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Abstract: The generalized Wendland covariance model is a flexible com-
pactly supported covariance model that allows for a continuous param-
eterization of smoothness of the underlying Gaussian random field, and
includes the celebrated Matérn as a special limit case. However, the gen-
eralized Wendland model does not cover the full range of validity of the
smoothness parameter of the Matérn model. In this paper, we provide new
necessary and sufficient conditions of validity of the generalized Wendland
model that allows to fill this gap. The effectiveness of our proposal is illus-
trated through a simulation study and a re-analysis of a large geo-referenced
dataset of yearly total precipitation anomalies.
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1. Introduction

Gaussian processes or Gaussian random fields (RFs) are the mathematical foun-
dation for the statistical analyses of geo-referenced data, which allows to describe
their marginal behavior and to assess their spatial dependence structure. They
are a cornerstone in spatial statistics analysis [15, 49, 26, 3] as well as other
disciplines such as machine learning [57], numerical analysis [55], and computer
experiments [46], just to mention a few.

The finite-dimensional distributions of a Gaussian RF are characterized by a
mean value and a covariance function. In particular, a necessary and sufficient
requirement for a given function to be the covariance function of a Gaussian RF
is that it is positive semidefinite. Such a requirement is traditionally ensured by
selecting a parametric family of covariance functions. If the covariance depends
exclusively on the distance between any pair of points located over the domain,
it is called isotropic, a popular assumption in spatial statistics. There is a rich
catalog of available parametric isotropic covariance functions (see for instance
[12] or [3]), among which the Matérn (MT hereafter) model [40, 31, 49] is by far
the most popular. It has played a central role in spatial statistics for decades and,
more recently, in other disciplines such as numerical analysis, approximation
theory, and machine learning (see [44] for an exhaustive recent review of the
MT model).

A key benefit of the MT model is that it allows parameterizing in a continu-
ous fashion the differentiability of the sample paths of the associated Gaussian
RF, through a positive smoothness parameter ν > 0. The greater is the smooth-
ness parameter, the higher is the level of differentiability of the sample paths.
In particular, one can parameterize the fractal dimension of the sample paths,
a measure of roughness for non-differentiable RFs, when 0 < ν < 1 [29]. Sev-
eral interesting special cases arise, such as the exponential covariance and, up
to a suitable rescaling, the Gaussian covariance when ν → ∞. Additionally,
the MT model is associated with a class of stochastic partial differential equa-
tions [56] that has inspired a fertile body of literature on the approximation of
continuously indexed Gaussian RFs through Gaussian Markov RFs [38].

From a computational perspective, a drawback of the MT model is to be
globally supported, i.e., the covariance function does not vanish in the domain
of reference. This implies that, for a given set of n spatial points, the associ-
ated covariance matrix is dense. Computing the maximum likelihood estimator
and/or the optimal predictor can be prohibitive when n is large.
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Several approaches have been proposed in the recent years to deal with this
issue (see [32] and references therein for an extensive review). One of these
approaches considers sparse matrices, i.e., matrices in which most of the el-
ements are zero. In general, the sparseness of a matrix is a desirable feature
from a computational viewpoint, since sparse matrix algorithms [19, 18] can be
exploited to speed-up the computation associated with estimation, prediction
and/or simulation of a Gaussian RF.

A possible solution of the aforementioned problem, followed by [38] among
others, is to focus on the inverse covariance matrix, i.e. the precision matrix, that
can be generally well approximated with a sparse matrix, at least for dense co-
variance matrices. Another solution is to focus on the so-called Vecchia’s method
[53] and its extensions [17, 30, 35], which imply a sparse approximation of the
Cholesky factor of the precision matrix. These two approaches have proven to
be effective solutions at least when the underlying covariance function is the
MT model.

The goal of the covariance tapering approach [23, 36, 50] is to obtain sparse
covariance matrices. This is achieved by multiplying the MT model with a taper
function, that is, a correlation function being additionally compactly supported
over a ball with given radius. Thus, the resulting covariance tapered matrix is
sparse, with the level of sparseness depending on the radius of compact support.

However, as shown in [6], a better alternative approach is to use flexible
compactly supported models that leads to sparse covariance matrices. Probably
the most famous case is the generalized Wendland (GW hereafter) covariance
model [27, 59, 10], which allows for the parameterization of the differentiability
of the sample paths of the underlying Gaussian RF, through a nonnegative
smoothness parameter κ ≥ 0, in the same fashion as the MT model.

Several connections between the MT and GW models have been studied.
For instance, [6] shows that, under specific conditions, MT and GW covariance
models lead to equivalent Gaussian measures. One consequence of this result
is that, when the true covariance function belongs to the MT family, predic-
tion can be performed with the GW without any loss of prediction efficiency
under fixed domain asymptotics. In addition, [4] shows that the MT model is
actually a special limit case of a compactly supported reparameterization of the
GW model. In particular, the reparameterized GW model has an additional pa-
rameter that, for given smoothness and spatial dependence parameters, allows
switching from the world of flexible compactly supported covariance functions
to the world of flexible globally supported covariance functions.

However, as argued in Section 3 hereinafter, it turns out that the GW model
does not cover the full range of validity of the smoothness parameter of the
Matérn model. Specifically, the GW model cannot attain the MT model when
0 < ν < 0.5 and, as a consequence, it is not able to fully parameterize the fractal
dimension of the associated Gaussian RF as for the MT model [29].

The goal of this paper is to fill this gap. In particular, we provide new nec-
essary and sufficient conditions of validity for the GW model, extending the
parametric space of the smoothness parameter from κ ≥ 0 to κ > −0.5. As
a consequence of our result, the GW model is able to cover the full range of
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validity of the smoothness parameter of the MT model, ν > 0. In particular,
the results in [6] and [4] can be applied also to the extended GW model. This
implies that statistical analysis of continuous spatial data displaying very rough
sample paths using a flexible compactly supported correlation model is now
feasible (see the real data example in Section 5).

The remainder of the paper is organized as follows. In Section 2 we review the
celebrated MT model, while in Section 3 we review the GW model and provide
new necessary and sufficient validity conditions that allow the GW model to
cover the full range of validity of the smoothness parameter of the MT model.
In Section 4, we report a simulation study that explores the finite sample prop-
erties of the weighted composite likelihood estimation and maximum likelihood
estimation methods of the covariance parameters of the extended reparameter-
ized GW model under both increasing and fixed domain asymptotics settings.
In Section 5, we compare the extended reparameterized GW model with the
MT model in a re-analysis of a large spatial geo-referenced data set of yearly
total precipitation anomalies. Concluding remarks are consigned in Section 6.

