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Abstract: We investigate predictive densities for multivariate normal mod-
els with unknown mean vectors and known covariance matrices. Bayesian
predictive densities based on shrinkage priors often have complex repre-
sentations, although they are effective in various problems. We consider
extended normal models with mean vectors and covariance matrices as pa-
rameters, and adopt predictive densities that belong to the extended models
including the original normal model. We adopt predictive densities that are
optimal with respect to the posterior Bayes risk in the extended models.
The proposed predictive density based on a superharmonic shrinkage prior
is shown to dominate the Bayesian predictive density based on the uni-
form prior under a loss function based on the Kullback-Leibler divergence
when the variance of future samples is sufficiently large. Our method pro-
vides an alternative to the empirical Bayes method, which is widely used
to construct tractable predictive densities.
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1. Introduction

Suppose that we have independent observations x1, ..., x, from a d-dimensional
multivariate normal model Ny (u, Iz), p € R?. By sufficiency reduction, it is suf-
ficient to consider the setting in which we have a single observation x distributed
according to Ng(u, ul;), where u > 0 is known and fixed. We address the prob-
lem of predicting a future outcome y following a d-dimensional multivariate
normal distribution Ny (u, v1y), p € R% v > 0 with the same mean vector y by
using a predictive density p(y | z) that depends on x. The variance v is known
and possibly differs from u. The performance of a predictive density p(y | x) is
evaluated by the Kullback—Leibler divergence

vl): By | )Y = oL log P v1d)
D{p(y; p,v1q); p(y | x)} /p(y,u, I4)log )

)
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where p(y; 1, ¥) (1 € R%, Y € R4*9) is the density of Ny(u, ).

There are two widely used methods to construct predictive densities: Bayesian
predictive densities and plug-in densities. Bayesian predictive densities are ex-
pressed as

pr(y|®) = /p(y;u, vlg)pr (i | z)dp,

where p, (1 | ) is the posterior density

 plas s vly)m(p)
Prlp| @) = [ o pyvla)m(p)dp

based on a prior density 7(u). Bayesian predictive densities do not belong to
a tractable finite-dimensional family unless a conjugate prior is adopted. On
the other hand, plug-in predictive densities can easily be obtained by plugging
an estimator i such as maximum likelihood estimators or Bayes estimators, of
the unknown parameter p of the density p(y; p, vli) of y. However, Bayesian
predictive densities are preferable to plug-in densities in many examples.

Shrinkage methods are effective both in estimation and in prediction for
normal models with unknown mean vectors u. Bayes estimators based on Stein’s
prior 7g(p) o ||p]| =@ dominate the maximum likelihood estimator fiyle = &
when d > 3 under the squared error loss || — f]|? [12]. Kullback-Leibler loss
D{p(y; p,vl); p(y; i, v1g)} for a plugin density p(y;fi,vlq) is proportional to
the squared error loss. Priors that “shrink” the posterior density to a certain
point such as the origin or to a subspace, are called shrinkage priors. If a function
m(p) satisfies the inequality

d_ g2
Am(p) = Z 8—N27T(M) <0,
i=1 4

then 7(u) is said to be superharmonic. Bayes estimators based on nonconstant
superharmonic priors dominate the maximum likelihood estimator [12]. The
density g shrinks the posterior to the origin and satisfies

Amg(p) = —6(p),

where § denotes the Dirac delta function, in the framework of Schwartz’s distri-
bution theory, see e.g. [6] p. 74. In this sense, 7g is a superharmonic function.
The maximum likelihood estimator coincides with the Bayes estimator based
on the uniform prior 7y (p) o 1.

A parallel result regarding Bayesian prediction is obtained by [8], and the
Bayesian predictive density based on Stein’s prior dominates the Bayesian pre-
dictive density based on the uniform prior. Bayesian predictive densities based
on superharmonic priors dominate the Bayesian predictive density based on 7y
[4]. Other important shrinkage priors for multivariate normal models with un-
known mean include shrinkage priors for regression problems [5, 7] and singular
value shrinkage priors for matrix-variate normal models [10]. The Bayesian pre-
dictive density py based on my has the simple form Ng(z, (u 4+ v)I4). On the
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other hand, Bayesian predictive densities based on shrinkage priors generally do
not have such simple forms.

