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Abstract: We introduce two new tools to assess the validity of statistical
distributions. Both the simple and composite null hypothesis contexts are
considered. These tools are based on components derived from a new statis-
tical quantity, the comparison curve, which can provide a detailed appraisal
of validity. The first tool is a graphical representation of these components
on a bar plot (B-plot) accompagnied with related local acceptance regions.
These allow getting some ideas and building some confidence about where
and to which extent the data contradict the model. The knowledge such
gained could also suggest an existing goodness-of-fit test to supplement this
assessment with a control of the type I error. Otherwise, a new test may be
preferable and the second tool is is the combination of these components
to produce a powerful χ2-type goodness-of-fit test. Because the number of
these components can be large, we introduce new selection rules to decide
on their number. In simulations, our new adaptive goodness-of-fit tests
are powerwise competitive with the best solutions recommended. Practi-
cal examples show how to use these tools to derive principled information
regarding if and possibly where the model departs from the data.
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1. Introduction

Let X be a random variable with unknown cumulative distribution function
(CDF) F (·). Statistical models are entertained approximations to F (·) which
serve to produce inferential statements about the behaviour of X. Constructing
a good approximation is an iterative process where at any given step, a contem-
plated model based on previously acquired knowledge is assessed by confronta-
tion with data. When the current proposal is invalidated, its defects must be
learned to explore a better model at the next iteration. When a model is tenta-
tively validated, useful inference can be drawn by exploiting its characteristics,
allowing the accumulation of subject matter knowledge.

In the present work, the entertained statistical model for X is the CDF
F0(· ; β) where the parameter β may be unknown. The data is a sample of
independent copies X1, . . . , Xn of X.

Two main routes exist for statistical model validation. A first one focusses on
graphical representations, such as PP (percentile-percentile) or QQ (quantile-
quantile) plots (Thas, 2010, Section 3.2). When the model is valid, these plots
should closely follow the 45-degree line through the origin. Deviations can pro-
vide insights about where the data do not conform to the entertained model.
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These visual appreciations can be supplemented with confidence regions about
such representations (Aldor-Noiman et al., 2013; Gan, Koehler & Thompson,
1991) or test statistics measuring departure from this straight line (Gan &
Koehler, 1990) to control the type I error (i.e. falsely considering a model is
invalid). This route can clearly be a cog in the modelling process.

A second route focusses mainly on error risks by testing, via formal goodness-
of-fit (GoF) procedures, the null hypothesis that the model holds. A large num-
ber of test statistics have been derived for such problems (for testing the GoF
to the Gaussian distribution, Arnastauskaité, Ruzgas & Brazénas (2021) list 40
such tests) which allow controlling the type I error risk. Regarding the type
II error (i.e. not rejecting an invalid model and thus stopping prematurely the
modelling process), an enormous amount of work has been accomplished, both
theoretically and empirically, to understand the respective power of the various
proposals and to derive a generally good solution for specific problems. In partic-
ular, regarding the Gaussian distribution again, a long series of simulation exper-
iments have been conducted (see Arnastauskaité, Ruzgas & Brazénas, 2021 and
references therein) to characterize the effectiveness of popular proposals. A first
drawback is that it is not easy to decide, in view of the data at hand, upon
an appropriate GoF test among this plethora of solutions. Another drawback is
that when the chosen test rejects, the user is often left with little information
about the defects of the model. This makes it difficult to pursue the modelling.

A few exceptions are the well-known Pearson χ2-test and the smooth test
introduced by Neyman (1937), to which sets of components can be associated.
Each component reacts to specific departures and if these can be discerned, their
inspection can help a user gain some insights about where the model is at fault.
Below, we discuss some problems arising with these tests when β is known. Both
approaches have been extended to the context where β is unknown, but then
even more serious difficulties occur.

There are two main problems with such tests. The first one arises from the
standard order of the argument leading to these components, which is first to
get from external considerations a GoF test, then try to extract meaningful
components. For Pearson’s χ2-test, Anderson (1994) has made such an attempt
but Boero, Smith & Wallis (2004a) have shown that his approach was not com-
pletely successful; for similar efforts, see Voinov (2010) and references therein.
When β is known, the components of the classical Pearson’s χ2-square test are
not easy to interpret as they heavily depend on the selected partition. Regard-
ing Neyman’s smooth tests, meaning depends on the orthogonal system used in
the test. With classical orthogonal polynomials, the first few components will
typically be associated with central moments (Thas, 2010, p. 84), but beyond
the third (skewness) they become difficult to relate to telling departures.

The second problem concerns the number of components to be used in the
test: too few or too many negatively affect the power of the test. For some his-
torical notes and recommendations about choosing the partitions, see Boero,
Smith & Wallis (2004b) and Rolke & Gongora (2021). Bogdan (1995) and In-
glot & Janic-Wróblewska (2003) contain some useful proposals regarding data
driven selections of the partition in classical χ2-test. Some data driven GoF
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tests based on partitions have also been derived in Section 5.5 of Thas (2001).
In turn, Ledwina (1994) has proposed an effective way of selecting the number
of components in the classical Neyman’s smooth test.

In the present work, we try to solve these problems in both contexts (β known
and β unknown) by introducing easily interpretable components, different from
those in the original χ2-test and several variants of Neyman’s test, which can
be graphically depicted on what we call a bar plot (B-plot) to give a detailed
appraisal of the validity of a model. This may help in selecting an appropriate
GoF test to assess the global fit between the data and the model. When, likely,
none naturally emerges, the components can be combined to produce a powerful
new data driven χ2-type GoF test, (see Section 2.4 for an explanation of the
label “-type”), supplementing the visual assessment with a control of the type I
error. When the chosen test rejects, acceptance regions for subsets of components
under the null model can be plotted and analyzed to sharpen the insight gained
from the B-plot about where and why departures seem to occur.

We first consider the context where the null model F0(· ;β) is entirely spec-
ified, i.e. β is known. We start by introducing a function, referred to as the
comparison curve (CC), which is related to existing statistical objects such as
PP and QQ plots. Its evaluation yields components whose statistical properties
offer richer insights, when depicted on the B-plot, than these plots. In particular,
this first new tool allows gaining some ideas about where (in terms of ranges
of quantiles of the model F0(· ; β)) and to which extent the data contradict the
model. These components are then shown to be estimated successive Fourier
coefficients of the comparison density (see Section 2.3). The number of such
components can in principle be as large as one chooses. Hence a second impor-
tant task is to derive a way of selecting, in a data driven fashion, their number.
We introduce a new selection rule to decide on a proper number of components
to include in our second tool, a data driven χ2-type GoF test statistic. A care-
fully balanced simulation experiment shows that our procedure competes with
some best tests in this context. Finally, we show how the B-plot can be sup-
plemented with acceptance regions for subsets of components to provide richer
indications regarding the compatibility of the data with the null model in some
regions of interest.

Then we move to the context where the parameter β in F0(· ;β) must be
estimated. Particular attention is given to the location-scale model, i.e. F0

(
(x−

β1)/β2
)
, and to the important sub-case of a Gaussian model. A series of results,

parallel to those for the β known context are presented.
In both contexts, we apply our tools to real data to show how useful insights

can be derived.
The appendices contain details about more examples showing the useful infor-

mation that can derive from the tools of the paper, some practical recommenda-
tions regarding the application of our test strategies, the results of a simulation
study regarding the power of the test statistic of Section 3 along with some more
general discussion and the proofs of various technical results.
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2. The case of a simple null hypothesis

2.1. Comparison curve (CC), B-plot and the smiling baby data

Let X1, . . . , Xn be a sample of i.i.d. observations from an unknown continuous
CDF F (·). We start by considering the case where the parameter β in the
continuous model F0(· ;β) is known and write for simplicity F0(·) for this CDF.
The simple null hypothesis of interest is H0 : F (·) = F0(·).

Consider the random variable Z = F0(X). By the probability integral trans-
formation, when X ∼ F (·), Z has CDF H(p) = F (F−1

0 (p)), p ∈ (0, 1), which
is referred to by Parzen (2004) as the comparison CDF, because when some
auxiliary random variable X0 ∼ F0(·), then H(·) is the CDF of X expressed on
a scale in which X0 ∼ U(0, 1). H(·) is also referred to in the literature as the
relative distribution (Handcock & Morris, 1999, Chapter 2, p. 21) as Z measures
the relative ranks of X compared to X0 ∼ F0(·). Such relative ranks are also
known as the grade transformation following a statistical tradition that goes
back to Galton; cf. Kendall & Buckland (1957, p. 121). The function H(·) is
also the population version of the PP plot of F (·) against F0(·) which, in this
context, is sometimes called the reference distribution.

The approach of the present work is based on a standardized version of the
comparison CDF, which we call the comparison curve (CC) and define as

CC(p) = p− F (F−1
0 (p))

(p(1 − p))1/2
, p ∈ (0, 1). (1)

When H0 holds,CC(·) ≡ 0 and otherwise captures weighted vertical discrep-
ancies between the population PP plot and the 45-degree line. As with PP plots,
CC(·) is invariant under strictly increasing and continuous transformations of
the scale of measurement. But in contrast with PP plots which are always 0 as
p → 0, and 1 as p → 1, CC(·) can be unbounded at the boundaries, see the
Lehmann contamination and the Anderson kurtotic alternatives in Figure 2. As
a result, due to the meaningful weighting in (1), CC(·) can better exhibit dif-
ferences between F (·) and F0(·) appearing in tails. The equality CC(p) = 0 for
all p ∈ (0, 1) is equivalent to F (x) = F0(x) for all x, while CC(p) ≥ 0 for all p
is equivalent to F (·) being stochastically larger than F0(·). These properties are
well known with PP plots. However, we can say more on both PP and CC plots
in terms of probability mass allocation between F (·) and F0(·) in relation with
their stochastic ordering. Namely, if there is only one point p0 ∈ (0, 1) such that
CC(p0) = 0, then F−1(p0) = F−1

0 (p0) and consequently the set (−∞, F−1
0 (p0)]

has the same probability under both F (·) and F0(·). Obviously, the same conclu-
sion holds for the set (F−1

0 (p0),+∞). The relation CC(p) > 0 on (0, p0) defines
the region where F0(·) > F (·). Hence, when restricted to this interval, obser-
vations generated from the conditional distribution of F (·) are stochastically
larger than under the respective conditional variant of F0(·). Otherwise stated,
the probability mass associated with F (·) accumulates more intensively toward
F−1

0 (p0) than the mass of F0(·). In terms of quantiles, we get F−1
0 (·) < F−1(·)
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and the quantiles of F (·) are more concentrated toward the p0-quantile of the
reference CDF F0(·) than those of F0(·) itself. The reverse holds when CC(·) < 0
on (0, p0). The magnitude of CC(·) reflects the rate at which the mass allocation
between the two CDFs changes. If there are more than one point p such that
CC(p) = 0, these interpretations apply to each resulting region in (0, 1). The
above, along with the comments in Section 3.3, essentially strengthens the in-
terpretation of PP plots discussed in Thas (2010), Sections 7.6 and 8.1.1.2, and
lead to the view that CC plots can be seen as upgraded variants of PP plots.

