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Abstract: Volatility modeling is a challenging topic in high-frequency fi-
nancial data analysis. In this paper, we propose a novel Bayesian framework
for modeling and forecasting spot volatility by assuming a latent GARCH
structure is embedded into the volatility process at a series of unobserved
“anchor” time points, which can well describe the evolving volatility of fi-
nancial assets in high frequency. We introduce an ideal approximation of
latent anchors, which shares similar posterior distribution with true latent
anchors. Furthermore, we develop an efficient two-stage inference frame-
work with its corresponding two-stage MCMC sampling algorithm. The
simulation study and real data analysis both show our method outper-
forms the existing alternatives in explanation of latent anchors and the
estimation and forecasting of volatility.
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1. Introduction

The analysis of volatility is a crucial area of study in financial econometrics
and statistics, with numerous practical applications such as asset allocation,
option pricing, and risk management. Over the past decades, the increase in
accessibility to high-frequency data and the development of relevant modeling
tools have led to a better understanding of financial volatility. However, the
complexity of volatility dynamics has presented several challenges in modeling
high-frequency volatility. Important characteristics of high-frequency financial
time series, such as volatility clustering, volatility stationarity, and long memory
of volatility, have received significant attention but have not been fully resolved.
The dynamics of volatility differ across markets and assets and are influenced
by various complex factors, such as public news, dealers’ liquidity demand, and
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private information, necessitating a flexible and adaptable modeling framework
[5, 24].

Previous research has produced multiple volatility models tailored for high-
frequency data. While the classical generalized autoregressive conditional het-
eroskedastic (GARCH, [18, 10]) model is a robust method for investigating
volatility structures in low-frequency financial data, its direct application to
high-frequency data is hindered by the problem of parameter inconsistency [4].
Much effort has been devoted to extending the flexibility of GARCH for high-
frequency analysis. One such approach is the multiplicative component GARCH
model (MC-GARCH, [4, 5, 26, 20]), which applies a GARCH structure to
the normalized high-frequency returns after removing daily, diurnal, and sea-
sonal volatility patterns. Another model, the autoregressive conditional dura-
tion GARCH (ACD-GARCH, [19, 15]) combines the modeling of observed du-
rations with the GARCH volatility to handle irregularly spaced observations
such as tick-by-tick data. Furthermore, the continuous GARCH model [16]
and integrated continuous time GARCH model (COGARCH, [39, 46]) extend
the conventional discrete-time GARCH model to a continuous-time framework.
Nonetheless, the intricate nature of intraday volatility might prove too complex
to be accurately estimated with a specific parametric model. [7, 11]. An alterna-
tive way is to combine discrete-time GARCH models and realized measures for
better utilization of the information inherent in high-frequency data, and thus a
better forecasting of the volatility [30, 11, 25]. Empirical studies have shown the
good performance of such an idea. [38] took a step forward and proposed the
unified GARCH-Itô model (UGI), where a discrete-time GARCH structure is
embedded into a continuous-time Itô process for high-frequency financial data
at integer time points. The UGI model and its extensions [53, 37] are among
the first attempts to provide unified frameworks for both low-frequency and
high-frequency volatility modeling and enjoy large flexibility.

In this paper, we propose a Bayesian latent GARCH-Itô model (LGI) for high-
frequency data. We assume that the log price of an asset obeys an Itô process,
with its volatility process driven by a discrete-time GARCH model defined at
a series of latent “anchor” time points. The volatility across two successive
anchors exhibits a classical GARCH structure. The anchors are not pre-specified
as equally-spaced fixed calendar time points, but are instead latent and should
be estimated from the data. By embedding a GARCH structure on such a series
of latent anchors, the proposed model enjoys great flexibility in modeling and
predicting volatility for high-frequency data. Our work was motivated by the
UGI model but has fundamental differences. The UGI model intends to provide
a unified modeling framework for both high and low-frequency data. Therefore,
its discrete-time GARCH structure is embedded in the volatility process via a
series of fixed and known time points, which might be determined ad-hoc in
practice. In comparison, we aim to develop a flexible modeling tool for high-
frequency data with complex volatility dynamics. Thus we introduce the latent
anchor time points to learn the volatility dynamics from the data.

The contributions of this paper can be summarized as follows. First, we
propose a sufficiently flexible volatility model for high-frequency data analy-
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sis, facilitating the understanding of the complex volatility dynamics of asset
returns with high-frequency observations. Second, we propose a framework that
offers interpretability for volatility heterogeneity and innovation accumulation
in high-frequency data, utilizing a series of unobserved “anchor” time points.
This approach enables the forecasting of both spot and integral volatility, pro-
viding a comprehensive analysis of the underlying data patterns. Third, to com-
pute more efficiently, we introduce an ideal approximation for latent anchors
in the sense that they share similar posterior distributions. Last, we propose a
two-stage Bayesian inference procedure and develop the corresponding efficient
Markov Chain Monte Carlo sampling algorithm (MCMC) with a birth-death
scheme [29, 49] for the posterior computation of the latent anchors and other
parameters of interest.

The rest of the paper is organized as follows. In Section 2, we provide an
overview of the Bayesian LGI model with the specific prior distribution. Section
3 outlines a methodology for approximating latent anchors and estimates the
corresponding convergence rate to the true parameters. In Section 4, we present
a two-stage Bayesian inference framework, along with a corresponding two-stage
Markov Chain Monte Carlo (MCMC) algorithm. To demonstrate the superiority
of our model, we conduct simulation studies in Section 5 and analyze real data
obtained from the Shanghai Stock Exchange (SSE) Market in Section 6. Finally,
in Section 7, we provide concluding remarks.

2. Method

To predict the asset volatility for risk management, we introduce the latent
GARCH-Itô model (LGI) and propose a Bayesian inference procedure on pa-
rameters of interest in this section.

Let Xt be the log-price process of an asset defined on a filtered probability
space (Ω,F , (Ft)t∈[0,T ],P). In high-frequency finance, Xt is usually assumed to
follow a continuous diffusion process,

dXt = μtdt + σtdBt, (1)

where μt is a drift, Bt is a standard Brownian motion with respect to fil-
tration Ft and σt is the volatility process adapted to Ft. We denote B̃t =
Bt −

∫ t

0 −μs/σsds, Consequently, B̃t becomes a Brownian motion with respect
to an equivalent probability measure Q, defined as follows according to the
Girsanov theorem [48]:

dQ = exp
{∫ T

0
−μs

σs
dBs −

1
2

∫ T

0
(μs

σs
)2ds

}
dP.

And we can deduce that dXt = σtdB̃t under filtered probability space (Ω,F ,
(Ft)t∈[0,T ],Q), which means that the drift term μt will not change the distri-
bution law of Xt fundamentally. Hence, in order to simplify the expression, it
is common practice to set the drift term μt equal to zero. This simplification
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has been commonly adopted in prior research studies [1, 47, 38, 53]. To describe
the dynamics of σt, we assume there exists a series of latent stopping times
τ0 < τ1 < . . . that cannot be directly observed, and rewrite equation (1) as

Xt = Xτi−1 +
∫ t

τi−1

σsdBs, t ∈ (τi−1, τi].

In this paper, we name τi, i = 0, 1, . . . “latent anchors”, which help us moor a
discrete GARCH structure onto the volatility process. Specifically, we assume a
GARCH structure is embedded into the volatility process via the latent anchors
τi, i = 0, 1, . . . and propose the following LGI model,{

Xt = Xτi−1 + Zt(τi−1),
σ2
t = (t− τi−1)w + exp{γ(t− τi−1)}σ2

τi−1
+ βZ2

t (τi−1),
(2)

for t ∈ (τi−1, τi], i = 1, . . ., where w ≥ 0, γ < 0, β > 0, and Zt(τi−1) :=∫ t

τi−1
σsdBs. In the proposed LGI model (2), the current spot volatility is con-

tributed by three components: the drift term (t − τi−1)w; the spot volatility
at the previous anchor σ2

τi−1
, weighted by a exponentially decreasing coefficient

exp{γ(t− τi−1)}; and the innovation accumulated from τi−1 to t. Let p denote
the number of latent anchors during [0, T ], τ0 = 0, and τ = (τ1, . . . , τp)�. We
assume τi, i = 1, . . . are arrival times of a Poisson process with intensity 1/α,
and assign the prior for (τ , p) accordingly as

π(p, τ |α) = α−p exp
(
−T

α

)
I{0<τ1<...<τp≤T},

where IA is an indicator function of event A.
To show the close connection between the proposed LGI model (2) and the

classical discrete-time GARCH model, we give the following assumption on the
model parameters.

Assumption 2.1. w ≥ 0, β > 0, γ < 0, α > 0, (1 − αβ)(1 − αγ) > 1.

Assumption 2.1 is needed to guarantee the stationary of integral volatility
between two consecutive anchors

∫ τi
τi−1

σ2
sds, which we will illustrate in the fol-

lowing Proposition.

Proposition 2.1. Under model (2) and Assumption 2.1, the log-returns between
two consecutive anchors Xτi −Xτi−1 , i = 1, 2, . . . follow a discrete-time GARCH
model,{

Xτi −Xτi−1 = Zτi(τi−1),
Eξ{Z2

τi(τi−1)|Fτi−1} = wg + γgEξ{Z2
τi−1

(τi−2)|Fτi−2} + βgZ2
τi−1

(τi−2),

where ξ := (w, γ, β, α), wg = wα2/(1 − αβ), γg = 1/(1 − αγ), βg = αβ/(1 −
αβ)(1 − αγ).
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Proposition 2.1 implies that the innovation accumulated over (τi−1, τi], i =
0, 1, . . . can be considered as the discrete-time GARCH innovation. Then, the
width of interval (τi−1, τi], or the arrival rate of the anchors τi, sheds light on
the speed of GARCH innovation accumulation. A relatively narrow (τi−1, τi], or
high arrival rate of τi, implies high accumulation speed, and thus fast obtainment
of new information from the market. In practice, the innovation accumulation
speed usually varies over trading days or over different times within one trading
day. The proposed LGI model has the flexibility to capture such variation with
its latent anchors.