The empirical Bayes method is another method of constructing predictive
densities with reasonable risk performance and small computational cost. An
empirical Bayes method for approximating a Bayesian predictive density based
on Stein’s prior is studied by [13]. The use of plug-in densities for prediction is
also discussed in [3]. Stein’s prior is represented as a mixture of normal distri-
butions:

00 2
) o< =42 = 2 [ en e (<l ) ar

where I'(d/2 — 1) denotes the Gamma function. The representation (1.1) is used
to construct the Bayesian predictive density based on Stein’s prior in [8]. In [13],
Bayesian predictive densities based on a prior

2
s 7(0) = (2n7a) P exp (- 140

with an estimator 7(z) are constructed. The predictive density based on the
empirical Bayes method is expressed as

/p(y; s vIg)m(p; 7(x))dp. (1.2)

Therefore, the empirical Bayes method is regarded as an approximation of the
full Bayes method in which a prior is adopted for the hyperparameter 7. The
predictive density (1.2) that is obtained by the empirical Bayes method is also
a normal distribution.

The computational difference between full Bayes and empirical Bayes lies in
tha fact that empirical Bayes methods requires only one plug-in distribution
to compute the predictive density. Approximating p.(y | «) by empirical Bayes
saves computational cost and it is effective when predicting densities for many
future samples and when d is large.

We present an alternative to the empirical Bayes method to construct tractable
predictive densities based on shrinkage priors. We consider an “extended” model
including the original model Ng4(u,vl;) with the fixed v. Normal models such
as Ng(p, &I4) (€ > 0) and Ng(p,X) (X € R4*9) are adopted as the extended
models for y. We denote the predictive densities in those extended models as
extended plug-in densities. The resulting predictive densities are optimal with
respect to the posterior Bayes risk in the extended models. Our method is based
on a combination of extended plug-in densities for curved exponential families
[11] and shrinkage priors. We can construct predictive densities not only in the
normal model Ngy(u, 1) (€ > 0) like empirical Bayes method in [13], but also
in the larger normal model Ng(y, ¥) (¥ € R4*4 % = 0). This approach could
apply to various models besides the normal models that can be embedded in
larger exponential families.
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We show that the Kullback—Leibler risk difference of an extended plug-in
predictive density based on a prior and the Bayesian predictive density based
on the uniform prior reduces to the Kullback—Leibler risk difference of the cor-
responding Bayes estimators in the limit 1/v — 0.

Thus, our predictive density asymptotically dominates the Bayesian predic-
tive density based on the uniform prior if the performance of the predictive
densities is evaluated in the limit 1/v — 0. The numerical simulations suggest
that the proposed predictive density performs better than the Bayesian predic-
tive density based on the uniform prior even if 1/v is not close to 0.

2. Bayes extended estimators
2.1. Extended models and estimators

We investigate extended plug-in densities in extended models as predictive den-
sities. We consider two extended models:

& = {Na(u,€1a) | p € RY, € >0},
and
Ey = {Na(11,2) | p € RE Y € R -0},

which include the original model P := Ngy(u, vIy) with the known v. In the first
extended model &, the variance £ is a parameter in contrast to fixed v in P.

The second extended model & allows all positive semidefinite covariance
matrices 2. The inclusion relation is P C £ C &5. Other extended models such
as {Ng(it, D) | p € RY D : d-dimensional diagonal matrix} can be considered in
the same manner.

Although the original model P is a full exponential family, it can be formu-
lated as a curved exponential family that is embedded in the extended models
&1 or &. Thus, we can choose a predictive density that belongs to & or &
instead of the original model P. For a density function

p(y;8) = b(y) exp(s(y) "0 — 1 (6))

of an exponential family £, the expectation parameter is

When the original model P is a curved exponential family

p(y;w) = b(y) exp(s(y) " 0(w) — Y(0(w)))

that is embedded in £, we denote the posterior mean of 7 based on a prior ™
as the Bayes extended estimator and write it as 7j;. It minimizes the posterior
Bayes risk of p(y; 7)) about 7, thus it is reasonable to consider the extended plug-
in densities that belong to £ and not to P [11] for prediction. In other words,
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TABLE 1
Extended plug-in distributions and extended Bayes estimators with respect to a prior
density .
Extended Expectation Bayes Extended
mode parameters extended estimators plug-in distribution
ﬁ/ﬂ' =Ex [,u | IL ~ &
E1: Ng(p, &1y JdE+pT 2 AT A Ny yEnld
(o &1a) | G B+ 1) | & = o4 (Bl T | 0] — i o) /d (fim,&nta)
fir = Bl ] 2] -

Ea: Nd(ﬂ: E) (1, 2+ .U‘.“‘T) Nd(ﬁ'ﬂ'v Eﬂ’)

S =vlg+ Erlup! | ] — finfi)

extended plug-in densities with #); are the closest to the Bayesian predictive
densities with respect to the posterior Bayes risk.

