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Abstract: Fréchet means on non-Euclidean spaces may exhibit nonstan-
dard asymptotic rates rendering quantile-based asymptotic inference inap-
plicable. We show here that this affects, among others, all circular distribu-
tions whose support is not contained in a closed half circle. We exhaustively
describe this phenomenon on the circle and introduce a new concept on met-
ric spaces which we call finite samples smeariness (FSS). In the presence of
FSS, for which we provide a test, it turns out that quantile-based tests for
equality of Fréchet means systematically feature effective levels higher than
their nominal level. This effect can persevere asymptotically for increasing
sample size, or may not, depending on the type of FSS. In contrast, suitable
bootstrap-based tests correct for FSS and asymptotically attain the correct
level. For illustration of relevance we apply our method to directional wind
data from two European cities. It turns out that quantile based tests, not
correcting for FSS, find a multitude of significant wind changes. This mul-
titude condenses to a few years featuring significant wind changes when our
bootstrap tests are applied, correcting for FSS.
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1. Introduction

For a random variable X on a metric space (M,d), generalizing the concept of
the Euclidean expected value, Fréchet (1948) proposed to consider minimizers of
the expected squared distance

M(X) := argmin
p∈M

F (p) where F (p) = E
[
d(p,X)2

]
, (1.1)

known as the Fréchet population mean set. Under mild assumptions, Ziezold
(1977) derived for samples X1, . . . , Xn

i.i.d.∼ X strong set-wise asymptotic consis-
tency as n → ∞ of the Fréchet sample mean set

Mn(X1, . . . , Xn) := argmin
p∈M

Fn(p) where Fn(p) = 1
n

n∑
j=1

d(p,Xj)2. (1.2)
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Under stronger conditions, among others that M is a finite dimensional mani-
fold, and under uniqueness of the minimizer μ of (1.1), then called the Fréchet
population mean, Bhattacharya and Patrangenaru (2005) derived, in a local
chart φ : U → R

m near μ ∈ U ⊆ M , a central limit theorem for a measurable
selection μ̂n ∈ Mn from (1.2), called a Fréchet sample mean, with a Gaussian
limiting distribution and the usual rate of n−1/2:

√
n (φ(μ̂n) − φ(μ)) D→N (0,Σ) . (1.3)

While the covariance matrix Σ above reflects the asymptotic rescaled covariance
of φ(μ̂n), it is usually approximated by the covariance matrix Σ̂n of the sample
φ(X1), . . . , φ(Xn), giving rise to the quantile-based one- and two-sample tests
proposed by Bhattacharya and Patrangenaru (2005), see also e.g. Bhattacharya
and Lin (2017). These tests rest on the approximation

(φ(μ̂n) − φ(μ))T Σ̂−1
n (φ(μ̂n) − φ(μ)) D→χ2

m . (1.4)

In order to assess the validity of this approximation, we consider under a unique
Fréchet sample and population mean the suitably rescaled quotient of Fréchet
variances (see Definition 2.2 for a formulation under nonunique means)

mn := nE[d(μ, μ̂n)2]
E[d(μ,X)2] , (1.5)

which has been called by Pennec (2019) the modulation of the rate of conver-
gence of the variance for sample size n and which we abbreviate as variance
modulation. The following phenomena have been observed in the literature:

(A) mn = 1 for all n ∈ N,
(B) limn→∞ mn = 0 and there exists a random integer N ∈ N such that μ̂n = μ

for n ≥ N (stickiness),
(C) limn→∞ mn = ∞ (smeariness),

Phenomenon (A) is the case on Euclidean spaces whenever second moments
are finite.1 As we will show here, it is also the case if (M,d) is a flat torus
with sufficiently concentrated X. For some nontrivial random variables on non-
manifolds, using not a local chart but a suitable embedding, Phenomenon (B)
has been observed by Barden, Le and Owen (2013, 2018) on the BHV spaces
of Billera, Holmes and Vogtmann (2001) for phylogenetic trees, it has been ob-
served on related spaces by Hotz et al. (2013); Huckemann et al. (2015), further
investigated by Lammers et al. (2023) and general central limit theorem have
been derived by Mattingly, Miller and Tran (2023). Furthermore, Phenomenon
(C) has been observed on the circle by Hotz and Huckemann (2015) with mn

of rate n
γ

γ+1 with arbitrary 1 ≤ γ ∈ N, and on spheres of arbitrary dimension
1For independent and identically distributed random variables X1, . . . , Xn ∼ X on Rd

the Fréchet sample mean coincides with the average Xn = 1
n

∑n
i=1 Xi. Hence, under a finite

second moment, E[‖X‖2] < ∞, it follows that E[‖Xn − E [X] ‖2] = E[‖X − E[X]‖2]/n.
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by Eltzner and Huckemann (2019) with mn of rate n2/3. Moreover, in case of
nonunique means, as discussed in Eltzner (2020), the finite sample behavior is
similar to that in case of smeariness, because in all known models with smeary
means, one can define a one-parameter family of models with parameter a, such
that the mean is unique and non-smeary for a < 0, smeary for a = 0 and
nonunique for a > 0. The recent work by Hundrieser, Eltzner and Huckemann
(2024) also shows that near the transition of uniqueness to nonuniqueness, the
variance modulation mn can be arbitrarily large in the finite sample regime,
without necessarily leading to smeariness.

Notably, all but (A) render the approximation (1.4) invalid. At this point
we remark that stickiness (B) is conceptually different from the opposite of
smeariness (C), namely

(D) mn > 0 for all n ∈ N and limn→∞ mn = 0 (anti-smeariness),

which has been observed by Schötz (2019a) for so-called extrinsic means,2 see
Bhattacharya and Patrangenaru (2003).

In this contribution we bring to attention two new phenomena:

(E) mn > 1 for all n ∈ N and 1 < limn→∞ mn < ∞
(F) mn > 1 for all n ∈ N and limn→∞ mn = 1,

and investigate them on the circle and the torus. Phenomenon (E) affects all
(!) parametric distributions on the circle with nowhere vanishing density like
the von Mises, the wrapped Gaussian, etc. In particular, it may render the
approximation (1.4) invalid as dramatically illustrated in the left display of
Table 1. While we introduce here definitions for rather general metric spaces and
bootstrap tests for Riemannian manifolds, detailed illustrations of the effects
and development of a proper asymptotic theory for the bootstrap beyond circle
and torus on general manifolds are out of scope for the present paper. First
steps towards theory and effects on spheres S

m of dimension m > 1 have been
taken in Eltzner, Hundrieser and Huckemann (2021). In general, as mentioned
above, smeariness seems to occur at the boundary of non-identifiability. In this
vein the effects (E) and (F) can be viewed as a geometric manifestation of
non-identifiability issues reaching well into the domain of identifiability.

Phenomenon (F) affects all distributions on the circle whose support strictly
exceeds a closed half circle as long as a neighborhood of the antipodal of their
Fréchet mean carries no probability mass. While this phenomenon renders the
approximation (1.4) asymptotically valid, for surprisingly high sample sizes, the
approximation may still be far off.

In simulations, we see that in cases (E) and (F), mn initially has a rate compa-
rable to smeariness as in Phenomenon (C), in particular, the rate of E[d(μ̂n, μ)2]
is strictly lower than the classical n−1. Equivalently, n 
→ mn starts off nonhor-
izontally as illustrated in Figures 1 and 2. Since in these cases, n 
→ mn is
only asymptotically horizontal, we give these new phenomena the name finite

2Extrinsic means have also been introduced by Hendriks and Landsman (1998) under the
name of mean locations and encompass mean directions on spheres (Mardia and Jupp, 2000).
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Table 1

Empirical rejection probability based on 100 000 simulation runs of two-sample tests for
equality of Fréchet means with nominal significance level 0.05 under the null hypothesis of a

mixture of two equally weighted (β = 1/2) von Mises distributions on the circle with
antipodal means (the first with concentration parameter κ = 3 and the second with varying
concentration parameter λ) as defined in (3.1). Left: the quantile-based Test 5.1(ii) resting

on (1.4). Right: the bootstrap-based Test 5.4(ii) with B = 1000.

quantile-based bootstrap-based
λ 0 1/4 1/2 3/4 0 1/4 1/2 3/4

n = 100 0.320 0.447 0.582 0.689 0.045 0.041 0.039 0.035
n = 1000 0.330 0.474 0.656 0.818 0.046 0.045 0.044 0.042

n = 10000 0.331 0.477 0.666 0.876 0.050 0.049 0.049 0.051

sample smeariness (FSS) and distinguish between Type I (E) and Type II (F).
Alternatively for these phenomena, the term lethargic means has been proposed
(Pennec, 2020). FSS has also been observed for diffusion means, which seem,
however, less affected by actual smeariness, see Hansen et al. (2021).

The fact that FSS encompasses nonasymptotic phenomena that depend on
sample size is crucial view of practical applications: For a given sample size
n we speak of the presence of FSS, if the variance modulation mn is consid-
erably larger than one. While under the presence of FSS, empirical levels of
quantile-based tests can deviate strongly from their nominal level, we show for
the circle that suitably designed bootstrap tests approximately keep their level,
as illustrated in the right display of Table 1. In fact, we show in this work that
the deviation of the quantile-based test perseveres as the sample size n tends
to infinity whereas the bootstrap-based test asymptotically attains the correct
level. In addition to simulations, in application to wind direction data we see
that asymptotic quantile based two-sample tests, on the circle and a torus, due
to the presence of FSS in the data, give a wrong impression of the extent of ex-
treme wind change events for two continental European cities. Using bootstrap
tests which preserve the nominal level, extreme wind changes reduce to a few
concise events, only making the transitions from the years 2002 to 2003, 2005
to 2006, 2017 to 2018 and 2018 to 2019 exceptional, hinting towards an effect
of recent climate change.