The extended GW covariance model has been implemented in the GeoModels
package [8] for the open-source R statistical environment.

2. The Matérn correlation model

We denote {Z(s) : s ∈ D} a stationary Gaussian RF defined on a set D of
R

d. To simplify notation, we focus on stationary zero mean and unit variance
Gaussian RF such that E(Z(s)) = 0, V(Z(s)) = 1 with stationary correlation
function C : Rd × R

d → R. We consider the class Φd of continuous mappings
φ : [0,∞) → R with φ(0) = 1, such that

corr (Z(s), Z(s′)) = C(s, s′) = φ(‖s′ − s‖),

with s, s′ ∈ D, and ‖ · ‖ denoting the Euclidean norm. Gaussian RFs with such
covariance functions are called weakly stationary and isotropic.

[48] characterized the class Φd as scale mixtures of the characteristic functions
of random vectors uniformly distributed on the spherical shell of Rd, with any
nonnegative measure F on [0,∞):

φ(x) =
∫ ∞

0
Ωd(xr)F (dr), x ≥ 0,

with Ωd(x) = Γ(d/2)(2/x)d/2−1Jd/2−1(x) for x > 0 and 1 for x = 0, Γ the
gamma function, and Jν the Bessel function of the first kind of order ν. The
class Φd is nested, with the inclusion relation Φ1 ⊃ Φ2 ⊃ . . . ⊃ Φ∞ being strict,
and where Φ∞ :=

⋂
d≥1 Φd is the class of continuous mappings φ, the radial

version of which is positive semidefinite on any d-dimensional Euclidean space.
Fourier transforms of radial versions of members of Φd that are absolutely

integrable, for a given d, have a simple expression, as reported in Yaglom [58]
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or Stein [49]. For an absolutely integrable member φ of the class Φd, we define
its isotropic spectral density as

φ̂(z) = z1−d/2

(2π) d
2

∫ ∞

0
ud/2Jd/2−1(uz)φ(u)du, z ≥ 0. (2.1)

The MT correlation function is defined as

MT ν,α(x) =
{

1 if x = 0,
21−ν

Γ(ν)
(
x
α

)ν Kν

(
x
α

)
, if x > 0,

(2.2)

with Kν the modified Bessel function of the second kind of order ν, and where
α, ν > 0 are necessary and sufficient condition for MT to belong to the class
Φ∞ [49]. The isotropic spectral density, M̂T α,ν , has a simple expression:

M̂T ν,α(z) = Γ(ν + d/2)
πd/2Γ(ν)

αd

(1 + α2z2)ν+d/2 , z ≥ 0. (2.3)

The importance of the MT model stems from the parameter ν that controls
the differentiability (in the mean square sense) of the associated Gaussian RF
and its sample paths. Specifically, for any integer k = 0, 1, . . . , the sample paths
of a Gaussian RF field with MT covariance function are k-times differentiable,
in any direction, if and only if ν > k. In particular the MT model is able to
parameterize the fractal dimension of the sample paths, a measure of roughness
for non-differentiable Gaussian RFs (see [29] for a formal definition of the fractal
dimension) which equals d if ν > 1 and d + 1 − ν if 0 < ν < 1, with smaller
values of ν indicating rougher sample paths.

A rescaled version of the Matérn covariance converges to the Gaussian
(squared exponential) covariance as ν → ∞, that is

MT ν,α/(2
√
ν)(x) −−−−→

ν→∞
exp(−x2/α2), x ≥ 0,

with the convergence being uniform on any compact set of Rd. For this reason
MT ν,α/(2

√
ν) is sometimes adopted as parameterization, in particular in the

machine learning community [57].
When ν = k+1/2, for k a nonnegative integer, the MT covariance simplifies

into the product of an exponential covariance with a polynomial of order k. For
instance, MT 1/2,α(x) = exp(−x/α) and, in general,

MT k+1/2,α(x) = exp(−x/α)
k∑

i=0

(k + i)!
2k!

(
k

i

)
(2x/α)k−i, k = 0, 1, . . . .

Table 1 summarizes the cases MT ν,α(x) for ν = 0.5, 1.5, 2.5, 3.5.
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Table 1

The MT ν,a model for ν = 0.5, 1.5, 2.5, 3.5. SP (k) means that the sample paths of the
associated Gaussian RF are k times differentiable.

ν MT ν,a(x) SP (k)
0.5 e−

x
a 0

1.5 e−
x
a
(
1 + x

a

)
1

2.5 e−
x
a

(
1 + x

a
+ x2

3a2

)
2

3.5 e−
x
a

(
1 + x

2a + 6x2

15a2 + x3

15a3

)
3

3. The generalized Wendland correlation model and its extension

3.1. The generalized Wendland correlation model

The GW family of correlation functions [27, 59, 10, 6, 4] allows, as in the MT
case, for a continuous parameterization of smoothness of the underlying Gaus-
sian RF, being additionally compactly supported. For κ ≥ 0 and β > 0, it can
be defined in terms of the Gauss hypergeometric function 2F1 [1] as:

GWκ,μ,β(x) :=

⎧⎨⎩M
(
1 − x2

β2

)κ+μ

2F1

(
μ
2 ,

μ+1
2 ;κ + μ + 1; 1 − x2

β2

)
, 0 ≤ x < β,

0, x ≥ β,

(3.1)
with M = Γ(κ)Γ(2κ+μ+1)

Γ(2κ)Γ(κ+μ+1)2μ+1 or, equivalently, through an integral representation:

GWκ,μ,β(x) :=
{

1
B(2κ,μ+1)

∫ 1
x/β

u(u2 − (x/β)2)κ−1(1 − u)μ du, 0 ≤ x < β,

0, x ≥ β,

(3.2)
where B(·, ·) is the Beta function. For a given smoothness parameter κ ≥ 0,

μ ≥ (d + 1)/2 + κ (3.3)

is a necessary and sufficient condition for GWκ,μ,β to belong to the class Φd.
The associated spectral density is given by [11]:

ĜWκ,μ,β(z) = Lβd
1F2

(d + 1
2 +κ; d + 1 + μ

2 +κ,
d + μ

2 +1+κ;− (zβ)2

4

)
, z ≥ 0,

(3.4)
where 1F2 is a special case of the generalized hypergeometric function [1], and
L is a normalization constant:

L = 2−dπ− d
2 Γ(μ + 2κ + 1)Γ(2κ + d)Γ(κ)

Γ (κ + d/2) Γ(μ + 2κ + d + 1)Γ(2κ) .