The proof of Proposition 2.1 is shown in Appendix A.1. With the non-
negativity and stationarity constraints on the GARCH structure, we require
the parameters satisfy wg ≥ 0, 0 < γg, βg < 1 and γg + βg < 1, thus w ≥ 0, β >
0, γ < 0, α > 0, and (1−αβ)(1−αγ) > 1. We assign noninformative flat priors for
ξ and σ2

0 , i.e., π(ξ) ∝ I{w≥0,β>0,γ<0,α>0,(1−αβ)(1−αγ)>1}, and π(σ2
0) ∝ I{σ2

0>0},
which are uniformly distributed on their supports.

3. Posterior distribution

To conduct posterior computation for the proposed LGI model, we rely on para-
metric modeling of the microstructure noise and a MCMC algorithm. Suppose
we observe n log-prices of an asset on a series of observation time points during
the observation interval [0, T ], denoted as Yt1 , . . . , Ytn with 0 = t0 < t1 < . . . <
tn < T .

3.1. Parametric microstructure noise

Microstructure noise is not negligible in high-frequency data. Following [43], we
assume the observed log-prices are contaminated with additive microstructure
noise, and the noise is a parametric function of trading information. Specifically,
at time tj , the observed log-price Ytj is assumed to have the following form,

Ytj = Xtj + h(Ztj ; δ),
where Xtj is the underlying efficient log-price, Ztj represents observable trading
information, such as trading volume, trading type, quoted depth, etc. [27, 50, 3,
34, 13], and h(.; δ) is a parametric function with unknown parameter δ. A typical
form of h(.; δ) is linear, where we assume the additive noise is a linear function of
observable trading information [44]. Some non-linear form are also proposed in
the literature for some particular purpose, such as the segmented model allows
asymmetric impacts of buy and sells, and the log model allows concave rates
for buys and convex rates for sells [35, 44]. Our framework allows for a very
general form of h(.; δ) since we rely on the Metropolis–Hastings algorithm for
the sampling of δ.

In simulation and empirical study, we choose a typical function form of noise
term,

hδ(Rtj ) = Utj (δ1 + δ2Vtj/Δtj), (3)
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where Vtj is the trading volume, Utj is a binary trading type indicator with
Utj = 1 representing a buyer-initiated trade and Utj = −1 representing a seller-
initiated trade. The rationality of applying equation (3) is based on the fact
that one of the most important sources of microstructure noise is the bid-ask
spread, which is caused by the trading behaviors of the market participants.
A bid (ask) order with a certain volume placed in the market is usually a
positive (negative) sign for the future expectation of the asset price, and then the
market participants may adjust their strategies accordingly, leading to upward
(downward) price movements [28, 40]. Also, this typical function form is usually
chosen in previous research [3, 44]. We simply assign a non-informative uniform
prior, i.e., π(δ) ∝ 1 for parameters δ1 and δ2.

3.2. Discrete approximation of latent anchors

Let Y = (Yt1 , · · · , Ytn)� be the observed prices, and Z = (Zt1 , · · · , Ztn)� be the
observed trading information used in the microstructure noise model. Denote
all the observed data as D = (Y,Z). Then, the joint posterior distribution of
the model parameters θ = (p, τ , ξ, δ, σ2

0) given D is
π (θ|D) ∝ π (D|θ)π (θ) ,

where π (D|θ) is an approximated likelihood function defined as a product of a
series of normal density, i.e.,

π (D|θ) =
n∏

j=1
π
(
ΔYtj , Ztj |θ,Ftj−1

)

=
n∏

j=1

1√
2πσ2

tj−1
Δtj

exp
{
−

(
ΔXtj

)2

2σ2
tj−1

Δtj

}
,

with ΔXtj := Xtj −Xtj−1 . However, the likelihood is not directly tractable since
for tj ∈ (τi−1, τi], σ2

tj relies on Yτi−1 , and Yτi−1 is observable only if the latent
anchor τi−1 happens to be an observation time, i.e., ∃j′, τi−1 = tj′ . In the case
that τi−1 �= tj′ , ∀j′, we need to integrate out Yτi−1 , which is highly inefficient.

Thus, we propose a discrete approximation scheme for latent anchors. Specif-
ically, we let τ̃0 = τ0 = 0, and for i ≥ 1,

τ̃i = tj if and only if τi ∈ (tj−1, tj ].
τ̃i is then a discrete version of latent anchor τi, which only takes value at the
observation times {tj}nj=1. To ensure a good approximation of τ , we need the
following assumption.

Assumption 3.1. infi Δτi > supj Δtj with Δtj = O(1/n) for every j.

Assumption 3.1 implies the observations are frequent enough that there exists
at least one observation between any two consecutive latent anchors, which
ensures that ∀i = 1, · · · , p− 1,

τ̃i ≤ τi + Δtj < τi + Δτi+1 = τi+1 ≤ τ̃i+1,
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where τi ∈ (tj−1, tj ]. Therefore, the number and the order of the latent anchors
remain unchanged after approximation scheme. Also, the interval between any
two consecutive observation time points is assumed to be narrow as n is large,
which ensures the true τi and the approximated τ̃i are close enough. Denote
G = (tj1−1, tj1 ] × · · · × (tjp−1, tjp ] with tj1 < . . . < tjp , we can obtain the prior
distribution of the approximated latent anchors

π(τ̃ = t′|p, α) = P (τ ∈ G|p, α)

=
∫
τ∈G

α−p exp(−T

α
)I{0<τ1<···<τp≤T}dτ

= α−p exp(−T

α
)I{0<tj1<···<tjp≤T}

p∏
i=1

Δtji ,

where t′ = (tj1 , · · · , tjp), τ̃ = (τ̃1, · · · , τ̃p). To simplify, we abbreviated π(τ̃ =
t′|p, α) as π(τ̃ |p, α) and denote the prior distribution π(θ̃) = π(τ̃ |p, α)π(p, ξ, δ,
σ2

0), where θ̃ = (p, τ̃ , ξ, δ, σ2
0). At a high observation frequency, as in a com-

mon high-frequency financial application, such approximation is desirable in
the sense the bias between the true and approximated posterior distributions
can be ignored. We show with the following Theorem 1 the asymptotic property
of the bias. We denote the spot volatility corresponding to the approximation
as σ̃2

t , with
σ̃2
t = (t− τ̃i−1)w + exp{γ(t− τ̃i−1)}σ2

τ̃i−1
+ β(Xt −Xτ̃i−1)2.

Then, the approximated posterior distribution can be wrote as,
π(θ̃|D) ∝ π(D|θ̃)π(θ̃), (4)

To show the convergence of π̃(θ̃|D) to π(θ|D), we need the following assumption.

Assumption 3.2. These exist constants 0 ≤ ν < 1 and C > 0 such that
0 < p ≤ Cnν .

Assumption 3.2 requires the number of latent anchors p is much smaller than
the number of observations n, which is reasonable in high-frequency finance. Our
model assumption is more general than UGI model and its extensions, where
the number of anchors is assumed to be a constant.

Theorem 3.1. Under Assumptions 2.1 and 3.1-3.2, we have,

Eθ

{
π(θ̃|D) −

∫
τ∈G π(θ|D)dτ∫

τ∈G π(θ|D)dτ

}
= o(nν−1),

where Eθ is the expectation with respect to the sampling distribution of obser-
vation data D under the parameters θ.

Theorem 3.1 ensures the relative bias between the approximated and the
true posterior distributions goes to zero as n → ∞. Thus, τ̃ is an ideal ap-
proximation of τ in the sense that they share similar posterior distributions
and the computation on τ̃ is much more efficient. The proof of Theorem 3.1 is
shown in Appendix A.2. In the following section, we will focus on the posterior
computation and inferences for the approximated posterior distribution π(θ̃|D).
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4. Posterior computation

In this section, we focus on the posterior inference and sampling of the latent
anchors, as well as the spot and integrated volatility. We adopt a two-stage
strategy for the inference, and propose the corresponding MCMC algorithm. At
the first stage, we obtain the posterior distribution of p and its corresponding
point estimate p̃. At the second stage, we sample the other parameters given
p = p̃.

4.1. Bayesian inference

The Bayesian inference of model parameters are conducted via a two-stage pro-
cedure. At the first stage, we obtain a point estimate of p, such as the maximum
a posteriori probability (MAP) estimate, p̃ = maxp π(p|D). At the second stage,
we plug in the point estimate of p, and obtain the conditional posterior distri-
bution of the other parameters π(τ̃ , ξ, δ, σ2

0 |D, p̃), based on which we can make
inference on those parameters. In practice, the two-stage procedure facilitates
inferences on each of the latent anchors since the number p is fixed at the second
stage. We can easily obtain the marginal credible interval given p̃ for each τi from
the conditional posterior distribution π(τi|D, p̃). The inferences for parameters
ξ, δ and σ2

0 are similar.
Then, we discuss the posterior inferences of the spot and integrated volatil-

ity, i.e., σ̃2
t and

∫ b

a
σ̃2
t dt, respectively. Given a time point tm, we estimate the

approximated spot volatility σ̃2
t with its posterior mean,

E(σ̃2
tm |D, p̃) = E

{
(tm − τ̃ptm

)w|D, p̃
}

+ E
{

exp{γ(tm − τ̃ptm
)}σ̃2

τ̃ptm
|D, p̃

}
+ E

{
β(Xtm −Xτ̃ptm

)2|D, p̃
}
,

(5)

where τ̃ptm
is the approximation of τptm

, the last latent anchor before tm. σ̃2
τ̃ptm

is obtained recursively.
We estimate the integral volatility over a specific time interval (a, b] with

σ̃2
(a,b] :=

∑
tj∈(a,b]

σ̃2
tjΔtj ,

Of note, we can also achieve forecasting based on equation (5). Suppose we
obtain the log-prices at n discrete observation times tj , j = 1, . . . , n. To forecast
the volatility on discrete time tj , where j = n + 1, · · · ,m, we first obtain a
series of latent anchors with the discrete probability distribution π(p′, τ̃ = tk) =
α−p′ exp{−(tm − τ̂p̃)/α̂}I{τ̂p̃<tk1<···<tk

p′ }
∏p′

i=1 Δtki , where tk = (tk1 , · · · , tkp′ ),
α̂, τ̂p̃ are MAP estimator of α and latent anchor τp̃. Then, the last term of
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equation (5) becomes

E
{
β(Xtm −Xτ̃ptm

)2|D, p̃
}

= E

(
β

∫ tm

tn

σ2
sds|D, p̃

)
+ E

{
β(Xtn −Xτ̃ptm

)2|D, p̃
}

≈ E

⎛
⎝β

m∑
j=n+1

σ̃2
tjΔtj |D, p̃

⎞
⎠ + (Xtn −Xτ̃ptm

)2E(β|D, p̃).