We obtain the expectation parameters of the extended models £ and &,.
Bayes extended estimators are their posterior means. The results are shown in
Table 1.

The expectation parameters of the extended model & = Ny(p,&1y) are

n=(ELE y]) = (u,dé + p'p).

The expectation parameter for a density in P C £ is n = (u, dv + p " ), where
v is known and fixed. Thus, the posterior mean of 7 is

fx = (Bxlp | 2], do+Exlp" | 2l), (2.1)

where E[- | 2] denotes the expectation with respect to the posterior density of
1 based on a prior 7. Although the prior and posterior measures are probability
measures on P, an extended plug-in distribution with the posterior mean E.[7 |
x] belongs to &, not to P, which consequently has a favourable effect on the
predictive performance.

By plugging (2.1) into = (u,d¢ + p" ), we obtain the extended plug-
in density Nd(ﬂmfﬂfd), with respect to &1, where i, = E;[u | 2] and é,r =
v+ (Exlp"p| 2] = g fix)/d.

Similarly, the expectation parameter of the second extended model & is

n=(ELEWy"]) = (X +uu").

Thus, the extended plug-in density with the posterior mean 7j, based on &; is
Na(fir, Xr), where X = vly + E[up’ | 2] — fiefi) .

We obtain the extended plug-in densities with respect to the uniform prior
mu(p) = 1. As the posterior density with respect to 7y is

pulp | x) = p(x; p, ulg)mu(p),
we obtain
v =Er[plz]=2

and
fuv=v+Erp plal/d—a"z/d=u+v.
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Thus, the extended plug-in distribution Ng(fy, éUId) = Ny(fu, (u+v)I;) based
on & is identical to the Bayesian predictive density py based on my mentioned
in Section 1. As it is optimal with respect to the posterior Bayes risk among
all distributions and included in &1, the extended plug-in density based on &; is
also identical to Ng4(fiv, éUId).

Bayesian predictive densities based on shrinkage priors do not belong to nor-
mal models, thus we investigate extended plug-in densities based on shrinkage
priors including Stein’s prior g o ||| ~(4=2).

2.2. Posterior mean representations

We evaluate posterior means that were described in the previous subsection. Let

e () = / p(: o, ulg)e () dp,

which is the marginal density of x. The derivatives of model density functions
are given by

1
Vp(x; pyula) = —(p — 2)p(x; p, ula),

IS

1 1
V2p(a; p, uly) = ——p(@; g ula)la+ — (p—)(1 - z) T p(a; p,uly),

and the Laplacian is given by
d 1
Apla; pyula) = ——p(@; pyula) + —5 (p = 2) " (1 — 2)p(; py ula),
where, for a function f : R — R,

T 2
Vf(z):= (;{1() ..,(%@)) . Af(x) ::Z%(m)

and V2 is the Hessian matrix whose (4, j) element is

0%f(x)

(V2 f(x))ij = Dz,0;”

The posterior mean of y is evaluated in [1] as

(s p, ulyg)m(p
fp s i, ulg)m(fi

., p(; g, ula) () ot wYlorm
- */ 0= ) Tl gy (d = = T UV g (22

>) e

The posterior mean of (i — x)(u — 2) T is expressed as

V(g )T P ula)m(p)
[ =)y R T
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(1)
= [{w*V?p(w; p,ula) + up(w; p,ula)la} - ———dju
/ S p(; i, ula)m () dii
V2m,
— 2 mm +uly. (2.3)
Thus, the posterior mean of (u —z)" (1 — z) is

T p(a; p, ula)m(p) _ A
/(u —z) (p— w)fp(x; ﬂ,u[d)w(ﬂ)dﬂd'u =W du (24)