When computing (3.1) or (3.2), a numerical integration or efficient evaluation
of the hypergeometric function is obviously feasible, but could be cumbersome to
(spatial) statisticians used to handle closed-form parametric correlation models.
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However, similarly to the Matérn, in some special cases, the computation can
be considerably simplified. An important example is when κ is a nonnegative
integer, as exemplified next.

Example 1 (original Wendland functions, see [54]). If κ = k is a nonnegative
integer, then

GWk,μ,β(x) =
(

1 − x

β

)μ+k

+
Pk(x;μ, β), k = 0, 1, 2, . . . (3.5)

where Pk(x, μ, β) is a polynomial of degree k that can be expressed as:

Pk(x;μ, β) = Lk

k∑
j=0

cj,k(μ)
(
x

β

)k−j (
1 − x

β

)j

, (3.6)

where cj,k(μ) = (k+j)!
2jj!(k−j)!

Γ(2k+μ+1)
Γ(k+j+μ+1) and Lk = 2kk!

(2k)! .

The proof of this example derives from Theorem 4.1 in [33] (see also Ap-
pendix A.1 for a shorter proof). Note that when the smoothness parameter
is an integer, then the sample paths of the associated Gaussian RF are k
times differentiable. Figure 1 illustrates the cases k = 0 and k = 1 for μ =
m,m+ 2,m+ 4,m+ 8 with m = 0.5(d+ 1) + k and d = 2. Table 2 summarizes
the cases GWk,μ,β(x) for k = 0, 1, 2, 3.

Table 2

The GWκ,μ,β model for κ = 0, 1, 2, 3. SP (k) means that the sample paths of the associated
Gaussian RF are k times differentiable.

κ GWκ,μ,β(x) SP (k)

0
(
1 − x

β

)μ

+
0

1
(
1 − x

β

)μ+1

+

(
1 + x

β
(μ + 1)

)
1

2
(
1 − x

β

)μ+2

+

(
1 + x

β
(μ + 2) +

(
x
β

)2
(μ2 + 4μ + 3) 1

3

)
2

3
(
1 − x

β

)μ+3

+

(
1 + x

β
(μ + 3) +

(
x
β

)2
(2μ2 + 12μ + 15) 1

5 +
(

x
β

)3
(μ3 + 9μ2 + 23μ + 15) 1

15

)
3

Another example is when κ is a half-integer and μ is an integer. In this case
the GW model can be expressed as a combination of Legendre polynomials of a
certain degree. The following example considers the case κ = 0.5.

Example 2 (missing Wendland functions, see [47]). If κ = 0.5 and μ is a
positive integer, then

GW 1
2 ,μ,β

(x) =

⎧⎪⎪⎨⎪⎪⎩
M2μ+1Γ(μ+ 3

2 )√
πΓ(μ+2) z−μ−1

[
μ
2 (Pμ−1(z)−zPμ(z)) log

(
z+1
z−1

)
+zPμ−1(z)

+μ
∑μ−1

p=1
1
pPp−1(z)(zPμ−p(z) − Pμ−1−p(z))

]
, 0 ≤ x < β,

0, x ≥ β,

(3.7)

where z =
(
1 − x2

β2

)− 1
2 and Pμ is the Legendre polynomial of degree μ [1].
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Fig 1. Examples of the GWk,μ,β model with β = 1 and κ = 0 (left) or κ = 1 (right) for
μ = m,m + 2,m + 4,m + 8 with m = 0.5(d + 1) + κ and d = 2.

Fig 2. Examples of the GW 1
2 ,μ,1 model for μ = 2, 5, 15 (from top to bottom).

The proof of this result is given in Appendix A.2, together with a general
closed-form expression of GWκ,μ,β for any half-integer κ = 0.5, 1.5, 2.5, . . . and
positive integer μ. The case GW 1

2 ,μ,1 for μ = 2, 5, 15 is depicted in Figure 2.

3.2. Properties and reparameterization

As in the Matérn case, the GW model allows parameterizing in a continuous
fashion the mean-square differentiability of the underlying Gaussian RF and its
associated sample paths, through the smoothness parameter κ.

Specifically, for any integer k = 1, 2, . . . , the sample paths of the GWκ,μ,β

model are k times differentiable, in any direction, if and only if κ > k− 0.5 and
for 0 ≤ κ ≤ 0.5 they are not differentiable. In addition, it can be shown that
the fractal dimension of the associated sample paths equals d if κ > 0.5 and
d + 1 − κ if 0 ≤ κ < 0.5. Since in general the fractal dimension belongs to the
interval [d, d + 1] [29], this implies that the GW model, unlike the MT model,
is not able to entirely cover the full range of the fractal dimension.
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The connections between the MT and the GW families have been investi-
gated by [6] and [4]. In particular, [6] established that two Gaussian measures
with respective covariance functions σ2

0MT ν,α and σ2
1GWκ,μ,β are equivalent

(for a formal definition of equivalent Gaussian measures, see for instance [49])
if μ > d + 1

2 , d = 1, 2, 3 and

σ2
0

α2ν =
(

Γ(2κ + μ + 1)
Γ(μ)

)
σ2

1
β1+2κ , ν = κ + 0.5. (3.8)

One remarkable implication of the former result is that, when the true covariance
belongs to the MT family, asymptotic efficiency prediction and asymptotically
correct estimation of mean square error can be achieved using a GW model
provided that the conditions in (3.8) are fulfilled. It is important to stress that
the right condition in (3.8) shows that the equivalence is valid only for ν ≥ 0.5,
i.e. it does not cover the full parametric space of the MT smoothness parameter.

