

Theorem 2 establishes the consistency of the PB method for the sampling
distribution of the studentized conditional mean estimator in (13) under het-
eroscedasticity. Let P∗ ≡ P(·|Dn) denotes the bootstrap probability conditional
on the sample Dn ≡ {(Xi, Yi)}ni=1.

Theorem 2. Suppose that Conditions (A1)-(A8) hold, that k−1
n +n−1/2k2

n log kn
→ 0 as n → ∞, and that E[‖X‖4+2δ] < ∞ and n−δ/2h

δ/2
n

∑hn

j=1 λ
−(2+δ)/2
j =

O(1) as n → ∞ for δ ∈ (0, 2] in Condition (A7). Along with Condition B(u) for
some u > 7, we further suppose that the limiting ratio τ from (17) is not less
than 1, g−1

n + n−1/2h
7/2
n (log hn)3 → 0, and n = O(m(hn, u)). Then, as n → ∞,

the paired bootstrap (PB) is valid for the distribution of the studentized statistic
Tn(X0) in (13):

sup
y∈R

|P∗ (T ∗
n(X0) ≤ y|X0) − P (Tn(X0) ≤ y|X0)| P−→ 0,

where T ∗
n(X0) denotes either T ∗

n,ŝ∗(X0) from (14) or T ∗
n,ŝ(X0) from (16).

Theorem 2 conditions for the PB are similar to those for the CLT from
Theorem 1, though additional mild assumptions (i.e., τ ≡ limn→∞ hn/gn ≥ 1)
appear to connect the second truncation gn in PB to the original data trunca-
tion hn. Namely, the truncation level gn for defining the bootstrap rendition β̂gn

of the true parameter β may differ from the truncation hn used in the original
FPCR estimator β̂hn , though gn may not be larger than hn asymptotically (see
also Proposition 2). This coordination of truncation levels is generally required
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for the bootstrap to be asymptotically correct, which allows the bootstrap to
control the bias type described in Remark 3. In practice, we recommend choos-
ing a slightly smaller gn than hn. In particular, we give a rule of thumb for
selecting hn and gn in Section 5, which performs well as illustrated numerically.

Example 1. As a data-generation for illustrating Theorem 1-2, we consider
H = L2([0, 1]), the space of square integrable functions defined on the inter-
val [0, 1], and suppose the eigenfunctions {φj} are Fourier basis functions. We
further suppose the following distributional conditions (a)-(b) on X and ε:

(a) the conditional variance of the error ε given the regressor X is σ2(X) ≡
E[ε2|X] =

∑∞
j=1 ρ

2
j 〈X,φj〉2 for some {ρj}∞j=1 with

∑∞
j=1 γjρ

2
j < ∞;

(b) X has functional principal component (FPC) scores as γ
−1/2
j 〈X,φj〉 =

ξWj for j ≥ 1, where {Wj} denote iid standard normal variables and,
independently, ξ is a general random variable.

As in numerical studies later (Section 5.1), suppose further that the error dis-
tribution is a centered χ2 distribution as ε|X ∼ χ2(ν(X)) − ν(X) with ν(X) =
‖X‖2/2 (i.e., the case with ρl = 1 for all l) and E[ξ10] < ∞. Under polynomial
decay rates δj ≡ γj − γj+1  j−a and |〈β, φj〉|  jb with a > 2 and b > 1, let
the truncation level hn grow as hn  n1/v where 7 ∧ (2a + 1) < v < a + 2b− 1
(cf. Remark 4), and τ ≥ 1 from (17). Then, all conditions of Theorem 1-2 may
be verified to hold; see Appendix C for the proof.

Theorem 2 can also be slightly modified for inference about the projection
〈β,X0 −E[X]〉 of the slope function β onto a centered new predictor X0 −E[X].
This can be useful for isolating the effect of the slope β on the conditional mean
μ(X0) = α + 〈β,X0〉 = E[Y ] + 〈β,X0 − E[X]〉, where estimation of the inter-
cept α is not involved. The projection statistics and bootstrap approximations
in Corollary 1 to follow can additionally play a role in developing hypothesis
tests about multiple projections, as described in Section 4. Namely, consider
approximating the distribution of the studentized projection statistic

Tn,proj(X0) ≡
√

n

ŝhn(X0)
(〈β̂hn , X0 − X̄〉 − 〈β,X0 − E[X]〉) (18)

with a bootstrap counterpart as

T ∗
n,ŝ∗,proj(X0) ≡

√
n

ŝ∗hn
(X0)

(〈β̂∗
hn

, X0 − X̄∗〉 − 〈β̂gn , X0 − X̄〉) (19)

or as

T ∗
n,ŝ,proj(X0) ≡

√
n

ŝhn(X0)
(〈β̂∗

hn
, X0 − X̄∗〉 − 〈β̂gn , X0 − X̄〉), (20)

where (19)-(20) are versions of (14) and (16) for centered projections. Corollary 1
then justifies the bootstrap with projection-based quantities (18)-(20).
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Corollary 1. Under the assumptions of Theorem 2, as n → ∞, the PB is valid
for approximating the distribution of the projection statistic Tn,proj(X0) in (18):

sup
y∈R

|P∗(T ∗
n,proj(X0) ≤ y|X0) − P(Tn,proj(X0) ≤ y|X0)| P−→ 0,

where T ∗
n,proj(X0) denotes either the bootstrap rendition from (19) or from (20).

When regressor and response variables have mean zero (E[X] = 0 = E[Y ]),
as assumed in some FLRM works [4, 11, 19, 21, 32, 44, 46], then Corollary 1
remains valid by simply dropping regressor means E[X], X̄, X̄∗ in (18)-(20).

3.3. Limitations of naive bootstrap

As described in Section 2.2, a naive bootstrap formulation β̂∗
hn,naive

≡(Γ̂∗
hn

)−1Δ̂∗
n

of the FPCR estimator will not be generally be valid for approximating the
distribution a conditional mean statistic Tn ≡

√
n/ŝhn(X0){μ̂hn(X0) − μ(X0)}

in (13) unless bootstrap centering parameter β∗ ≡ β̂gn is narrowly chosen. That
is, if the limiting ratio τ in (17) is bigger than 1, the naive bootstrap can fail,
whereas the PB method of Section 3.2 is consistent. As a formal illustration, we
consider a bootstrap quantity

T ∗
n,naive(X0) ≡

√
n

ŝ∗hn,naive
(X0)

{μ̂∗
hn,naive(X0) − μ̂gn(X0)} (21)

that differs from a valid bootstrap version T ∗
n,ŝ∗(X0) in (14) by using μ̂∗

hn,naive

(X0) ≡ Ȳ ∗+〈β̂∗
hn,naive

, X0−X̄∗〉 with the naive bootstrap estimator β̂∗
hn,naive

in
place of the proposed PB β̂∗

hn
; the bootstrap scaling ŝ∗hn,naive

(X0) in (21) uses
β̂∗
kn,naive

= (Γ̂∗
kn

)−1Δ̂∗
n when computing the residuals for (15). Proposition 1

provides a general illustrative data example where the naive bootstrap method
provably fails, which stands in contrast to the consistency of the modified PB
from Theorem 2. In the following, distributional convergence is in the space
of real-valued functions on [−∞,∞] that are right continuous with left limits
(cf. [2]).

Proposition 1. Suppose conditions (a)-(b) in Example 1 hold with E[ξ8] < ∞;
that Theorem 2 assumptions hold with δ = 2; that n−1/2h

9/2
n (log hn)6 → 0; and

that the limiting ratio τ from (17) is larger than 1. Then, as n → ∞,

P∗(T ∗
n,naive(X0) ≤ y|X0) − P(Tn(X0) ≤ y|X0)

d−→ Φ
(
y + σ(τ)Z

)
− Φ(y), y ∈ R,

where Z denotes a standard normal variable with distribution function Φ and
σ(τ) > 0 denotes a constant (cf. (22)). Thus, the naive bootstrap is inconsistent.