In the following Section 2 we introduce FSS on rather general metric spaces
in terms of the variance modulation and give a test for the presence of FSS in
terms of a large variance modulation. In Section 3 we exhaustively characterize
FSS for random variables on the circle and torus. In Section 4 we investigate
the asymptotics of circular Fréchet sample means and prove a consistency result
for bootstrap Fréchet sample means under FSS. For the tests to follow, we also
verify that all moments of properly centered and scaled Fréchet sample means
converge to the respective moments of the limit distribution. On Riemannian
manifolds, Section 5 explores the quantile based test by Bhattacharya and Pa-
trangenaru (2005) and an implementation of the bootstrap test, which was also
suggested by Bhattacharya and Patrangenaru (2005). Bootstrap consistency is
then established on the circle and the torus. This is followed by simulations in
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Section 6 and the application to wind direction data in Section 7. We conclude
in Section 8 with an outlook and list open problems that arise from our findings.
Here, we also explain why we expect that FSS affects extrinsic means as well
and leave details for future research.

All proofs, some more simulations and extended data analysis are deferred
to the supplement (Hundrieser, Eltzner and Huckemann, 2024) with key ideas
sketched only in the main text. The code for every simulation and analysis is
available on https://github.com/hundrieser/FSS. In particular, we provide a
package “FSS” with an implementation of the asymptotic quantile and bootstrap
based test as well as the test for the presence of finite sample smeariness.

2. Finite sample smeariness

Throughout this section, we assume that (M,d) is a complete metric space such
that every bounded, closed set is compact.
Remark 2.1 (Existence and Uniqueness of Fréchet Means). Indeed, for ran-
dom variables X1, . . . , Xn ∼ X on such spaces, due to the triangle inequality,
E[d2(p,X)] < ∞ for some p ∈ M guarantees that the Fréchet population and
sample mean sets M(X) and Mn(X1, . . . , Xn) are not empty. On the circle, un-
der very general conditions detailed in Hotz and Huckemann (2015), these sets
are unique single points. Also, e.g. (M,d) being a Hadamard space, cf. Sturm
(2003), or a finite dimensional manifold with X sufficiently concentrated, cf. Af-
sari (2011), the mean sets are guaranteed to be unique single points. Moreover,
sample means of random variables featuring a density with respect to Rieman-
nian measure on a Riemannian manifold are a.s. unique (Arnaudon and Miclo,
2014). In fact, nonuniqueness is a rather exceptional and unstable property in
the following sense: If M(X) is nonunique, then for ε ∈ (0, 1] arbitrarily small
and μ ∈ M(X) the perturbed probability measure Pμ,ε := εδμ + (1− ε)P has, as
is easy to see, the unique Fréchet population mean μ.

2.1. Definition of finite sample smeariness

We first generalize the definition of the variance modulation (1.5) from Pennec
(2019) without requiring Fréchet population or sample means to be unique. We
only require existence of mean sets, which, by Remark 2.1, is guaranteed by our
assumption on (M,d) that it is complete and that every bounded closed subset
is compact.
Definition 2.2 (Variance modulation). Let X be a random variable on (M,d)
such that E[d2(p,X)] < ∞ for some p ∈ M with Fréchet population mean set
M(X). Then, with i.i.d. samples X1, . . . , Xn ∼ X, n ∈ N and Fréchet sample
mean sets, Mn(X1, . . . , Xn), the variance modulation is defined as

mn :=
nE
[
d2
H(M(X),Mn(X1, . . . , Xn))

]
minp∈M E[d2(p,X)] ,

https://github.com/hundrieser/FSS


Finite sample smeariness of Fréchet means 3279

with the Hausdorff distance dH induced by the metric.3

Next, we formalize FSS in terms of the variance modulation.
Definition 2.3 (Finite sample smeariness). Let X be a random variable on (M,d)
such that E[d2(p,X)] < ∞ for some p ∈ M . Then, X is called finite sample
smeary (FSS) if

1 < sup
n∈N

mn < ∞.

We speak of Type I FSS if limn→∞ mn > 1 and of Type II FSS if limn→∞ mn = 1.
Remark 2.4 (Relation with smeariness). Recalling the definition of smeariness
from (D) in the introduction, supn∈N mn = ∞, note that the properties of
smeariness and finite smeariness are strictly disjoint.

The distinction into two types of FSS highlights two different phenomena.
Under FSS of Type I for increasing sample size the effect of finite sample smeari-
ness perseveres, whereas under FSS of Type II it will disappear. Nonetheless,
both phenomena affect inference tasks involving the Fréchet sample mean in the
finite sample regime. In Section 3 we exhaustively characterize the two types of
FSS on the circle and torus, and relate the concept to whether the underlying
distribution is concentrated within a sufficiently small set.

Notably, if there exists a random variable X on a metric space (M,d) with a
nonunique Fréchet population mean, Hundrieser, Eltzner and Huckemann (2024,
Corollary 2.6) have shown that for every K > 1 there exist “nearby” random
variables XK , K > 0, with unique Fréchet population means such that

sup
n∈N

mn ≥ K.

The variance modulation mn quantifies the scale of finite sample smeariness
for the sample size n ∈ N and showcases a potential loss in reliability of naive
quantile based testing methodology. Indeed, in Section 5 we theoretically un-
derpin this insight for the circle and torus (Proposition 5.2) and additionally
confirm it in various simulations in Section 6. Based on these insights, the vari-
ance modulation mn can be used as a diagnostic tool to assess the reliability of
quantile based inference. For practical contexts it is therefore only relevant to
assess whether the variance modulation is considerably larger than one. To this
end, we construct in the following a suitable statistical test.

2.2. Test for presence of finite sample smeariness and its heuristic

For a random variable X on (M,d) and sample size n ∈ N we seek to test the
hypothesis

H0,n : mn ≤ 1 vs. H1,n : mn > 1.

3Which is defined as dH(A,B) = max(supp∈A d̃(p,B), supp∈B d̃(p,A)) where d̃(p,A) :=
infx∈A d(p, x) for A,B ⊆ M .
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Note that rejection of the null hypothesis implies the presence of smeariness or
finite sample smeariness. As discussed above, since smeariness has only been
confirmed for distributions from parametric families at the boundary of the
regime with nonunique Fréchet population means, the rejection of H0,n in prac-
tice indicates the presence of finite sample smeariness. Notably, if X is FSS of
Type II, it follows that limn→∞ mn = 1, and therefore with increasing sample
size the hypothesis H0,n becomes increasingly challenging to discern from H1,n.
This is not problematic for practical considerations since we are only interested
if the variance modulation mn is considerably large to assess the unreliability
of quantile based inference. Hence, if H0,n is not rejected, even though H0,n
might actually be false, the variance modulation mn is likely not too large and
potential effects of finite sample smeariness can be ignored.

To test the null hypothesis H0,n, for a given sample X1, . . . , Xn
i.i.d.∼ X, we

utilize the empirical Fréchet variance

V̂n := 1
n

n∑
j=1

d2(μ̂n, Xj) = Fn(μ̂n) , (2.1)

and design a bootstrap procedure to estimate the numerator of the variance
modulation. To this end, let B > 0 be a large integer, μ∗

b be a Fréchet sample
mean based on an n-out-of-n bootstrap sample of X1, . . . , Xn for b = 1, . . . , B
and μ∗ the Fréchet sample mean of the μ∗

b (b = 1, . . . , B), yielding

V̂ ∗
n,B := 1

B

B∑
b=1

d2(μ̂∗, μ∗
b) and Ŵ ∗

n,B := 1
B

B∑
b=1

d4(μ̂∗, μ∗
b)4 . (2.2)

With these we formulate our statistical test.

Test 2.5 (for presence of finite sample smeariness). For random variables
X1, . . . , Xn on (M,d) with sample mean μ̂n, bootstrap means μ∗

1, . . . , μ
∗
B, and

their mean μ̂∗, as above and the notation from (2.1) and (2.2), define the em-
pirical (bootstrap-based) variance modulation,

m̂∗
n :=

nV̂ ∗
n,B

V̂n

. (2.3)

With the standard normal (1 − α)-quantile φ1−α for α ∈ (0, 1) and again the
notation from (2.1) and (2.2), reject the hypothesis H0,n at nominal level α if

m̂∗
n − 1 > hn,1−α where hn,1−α = nφ1−α√

B

√
Ŵ ∗

n,B − (V̂ ∗
n,B)2

V̂n

.

Remark 2.6 (Computation). The computational complexity of Test 2.5 is of
order O(B · C(n)), where B denotes the number of bootstrap samples B and
C(n) denotes the computational effort in computing the Fréchet sample mean
for a sample of size n. For instance, C(n) = O(n log(n)) on the circle with the
algorithm from Hotz and Huckemann (2015, Remark 3.8).
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To illustrate the performance of the test we conduct in Section 6 multiple
simulations, showcasing that the test keeps the nominal level if the variance
modulation is equal or close to one, and rejects if it is much larger than one.

In the following we provide a heuristic derivation why we believe this test to
be asymptotically of nominal level α. For this argument we rely on results by
Dubey and Müller (2019) which assume the metric space (M,d) to be bounded
and the Fréchet population and sample mean for the random variable X is
(almost surely) unique. Upon defining the quantities,

V := E[d2(μ,X)], W := E[d4(μ,X)], Ŵn := 1
n

n∑
j=1

d4(μ̂n, Xj) ,

where the 4-th moment exist due to boundedness of (M,d), Dubey and Müller
(2019) show under additional mild assumptions4 that

√
n(V̂n − V ) D→N

(
0,W − V 2) . (2.4)

Herein, Ŵn− V̂ 2
n is an asymptotically unbiased estimator for W −V 2, that also

satisfies
√
n asymptotic normality (Dubey and Müller, 2019).