From (2.2), (2.3), and (2.4), the estimators &, and 3, are given by

€ = v+ (Balup | 2] — i fir) d
— v+ Bl — )T (u— @) | )/d — (in — )T (i — )/

=u—+v+ he(x), (2.5)
where ) ) )
_utAmg u? [[Vmg||
hal@) = T T
and
Sr=vlg+ Exlup” | 2] = fiq fir
=vlg+Ec[(p—a)(p—2)" | 2] = (ix — 2)(Ax —2)"
= (u+v)lg+ He(2), (2.6)
where ) T
ot (T Ty
My m2

Note that éﬂ is greater than the model variance v. If 7 is superharmonic, éﬁ
is smaller than u + v, which is the variance of the Bayesian predictive density
based on the uniform prior. It can be shown that Am, < 0 holds if A7 <0 as
follows. We have

%m”(””) :/M—xip(x§M»UId)7T(li)dM:/p(ﬂc;,u,ufd) 0 m(w)dp.

U Opi
The last equation comes from Stein’s lemma. Thus,

0? 9?
sozme(a) = [ ol ula) (s

i i

and we obtain

Amg(z) = /p(z;u,u[d)Aﬂ(u)du.
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Therefore, when 7 is a superharmonic function, m, is also superharmonic and
Ex(z) =u+ v+ he(z) <u+w.

On the other hand, because

A

éx = v+ (Bl p] 2] — i fin)fd = 0+ El(n — o) (1 — i) | 21/,

we have é,r (z) > v. Because tre, = dfﬂ, the average of the eigenvalues of S, is
also smaller than the variance u+ v of the Bayesian predictive density based on
the uniform prior.

3. Risk for infinitesimal prediction

We compare the Kullback—Leibler risk of the extended plug-in densities with
Bayes extended estimators and that of the Bayesian predictive density py(y |
x) based on the uniform prior. The Bayesian predictive density py(y | x) is
included in the extended normal model N4(u, ly) (€ € R) and it is minimax.
It is desirable to obtain predictive densities belonging to the extended models
that perform better than py(y | x).

The risk function of p(y | ) is

R(p;p) = E[D{p(y; p, v1a); p(y | 2)}] = /p(az;mufd)D{p(y;u,vId);ﬁ(y | z)}dz.

For the predictive densities p1(y | ) and pa(y | ), we have

D{p(y; p,v1a); p1(y | 2)}—D{p(y; p, via); P2(y | fc)}=/p(y;u, vly)log %dy.

We introduce the time variables s := 1/u and ¢ := 1/v, which can be regarded
as the numbers of observations and the number of future samples, respectively.
To appreciate the time interpretation of s and t, consider a Gaussian process
Z, (T > 0) defined by the stochastic differential equation

dZ, = pdr +dB; (7 >0),

where Zy = 0 and B, (7 > 0) is a standard d-dimensional Brownian motion.
Consequently, the distribution of (1/7)Z; is N(u, (1/7)14). Thus, our problem
is equivalent to a problem in which we observe (1/s)Z, and predict (1/t)(Zs4t —
Zs). Therefore, s and ¢ correspond to the observation time and prediction time,
respectively. Let fi; » be the posterior mean of 1 based on observation Z; and
prior 7.

In this setting, the relationship between prediction risk and estimation risk
used in [2] is represented by

BT Zr — pll?] = Erlllfirx — pl?
R(u;pU)—R(ﬂ;pﬂ)z/ I 2 ]2 Uire =17 (3)
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where E.[-] means taking expectation about Ng(u, (1/7)I4). This shows that
the risk difference of the Bayesian predictive densities is represented as the
integration of the estimation risk difference from s to s +t. The relationship of
prediction risk and estimation risk is also considered in [3].

The relation (3.1) shows that

R(p;pu) — R(p;pr) >0

holds if
ET[HTilzT - NH2] - ET[”[LT,W - ,“”2} >0

for all 7 > 0. Thus, if 7 is a superharmonic prior, p, dominates py. Since

LBl Ze — pl?) = Belll o — %]

%g%; : 5 dr
P )
= §(ES[”T 'Z, - N||2] — Es[ll s, — /~L||2])v

the estimation risk difference E[||s™'Zs — ul|?] — Es[||fis,= — pl|?] corresponds
to the infinitesimal-prediction risk difference.