Replacing in (1) the unknown F (·) by F̂n(x) = n−1 ∑n
i=1 I(Xi ≤ x), where

I(ω) is the indicator function of event ω, leads to the empirical CC

ĈC(p) = p− F̂n(F−1
0 (p))

(p(1 − p))1/2
, p ∈ (0, 1). (2)

Formally, ĈC(p) is a consistent estimator of CC(p) in the sense that, for any
ε ∈ (0, 1), supε≤p≤1−ε

∣∣ĈC(p) − CC(p)
∣∣ → 0 in probability. More importantly,

n1/2 ĈC(p) is asymptotically N(0, 1) under H0 for each p. Thus, in contrast
with empirical PP and QQ plots, n1/2 ĈC(·) captures discrepancies between the
postulated model under H0 and the data with equal precision over the whole
range of p when H0 holds true.

Evaluating n1/2 ĈC(·) at points on a grid in (0, 1) and representing these as
bars over the grid points yields a bar plot (B-plot), as introduced by Ledwina
and Wyłupek (2012a, 2012b) in a related problem. Obviously, the n1/2 ĈC(·)
are noisy but being correlated, their visual inspection can allow to approxi-
mately identify regions where the null model puts more probability mass, via a
clustering of its quantiles, than the data seems to suggest, and reversely.

As an example of the usefulness of a CC(·), consider the smiling baby data
set (Bhattacharjee & Mukhopadhyay, 2013). The data (n = 55) are the smil-
ing times (in seconds) of an eight-week-old baby. According to various authors,
the data could realistically be uniformly distributed over the interval [0, θ ].
Here, we take θ = 23.5, a value close to the estimators investigated by Bhat-
tacharjee & Mukhopadhyay (2013) and transform the data onto [0, 1]. Panel 1)
of Figure 1 shows the empirical PP plot against the reference U [0, 1] distribu-
tion (the 45-degree line) while Panel 2) represents the B-plot of n1/2 ĈC(p) for
p ∈ {1/32, . . . , 31/32}. Inspection of these bars shows a coincidence of the null
and empirical quantiles in the neighbourhood of p = 0.45 (	 10.6 in the original
units), slightly to the left of the median under H0. The shape of the sets of
positive bars to the left and negative bars to the right of p 	 0.45 suggests that
the central quantiles of the true distribution could be more clustered about this
point than those of the null uniform. Thus the true distribution is perhaps less
dispersed than the uniform and slightly shifted toward 0. Similar insight can
be derived from the empirical PP plot (Panel 1) and QQ plot (not shown) of
this data set. However, by making use of the null expectation and approximate
homoscedasticity of ĈC(·) under H0, the B-plot allows an enhanced appraisal
of these main features of the data. In particular, this B-plot allows reaching a
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Fig 1. Graphical representations for the smiling baby data (n = 55) in Bhattacharjee
& Mukhopadhyay (2013). Panel 1) : PP plot against the U [0, 1] distribution (45-degree
solid line); Panel 2): B-plot of the n1/2 ĈC(·) of eq. (2) evaluated over the grid p ∈
{1/32, . . . , 31/32}.

formal decision regarding which quantiles of the null CDF F0(·) exhibits an un-
expectedly large discrepancy (positive or negative) with the data.The approach
is developed in Section 3.3 for the null and composite case and discussed for the
present case in Section 3.5.4, where we revisit this data set.

Such visual insights about the discordance of data with a null model is in-
teresting, but should be supported by a GoF test for error control. Here we
exploit the asymptotic behaviour of n1/2 ĈC(·) under H0 to obtain inferential
statements about the overall validity of the model. Hence, we now consider the
problem of creating a GoF test based on the empirical CC. Here, we proceed in a
simple and traditional way by considering ĈC(p) evaluated at points p in a finite
set associated with a B-plot of interest. These points are described in the next
subsection. Then, from the values of the related bars, we build a χ2-type test
statistic. Finally, we introduce a selection rule to decide about the most useful
subset of points, which is a highly non-trivial problem in the case of statistics
of the present type.

2.2. Nested partition of (0,1) and projected Haar function {hs,j(·)}

Let as,k = (2k − 1)/2s+1, (s = 0, 1, . . . ; k = 1, 2, . . . , 2s). Associated with a
sequence of sample sizes n, let S(n) be a user-defined increasing sequence of
integers. With s ranging in {0, 1, . . . , S(n)} and k ∈ {1, 2, . . . , 2s}, introduce in
turn the sequence of nested sets of points in (0, 1) corresponding to those as,k’s
with {s = 0}, {s = 0, 1}, {s = 0, 1, 2}, . . ., sorted from smallest to largest to
create the increasingly finer sets of points

{p0,1}, {p1,1, p1,2, p1,3}, . . . , {ps,1, . . . , ps,d(s)}, . . . , d(s) = 2s+1 − 1.

For example, if S(n) = 2 the nested sets of ordered points are {4/8}, {2/8, 4/8,
6/8} and {1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8}. Also define D(n) = {d(s) : s =
0, . . . , S(n)} and D(n) = d(S(n)).
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Now for a given s and corresponding d(s), introduce the d(s)− dimensional
vector of functions (hs,1(p), . . . , hs,d(s)(p)) with 0 ≤ p ≤ 1, where for j ∈
{1, . . . , d(s)}

hs,j(p) = −
(

1 − ps,j
ps,j

)1/2

× I(0 ≤ p ≤ ps,j) +
(

ps,j
1 − ps,j

)1/2

× I(ps,j < p ≤ 1)

= ps,j − I(0 ≤ p ≤ ps,j)
(ps,j(1 − ps,j))1/2

.

These functions arise as normalized orthogonal projections of the Haar func-
tions onto the cone of nondecreasing functions (cf. Ledwina & Wyłupek, 2012b)
and constitute the building blocks of our tools. Obviously, the functions in this
system are normalized but not orthogonal. The explicit form of the inner product
matrix of the hs,j(·) and its inverse have been derived in Ledwina & Wyłupek
(2012b) under H0. Note that Pearson’s χ2 is also related to a set of points
0 = π0 < π1 < . . . < πk = 1 defining a normalized but not orthogonal system
of functions given by lj(p) = {I(πj−1 < p < πj) − (πj − πj−1)}/(πj − πj−1)1/2.
Indeed, Pearson’s χ2 =

∑k
j=1

(∑n
i=1 �j(Xi)

)2. Here, a single lj(·) corresponds
to two neighbouring points, so Pearson’s system is naturally adapted to his-
tograms. This is to be contrasted with the system {hs,j(·)}, where each point
ps,j corresponds to the single function hs,j(·) and is thus adapted to CDFs.

2.3. Fourier coefficient of the comparison density in the system
{hs,j(·)}

Write f0(·) and f(·) for the densities of F0(·) and F (·) respectively. Assume
further that f0(x) = 0 =⇒ f(x) = 0. Then the function H(·) = F (F−1

0 (·)) sat-
isfies H(0) = 0, H(1) = 1 and possesses a density, called the comparison density
(Parzen, 2004) or the relative density (Handcock & Morris, 1999, Chapter 2, p.
22) given by κ(p) = f(F−1

0 (p))/f0(F−1
0 (p)), p ∈ (0, 1). Obviously, κ(·) ≡ 1 if

and only if H0 holds. Now, consider the Fourier coefficients (FC) of κ(·) in the
system {hs,j(·)}. The (s, j)-th Fourier coefficient, noted γs,j , takes the form

γs,j = γs,j(ps,j) =
∫ 1

0
κ(p)hs,j(p) dp = ps,j − F (F−1

0 (ps,j))
(ps,j(1 − ps,j))1/2

. (3)

Then, H0 can be equivalently reformulated as γs,j = 0, (s = 0, 1, . . . ; j =
1, . . . , d(s)).

Expression (3) leads to the empirical FC: γ̂s,j = n−1 ∑n
i=1 hs,j(F0(Xi)). A lit-

tle algebra shows that γs,j = CC(ps,j) and γ̂s,j = ĈC(ps,j). Observe that, in
view of our nested partition, increasing s allows for more and more careful checks
of the discrepancies between F (·) and F0(·). More precisely, we start by consid-
ering the deviation at the median of F0(·), then check the fit at its quartiles and
so on. Also, γ̂s,j can be seen as a statistic for testing γs,j = 0.
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For S(n) large enough corresponding to n ≥ n0 say, if F (·) �= F0(·), there
exist s0 ∈ {0, 1, . . . , S(n)} and j0 ∈ {1, . . . , d(s0)} such that

γs0,j0 �= 0. (4)

Because we are considering nested partitions, for n ≥ n0 and s ≥ s0, there is
a corresponding j0 such that (4) remains valid; hence we might as well assume
that n0, s0, j0 are the smallest values for which (4) holds.