This implies the future spot volatility can be predicted recursively, based on
which we can also obtain a forecasting of future integral volatility.

4.2. Two-stage MCMC algorithm

We develop a two-stage MCMC algorithm based on the Gibbs sampling and
Metropolis-Hastings (MH) scheme to obtain the posterior distribution of the
latent anchors p, τ̃ , GARCH parameters ξ, noise parameters δ and the initial
volatility σ2

0 .
At the first stage, we sample all the parameters of interest using the Gibbs

sampling strategy. We employ a birth-death scheme (see, e.g., [29, 49]) to update
(p, τ̃ (p)), which involves a birth step to generate a new anchor and increase p,
and a death step to discard an old anchor and decrease p. See Algorithm 1
for details. For updating the remaining parameters, a random walk Metropolis-
Hastings (MH) algorithm is used. The acceptance rate of the MH algorithm
is turned to around 0.2 to ensure a good balance between exploration of the
parameter space and convergence to the target distribution. The details of the
MCMC algorithm can be found in Appendix B. At the second stage, we fix the
number of latent anchors with the MAP estimate using the first stage samples,
and update the other parameters of interest with the Gibbs sampling strategy.

4.3. Extensions to jump diffusion and multivariate processes

The prices of financial assets sometimes exhibit drastic fluctuations in a short
period of time, which are difficult to fully characterized by traditional diffusion
processes [2, 6, 9, 14]. Some researchers propose to use jump diffusion processes
in this situation to improve the estimation and prediction of volatility. A jump
diffusion process can be written as

dXt = μtdt + σtdBt + dJt,

where Jt represents a “jump term” that captures huge changes of log-prices in a
short time. It is obviously that our LGI framework can be extended to account-
ing for jumps with using the jump diffusion process as the underlying model
of the efficient log-price Xt and assigning the jump term an appropriate prior,
e.g., the Poisson prior for the arrival of jumps and a Gaussian prior for jump
sizes [44]. Another option of handling jumps is to use a thresholding strategy
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Algorithm 1 Updating algorithem for (p, τ̃ ) with a birth-death scheme
Input: learning rate ε, latent anchors (p, τ̃ ), parameters ξ, δ, σ2

0 and observations Y, U, V
1: Birth step for p:
2: sample τ∗ ∼ Uniform[0, T ], let τ̃∗ =

∑n
j=1 tjI

{
τ∗∈(tj−1,tj ]

}
3: if τ̃∗ �= τ̃i for i = 1, · · · , p then
4: if there exists i = 1, · · · , p such that τ̃∗ ∈ (τ̃i−1, τ̃i) then
5: τ̃∗ = (τ̃1, · · · , τ̃i−1, τ̃∗, τ̃i, · · · , τ̃p)
6: else if τ̃∗ ∈ (τ̃p, T ] then
7: τ̃∗ = (τ̃1, · · · , τ̃p, τ̃∗)
8: end if
9: sample u ∼ Uniform[0, 1], let ρ = π(p+1,τ̃∗|ξ,δ,σ2

0 ,D)
π(p,τ̃ |ξ,δ,σ2

0 ,D)
10: if u < min(1, ρ) then
11: update p = p + 1, τ̃ = τ̃∗

12: end if
13: end if
14: Death step for p:
15: sample i∗ with P (i∗ = i) = 1/p, i = 1, · · · , p
16: τ̃∗ = (τ̃1, · · · , τ̃i∗−1, τ̃i∗+1, · · · , τ̃p)
17: sample u ∼ Uniform[0, 1], let ρ = π(p−1,τ̃∗|ξ,δ,σ2

0 ,D)
π(p,τ̃ |ξ,δ,σ2

0 ,D)
18: if u < min(1, ρ) then
19: update p = p− 1, τ̃ = τ̃∗

20: end if
21: Update τ̃ :
22: for i = 1, 2, · · · , p do
23: sample τ∗i ∼ N(τ̃i, ε2), let τ̃∗i =

∑n
j=1 tjI

{
τ̃∗
i ∈(tj−1,tj ]

}
24: sample u ∼ Uniform[0, 1], let ρ = π(τ̃∗

i |τ̃(−i),ξ,δ,σ
2
0 ,D)

π(τ̃i|τ̃(−i),ξ,δ,σ
2
0 ,D)

25: if u < min(1, ρ) then
26: update τ̃i = τ̃∗i
27: end if
28: end for

to screen out the jumps from the observed prices before any further analysis,
which has shown its advantages in many empirical studies [45, 41, 42]. In our
empirical study section, we follow [23] to screen out jumps by setting a specific
threshold for the log returns, and then build the LGI model on the jump-free
log return series. We focus on modeling the volatility in this paper, and leave
the joint model of volatility and jumps for future works.

In addition, our model can be extended to handling multivariate asset price
series analysis by borrowing ideas from the latent factor model. We can use a
similar strategy as the factor GARCH-Itô model proposed by [36], which puts a
GARCH-Itô structure on latent factors to model the volatility matrix for mul-
tivariate series. Specifically, we assume the multivariate price series are driven
by r common latent factors, and the volatility matrix admits an eigendecompo-
sition, with the instantaneous eigenvalues λt,j , j = 1, . . . , r following the LGI
structure, i.e.,

λt,j = (t−τi−1)wj+exp{γj(t−τi−1)}λτi−1,j+
r∑

l=1
βj,l

{∫ t

τi−1

√
λs,ldWs,l

}2

, (6)
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for j = 1, . . . , r. Another challenge in extension of LGI model to multivariate
cases is the non-synchronicity in multivariate observations. Fortunately, there
are already synchronizing methods developed in literature [1, 22, 21, 55]. We
can rely on a global refresh time method [8] to synchronize multivariate ob-
servations from all the assets, then evaluate the instantaneous eigenvalues on
the synchronized times t̃ to obtain a LGI structure for λt̃,j , j = 1, . . . , r. For
posterior inferences, we may use the same synchronized times t̃ to calculate the
realized covariance matrix on interval (τi−1, τi], denoted as Σi, and then find
an approximation of the integral term in equation (6) with the eigendecompo-
sition of Σi. Alternatively, we can adopt a pairwise refresh time method for
calculating each off-diagonal element of the realized covariance matrix since it
only involves observations from two specific assets, which may leads to a better
approximation of the integral term.

5. Simulation

In this section, we begin by generating data using a toy model to assess the
estimation performance of all parameters, including the latent anchors τi, at
varying observation frequencies. Next, to evaluate the volatility estimation and
forecasting performance of the LGI model with both true model and model
with misspecification, we consider three scenarios with different data-generating
mechanisms: data generated with 1) LGI model, 2) the Ornstein-Uhlenbeck
model [56, 52, 51], and 3) the Heston model [31], where 2) and 3) are well-
known models for interpretation of the volatility evolution of financial assets.

5.1. Parameter settings

In Scenario 1, we generate latent prices with LGI model. We set Δτi ∼ exp(1)
and w = 0.075, γ = −2.5, β = 0.35, σ2

0 = 0.02.
In Scenario 2, we generate latent prices with an Ornstein-Uhlenbeck model,

dXt = σtdBt,

dlog(σt) = θσ(vσ − log(σt))dt + vdBσ
t ,

and in Scenario 3, we generate latent prices with a Heston model,

dXt = σtdBt,

dσ2
t = θσ(vσ − σ2

t )dt + vσtdB
σ
t .

Both models are constructed with two related stochastic diffusion processes:
the price process and the volatility process. Bt, Bσ

t are two correlated standard
Brownian motions with correlation ρ1 = −0.5. Under the Heston model, vσ and
v can be explained as the long-term price variance and the volatility of volatility
(VOV) process, respectively; and θσ is the rate of reversion to the long-term price
variance, which determines the relative weights of the current variance and the
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Table 1

Parameter settings of Scenario 2 and Scenario 3.

Scenario 2 Scenario 3
SL SH FL FH SL SH FL FH

θσ 0.7 0.7 1.4 1.4 0.7 0.7 1.4 1.4
v 0.1 0.5 0.1 0.5 0.1 0.2 0.1 0.2
vσ -1.5 -1.5 -1.5 -1.5 0.1 0.1 0.1 0.1

log-term variance of the prices. The explanation of the parameters are similar
under the Ornstein-Uhlenbeck model but on the log scale. We set each 4 settings
for Scenario 2 and Scenario 3 as Table 1, where SL, SH, FL, FH represent slow
reversion and low VOV, slow reversion and high VOV, fast reversion and low
VOV, fast reversion and high VOV respectively.

We consider equally spaced observation time points 0 = t0 < t1 < . . . < tn =
T with T = 100 denoting 100 consecutive trading days, and Δ := tj+1 − tj
denoting the observation frequency. Three different frequencies are investigated
with Δ = 1/500, Δ = 1/1500 and Δ = 1/5000. We generate the observed
log-prices {Ytj}j=1 with the parametric noise model as in equation (3), with
the parameters of noise term set as δ1 = 1.5 × 10−3 and δ2 = 3 × 10−10. The
corresponding signal-to-noise ratio in these settings ranges from 0.60 to 0.99,
which is similar with our observations in the empirical study. We simulate 50
datasets for each simulation setting.