Subsequently, we consider the relationship between the risk of extended plug-
in densities and that of Bayes extended estimators. We compare the risk func-
tions of extended plug-in predictive densities with Bayes extended estimators
based on superharmonic priors and the uniform prior my. Recall that the ex-
tended plug-in densities p(y; fiv, éU) and p(y; fiu, iU) based on the uniform prior
7y coincide with the Bayesian predictive density based on my. We show that
the infinitesimal prediction risk difference of extended plug-in predictive densi-
ties at 7 = s is the risk difference between the corresponding Bayes extended
estimators. This shows that the extended plug-in distributions with (ﬂﬂ,ftm)
and (fir, 2t,7r)7 where the subscript ¢ is added to the densities to clarify their
dependency on it, have better performance than py if ¢ is small enough and w
is a superharmonic prior for d > 3. From (2.2), i, does not depend on ¢.

Theorem 3.1. For a prior 7, denote the Kullback—Leibler risk of p(y; fir, ét,,rfd)
and p(y; Iaﬂa i:t,‘rr) as

Ryt fim, b)) = /p(x;u,sflld)D{p(y;u,flld);p(y;ﬂﬂ(x),ét,ﬂ(ﬂf)ld)}dm-

and

Ry(1t; fir, S.m) = /p(x;u,s*IId)D{p(y;u,flfd);p(y;/lw(:v),Et,ﬂ(w))d%
respectively. Then,

.0 . s Elllz — ul|?] — E[||fx — w]|?
}51[1)&{Rt(ﬂ;pt,U)*Rt(ﬂ;ﬂmft,n)}: [H MH B [HM M”] (32)
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and

0 . P _ E[llz — pll®] - E[lax — p])?]
%E}% a {Rt(ﬂapt,U) - Rt(lu‘vp“n'a Et,ﬂ')} - 2 (33)

hold.

Proof. The risk difference between p(y; fir, ét,ﬂld) and pyu(y | ) = p(y;z, (s +
t=1)1,) is given by

N ~ ; p(%ﬂﬂ"gt wId)
R 5 -R s M7, Sty :Ew 1 :
t(:uﬂpt,U) t(uﬂ:u Et, ) ylt 0g p(y7x, (8_1 +t_1)ld)
d €t 1 ST s
= By |51 Ty~ ) (Y~ n
z,y|t 2 0og sy ¢-1 2&,5771- (y o ) (y H )
+ L))
s 1)V W
d Ein 1 - d
=E ——1 : - —= - A7r - Aﬂ' Y 3.4
el | T3 108 S %, (= fx) (y = fim) | + 3 (3.4)

where the expectation about (z,y) is denoted as E, ,;[-]. We evaluate the
differential of the risk difference with respect to ¢t. From (2.5), we have

agt ™ 9, 1 -1 -2
2 = — t hﬂ = 7t .
5 5 {s7" + + he(2)}
Thus,
- 10 ét,ﬂ' _ L 6515,# _ 1 6(8_1 + t_l)
ot BTyt T g ot siail o

1 1
= —t_2 = - 1 ..-1 |- (35)
Et,ﬂ' s +1

We differentiate the rest of (3.4) and obtain

9 1 19 |dt™" + (p— )" (0 — fix)
—EI —— - Aﬂ— T — Aﬂ— = ———Ez = l ul
5y Lalt [ % (y—iix) (y— fix) 5 91 ‘.
1 o1 Lt 2 R R
= —§Ez l—dt I pdt™! & t =5 (= fir) (e — Mﬂ)} . (3.6)
t,m t,m gt,ﬂ"

From (3.4), (3.5), and (3.6), we obtain

O L Rups ) — Bulps )}

ot
a2 - L
ét,ﬂ‘ s_l + t_l

1
= _E:E
2
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1 t=2 2
+dt™2= —dt‘lT— N
ft,ﬂ' €t7ﬂ' gt,‘n'

2 1
dt? -
(51 +t1+h, st +t1)
2 t2
(s7t+t7 1+ he)? (s7L4+t7t+hg)?

_ 2(s L+ hy) st
e - ———— T 1y
{ Ny

(N - ﬂﬂ)T(M - ﬂﬂ)‘|

1
= _EJZ
2

—dt~!