2.4. χ2-type test statistic and selection rule for its number of
components d(s)

Set

K(d(s)) = n1/2
(
ĈC(ps,1), . . . , ĈC(ps,d(s))

)′
= n1/2 (

γ̂s,1, . . . , γ̂s,d(s)
)′
. (5)

This vector can be seen as the score vector of an auxiliary parametric model
associated with

(
h1,1(p), . . . , hs,d(s)(p)

)
modelling an alternative to F0(·). Con-

sider the χ2-type test statistic for the GoF problem of testing H0:

Pd(s) = K ′(d(s))K(d(s)) = n

d(s)∑
j=1

[
ĈC(ps,j)

]2
. (6)

Note that here and in the sequel, the term “χ2-type” refers to the structure of
the test statistic which, as in Pearson’s standard χ2 test, is a sum of squares
of asymptotically N(0, 1) components under H0, but not to its asymptotic dis-
tribution. Indeed, under H0, the null asymptotic distribution of Pd(s) is a sum
of weighted χ2

1. The covariance matrix Λd(s) of K(d(s)) and the related score
statistic, namely K ′(d(s))

(
Λd(s)

)−1K(d(s)), could be used to obtain a quadratic
form with an asymptotic χ2

d(s) distribution. We do not pursue this further be-
cause Λd(s) being non-diagonal, the components of the score statistic are linear
combinations of the ĈC(ps,j)’s and thus difficult to interpret. Furthermore, the
convenience of a χ2

d(s) reference distribution vanishes in view of the upcoming
enhancements to (6).

An important question with GoF test statistic (6) is the proper choice for the
number of components d(s) to include. Here we adapt a data driven selection
rule inspired by Ledwina & Wyłupek (2012a; 2015) that is defined as follows.
First, consider the auxiliary selection rule with AIC-type penalty

A(a) = min
{
d(s) ∈ D(n) : Pd(s) − a · d(s) ≥ Pd(t) − a · d(t), d(t) ∈ D(n)

}
.
(7)

Now, given n and significance level α, find by the Monte Carlo method a value
a = a(n, α) such that, under H0, pr

(
A(a) = 1

)
≥ 1 − α. Such a value exists
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because pr
(
A(a) = 1

)
is a nondecreasing function of a ∈ [0,∞). Then introduce

the auxiliary statistic

MD(n) = max
1≤j≤D(n)

∣∣∣n1/2 ĈC(pS(n),j)
∣∣∣ (8)

and denote by m(n, α) the critical value of the α-level test rejecting H0 for large
values of MD(n). Finally, set

R(α) =
{
A
(
a(n, α)

)
, MD(n) ≤ m(n, α),

A(0), MD(n) > m(n, α).
(9)

With these notations, our data driven GoF χ2-type test statistic takes the form
PR(α). Its critical values are obtained via Monte Carlo simulations (see Ap-
pendix B for some recommendations).

In (9), test statistic MD(n) acts like an oracle. When the oracle rejects H0,
i.e. when MD(n) > m(n, α), then R(α) = A

(
0
)

= D(n) because the Pd(s) are
increasingly ordered. In such cases, PR(α) = PD(n) and our procedure seeks
confirmation of the oracle’s rejection by using the comprehensive test statistic
PD(n).

Now consider the case where MD(n) accepts the null hypothesis H0, i.e.
MD(n) ≤ m(n, α). This means that after examining the large number (D(n))
of components in MD(n), the oracle sees no reason to reject H0 at level α. Then
our procedure PR(α) proceeds to look at a smaller number of components by
using the auxiliary selection rule A(a). More precisely, under H0, it holds that
pr
(
A(a(n, α)) = 1

)
≥ 1−α. Hence, the resulting penalty a(n, α) in the selection

rule is relatively large. It follows that the (implied) basic selection rule R(α) will
tend to choose a relatively small dimension d(s). This results in moderately large
critical values for PR(α), in comparison with the corresponding critical values
for PD(n). In turn, this leads to more frequent rejections under the alternatives
than would produce PD(n) and thus, results in higher power.

The following proposition is proved in Appendix D.1

Proposition 1. Assume that S(n) → ∞ and D(n) = o(n2δ) for some δ ∈
(0, 1/2). Then the test rejecting for large values of PR(α) is consistent under
any alternative F (·) �= F0(·).

In closing this section, note that from the proof of this proposition, it follows
that under H0, the first line in (9) plays the main role in controlling R(α) while
under alternatives, the value of R(α) is mainly decided by the second line.

2.5. A simulation experiment

In order to assess the properties of our test based on PR(α), a simulation exper-
iment was performed. The goal was to compare the power of PR(α) with some
of its competitors. The null hypothesis considered is F0(x) = Φ(x), the CDF of
the N(0, 1) distribution. The alternatives were carefully selected to cover a fair
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Fig 2. CC(p) (solid black curve) for the alternative distributions in Table 1 for testing the
simple null hypothesis H0 : Φ(x). The red dotted curve represents CC(·;β(F )) of (11) corre-
sponding to the null model Φ

(
(x− β1)/β2

)
with (β1, β2) unknown.

range of shapes of CC(·), see Figure 2 and the discussion in Section 4. They
are:

• A
0
1(θ), a normal location model with CDF Φ(x− θ), θ ∈ R;

• A
0
2(θ), a normal scale model with CDF Φ(x/(1 + θ)), θ > −1;

• A
0
3(θ), the two-piece normal model with density C{I(x < 0) exp(−x2/2)+

I(x ≥ 0) exp(−x2/2(1 + θ)2)} with C = ((2π)1/2(2 + θ)/2)−1 and θ > −1;
• A

0
4(θ), a model of Fan with local departure around 0 and density φ(x)[1+

{4zθ−2(θ − |z|)} I(|z| < θ)], where z = 2Φ(x) − 1 and θ ∈ [0, 1];
• A

0
5(θ), a normal contamination model with CDF (1− θ)Φ(x)+ θΦ(x− 2),

θ ∈ [0, 1];
• A

0
6(θ), Anderson’s skewed distribution with representation I(Z < 0)Z/(1−

θ) + I(Z ≥ 0)Z(1 − θ) where Z ∼ N(0, 1) and θ ∈ [0, 1);
• A

0
7(θ), the Mason & Schuenemeyer tail alternative with CDF J(Φ(x), q, θ)

where θ > −1, J(x, q, θ) =
(
qθ/(θ+1)x1/(θ+1))I(0 ≤ x < q) + xI(q ≤ x ≤

1 − q) +
(
(1 − qθ/(θ+1)(1 − x)1/(θ+1))I(1 − q < x ≤ 1) and here q = 0.25;

• A
0
8(θ), Anderson’s kurtotic distribution generated as X = Z · |Z|θ, where

Z ∼ N(0, 1) and θ ≥ 0;
• A

0
9(θ), Lehmann’s model with CDF (1 − θ)Φ(x) + θ (Φ(x))0.175, θ ∈ [0, 1]

with (Φ(x))δ being the Lehmann distribution.

For more details about these alternatives, see Appendix C. They all reduce to
the N(0, 1) when θ = 0 and thus embed the null model. Our choice for H0 offers
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the convenience of easily defined embedding families of alternatives and allows
some comparisons with the simulations in Appendix C. No loss of generality
ensues from this choice as the probability integral transformation translates
the GoF problem for any continuous F0(·) into a null U(0, 1) distribution, for
which many good tests have been derived. In particular, we have considered the
following two competitors: the Anderson-Darling statistic (AD) and the Berk &
Jones (1979) statistic (BJ). The oracle test MD(n), with D(n) = 127, has been
considered as well.

Taking α = 0.05 and n = 100, we investigated PR(α) with S(n) = 6 and
computed m(n, α) = 3.30 and a(n, α) = 3.31 (see Appendix B for some practical
considerations regarding these choices and values). The power functions for the
nine alternatives were simulated in their θ range for each of AD, BJ, M127 and
PR(α). The 5% critical values were obtained from 100 000 replications under
the null distribution, while the powers were computed from 10 000 Monte Carlo
runs. We extracted from each power curve a representative value of θ which
provided intermediate powers, e.g. not too close to 0.05 and 1.0 and where the
powers of the various tests could be distinguished. As a result of these choices,
the powers presented below offer a broad view of the comparative behaviour of
the tests over a fair range of situations.

The results are reported in Table 1. None of the tests dominates and PR(α)
emerges as very competitive. In most cases, AD is less powerful and simulations
results in Ćmiel, Inglot & Ledwina (2020) show that for larger sample sizes
and heavy tails, the power differences between AD and MD(n) can be even
more pronounced. Thus powerwise, we conclude that our test could be included
among the best solutions for this problem.

We close this section by noting that when any of AD, BJ or MD(n) rejects
H0, the user is left with little clues as to what aspects of the null model must be
corrected. In contrast, when the competitive PR(α) rejects, a B-plot as in Panel
2) of Figure 1 can be produced to help the user see where the, now statistically
established, discrepancies are located. The B-plot could be further supplemented
with acceptance regions to separate in a reasonable way the large components
from those more consonant with a local agreement to the model. This will be

Table 1

Powers (n = 100, α = 0.05) of the Anderson-Darling (AD), the Berk & Jones (1979) (BJ),
the oracle MD(n) with D(n) = 127 and our PR(α) tests for H0 : F (x) = Φ(x) against a set

of balanced alternatives.
Alternative AD BJ M127 PR(α)

A
0
1(0.3) 83 69 65 77

A
0
2(0.2) 35 51 59 58

A
0
3(0.3) 67 73 78 79

A
0
4(0.4) 27 47 39 39

A
0
5(0.15) 83 92 93 94
A

0
6(0.3) 49 65 63 64

A
0
7(1.5) 24 54 63 59

A
0
8(0.5) 47 88 80 80

A
0
9(0.1) 53 90 79 75
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discussed in Section 3.3 and illustrated in Section 3.5 (see also Appendix A).
Hence the pair (B-plot, PR(α)) can be a useful tool for statistical modelling.