In addition, [4] considered a compactly supported reparameterization of the
GW model, that is

RGWκ,μ,β(x) := GWκ,μ,δ(κ,μ,β)(x), (3.9)

where δ(κ, μ, β) := β
(

Γ(μ+2κ+1)
Γ(μ)

) 1
1+2κ is the compact support and proved that

lim
μ→∞

RGWκ,μ,β(x) = MT κ+1/2,β(x), κ ≥ 0, (3.10)

with uniform convergence for x ∈ (0,∞). As a consequence, the RGW model
can be viewed as a generalization of the Matérn model with an additional pa-
rameter that, for given smoothness and spatial dependence parameters, allows
switching from the world of flexible compactly supported covariance functions to
the world of flexible globally supported covariance functions. However, it can be
appreciated from (3.10) that the RGW model cannot attain the MT ν,α model
when 0 < ν < 0.5.

To sum up, the (R)GW model does not cover the full range of validity of the
smoothness parameter of the Matérn model and, in particular, it is not able to
fully parameterize the fractal dimension of the associated Gaussian RF as in
the Matérn case. To fill this gap, we now enlarge the conditions of validity of
the GW model.

3.3. Extension of parameter validity conditions

The following theorem extends the (R)GW model for negative values of the
smoothness parameter. Specifically, it provides necessary and sufficient condi-
tions for the (R)GW model to belong to the class Φd, when −0.5 < κ < 0. The
proof is deferred to the Appendix.

Theorem 1. Let −0.5 < κ < 0. Then the (R)GWκ,μ,β correlation model belongs
to the class Φd, if and only if
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Fig 3. (κ, μ) region of necessary and sufficient conditions for (R)GWκ,μ,β to belong to Φd,
when d = 1 (left part) and d = 2 (right part). The blue region is obtained by applying
Theorem 1.

1. μ ≥ (d + 1)/2 + κ for d ≥ 2
2. μ ≥ 0.5(

√
8κ + 9 − 1) for d = 1.

Recalling that for the case κ ≥ 0 the condition μ ≥ (d+1)/2+κ is necessary
and sufficient for (R)GWκ,μ,β to belong to the class Φd, we now have a more
global picture of the validity conditions of the (R)GW model. Figure 3 depicts
the (κ, μ) region of necessary and sufficient validity conditions of the (R)GWκ,μ,β

model for the case d = 1, 2 (from left to right), highlighting the region provided
by Theorem 1 (blue color).

More importantly, using the results in [6], it can be shown that the equivalence
condition between the MT and GW models given in (3.8) can be extended to
the case −0.5 < κ < 0, that is, it is valid for the full parametric space of the
MT smoothness parameter. Similarly, using the new condition, it can be shown
that

lim
μ→∞

RGWκ,μ,β(x) = MT κ+1/2,β(x), κ > −1
2 ,

that is, the uniform convergence of the RGWκ,μ,β model to the MT κ+1/2,β
model when μ → ∞ is valid for the full parametric space of the smoothness
parameter. Finally, using the proposed extension, the (R)GW is now able to
fully parameterize the fractal dimension index.

Figure 4 shows some examples of the RGWκ,μ,β correlation model when
−0.5 < κ < 0 and they are compared with the RGW0,μ,β , that is using the lower
bound of the smoothness parameter known so far. In addition, Figure 5 depicts
two realizations on a fine grid on a unit square, of a zero mean and unit variance
Gaussian RF with correlation functions RGW−0.1,1.4,0.1 and RGW−0.4,1.1,0.1,
respectively, obtained with the Cholesky decomposition of the covariance matrix
approach. As expected, one can appreciate the roughness of the sample paths
when decreasing the smoothness parameter.
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Fig 4. Examples of extended RGW correlation model. Left: the RGWκ,1.5+κ,0.1 model for
κ = −0.1,−0.2,−0.3,−0.4 (black lines) from top to bottom. The red line is the RGW0,1.5,0.1
model. Right: the RGWκ,2.5+κ,0.1 model for κ = −0.1, −0.2, −0.3, −0.4 (black lines) from
top to bottom. The red line is the RGW0,2.5,0.1 model.

Fig 5. Two realizations on a unit square from a zero mean unit variance Gaussian RF with
covariance functions RGW−0.1,1.4,0.1 and RGW−0.4,1.1,0.1 (from left to right).

4. A simulation study

In this section, we perform a simulation study on the GW family focusing on
the proposed new range of the smoothness parameter, i.e. −0.5 < κ < 0, under
both increasing and fixed domain asymptotics. In particular, we consider the
RGW parameterization (3.9) that includes the MT as a special case.

In the RGWκ,μ,β model, κ is the smoothness parameter describing the behav-
ior near the origin of the correlation model, β is a spatial dependence parameter,
δ(κ, μ, β) as defined in (3.9) is the compact support parameter, and μ is an ad-
ditional parameter. Small values of μ lead to a compactly supported correlation
model, while values μ becoming infinitely large lead to the MT globally sup-
ported correlation model.

As outlined in [4], the μ parameter can be estimated with the goal of looking
for an improvement of the MT family from a modeling viewpoint, or can be
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Fig 6. The covariance models in the simulation study: 1) σ2RGW−0.25,1.75,β ;
2) σ2RGW−0.25,2.25,β ; 3) σ2RGW−0.25,3.25,β ; and 4) σ2MT 0.25,β (in red color) with σ2 = 1
and β = 0.08.

arbitrary fixed with the goal to seek highly sparse matrices to reduce the com-
putational complexity, in particular for prediction. In our simulation study and
in the application, we adopt the second approach, which is clearly more suitable
for large datasets.

4.1. Increasing domain asymptotics

We first assume a scenario where all the parameters can be consistently esti-
mated, i.e. an increasing domain scenario. Under this setting, asymptotic results
such as consistency and asymptotic normality associated with the maximum
likelihood estimator or other estimation methods such as composite likelihood
are well established [39, 7].

One interesting scenario is when the true correlation model is globally sup-
ported, i.e. it is of MT type but, for computational reason, a misspecified RGW
model is considered in the estimation and prediction step fixing small values of μ.

With this goal in mind, we simulate 500 realizations of a zero mean Gaus-
sian RF with covariance model σ2MT κ+0.5,β with σ2 = 1, β = 0.08 and
κ = −0.25, observed at n = 1500 locations uniformly distributed in the unit
square. Then, for each simulated dataset, we estimate the parameters σ2, β and
κ using the following covariance models: 1) σ2RGWκ,1.75,β ; 2) σ2RGWκ,2.25,β ;
3) σ2RGWκ,3.25,β and the true model 4) σ2MT κ+0.5,β ≡ σ2RGWκ,∞,β . Note
that, in the covariance models 1), 2), 3) and 4), the μ parameter is increasing
and for the case 1) it is set very close to its lower bound.