Moreover, since the bootstrap samples are all independent, bootstrap sample
means μ∗

1, . . . , μ
∗
B are i.i.d. (conditionally on X1, . . . , Xn). Hence, under the

assumptions of Dubey and Müller (2019), with the Fréchet sample mean μ∗ of
the μ∗

b (b = 1, . . . , B), defining

V ∗
n := E[d2(μ∗, μ∗

1)|X1, . . . , Xn], W ∗
n := E[d4(μ∗, μ∗

1)|X1, . . . , Xn],

Ŵ ∗
n,B := 1

B

B∑
b=1

d4(μ̂∗, μ∗
b)4 ,

it follows for B → ∞ (conditionally on X1 . . . , Xn) that
√
B
(
V̂ ∗
n,B − V ∗

n

)
D→N

(
0,W ∗

n − (V ∗
n )2

)
. (2.5)

Here, the limiting variance can also be consistently estimated by Ŵ ∗
n,B−(V̂ ∗

n,B)2.
For the bootstrap Test 2.5 to perform reliably, we require that the following

approximate equality is met for n → ∞,

nE[d2(μ̂n, μ
∗
1)|X1, . . . , Xn] = nE[d2(μ, μ̂n)] + oP∗(1), (2.6)

where P
∗ denotes the outer probability measure, see van der Vaart and Wellner

(1996). This means that the distribution of the bootstrap sample mean consis-
tently estimates (conditional on X1, . . . , Xn) the underlying distribution of μ̂n.
For the circle and the torus we show that condition (2.6) holds under mild as-
sumptions (Propositions 4.6 and 4.7). Then, plugging μ̂n into the (conditional)

4These conditions encompass (almost sure) uniqueness of Fréchet sample and population
mean, a separability condition on the population Fréchet function near the Fréchet mean and
a growth bound on the metric entropy for (M,d).
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Fréchet population function of μ∗
1, it follows under (2.6) and the validity of H0,n

that

V ∗
n ≤ E[d2(μ̂n, μ

∗
1)|X1, . . . , Xn] (2.7)

= E[d2(μ, μ̂n)] + oP∗(n−1)

≤ E[d2(μ,X)]
n

+ oP∗(n−1) = V

n
+ oP∗(n−1).

Moreover, recalling (2.4), it follows that V can be estimated by V̂n up to a
stochastic error of order OP

(√
(W − V 2)/n

)
. Altogether, under H0,n and as-

suming (2.6), by (2.5) with B large enough and imposing that
√
B/n = o(1) it

follows for every α ∈ (0, 1) that

P
∗

⎛⎝P

⎛⎝V̂ ∗
n,B >

V̂n

n
+ φ1−α

√
Ŵ ∗

n,B − (V̂ ∗
n,B)2

B

∣∣∣∣∣∣ X1, . . . , Xn

⎞⎠ ≤ α

⎞⎠→ 1.

(2.8)
Overall, this suggests that in the large sample regime and if B is moderately
large, the test for finite sample smeariness attains the correct level. Formalizing
this statement would amount to confirming (2.5) uniformly in n for B → ∞.
Moreover, to assess the performance under the alternative, one would addition-
ally need to understand the sharpness of inequality (2.7). These issues are left
for future research.

3. Finite sample smeariness on circles and tori

To analyze the concept of finite sample smeariness in greater detail, we establish
in this section a complete description for the circle and the torus. To this end,
we parametrize the circle as the space S

1 = [−π, π) with −π and π identified
and the usual arc length distance

dS1(x, y) = min
{
|x− y|, 2π − |x− y|

}
.

This parametrization of S
1 enables us to interpret elements of S

1 also as ele-
ments in R. The following result provides an exhaustive characterization of the
behavior of the variance modulation.

Theorem 3.1. For arbitrary n ≥ 2 suppose that X is a random variable on S
1

with unique Fréchet mean μ and support J ⊆ S
1. Then mn > 1 for all 2 ≤ n ∈ N

under either of the two following conditions

(i) J is not contained in a closed half circle,
(ii) J contains two antipodal points, both are attained by X with positive prob-

ability.

Moreover, mn = 1 for all n ∈ N under either of the two following conditions

(iii) J is strictly contained in a closed half circle,
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(iv) J is contained in a closed half circle, at most one end point is attained by
X with positive probability.

Finally, suppose that the distribution of X has a continuous density f near the
antipode μ of μ.

(v) If f(μ) = 0 then limn→∞ mn = 1,
(vi) if 0 < f(μ) < (2π)−1 then limn→∞ mn = (1 − f(μ)2π)−2 > 1.

The proof is provided in Section A of the supplement (Hundrieser, Eltzner
and Huckemann, 2024). It is based on our observation that the variance modu-
lation is strictly larger than one if the Fréchet sample mean differs with positive
probability from a Euclidean average in a chart at the Fréchet population mean.
In particular, under conditions (i) and (ii), this difference occurs, whereas under
conditions (iii) and (iv) the two quantities coincide.

As a consequence of this result, we derive the following characterizations for
both types of FSS on the circle.

Corollary 3.2. Let X be a random variable on S
1 whose distribution has a

continuous density f near the antipode μ of the Fréchet population mean μ.

(i) Then, X is FSS of Type I if and only if 0 < f(μ) < 1/(2π).
(ii) Further, X is FSS of Type II if and only if f(μ) = 0 and condition (i) or

(ii) of Theorem 3.1 is fulfilled.

Remark 3.3. In the above case of a continuous density f near the antipode μ
of the Fréchet mean, f(μ) > (2π)−1 is not possible and f(μ) = (2π)−1 leads to
smeariness, as shown by Hotz and Huckemann (2015, Theorems 1(ii) and 3(ii)).

Simple cases of FSS on the circle are illustrated in the following.

Example 3.4 (Von Mises mixtures). On S
1 we consider von Mises mixtures

with antipodal modes with parameters κ, λ ≥ 0, β ∈ [0, 1] and density with respect
to arc length measure

dPκ,β,λ
vMm(x) := β

exp (κ cos(x))
2πI0(κ) dx + (1 − β)exp (λ cos(x + π))

2πI0(λ) dx (3.1)

where I0(·) is the modified Bessel function of the first kind of order 0, e.g.,
Mardia and Jupp (2000, p. 36). By symmetry, the von Mises mixture dPκ,β,λ

vMm

attains either a unique mean at 0 or π, or nonunique means at {−t, t} for
some t ∈ (0, π). Furthermore, we define for r ≥ 0 the function cutting out and
mirroring a disk of radius r about −π:

ζr : S1 → S
1, p 
→

⎧⎪⎨⎪⎩
p if p ∈ [−π + r, π − r)
p + π if p ∈ [−π,−π + r)
p− π if p ∈ [π − r, π)

(3.2)

For the von Mises mixture P
κ,β,λ
vMm we then denote the push-forward measure

under ζr by
P
κ,β,λ,r
vMm := ζr∗ P

κ,β,λ
vMm , (3.3)
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Fig 1. Log-log plots of variance modulation curves n �→ mn, for varying von Mises mixture
(vMm) distributions defined in (3.1) in black (r = 0) and vMm distributions with a disk cut
out of radius r = 0.1, 0.2, π/2 (in fading gray) around the antipode of the mean, as defined in
(3.3) based on 100 000 simulation runs for each sample size. In the left and middle display,
the vMm distributions (black) feature Type I FSS, with the dotted line giving the asymptotic
scaled variance, the two vMm distributions with an interval cut out (gray curves) of radius
0 < r < π/2 feature Type II FSS. In the right display, the vMm distribution (black) features
smeariness, with theoretical scaled variance (dotted), the vMm distributions with an interval
cut out (gray curves) of radius 0 < r < π/2 feature Type II FSS. Only the vMm distributions
with an interval cut out of radius r = π/2 (light gray) features no FSS at all.

which preserves all mass except for that in the disk which is mirrored. Recall
that by Theorem 3.1, all the distributions P

κ,β,λ,r
vMm with unique mean μ = 0 and

r < π/2 − ε for some ε > 0 feature FSS (if they are not smeary themselves),
which is of Type I if r = 0 and Type II if r > 0. For the parameters (κ, β, λ) ∈
{(3, 1, 0), (3, 0.5, 0.5), (3, 0.5, 0.8683)} (the last configuration leads to smeariness
of order two, cf. Hotz and Huckemann (2015), as the density attains the local
maximum 1/(2π) at −π with negative second derivative) and varying choices for
the parameter r ∈ {0, 0.1, 0.2, π} the respective variance modulation curves are
depicted in Figure 1. Notably, in case of Type I FSS, the curve mn rises from 1
to (1 − 2πf(μ))−2 whereas under Type II FSS, the curve first rises from 1 and
eventually drops to 1.

Depending on the probability distribution near μ, also more complicated
versions of increase and decrease may occur, as Example 3.5 and Figure 2 teach:
every pair of bumps of the density near the antipode may result in a bump of mn.
As before, however, it starts at 1 and eventually settles at (1 − 2πf(μ))−2,
producing Type I FSS if f(μ) > 0 and Type II FSS else.

Example 3.5 (Relating antipodal density to variance modulation). To investi-
gate the relationship between the variance modulation of intrinsic sample means
n 
→ mn and the density f (t,w) of X near the antipode of the intrinsic popu-
lation mean μ = 0 we consider a family of distributions for which the density
near the antipode μ is piecewise constant. Let l ∈ N, w = (w1, . . . , wl) ∈ [0, 1]l,
t = (t1, . . . , tl) ∈ [0, π)l with t0 := 0 < t1 < · · · < tl < π and define the
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Table 2

Selected values for the parameters l, t, w and their resulting type of FSS.
(a) (b) (c) (d) (e)

l 1 2 4 2 4
t 1.5 (0.8, 2) (0.1, 0.2, 0.5, 2) (0.8, 2) (0.1, 0.2, 0.5, 2)
w 0.5 (0.5, 1) (0.5, 0.8, 0.0, 1) (0.0, 1) (0.0, 0.85, 0.0, 1)

Type of FSS I I I II II

Fig 2. Top: Variance modulation curves as in Figure 1 (here the vertical is not in log-scale),
for each distribution in Table 2 of Example 3.5 based on 100 000 simulations for each sample
size. Bottom: Density part of the corresponding distributions (that comprise a δ-measure at
the origin). In examples (a)-(c) we have Type I FSS, whereas for (d), (e) we have Type
II FSS.

distribution P
(t,w)
U by

dP
(t,w)
U (x) := k · dδ0(x) + 1

2π · f (t,w)(x)dx with

f (t,w)(x) :=
l∑

i=1
wi1[−π+ti−1,−π+ti)∪(π−ti,π−ti−1](x)

where k = k(t, w) > 0 is a normalization constant to ensure that P
(t,w)
U is a

probability measure. In Table 2 we list cases (a) – (e) of parameter choices
considered.