We now consider the case where the parameter β in model F0(· ; β) is un-
known.

3. Composite null hypothesis

In the case of a composite null hypothesis, we proceed in a reversed order than
under H0. We start with a counterpart to the empirical Fourier coefficients
(FC) associated with an adjusted variant of γ̂s,j to motivate our definition of
an analogue to CC(·) in the present setting. Next, we define the related χ2-type
test and its data driven version. We focus on the important case of location-scale
families and illustrate our approach by testing GoF to the Gaussian distribution.
A simulation experiment, reported in Appendix C, confirms that our test is
competitive in a broad spectrum of situations. Finally, we produce the B-plots of
four real data sets (more are worked out in Appendix A) to show their usefulness
in obtaining insights about the aspects of the model that could have caused
rejection or led to an erroneous conclusion because of the application of an
inadequate GoF test.

3.1. Fourier coefficient, empirical CC and B-plot

Let X1, . . . , Xn be i.i.d. observations from a continuous CDF F (·) and consider
the family of null models F0(· ;β) where the Euclidean parameter β ∈ B is
unknown. The null hypothesis of interest is composite and takes the form H :
F (·) = F0(· ; β) for some unknown β ∈ B.

As in Section 2.3, the (s, j)-th empirical FC of the comparison density asso-
ciated with F (·) and F0(· ; β) can be defined as

γ̂s,j(β) = γ̂s,j(ps,j ; β) = 1
n

n∑
i=1

hs,j(F0(Xi;β)).

Plugging into this expression the value β̃ of an estimator of β, elementary cal-
culations yield

γ̂s,j(β̃) = ps,j − F̄n(ps,j ; β̃)
(ps,j(1 − ps,j))1/2

, F̄n(p; β̃) = n−1
n∑

i=1
I(F0(Xi; β̃) ≤ p). (10)

It is tempting to define the empirical CC as (10). However, the use of β̃ must be
taken into account. Consider the empirical process ēn(p; β̃) = n1/2(F̄n(p; β̃) −
p), p ∈ [0, 1]. Durbin (1973) has studied this process and shown that under mild
smoothness assumptions on F0(· ; ·) (see his assumption A.2) and if β̃ satisfies
n1/2(β̃ − β) = n−1/2 ∑n

i=1 B(Xi, β) + op(1), where B(X,β) has mean 0 and a
finite covariance matrix under H (a variant of his assumption A.1 adapted to our
context), this process converges under H to some Gaussian process on [0, 1] with
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0 mean function. The covariance function ρ(·, ·) of the limiting process is also
given in Durbin (1973). We assume throughout that Durbin’s assumptions hold
true and refer to Neuhaus (1979) for a thorough discussion of Durbin’s (1973)
paper. Hence, putting σs,j = (ρ(ps,j , ps,j))1/2, we get that ēn(ps,j ; β̃)/σs,j is
asymptotically N(0, 1) under H.

The above leads to defining the empirical CC in the present context as

ĈC(p; β̃) = p− F̄n(p; β̃)
ρ1/2(p, p)

.

The graph of ĈC(·; β̃) evaluated on the points ps,j ’s of a grid defines the B-plot
when the nuisance parameter β is present.

3.2. CC and alternative in the case of location-scale models

Let F (·) be the true CDF of the data and suppose the null model is location-scale
with β estimated by β̃, a n1/2-consistent estimator under F0(· ; ·). Suppose that
under F (·), β̃ → β(F ) = (β1(F ), β2(F ))′ where the convergence is in probability
with respect to F (·). The population version of ĈC(p; β̃) is

CC(p;β(F )) =
p− F

(
β2(F ) · F−1

0 (p) + β1(F )
)

ρ1/2(p, p)
. (11)

We call F (·) an alternative when F (x) �= F0
(
(x− β1(F ))/β2(F )

)
for some

x ∈ R. By continuity of F (·) and the fact that the partition of Section 2.2
is dense, there exists n0, s0 ∈ {0, . . . , S(n0)} and j0 ∈ {1, . . . , d(s0)}, such
that CC(ps0,j0 ;β(F )) �= 0. Without loss of generality we may, as in Section 2.3,
assume that n0, s0, j0 are the smallest such indices. Thus for sufficiently large
n and under F (·), there will be at least one non-zero component among the
CC(ps,j ;β(F ))’s.

3.3. Acceptance region for subset of bars

Similarly to the case of Section 2.1 where β(F ) is known, CC(p;β(F )) inherits
its interpretation from its local sign and possible zeroes. Now F0(·; β(F )) is
the reference CDF. Therefore, it is important to discriminate those bars that
seem compatible with H from more surprisingly large ones, positive or negative.
This suggests, as a first step, supplementing the B-plot with one-sided (1− α)-
th acceptance intervals for the height of an individual bar expected under the
null model. Here, this is done by drawing on the B-plot horizontal lines at
±1.645, if one considers α = 0.05. We use asymptotic critical levels because they
approximate well the finite sample distribution of single bars; see Section 3.5.1.
Note that to ensure the statistical rigor in a classical sense of such acceptance
regions, either individuals of simultaneous as described below, the position of the
bar of interest and its direction (i.e. lower or upper region) should be determined
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by external considerations or previous knowledge, not from looking at the B-plot
arising from a given sample.

Insight deriving from a single bar may be rather limited and, in view of the
interpretation of B-plots as explained below equation (1), instead of a single
bar, one may be interested in subsets of adjacent bars and there simultaneous
acceptance regions. Of course the same caveat as above applies about their uses
in practice. Now for such subsets, recall from Durbin’s (1973) result that the
joint asymptotic distribution of a subset of bars is multivariate normal with
means 0, unit variances and associated covariance function. Thus the correla-
tion between the bars must be taken into account. When a subset of bars, say
n1/2 ĈC(pS(n),j ; β̃) for all j ∈ J , are expected to be jointly positive, one ap-
proach to flag their significance is to compute a one-sided simultaneous 1 − α
level acceptance region. This consists in computing by Monte Carlo and under
H an approximation to u(n, α;J ) in

pr
(
maxj∈J n1/2 ĈC(pS(n),j ; β̃) ≤ u(n, α;J )

)
≥ 1 − α. (12)

If the bars under consideration should be negative, (12) must be adapted to
obtain the lower bound �(n, α;J ) via

pr
(
minj∈J n1/2 ĈC(pS(n),j ; β̃) ≥ �(n, α;J )

)
≥ 1 − α.

If desired, a two-sided simultaneous level acceptance region for all j ∈ J can
be defined as follows. With u(n, α;J ) and �(n, α;J ) as defined above, it holds
that

pr
(
min
j∈J

√
nĈC(pS(n),j) ≥ �(n, α;J ), max

j∈J

√
nĈC(pS(n),j) ≤ u(n, α;J )

)
≥ 1 − 2α.

Hence [�(n, α/2;J ), u(n, α/2,J )] forms a two-sided 1 − α level acceptance re-
gions for bars in J .

Such computations are easy to do because under a location-scale null model
and a β̃ invariant to such transformations, the behavior of ĈC(pS(n),j ; β̃) does
not depend on β, so sampling can be made from e.g. F0(· ; (0, 1)). When β is
known, a variant of u(n, α,J ) can be computed by approximating under the
null hypothesis expression (12) using ĈC(pS(n),j), and similarly for �(n, α,J ).
When at least one of the bars related to an element of j ∈ J is above the
computed u(n, α;J ) or below �(n, α;J ), the heuristic suggests that the data
seems incompatible with the null model in the related region. We represent these
simultaneous acceptance regions by shaded lightgray stripes on the B-plot, see
Section 3.5 or Appendix A for illustrations and Appendix C for some informa-
tion about the required computational effort. Also, in these computations the
question of choosing appropriately the simultaneous level α of such acceptance
regions arises. See Section 3.5 for some discussion about this point.

In the examples below, we have considered data sets that have been previ-
ously studied and discussed. This previous knowledge justifies the application of
one-sided simultaneous acceptance regions in order to check if our conclusions
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support existing ones, if our methods provide additional insights into the struc-
ture of these data, if some explanations can be offered as to why some known
tests have failed to work, etc. Such settings implies the use of some external
information to define the sets of bars under consideration. But in many appli-
cations, only a few prescribed regions of population quantiles will be of interest,
e.g. the extreme deciles for tail regions or the central tercile for the centre of
the distribution.

When such external information is not be available, one needs some objective
way to define the sets of bars to further study in order to get insights. As an
example of what can be done, and based on statistical practice in the two-sample
setting, Ledwina and Zagdański (2024) have proposed, in a related study, to
split the range [0,1] of population quantiles into 10 equal length intervals and to
consider subsets of bars falling into these intervals. They illustrate and discuss
the approach for data on income and cholesterol levels. A similar approach can
be adapted to the present context of goodness of fit testing. See Appendix A.3
for an illustration.