Figure 6 depicts the four covariance models considered in the simulation,
where the true model σ2MT 0.25,0.08 is highlighted with a red color. It can be
appreciated that, for the models 1), 2) and 3), the compact support increases
when increasing μ.

The fraction of zero values in the associated covariance matrix (computed as
the ratio between the number of zero entries and the total number of entries in
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Fig 7. Boxplots of the NNWCL estimates of σ2, β and κ (from left to right) for the covariance
models 1), 2), 3) and 4), where model 4) is true covariance model σ2MT κ+0.5,β and models
1), 2), 3) are the misspecified models σ2RGWκ,μ,β with increasing values of μ = 1.75, 2.25,
3.25. The true parameters values are σ2 = 1, β = 0.08 and κ = −0.25.

the covariance matrix, that is 15002) is given by 0.96, 0.93, 0.85 for models 1),
2) and 3), respectively, and it is clearly 0 for model 4).

In principle, the estimation of the parameters can be performed using max-
imum likelihood (ML). However, as outlined in [4], we point out that ML es-
timation can partially take advantage of the computational benefits associated
with the RGW model because the compact support δ(κ, μ, β) depends on β, μ
and κ. Even when considering a fixed μ, the covariance matrix can be highly
or slightly sparse, depending on the value of β and κ in the optimization pro-
cess. An alternative strategy is to use estimation methods with a good balance
between statistical efficiency and computational complexity that do not require
any restrictions on the covariance model, such as composite likelihood methods
[20, 7, 9], multi-resolution approximation methods [34] or, more generally, using
Vecchia’s approximations [35].

In this simulation study we consider the nearest neighbors weighted pairwise
conditional composite likelihood (NNWCL) proposed in [9] where the number
of neighbors is set to 5. Figure 7 depicts the boxplots of the NNWCL estimates
of σ2, β and κ (from left to right) for the covariance models 1), 2), 3) and 4).
For the variance parameter σ2 there are no relevant differences between the
distribution of the estimates for the four covariance models. However, for β and
κ estimation, it can be appreciated a slight bias when using the misspecified
models 1), 2) and 3) that tends to decrease when increasing μ, as expected.

More importantly we evaluate the predictive performances of the four co-
variance models using cross-validation. In particular, for each simulated dataset
k = 1, . . . , 500, we randomly choose 90% of the spatial locations as a train-
ing subset and we use the remaining 10% as a testing subset for predictions,
and we repeat this resampling approach 100 times. NNWCL estimation is per-
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Table 3

Prediction performances of the covariance models 1) σ2RGWκ,1.75,β ; 2) σ2RGWκ,2.25,β ; 3)
σ2RGWκ,3.25,β and 4) σ2RGWκ,∞,β ≡ σ2MT κ+0.5,β .

Model 1 2 3 4

RMSE 0.6926 0.6913 0.6912 0.6912

LSCORE 1.2393 1.2308 1.2303 1.2293

CRPS 0.6884 0.6878 0.6875 0.6875

formed using the training subset and then NNWCL estimates are used to com-
pute three prediction scores [28] using the testing subset for each covariance
models. Specifically, for each j − th left-out testing subset of the k-th dataset
(zLj,k(s1), . . . , zLj,k(sM )), for j = 1, . . . , 100 we compute

1. the root mean squared error

RMSEj,k =
[

1
M

M∑
i=1

(
zLj,k(si) − ẐL

j,k(si)
)2

] 1
2

2. the logarithmic score

logSj,k = 1
M

M∑
i=1

[
1
2 log{2πσL

j,k(si)} + 1
2{g

L
j,k(si)}2

]
, (4.1)

3. the continuous ranked probability

CRPSj,k=
∑M

i=1 σ
L
j,k(si)(gLj,k(si)(2Φ(gLj,k(si)) − 1) + 2Φ(gLj,k(si)) − 1√

π
)

M
,

(4.2)

where ẐL
j,k(si) is the optimal linear predictor at location si, σL

j,k(si) is the corre-
sponding standard error deviation, and gLj,k(si) = (zLj,k(si)− ẐL

j,k(si))/σL
j,k(si).

Table 3 reports the overall means RMSE =
∑500

k=1
∑100

j=1 RMSEj,k/50, 000, log S
=

∑500
k=1

∑100
j=1 logSj,k/50, 000 and CRPS =

∑500
k=1

∑100
j=1 CRPSj,k/50, 000 for

each of the four covariance models. As expected, the best prediction perfor-
mances are achieved with model 4) (i.e. the true MT model). However, it can
be appreciated that the prediction performances of the RGW models are very
similar, in particular when increasing the fixed μ parameter.

By taking advantage of the sparsity of the covariance matrices associated
with the σ2RGWκ,μ,β model for μ = 1.75, 2.25, 3.25, the computation of the
Cholesky factor needed for the computation of the optimal linear predictor can
be speeded-up by a factor of approximately 27, 11 and 8, respectively, in this
numerical experiment (we use the R package spam [25] for the computation of
the Cholesky factor for sparse matrices) with respect to the MT model. The
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comparison involves the times expressed in seconds computed in terms of elapsed
time, using the function system.time of the R software on a laptop with a 2.4
GHz processor and 16 GB of memory.

These numerical results show that the prediction of a RF with a globally sup-
ported σ2MT κ+0.5,β covariance model can be performed using a more compu-
tationally convenient σ2RGWκ,μ,β covariance model (fixing an arbitrary small
value of μ) without a significant loss of prediction efficiency.

4.2. Fixed domain asymptotics

Under fixed domain asymptotics, the (R)GW model parameters cannot be esti-
mated consistently, as in MT case [60]. Only the microergodic parameters (see
[41] and [2] for a formal definition) can be estimated consistently. If we assume
μ fixed and known and d = 1, 2, 3, then [6] showed that the microergodic param-
eter of the σ2(R)GWκ,μ,β model is given by σ2/β1+2κ for κ ≥ 0. In addition,
they studied the asymptotic distribution of the ML estimator of this parame-
ter (assuming a known smoothness parameter κ). These results can easily be
generalized to the proposed smoothness parameter extension κ > −0.5.

If we assume μ unknown, then we need to distinguish between the param-
eterizations σ2GWκ,μ,β and σ2RGWκ,μ,β . In the former case, the associated
microergodic parameter is given by

m(σ2, β, μ, κ) := σ2

β2κ+1

(
Γ(2κ + μ + 1)

Γ(μ)

)
.