Remark 5. The naive bootstrap (21) in Proposition 1 can be shown to be valid
upon restricting τ from (17) to equal 1, which in case σ(τ) = 0 holds (cf. (22))
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and the limit becomes zero. Essentially, for the naive bootstrap to work, the
bootstrap centering β∗ ≡ β̂gn must be confined to the original FPCR estimator
β̂hn (i.e., gn = hn). Further, neither the proposed or naive PB approach is
generally valid if τ < 1 (cf. Proposition 2).

A take-away from Proposition 1 is that the naive bootstrap can fail with
simple regressor structures, such as Gaussian X (i.e., ξ = 1 above), though
Condition (b) of Example 1 serves to accommodate a larger class of regressor
distributions with potential dependence among FPCs. That is, the distance
between the true distribution of the target statistic Tn(X0) and that of the
naive bootstrap approximation T ∗

n,naive(X0) can have a random limit and may
not converge to zero at any point on the real line. This aspect arises due to
an extra construction bias created in the naive bootstrap definition of β̂∗

hn,naive

under heteroscedasticity, which may be explained as follows. From the proof of
Proposition 1, quantiles from the naive bootstrap approximation T ∗

n,naive(X0) in
(21) are shifted from those of a valid bootstrap approximation T ∗

n,ŝ(X0) in (16)
by a random contribution, say Bn, that depends on the original data but not
the bootstrap sample; in large samples, this bias amount Bn ≈ T ∗

n,naive(X0) −
T ∗
n,ŝ(X0) acts like a draw from a mean-zero normal distribution having a variance

σ2(τ) ≡ (1 − τ−1)

⎛
⎝‖Γ1/2β‖2

/ ∞∑
j=1

γjρ
2
j + 1

⎞
⎠ (22)

that is non-zero when the ratio τ from (17) exceeds 1. This bias behavior can also
be observed practically. Figure 2 contains a numerical illustration based on 1000
experiments generated from a FLRM with regressor X and error ε as described
in Proposition 1. We examine the resulting distribution of the construction bias
Bn in the naive approach when hn/gn > 1. Figure 2 shows the distribution
of this term Bn is quite different from zero as the ratio hn/gn increases, even
when hn = gn + 1, so that this bias Bn is non-ignorable. The latter observation
matches the theoretical result in (22), underling Proposition 1.

For clarity, both naive and modified PB may fail if the limiting ratio τ from
(17) is less than 1 due to a different source of bias (i.e., apart from the con-
struction of the bootstrap estimator β̂∗

hn
), which relates to centering in the CLT

(cf. Remark 3). This bias does not vanish if hn/gn < 1, which arises because
any estimator β̂gn playing the role of the true slope β in the bootstrap world
cannot capture the infinite dimensionality of β. This failure is illustrated in
Proposition 2, with details in the supplement [45].

Proposition 2. Suppose that the assumptions of Theorem 2 with δ = 2 hold and
that τ ∈ (0, 1). We further suppose Conditions (a) and (b) in Example 1. Then,
as n → ∞, both naive T ∗

n,naive(X0) and modified T ∗
n(X0) bootstrap renditions

of Tn(X0) fail to provide asymptotically correct distributional approximations.
Namely, the convergence in Proposition 1 holds for T ∗

n,naive(X0) upon redefining
σ(τ) there as

√
τ−1 − 1 > 0, and this same result holds also for T ∗

n(X0).
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Fig 2. Kernel density estimates of a construction bias Bn in the naive bootstrap. Plots have
a common x-axis, and the bias is zero when gn = hn.

To summarize, the asymptotic ratio τ ∈ (0,∞) from (17) plays a significant
role in PB methods. The naive PB requires asymptotic equivalence of hn and gn
with τ = 1 and becomes invalid when hn is asymptotically larger than gn with
τ > 1. In contrast, the modified PB enjoys additional flexibility in setting hn

and gn with τ ≥ 1, which results in better numerical performance in Section 5.
Simulation evidence indicates that our modified PB produces good and stable
coverages over different hn ≥ gn, while the naive PB is more sensitive to the
ratio hn/gn and tends to over-cover. Both modified and naive PB methods can
fail if hn is asymptotically smaller than gn with τ < 1.

3.4. Theoretical discussions and extensions

We provide some context about theoretical differences that distinguish our work
from previous resampling with FLRMs (cf. [44]). The majority of challenges owe
to the heteroscedastic structure of the data. To our knowledge, there has been
no theoretical development of asymptotic inference in heteroscedastic FLRMs,
while existing work considers only homoscedastic errors. [11, 19, 26, 27, 44].

Similar to previous general works on FLRMs [4, 11, 19, 21], our proposed
PB and previous developments of residual bootstrap (RB) [44] consider ran-
dom regressors {Xi}ni=1 and account for this randomness in inference. Under
homoscedastic errors, RB can also provide inference about conditional sampling
distributions given regressors, which is true in finite-dimensional linear mod-
els [17] and FLRMs [44]. However, a larger point is that the RB for FLRMs
has no guarantees for inference outside of homoscedastic errors, while the PB
is generally valid under much more general error distributions, including het-
eroscedasticity. Numerical studies in Section 5 demonstrate that the PB can
perform similarly to RB in coverage accuracy under homoscedasticity, where
RB is expected to have advantages, but can largely outperform RB when de-
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pendence exists between errors and regressors.
Compared to previous work with FLRMs, one large complication here has in-

volved identifying the appropriate scaling terms shn as in (10) so that estimated
conditional means/projections have well-defined limits under heteroscedasticity
(Theorem 1). Such scaling is more complicated compared to the homoscedas-
tic case, and the consistency of the sample scaling ŝhn (Theorem 1) as well
as the bootstrap counterpart ŝ∗hn

(Theorem 2) become non-trivial to establish
(cf. supplement [45]). Further technical complications also arise in bootstrap-
level versions of perturbation theory (cf. [45, Section S3.1]). Namely, due to the
resampling nature of the PB (i.e., resampling both regressors and responses),
standard results on perturbation theory (e.g., [25, Chapter 5]) do not directly
apply to the bootstrap quantities, requiring a different treatment that does not
arise in previous work on RB [44]. Another non-trivial aspect of PB for FLRMs
under heteroscedasticity is the inconsistency of the naive PB due to a con-
struction bias (Proposition 1); a similar bias does not arise for PB in standard
finite-dimensional regression [17] or for RB in homoscedastic FLRMs [44]

Remark 6. In our development, we essentially consider only the case where
functional data can be fully observed. When functional data are not fully ob-
served, the bootstrap theory would require modification due to several compli-
cating factors. The covariance estimator Γ̂n ≡ n−1∑n

i=1(Xi − X̄)⊗2 may not
applicable with irregular (and possibly sparse) time grid points, so that the FPCR
estimator may not be directly used. Additionally, our results rely heavily on a per-
turbation theory and its bootstrap version developed in the current paper, though
these would require adjustments for noisy and irregularly observed functional
data (e.g., see [46] for a recent non-bootstrap version of perturbation theory for
non-fully observed functional data). Related to this last point, while this work
provides a first CLT for conditional means in FLRMs under heteroscedasticity,
an alternative development for CLT may be needed for irregularly observed func-
tional regressors as perturbation theory often plays a key role with bias terms
arising in CLTs (cf. [11, 44]). Bootstrap methods may then also require re-
formulation for irregular/sparse functional data. This is beyond our current
scope, which we mention for future research.

Remark 7. The approximation results here can also extend to a more general
new predictor X0, which need not be independent of the data or share the same
distribution as an underlying regressor function X. For instance, our results
remain valid if X0 follows a different distribution than X but with matching
mean and variance (or eigenvalues {μj} of var[X0] can match those {γj} of
var[X] asymptotically). Another simple scenario involves X0 as dependent on
the data regressors {Xi}ni=1, such as X0 = X1 or an average from some subset
of {Xi}ni=1. See also [44] for a related discussion about RB.