3.4. χ2-type test statistic and a selection rule for d(s) for testing
Gaussianity

Consider as in (5), K(β̃, d(s)) = n1/2
(
ĈC(ps,1; β̃), . . . , ĈC(ps,d(s); β̃)

)′
. Inspired

by (6), a GoF test statistic for H is

Pd(s)(β̃) = K ′(β̃, d(s))K(β̃, d(s)) = n

d(s)∑
j=1

[
ĈC(ps,j ; β̃)

]2
. (13)

Remark 1. When F0(· ; β) is location-scale, i.e. F0(x; β) = F0
(
(x− β1)/β2

)
with β = (β1, β2)′ ∈ B ⊆ R×R+, we have F̄n(p; β̃) = F̂n(β̃2F

−1
0 (p)+ β̃1), where

F̂n(·) is the ordinary empirical CDF of the sample. Under Durbin’s assumptions,
the process ēn(p; β̃) has a limiting distribution that does not depend on β. Test
statistic (13) becomes

Pd(s)(β̃) = n

d(s)∑
j=1

[
ps,j − F̂n(β̃2F

−1
0 (ps,j) + β̃1)

σs,j

]2

. (14)

To reduce technicalities, consider from now on the important sub-case where
F0(x; β) = F0

(
(x− β1)/β2

)
is the Gaussian CDF with unknown expectation

β1 and variance β2
2 , i.e. F0(·) = Φ(·) with density f0(·) = ϕ(·). To estimate β1

and β2
2 , we consider the maximum likelihood estimators (MLE), i.e. β̃1 = X̄

and β̃2
2 = S2 = n−1 ∑n

i=1(Xi − X̄)2. This model and these estimates satisfy
all assumptions in Durbin’s theorem. Hence we have ρ(t, v) = min{t, v} − tv −
ρ1(t)ρ1(v) − ρ2(t)ρ2(v), t, v ∈ [0, 1], where ρ1(t) = ϕ

(
Φ−1(t)) and ρ2(t) =

2−1/2 ϕ
(
Φ−1(t))Φ−1(t). In this case, the quantity σs,j = (ps,j(1 − ps,j) −

ρ2
1(ps,j)−ρ2

2(ps,j))1/2 is smaller than the value (ps,j(1−ps,j))1/2 adequate for H0.
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To be specific, ρ(t, t) is symmetric about 1/2, ∩ shaped but much smaller than
t(1− t) in (0, 1), while limt→0+ ρ(t, t)/

(
t(1− t)

)
= limt→1− ρ(t, t)/

(
t(1− t)

)
= 1.

To define a selection rule for d(s) in (14), we proceed similarly as in Sec-
tion 2.4. First, we seek an oracle test whose task is to provide some reliable
preliminary information on the situation. The results of Section 2 suggest con-
sidering the following version of the oracle test (8), namely

MD(n)(β̃) = max
1≤j≤D(n)

∣∣∣n1/2 ĈC(pS(n),j ; β̃)
∣∣∣ . (15)

However, it turns out (see Table C.2 in Appendix C), that this test is powerwise
inferior to some recommended test procedures in the composite context. The
use of selection rules based on this oracle leads to data driven tests which are
noticeably more powerful than MD(n)(β̃), but still not competitive with the best
existing solutions. This is a display of the difficulties encountered in moving from
a simple to a composite null hypothesis.

Instead, we base our selection rule on the oracle test

Rn = 1 − σ̂2
n

S2 , σ̂n =
1∫

0

F̂−1
n (t)Φ−1(t) dt,

where large observed values of Tn = nRn are significant. This test statistic,
which we refer to as BCMR, has been introduced in del Barrio, Cuesta-Albertos,
Matran & Rodriguez (1999) and further studied in Csörgő (2003), among others.
The surrounding theory regarding this test allows its adaptation to some other
composite null hypotheses than the Gaussian. Hence, the solution below can
serve as a template in a variety of important cases.

Introduce

A(a; β̃) = min
{
d(s) ∈ D(n) : Pd(s)(β̃) − a · d(s) ≥ Pd(t)(β̃) − a · d(t), d(t) ∈ D(n)

}
.

Now, given n and α, find by the Monte Carlo method a value a = a(n, α; β̃)
such that, under H, pr(A(a(n, α; β̃)) = 1) ≥ 1 − α. Finally, let t(n, α) be the
α-level critical value of Tn and set

Q̃(α) =
{
A
(
a(n, α; β̃

)
; β̃), Tn ≤ t(n, α),

A(1.5; β̃), Tn > t(n, α).

Notice that the penalty in the case Tn > t(n, α) differs from that in (9). The
reason for this is explained in Appendix B. Q̃(α) can be seen as an adaptation
of the selection rule A in Ledwina & Wyłupek (2015) introduced in the context
of data driven test associated with transformed Hermite polynomials.

With these notations, the data driven GoF χ2-type test statistic for the null
hypothesis H takes the form PQ̃(α)(β̃). Some of its critical values c̃(n, α) are
listed in Appendix B and others can be obtained via linear interpolation or
Monte Carlo simulations. The following proposition and remark are proved in
Appendix D.2 and Appendix D.3 respectively.
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Proposition 2. Let F (·) be an alternative in the sense of Section 3.2 to the
Gaussian null model. Assume that the fourth moment of F (·) exists and is finite.
Moreover, assume that F (·) possesses a bounded density f(·) with respect to the
Lebesgue measure on R. Further assume that β̃ is the MLE for β. Finally, let
S(n) → ∞ and D(n) = o(n1/2) as n → ∞. Then, the test rejecting for large
values of PQ̃(α)(β̃) is consistent under F (·).

Remark 2. Under the assumptions on F (·) and β̃ in Proposition 2, it holds
that, as n → ∞, supε≤p≤1−ε

∣∣ĈC(p; β̃)−CC(p;β(F ))
∣∣ → 0 in probability for any

ε ∈ (0, 1).

In order to assess the properties of the test based on PQ̃(α)(β̃), a simulation
experiment was performed. The structure of the experiment mimics closely that
in Section 2.5. The null hypothesis is H : F (x) = Φ

(
(x−β1)/β2

)
where (β1, β

2
2)

are estimated by MLE. For this problem, several solutions exist (see Arnas-
tauskaité, Ruzgas & Brazénas, 2021), notably the Anderson-Darling (AD), the
Shapiro-Wilks (SW) and the BCMR tests.

Our main interest is to see how our approach compares with these. The
details and results of the simulation appear in Appendix C, which pertains to a
set of carefully selected alternatives according to the form of their CC(· ;β(F ))
partly inspired by those in Section 2.5. It emerges from this experiment that,
as an oracle, MD(n)(β̃) generally does poorly. Otherwise, and similarly to the
context of Section 2, none of the other tests dominates and PQ̃(α)(β̃) turns out
to be a good competitor, being powerwise on par with the oracle test it is based
upon. Recall that a main advantage of our approach is the possibility of deriving
information from the B-plot about where the null model could be at fault and an
overall measure of fit based on this plot. Note however that regarding the tests
of H0 and H, this common approach allows to exhibit some essential differences
between the two problems. See the discussion in Appendix C.

3.5. Real data examples

The results of the previous sections are now applied to some real data sets to
show how useful insights can be derived from the components n1/2 ĈC(· ; β̃)
when using the methods of the paper. More examples are worked out in Ap-
pendix A. Programs in the Mathematica language (Wolfram Research, Inc.,
Mathematica, Version 12.1, Champaign, IL, 2020) to compute the new data-
driven test statistic, the B-plots and the acceptance regions can be found in the
GITHUB repository gilles-ducharme/GoF.Validation.

3.5.1. The wave records data

We consider a data set in Bickel and Doksum (1977, p. 384, Table 9.6.3) mea-
suring the time spent above a high level of n = 66 wave records in the San
Francisco bay. Their analysis does not reject the null Gaussian hypothesis at
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Fig 3. B-plot of n1/2 ĈC(p4,j ; β̃), with j ∈ {1, , . . . , 31}, for the wave records data (n = 66)
in Bickel & Doksum (1977). The dashed gray lines are located at ±1.645 to identify the
individual bars where some dissonance with H: Gaussianity occurs at one-sided level 5%. The
shaded lightgray stripes are the simultaneous 95% one-sided acceptance regions for subsets of
bars {1, 2, 3}, {15,. . . , 21} and {29, 30, 31}.

level 10%. The data were later considered by Rosenkranz (2000) whose simul-
taneous 90% confidence band approach indicates some inconsistency with the
postulated Gaussian model in the left tail of the distribution. They were reexam-
ined by Aldor-Noiman et al. (2013) using simultaneous confidence bands about
the QQ plot. Their approach detects, at the 5% level, a significant departure
from normality in the right tail, while another approach, based on Kolmogorov-
Smirnov bands, nearly rejects, at the same level, relying solely on points at the
centre of the data.

For this data set, we have β̃1 = X̄ = 3.79 and β̃2 = S = 2.39. We apply the
test based on PQ̃(α)(β̃) with α = 0.05, S(n) = 4, t(n, α) = 2.60 and compute
a(n, α; β̃) = 3.18. The observed value of Tn is 4.52, leading to Q̃(α) = 31 and
PQ̃(α)(β̃) = 92.40 to be compared to the 5% critical level of 10.46 obtained
from 100 000 Monte Carlo replications. Thus we reject the null hypothesis of
Gaussianity at the 5% level. The tests AD, SW and BCMR also reject at the
5% level with p− values of 0.004 for AD, 0.002 for SW and 0.002 for BCMR.
Figure 3 shows the B-plot of n1/2 ĈC(p4,j ; β̃) with j ∈ {1, . . . , 31} along with the
±1.645 lines delimiting the one-sided upper and lower 0.05− level asymptotic
individual acceptance regions (dashed horizontal lines in Figure 3).

The value of n1/2 ĈC(p4,31; β̃) above the dashed line is consonant with the
finding of Aldor-Noiman et al. (2013) of a fatter right tail than a Gaussian
distribution. Assuming that the meaning of their term “right tail” relates to
quantiles such that p ≥ 29/32 ≈ 0.9, we can substantiate this by computing from
(12) u(66, 0.05; {29, 30, 31}) = 2.21. From Figure 3, because the bar at p = 31/32
is above 2.21, this further supports the claim of Aldor-Noiman et al. (2013). If
we define similarly the left tail as below the first decile, i.e. p ≤ 3/32, we get
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Fig 4. B-plot of n1/2 ĈC(p6,j ; β̃), with j ∈ {1, , . . . , 127}, for the wave records data (n = 66)
in Bickel & Doksum (1977). The dashed gray lines are located at ±1.645 to identify the
individual bars where some dissonance with H: Gaussianity occurs at one-sided level 5%. The
shaded lightgray stripes are the simultaneous 95% one-sided acceptance regions for subsets
of bars {1,. . . , 12}, {58,. . . , 84} and {116,. . . , 127}. The dotted red lines are the one-sided
(upper and lower) 95% acceptance intervals for an individual bar, as obtained by the Monte
Carlo method.

u(66, 0.05; {1, 2, 3}) = 1.96. Again from Figure 3, all three bars in {1, 2, 3} are
above this value, in agreement with the finding in Rosenkranz (2000) regarding
a thinner than Gaussian left tail.