It can be obtained from the following result that establishes the equivalence
of two zero mean Gaussian measures with two different GW covariance models.
We omit the proof since it uses the same arguments as in [6].

Theorem 2. For a given κ ≥ −0.5, consider two zero mean Gaussian measures
with covariance function σ2

0GWκ,μ0,β0 and σ2
1GWκ,μ1,β1 and let μi > d+κ+1/2.

For any bounded set D ⊂ R
d, d = 1, 2, 3, the two measures are equivalent on the

paths of {Z(s) : s ∈ D}, if, and only if,

m(σ2
0 , β0, μ0, κ) = m(σ2

1 , β1, μ1, κ). (4.3)

Note that Theorem 2 takes into account the proposed extension of the GW
model, that is κ ≥ −0.5. The condition (4.3) fixes the condition in Theorem 3
of [5], which is partially wrong since it works only when κ = 0. Applying The-
orem 2 to the second parameterization σ2RGWκ,μ,β , that is replacing βi with
δ(κ, μi, βi), i = 1, 2, in (4.3), it turns out that the microergodic parameter is
given by σ2/β1+2κ. This implies that, under the parameterization σ2RGWκ,μ,β ,
the parameters σ2/β1+2κ and μ are microergodic, while for the original param-
eterization σ2GWκ,μ,β the parameter m(σ2, β, μ, κ) is microergodic.

As an example, we simulated 500 realizations observed at n = 100 locations
uniformly distributed in the unit square from a zero mean Gaussian RF with
covariance model σ2RGWκ,μ,β by setting κ = −0.25 μ = 2.25, β = 0.6 and
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Fig 8. Boxplots of the ML estimates of σ2 (top left), β (top right) and of the microergodic
parameter σ2/β1+2κ (bottom) for the covariance model σ2RGWκ,2.25,β . The true parameters
values are σ2 = 1, β = 0.6. The smoothness parameter is κ = −0.25

then we estimated σ2 and β with ML assuming κ and μ fixed and known. The
microergodic parameter in this case is given by σ2/β1+2κ and the associated ML
estimator σ̂2

ML/β̂
1+2κ
ML is consistent and asymptotically Gaussian [6]. Note that

we choose β = 0.6 such that the compact support δ(−0.25, 2.25, 0.6) = 1.21 is
large with respect to the spatial extent of the sampling region and, as a conse-
quence, we expect that the fixed domain asymptotics results provide an accurate
description of the behavior of the ML estimate of the microergodic parameter.
Figure 8 displays the boxplots of the ML estimates of the individual parameter
σ2 and β and of the microergodic parameter σ2/β1+2κ. The empirical distribu-
tions of the individual parameters estimates are not Gaussian and show a high
variability. However, the distribution of the microergodic parameter estimate is
clearly Gaussian, as expected.

5. Application to yearly total precipitation anomalies

We now consider a dataset of yearly total precipitation anomalies registered at
7, 352 location sites in the USA since 1895 to 1997. The yearly totals have been
standardized by the long-run mean and standard deviation for each station from
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Table 4

NNWCL estimates for parameters of covariance model 1) σ2RGWκ,1.75,β ; 2)
σ2RGWκ,2.25,β ; 3) σ2RGWκ,3.25,β ; 4) σ2MT κ+0.5,β ≡ σ2RGWκ,∞,β with associated

composite likelihood information criteria (CLIC). Prediction performance measures RMSE,
LSCORE, and CRPS, as well as the estimated compact support δ(κ̂, μ, β̂), the percentage of

zeros in the estimated covariance matrix and the computational time (in seconds) to
perform the associated Cholesky decomposition, are also reported.

σ̂2 β̂ κ̂ CLIC RMSE LSCORE CRPS δ(κ̂, μ, β̂) % TIME

1)σ2RGWκ,1.75,β
0.7865
(0.087)

417.66
(90.95)

−0.2524
(0.015) 457, 292 0.4665 0.6356 0.9328 633.80 0.87 3.17

2)σ2RGWκ,2.25,β
0.7864
(0.094)

407.5245
(107.57)

−0.2503
(0.015) 457, 703 0.4661 0.6347 0.9324 821.08 0.80 8.92

3)σ2RGWκ,3.25,β
0.7863
(0.104)

397.1918
(112.51)

−0.2482
(0.016) 458, 086 0.4662 0.6349 0.9322 1196.34 0.65 17.23

4)σ2MT κ+0.5,β
0.7860
(0.103)

376.07
(129.93)

−0.2426
(0.018) 458, 175 0.4663 0.6352 0.9317 ∞ 0 64.81

1962. A previous analysis in [36] adapted a zero-mean Gaussian random field
with an exponential covariance model, while [4] considered an additional nugget
effect by fixing the smoothness parameter κ = 0.5 for the MT model and κ = 0
for the RGW model.

Here we present an improved analysis by estimating the smoothness param-
eter of a zero mean Gaussian RF with RGW covariance model and MT as a
special limit case. Specifically, as in Section 4.1, we consider a RGW covariance
model fixing increasing values of the μ parameters that is: 1) σ2RGWκ,1.75,β ;
2) σ2RGWκ,2.25,β ; 3) σ2RGWκ,3.25,β ; 4) σ2MT κ+0.5,β ≡ σ2RGWκ,∞,β . The
nugget effect has not been considered because, when estimating the smoothness
parameter, its estimates is very close to zero. The estimation is performed using
the NNWCL method, as in Section 4.1, using 30 neighbors.

Table 4 depicts the NNWCL estimates of σ2, β and κ with associated stan-
dard error (computed using parametric bootstrap) for the covariance models
1), 2), 3) and 4). It is important to note that the estimate of the smoothness
parameter κ is negative, that is the extension of the RGW model proposed in
this paper is crucial when analyzing this dataset. For each model the value of
the composite likelihood information criteria (CLIC) [52] is indicated. Following
this model selection criteria, the RGW models with fixed μ are preferred to the
MT model.

Table 4 also reports the estimated compact support δ(κ̂, μ, β̂) that increases
when increasing μ, as expected, and the percentage of zero entries in the es-
timated covariance matrix, for each model. The computational gains that can
be achieved using the RGW model with small values of μ when computing the
optimal linear kriging are considerable. In particular, Table 4 shows the time
needed for the computation of the Cholesky factor of the estimated covariance
matrix. It can be appreciated that the computation of the Cholesky factor is
speeded up to a factor of 21, 17 and 3, approximately, for the models 1), 2), 3)
with respect to the MT model 4).