4. Hypothesis tests for multiple conditional means

The testing of the association between the functional regressor X and the scalar
response Y in FLRMs has drawn much recent attention in the literature. A
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global test of β = 0 was first proposed in [7] by assessing the covariance op-
erator for Δ = 0, and several works have similarly considered various global
tests [10, 18, 24, 28, 32, 33, 40]. For instance, in [28, 40], the global null β = 0
is approximated by testing 〈β, φ1〉 = · · · = 〈β, φL〉 = 0 for an increasing in-
teger L depending on n, where {φj}∞j=1 denotes the set of eigenfunctions of
Γ ≡ E[(X − E[X])⊗2]; this approach essentially involves a linear model with
increasing number of scalar parameters, whereby the (sample) FPC scores are
treated as the observed regressors rather than {Xi}ni=1. However, none of these
previous works applies to testing claims regarding the orthogonality of β to
general regressor functions observed from random regressors. The proposed PB
method from Section 2, though, can be adapted to assess projections of the slope
function β onto subspaces spanned by general directions, as next explained.

To frame the testing problem, let X0 ≡ {X0,l}Ll=1 denote an observed collec-
tion of random regressors under consideration, for some L ≥ 1. We wish to test
the null hypothesis about constancy of the collective conditional means as

H0 : μ(X0,l) = E[Y ], ∀l = 1, . . . , L against H1 : H0 is not true (23)

The null hypothesis states that the linear effects of the slope function β do not
change across the new regressors X0 ≡ {X0,l}Ll=1 and, in ANOVA fashion, equal
a common average μ(E[X]) = E[Y ] set by the global mean curve E[X]. The null
hypothesis in (23) can also be expressed in terms of projections as

H0 : 〈β,X0,l〉 = 〈β,E[X]〉, ∀l = 1, . . . , L against H1 : H0 is not true. (24)

In particular cases with zero mean regressors (i.e., E[X] = 0), the null hypothesis
(24) boils down to assessing the orthogonality of the slope function β to the
linear subspace span(X0) ⊆ H spanned by X0, or ΠX0β = 0 where ΠX0β denotes
the projection of β onto span(X0). Due to the equivalence between (23) and (24),
the test statistics based on the projection quantities (18)-(19) can be applied to
test null hypothesis (23) without estimation of the intercept α. As the bootstrap
results in Section 3 apply for a given regressor X0, a PB-based testing procedure
can be formulated to assess this type of hypothesis. An advantage is that this
approach provides a specific test of whether regression effects exist in any pre-
defined directions, while a global test about β (e.g., [28, 40]) is not amenable
to this purpose. Additionally, previous works on hypothesis testing for FLRMs
rely heavily on independent regressor-error assumptions, while our bootstrap-
based testing procedure can address such testing problems in FLRMs under
conditionally dependent errors and heteroscedasticity.

To describe test statistics, write

TH0
n,l ≡

√
n

ŝhn(X0,l)
〈β̂hn , X0,l − X̄〉, l = 1, . . . , L, (25)

to denote the studentized projection statistic from (18) upon substituting the
hypothesized value 〈β,X0,l − E[X]〉 = 0 by (24) for a new regressor X0,l. We
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may define test statistics by combining these direction-based statistics as

Wn,L2 ≡
L∑

l=1

[
TH0
n,l

]2
and Wn,max ≡ max

1≤l≤L

∣∣∣TH0
n,l

∣∣∣ , (26)

representing L2- or L∞-type norms. Large values of such statistics then provide
evidence against H0. These test statistics are well-defined with non-degenerate
limit distributions under the null hypothesis, though their limit laws are com-
plicated, depending intricately on covariances between estimated projections.
Consequently, these limit distributions are impractical for direct use. However,
the sampling distributions of test statistics can be viably approximated with
the proposed PB method and, in fact, there exist two ways of implementing the
bootstrap here: by enforcing the null hypothesis at the bootstrap level or not.

If we do not enforce the null hypothesis in the bootstrap world, then we
essentially adopt the same PB procedure described in Section 3.2. That is, we
may formulate studentized bootstrap quantities for centered projections, similar
to (19), as

T ∗
n,l,ŝ∗ ≡

√
n

ŝ∗hn
(X0,l)

{〈β̂∗
hn

, X0,l − X̄∗〉 − 〈β̂gn , X0,l − X̄〉}, l = 1, . . . , L

based on the same bootstrap sample {(X∗
i , Y

∗
i )}ni=1 and a common estimator

β̂gn playing the bootstrap role of β. The bootstrap test statistics are then

W ∗
n,L2 ≡

L∑
l=1

[
T ∗
n,l,ŝ∗

]2 and W ∗
n,max ≡ max

1≤l≤L

∣∣T ∗
n,l,ŝ∗

∣∣ , (27)

To enforce the null hypothesis in the bootstrap world, we modify the PB
procedure described in Section 2.2, letting β̃gn ≡ β̂gn − ΠX c

0 β̂gn rather than
β̂gn denote the bootstrap analog of the slope β. Here β̃gn denotes a version
of β̂gn after removing its projection ΠX c

0 β̂gn onto the subspace spanned by
X c

0 ≡ {X0,l − X̄}Ll=1. With this change, it holds that ΠX c
0 β̃gn = 0 and so

β̃gn mimics the same property 〈β,X0,l − E[X]〉 = 0, l = 1, . . . , L of the true
parameter β under H0. To formulate bootstrap data, we also write a response
variable Ỹi ≡ Yi − 〈ΠX c

0 β̂gn , Xi〉 after removing a projection contribution from
ΠX0 β̂gn with respect to Xi. A PB sample {(X∗

i , Ỹ
∗
i )}ni=1 is defined by iid draws

from the empirical distribution of {(Xi, Ỹi)}ni=1, and the same development from
Section 2.2 then applies with the change that Y ∗

i , β̂gn , Ȳ there become Ỹ ∗
i , β̃gn ,

¯̃Y ≡ n−1∑n
i=1 Ỹi = Ȳ −〈ΠX c

0 β̂gn , X̄〉. The bootstrap estimator then has a closed
form as

β̃∗
hn

≡ (Γ̂∗
hn

)−1(Δ̃∗
n − Ûn,gn)

in parallel to (8) with Δ̃∗
n ≡ n−1∑n

i=1(Ỹ ∗
i − ¯̃Y ∗)(X∗

i − X̄∗) in place of Δ̂∗
n ≡

n−1∑n
i=1(Y ∗

i − Ȳ ∗)(X∗
i − X̄∗). When enforcing the null hypothesis at the boot-
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strap level, bootstrap versions of test statistics in (26) are then given by

W ∗
n,L2 ≡

L∑
l=1

[
T ∗H0
n,l

]2
and W ∗

n,max ≡ max
1≤l≤L

∣∣∣T ∗H0
n,l

∣∣∣ , (28)

with
T ∗H0
n,l ≡

√
n

s̃∗hn
(X0,l)

〈β̃∗
hn

, X0,l − X̄∗〉, l = 1, . . . , L,

denoting the bootstrap rendition of the estimated projection quantities TH0
n,l from

(25) under H0. Above s̃∗hn
denotes estimated scaling, akin to ŝhn , computed from

the bootstrap sample {(X∗
i , Ỹ

∗
i )}ni=1.

The following result guarantees that, under the null hypothesis H0, the dis-
tribution of test statistics Wn,L2 and Wn,max in (26) can be approximated by
either bootstrap approach: enforcing H0 as in (28) or not as in (27).
Corollary 2. Let Wn denote a test statistic Wn,L2 or Wn,max and let W ∗

n denote
its paired bootstrap (PB) counterpart, computed either as in (27) or (28). Under
the assumptions of Theorem 2, if the null hypothesis H0 in (23) holds, then

sup
w∈R

|P∗(W ∗
n ≤ w|X0) − P(Wn ≤ w|X0)| P−→ 0 as n → ∞.

While both implementations (27)-(28) of PB are valid for testing, numerical
studies suggest that enforcing the null hypothesis (28) can have better perfor-
mance in both size and power. This is explored further in Section 5.2.