Finally, Aldor-Noiman et al. (2013) do not define the meaning of “centre of
the data” but, in view of the above findings of a thinner left and fatter right
tail, suggesting some asymmetry to the right, we have decided to consider a
slightly shifted centre ranging from 0.45 ≈ 15/32 ≤ p ≤ 21/32 ≈ 0.65. This
yields �(66, 0.05; {15, . . . , 21}) = −2.07. The fact that three bars are below this
value is consonant with the claim that, in this area, observations tend to be
stochastically smaller than expected under Gaussianity.

Note that in computing the above acceptance regions, we have used the same
level α (= 5% here) as in the global test procedure. The main goal at this stage
of the analysis is to derive heuristic, but principled, informations as to whether
the departures are located where we believe they could be. Therefore, it seems
reasonable to use for each subset of bars the initial level α. This is in accordance
with similar work in extracting diagnostic information following the rejection of
a null model, as in Thas (2010, Sections 4.2.1.2 and 4.2.1.3). Thus in the sequel,
all acceptance regions have been computed at level 5% for each subset of bars
considered.

To better appreciate the structure of the data, Figure 4 presents the B-plot
associated with the denser partition S(n) = 6. This figure shows that the overall
shape of the B-plot is retained, while evidence of departures in the tails are
better manifested. The question arises whether the conclusions regarding sets
of bars hold for this new B-plot. We have recomputed u(66, 0.05, {1, . . . , 12}) =
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2.27, u(66, 0.05, {116, . . . , 127}) = 2.57 and �(66, 0.05, {58, . . . , 84}) = −2.43
and represented the related simultaneous acceptance regions as shaded lightgray
stripes. This shows that increasing S(n) slightly changes the bounds, as should
be expected, but that the previous observations remain unchanged.

By construction, the simultaneous acceptance regions are accurate up to the
number of Monte Carlo replications, taken here as 100 000. However, one may
inquire about the preciseness of the asymptotic ±1.645 individual bounds. In
Figure 4 we added (the dotted red lines) the bounds obtained, again from 100 000
Monte Carlo replications. For finite samples, the n1/2 ĈC(ps,j ; β̃) have a discrete
distribution. But interestingly, even with the small sample considered here (n =
66), the individual asymptotic 5% bounds are sufficiently close to the exact
values to be useful throughout the range p ∈ (0, 1), except perhaps near the
outmost boundaries.

A B-plot can also provide useful information regarding which test statistic
could be more profitably applied to assess overall compatibility between the data
and the model. For example, the above analysis exhibits substantial disagree-
ments between the data and the model in the tails. Now, much evidence (see
Milbrodt & Strasser, 1990; Ćmiel, Inglot & Ledwina, 2020; Inglot, 2020 and
references therein) have been unearthed showing that in such circumstances,
the classical Kolmogorov-Smirnov (KS) test is weak: for the wave data we get
a p− value of 0.06. B-plots present weighted distances between an estimated
empirical process and the model CDF. This weighting rescales the differences
appearing in the KS statistic, thus creating a comparable scale, under H, over
the whole range of p. In particular, test statistic M127(β̃), which can be con-
sidered as a weighted variant of the KS statistic, leads to a p− value of 0.004,
comparable with AD, SW and BCMR, thus removing the weakness of the clas-
sical KS solution. In contrast, in situations where the B-plot shows that most
of the discrepancies occur in the central range of quantiles, such classical tests
can be adequate tools, see the next section.

The above ranges for pS(n),j can be translated into the original scale of the
data via β̃2Φ−1(pS(n),j) + β̃1; see Appendix A.1.

3.5.2. The tephra data

We consider the tephra data (n = 59) analyzed in Bowman & Azzalini (1997,
Section 2.5). We apply the the logistic transformation (i.e. X = log

(
Y/(100−Y )

)
as done by these authors. For this data, we find β̃1 = X̄ = −1.77, β̃2 = S =
0.056. Here we reverse the order in which our tools were applied in the previous
example and first look at the B-plot for this data set, which appears in Figure 5
for S(n) = 4 and S(n) = 6. A few bars are unexpectedly large in case H is true,
in the central region p ∈ (13/32, 19/32). This is substantiated by computing (for
S(n) = 4) u(59, 0.05; {13, . . . , 19}) = 2.10.

As stated in Section 3.5.1, there is a vast amount of literature providing
some indications as to which test is more efficient in some given situations. In
particular, when relatively large departures occur near the centre of the data,
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Fig 5. B-plot of the values of n1/2 ĈC(pS(n),j ; β̃), with S(n) = 4 and S(n) = 6 for the tephra
data (n = 59) from Bowman & Azzalini (1997). The dashed gray lines are located at ±1.645
to identify the bars where dissonance with H: Gaussianity occurs. The shaded lightgray stripe
is the simultaneous 95% one-sided acceptance region for bars in the indicated deciles.

the classical solutions, e.g. KS, CvM and AD, have been shown to be efficient. In
particular, the AD test works well as it can also detect allocations of moderate
portions of mass towards the tails. For related discussions, see Janssen (2000),
Inglot, Kallenberg & Ledwina (2000), Ćmiel, Inglot & Ledwina (2020) along
with its Supplementary Information and references therein. To substantiate this
evidence here, we have applied the tests SW and BCMR which do not reject,
with p− values for 0.13 of SW and 0.12 for BCMR. The test based on PQ̃(α)(β̃),
with S(n) = 4 and using the same constants as previously, yields an observed
value of Tn of 1.79, leading to Q̃(α) = 1 with PQ̃(α)(β̃) = 3.78, to be compared
to a 5% critical level of 10.47. Thus the null hypothesis of Gaussianity is also not
rejected at the 5% level. However, with the KS test, we get a p− value of 0.051
while the AD test yields a p− value of 0.03. This shows that the observation
of the B-plot can provide some clues as to what test, here one of the classical
solutions, should be subsequently applied to formally detect global departures
between the data and the model.

3.5.3. The PCB data

We consider the PCB data set of Risenbrough (n = 65) recalled in Thas (2010,
p. 5) and pertaining to the concentration of the chemical PCB (polychlorinated
biphenyl) in the yolk lipids of Anacapa (pelican) birds. The data has been
thoroughly studied by the author using several graphical methods and one of
his conclusions, based on an estimated comparison density, is (Thas, 2010, p. 73)
“the plot suggests weakly that the frequency of PCB concentrations is smaller
than expected under the hypothesis of normality ”.

For this data, we have β̃1 = X̄ = 210.0 and β̃2 = S = 72.26. Here again, we
first look at the B-plot for this data set, which appear in Figure 6 and is plotted
using both S(n) = 4 (with �(65, 0.05; {16, . . . , 25}) = −2.27) and S(n) = 6 (with
�(65, 0.05; {64, . . . , 100}) = −2.49).
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Fig 6. B-plot of the values of n1/2 ĈC(pS(n),j ; β̃), with S(n) = 4 and S(n) = 6 for the
PCB data (n = 65). The dashed gray lines are located at ±1.645 to identify the bars where
dissonance with H: Gaussianity occurs. The shaded lightgray stripes are the simultaneous 95%
one-sided acceptance region for bars {16,. . . , 25} and {64,. . . , 100}.

The left half of the distribution appears concordant with the Gaussian hy-
pothesis while the data seems more concentrated toward the centre on the right
side. In contrast to previous examples, there seems to be little guidance formu-
lated in the literature suggesting that one of the classical tests for this problem
may be preferable in this case. In particular, we get for KS a p− value of 0.057,
0.056 for SW, and 0.057 for AD, all near but above the 0.05 threshold. The
BCMR test barely rejects Gaussianity with a p− value of 0.049. This is a sit-
uation where an adaptive approach such as Thas’s (2010, p. 120) data driven
smooth test based on Hermite polynomials could be useful. Such a test yields a
p–value of 0.0325, which leads to rejection of the Gaussian hypothesis. However,
the author is unable the derive from the test’s components any insight about
what may have caused rejection. Our data driven test based on PQ̃(α)(β̃), with
S(n) = 4 and using the same constants as previously, yields an observed value
of Tn of 2.64, leading to Q̃(α) = 31 with PQ̃(α)(β̃) = 56.74, to be compared
to a 5% critical level of 10.47. Thus the null hypothesis of Gaussianity is here
rejected at the 5% level, a conclusion emhanced by the above knowledge derived
from the B-plot about the discrepancies with the model.

3.5.4. The smiling baby data revisited

Here, we revisit the smiling baby data set of Section 2.1, normalized to [0, 1].
The B-plot for this data with S(n) = 4 appears in Panel 2) of Figure 1. The
B-plot associated with S(n) = 6 appears in Figure 7. To obtain more pre-
cise insights regarding some sets of adjacent bars in the B-plot, the variants
of u(n, α, {r, . . . , s}) and �(n, α, {r, . . . , s}) adapted to a simple null hypothesis,
with ĈC(pS(n),j) in place of ĈC(pS(n),j), β̃) as explained in Section 3.3, could
be computed. However, this is unnecessary here because all individual bars are
well within ±1.645 and no reason emerges to reject uniformity anywhere.

To validate this visual assessment, we apply the test based on PR(α) with
S(n) = 6 and α = 0.05. The observed value of Mn is 1.59, leading to R(α) =
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Fig 7. B-plot of the values of n1/2 ĈC(pS(n),j), with S(n) = 6 for the smiling baby data
(n = 55). The dashed gray lines are located at ±1.645 to identify the bars where dissonance
with uniformity occurs.

1 with PR(α) = 0.16, to be compared to a 5% critical level of 133.9. Thus we
clearly do not reject the null hypothesis of uniformity at the 5% level. This is
in agreement with the AD (p− value = 0.63) and BJ (p− value = 0.85) tests.