Finally, to compare the models in terms of prediction performance, we used
leave-one-out cross-validation as described in [61]. In particular the authors
show that RMSE, LSCORE and CRPS leave-one-out cross-validation can be
computed in just one step by using the estimated covariance matrix. The pre-
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Fig 9. Empirical semivariogram of precipitation anomalies data versus the estimated semivar-
iogram using a) the σ2RGWκ,2.25,β covariance model, and b) the σ2MT κ+0.5,β covariance
model.

diction scores are reported in Table 4 for each covariance model. The perfor-
mance prediction of the compactly supported models 1), 2), 3) are very similar
to the MT model 4). In particular, the model with lower RMSE and LSCORE
is the compactly supported model 2) σ2RGWκ,2.25,β . These results shows that,
accounting for the prediction performance and the computational complexity,
the best model is σ2RGWκ,2.25,β .

Figure 9 compares the empirical semivariogram of the yearly total precipi-
tation anomalies data with the estimated semivariogram using the covariance
model σ2RGWκ,2.25,β and the σ2MT κ+0.5,β covariance model.

6. Conclusions

The (reparameterized) generalized Wendland correlation model can be viewed
as a generalization of the Matérn model. In this paper, we have provided new
necessary and sufficient conditions for this class of model, extending the para-
metric space of the smoothness parameter to the interval (−0.5, 0). The proposed
new conditions allows the generalized Wendland model to cover the full range
of validity of the smoothness parameter of the Matérn model.

As a result, the generalized Wendland model can be used as a more flexible
alternative of the Matérn model or as a computational convenient approxima-
tion of the Matérn model, even when the sample paths are very rough. Some
numerical evidences have been provided in a simulation study and in a real data
application.

Although the generalized Wendland model involves the computation of a
Gauss hypergeometric function or the evaluation of a specific integral, in some
special cases (Section 3 and Appendix A.1 to A.2) the computation can be
considerably simplified. This can be very useful for practitioners.
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More generally, the numerical computation of the generalized Wendland model
can be performed through efficient implementation of the Gauss hypergeometric
function as in the R package GeoModels [8] or using adaptive integration as in
the R package GeneralizedWendland [22]. As an alternative, an approximation
of the generalized Wendland model can be obtained using a computationally effi-
cient polynomial approximation [24]. Finally, the proposed result can be applied
to other classes of models, such as the space-time Wendland model proposed in
[43] and the multivariate Wendland model in [16].

Appendix A

A.1. Closed-form expression of the ordinary Wendland functions

Let κ ≥ 0, β > 0. Using formula 9.6.5 of [37], the generalized Wendland covari-
ance (3.1) can be rewritten as:

GWκ,μ,β(x) = M

(
1 − x2

β2

)κ+μ

+

(
β + x

2β

)−μ

× 2F1

(
μ,−κ;κ + μ + 1; (β − x)+

β + x

)
, x ≥ 0.

If, furthermore, κ = k ∈ N, then the hypergeometric function in the above
expression is a terminating series. The generalized Wendland covariance then
reads as

GWk,μ,β(x) = M

(
1 − x2

β2

)k+μ

+

(
β + x

2β

)−μ k∑
n=0

(μ)n(−k)n
(k + μ + 1)n n!

(
(β − x)+
β + x

)n

= M2μ
k∑

n=0

(μ)n(−k)n
(k + μ + 1)n n!

(
1 − x

β

)n+k+μ

+

(
1 + x

β

)k−n

,

=
(

1 − x

β

)k+μ

+
Pk(x;μ, β), x ≥ 0,

with

Pk(x;μ, β) = M2μ
k∑

n=0

(μ)n(−k)n
(k + μ + 1)n n!

(
1 − x

β

)n

+

(
1 + x

β

)k−n

, x ≥ 0.

Pk(·;μ, β) is a polynomial of degree k whose coefficients depend on k, μ and β.
If, furthermore, μ is an integer, GWk,μ,β is a polynomial of x of degree μ + 2k
in the interval [0, β] (Figure 1). The expression of GWk,μ,β can be shown to be
equivalent to the expression in (3.5) obtained using the results in [33], but our
proof is much more straightforward.
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A.2. Closed-form expression of the missing Wendland functions

Using formula 7.3.1.100 in [45], one can rewrite the generalized Wendland func-
tion at x ∈ (0, β) as

GWκ,μ,β(x) = M

(
1 − x2

β2

)κ+μ

2F1

(
μ

2 ,
μ + 1

2 ;κ + μ + 1;
(

1 − x2

β2

))
= M2κ+μΓ(κ + μ + 1)

(
1 − x2

β2

)κ+μ
2

(
x

β

)κ

P−κ−μ
−κ−1

(
β

x

)
,

where Pλ
κ stands for the associated Legendre function of the first kind of degree

κ and order λ. This function can be transformed into an associated Legen-
dre function of the second kind Q

−κ− 1
2

−λ− 1
2

using Whipple’s formula [42, formulae
14.3.10, 14.9.14 and 14.9.17], leading to:

GWκ,μ,β(x) = M2κ+μ+ 1
2 Γ(κ + μ + 1)√

πΓ(2κ + μ + 1)

(
1 − x2

β2

) 2κ+2μ−1
4

(
x

β

)κ+ 1
2

× e−i(κ+ 1
2 )πQ

κ+ 1
2

κ+μ− 1
2

[(
1 − x2

β2

)− 1
2
]
, 0 < x < β,

(A.1)

with i the imaginary unit.
From the following identities [45, p. 775–777], valid for z > 1 and any non-

negative integer ν:

Q0
ν(z) = 1

2Pν(z) log
(
z + 1
z − 1

)
−

ν∑
p=1

1
p
Pp−1(z)Pν−p(z),

where Pν is the Legendre polynomial of degree ν, and√
z2 − 1Qλ+1

ν+1(z) = (ν + 1 − λ)zQλ
ν+1(z) − (ν + 1 + λ)Qλ

ν (z),

one can obtain a closed-form expression of Qλ
ν on (1,+∞) for every nonnegative

integers λ and ν such that ν ≥ λ, therefore a closed-form expression of the
generalized Wendland covariance (A.1) for κ equal to a positive half-integer and
μ equal to a positive integer. For instance, for λ = 1 and ν a positive integer,
one has:√

z2 − 1Q1
ν(z) = ν

2 (zPν(z) − Pν−1(z)) log
(
z + 1
z − 1

)
− zPν−1(z)