In all cases the population mean of P
(t,w)
U is unique and located at μ = 0.

Whenever the density at the antipode is strictly between zero and 1/2π we
have FSS of Type I. Regardless of the type of FSS, every pair of bumps in the
density near the antipode corresponds to a single bump in the variance modu-
lation curve. Thus, in case of Type I FSS the rescaled Fréchet sample variance
nE[d(μ̂n, μ)2] approaches asymptotically a value strictly above the Euclidean
variance E[d(X,μ)2], in case of Type II FSS it approaches asymptotically the
Euclidean variance.
Remark 3.6. As Example 3.5 and Figure 2 teach, the variance modulation mn
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Fig 3. Variance modulation curves, as in Figure 1, for the three types of distributions P
(ε,w)
E

from Example 3.7 with weight w of point mass at ±(π/2+ε) based on 100 000 simulation runs
for each sample size. Black: ε = 0.5, dark gray: ε = 0.2, gray: ε = 0, light gray: ε = −0.2. We
have Type II FSS for all values of ε ≥ 0 and no FSS (constant scaled variance) for ε < 0.

may be non-monotonic, exhibiting different behaviors for different sample sizes.
The following example illustrates Theorem 3.1 with two point masses at or

beyond the equator (case (ii)), or before (case (i)), with a possibly (in case (iii))
nonunique sample mean set, of which uniformly at random, a sample mean is
selected.

Example 3.7. Letting ε ∈ [−π/2, π/2) and w ∈ (0, 1/4], define the circular
distribution P

(ε,w)
E by

dP
(ε,w)
E (x) := (1 − 2w) · 1[−1/2,1/2](x)dx + w dδπ/2+ε(x) + w dδ−π/2−ε(x) ,

which assigns at least half the mass to [−1/2, 1/2] and the rest is evenly dis-
tributed close to the equator at π/2 + ε and −π/2 − ε.

(i) For ε < 0 these distributions are supported in (−π/2, π/2) and thus by
Theorem 3.1 (iii) feature no FSS.

(ii) For ε > 0, in contrast by Theorem 3.1 (i), they always feature FSS, which
is, by Corollary 3.2 (ii) of Type II.

(iii) For ε = 0, by Theorem 3.1 (ii) and Corollary 3.2 (ii), they also feature
FSS of Type II. Indeed, samples featuring only points at ±π/2 and no oth-
ers, occurring with positive probability, lead to nonunique sample means,
namely at α ∈ (−π/2, π/2) and its counterpart α̃ := 1(α > 0)π − 1(α ≤
0)π−α, mirrored along the equator. In this setting, the Hausdorff distance
between population mean set {0} and sample mean set {α, α̃} equals |α̃|,
corresponding to the situation where μ̂n = α̃ was selected as the sample
mean.

Each panel in Figure 3 illustrates the three cases, with larger effect on FSS the
larger the weight w of each of the point masses.

While we defined FSS for arbitrary metric spaces, we have investigated it
only for the circle. These results extend at once to the m-torus T

m =
(
S

1)m =
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Fig 4. Six sample points (black circles) on the diagonal of the two-torus T2 and their equally
spaced 62 = 36 Fréchet sample means (empty squares), cf. Remark 4.5.

×m

i=1[−π, π), m ∈ N, equipped with the canonical product metric

dTm(x, y) =

√√√√ m∑
i=1

d(x(i), y(i))2, x =

⎛⎜⎝x(1)

...
x(m)

⎞⎟⎠ , y =

⎛⎜⎝ y(1)

...
y(m)

⎞⎟⎠ ∈ T
m .

Indeed, μ ∈ T
m is a minimizer of the population Fréchet function (1.1) of a

random variable X on T
m if and only if all of its coordinates μ(i) are minimizers

of the population Fréchet functions of the marginals X(i) on the i-th circle,
i ∈ {1, . . . ,m}.
Remark 3.8. In consequence, due to Hotz and Huckemann (2015, Corollary 3),
for a sample X1, . . . , Xn on the m-torus Tm there are at most nm minimizers of
the sample Fréchet function (1.2). For instance, every one of the nm grid points(

−π + 2π(2j1 − 1)
2n , . . . ,−π + 2π(2jm − 1)

2n

)
, j1, . . . , jm ∈ {1, . . . , n}

is a minimizer of the sample Fréchet function if the sample is given by Xj =(
− π + 2π(j−1)

n

)
(1, . . . , 1)T ∈ Tm for j ∈ {1, . . . , n}, cf. Figure 4. Indeed, taking

the i-th component (1 ≤ i ≤ m) of the sample on T
m yields a sample on S

1,
given by {X(i)

n , . . . , X
(i)
n } with X

(i)
j =

(
− π + 2π(j−1)

n

)
for each j ∈ {1, . . . , n}.

The corresponding sample Fréchet function for the projection has exactly n

minimizers, all equally spaced and located at −π + 2π(2ji−1)
2n for ji ∈ {1, . . . n}.

In particular, Theorem 3.1 yields the following behavior for the variance
modulation of a random variable on T

m.

Corollary 3.9. For arbitrary n ≥ 2 and m ∈ N let X = (X(1), . . . , X(m)) be a
random variable on the torus T

m with unique Fréchet population mean μ. For
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i ∈ {1, . . .m} let the support of X(i) be J (i) ⊆ S
1. Then mn > 1 for all n ∈ N

under either of the following two conditions

(i) there exists i ∈ {1, . . .m} such that J (i) is not contained in a closed half
circle,

(ii) there exists i ∈ {1, . . .m} such that J (i) contains two antipodal points,
each of which is attained by X(i) with positive probability.

Moreover, mn = 1 for all n ∈ N under either of the following two conditions

(iii) for each i ∈ {1, . . . ,m} the support J (i) is strictly contained in a closed
half circle,

(iv) for each i ∈ {1, . . . ,m} the support J (i) is contained in a closed half cir-
cle and at most one of the end points is attained by X(i) with positive
probability.

Finally, suppose for each i ∈ {1, . . . ,m} that the component X(i) has a contin-
uous density f (i) near the antipode μ(i) of μ(i).

(v) If f (i)(μ(i)) = 0 for all i ∈ {1, . . . ,m}, then limn→∞ mn = 1,
(vi) if 0 ≤ f (i)(μ(i)) < 1

2π for all i ∈ {1, . . . ,m} with f (i)(μ(i)) > 0 for at least
one component then

lim
n→∞

mn =
(

m∑
k=1

E[d2(X(k), μ(i))]
(1 − f (i)(μ(i))2π)2

)
·
(

m∑
i=1

E[d2(X(i), μ(i))]
)−1

> 1.

As a consequence, we obtain a similar characterization as in Corollary 3.2 for
FSS on T

m.

Corollary 3.10. Let X = (X(1), . . . , X(m)) be a random variable on T
m and

suppose for each i ∈ {1, . . . ,m} there exists a continuous density near the an-
tipode μ(i) of the respective coordinate’s Fréchet population mean μ(i).

(i) Then, X is FSS of Type I if and only if 0 ≤ f (i)(μ(i)) < 1
2π for all

i ∈ {1, . . . ,m} with f (i)(μ(i)) > 0 for at least one component.
(ii) Further, X is FSS of Type II if and only if f (i)(μ(i)) = 0 for all i ∈

{1, . . . ,m} and condition (i) or (ii) of Corollary 3.9 is fulfilled.

4. Asymptotics of Fréchet means on the circle and the torus

In this section, we give with an exposition on the asymptotic behavior of Fréchet
sample means on the circle. We then proceed with a proof on consistency of the
bootstrap and afterwards show under the presence of FSS that moments of the
Fréchet sample means and their bootstrapped versions converge to the respective
moment of the limit distribution.
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4.1. Central limit theorem and bootstrap consistency for circular
Fréchet means

We begin with the central limit theorem for Fréchet sample means on the circle
under the following assumption.
Assumption 4.1. Let X be a random element on S1

(i) with unique Fréchet population mean μ = 0 and
(ii) that features a continuous density f on (π − δ, π) ∪ [−π,−π + δ) with

respect to the arc length measure for some δ > 0 such that

f(−π) = lim
x↘−π

f(x) = lim
x↗π

f(x) < 1
2π .

Theorem 4.2 (Central Limit Theorem on the Circle by McKilliam, Quinn and
Clarkson (2012); Hotz and Huckemann (2015)). Let X be a random element
on S1 which fulfills Assumption 4.1. Consider n ∈ N i.i.d. random elements
X1, . . . , Xn ∼ X on S

1 with a measurable selection μ̂n of Fréchet sample means.
Then, for n → ∞, it follows,

√
n μ̂n

D−→ N
(

0, E[X2](
1 − 2πf(−π)

)2
)
,

where E[X2] denotes Euclidean variance.

Remark 4.3. The case f(−π) = 1
2π where the density f is (k + 1)-times con-

tinuously differentiable near −π for k ∈ N, such that the first k derivatives
vanish at −π whereas the derivative of order k + 1 at −π does not, has been
investigated by Hotz and Huckemann (2015). In this setting, the convergence
rate for Fréchet sample means turns out to be of order n

−1
2(k+1) which is strictly

slower than the standard n−1/2-rate. The phenomenon of a slower convergence
rate is known as smeariness. Moreover, it is not possible that the antipode of
the Fréchet population mean exhibits a point mass or fulfills f(−π) > 1

2π , cf.
Hotz and Huckemann (2015, Theorem 1).

The limit distribution of the Fréchet sample mean depends on the behavior of
the density near the antipode of the Fréchet population mean. In particular, in
case the density near the antipode of the population mean does not vanish, ap-
proximating the distribution of

√
nμ̂n by a centered Gaussian with an estimated

variance 1
n

∑n
i=1 d(μ̂n, Xi) is not suited. Unfortunately, estimating the density

at the antipode poses a considerable statistical challenge, since the population
mean additionally needs to be estimated. Further, available density estimation
methods typically impose certain regularity assumptions at the density, and
deteriorate in performance with decreasing regularity (Tsybakov, 2009).