For the implementation of the first-stage MCMC algorithm, we draw 5,000
samples with random initializations and discard the first 2,000 samples as burn-
in. Then we draw 5,000 samples with the second-stage MCMC algorithm.

To evaluate the convergence of the algorithm, we adopt the Gelman-Rubin
diagnostic with 10 repetitions of the experiment. The details of the convergence
diagnostic results can be found in Appendix C.1.

5.2. Estimation and forecasting results

We use the samples from the first 99 trading days to evaluate the estimation
performance of the methods, and make one-day-ahead forecasting of the in-
tegral volatility on the 100-th trading day for the evaluation of forecasting.
Table 2 reports the estimation of parameters w, γ, β, α, σ2

0 , δ1, δ2 with the pos-
terior average (Mean), standard deviation (Std), confidence interval (C.I.), ef-
fective size (Eff) and accept rate (AC) under different observation frequency
Δ = 1/500, 1/1500, 1/5000. The estimation error of the parameters primarily
decreases as the number of intraday observations increases, demonstrating the
favorable limited sample property of the model. To evaluate the estimation of
latent anchors, we denote the estimation error as

1
p

p∑
i=1

min
j

|τ̂j − τi|,
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Table 2

Estimation of LGI model parameters over 50 simulation runs.

True Mean Std C.I. Eff AC
w 0.075 Δ = 1/500 0.074 0.002 [0.069,0.077] 109.825 0.200

Δ = 1/1500 0.074 0.002 [0.073,0.077] 124.186 0.198
Δ = 1/5000 0.074 0.002 [0.069,0.075] 89.130 0.195

γ -2.5 Δ = 1/500 -2.485 0.099 [-2.672,-2.298] 143.290 0.201
Δ = 1/1500 -2.481 0.073 [-2.602,-2.314] 142.657 0.201
Δ = 1/5000 -2.439 0.095 [-2.543,-2.229] 93.705 0.201

β 0.35 Δ = 1/500 0.344 0.018 [0.308,0.376] 129.111 0.201
Δ = 1/1500 0.356 0.027 [0.327,0.428] 115.692 0.199
Δ = 1/5000 0.368 0.047 [0.338,0.488] 79.939 0.198

α 1 Δ = 1/500 1.120 0.184 [0.796,1.539] 573.162 0.207
Δ = 1/1500 1.078 0.159 [0.778,1.448] 734.664 0.207
Δ = 1/5000 0.987 0.150 [0.774,1.270] 690.839 0.207

δ1(×10−3) 1.5 Δ = 1/500 1.509 0.122 [1.282,1.737] 391.430 0.201
Δ = 1/1500 1.504 0.022 [1.463,1.544] 542.633 0.201
Δ = 1/5000 1.501 0.005 [1.492,1.508] 221.814 0.197

δ2(×10−10) 3 Δ = 1/500 2.977 0.200 [2.585,3.375] 407.511 0.201
Δ = 1/1500 2.995 0.023 [2.947,3.043] 807.778 0.201
Δ = 1/5000 2.999 0.002 [2.997,3.003] 1015.182 0.197

σ2
0 0.02 Δ = 1/500 0.021 0.005 [0.014,0.032] 1003.778 0.204

Δ = 1/1500 0.020 0.003 [0.015,0.026] 1012.271 0.201
Δ = 1/5000 0.020 0.002 [0.017,0.022] 997.160 0.202

Table 3

The estimation error and the length of 90%, 95% posterior interval for latent anchors,
shown as mean (standard deviation) over 50 simulation runs.

Err 90% interval 95% interval
Δ = 1/500 0.115(0.021) 0.884(0.234) 1.018(0.264)
Δ = 1/1500 0.075(0.019) 0.424(0.118) 0.490(0.135)
Δ = 1/5000 0.059(0.036) 0.240(0.063) 0.277(0.072)

where τ̂i is the MAP estimation of latent anchors introduced in Section 4.1.
Besides, we also obtain the average length of posterior interval for latent anchors,

1
p̃

p̃∑
i=1

|Iτi(α)|

where Iτi(α) is for the α-interval for each latent anchors τi under the condi-
tional posterior distribution π(τi|D, p̃), | · | denotes the length of the interval.
Table 3 presents both the estimation error of latent anchors under MAP esti-
mator and the average length of 90% and 95% posterior intervals for the latent
anchors. From the decreasing error and interval length with the increasing intra-
day observations, we can further highlight the model’s ability to handle limited
samples.

To evaluate the estimation and forecasting performance of integral volatil-
ity, we implement two existing volatility modeling methods: UGI model and
estimated-price realized volatility method (ERV, [44]) for comparison. The es-
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Table 4

The estimation and forecasting errors of the integral volatility under LGI, UGI and ERV for
both simulation scenarios, shown as mean (standard deviation) over 50 simulation runs.

Estimation Forecasting
Scenario 1 Δ = 1/500 Δ = 1/1500 Δ = 1/5000 Δ = 1/500 Δ = 1/1500 Δ = 1/5000

LGI 0.043(0.004) 0.026(0.005) 0.019 (0.009) 0.289(0.257) 0.311(0.218) 0.185(0.134)
UGI 0.534 (0.084) 0.544(0.119) 0.512(0.072) 0.546 (0.581) 0.610 (0.693) 0.383 (0.330)
ERV 0.052 (0.004) 0.030 (0.002) 0.016(0.001) 0.456 (0.519) 0.532 (0.639) 0.367 (0.232)

Scenario 2 Δ = 1/500 Δ = 1/1500 Δ = 1/5000 Δ = 1/500 Δ = 1/1500 Δ = 1/5000

SL
LGI 0.068 (0.011) 0.055 (0.011) 0.048 (0.012) 0.117(0.079) 0.096(0.061) 0.109(0.071)
UGI 0.106 (0.009) 0.100 (0.009) 0.097 (0.010) 0.118 (0.089) 0.099 (0.071) 0.112 (0.077)
ERV 0.051 (0.004) 0.029(0.002) 0.016 (0.001) 0.122 (0.093) 0.097 (0.071) 0.118 (0.083)

SH
LGI 0.200 (0.028) 0.187 (0.025) 0.166 (0.021) 0.592(0.648) 0.635(0.582) 0.506(0.534)
UGI 0.745 (0.100) 0.763 (0.103) 0.748 (0.083) 0.795 (0.800) 0.866 (1.035) 0.752 (0.809)
ERV 0.089(0.008) 0.079(0.007) 0.074(0.006) 0.707 (0.793) 0.675 (0.813) 0.573 (0.552)

FL
LGI 0.058 (0.007) 0.045 (0.008) 0.040 (0.011) 0.091 (0.057) 0.085 (0.064) 0.071(0.050)
UGI 0.078 (0.007) 0.075 (0.008) 0.076 (0.007) 0.079(0.061) 0.079(0.067) 0.083 (0.062)
ERV 0.051(0.004) 0.029(0.002) 0.016(0.001) 0.105 (0.068) 0.096 (0.074) 0.089 (0.067)

FH
LGI 0.144 (0.016) 0.132 (0.017) 0.122 (0.014) 0.401(0.400) 0.445(0.349) 0.400(0.341)
UGI 0.464 (0.059) 0.457 (0.053) 0.466 (0.055) 0.527 (0.601) 0.601 (0.619) 0.561 (0.597)
ERV 0.082(0.007) 0.068(0.006) 0.064(0.005) 0.577 (0.761) 0.524 (0.518) 0.663 (0.692)

Scenario 3 Δ = 1/500 Δ = 1/1500 Δ = 1/5000 Δ = 1/500 Δ = 1/1500 Δ = 1/5000

SL
LGI 0.089 (0.016) 0.070 (0.013) 0.060 (0.013) 0.154(0.087) 0.184(0.149) 0.138(0.110)
UGI 0.162 (0.016) 0.161 (0.016) 0.163 (0.013) 0.167 (0.121) 0.193 (0.138) 0.164 (0.134)
ERV 0.051(0.004) 0.029(0.003) 0.016(0.001) 0.167 (0.141) 0.187 (0.149) 0.163 (0.127)

SH
LGI 0.124 (0.024) 0.116 (0.020) 0.097 (0.013) 0.338(0.296) 0.351 (0.349) 0.316(0.343)
UGI 0.362 (0.043) 0.358 (0.049) 0.371 (0.050) 0.399 (0.442) 0.330(0.345) 0.484 (0.456)
ERV 0.053(0.004) 0.030(0.001) 0.016(0.001) 0.414 (0.375) 0.356 (0.333) 0.449 (0.395)

FL
LGI 0.077 (0.012) 0.064 (0.012) 0.054 (0.011) 0.120(0.084) 0.122(0.106) 0.131(0.096)
UGI 0.119 (0.012) 0.120 (0.011) 0.119 (0.011) 0.139 (0.096) 0.137 (0.110) 0.148 (0.133)
ERV 0.051(0.004) 0.029(0.002) 0.016(0.001) 0.132 (0.119) 0.152 (0.119) 0.159 (0.133)

FH
LGI 0.150 (0.019) 0.084 (0.015) 0.080 (0.013) 0.221(0.212) 0.188(0.132) 0.245(0.168)
UGI 0.236 (0.024) 0.241 (0.027) 0.246 (0.027) 0.230 (0.186) 0.214 (0.151) 0.256 (0.214)
ERV 0.052(0.004) 0.029(0.003) 0.016(0.001) 0.260 (0.169) 0.214 (0.160) 0.269 (0.229)

timation or forecasting error of each method is measured as follows,

err =
∑
d∈D

1
|D|errd =

∑
d∈D

1
|D|

∣∣∣ĥd −
∫ d

d−1 σ
2
sds

∣∣∣∫ d

d−1 σ
2
sds

,

where ĥd is the estimation or forecasting of the integral volatility on the d-th day,
and D is the index set containing all the trading days evaluated. Both LGI model
and UGI model provide the one-day-ahead forecasting of the integral volatility,
and we use the (d− 1)-th estimated realized volatility as the forecasting of the
d-th day integral volatility under the ERV method. Table 4 shows the estimation
and forecasting errors of the LGI model, UGI model and ERV method over 50
simulation runs under both scenarios. Under the true model in Scenario 1, it
is observed that the LGI model exhibits superior predictive accuracy compared
to the UGI and ERV models. Additionally, in terms of estimation accuracy, the
LGI model displays significantly better performance than the UGI model and
shows comparable or even better results than the ERV model, particularly when
the observation frequency is low. In scenarios where model misspecification oc-
curs (Scenario 2 and 3), the LGI model demonstrates superior performance in
estimation compared to the UGI model, owing to its more flexible structure that
aids in fitting under model misspecification. The LGI model also achieves similar
estimation results to the ERV model in most settings, which highlights its flex-
ibility. In terms of forecasting, all three methods have comparable performance
with LGI being slightly better than UGI and ERV.