1
—E,
2

ey t2(s7 + hp)? 4+ 2t(s7H + hy)
(1+ts=t +th,)?
t72
(st by,
a1 2(s7 1 + hy) s t(s™ + he)? +2(s7 + ha)
L+ts=1+thy  1+ts! (1+ts 1 +thy)?

)Q(Miﬂﬂ')—r(uiﬂﬂ')

1
e

1
- (1 -l—tsfl -I—thﬂ)Q (lu - ﬂﬂ)T(M - [’\[’ﬂ')‘|

d{s_l ts—2 3 t(s™t + hy)? }

Cl4tst (L ts !+ thy)?

- ! (M_ﬂﬂ)—r(u_ﬂﬂ)]'

(1+ts™t+thy)?

Thus, from

.0 R L2 ds™! — Eg|lfix — pll*]
tlgl% a {Rt(uvpt,U) - Rt(/b :u’7r7€t,7r)} = B) )

the desired result (3.2) is obtained.
Next, the risk difference between the extended plug-in density p(y; fir, Xt x)
and py(y | z) is

Rt(,u;pU) - Rt(iu/;ﬂﬂw it,Tr) = Ez,y|t log

P(Y; flry St )
p(y;x, (s7F +t71) 1)

1 To-1
:Em,y|t _510g(87__(y_:uﬂ') zt,ﬂ'(y_/’l’ﬂ')
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1 o 1 Tee X d
=Bayi | ~5 108 (= e =) Sy =) | + 5 (BT)

From (2.6),

9d & 9 i1, -1 -2
Thus,

0 B S—1, 42 —2, &1

- log [£1.r] = tr{ztm(—t )Id} — 208,
and
9 C AT - 9 —1, -1 A NT -1 -
&Er,ylt[(y = fix) Xy (y — fix)] = aEz[t tr(X 7)) + (b — fn) Ep 2 (1 — fin)]

A

= 7P St e (P 2) R (= i) T2 (e — i)

Therefore, we obtain

6 p(y;ﬂﬂ'?it 71')
—E I ’
2 log Py, (s~ + 1)

o) 1 o 1 LN Te—1 ~
= S laault [—5 log (eI 2 = fix) 2 (y — fin)

= L | 75\~ r o YT 1
9 t, s—1 4 ¢-1

1 A ~ A
P S e (S R (e ) TSR - m)}]

dt=! s71 11
=E, [T (W — 1) +1 tr(t Zt,w)

A~

e 1 . _ N
- (T — ot 2(uuw)T2t§(uuw)l-

s

Let
A’m,.  Am.Am!
hrimsty g (Sme_ Smednl)
My m2
Then,
180 = I+ tA,
and

IS = (I + tAL)
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When ¢ is small enough, all absolute values of the eigenvalues of t A, are smaller
than 1 and

IS = (—1) (tAR)"
i=0
In the same manner, let
B, =2A,+ tAfr,

and we have .
(tztﬂr)Q = Iq+tBx,

and when ¢ is small enough that all absolute values of the eigenvalues of tB,
are smaller than 1,

7202 = (Ig+tBr) "' =) _(-1)'(tB,)".
i=0
Therefore, when ¢ > 0 is small enough,
9 P(Y; fir, St.x)
—E 1 .
ot wlt [ 08 ply;z, (s71 +t=1)1,)
di~! 57! TP PPN PP P
= Ez [T (W - 1) +1 tf(t Et,w) - Ttr(t Et,ﬂ')
1.5 AT —2 N

=5t (k= fx) Bia(p — )

dt=t 571 dt1 > , ,
==t + B~ t’lt{ f1ltA7r’}

25—1+t—1+” 2+ r;( ) (tAx)
-1 )
- 7“{2(—1)] (th)]}
7=0
L 5T S J J 5
— Sl i) T{ S () (B b i)
j=0

d s ! -1 1 e il
S [ e A S a)

2T 1ts 1 Tt +;2< ) ™

- %tr{t_lld —2A, —tA% + i(—l)jtﬂ'—lB,ﬂ;}

j=2
- %(/1, - ﬂw)T{Id + z_:l(_l)j(th)j}(u - /:Lﬂ')‘| .