5. Simulation studies

Section 5.1 summarizes numerical studies of the PB and other methods for cal-
ibrating confidence intervals for conditional response mean μ(X0) in FLRMs.
A rule of thumb for selecting the tuning parameters (kn, hn, gn) in the boot-
strap procedure is also examined. Section 5.2 then investigates the performance
of the bootstrap test from Section 4 regarding projections. For simulation pur-
poses, we consider the case when E[X] = 0 and E[Y ] = 0 so that the conditional
mean is equal to the projection of the slope function, i.e., μ(X0) = 〈β,X0〉. We
hence focus on inferring the projection 〈β,X0〉 by using the original 〈β̂hn , X0〉
and bootstrap 〈β̂∗

hn
, X0〉 projection estimators with intercepts α, α̂hn , α̂

∗
hn

set
to zero in all following bootstrap or normal approximations for simplicity; the
sample means X̄, X̄∗ used in the scaling terms are also adjusted to zero. For
PB, this is equivalent to using Corollary 1 with X̄, X̄∗ being zero.

5.1. Performance of bootstrap intervals

To describe the data generation, we independently simulate n curves Xn =
{Xi}ni=1 from a truncated Karhunen–Loève expansion:

X
d=

J∑
j=1

√
γjξjφj (29)
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with J = 15. Above {φj : j = 1, . . . , J} denote the first J of the Fourier ba-
sis functions {1, sin(2πt), cos(2πt), . . . } on [0, 1]. The FPC scores are defined
as ξj = ξWj , where Wj

iid∼ N(0, 1) and ξ follows a (normalized) t(ν) distribu-
tion with chosen degrees of freedom ν ∈ {4, 5, 7, 9,∞}. This entails that FPC
scores are uncorrelated, but dependent. The eigengaps in (29) are defined with
a polynomial decay rate involving a parameter a > 0, namely γj −γj+1 = 2j−a,
j ≥ 1 where γ1 = 2

∑∞
j=1 j

−a. Using the same basis functions, the slope pa-
rameter is set to β =

∑J
j=1 βjφj , where βj = 3j−bWβ,j has a polynomial decay

involving a rate parameter b > 0 and the terms Wβ,j are fixed upon draw-
ing these as iid from a distribution P(Wβ,j = 1) = 1/2 = P(Wβ,j = −1).
We consider various scenarios involving different polynomial rates and sample
sizes: a, b ∈ {1.5, 2.5, 3.5, 4.5, 5.5} and n ∈ {50, 200, 1000}. For brevity, we report
some representative numerical results here, though full results can be found in
the supplement [45]. All the function values are evaluated at 100 equally-spaced
time grid points in [0, 1]. Response values {Yi}ni=1 are then generated through
the FLRM (3) as follows. To consider both homoscedastic and heteroscedastic
scenarios, errors εi are generated to be either independent from or dependent on
the regressors Xi. For a given generated regressor Xi, a dependent error εi is sim-
ulated from a chi-square distribution χ2(ν(Xi)) − ν(Xi) with ν(Xi) ≡ ‖Xi‖2/2
degrees of freedom. In this heteroscedastic case, the conditional variance of an
error depends on the regressor value Xi, and the marginal variance of an error
is var[εi] = tr (Γ) =

∑J
j=1 γj . Due to the latter, we also generate errors εi with

the same marginal variance, independently from regressors Xi, with a centered
chi-square distribution χ2(ν) − ν with ν ≡ tr (Γ) /2 degrees of freedom in ho-
moscedastic cases. The supplement [45] provides further results with other error
distributions, which are qualitatively similar. In each simulation run, a regressor
X0 for mean μ(X0) estimation is also generated by (29).

We consider both PB and naive PB implementations for computing two-sided
95% intervals for μ(X0) = 〈β,X0〉. In the original data FPCR estimator β̂hn

from (4) and estimated scaling ŝn from (11), we varied the range of the trunca-
tion parameters hn, gn ∈ {1, . . . , 15} and we set kn = 2[n1/v] with v = 2a+1+v1
for a small v1 = 0.1 for consistent estimation of β̂kn in scaling (11) (cf. Theo-
rem S3 of the supplement [45]). To recall, kn is used to reconstruct the residual
as used in the scaling factor (11), gn is for constructing the bootstrap center-
ing, and hn is the truncation used by the actual and bootstrap estimators (see
Theorem 2). For simplicity here, we focus on symmetrized intervals in the PB
implementation involving bootstrap estimated studentization (e.g., T ∗

n,ŝ∗(X0) in
(14)) as well as a naive PB counterpart defined in (21). The symmetrized inter-
vals are constructed by approximating the distribution of the absolute statistic
|Tn|, instead of the original statistic Tn, with bootstrap (cf. [20]). Namely, let-
ting ĉ be the 1− α/2 quantile of the (bootstrap) distribution of |T ∗

n |, where T ∗
n

denotes the bootstrap statistic from either (14) or (21), the symmetrized confi-
dence interval for μ(X0) = 〈β,X0〉 is constructed as 〈β̂n, X0〉 ± ĉŝhn(X0)/

√
n.

Further comparisons with other versions of PB (e.g., T ∗
n,ŝ(X0) in (16)) or non-

symmetrized intervals can be found in the supplement [45], though estimated
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bootstrap studentization steps tend to induce the best performances. For com-
parison, we also consider intervals based on normal approximations with es-
timated scaling ŝn (Theorem 1), residual bootstrap (RB) (cf. [44]), and wild
bootstrap (WB) [22]. The WB method shares similarities to the RB up to the
bootstrap error construction; the latter involves a random weighting of residuals
by the two-point distribution as described in [22]. For each generated data set,
bootstrap distributions are approximated by 1000 Monte Carlo resamples.

We also propose a rule of thumb for setting the tuning parameters based
on simulations for all the parameter combinations. We suggest to set gn =
kn and hn = [1.1kn] being a slightly larger value than gn; the value of kn
can be selected in practice by cross-validation minimizing the prediction errors.
Our rule of thumb is found by considering all scenarios and truncation levels
producing coverages of PB intervals within 1% from the nominal level 95%, and
running linear regression of response (hn, gn) on kn. This rule targets to make
appropriate choices of (hn, gn), as most critical to performance of PB, in relation
to kn. Setting gn = kn aligns with the appropriate choices for the RB [44].

For each 95% interval procedure for μ(X0) = 〈β,X0〉, empirical coverages
were approximated by 1000 simulation runs over each data generating model and
sample size. Figure 3 displays observed coverage rates from different methods
under a few selected scenarios when a = 2.5, b = 5.5 and ξ ∼ t(5)/

√
5/3; see the

supplement [45] for results over all scenarios. For clarity, the results in Figure 3
focus on the case that gn = kn for both PB and RB while varying hn. Coverages
for the PB method under the proposed rule of thumb are indicated using crosses
in Figure 3 for reference.

As a first observation from Figure 3, the coverages from intervals based di-
rectly on normal approximation (CLT) exhibit sensitivity to the truncation level
hn and also under coverage, particularly when the sample size is small. Under
heteroscedasticity, both the CLT and RB methods perform quite poorly and lie
at least partially outside of the charting regions in Figure 3. In fact, under this
case of heteroscedasticity, RB is not asymptotically valid and the coverages are
quite low to the extent that coverage curves do not appear in the figure, even for
large sample sizes n = 1000. The WB, which is appropriate for heteroscedastic
error structures, performs better than RB in this case, but still exhibits low
coverage accuracy. In contrast, PB intervals perform much better under the
heteroscedastic models. For independent errors, while RB assumes and uses the
true model structure (homoscedasticity) and PB does not, the PB method has
very similar performance to RB for large sample sizes (n = 1000) and exhibits
comparable performance for smaller samples (n = 50 or 200). Our rule of thumb
provides reasonable coverages in most cases for PB intervals.