An alternative approach to imitate the law of scaled Fréchet sample means
without imposing regularity assumptions on the antipodal density is by means
of bootstrap methods. In the following, we show that the naive n-out-of-n boot-
strap is indeed (asymptotically) consistent in approximating the distribution of



3290 S. Hundrieser et al.

Fréchet sample means. For this purpose, we denote by

BL1(R) :=
{
f : R → [−1, 1]

∣∣∣ |f(x) − f(y)| ≤ |x− y| for all x, y ∈ R

}
the space of bounded Lipschitz functions on R which are bounded by one and
have Lipschitz modulus at most one. Further, we denote by P

∗
−−−→ the convergence

in outer probability, cf. van der Vaart and Wellner (1996).

Theorem 4.4 (Consistency of Bootstrap). Let X be a random element on S
1

which fulfills Assumption 4.1. Consider n ∈ N i.i.d. random elements X1, . . . , Xn

∼ X on S
1 with a measurable selection μ̂n of Fréchet sample means. Further,

consider a bootstrap sample X∗
1 , . . . , X

∗
n

i.i.d.∼ 1
n

∑n
i=1 δXi with measurable selec-

tion μ̂∗
n of its Fréchet sample mean. Then, for n → ∞, it follows,

sup
h∈BL1(R)

∣∣∣∣E [h (√n (μ̂∗
n − μ̂n)

) ∣∣X1, . . . , Xn

]
− E

[
h
(√

n μ̂n

)] ∣∣∣∣ P
∗

−−−→ 0.

The proof is stated in Section B of the supplement (Hundrieser, Eltzner
and Huckemann, 2024) and relies on a careful analysis of the empirical and
population Fréchet function. Along the way, we also employ consistency of the
bootstrap for the Euclidean sample mean (van der Vaart, 2000, Theorem 23.4)
as well as utilize empirical process theory to suitably bound certain errors.
Remark 4.5. These results extend at once to the m-torus Tm =

(
S1)m equipped

with the canonical product metric as the Fréchet mean on the m-torus is given
by the vector of circular Fréchet means for each component of the torus.

4.2. Moment convergence of Fréchet means

In order to employ the theory on the asymptotics of Fréchet sample means and
bootstrap version for the formulation of Hotelling tests it is necessary to esti-
mate the variance of the limit distribution. The following result guarantees that
the naive plug-in estimator for the covariance is indeed consistent. In fact, we
prove that all moments of scaled Fréchet sample means and bootstrap variants
converge to the corresponding moment of their limit distribution.

Proposition 4.6. Let X be a random element on S
1 that meets Assumption 4.1.

Consider n ∈ N i.i.d. random elements X1, . . . , Xn ∼ X on S
1 with a measurable

selection μ̂n of Fréchet sample means. Then for all p ≥ 1 we have

sup
n∈N

E
[∣∣√nd(μ̂n, μ)

∣∣p] = sup
n∈N

E
[∣∣√nμ̂n

∣∣p] < ∞.

Further, for Z ∼ N
(
0,E[X2]/(1 − 2πf(−π))2

)
we have for every p ≥ 1 as n

tends to infinity that

E
[(√

nd(μ̂n, μ)
)p] = E

[(√
nμ̂n

)p]→ E[Zp].
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The proof is stated in Section C of the Supplement (Hundrieser, Eltzner and
Huckemann, 2024) and uses a moment convergence result for M-estimators rely-
ing on the theory by Nishiyama (2010). Explicit bounds for E

[
|√nd(μ̂n, μ)|p

]
for

Fréchet means on general metric spaces were also established by Schötz (2019b),
Ahidar-Coutrix, Le Gouic and Paris (2019), and Le Gouic et al. (2022).

For the circular setting, moments of bootstrap based Fréchet sample means
are also consistent.

Proposition 4.7. Let X be a random element on S
1 that meets Assumption 4.1.

Consider n ∈ N i.i.d. random elements X1, . . . , Xn ∼ X on S1 with a measur-
able selection μ̂n of Fréchet sample means. Further, consider a bootstrap sample
X∗

1 , . . . , X
∗
n

i.i.d.∼ 1
n

∑n
i=1 δXi with measurable selection μ̂∗

n of its Fréchet sample
mean. Then,

sup
n∈N

E
[∣∣√nd(μ̂∗

n, μ̂n)
∣∣p] ≤ sup

n∈N

E
[∣∣√n(μ̂∗

n − μ̂n)
∣∣p] < ∞

for all p ≥ 1 where the expectation is taken with respect to X1, . . . , Xn
i.i.d.∼ X and

bootstrap based X∗
1 , . . . , X

∗
n

i.i.d.∼ n−1∑n
i=1 δXi . Further, for a random variable

Z ∼ N
(
0,E[X2]/(1−2πf(−π))2

)
we have for every p ≥ 1 as n tends to infinity,

E
[(√

n(μ̂∗
n − μ̂n)

)p ∣∣X1, . . . , Xn

] P
∗

−−−→ E[Zp].

The proof is deferred to Section C of the Supplement (Hundrieser, Eltzner
and Huckemann, 2024) and relies on a general result for conditional moment
convergence of bootstrap M -estimators by Kato (2011).

5. One- and two-sample tests for Fréchet means under finite sample
smeariness

We begin with a brief review of the celebrated central limit theorem (CLT) by
Bhattacharya and Patrangenaru (2005) for a k-dimensional Riemannian mani-
fold M and corresponding tests proposed therein. The CLT states that, under
suitable conditions (further clarified in Bhattacharya and Lin (2017); Eltzner
and Huckemann (2019); Eltzner et al. (2021)), in a local chart φ : U → R

k,
U ⊂ M , the fluctuation φ(μ̂n)− φ(μ) of the Fréchet sample mean μ̂n about the
Fréchet population mean μ, rescaled with the square root of sample size

√
n, is

asymptotically for n → ∞ Gaussian with zero mean and covariance given by

Σ = H−1CH−1 ,

cf. (1.3). Here, C is the population covariance of the gradient of the Fréchet
function F from (1.1) at μ in the local chart and H is twice the expected value
of the Hessian of the Fréchet function at μ in the local chart. One of the above
mentioned conditions is that H be positive definite. In our language, this means
that μ̂n is nonsmeary.
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For mutually independent samples X1, . . . , Xn
i.i.d.∼ X and Y1, . . . , Yn

i.i.d.∼ Y
with population Fréchet means μ(X) and μ(Y ), respectively, and μ0 ∈ M , con-
sider the hypotheses

H1
0 : μ(X) = μ0 for the one-sample test,

H2
0 : μ(X) = μ(Y ) for the two-sample test.

5.1. Quantile based tests

With a local chart φ : U → R
k where U ⊂ M contains μ (for H1

0 ), or μ(X) and
μ(Y ) (for H2

0 ), respectively, Bhattacharya and Patrangenaru (2005) thus suggest
considering the following test statistics,

T 1 = n
(
φ(μ̂(X)

n ) − φ(μ0)
)T

ĤXĈ−1
X ĤX

(
φ(μ̂(X)

n ) − φ(μ0)
)
,

T 2 = (n + m)
(
φ(μ̂(X)

n ) − φ(μ̂(Y )
m )

)T
ĤX,Y Ĉ

−1
X,Y ĤX,Y

(
φ(μ̂(X)

n ) − φ(μ̂(Y )
m )

)
for the one- and two-sample test, and use χ2

k as their asymptotic approxima-
tion under the respective null hypothesis. Here ĤX , ĈX or ĤX,Y , ĈX,Y are the
suitable plugin estimators of H and C based on the first sample, or the pooled
sample, respectively, cf. also Bhattacharya and Bhattacharya (2012, Section
5.4.1).

Test 5.1 (Bhattacharya and Patrangenaru (2005); Bhattacharya and Bhat-
tacharya (2012)). For 0 < α < 1 and the 1 − α quantile χ2

k,1−α of the χ2
k

distribution, reject at level α

(i) H1
0 , if T 1 ≥ χ2

k,1−α,
(ii) H2

0 , if T 2 ≥ χ2
k,1−α.

Asymptotically, while both tests are invariant under diffeomorphisms due to
the delta method (Fang and Santos, 2019) and thus independent of the chart
chosen, in general, they do not keep the nominal level.

Proposition 5.2. Let X and Y be random elements on S
1 with unique Fréchet

population means μ(X) and μ(Y ), respectively, such that P(X = μ(X)) > 0 and
P(Y = μ(Y )) > 0. Further, assume that X (resp. Y ) have continuous densities
f (X) (resp. f (Y )) near the antipode of μ(X) (resp. μ(Y )) with f (X)(μ̄(X)) < 1

2π

(resp. f (Y )(μ̄(Y )) < 1
2π ). Let X1, . . . , Xn

i.i.d.∼ X and Y1, . . . , Ym
i.i.d.∼ Y be mutu-

ally independent. Then, for 0 < α < 1 it follows

(i) under μ(X) = μ0 and f (X)(μ̄(X)) > 0 that

lim
n→∞

P
(
T 1 ≥ χ2

1,1−α

)
> α,

(ii) under μ(X) = μ(Y ) and f (X)(μ̄(X)) + f (Y )(μ̄(Y )) > 0 that

lim
n,m→∞

P
(
T 2 ≥ χ2

1,1−α

)
> α where m

n + m
→ δ ∈ (0, 1).
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In particular, under Type I FSS of X or Y the Tests 5.1 have asymptotically a
level strictly higher than the nominal level.