For these data, we have β̃1 = X̄ = 0.50, the median is 0.47 and β̃2 = S = 0.26.
From these values, one may wonder whether tests tailored to detect a shift to the
left of the median or a smaller dispersion would improve on the above general-
purpose GoF procedures, i.e. AD and BJ. The one-sided signed rank test yields
a p− value of 0.45 while the one-sided Brown-Forsythe test has a p− value
of 0.15. These extra results further support the claim of previous authors (see
Bhattacharjee & Mukhopadhyay, 2013) that this data could well be uniformly
distributed.

4. Discussion

The present work proposes an approach for model validation based on the pair
(B-plot, PR(α)) or (B-plot, PQ̃(α)(β̃)) that appears to be a good compromise
to the two routes presented in the Introduction. In the case of a Gaussian null
model, with known as well as unknown parameters, our test statistics are pow-
erwise competitive with some of the best solutions proposed in the literature,
while the B-plot and related acceptance regions offer an enhanced assessment,
with respect to PP or QQ plots, as to where the data deviate from the con-
templated model. The technical details here are confined to the Gaussian null
model. But existing evidence and earlier experience allows to expect that our ap-
proach can be extended to other nonparametric problems, general location-scale
families and several more complex models. In particular, other

√
n-consistent

estimators than the MLE could be covered by adjusting the CC curve, the test
statistic and the data driven selection procedure. For illustration of different sit-
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uations where data driven smooth tests, using other systems of functions than
the present {hs,j(·)}, work well see Kallenberg & Ledwina (1999), Peña (2003),
Ducharme & Fontez (2004), Ducharme & Lafaye de Micheaux (2004, 2020), In-
glot & Ledwina (2006), Bissantz, Claeskens, Holzmann & Munk (2009), Escan-
ciano & Lobato (2009), Janic & Ledwina (2009), Wang & Qu (2009), Wyłupek
(2010; 2021) and Thas, Rayner & de Neve (2015). However, it should be noted
that in such situations, the constructions are more involved as a rule and addi-
tional technical work is needed. In return, both empirical and theoretical studies
show that well-calibrated data driven tests are only slightly less powerful than
classical solutions applied in their most favourable situations, while otherwise
having unrivalled sensitivity to a large spectrum of important alternatives.

We emphasize that the main motivation for this work is to propose an ap-
proach that can help in understanding the structure of the data at hand, to
allow investigating why a null hypothesis has been rejected, to detect and de-
scribe some local discrepancies, and to provide some evidence in which sense
and how reliable such an approach can be. In particular, we consider such en-
deavors as useful additions that better enshrine the modeling process in a more
constructive iterative loop, as pointed out in the first paragraph of the present
Introduction. We confine our work here to the case of classical goodness of fit
testing but note that questions of this kind are increasingly discussed in recent
literature on several different testing problems. For an illustration see Kim et
al. (2019), Zhang (2019), Algeri (2021), Xiang et al. (2023) and the references
therein.

In Sections 2.5 and 3, we have qualified our alternatives, comprising a range
of shape of CC’s, as “carefully” selected. In many simulation studies about the
empirical power of GoF tests, the alternatives are taken among broad categories
such as symmetric, asymmetric, etc., often building up on previous simulations
by adding some new “interesting” alternatives. In addition, in summarizing their
results, many authors base their final recommendations on some averaging of
the obtained powers over the alternatives investigated. However, such categories
are mostly related to shape of densities, which may not be well adapted to
departures related to other characteristics that some GoF tests can detect with
greater power than density differences. Thus such averaging can introduce bias
in these recommendations, which are often of the form “this test is good at
detecting such type of departures” with, in many cases, departures pertaining to
asymmetry and large or short tails. However, at the beginning of the modelling
process, a user has often limited knowledge about the plausible alternatives to
the null model. Hence such recommendations are of little help in choosing a
GoF test appropriate to his problem and this will often lead to the use of a test
based solely on its popularity. This is not good science. Here, examination of the
B-plot, as in the examples of Section 3.5, allows acquiring such knowledge and
decide whether one can use with some confidence a classical solution or would be
better off going through the trouble of considering a much more computationally
expensive data driven test, as the ones of the present work.
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Appendix A: More real data examples

This appendix contains details regarding three examples that show the infor-
mation that can derive from the tools of the paper.

A.1. The wave record data revisited

The B-plots in Section 3.5 are expressed as functions of the quantiles p. A variant
B-plot can be produced that relates more directly to the original data. To this
end, set q̃s,j = q̃s,j(ps,j) = β̃2 Φ−1(ps,j) + β̃1, which represents the estimated
ps,j quantile of the null distribution. With this notation, set

C̃C(q̃s,j ; β̃) =
Φ
(
(q̃s,j − β̃1)/β̃2

)
− F̂n(q̃s,j)

σs,j

= ps,j − F̂n(β̃2 Φ−1(ps,j) + β̃1)
σs,j

,

where F̂n(·) is the ordinary empirical CDF of the sample. Given s, this variant
of the B-plot, noted Bq-plot, is obtained by plotting the C̃C(q̃s,j ; β̃) against
the q̃s,j (j = 1, . . . , d(s)). Figure A.1 shows such a graph for the wave data of
Section 3.5.1 with S(n) = 5 and the related acceptance regions. In particular,
one can see that the seven data points greater than q̃5,58 = 6.9 are more dispersed
to the right than expected under the null hypothesis.

Fig A.1. Bq-plot of the values of n1/2 C̃C(q̃5,j ; β̃) plotted against the estimated quantiles q̃5,j
with j ∈ {1, . . . , 63}, for the wave records data (n = 66) in Bickel & Doksum (1977). The
dashed gray lines are located at ±1.645 to identify an individual bar where some dissonance
with H: Gaussianity occurs at one-sided level 5%. The shaded lightgray stripes are the simul-
taneous 95% one-sided acceptance regions for subsets of bars {1,. . . , 6}, {30,. . . , 42} and
{58,. . . , 63}.
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Fig A.2. B-plot of n1/2 ĈC(pS(n),j ; β̃) with S(n) = 4 and S(n) = 6 for the marks in analysis
in the open/closed book data (n = 88) from Mardia, Kent & Bibby (1979). The dashed gray
lines are located at ±1.645 to identify a bar where dissonance with H: Gaussianity occurs. The
shaded lightgray stripes are the simultaneous 95% one-sided acceptance regions for subsets of
bars in the first and last deciles and the slightly decentred central part p ∈ (0.38, 0.56).

A.2. The open/closed book examination data

Consider the open book /closed book examination data set in Mardia, Kent &
Bibby (1979) pp. 3–4, which gives the marks of a group of n = 88 students in
Mechanics, Vectors, Algebra, Analysis, and Statistics. The marks in Statistics,
Vectors and Analysis were analyzed in Ducharme & Lafaye de Micheaux (2020)
who rejected a trivariate multinormal distribution. Here we revisit the marks
for Analysis.

For this data set, we have β̃1 = X̄ = 46.68 and β̃2 = S = 14.76. We have
applied the test based on PQ̃(α)(β̃) with S(n) = 4 and α = 0.05. The observed
value of Tn is 5.15, leading to Q̃(α) = 31 with PQ̃(α)(β̃) = 155.12, to be compared
to a 5% critical level of 10.44, interpolated from Table B.3 in Appendix B. Thus
we reject the null hypothesis of Gaussianity at the 5% level. The p− values for
AD, SW, BCMR are 0.0001 for AD, 0.0001 for SW and 0.001 for BCMR. Thus
these tests also reject the Gaussian model at level 5%.

On the B-plot of Figure A.2, the left tail of the distribution seems heavier
than the Gaussian, while the right one could be thinner, thus indicating some
asymmetry to the right of the distribution with less mass at the centre. We
find for S(n) = 4, �(88, 0.05; {1, 2, 3}) = −2.21, �(88, 0.05; {29, 30, 31}) = −1.92
and, for similar reasons as in Section 3.5, the slightly decentred (to the left)
u(88, 0.05; {12, . . . , 18}) = 2.21. After drawing the related acceptance regions,
we can observe that, in all regions, at least one bar goes beyond these acceptance
regions, thus supporting the above claims.

A.3. The cystine data

Consider the cystine content of grade 5 yellow corn. The data (n = 106) appear
in Gan, Koehler & Thompson (1991). In their work they use graphical methods
to infer, from the shape of the PP plot, that the Gaussian distribution does not
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Fig A.3. B-plot of the values of n1/2 ĈC(pS(n),j ; β̃) with S(n) = 4 and S(n) = 6 for the
cystine data (n = 106) from Gan, Koehler & Thompson (1991). The dashed gray lines are
located at ±1.645 to identify a bar where dissonance with H: Gaussianity occurs. The shaded
lightgray rectangles are the two-sided 95% acceptance regions for the subsets of bars in the
first and last decile and the middle tier of the distribution.

provide an adequate model. However after several attempts, they conclude that
no other model they have investigated leads to a clearly better alternative to
the Gaussian.

For this data set, we have β̃1 = X̄ = 0.09 and β̃2 = S = 0.014. We apply the
test based on PQ̃(α)(β̃) with S(n) = 4 and α = 0.05. The observed value of Tn
is 4.20, leading to Q̃(α) = 31 with PQ̃(α)(β̃) = 118.52 to be compared to a 5%
critical level of 10.42. Thus the null hypothesis of Gaussianity is rejected at the
5% level. The tests AD, SW and BCMR similarly reject at the 5% level with
the p− values for AD: 0.0001, SW: 0.003 and BCMR: 0.005.