Figure 4 displays the corresponding average widths of intervals, which gener-
ally increase with hn. Importantly, this figure indicates that intervals from RB
and CLT approximations are often overly narrow under heteroscedasticity, which
relates to the low coverages in Figure 3. Figures 3-4 also demonstrate that our
rule of thumb seems to suggest an optimal truncation hn in the sense that the
corresponding intervals balance good coverage rates with lowest average widths.
Finally, while the naive PB implementation is asymptotically invalid in the sense
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Fig 3. Empirical coverage rates of 95% intervals for μ(X0) = 〈β,X0〉 from CLT (black), RB
(green), PB with studentization (red), naive PB with studentization (blue), and WB (tan)
over various truncations hn when the decay rates for γj − γj+1 and βj are a = 2.5 and
b = 5.5 and the latent variable for the FPC scores is ξ ∼ t(5)/

√
5/3. For errors dependent

on regressors (lower panels), the coverage curves of CLT/RB intervals are cropped as these
perform poorly. Crosses × indicate coverage rates with hn selected by the proposed rule.

of Proposition 1, the latter finding also suggests that the bias in the naive PB
should translate to over-coverage for symmetrized intervals in Figure 3. Even
for large sample sizes n = 1000, naive PB intervals tend to over-cover projec-
tions, while their average widths are larger than those from the proposed PB.
Moreover, the coverages of naive PB intervals are unstable against the choice
of truncation level hn while our modified PB produces stable coverages close to
the nominal level for all hn ≥ gn and moderate to large sample sizes n = 200
and 1000. The over-coverage problem in the naive PB also worsens as truncation
levels hn deviate from the case hn = gn. This can be interpreted as the con-
struction bias from the naive bootstrap negatively impacts this method, even
as the sample size increases.

To investigate the effect of moments for the regressor X on interval perfor-
mance, we also varied the distribution of ξ in (29) over different normalized t(ν)
with ν ∈ {4, 5, 7, 9,∞}, where t(4) is an example that does not satisfy (A2). Fig-
ures in Section S4.1 of the supplement [45] show that, under heteroscedasticity,
the proposed PB is fairly robust to moments available for X.
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Fig 4. Average widths of 95% intervals for μ(X0) = 〈β,X0〉 from methods over different
truncation hn when the decay rates for γj − γj+1 and βj are a = 2.5 and b = 5.5 and the
latent variable for the FPC scores is ξ ∼ t(5)/

√
5/3: CLT (black), RB (green), WB(tan),

PB with studentization (red), and naive PB with studentization (blue). Crosses × indicate
coverage rates for PB with hn selected by the proposed rule.

5.2. Performance of bootstrap tests of projections

Turning to the testing problem discussed in Section 4, We next investigate the
empirical rejection rates of the bootstrap tests of a null hypothesis (24) of con-
stant conditional means, using bootstrap statistics from (27) or (28).

The data generation for purposes of study are generally the same as consid-
ered in Section 5.1 with ξ ∼ N(0, 1) and a = 2.5, with the exception that we
modify the definition of the slope function β to describe different hypotheses.
For testing, the target predictors are considered as X0 ≡ {φj}6

j=1 based on the
first six Fourier basis functions. Under the null hypothesis, the slope function is
defined as βH0 ≡

∑
j>6 Wβ,j |βj |φj , and we wish to assess the orthogonality of β

to the subspace spanned by X0 (i.e., H0 : ΠX0β = 0 or (24) with E[X] = 0). The
true data-generating slope is defined as βH1 ≡ (1 − p)βH0 + p

∑6
j=1 Wβ,j |βj |φj

in terms of a proportion p ∈ {0, 0.1, . . . , 0.9, 1} for prescribing a sequence of
alternative hypotheses; here |βj | = cj−b holds with c = 50 and b = 3.5, and the
value p = 0 renders the null hypothesis with the slope βH0 .

We consider bootstrap tests of H0 : ΠX0β = 0 based on a nominal size 5%.
For each simulated dataset, 1000 bootstrap resamples are used to approximate
the distribution of test statistics in (26). Truncation parameters hn and gn are
again selected by the rule of thumb suggested in Section 5.1 based on kn. Using
1000 simulation runs for each data generation scenario (level of p) and sample
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Fig 5. Empirical rejection rates (when n = 50) of the bootstrap testing procedure as the de-
gree/proportion p ∈ {0, 0.25, 0.50, 0.75, 1} of the alternative increases (only p = 0 corresponds
to a true null hypothesis). The test may enforce the null hypothesis (red) or not (blue) in the
bootstrap. The black horizontal line represents the nominal size 5%.

size n, we compute rejection rates by the proportion of times that an original
test statistic exceeds the 95th percentile of bootstrap test distribution. The
supplement [45] contains more details and findings over different sample sizes
n ∈ {50, 200, 400, 600, 800, 1000} as well as both test statistic forms from (26);
we present results for n = 50 here with maximum or L∞ statistic form Wn,max,
as other results are qualitatively similar.

The resulting empirical rejection rates are summarized in Figure 5. As per-
haps expected, the power of the test increases with the degree p of how much the
null hypothesis is violated, whether enforcing the null hypothesis in bootstrap
by (28), or not by (27). However, enforcing the null hypothesis maintains size
better (i.e., when p = 0), which then also leads to slightly better power here.
Another advantage to bootstrap enforcement of the null hypothesis is less sensi-
tivity to choices of truncation parameters hn, gn. Results in the supplement [45]
indicate that honoring the null hypothesis in bootstrap typically ensures good
performance in testing as truncations hn, gn are varied, which is not equally
true for the bootstrap version that does not enforce the null hypothesis.

6. Real data analysis

Bootstrap intervals and tests are demonstrated in application to Canadian
weather data. We analyze the Canadian weather dataset from the R package
fda consisting of daily temperature and precipitation at 35 different locations in
Canada [cf. 37]. The regressor Xi is the daily temperature on each day averaged
over 1960 to 1994, and the response Yi is the log of total annual precipitation
with base 10. Pairs of temperature and precipitation are recorded at n = 35
weather stations. The regressor curves {Xi}ni=1 are displayed in Figure 6, where
the thicker lines represent the average for four different regions in Canada,
namely, Atlantic, Continental, Pacific, and Arctic regions. The new predictors
X0 ≡ {X0,l}4

l=1 under consideration for bootstrap inference are selected as these
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Fig 6. Daily temperature curves of locations in four different regions. Each black curve cor-
responds to the averaged in one location over 1964 to 1990, and the regional average curves
are denoted in bold pink lines.

four average curves in each region as illustration. We then focus inference of cen-
tered projections 〈β,X0,l − E[X]〉 (cf. Corollary 1), which essentially represents
the conditional mean μ0(X0,l) = E[Y ] + 〈β,X0,l − E[X]〉 at each regressor X0,l
up to a common effect E[Y ] not involving the slope β.

Each weather station is located in one of the four regions, where each region
exhibits a different pattern as shown in Figure 6. This leads us to suspect the
existence of different conditional variance of errors in FLRM (1). To investigate
the heteroscedasticity, we estimate the variance from residuals for each region
as σ̂2

r,kn
= n−1

r

∑
i∈Ir

(Yi − Ȳ − 〈β̂kn , Xi − X̄〉)2, where Ir and nr, respectively,
denote the index set of and the number of location in the rth region. Here, the
estimator β̂kn used for computing residuals is constructed from the combined
data {(Xi, Yi)}ni=1 over all four regions. As shown in Figure 1, homoscedastic
error models seems implausible for this dataset. A similar conclusion is deduced
from the residual plots given in Section S5.1 of the supplement.