Figure 1-2 show the estimated spot volatility and the number of latent anchors
under the LGI model for Scenario 1,2,3. The proposed model exhibits a high level
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Fig 1. True volatility and volatility estimated by the LGI model with Δ =
1/500, 1/1500, 1/5000 under toy model. The mean (standard deviation) of the number of
latent anchors over 50 simulation runs are shown on the top of each plot.

Fig 2. True volatility and volatility estimated by the LGI model with Δ = 1/1500. Figure(a)
and Figure(b) shows the single-run results under Scenario 2 and Scenario 3 respectively. The
mean (standard deviation) of the number of latent anchors over 50 simulation runs are shown
on the top of each plot.
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of accuracy in capturing major spot volatility patterns under all settings, even in
the presence of model misspecification, particularly in scenarios with high VOV
(SH and FH) and more latent anchors. This outcome suggests that the proposed
model has a flexible structure capable of accommodating different scenarios
effectively. When the VOV is low, the mean-reversion term becomes relatively
larger, resulting in a more pronounced model misspecification. Nevertheless, the
LGI model can still capture the primary trends of the volatility process in such
scenarios, albeit with some loss of short-term disturbances. These results remain
consistent with different observation frequencies of Δ = 1/500 and Δ = 1/5000,
as demonstrated in Appendix C.2.

Besides, the computation flexibility of our methods is O(T/Δ). Specifically,
the average computation time under Scenario 1 for the intraday frequency
Δ = 1/500, 1/1500, 1/5000 is 9.948, 29.295, and 96.799, respectively. This out-
come suggests that the proposed methods can handle large datasets and provide
accurate results in a reasonable amount of time, even with high-frequency data.

6. Empirical study

In this section, we apply the proposed method to analyze the asset price volatil-
ity using high-frequency financial data collected in the Shanghai Stock Exchange
(SSE). The data is obtained from the Wind database.

6.1. Data description

We collect the tick-by-tick observed log prices trading types, and trading vol-
umes with T = 100 trading days from 1/12/2014 to 29/4/2015 for three stocks:
Shanghai Pudong Development Bank (SPD BANK), Guangzhou Baiyun Inter-
national Airport Company (CAN) and China Minsheng Banking (CMBC). In
the following, we focus on the analysis of SPD BANK, and show the results of
CAN and CMBC in Appendix D.2. The observation frequency Δ we study is
one second, leading to 14, 400 intraday observations per day. The per-second
observed log price at tj , denoted as Ytj , is taken as the average of the tick-by-
tick observed log prices on [tj , tj+1). The per-second trading volume, denoted
as Vtj , is taken as the absolute value of the difference between the total buying
and selling volumes on [tj , tj+1). The per-second trading type Utj is determined
by the total buying and selling volumes on [tj , tj+1), and takes +1 when the
buying volume is greater than the selling volume and −1 otherwise. Following
[23], we screen out price jumps, i.e., abnormally large per-second log returns
that are unable to be characterized by the continuous Itô diffusion process [7, 9]
by setting any log return with its absolute value larger than a specific threshold
to be zero.

6.2. Model inference

As introduced in Section 4.1, we mainly focus on the analysis of the latent
anchors, the integral and spot volatility. Inferences on the other parameters are
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Fig 3. The averaged posterior arrival probabilities for latent anchors over the time interval
Tj , j = 1, · · · ,M in the whole T = 100 trading days for SPD BANK.

reported in Appendix D.1. For the implementation of the LGI model, we draw
25,000 samples from the first-stage Markov chain and disregard the first 15,000
draws as burn-in samples. Then, we draw 25,000 samples from the second-stage
Markov chain with the number of latent anchors fixed.

6.2.1. Inference of latent anchors

We divide one trading day into M = 16 15-minute time intervals Tj , j =
1, · · · ,M , and investigate the posterior probability for the point estimate of
latent anchors ProbTj on each of them,

ProbTj = 1
T

p̃∑
i=1

IAi,j ,

where the set Ai,j = {∃i, τ̂i ∈ Ti,j}, Ti,j is the Tj interval in the i-th trading day.
Figure 3 shows the averaged posterior probability for the point estimate of

latent anchors over the T = 100 trading days for both mid-morning and mid-
afternoon markets. The latent anchors have a relatively higher average proba-
bility in the first hour (T1, T2, T3 and T4) right after the opening and the last
15-minute before the closing of the market (T16), especially in the within the
15-minute periods (T1). Besides, within the 15-minute both before the closing of
mid-morning and after the opening of mid-afternoon markets (T8 and T9), the
averaged posterior probability for the point estimate of latent anchors exceeds
other time. The result from Figure 3 indicates the proposed LGI model finds
fast GARCH innovation accumulation during the opening and closing of the
markets, which is consistent with empirical findings in the existing literature.
In the stock market, the public information released overnight and during lunch
break leads to the surge of volatility in the opening period of mid-morning and
mid-afternoon markets respectively [33, 32]. Also, [17, 12] pointed out that the
trading volume during the opening and closing time is usually higher than in
other periods, along with much more disclosure of private information.
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Fig 4. The estimation of integral volatility for SPD BANK under LGI, UGI, ERV over the
100 trading days from 1/12/2014 to 29/4/2015.

Table 5

The averaged forecasting error of SPD BANK for integral volatility under LGI, UGI and
ERV model.

LGI UGI ERV

RMSE (×10−4) 2.149 2.470 2.572

MAE (×10−4) 1.637 1.971 2.012

6.2.2. Analysis of integral volatility

Figure 4 presents the integral volatility for the 100 trading days estimated with
the LGI model, UGI model, and ERV method. As a semiparametric model,
ERV has few assumptions on the volatility process and thus can be regarded as
a benchmark of integral volatility estimation. The three methods yield similar
results, which implies the stability of the LGI model. To evaluate the forecasting
of the integral volatility, we employ a sliding window-based model evaluation
procedure. Specifically, we train the models using the high-frequency observa-
tions on a sliding window Wd = [d− L− 1, d− 1) of width L trading days and
make one-day-ahead forecasting for the integral volatility on the d-th day over
[d− 1, d). We take L = 80, and construct q = 20 windows (for d = 81, . . . , 100)
over the 100 trading days investigated. Table 5 shows the averaged forecasting
error of SPD BANK for integral volatility under LGI, UGI and ERV model with
error measurement RMSE and MAE denoted as

RMSE =

√√√√1
q

L+q∑
d=L+1

(ĥd − ERVd)2,

MAE = 1
q

L+q∑
d=L+1

|ĥd −ERVd|,
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where ĥd is the one-day-ahead forecasting of the integral volatility over [d−1, d)
using observations on the window Wd. As a result, the LGI model has a better
performance on integral volatility forecasting compared with its competitors. In
conclusion, the LGI model is a highly effective tool for both integral volatility
estimation and forecasting.

6.2.3. Analysis of spot volatility

To evaluate the performance of the proposed LGI model in terms of spot
volatility analysis, we consider several alternative high-frequency volatility mod-
els including intraday GARCH [20], intraday exponential GARCH (intraday
EGARCH, [20]), auto-regressive stochastic volatility (ARSV, [54]) and Heston
models [31]. To eliminate the impact of microstructure noise, we assume the
noise has the same parametric form as in equation (3) for all the alternative
modes, and apply a two-stage strategy to estimate the parameters. We first
estimate the noise parameters with the ordinary least squares (OLS) method
proposed in [44], and then solve the volatility models using the estimated effi-
cient prices after the removal of noise terms.

We use the log-likelihood and the Bayesian information criterion (BIC) to
quantify model fitting. According to the results presented in Table 6, it can be
observed that the LGI model achieved the highest log-likelihood and the lowest
BIC among the evaluated models for the T = 100 trading days. This indicates
that the LGI model outperforms the other models in accurately estimating spot
volatility. In order to conduct a thorough evaluation of the forecasting perfor-
mance of the models, we employed the sliding window procedure introduced
in the previous section, utilizing the log predictive score and BIC as measures
of model performance. The mean and standard deviation of the log predictive
score and BIC for the one-day-ahead spot volatility forecasting with the 20 slid-
ing windows using the five models are presented in Table 7. The results indicate

Table 6

The log-likelihood and BIC statistics of SPD BANK for high-frequency in-sample trading
data from 1/12/2014 to 29/4/2015 under LGI, Heston, intraday GARCH, intraday

EGARCH and ARSV.
LGI Heston GARCH EGARCH ARSV

log L 9542363 9497876 9374201 9366458 9371597
BIC -19084626 -18995667 -18748317 -18627390 -18743094

Table 7

The one-day-ahead log predictive score (log S) and BIC statistics of SPD BANK for
high-frequency out-of-sample data under LGI, Heston, intraday GARCH, intraday

EGARCH and ARSV with the sliding window, shown as mean (standard deviation) over the
last 20 trading days from 1/4/2015 to 29/4/2015.