Thus, from

im 2 g log P(Y; fims Stx) _ds = Byl — )]
t—0 at $7y‘t p(y’ x, (871 + t*l)]’d) 2 9

the desired result (3.3) is obtained. O
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4. Numerical experiments

We compare the Kullback—Leibler risks of the extended plug-in densities based
on Stein’s prior mg, the Bayesian predictive density py(y | x) based on the
uniform prior 7y, the Bayesian predictive density ps(y | ) based on 7s, and an
empirical Bayes method studied in [13]. Observation z is distributed according
to Ng(p,uly) with 4 € R? and w > 0, and a future sample y comes from
a normal distribution Ng(u,vI;) with the same mean p and with a possibly
different variance v > 0. In Theorem 3.1, we observe that the proposed methods
based on a superharmonic prior dominate py(y | ) when 1/v is close to 0. In
these experiments, we numerically evaluate the Kullback—Leibler risks for finite
v > 0. Although we are interested in the risk comparison among predictive
densities that can be obtained by simple computations, we also simulate the
Kullback—Leibler risk of the Bayesian predictive density ps(y | ) based on g
to verify the approximate performance of those plug-in densities.

When Stein’s prior is employed, the extended estimators fi,, f,, and 3, are
given by

ﬂﬂ' :lev
T

A r T
fﬂ:U+F1U+T(F2—F12)7

S =l + Fiuly + :ET:v(FQ - Ff)

where
_ 4 _ o@ara(llzl/vu)
Bo==2 /v
o Sasalllzl/ V) — dasa(lzl/ V)
Fo=1+4 ba(l2l]/v/a)
and

2

a®/2
¢ala) = aid+2/ s 2 exp(—s)ds (a > 0).
0

These evaluations of the extended estimators follow the mixture representa-
tion (1.1) of Stein’s prior. For comparison, we employed the empirical Bayes
method p,_s from the numerical analysis in [13]. The Kullback-Leibler risks
are computed by taking the average of 5000 trials.

The simulation results are shown in Figure 1. As expected, the risk of ps(y | x)
is the smallest, whereas the risk of py(y | «), which is the only method in this
experiment that does not employ a shrinkage prior, is the largest. The risk of
pu(y | ) is much larger than that of any other methods in Figure 1c. The four
competitors that do not need complex representations are the two extended
plug-in densities, the empirical Bayes predictive density, and py(y | ). Among
these, the extended plug-in density p(y; fixr, f],r) exhibits the best performance
unless ||p|| is very close to 0. The risk performance of the proposed extended
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Fig 1: Kullback-Leibler risks of extended plug-in densities with (ﬂﬂ,éﬂ) and

(fix,2x), empirical Bayes method in [13], and Bayesian predictive densities py
and ps.

plug-in densities approaches that of ps(y | ) more rapidly than the empirical
Bayes as ||| increases.

Figure 2 presents a magnification of the effects in Figure 1d of the choice
of the extended models by showing the risk differences of p(y;ﬂ,r,éﬂ), (Y5 o
ﬁlﬂ), and ps(y | z). The extended spaces to which extended plug-in densities
P(Y; fir, &) and p(y; fur, B¢.x) belong are Ng(pu, €15) and Ng(u, ), respectively,
and their dimensions are d + 1 and d + d(d + 1)/2 = d?/2 + (3/2)d, respec-
tively. The Bayesian predictive density ps(y | ) does not belong to any of the
finite-dimensional models. The risk comparison demonstrates that p(y; fir, XA],,)
performs slightly better than p(y;ﬂﬂ,fwfd), which suggests that a larger ex-
tended model results in a better performance of the predictive density with the
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Fig 2: Kullback-Leibler risks of extended plug-in densities with (i, &),
(fir, X)) and a Bayesian predictive density ps when d = 10,u = 1,v = 1.

Bayes extended estimator.

5. Discussions

We have investigated the construction of Bayes extended estimators for the
prediction of multivariate normal models with unknown mean pu. Investigating
the admissibility of the proposed extended plug-in densities would be a future
problem, and the admissibility would depend on the choice of superharmonic
priors. In Theorem 3.1, we consider the condition ¢ — 0, and the dominance
result for a large ¢ should also be investigated in future research.

Predictive densities for linear regression models with unknown variance un-
der a-divergence loss are studied in [9]. The development of Bayes extended
estimators for a-divergence loss in similar contexts merits further investigation.
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