By applying different bootstrap methods, symmetrized 95% confidence inter-
vals for each projection 〈β,X0,l−E[X]〉 are given in Table 1. Based on PB, such
intervals are 〈β̂n, X0,l− X̄〉± ĉŝhn(X0)/

√
n, with ĉ denoting the 95th percentile

of the absolute bootstrap statistic |T ∗
n,proj | from (19) (denoted as PB_std) or

from (20) (denoted as PB); recall PB_std uses estimated bootstrap studenti-
zation, while PB does not, for improved accuracy. Here, the less consequential
tuning parameter kn = 2 was selected via repeated cross-validation, which min-
imizes prediction errors over estimates from β̂kn , while hn = 2 and gn = 2 were
then chosen by the rule of thumb suggested in Section 5.1. The supplement [45]
provides further results with different tuning parameter choices. As expected
under possible heteroscedasticity and shown in Table 1, the results for residual
bootstrap (RB) are quite different from those for PB. This distinction is also
seen from a comparison of interval lengths in Table 1. Compared to an overall
average E[X], the Pacific region has the highest range of annual precipitation,
while the Continental region exhibits less precipitation, with relatively narrow
widths for both regions. The annual precipitations of the Atlantic and Arctic
regions are, respectively, either higher or lower than the overall average, but
with wider widths.
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Table 1

95% symmetrized confidence intervals for centered projections {〈β,X0,l − E[X]〉}4
l=1 from

RB, PB, and PB_std for Canadian weather dataset. The ratios of widths of RB intervals to
widths of either PB or PB_std intervals are given in parentheses.

RB PB PB_std
Atlantic [ 0.06, 0.11] [ 0.00, 0.17] (3.20) [-0.05, 0.22] (5.11)

Continental [-0.19, -0.08] [-0.22, -0.05] (1.53) [-0.25, -0.03] (1.96)
Pacific [ 0.18, 0.36] [ 0.17, 0.38] (1.18) [ 0.14, 0.41] (1.50)
Artic [-0.49, -0.18] [-0.57, -0.10] (1.53) [-0.57, -0.10] (1.54)

We may also apply our bootstrap testing procedure for assessing the null
hypothesis H0 from (23) of the equality of means μ(X0,l) across the four regions.
The corresponding p-values are given in Table 2 for test statistics (28) based on
PB approximations that enforce H0. The tests strongly suggest that the true
rainfall mean responses {μ(X0,l)}4

l=1 are not equal across regions and cannot be
simultaneously equal to a common mean response μ(E[X]) at the global mean
curve. This finding supports the region-wise intervals in Table 1.

7. Concluding remarks

We have developed a paired bootstrap (PB) for inference in functional linear
regression models (FLRMs) with general heteroscedastic errors. As a prelim-
inary result, a central limit theorem under heteroscedasticity was established
for estimated conditional mean μ(X0) ≡ α + 〈β,X0〉 given new predictor X0,
along with appropriate scaling shn(X0) for self-normalization. Further, the es-
timated conditional mean μ̂hn(X0) ≡ α̂hn + 〈β̂hn , X0〉 given new predictor X0
based on a functional principal component regression estimator β̂hn can be suc-
cessfully approximated by the PB for improved inference in finite samples. As
such estimators β̂hn in FLRMs involve truncation parameters hn, a modified
PB estimator was proposed to allow valid distributional approximations with
the greatest possible flexibility in such truncation parameters for bootstrap. In
contrast, a naive implementation of PB (i.e., adapted directly from standard
multiple regression, e.g., [17]) can be shown to have less validity in application
and becomes viable only for a much narrower configuration of truncation pa-
rameters. The PB approach was also adapted to formulate new tests for assess-
ing the equality of conditional means at pre-selected regressor curves {X0,l}Ll=1,
which can boil down to the orthogonality of the slope function β to the subspace
spanned by {X0,l}Ll=1 under zero-mean assumption. Numerical studies showed
that the existing residual bootstrap can fail under heterocedasticity, while PB
can perform well in this context for interval estimation as well as for testing. We

Table 2

P-values for bootstrap tests to assess null hypothesis of constant rainfall means
μ(X0,l) = μ(E[X]) across four regions for Canadian weather dataset.

L2 Statistic Max Statistic
0.004 0.012
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suggested also a PB based on estimated bootstrap studentization steps and pro-
vided a rule of thumb for selecting the two main tuning parameters (truncation
levels) involved in the PB.

Other directions are possible for bootstrap inference in the FLRMs, which re-
quire further study. A wild bootstrap method [16, 22, 34] might also be formally
developed for inference in FLRMs with heteroscedastic errors. A PB approach
can have more accuracy than wild bootstrap in some settings (cf. Section 5.1),
but wild bootstrap may be computationally faster and more scalable for large
data in its resampling scheme; further investigation is needed for FLRMs in
particular. It can also be of interest to extend resampling inference in other
functional linear models such as FLRMs with functional response [14] or gener-
alized functional linear models [36]. Finally, as described in Remark 6, further
investigation is required to extend bootstrap inference to cases where functional
regressors may be irregularly or sparsely observed (cf. [46]).

Appendix A: On establishing the CLT

We briefly outline of the proof of the CLT in Theorem 1; more technical details
are provided in the supplement [45].

Proof of Theorem 1. It suffices to show the weak convergence of the projection
estimator 〈β̂hn , X0〉 under zero-mean assumptions. To explain, the conditional
mean difference is decomposed as

μ̂hn(X0) − μ(X0) = Ȳ − E[Y ] − 〈β̂hn , X̄ − E[X]〉 + 〈β̂hn − β,X0 − E[X]〉.
(30)

Using that
√
n(Ȳ −E[Y ]) = OP(1) by classical CLT [cf. 3], that

√
n(X̄−E[X]) =

OP(1) by CLT in general Hilbert space [cf. 25], and that ‖β̂hn − β‖ = oP(1) by
the consistency of the FPCR estimator in the supplement [45], the first two
terms in (30) are asymptotically ignorable with scaling, i.e.,√

n

shn(X0)
(Ȳ − E[Y ] − 〈β̂hn , X̄ − E[X]〉) = OP(1)shn(X0)−1 = OP(h−1

n ).

Because centering by the population means E[Y ] and E[X] does not affect the
construction of the estimator β̂hn , it is enough to show the CLT for the projec-
tion with centered data {(X̌i, Y̌i)}ni=1 where X̌i ≡ Xi−E[X] and Y̌i ≡ Yi−E[Y ].
Hence, without loss of generality, we may assume that E[X] = 0 and E[Y ] = 0
so that α = 0, and establish the CLT for 〈β̂hn − β,X0〉.

The proof uses the following bias-variance decomposition of the functional
principal component estimator β̂hn with respect to the true slope parameter β:

β̂hn − β = bn + Γ−1
hn

Un, (31)

where, upon scaling
√

n/shn(X0), the quantity Γ−1
hn

Un determines the normal
limit while a remainder/bias term bn ≡ β̂hn − β − Γ−1

hn
Un converges to zero
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in probability. Above Un ≡ n−1∑n
i=1(Xi − X̄)(εi − ε̄) represents the cross-

covariance between the regressors Xn ≡ {Xi}ni=1 and the errors {εi}ni=1, with
X̄ ≡ n−1∑n

i=1 Xi and ε̄ ≡ n−1∑n
i=1 εi, and further Γ−1

hn
≡
∑hn

j=1 γ
−1
j πj denotes

a truncated version of the inverse covariance operator Γ−1 ≡
∑∞

j=1 γ
−1
j πj with

πj ≡ φj ⊗ φj for integer j ≥ 1. The supplement [45] shows that, as n → ∞,

P
(√

n

shn(X0)
|〈bn, X0〉| > η

∣∣∣X0

)
P−→ 0 (32)

holds for each η > 0. The distributional convergence of the term Γ−1
hn

Un is stated
in the following proposition, where the proof is deferred to the supplement [45].

Proposition 3. Suppose that Conditions (A5)-(A7) hold and n−δ/2h
(2+δ)/2
n →

0 for δ ∈ (0, 2] in Condition (A7), then as n → ∞

sup
y∈R

∣∣∣∣P
(√

n

shn(X0)
〈Γ−1

hn
Un, X0〉 ≤ y

∣∣∣X0

)
− Φ(y)

∣∣∣∣ P−→ 0.