LGI Heston GARCH EGARCH ARSV
log S 96290.8 96274.2 95559.0 95838.8 95733.8

(1515.8) (1292.3) (937.7) (1053.6) (959.2)
BIC -192514.6 -192510.2 -191051.0 -191610.6 -191400.6

(3031.5) (2584.6) (1875.4) (2107.3) (1918.5)
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Fig 5. The one-day-ahead log predictive score for high-frequency out-of-sample data under
LGI, Heston, intraday GARCH, intraday EGARCH and ARSV with the sliding window over
the last 20 trading days from 1/4/2015 to 29/4/2015.

that the LGI model outperforms the other models, achieving the highest pre-
dictive likelihood and the lowest BIC. The specific one-day-ahead log predictive
score for each sliding window is presented in Figure 5. It can be observed that in
most cases, the LGI model exhibits the best performance among the evaluated
models. Therefore, we can conclude that the LGI model is also effective for spot
volatility estimation and prediction.

6.3. VaR

Value-at-risk (VaR) is a commonly used early-warning indicator in financial risk
management. It measures the maximum loss of financial assets over a period at
a given confidence level. In this section, we compare the proposed method with
its competitors in terms of one-day-ahead forecasting of high-frequency VaR.
Given the observations on a sliding window Wd, the predictive high-frequency
VaR during [tj−1, tj) ⊂ [d, d + 1) can be defined as

V aRa
j = uaσ̃tjΔ1/2,

where ua is the a-quantile of a standard norm distribution and σ̃2
tj denotes the

forecasting of spot volatility at observation time tj . V aRa
j measures the predic-

tive minimum high-frequency per-second log-return of the efficient price at the
1 − a confidence level. Therefore, if the forecasting is accurate, the probability
that the log-return on [tj−1, tj) falls below V aRa

j (failure rate) will be exactly a.
To evaluate the forecasting of VaR for the models, we consider three cases with
a = 0.01, 0.02, and 0.05, respectively, and compare the empirical failure rate
â(d) := Δ

∑(m+1)d
j=md+1 I{ΔX̂j<V aRa

j }
with its target a. Figure 6 shows the empirical

failure rates for the LGI model and its competitors over the 20 sliding-window
subsets. The competing methods tend to underestimate the VaR, leading to
fewer VaR failures than expected at a = 0.02 and a = 0.05. Therefore, invest-
ment strategies based on them will turn out to be too conservative and may
miss profitable opportunities compared to our method.
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Fig 6. The empirical failure rate â for SPD BANK under LGI, Heston, intraday GARCH,
intraday EGARCH, and ARSV over the 20 sliding windows with the true failure rate a =
0.01, 0.02, and 0.05, respectively.

7. Conclusion

This paper proposes a novel Bayesian LGI model for high-frequency data analy-
sis. We assume that the log price of an asset obeys an Itô process and embed the
discrete-time GARCH structure into the high-frequency volatility process on a
series of latent anchors. By introducing the latent anchors, our model enjoys
large flexibility in modeling high-frequency volatility. Furthermore, the latent
anchors are approximated with the similar posterior distribution to compute
more efficiently. We propose an efficient two-stage Bayesian inference procedure
for the anchors as well as the spot and integral volatility, with a correspond-
ing two-stage MCMC sampling algorithm based on the MH and birth-death
schemes. In the simulation and empirical study, our method usually yields bet-
ter results in estimating and predicting volatility compared with its competitors.
The latent anchors estimated from real data reveal that the market informa-
tion is fast accumulated during the opening and closing times. As discussed
in Section 4.3, the proposed model can be potentially extended in two direc-
tions. Firstly, it could be applied to discontinuous price processes that incorpo-
rate jump terms, allowing for the simultaneous modeling and estimation of the
volatility processes and jumps. Secondly, the model could facilitate multi-asset
analysis, particularly under observations that are not synchronous, thus provid-
ing a useful tool for portfolio management. We leave detailed research on these
extensions for future studies.

Appendix A: Proofs

A.1. Proof of Proposition 2.1

∫ τi

τi−1

exp{β(τi − t)}σ2
t dt

=
∫ τi

τi−1

exp{β(τi − t)}{(τi − τi−1) − (τi − t)}wdt

+
∫ τi

τi−1

exp{β(τi − t)} (exp[γ{(τi − τi−1) − (τi − t)}])σ2
τi−1

dt
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+β

∫ τi

τi−1

∫ τi

s

exp{β(τi − t)}σ2
sdtds

+2β
∫ τi

τi−1

∫ τi

s

exp{β(τi − t)}dt(
∫ s

τi−1

σhdBh)σsdBs

=w

β

{
−Δτi + exp(βΔτi) − 1

β

}
+ exp {γ(Δτi)}σ2

τi−1

exp{(β − γ)Δτi} − 1
β − γ

+
∫ τi

τi−1

exp{β(τi − t)}σ2
t dt−

∫ τi

τi−1

σ2
t dt

+2
∫ τi

τi−1

[exp{β(τi − s)} − 1]
∫ t

τi−1

σsdBsσtdBt,

which means that∫ τi

τi−1

σ2
t dt = w

β

{
−Δτi + exp(βΔτi) − 1

β

}

+ exp {γ(Δτi)}σ2
τi−1

exp{(β − γ)Δτi} − 1
β − γ

+ 2
∫ τi

τi−1

[exp{β(τi − s)} − 1]
∫ t

τi−1

σsdBsσtdBt,

where we denote Di = 2
∫ τi
τi−1

[exp{β(τi − s)} − 1]
∫ t

τi−1
σsdBsσtdBt as a mar-

tiangle difference when given latent anchors τi, τi−1,

hi(ξ) = w

β

{
−Δτi + exp(βΔτi) − 1

β

}
+ exp{(β − γ)Δτi} − 1

β − γ
exp(γΔτi)σ2

τi−1

= w

β

{
−Δτi + exp(βΔτi) − 1

β

}
+ exp(βΔτi) − exp(γΔτi)

β − γ
σ2
τi−1

and can be seen as hi(ξ) = Eξ(
∫ τi
τi−1

σ2
t dt|Fτi−1 , τi). As we know, the spot volatil-

ity at latent anchor σ2
τi−1

can be expanded as:

σ2
τi−1

= Δτi−1w + exp(γΔτi−1)σ2
τi−2

+ βZ2
τi−1

(τi−2)

= w

∞∑
l=0

Δτi−1−l exp
(
γ

l∑
k=1

Δτi−k

)

+ β

∞∑
l=0

exp
(
γ

l∑
k=1

Δτi−k

)
Z2
τi−1−l

(τi−2−l)

= w

∞∑
l=0

Δτi−1−l exp
(
γ

l∑
k=1

Δτi−k

)
+ βZ2

τi−1
(τi−2)

+ β

∞∑
l=1

exp
(
γ

l∑
k=1

Δτi−k

)
Z2
τi−1−l

(τi−2−l).
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We combine the expression of hi(ξ) and σ2
τi−1

,
hi(ξ)

=w

β

(
−Δτi + exp(βΔτi) − 1

β

)
+ exp(βΔτi) − exp(γΔτi)

β − γ

×{w
∞∑
l=0

Δτi−1−l exp
(
γ

l∑
k=1

Δτi−k

)
+ βZ2

τi−1
(τi−2)

+β

∞∑
l=1

exp
(
γ

l∑
k=1

Δτi−k

)
Z2
τi−1−l

(τi−2−l)}.

With the prior distribution of Δτi ∼ Exp(1/α), i = 1, · · · , p and the indepen-
dence of Δτi, i = 1, · · · , p, we deduce that Eξ(Δτi) = α, Eξ(eβΔτi) = 1/(1−αβ).
As a result,

Eξ{hi(ξ)}

= α2w

1 − αβ
+

1
1−αβ − 1

1−αγ

β − γ

×
{
−w(1 − αγ)

γ
+ βZ2

τi−1
(τi−2) + β

∞∑
l=1

(
1

1 − αγ

)l

Z2
τi−1−l

(τi−2−l)
}

= −α2wαγ + wα2

(1 − αβ)(1 − αγ) + αβ

(1 − αβ)(1 − αγ)Z
2
τi−1

(τi−2) + 1
1 − αγ

Eξ{hi−1(ξ)}

= α2w

1 − αβ
+ αβ

(1 − αβ)(1 − αγ)Z
2
τi−1

(τi−2) + 1
1 − αγ

Eξ{hi−1(ξ)},

which means that,

Eξ

(∫ τi

τi−1

σ2
t dt|Fτi−1

)
= wg + γgEξ

(∫ τi−1

τi−2

σ2
t dt|Fτi−2

)
+ βgZ2

τi−1
(τi−2).

where wg = wα2/(1 − αβ), γg = 1/(1 − αγ), βg = αβ/{(1 − αβ)(1 − αγ)}.

A.2. Proof of Theorem 3.1

Lemma A.1. Under Assumption 2.1,

Eθ(σ2
tj ) ≤ C, Eθ(σ̃2

tj ) ≤ C,

for every j = 1, · · · , n.
Proof. We proof this conclusion with the induction method. Firstly, for tj ≤ τ1

Eθ(σ2
tj ) = tjw + exp(γtj)σ2

0 + Eθ

(∫ tj

0
σ2
sds

)

≤ tjw + exp(γtj)σ2
0 + Eθ

(∫ τj

0
σ2
sds

)
≤ C.
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The last inequality satisfies for that the integral process
∫ τi
τi−1

σ2
sds is stationary

under Proposition 2.1 with Eθ(
∫ τ1
0 σ2

sds) = C1, C,C1 > 0 are constant and C
is far greater than C1.

Then, if E(σ2
tj ) ≤ C with tj ∈ (τi−1, τi], we can deduce that

Eθ(σ2
tj ) = (tj − τi)w + exp{γ(tj − τi)}Eθ(σ2

τi) + Eθ

(∫ tj

τi

σ2
sds

)

≤ (tj − τi)w + exp{γ(tj − τi)}Eθ(σ2
τi) + Eθ

(∫ τi+1

τi

σ2
sds

)
≤ (tj − τi)w + C exp{γ(tj − τi)} + C1

≤ Tw + C exp{γΔtj} + C1

≤ C.