− ν

ν−1∑
p=1

1
p
Pp−1(z)(zPν−p(z) − Pν−1−p(z)),
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which gives, for 0 < x < β and μ a positive integer,

GW 1
2 ,μ,β

(x) =
M2μ+1Γ(μ + 3

2 )√
πΓ(μ + 2)

z−μ−1
[μ
2 (Pμ−1(z) − zPμ(z)) log

(
z + 1
z − 1

)
+ zPμ−1(z) + μ

μ−1∑
p=1

1
p
Pp−1(z)(zPμ−p(z) − Pμ−1−p(z))

]
,

(A.2)

with z =
(
1 − x2

β2

)− 1
2 and Pμ(z) = 2−μ

∑�μ
2 �

p=0
(−1)p(2μ−2p)!
p!(μ−p)!(μ−2p)!z

μ−2p, z ∈ R, is the
Legendre polynomial of degree μ.

In the general case, for any z ∈ R and any positive integers λ and ν such
that ν ≥ λ, one finds [51, eqs. 2.7, 2.31 and 4.10]

Qλ
ν (z) = 1

2P
λ
ν (z) log

(
z + 1
z − 1

)
− (ν + λ)!

2(ν − λ)!

λ−1∑
p=0

(−1)p(2p + 1)
(ν − p)(p + ν + 1)(P−λ

p (−z) − (−1)νP−λ
p (z))

−
ν−λ−1∑
p=0

(1 − (−1)p+ν+λ)(2p + 2λ + 1)
2(ν − λ− p)(p + ν + λ + 1)

[
1 + p!(ν + λ)!

(p + 2λ)!(ν − λ)!

]
Pλ
p+λ(z),

(A.3)

with

Pλ
τ (z) = Γ(τ + λ + 1)

Γ(τ − λ + 1)

(
z + 1
z − 1

)λ
2 τ∑

p=0

(−1)p+τ (p + τ)!(z + 1)p

p!(τ − p)!Γ(p + λ + 1)2p , 0≤λ≤τ ∈ N,

and

P−λ
p (z) =

(
z − 1
z + 1

)λ
2 p∑

q=0

(q + p)!(z − 1)q

q!(q + λ)!(p− q)!2q , λ > p ∈ N.

Plugging (A.3) into (A.1) gives a closed-form expression of the missing Wend-
land functions for any positive integer μ and half-integer κ.

Although the associated Legendre function of the second kind in (A.1) tends
to infinity as x tends to 0 or β, the value of GWκ,μ,β(x) remains finite, due
to the power terms ( x

β )κ+1/2 and (1 − x2

β2 )(2κ+2μ−1)/4, which make GWκ,μ,β(x)
tend to 1 as x tends to zero and to 0 as x tends to β.

A.3. Proof of Theorem 1

Let d be a positive integer, and let β, χ, γ and δ be positive real numbers such
that:

1. δ > d/2;
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2. 2(χ− δ)(γ − δ) ≥ δ;
3. 2(χ + γ) ≥ 6δ + 1.

Consider the four-parameter Gauss hypergeometric model proposed in [21]:

GHδ,χ,γ,β(x) = Γ(χ− d/2)Γ(γ − d/2)
Γ(χ− δ + γ − d/2)Γ(δ − d/2)

(
1 − x2

β2

)χ−δ+γ−d/2−1

+

× 2F1

(
χ− δ; γ − δ;χ− δ + γ − d/2;

(
1 − x2

β2

)
+

)
, x ≥ 0. (A.4)

Based on Theorem 4.2 in [13], and Theorem 3 and Eq. 44 in [59], it can be
shown that, under conditions a), b) and c), GHδ,χ,γ,β belongs to the class Φd,
and that its spectral density is given by

ĜHδ,χ,γ,β(z) = Kad1F2

(
δ;χ, γ;− (zβ)2

4

)
, z ≥ 0, (A.5)

where K = Γ(δ)Γ(χ−d/2)Γ(γ−d/2)
2dπ

d
2 Γ(δ−d/2)Γ(χ)Γ(γ)

is a normalization constant.
Using the properties of the gamma function, it is straightforward to show

that a special case of (A.5) is the spectral density of a reparameterized GW
model, that is

ĜHδ,χ,χ+0.5,β(z) = ĜWδ−(d+1)/2,2(χ−δ),β(z), z ≥ 0.

Now we focus on the restriction d/2 < δ < d/2 + 1/2. If we use the standard
parameterization of the GW model, i.e., if we set κ = δ − (d + 1)/2 and μ =
2(χ− κ) − (d + 1), it can be appreciated that −1/2 < κ < 0, that is, we obtain
an extension of the parametric space associated with the smoothness parameter
of the generalized Wendland model GWκ,μ,a including the case −1/2 < κ < 0.

The sufficient conditions, under the restriction −1/2 < κ < 0, can be obtained
putting together the above conditions 1), 2) and 3), by setting δ = κ+(d+1)/2,
χ = (μ+2κ+(d+1))/2 and γ = χ+0.5. Solving the system of inequalities, we
obtain the following sufficient conditions:

1. μ ≥ (d + 1)/2 + κ when d ≥ 2
2. μ ≥ 0.5(

√
8κ + 9 − 1) when d = 1.

for GWκ,μ,β to belong to the class Φd when −1/2 < κ < 0.
Necessary conditions can be obtained following Cho and Yun [14, Theorem

6.1], who show that if 1F2(a; b; c;−x2

4 ) ≥ 0, then b > a, c > a, b + c ≥ 3a + 0.5.
Taking into account the spectral density (A.5) and setting δ = κ+(d+1)/2, χ =
(μ+2κ+(d+1))/2 and γ = χ+0.5, we find the solution of the system inequalities
(under the restriction −1/2 < κ < 0), which is given by μ ≥ (d+1)/2+κ when
d ≥ 1.

Finally, noting that, when d = 1, (d + 1)/2 + κ < 0.5(
√

8κ + 9 − 1) for
−1/2 < κ < 0, we put together the necessary and sufficient conditions for the
cases d = 1 and d ≥ 2, obtaining the main result.
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