Theorem 1 then follows from (32) and Proposition 3 under the decomposition
(31); see also Propositions S1-S3 in the supplement [45].

Appendix B: On proofs for the paired bootstrap

We sketch the proofs of Theorem 2 and Proposition 1; further details appear in
the supplement [45].

Proof of Theorem 2. Similarly to Theorem 1, it suffices to consider the boot-
strap projection 〈β̂∗

hn
− β̂gn , X0 − E[X]〉 with E[X] = 0, as the difference from

the bootstrap conditional mean μ̂∗
hn

(X0)− μ̂gn(X0)− 〈β̂∗
hn

− β̂gn , X0 −E[X]〉 =
Ȳ ∗ − Ȳ − 〈β̂∗

hn
, X̄∗ − X̄〉 − 〈β̂∗

hn
− β̂gn , X̄ − E[X]〉 is analogously negligible.

To show bootstrap consistency, we consider a bootstrap-level decomposition,
similar to (31), as

β̂∗
hn

− β̂gn = b∗n + Γ−1
hn

(U∗
n − Ûn,gn) (33)

where b∗n is a bias term, Ûn,gn is the bias correction from (7), and U∗
n ≡

n−1∑n
i=1(X∗

i − X̄∗)(ε∗i,gn − ε̄∗gn) denotes the sample cross covariance between
the bootstrap regressors {X∗

i }ni=1 and the bootstrap errors {ε∗i,gn}ni=1, where
X̄∗ ≡ n−1∑n

i=1 X
∗
i and ε̄∗gn ≡ n−1∑n

i=1 ε
∗
i,gn

from ε∗i,gn ≡ Y ∗
i − 〈β̂gn , X

∗
i 〉.

Proposition 4 shows that, upon scaling, the distribution of Γ−1
hn

(U∗
n − Ûn,gn) un-

der bootstrap probability P∗(·|X0) converges to a standard normal distribution.

Proposition 4. Suppose that Conditions (A1)-(A7), ‖β̂gn − β‖ P−→ 0, and
for δ ∈ (0, 2] in Condition (A7), we have E[‖X‖4+2δ] < ∞ and as n → ∞,
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n−δ/2h
δ/2
n

∑hn

j=1 λ
−(2+δ)/2
j = O(1) (which implies n−δ/2h

(2+δ)/2
n = o(1)). Then,

as n → ∞,

sup
y∈R

∣∣∣∣P∗
(√

n

shn(X0)
〈Γ−1

hn
(U∗

n − Ûn,gn), X0〉 ≤ y
∣∣∣X0

)
− Φ(y)

∣∣∣∣ P−→ 0.

The supplement [45] then establishes that a scaled projection involving b∗n ≡
β̂∗
hn

−β̂gn−Γ−1
hn

(U∗
n−Ûn,gn) from (33) converges to zero in bootstrap probability

P∗(·|X0), namely,

P∗
(√

n

shn(X0)
|〈b∗n, X0〉| > η

∣∣∣X0

)
P−→ 0, (34)

as n → ∞, for each η > 0. Using a subsequence argument (cf. [3], Theo-
rem 20.5) for bootstrap distributions along with Slutsky’s theorem, Theorem 2
then follows from (34) in combination with Proposition 4 and (33); see also
Propositions S5-S9 in the supplement [45].

Proof of Proposition 4. We write Z∗
i,n = 〈X∗

i ε
∗
i,gn

− Ũn,gn ,Γ−1
hn

X0〉 with boot-
strap errors ε∗i,gn ≡ Y ∗

i − 〈β̂gn , X
∗
i 〉 and Ũn,gn ≡ n−1∑n

i=1 Xiε̂i,gn so that
E∗[Z∗

i,n|X0] = 0 and√
n

shn(X0)
〈Γ−1

hn
(U∗

n − Ûn,gn), X0〉

={nshn(X0)}−1/2
n∑

i=1
Z∗
i,n −

√
n

shn(X0)
〈X̄∗ε̄∗gn − X̄ ¯̂εgn ,Γ−1

hn
X0〉, (35)

where ¯̂εgn ≡ n−1∑n
i=1 ε̂i,gn with ε̂i,gn ≡ Yi−〈β̂gn , Xi〉. The second term in (35)

negligible due to the following convergence:

E∗

[(√
n

shn(X0)
〈X̄∗(ε∗)n,gn − X̄(¯̂ε)gn ,Γ−1

hn
X0〉

)2 ∣∣∣X0

]
= oP(1), (36)

which follows using that, from Lemma S35 in the supplement [45],

E∗
[

n

shn(X0)
〈X̄∗(ε∗)n,gn − X̄(¯̂ε)gn ,Γ−1

hn
X0〉2

∣∣∣X0

]
≤{hnshn(X0)−1}(nE∗[‖X̄∗(ε∗)n,gn − X̄(¯̂ε)gn‖2])(h−1

n ‖Γ−1
hn

X0‖2)

= OP

⎛
⎝n−1h−1

n

hn∑
j=1

γ−1
j

⎞
⎠ ,

where the last big OP term converges to zero under Condition (A5).
To deal with the first term in (35), conditional on X0, define the bootstrap

variance v̂2
n ≡

∑n
i=1 E∗[Z∗2

i,n|X0] and a bootstrap version of the Lyapunov condi-
tion as L̂n ≡ v̂

−(2+δ)
n

∑n
i=1 E∗[(Z∗

i,n)2+δ|X0] for δ ∈ (0, 2]. To verify a Lyapunov
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condition

L̂n
P−→ 0, (37)

we will use the following observation:∣∣∣∣ n−1v̂2
n

shn(X0)
− 1

∣∣∣∣ P−→ 0. (38)

To see the convergence in (38), note that

E∗[Z∗2
i,n|X0] = E∗[〈X∗

i ε
∗
i,gn − E∗[X∗

i ε
∗
i,gn ],Γ−1

hn
X0〉2|X0]

= 〈E∗[(X∗
i ε

∗
i,gn − E∗[X∗

i ε
∗
i,gn ])⊗2]Γ−1

hn
X0,Γ−1

hn
X0〉

with E∗[(X∗
i ε

∗
i,gn

−E∗[X∗
i ε

∗
i,gn

])⊗2] = E∗[(X∗
i ε

∗
i,gn

)⊗2]−(E∗[X∗
i ε

∗
i,gn

])⊗2. We then
find that

E∗[(X∗
i ε

∗
i,gn − E∗[X∗

i ε
∗
i,gn ])⊗2] = Λ̂n,gn ,

which implies that

E∗[Z∗2
i,n|X0] = 〈Λ̂n,gnΓ−1

hn
X0,Γ−1

hn
X0〉 = 〈(Λ̂n,gn − Λ)Γ−1

hn
X0,Γ−1

hn
X0〉 + shn(X0),

and hence,∣∣∣∣ n−1v̂2
n

shn(X0)
− 1

∣∣∣∣ = shn(X0)−1|〈(Λ̂n,gn − Λ)Γ−1
hn

X0,Γ−1
hn

X0〉|.