There must exists the constant C to satisfy the last inequality for that exp{γ(tj−
τi)} < 1.

Therefore, we can say that for every j = 1, · · · , n,

Eθ(σ2
tj ) ≤ C.

Similarly, we can proof that Eθ(σ̃2
tj ) ≤ C.

Proof of Theorem 3.1: First, We rewrite σ2
tj = f(τ , Xτ , tj , Xtj , ξ), σ̃2

tj =
f(τ̃ , Xτ̃ , tj , Xtj , ξ), where f(·) is a function. Besides, π(θ|D), π̃(θ̃|D) are the
function of (σ2,X), (σ̃2,X) respectively, where σ2 = (σ2

t1 , · · · , σ2
tn),

σ̃2 = (σ̃2
t1 , · · · , σ̃2

tn). To simplify, we denote

b(τ , τ̃ , Xτ , Xτ̃ ) = π(D|θ̃) − π(D|θ)

with c(τ , τ̃ , Xτ , Xτ̃ ) = π(θ̃|D) −
∫
τ∈G π(θ|D)dτ . Beside, we denote

c̃ =
∫
π(D|θ̃)π(θ)dθ, c =

∫
π(D|θ)π(θ)dθ. Therefore, π(θ|D) = π(D|θ)π(θ)/c,

π̃(θ̃|D) = π(D|θ̃)π(θ)/c̃.

c(τ , τ̃ , Xτ , Xτ̃ )

= π(D|θ̃)π(θ̃)
c̃

−
∫
τ∈G

π(θ|D)dτ

≈ π(D|θ̃)π(θ̃)
c̃

− π(θ|D)
p∏

i=1
Δtji

= b(τ , τ̃ , Xτ , Xτ̃ )π(θ̃)
c̃

+ π (D|θ)π(θ̃)
c̃

− π (θ|D)
p∏

i=1
Δtji

= b(τ , τ̃ , Xτ , Xτ̃ )π(θ̃)
c̃

+ π (θ|D)
(
c{π(θ̃) − π(θ)

∏p
i=1 Δtji} + π(θ)

∏p
i=1 Δtji(c− c̃)

c̃π(θ)

)
.
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Then
c(τ , τ̃ , Xτ , Xτ̃ )∫
τ∈G π(θ|D)dτ

≈ b(τ , τ̃ , Xτ , Xτ̃ )
π (D|θ)

cπ(θ̃)
c̃π(θ)

∏p
i=1 Δtji

+
c{π(θ̃) − π(θ)

∏p
i=1 Δtji} + π(θ)

∏p
i=1 Δtji(c− c̃)

c̃π(θ)
∏p

i=1 Δtji
.

We can deduce b(τ , τ̃ , Xτ , Xτ̃ ) with the Talyer expansion

b(τ , τ̃ , Xτ , Xτ̃ ) =
p∑

i=1

{
∂π (D|θ)

∂τi
(τ̃i − τi) + ∂π (D|θ)

∂Xτi

(Xτ̃i −Xτi)

+1
2
∂2π (D|θ)
(∂Xτi)2

(Xτ̃i −Xτi)2 + o(τ̃i − τi) + o(Xτ̃i −Xτi)2
}
.

As we know,

∂π (D|θ)
∂σ2

tj

=

(ΔXtj
)2

Δtjσ2
tj−1

− 1

2σ2
tj−1

,
∂σ2

tj−1

∂σ2
τi

= exp{γ(tj−1 − τi)}.

Additionally, σ2
tj is independent with τi and Xτi when tj < τi. Therefore, for

every integer i ≤ p, the deviation can be deduced as

∂π (D|θ)
∂τi

=
n∑

j=1

∂π (D|θ)
∂σ2

tj

∂σ2
tj

τi

= π (D|θ)
τi+1+1∑
j=τi+2

(ΔXtj
)2

Δtjσ2
tj−1

− 1

2σ2
tj−1

[
−w − γ exp{γ(tj−1 − τi)}σ2

τi

]

+ π (D|θ)
n∑

j=τi+1

(ΔXtj
)2

Δtjσ2
tj−1

− 1

2σ2
tj−1

∂σ2
tj−1

∂σ2
τi

[
w + γ exp{γ(τi − τi−1)}σ2

τi−1

]
,

∂π (D|θ)
∂Xτi

= π (D|θ)
τi+1+1∑
j=τi+2

(ΔXtj
)2

Δtjσ2
tj−1

− 1

2σ2
tj−1

{
−2β(Xtj−1 −Xτi)

}

+ π (D|θ)
n∑

j=τi+1

(ΔXtj
)2

Δtjσ2
tj−1

− 1

2σ2
tj−1

∂σ2
tj−1

∂σ2
τi

{
2β(Xτi −Xτi−1)

}
,

∂2π (D|θ)
(∂Xτi)2

= π (D|θ)

⎛
⎜⎝τi+1+1∑

j=τi+2

{
−2β(Xtj−1 −Xτi)

} (ΔXtj
)2

Δtjσ2
tj−1

− 1

2σ2
tj−1

+
n∑

j=τi+1

{
2β(Xτi −Xτi−1)

} ∂σ2
tj−1

∂σ2
τi

(ΔXtj
)2

Δtjσ2
tj−1

− 1

2σ2
tj−1

⎞
⎟⎠

2
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+ π (D|θ) 2β

⎧⎪⎨
⎪⎩

τi+1+1∑
j=τi+2

(ΔXtj
)2

Δtjσ2
tj−1

− 1

2σ2
tj−1

+
n∑

j=τi+1

(ΔXtj
)2

Δtjσ2
tj−1

− 1

2σ2
tj−1

∂σ2
tj−1

∂σ2
τi

⎫⎪⎬
⎪⎭

+ π (D|θ)
τi+1+1∑
j=τi+2

{
−2β(Xtj−1 −Xτi)

}2

⎧⎪⎨
⎪⎩

2 − 4( (ΔXtj
)2

Δtjσ2
tj−1

)

4(σ2
tj−1

)2

⎫⎪⎬
⎪⎭

+ π (D|θ)
n∑

j=τi+1

{
2β(Xτi −Xτi−1)

}2

⎧⎪⎨
⎪⎩

2 − 4( (ΔXtj
)2

Δtjσ2
tj−1

)

4(σ2
tj−1

)2

⎫⎪⎬
⎪⎭

(
∂σ2

tj−1

∂σ2
τi

)2

For that (ΔXtj )2/(Δtjσ
2
tj−1

) ∼ χ2(1) and is independent with σ2
tj ,

Eθ{(ΔXtj )2/(Δtjσ
2
tj−1

)} = 1, Eθ{(ΔXtj )2/(Δtjσ
2
tj−1

)}2 = 3. So that

Eθ

{
1

π (D|θ)
∂2π (D|θ)
(∂Xτi)2

}

=
τi+1+1∑
j=τi+2

Eθ

[−2β(Xtj−1 −Xτi)]2

(2σ2
tj−1

)2 Eθ

{
(ΔXtj )2

Δtjσ2
tj−1

− 1
}2

+
n∑

j=τi+1
Eθ

{2β(Xτi −Xτi−1)
∂σ2

tj−1
∂σ2

τi

}2

(2σ2
tj−1

)2 Eθ

{
(ΔXtj )2

Δtjσ2
tj−1

− 1
}2

+ 2β

⎡
⎣τi+1+1∑
j=τi+2

Eθ

{
(ΔXtj )2

Δtjσ2
tj−1

− 1
}
Eθ

1
2σ2

tj−1

+
n∑

j=τi+1

∂σ2
tj−1

∂σ2
τi

Eθ

{
(ΔXtj )2

Δtjσ2
tj−1

− 1
}
Eθ

1
2σ2

tj−1

⎤
⎦

+
τi+1+1∑
j=τi+2

Eθ

{−2β(Xtj−1 −Xτi)}2

4(σ2
tj−1

)2 Eθ

{
2 − 4

(ΔXtj )2

Δtjσ2
tj−1

}

+
n∑

j=τi+1
Eθ

{2β(Xτi −Xτi−1)}2(
∂σ2

tj−1
∂σ2

τi

)2

4(σ2
tj−1

)2 Eθ

{
2 − 4

(ΔXtj )2

Δtjσ2
tj−1

}

=
τi+1+1∑
j=τi+2

Eθ

{−2β(Xtj−1 −Xτi)}2

(2σ2
tj−1

)2

×

⎡
⎣Eθ

{
(ΔXtj )2

Δtjσ2
tj−1

− 1
}2

+ Eθ

{
2 − 4

(ΔXtj )2

Δtjσ2
tj−1

}⎤
⎦
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+
n∑

j=τi+1
Eθ

{2β(Xτi −Xτi−1)
∂σ2

tj−1
∂σ2

τi

}2

(2σ2
tj−1

)2

×

⎡
⎣Eθ

{
(ΔXtj )2

Δtjσ2
tj−1

− 1
}2

+ Eθ

{
2 − 4

(ΔXtj )2

Δtjσ2
tj−1

}⎤
⎦

+ 2β

⎡
⎣τi+1+1∑
j=τi+2

Eθ

{
(ΔXtj )2

Δtjσ2
tj−1

− 1
}
Eθ

1
2σ2

tj−1

+
n∑

j=τi+1

∂σ2
tj−1

∂σ2
τi

Eθ

{
(ΔXtj )2

Δtjσ2
tj−1

− 1
}
Eθ

1
2σ2

tj−1

⎤
⎦

= 0,

The last equation satisfies for that Eθ{2 − 4(ΔXtj )2/(Δtjσ
2
tj−1

)} = −2 and
Eθ{(ΔXtj )2/(Δtjσ

2
tj−1

) − 1}2 = 2. Besides,

Eθ

{
1

π (D|θ)
∂π (D|θ)

∂τi

}
= Eθ

{
1

π (D|θ)
∂π (D|θ)
∂Xτi

}
= 0.