The proof is provided in Section D of the supplement (Hundrieser, Eltzner
and Huckemann, 2024). The gist of the proof relies on the fact that under an
exponential chart φ (which contains the population means) the estimators for
HC−1H for the one-sample case,

ĤXĈ−1
X ĤX =

(
1
n

∑n
j=1 d

2(μ̂(X)
n , Xj)

)−1
,

and the two-sample case,

ĤX,Y Ĉ
−1
X,Y ĤX,Y =

(
n+m
n

1
n

∑n
j=1 d

2(μ̂(X)
n , Xj) + n+m

m
1
m

∑m
j=1 d

2(μ̂(Y )
m , Yj)

)−1
,

do not account for a large (asymptotic) variance modulation. This leads to a
systematic underestimation of the asymptotic variance of the Fréchet sample
mean and implies the test to reject too often under the null.
Remark 5.3. On the circle, in case of Type II FSS, Tests 5.1 also have a true
level higher than their nominal level in the range where the variance modulation
mn is strictly larger than 1. This deviation is especially substantial if mn is large,
as the simulations in Section 6 show.

5.2. Bootstrap based tests

Tests based on a bootstrap principle have also been proposed by Bhattacharya
and Patrangenaru (2005); Bhattacharya and Bhattacharya (2012) where Σ =
H−1CH−1 is estimated by bootstrapping from the samples. As they have not
provided details, in the following, we employ the bootstrap one- and two-sample
tests by Eltzner and Huckemann (2017), for a given level 0 < α < 1.

Resample B ∈ N times n-out-of-n from the sample X1, . . . , Xn and let μ̂(X),∗
n,b

be the corresponding Fréchet sample means for b = 1, . . . , B. Mapping these
sample means under φ to a Euclidean space yields the covariance estimate
Σ(X),∗

B . From another round of resampling obtain new μ̂
(X),∗
n,b set

T ∗
b =

(
φ(μ̂(X),∗

n,b ) − φ(μ̂(X)
n )

)T (Σ(X),∗
B )−1(φ(μ̂(X),∗

n,b ) − φ(μ̂(X)
n )

)
for b ∈ {1, . . . , B} and determine e∗1−α such that

�{b ∈ {1, . . . , B} : T ∗
b ≤ e∗1−α} − 1

B
≤ 1−α ≤ �{b ∈ {1, . . . , B} : T ∗

b ≤ e∗1−α}
B

.

Indeed, under bootstrap consistency, the distribution of the T ∗
b , b ∈ {1, . . . , B},

mimics the distribution of the unavailable oracle statistic under the null

T 1,∗
orc =

(
φ(μ̂(X)

n ) − φ(μ(X))
)T (Σ(X),∗

B )−1(φ(μ̂(X)
n ) − φ(μ(X))

)
.
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Further, define for the one-sample null hypothesis the test statistic

T 1,∗ =
(
φ(μ̂(X)

n ) − φ(μ0)
)T (Σ(X),∗

B )−1(φ(μ̂(X)
n ) − φ(μ0)

)
.

Similarly, using m-out-of-m sampling with replacement from Y1, . . . , Ym, ob-
tain a bootstrap covariance estimate Σ(Y ),∗

B . Now, set AB = Σ(X),∗
B + Σ(Y ),∗

B .
This choice of AB , and not using the pooled variance, proves to be more ro-
bust, cf. Huckemann and Eltzner (2020). Then, from another round of sampling
obtain μ

(X),∗
b and μ̂

(Y ),∗
n,b , for b ∈ {1, . . . , B} set d

(X),∗
b = φ(μ̂(X),∗

n,b ) − φ(μ̂(X)
n ),

d
(Y ),∗
b = φ(μ̂(Y ),∗

n,b ) − φ(μ̂(Y )
m ) and define

T ∗
b =

(
d
(X),∗
b − d

(Y ),∗
b

)T
A−1

B

(
d
(X),∗
b − d

(Y ),∗
b

)
.

Then, determine f∗
1−α such that

�{b ∈ {1, . . . , B} : T ∗
b ≤ f∗

1−α} − 1
B

≤ 1−α ≤ �{b ∈ {1, . . . , B} : T ∗
b ≤ f∗

1−α}
B

.

Further, define for the two-sample hypothesis the test statistic

T 2,∗ =
(
φ(μ̂(X)

n ) − φ(μ̂(Y )
m )

)T
A−1

B

(
φ(μ̂(X)

n ) − φ(μ̂(Y )
m )

)
.

Tests 5.4 (Bootstrap Based). With the notation above, for 0 < α < 1, reject
at level α

(i) H1
0 , if T 1,∗ ≥ e∗1−α,

(ii) H2
0 , if T 2,∗ ≥ f∗

1−α.

Asymptotically for n,B → ∞, the bootstrap based test are also independent
of the chart. Indeed, by the delta method for the bootstrap (Fang and Santos,
2019) the limit law of a diffeomorphism applied on bootstrap quantities is given
by the derivative evaluated at the conditional limit. Hence, invoking the delta
method for empirical Fréchet means, we find by Theorem 4.4 for every chart that
the conditional law of bootstrap Fréchet sample means asymptotically coincides
with distribution of empirical Fréchet sample means.

Moreover, for circular data the bootstrap tests attain asymptotically, in con-
trast to the quantile based Tests 5.1, under both types of FSS the correct level.

Proposition 5.5. Assume the same setting as in Proposition 5.2. Then, for
0 < α < 1, it follows as n,m,B → ∞ with m/(n + m) → δ ∈ (0, 1) that

(i) under μ(X) = μ0 that P
(
T 1,∗ ≥ e∗1−α

∣∣∣X1, . . . , Xn

)
P
∗

−−−→ α,

(ii) and under μ(X) = μ0 that P
(
T 1,∗ ≥ e∗1−α

∣∣∣X1, . . . , Xn

)
P
∗

−−−→ 1.

(iii) Under μ(X) = μ(Y ) it follows that P
(
T 2,∗ ≥ f∗

1−α

∣∣∣X1, . . . , Xn

)
P
∗

−−−→ α,

(iv) and under μ(X) = μ(Y ) that P
(
T 2,∗ ≥ f∗

1−α

∣∣∣X1, . . . , Xn

)
P
∗

−−−→ 1.
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The proof is stated in Section D of the supplement (Hundrieser, Eltzner and
Huckemann, 2024). It relies on the consistency of the bootstrap for the circular
Fréchet sample mean (Theorem 4.4) in conjunction with moment convergence
of bootstrap sample means (Proposition 4.7).

In computational terms, the bootstrap-based test presents the challenge of
computing B times a test statistic similar to that of the quantile-based test.
Therefore, the computational complexity of the bootstrap-based test scales by
an order of magnitude B compared to the quantile-based test. Hence, unless
the data is affected by FSS, the quantile based test should be considered. Based
on the findings on the nominal level of the two tests for the equality of Fréchet
population means, we provide two guidelines (Algorithms 1 and 2) for practi-
tioners to decide which test should be considered. The two guidelines and the
asymptotic quantile and bootstrap based test are implemented in our package
“FSS” on https://github.com/hundrieser/FSS.

Algorithm 1 Guideline for one-sample test
Given X1, . . . , Xn ∈ S1, μ0 ∈ S1, α ∈ (0, 1), select B ≥ 1000
if X1, . . . , Xn is contained in an open half circle then

Perform quantile based test (Test 5.1(i)) for X1, . . . , Xn and μ0 with α
else

Perform Test 2.5 for the presence of FSS on X1, . . . , Xn with level α
if Test 2.5 does not reject then

Perform quantile based test (Test 5.1(i)) for X1, . . . , Xn and μ0 with level α
else

Perform bootstrap based test (Test 5.4(i)) for X1, . . . , Xn and μ0 with level α
end if

end if

Algorithm 2 Guideline for two-sample test
Given X1, . . . , Xn ∈ S1, Y1, . . . , Ym ∈ S1, α ∈ (0, 1), select B ≥ 1000
if X1, . . . , Xn and Y1, . . . , Ym are each contained in an open half circle then

Perform quantile based test (Test 5.1(ii)) for X1, . . . , Xn and Y1, . . . , Ym with α
else

Perform Test 2.5 for the presence of FSS on X1, . . . , Xn and on Y1, . . . , Ym with level α
if Test 2.5 does not reject for either sample then

Perform quantile based test (Test 5.1(ii)) for X1, . . . , Xn and Y1, . . . , Ym with level α
else

Perform bootstrap based test (Test 5.4(ii)) for X1, . . . , Xn and Y1, . . . , Ym with level α
end if

end if

Remark 5.6. Simulations in Section 6 depicted in Figures 6 and 7 show that
Tests 5.4 keep the nominal level α = 0.05 fairly well, in particular for Type
I FSS. Upon (very) close inspection, for Type II FSS, the Tests 5.4 may be
slightly too conservative, for Type I FSS too liberal. Investigating this effect and
correcting for it is left for future research and beyond the scope of this work.
Remark 5.7 (Testing between toroidal data). Similarly, under uniqueness of
means, the bootstrap based test is also asymptotically consistent on tori if the

https://github.com/hundrieser/FSS
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Fig 5. Empirical rejection probability curves for Test 2.5 with nominal level α = 0.05 (dotted
horizontal) for the vMm distribution from Figure 1 based on 5000 simulation runs for each
sample size and B = 1000. For the vMm distribution with a disk cut out of size r = π/2 about
the antipode of its mean, which feature no FSS, all the curves (light gray) keep the level. For
Type II FSS (gray: r = 0.2, dark gray: r = 0.1) rejection probabilities are almost one within
the regime of a large variance modulation; beyond that regime they drop back to the nominal
level (see Figure 1). Also for the vMm distribution consisting of only one vM distribution (left
panel, black) with almost no FSS visible, rejection probabilities increase visibly with sample
size. For Type I FSS (middle, black) and smeariness (right, black), the rejection probabilities
remain one also for higher sample sizes.

covariance of X (one-sample) or the sum of covariances of X and Y (two-
samples), respectively, is non-singular and each marginal distribution has a
density near the antipode that fulfills the assumptions of Proposition 5.2. This
follows from the bootstrap consistency of the Fréchet sample mean on tori (The-
orem 4.4 and Remark 4.5) and conditional convergence in outer probability of
the covariance estimators Σ(X),∗

B and AB for φ(μ̂(X)
n ) and φ(μ̂(X)

n )−φ(μ̂(Y )
m ), re-

spectively, as n,B → ∞ to the corresponding population covariance quantities.