The convergence in (38) now follows from Lemma S30 in the supplement [45].
To prove (37), the Lyapunov term Ln is expanded as

L̂n = v̂−(2+δ)
n

n∑
i=1

E∗[|Z∗
i,n|2+δ|X0]

≤ v̂−(2+δ)
n

n∑
i=1

E∗[‖Λ−1/2
hn

X∗
i ε

∗
i,gn‖

2+δ|X0]‖Λ1/2
hn

Γ−1
hn

X0‖2+δ (39)

=
(
‖Λ1/2

hn
Γ−1
hn

X0‖2

n−1v̂2
n

)(2+δ)/2

n−δ/2E∗

[
n−1

n∑
i=1

‖Λ−1/2
hn

X∗
i ε

∗
i,gn‖

2+δ
∣∣∣X0

]
;

here, we have

‖Λ−1/2
hn

Γ−1
hn

X0‖2

n−1v̂2
n

≤ shn(X0)
n−1v̂2

n

= 1 + oP(1) = OP(1)

since ‖Λ−1/2
hn

Γ−1
hn

X0‖2 = 〈ΛhnΓ−1
hn

X0,Γ−1
hn

X0〉 ≤ 〈ΛΓ−1
hn

X0,Γ−1
hn

X0〉 = shn(X0)
and the last upper bound OP(1) is obtained due to (38). The latter term in (39)
is bounded as

n−δ/2E∗

[
n−1

n∑
i=1

‖Λ−1/2
hn

X∗
i ε

∗
i,gn‖

2+δ
∣∣∣X0

]
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≤21+δ

⎛
⎝n−δ/2hδ/2

n

hn∑
j=1

λ
−(2+δ)/2
j

⎞
⎠(

n−1
n∑

i=1
‖Xi‖4+2δ

)
‖β̂gn − β‖2+δ (40)

+ 21+δn−δ/2hδ/2
n n−1

n∑
i=1

hn∑
j=1

λ
−(2+δ)/2
j |〈Xiεi, ψj〉|2+δ.

based on

E∗[‖Λ−1/2
hn

X∗
i ε

∗
i,gn‖

2+δ] =

⎛
⎝ hn∑

j=1
λ−1
j 〈Xiε̂i,gn , ψj〉2

⎞
⎠

(2+δ)/2

≤ 21+δhδ/2
n

hn∑
j=1

λ
−(2+δ)/2
j

(
|〈Xi(ε̂i,gn − εi), ψj〉|2+δ + |〈Xiεi, ψj〉|2+δ

)
,

by Jensen’s inequality along with

hn∑
j=1

λ
−(2+δ)/2
j |〈Xi(ε̂i,gn − εi), ψj〉|2+δ =

hn∑
j=1

λ
−(2+δ)/2
j |〈β̂gn − β,X⊗2

i ψj〉|2+δ

≤
hn∑
j=1

λ
−(2+δ)/2
j ‖β̂gn − β‖2+δ‖Xi‖4+2δ

using ε̂i,gn − εi = −〈β̂gn − β,Xi〉. The first term in (40) converges to zero
in probability since n−δ/2h

δ/2
n

∑hn

j=1 λ
−(2+δ)/2
j = O(1), E[‖X‖4+2δ] < ∞, and

‖β̂gn − β‖ P−→ 0. The second term in (40) is bounded as

E

⎡
⎣n−δ/2hδ/2

n n−1
n∑

i=1

hn∑
j=1

λ
−(2+δ)/2
j |〈Xiεi, ψj〉|2+δ

⎤
⎦ ≤ Cn−δ/2h(2+δ)/2

n .

by Condition supj∈N λ
−(2+δ)/2
j E[|〈Xε,ψj〉|2+δ] < ∞. Because n−δ/2h

(2+δ)/2
n → 0

as n → ∞, the second term converges to zero in probability, verifying (37).
Finally, by combining Slutsky’s theorem, Polya’s theorem [1, Theorem 9.1.4],

and a subsequence argument (e.g., [3, Theorem 20.5]) along with (36) and (37),
we conclude the desired result.

Proof of Proposition 1. By Propositions S11-S15 and Lemma S56 in the sup-
plement [45], the naive bootstrap construction T ∗

n,naive(X0) can be written as
T ∗
n,naive(X0) = T ∗

n,ŝ(X0) + A∗
n + Bn + Cn, where T ∗

n,ŝ(X0) is the PB quan-
tity from (16); A∗

n ≡ A∗
n(X0) is a bootstrap error term that converges to

zero in bootstrap probability if n−1/2h4
n(log hn)7/2 → 0; Bn ≡ Bn(X0) rep-

resents a bias-type term that does not depend on the bootstrap sample and
satisfies supy∈R |P(Bn ≤ y|X0) − Φ(y/σ(τ))| P−→ 0 with limit variance σ2(τ)
from (22); and Cn ≡ Cn(X0) is a negligible term that converges to zero if
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n−1/2h
9/2
n (log hn)6 → 0. By writing Dn ≡ Bn + Cn and applying the triangle

inequality, we find∣∣∣∣sup
y∈R

|P∗(T ∗
n,naive(X0) ≤ y|X0) − P(Tn(X0) ≤ y|X0)| − sup

y∈R

|Φ(y −Dn) − Φ(y)|
∣∣∣∣

converges to zero in probability, using that supy∈R |P∗(T ∗
n,ŝ(X0)+A∗

n ≤ y|X0)−
Φ(y)| P−→ 0, by Theorem 2 with Proposition S11 in [45], and that supy∈R |P
(Tn(X0) ≤ y|X0) − Φ(y)| P−→ 0 by Theorem 1. By the continuous mapping
theorem/embedding theorem, we then have

Φ(y −Dn) − Φ(y) d−→ Φ
(
y + σ(τ)Z

)
− Φ(y), y ∈ R,

based on Dn ≡ Bn + Cn
d−→ −σ(τ)Z for a standard normal variable Z. The

convergence in Proposition 1 then follows (cf. [3]).

Appendix C: Proof of Example 1

We verify that Example 1 conditions ensure the assumptions for Theorems 1-2.
With the given structure, the covariance operator Λ ≡ E[(Xε)⊗2] is written as

Λ = E[ξ4]
∑
j∈N

γj

⎛
⎝ρ2

jE[W 4
1 ] +

∑
l �=j

γlρ
2
l

⎞
⎠φ⊗2

j ,

indicating the eigenfunctions {ψj} of Λ are given as

λj = γjE[ξ4]

⎛
⎝ρ2

jE[W 4
1 ] +

∑
l �=j

γlρ
2
l

⎞
⎠ = γjE[ξ4](κ + 2ρ2

j )

with eigenvalues {λj} as λj = φj ; note that λj  γj as j → ∞. Condition (A1)
follows because H = span({φj}∞j=1) (i.e., the closure of the space spanned by
eigenfunctions) and Γ =

∑∞
j=1 γjφ

⊗2
j . Regarding moments conditions for X,

Condition (A2) holds because E[(γ−1/2
j 〈X,φj〉)4] = E[ξ4]E[W 4

j ] < ∞, while
E[‖X‖8] < ∞ holds as E[(γ−1/2

j 〈X,φj〉)8] = E[ξ8]E[W 8
j ] < ∞. Conditions (A3)-

(A5), all the conditions related the growth rate of hn, and Condition B(u)
with u > 7 hold by a similar argument to the proof of [44, Corollary 2].
Conditions (A6) follows by h−1

n shn(X0) → κE[ξ4]ξ2 here by Lemma S53 in
the supplement. To verify Condition (A7), recall that the 4-th central mo-
ment of chi-square distribution with degree of freedom k is 12k2(k + 1). Then,
E[ε4|X] = 12‖X‖4(‖X‖2 + 1), and hence,

E[ξ4
j ε

4] = E[ξ4
jE[ε4|X]] = 12E[ξ4

j ‖X‖4(‖X‖2 + 1)].
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As ‖X‖6 =
(∑∞

l=1 γlξ
2
l

)3 ≤ 3
∑∞

l=1 γ
3
l ξ

6
l , if we additionally assume E[ξ10] < ∞,

we have

sup
j∈N

E[ξ4
j ε

4] ≤ sup
j∈N

∞∑
l=1

γ3
l E[ξ4

j ξ
6
l ] ≤ CE[ξ10]

∞∑
l=1

γ3
l E[W 4

1 ]E[W 6
1 ] < ∞;

thus, Condition (A7) holds as

sup
j∈N

λ−2
j E[〈Xε,ψj〉4] = sup

j∈N

λ−2
j γ2

j E[ξ4
j ε

4] = E[ξ4]−2(κ + E[W 4
1 ] − 1)−2 sup

j∈N

E[ξ4
j ε

4]

is finite. Condition (A8) follows by supj∈N γ−1
j 〈Λφj , φj〉 = supj∈N E[ξ4]{κ +

ρ2
j (E[W 4

1 ] − 1)} < ∞.
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