Therefore,

Eθ

{
b(τ , τ̃ , Xτ , Xτ̃ )

π (D|θ)

}
=

p∑
i=1

o(τi − τ̃i) + o(Eθ(Xτi −Xτ̃i)2)

= o(nν1−1) +
p∑

i=1
Eθ(σ2

τ̃i)o(τi − τ̃i)

= o(nν1−1).

The last equation satisfies with Eθ(σ2
τ̃i) ≤ C under Lemma A.1 and p ≤ nν1

under Assumption 3.2. On the other hand,

π(τ̃ |p, α) = α−pexp(−T

α
)I{0<tj1<···<tjp≤T}

p∏
i=1

Δtji ,

As that the order of the latent anchors will not change after the approximation
scheme, we can deduce that π(θ̃) − π(θ)

∏p
i=1 Δtji = 0. Also, Eθ(c/c̃) = O(1),

Eθ((c− c̃)/c̃) = o(nν1−1). So that

Eθ

{
c(τ , τ̃ , Xτ , Xτ̃ )∫
τ∈G π (θ|D) dτ

}
= o(nν1−1).

Appendix B: Detail of MCMC algorithm

The specified MCMC algorithm based on Gibbs sampling can be decomposed
to 4 steps:
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Update market microstructure noise δ

π(δ|ξ, p, τ̃ , σ2
0 ,D) ∝

n∏
j=1

1√
2πσ2

tj−1
Δtj

exp
{
−

(ΔXtj )2

2σ2
tj−1

Δtj

}
,

where ΔXtj = Xtj −Xtj−1 , Xtj = Ytj − h(Ztj ; δ). We use Metropolis Hastings
algorithm (MH) to sample δ.

Update latent anchors (p, τ̃ )

π(p, τ̃ |ξ, δ, σ2
0 ,D)

∝
n∏

j=1

1√
2πσ2

tj−1
Δtj

exp
{
−

(ΔXtj )2

2σ2
tj−1

Δtj

}
α−pe−

T
α I0<τ1<···<τp≤T ,

π(τ̃i|p, τ̃(−i), ξ, δ, σ
2
0 ,D) ∝

∏
τ̃i−1<tj<τ̃i+1

1√
2πσ2

tj−1
Δtj

exp
{
−

(ΔXtj )2

2σ2
tj−1

Δtj

}
,

where τ̃(−i) = (τ̃1, · · · , τ̃i−1, τ̃i+1, · · · , τ̃p). We show the sample steps in Algo-
rithm 1.

Update model parameters w, γ, β, α, σ2
0

π(w|γ, β, α, δ, p, τ̃ , σ2
0 ,D) ∝

n∏
j=1

1√
2πσ2

tj−1
Δtj

exp
{
−

(ΔXtj )2

2σ2
tj−1

Δtj

}
I{w>0}.

π(γ|w, β, α, δ, p, τ̃ , σ2
0 ,D)

∝
n∏

j=1

1√
2πσ2

tj−1
Δtj

exp
{
−

(ΔXtj )2

2σ2
tj−1

Δtj

}
I{γ<0,(1−αβ)(1−αγ)>1}.

π(β|w, γ, α, δ, p, τ̃ , σ2
0 ,D)

∝
n∏

j=1

1√
2πσ2

tj−1
Δtj

exp
{
−

(ΔXtj )2

2σ2
tj−1

Δtj

}
I{β>0,(1−αβ)(1−αγ)>1}.

π(α|w, γ, β, δ, p, τ̃ , σ2
0 ,D) ∝

p∏
i=1

1
α

exp
{
−Δτi

a

}
I{α>0,(1−αβ)(1−αγ)>1}.

π(σ2
0 |w, γ, β, α, δ, p, τ̃ ,D) ∝

n∏
j=1

1√
2πσ2

tj−1
Δtj

exp{−
(ΔXtj )2

2σ2
tj−1

Δtj
}I{σ2

0>0},

where σ2
tj = (tj − tj̃i−1

)w + exp{γ(tj − tj̃i−1
)}σ2

tj̃i−1
+ β(Xtj − Xtj̃i−1

)2, tj ∈
(tj̃i−1

, tj̃i ]. We use MH algorithm to sample parameters w, γ, β, α, σ2
0 respec-

tively.
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Appendix C: Additional simulation results

C.1. Convergence diagnostics

In this subsection, we first simulate a set of data under the Heston model with
the parameter setting as SL when the observed frequency Δ = 1/500. Then, we
realize the LGI model with MCMC algorithm under 10 different initial values for
the parameters respectively. Finally, we applied the Gelman-Rubin diagnostic
under the 10 MCMC chains, and the results are shown in Table 8. Note that
the test value is less than 1.1, the LGI model is insensitive to the choice of the
initial value.

Table 8

The multivariate potential scale reduction factor (multivariate psrf) under Gelman-Rubin
diagnostic with 10 different initial values of the parameters for the MCMC chains generated

under Scenario 1.
α w γ β δ1 δ2 σ0 Multivariate psrf

Point est. 1.02 1.04 1.03 1.04 1.00 1.00 1.00 1.09
Upper C.I. 1.04 1.07 1.07 1.09 1.00 1.01 1.00

C.2. Estimation of spot volatility with observed frequency
Δ = 1/500, Δ = 1/5000

Figure 7, 8 show the true volatility and volatility estimated by LGI model when
Δ = 1/500, 1/5000 under 2 scenarios with all settings for a single run respec-
tively. The result is similar to the case of Δ = 1/1500 in the text simulation.

Appendix D: Additional empirical study results

D.1. Posterior convergence analysis and estimation of parameters
for SPD BANK

The specific sample path of parameters under the GARCH-Itô model for SPD
BANK are shown in Figure 9. The MCMC chains for parameters have been con-
verged under the first 5,000 draws, which means we can draw fewer samples from
the Markov chain compared to the setting in Subsection 6.2. Note that the ef-
fects of the conditional variance in the previous period γg and the squared of log
return βg are 1/(1− γα) = 0.557, αβ/(1−αβ)(1−αγ) = 0.433 respectively, in-
dicating that their contributions to the conditional variance of low-frequency log
return Eθ[Z2

τi(τi−1)|Fτi−1 ] are relatively similar. Also, the estimation of param-
eters for trading type and trading volume δ1, δ2 are 1.638× 10−4, 4.208× 10−14

under LGI model respectively, while are 1.638× 10−4, 4.607× 10−14 under ERV
method, which indicates that LGI model is comparable with ERV method in
the estimation of market microstructure noise.
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Fig 7. True volatility and volatility estimated by the LGI model with Δ = 1/500. Figure(a)
and Figure(b) shows the single-run results under Scenario 1 and Scenario 2 respectively. The
mean (standard deviation) of the number of latent anchors over 100 simulation runs are
shown on the top of each plot.



High-frequency volatility with Bayesian LGI model 3527

Fig 8. True volatility and volatility estimated by the LGI model with Δ = 1/5000. Figure(a)
and Figure(b) shows the single-run results under Scenario 1 and Scenario 2 respectively. The
mean (standard deviation) of the number of latent anchors over 100 simulation runs are
shown on the top of each plot.
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Fig 9. Sample paths of the Markov chains for the parameters and loglikelihood for SPD
BANK.
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Table 9

The prediction error of the integral volatility under LGI, GARCH-Itô and ERV with the
sliding window, shown as MSE and MAE over the last 20 trading days from 1/4/2015 to

29/4/2015 for stocks CAN and CMBC.

CAN CMBC
MSE(×10−4) MAE(×10−4) MSE(×10−4) MAE(×10−4)

LGI 4.977 3.795 7.512 4.765
GARCH-Itô 5.742 4.460 8.526 5.331

ERV 5.211 4.021 11.687 7.793

Table 10

The estimation log-likelihood and BIC statistics for in-sample trading data from 1/12/2014
to 29/4/2015 and one-day-ahead prediction log-likelihood and BIC statistics for

high-frequency out-of-sample trading data under LGI, Heston, intraday GARCH, intraday
EGARCH and ARSV with the sliding window over the last 20 trading days for stocks CAN

and CMBC.
CAN CMBC

Estimation log likelihood BIC log likelihood BIC
LGI 9631531 -19262963 9098650 -18197200

Heston 9535752 -19071461 8828705 -17657367
GARCH 9262626 -18525152 8990105 -17980124

EGARCH 9254533 -18508966 8977887 -17955688
ARSV 9554400 -191087025 9060596 -18121093

Prediction log likelihood BIC log likelihood BIC
LGI 97715.4 -195363.8 91666.0 -183264.9

(479.6) (959.2) (2521.9) (5043.7)
Heston 95348.7 -190659.1 91618.7 -183199.0

(2941.9) (5883.8) (2246.6) (4493.1)
GARCH 91801.5 -183536.1 90818.8 -181580.2

(944.6) (1889.3) (1307.2) (3327.6)
EGARCH 90848.2 -181629.3 90205.1 -180352.6

(683.2) (1366.3) (1217.3) (2434.7)
ARSV 95335.3 -190603.6 91379.2 -182700.9

(2341.1) (4682.3) (2009.5) (4019.0)

D.2. Results of other two stocks

We also take Guangzhou Baiyun International Airport (CAN) and China Min-
sheng Banking (CMBC) as new case studies. With the same data selection and
processing procedure as in Section 6, we get the high-frequency in-sample fitting
comparison, high-frequency out-of-sample prediction comparison, low-frequency
integral volatility prediction comparison, high-frequency VaR prediction com-
parison used in risk early warning, and are shown in Table 9, 10 and Figure 10
respectively. We find the same empirical results as in Section 6.
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Fig 10. The empirical failure rate â for CAN and CMBC under LGI, Heston, intraday
GARCH, intraday EGARCH, and ARSV over the 20 sliding windows with the true failure
rate a = 0.01, 0.02, and 0.05, respectively.
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