6. Simulations

In this section we conduct various of simulations to assess the nominal level of
the different test procedures as well as their power. We start with the test for the
presence of finite sample smeariness (Test 2.5) and continue with a comparison
of the quantile (Test 5.1) with the bootstrap test (Test 5.4).

6.1. Simulating the test for the presence of FSS

In Figure 5 we display the rejection probability of Test 2.5 for various distri-
butions P

(3,β,λ,r)
vMm on the circle, for which the assumptions of Dubey and Müller

(2019) are fulfilled. For r = 0 the distributions are defined as in (3.1) and
feature Type I FSS, while for r > 0 they are defined as in (3.3) and exhibit
Type II FSS. Indeed, for r = π/2, the null hypothesis of absence of FSS is true
and Test 2.5 keeps the level α = 0.05. For Type II FSS, rejection probabilities
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Table 3

Parameters of Pκ,β,λ,r
vMm with modulation mn of distributions considered for simulations in

Figures 6 and 7 with Tests 5.1 and 5.4 and sample sizes n ∈ {30, 100, 300}.
κ 3 3 3
β 1 1/2 1/2
λ 0 0 1/2
r 0.0 0.1 0.0 0.1 0.00 0.1

m30 1.0 1.0 3.7 2.7 07.6 5.5
m100 1.0 1.0 4.0 2.1 11.8 5.4
m300 1.0 1.0 4.1 1.4 15.8 3.2

are almost one within the regime where the variance modulation mn is well
above one (compare with Figure 1). In the large sample regime the variance
modulation is close to one again, and the test rejects with probability close to
the nominal level. For the von Mises mixture (vMm) distribution consisting of
only one von Mises distribution (β = 1, left panel, black) with almost no FSS
visible in Figure 1, rejection probabilities increase visibly with sample size. As
expected, the power of Test 2.5 increases with proximity to a smeary distribu-
tion (β = 0.5, λ = 0.8683, r = 0, right panel, black), and specifically in case of
Type II FSS also with smaller hole size and proximity to a distribution featuring
Type I FSS.

6.2. Simulating the tests for equality of Fréchet means

To assess the performance of the quantile-based and bootstrap-based tests under
the presence of FSS (i.e., in case of a large variance modulation mn) we consider
i.i.d. samples of some nonaltered (Type I FSS) von Mises mixtures, introduced
in (3.1) and denoted by P

κ,β,λ
vMm, and altered (Type II FSS) von Mises mixtures,

introduced in (3.3) and denoted by P
κ,β,λ,r
vMm . By Theorem 3.1 all the P

κ,β,λ,r
vMm

with unique mean μ = 0 and r < π/2 − ε for some ε > 0 are FSS if they are
not smeary themselves. For the following simulations we considered parameters
as described in Table 3. All of them give unique means at μ = 0, none of which
is smeary. Only the nearby P

3,0.5,λ,0
vMm is smeary for λ ≈ 0.8683, (following the

notation of Eltzner and Huckemann (2019), the order of smeariness is equal to
2, according to Theorem 3 (ii) in Hotz and Huckemann (2015)).

In Figures 6 and 7 we compare the power functions at nominal level α = 0.05
of the quantile tests (gray lines, Test 5.1) to the power functions of the bootstrap
tests (black lines, Test 5.4). For the one-sample tests (Figure 6) we consider
simulations of P

κ,β,λ,r
vMm and rotated null hypotheses μ0 ∈ [−π, π), for the two

sample-tests (Figure 7) we consider two simulations of Pκ,β,λ,r
vMm that are rotated

with respect to one another by the angle p ∈ [−π, π). Random variables of von
Mises distributions were drawn using the R-package circular (Lund et al., 2017).

With increasing variance modulation (see Table 3) we see that the quantile
tests (gray) become more and more liberal while the bootstrap tests (black)
maintain the correct level. In particular, the quantile based tests perform poorly
in the presence of considerable Type I FSS, in consequence of a large variance
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Fig 6. Rejection probabilities for H1
0 : μ(X) = μ0 for μ(X) = 0 and varying μ0 ∈ [−π, π) under

the quantile based tests (Test 5.1, gray) and the bootstrap based tests (Test 5.4, black) for
B = 1000 at nominal level 5% (dotted horizontal). For each μ0 in total 1000 simulation runs
with one sample of size n = 30 (top row), n = 100 (middle row), and n = 300 (bottom row),
were performed. Solid lines represent samples from mixed von Mises distributions P

κ,β,λ,r
vMm ,

i.e., r = 0 (Type I FSS). Dashed lines represent samples from P
κ,β,λ,r
vMm where all elements

closer to −π than r = 0.1 were mirrored (Type II FSS). Table 3 reports parameters and
variance modulations.

Table 4

Parameters of Pκ,γ,r
BvMm with variance modulation mn of distributions considered for

simulations in Figure 8 on performance of Tests 5.1 and 5.4 and sample sizes
n ∈ {30, 100, 300}.

κ 3 3 3
γ 1 1.25 1.5
r 0.0 0.1 0.0 0.1 00.0 00.1

m30 1.1 1.1 1.7 1.6 26.1 22.7
m100 1.1 1.0 1.2 1.1 47.6 32.0
m300 1.1 1.0 1.2 1.0 32.3 11.7

modulation. Upon very close inspection, under Type II FSS (dashed lines, r > 0)
we see that the bootstrap tests may be slightly too conservative. Conversely, in
case of Type I FSS (solid lines, r = 0) the bootstrap tests may be slightly too
liberal. Both effects may be due to a systematic bias, cf. Remark 5.6.

To further analyze the performance of the quantile and bootstrap based tests
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Fig 7. Rejection probabilities for H2
0 : μ(X) = μ(Y ) with μ(X) = 0 and μ(Y ) = p ∈ [−π, π)

under quantile based tests (Test 5.1, gray) and bootstrap based tests (Test 5.4, black) for
B = 1000 at nominal level 5% (dotted horizontal). For each p in total 1000 simulation runs
with two samples from the same distribution of size n = 30 (top row), n = 100 (middle row),
and n = 300 (bottom row), but where the latter sample is rotated by p, were performed. Solid
lines represent samples from mixed von Mises distributions P

κ,β,λ,0
vMm , (Type I FSS). Dashed

lines represent samples from P
κ,β,λ,r
vMm where all elements closer to −π than r = 0.1 were

mirrored (Type II FSS).

in the regime close to nonunique Fréchet means we conducted another set of
simulations with samples taken from a suitable mixture of von Mises distribu-
tions with equal concentration parameter and nearly antipodal modes. More
precisely, we took bimodal von Mises mixtures with symmetric modes around
the origin parametrized by κ ≥ 0, γ ∈ [0, π/2] and with density under the arc
length measure

dPκ,γ
BvMm(x) := 1

2
exp (κ cos(x− γ))

2πI0(κ) dx + 1
2

exp (κ cos(x + γ))
2πI0(κ) dx,

where I0(·) is the modified Bessel function of the first kind of order 0, e.g.,
Mardia and Jupp (2000, p. 36). By symmetry, for κ > 0 and γ = π/2 the set of
Fréchet means is nonunique and given by {0,−π}, whereas for γ < π/2 ≈ 1.57
the mean is unique and located at the origin. Hence, with increasing γ the
respective law approaches the nonuniqueness regime. Further, for r ≥ 0 we
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Fig 8. Rejection probabilities for H2
0 : μ(X) = μ(Y ) with μ(X) = 0 and μ(Y ) = p ∈ [−π, π)

under the quantile based tests (Test 5.1, gray) and the bootstrap based tests (Test 5.4, black)
for B = 1000 at nominal level 5% (dotted horizontal). For each p in total 1000 simulation
runs with two samples from the same distribution of size n = 30 (top row), n = 100 (middle
row), and n = 300 (bottom row), but where the latter sample is rotated by p, were performed.
Solid lines represent samples from bimodal von Mises mixtures P

κ,γ
BvMm, i.e., r = 0 (Type

I FSS). Dashed lines represent samples from P
κ,γ,r
BvMm where all elements closer to −π than

r = 0.1 were mirrored (Type II FSS). Table 4 reports parameters and variance modulations.

recall the function ζr, introduced in (3.2), which mirrors the disk of radius r at
−π to the origin and define

P
κ,γ,r
BvMm := ζr∗ P

κ,γ
BvMm.

For r > 0 and κ ≥ 0, γ ∈ [0, π/2] the Fréchet mean of Pκ,γ,r
BvMm is unique and

coincides with the origin.
For our subsequent simulations we selected parameters described in Table 4

and computed the variance modulation for n ∈ {30, 100, 300}. Notably, if κ > 0
and γ ∈ [0, π/2) the distribution P

κ,γ,r
BvMm is Type I FSS for r = 0, whereas for

r > 0 it is Type II FSS.
If γ is close to π/2, i.e., if the underlying distribution is near a distribution

with nonunique means, it is expected that mn attains fairly large values, indi-
cating a high deviation of the quantile based test from its nominal level. Indeed,
our simulations demonstrate that a large choice of γ results in the quantile
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test (gray) attaining a nominal level dramatically exceeding the correct level,
whereas the bootstrap test (black) attains the correct level. Notably, for small
sample sizes the bootstrap based test appears to be for γ = 1.5 slightly too
liberal under the null which might be explained by the fact that the empirical
sample means are likely to be located near the modes of the underlying distri-
bution. Remarkably, for γ close to π/2 and r = 0, the distributions Pκ,γ,r

BvMm and
shifted by p close to ±π are fairly close in TV-distance, but their Fréchet means
are far apart. This explains the high power of the bootstrap test for p near ±π.

7. Assessing significant change of wind direction

In application of our methods dealing with FSS, we analyze wind data from Basel
and Göttingen (the city of the authors’ institution) provided by meteoblue AG
(2020). For our purpose, we consider daily Fréchet mean wind directions for the
years 2000 to 2019 giving for each city 20 samples of two-dimensional circular
data of size n = 365. The respective daily wind directions are illustrated in
Figure 9. To assess a possible effect of climate change, we test for a significant
change in wind direction.

For each of these 40 samples we computed the estimated variance modulation
m̂∗

n from (2.3) with B = 1000, cf. Table 5. Remarkably, for both cities nearly
all years statistically indicate the presence of FSS (Test 2.5 rejects the presence
of FSS at level α = 0.001) except for Göttingen in the year 2017. To assess the
stability of the test we also performed some sub-sampling procedures which are
provided in the supplement Hundrieser, Eltzner and Huckemann (2024). More-
over, to assess the property of uniqueness of population means we additionally
generated R = 10 000 bootstrap sample means based on resampling n = 365
data points for each year and city and plotted the resulting histograms (see Fig-
ure 1 in the supplement, Hundrieser, Eltzner and Huckemann (2024)). For each
year, with the exception of Basel 2004 and Göttingen 2007, 2010, 2013, we see
that the distributions of bootstrap sample means admit a single cluster. This
suggests that most of the wind data sets are not too close nearby distributions
with nonunique means.

In total, we performed six series of tests for changes of wind directions in
consecutive years were performed: for wind data from Basel and Göttingen
(viewed as data on the two-torus T2 = S

1 × S
1), as well as Basel and Göttingen

individually (viewed as data on the circle S
1) using the quantile test (Test 5.1)

and the bootstrap test (Test 5.4). In consequence of detected FSS, we expect
that the quantile based two-sample test (Test 5.1) will feature a considerably
high error of the first kind as compared to the bootstrap based Test 5.4. For
each series of 19 tests to compare daily wind directions of consecutive years from
2000 to 2019 at nominal level α = 0.05 we performed a Benjamini-Hochberg
correction, reported in Figure 10.

The first series of tests has been performed on T
2 for Basel and Göttingen

jointly (top rows of Figure 10). According to the quantile Test 5.1, a majority
of years seem to be significantly different from the year following. Applying the
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Fig 9. Histograms of Fréchet means of daily wind direction data by meteoblue AG (2020) for
Basel (top) and Göttingen (bottom) for the years 2000 to 2019. The x-axis is divided into 32
segments with labels N : “North”, E : “East”, S : “South”, and W : “West”, indicating the
average direction of wind origin.

bootstrap Test 5.4 for B = 1000 we see this “noise” disappearing, leaving only
the changes in wind directions between 2005 and 2006, 2017 and 2018, as well
as 2018 and 2019 as exceptional.

Looking only at Basel (now testing only on S
1, middle rows of Figure 10),

Test 5.1 seems to suggest that the years 2002 to 2004 and 2016 to 2019 are
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Table 5

Empirical variance modulation m̂∗
n for n = 365 from (2.3) for daily Fréchet mean wind

directions in Basel and Göttingen for the years 2000 to 2019. All of these values indicate
presence of FSS (Test 2.5 rejects absence of FSS with p-values upper bounded by 10−3)

except for Göttingen in the year 2017.
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
Basel 1.601 4.067 1.542 1.197 32.695 2.683 1.845 2.096 1.676 2.344
Göttingen 3.317 2.734 2.760 3.065 1.492 4.171 1.605 15.493 3.861 8.796
Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Basel 5.010 1.775 1.466 3.211 1.491 1.741 1.705 5.229 2.694 2.481
Göttingen 8.003 1.685 4.457 36.365 3.446 3.305 5.636 1.037 1.804 2.592

Fig 10. Benjamini-Hochberg corrected test results (first, third, fifth row: Test 5.1; second,
fourth, sixth row: Test 5.4 with B = 1000) of comparisons of daily Fréchet means of wind
direction data for consecutive years 2000 to 2019 for Basel and Göttingen on T2 (top), Basel
on S1 (middle), and Göttingen on S1 (bottom) for a significance level of 5%. Consecutive
years with significant changes according to the test procedure are depicted in blue.

exceptional. Test 5.4, however, clarifies: only the changes between 2002 and
2003 as well as between 2017 and 2018 are exceptional.

Comparison with Göttingen only (again testing on S
1, bottom rows of Fig-

ure 10) shows that the “noise” from Test 5.1 is rooted in Göttingen. Again,
Test 5.4 clarifies the picture: only the changes between 2005 and 2006, and 2017
to 2019 are exceptional. For both cities, the change from the year 2017 to 2018
seems most prominently exceptional. Notably, 2017 is also exceptional through
absence of FSS, cf. Table 5.

These findings fall well into the climatological context of central European
heat waves linked to exceptional wind constellations (Kornhuber et al. (2019)
identify a recurrent wave-7 wind pattern for the years 2003, 2006, 2015 and
2018). While the 2003 heat wave occurred in most of Europe, the 2018 heat wave
manifested in a climatic dipole: hot and dry north of the Alps, comparably cool
and moist across large parts of Mediterranean, cf. Buras, Rammig and Zang
(2020).

In a debate quantifying climate change, its anthropogenic component and fu-
ture costs, linking to changes of wind patterns (e.g. McInnes, Erwin and Bathols,
2011), our new inferential tools for cyclic data presented here, warrant a more
detailed application in future work.
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Table 6

Empirical rejection probabilities of quantile Test 5.1 and bootstrap Test 5.4 for testing for
equality of Fréchet means for significance level 5% based on split samples for daily Fréchet

mean wind directions of Basel and Göttingen for the years 2000 to 2019. All values
computed based on R = 500 repetitions.

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
Quantile Test 0.312 0.404 0.234 0.160 0.436 0.410 0.162 0.568 0.170 0.576
Bootstrap Test 0.042 0.028 0.024 0.016 0.030 0.044 0.040 0.024 0.006 0.030
Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Quantile Test 0.478 0.160 0.330 0.720 0.230 0.248 0.404 0.384 0.250 0.296
Bootstrap Test 0.032 0.040 0.034 0.026 0.016 0.022 0.036 0.048 0.020 0.042

To further emphasize the strong bias of the quantile test (Test 5.1) towards
rejection and the consistency of the bootstrap test (Test 5.4) with B = 1000,
we conducted additional analysis, splitting samples. For each year, we split the
wind data sets for both cities, into two subsets of size 182 and 183 and tested for
equality of Fréchet means at significance level 5% with both Tests 5.1 and 5.4.
This procedure was repeated R = 500 times and the resulting empirical rejection
probabilities are depicted in Table 6. In every year, the quantile based test rejects
much more often compared to the bootstrap based test. The years for which the
quantile test rejects least often (2003, 2006, 2008, and 2011) are also the years
for which the empirical variance modulation of both cities is relatively small.
These results suggest that the bootstrap test indeed keeps the level fairly well,
even for wind data sets for Basel in 2004 and Göttingen in 2007, 2010, and 2013
which are affected by a distribution with nonunique means nearby.

8. Discussion and outlook

In this contribution, we have investigated two manifolds with codimension one
cut loci, namely circles and tori and found FSS manifesting in two different
types. For other spaces, an investigation of FSS is beyond the scope of this pa-
per. We expect similar findings for other manifolds with codimension one cut
loci, such as real projective spaces, modeling projective shapes, say, as in Mardia
and Patrangenaru (2005); Hotz, Kelma and Kent (2016). We believe that this
is, using the language of Eltzner (2022), a consequence of topological smeari-
ness. On manifolds with higher codimension cut loci, in the language of Eltzner
(2022), for instance on arbitrary spheres, there is the different phenomenon of
geometrical smeariness. In the light of this, we conjecture that Type I FSS is
present in all nondegenerate random variables on positively curved spaces. For
such spaces, Afsari (2009) has shown that the Hessian of the Fréchet function is
smaller than its Euclidean equivalent, which is twice the identity matrix. More-
over, for very small sample sizes (n approx. less than 10) of highly concentrated
random variables, Pennec (2019) explicitly derived mn > 1 but well below what
is predicted asymptotically by the CLT. Indeed, on the sphere Eltzner, Hun-
drieser and Huckemann (2021) showed that every non-trivial random variable
is FSS of Type I, see also section E of the supplement (Hundrieser, Eltzner and
Huckemann, 2024). For more general manifolds it is also known that “smeariness
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begets FSS” as Tran, Eltzner and Huckemann (2021) constructed from every
smeary random variable a random variable featuring FSS of Type I.

Moreover, we have shown that the proposed bootstrap tests are asymptot-
ically consistent and demonstrated in simulations that they preserve the level
fairly well for reasonable sample sizes. Inspired by recent findings of Zhilova
(2020) on the non-asymptotic accuracy of the bootstrap for Euclidean sample
means for the finite sample regime, we deem it possible to derive similar non-
asymptotic results for the bootstrap Fréchet sample mean. This topic is beyond
the scope of this work.

Notably, equipping a manifold M embedded in a Euclidean space with the
extrinsic metric dE(p, q) := ‖p − q‖ for p, q ∈ M the resulting Fréchet means
have been called extrinsic means by Bhattacharya and Patrangenaru (2003)
and mean locations by Hendriks and Landsman (1998); they encompass mean
directions on circles and spheres, see Mardia and Jupp (2000). Thus, for an i.i.d.
sample X1, . . . , Xn on M with extrinsic population and sample Fréchet mean
μE and μ̂E

n , respectively, we have the extrinsic variance modulation

mE
n :=

nE[
∥∥μE − μ̂E

n

∥∥2]
E[‖μE −X‖2]

.

Although extrinsic means typically exhibit standard n−1/2 convergence rates, as
shown by Bhattacharya and Patrangenaru (2005), Schötz (2019a) demonstrated
that also arbitrary slow (smeary) and fast (anti-smeary) convergence rates may
occur. In particular, this hints towards existence of FSS also for extrinsic means.
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Supplementary Material

Auxiliary Results, Omitted Proofs for Sections 3–5, and Simulations
(doi: 10.1214/24-EJS2276SUPP; .pdf). The supplementary material includes
auxiliary results for the proofs for the characterization of FSS on the circle (The-
orem 3.1), the bootstrap consistency of circular Fréchet sample means (Theo-
rem 4.4) and their moment convergence (Propositions 4.6 and 4.7), as well as
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proofs on the performance of the quantile and bootstrap based tests (Proposi-
tions 5.2 and 5.5). We also present simulation results for FSS on S

2 and detail
additional analysis on the wind data.
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