In view of the limited previous information regarding this data set, and to
obtain some insights about the type of departures from Gaussianity suggested
by the data, it may appear appropriate to consider two-sided acceptance regions
for a few subsets of bars in the B-plots. Here we consider the subsets of bars in
the first and last decile (the tails) and the middle tier of the distribution. B-plots
of the n1/2 ĈC(pS(n),j ; β̃) for S(n) = 4 and S(n) = 6, along with the ±1.645
critical values (see Figure A.3) suggest a left tail thinner than the Gaussian but
a right tail more consonant with the Gaussian. For S(n) = 4 (resp. S(n) = 6)
we get �(106, 0.025; {1, 2, 3}) = −2.65 (resp. −2.70 using J = {1, . . . , 12}) and
u(106, 0.025; {1, 2, 3}) = 2.20 (resp. 2.49), supporting the claim about the left
tail. For the right tail, we find �(106, 0.025; {29, 30, 31}) = −2.19 (resp. −2.48
using J = {116, . . . , 127}) and u(106, 0.025; {29, 30, 31}) = 2.65 (resp. 2.77)
and no discrepancy seems to occur there. As for the central tier part, we con-
sider the quantiles in the range 0.33 ≈ 11/32 ≤ p ≤ 21/32 ≈ 0.66 and com-
pute �(106, 0.025; {11, . . . , 21}) = −2.66 (resp. −2.82 using J = {44, . . . , 84}),
u(106, 0.025; {11, . . . , 21}) = 2.65 (resp. 2.81). The data seems indeed more
abundant in this region.
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Appendix B: Details and recommendations on the implementation
of our tools

The practical implementation of our tests requires the choice of S(n) and, de-
pending on whether β is known (the case of H0 of Section 2) or must be estimated
(the case of H: Φ

(
(x− β1)/β2

)
of Section 3.4), the computation of a(n, α) or

a(n, α; β̃). In addition, our tests require the values m(n, α) or t(n, α) for the
oracles MD(n) or Tn as well as the critical values c(n, α) for PR(α) or c̃(n, α)
for PQ̃(α)(β̃). Here we give some details about these values for the cases where
4 ≤ S(n) ≤ 6 and for values of n in the range 50, . . . , 500, which should cover
many situations encountered in practice. Linear interpolations can be used in
between entries of the tables.

The values of a(n, α) and a(n, α; β̃) are rather stable as functions of n. In
particular, one can take a(n, 0.1) = 2.59, a(n, 0.05) = 3.31 while a(n, 0.10; β̃) =
2.53 and a(n, 0.05; β̃) = 3.18. Some values of m(n, α) and t(n, α) appear in
Tables B.1 and B.2.

Table B.1

Some critical values m(n, α) of MD(n) in computing PR(α) for H0 : Φ(·) (simple null
hypothesis).

n α
S(n)

4 5 6

50 10% 2.77 2.79 2.93
5% 2.89 3.14 3.43

100 10% 2.64 2.79 2.88
5% 2.92 3.14 3.30

150 10% 2.61 2.78 2.92
5% 2.96 3.07 3.20

300 10% 2.78 2.97 3.04
5% 3.04 3.19 3.32

500 10% 2.83 2.93 3.05
5% 3.04 3.18 3.29

Table B.2

Some critical values of test statistic Tn for H : Φ
(
(x− β1)/β2

)
(unknown parameters).

α/n 50 100 150 300 500
0.10 2.15 2.33 2.42 2.57 2.67
0.05 2.52 2.73 2.83 3.00 3.10

The computation of critical values c(n, α) for PR(α) is rather straightforward
and one can get a good approximation with 25 000 Monte Carlo replications.
Such a number is required because this test statistic has a distribution with a
discrete component. Table B.3 lists some critical values c̃(n, α) for PQ̃(α)(β̃).
Using these leads to probabilities of a type 1 error very close to the nominal 5%
and 10%.

One must generally be careful when using GoF tests involving an oracle.
Such a construction creates a null distribution which is a complex mixture of
two components: one when the oracle accepts and another one when it rejects.
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Table B.3

Some critical values of c̃(n, α) for testing H : Φ
(
(x− β1)/β2

)
(unknown parameters) with

test statistic PQ̃(α)(β̃).

n α
S(n)

4 5 6

50 10% 7.96 8.43 8.43
5% 10.48 10.79 10.86

100 10% 8.10 8.29 8.31
5% 10.43 10.67 10.70

150 10% 8.11 8.32 8.39
5% 10.33 10.46 10.57

300 10% 7.88 8.07 8.15
5% 10.01 10.18 10.24

500 10% 7.78 7.94 7.95
5% 9.71 9.88 9.92

Regarding statistic PR(α), this mixture distribution is steep enough so that no
difficulty occurs in computing its α-th critical values in the range of conditions
we have investigated. However, the null CDF of the counterpart PR̃(α)(β̃) of
PR(α) is approximately 1−α for a large set of values. This creates instability in
computing its α-th critical value, which must be resolved by using over two mil-
lion MC replications, a serious defect of the procedure. The use here of PQ̃(α)(β̃),
with the penalty A(1.5; β̃), slightly less than the Akaike A(2; β̃), provides a null
distribution where the required critical values are easier to approximate: if nec-
essary, these can be obtained with as little as 25 000 replications for α = 0.10
and 0.05.

With a simple null hypothesis as in Section 2, the power of the oracle MD(n)
increases with S(n) and this in turn affects favourably the power of PR(α). As
a consequence, we recommend using a large value, e.g. S(n) = 6, as in the
simulations of Section 2.5 and the smiling baby data of Section 3.5.4. However,
in the context of a composite null hypothesis, the oracle BCMR is not affected
by this choice, and this reflects on the powers of PQ̃(α)(β̃) which are rather stable
as a function of S(n). Hence a small value can be used for the GoF test and here
we have taken S(n) = 4. However, to extract useful insight from a B-plot, we
recommend first computing the simultaneous acceptance regions with S(n) = 4
and, if necessary, use S(n) = 6 to get a richer picture, as we have done in the
examples of Section 3.5 and Appendix A.

Appendix C: The simulation experiment for a composite Gaussian
null hypothesis and related comments

In this appendix, we describe the setting and results of the simulation experi-
ment discussed in Section 3.4. Note beforehand that all computations and sim-
ulations in the present paper, both in the previous sections and the present ap-
pendices, were performed using the Mathematica language (Wolfram Research,
Inc., Mathematica, Version 12.1, Champaign, IL, 2020) and the random number
generators in the program. Note also that the calculation of test statistic PR(α)
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and PQ̃(α)(β̃) is rather quick. For example, with S(n) = 6 and n = 500, our test
statistics are computed in about 0.10 second on a MacBook Pro M2 running
MacOS Ventura 13.2.1. Associated computational efforts are necessary in the
computation of (12); for example, the approximation of any u(n, α; {r, . . . , s} or
�(n, α; {r, . . . , s} when S(n) = 4 and n = 100, based on a reasonnable 10 000
replications, requires less than two minutes. Thus the computational effort to
use the statistics of the paper in practice can be considered marginal.

We recall that the null hypothesis is the composite H : F (x) = Φ
(
(x−β1)/β2

)
,

i.e. we consider testing GoF to the Gaussian distribution. We estimate β by the
MLE β̃ = (X̄, S2)′, so that β1(F ), β2

2(F ) are the mean and variance of F (·).
The alternatives were selected from some extensive simulation studies and

chosen with care to cover a fair range of shapes (see Figure C.1) of CC(· ;β(F ))
while embedding, either exactly or approximately, the Gaussian distribution.
They are:

• A1(θ), the Tukey distributions with quantile function θ−1(qθ − (1 − q)θ)
if θ �= 0 and log(q/(1 − q)) when θ = 0; these are symmetric about 0 uni-
modal distributions having support [−1/θ, 1/θ], if θ > 0 and R otherwise;
A1(0.14) is close to a N(0, 2.142), see Pearson, D’agostino & Bowman
(1977);

• A2(θ), normal distributions perturbed by cosine functions with densities
φ(x) [1 + θ cos(4πΦ(x))], θ ∈ [0, 1] on R which for θ > 0.3 are visually
clearly trimodal, see Inglot, Jurlewicz & Ledwina (1990); the case θ = 0
yields the N(0, 1);

• A3(θ) = A
0
3(θ), the two-piece normal distributions of Section 2.5; these

asymmetric distributions have a left tail proportional to a Gaussian, a fat
right tail when θ > 1 and a short one otherwise (see Experiment C2 in
Boero, Smith & Wallis (2004); for some history about this distribution,
see Wallis (2014));

• A4(θ) = A
0
4(θ), the Fan local model defined in Section 2.5; these densities

are asymmetric, bimodal and their tails coincide with those of the N(0, 1)
which is A4(0) (see Example 5 in Fan, 1996);

• A5(θ) = A
0
5(θ), the normal contamination model defined in Section 2.5;

the case θ = 0 yields the N(0, 1); see Pearson, D’agostino & Bowman
(1977);

• A6(θ) = A
0
6(θ), Anderson’s skewed distribution of Section 2.5 the case

θ = 0 yields the N(0, 1) (see Experiment C3 in Boero, Smith & Wallis,
(2004);

• A7(θ) = A
0
7(θ), the Mason & Schuenemeyer (1983) symmetric about zero

distribution with CDF J(Φ(x), 0.15, θ); the case θ = 0 yields the N(0, 1)
(see Ćmiel, Inglot & Ledwina, 2020);

• A8(θ), Johnson’s SU distributions, with X = sinh(Z/θ), θ > 0 and Z ∼
N(0, 1), yielding symmetric about zero and unimodal densities; A8(3.5) is
approximately N(0, 0.22), see Pearson, D’agostino & Bowman (1977);

• A9(θ) = A
0
9(θ), the Lehmann contamination model from Section 2.5, a

contamination model skewed to the left with A9(0) = N(0, 1) (see Ćmiel,
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Inglot & Ledwina, 2020);
• A10(θ), the Lehmann model with CDF (Φ(x))θ; of course the case θ = 1

yields the N(0, 1) and here we take 0 < θ ≤ 1;
• A11(θ), the generalized error distribution (GED) with density proportional

to exp(−|x|θ/θ); the case θ = 2 yields the N(0, 1) and here we consider
θ ≤ 2;

• A12(θ), a symmetric Pareto contamination model with CDF given by (1−
θ)N(0, 1) + θ Π(5), where Π(δ) is the symmetric Pareto distribution (see
model M7 in Ćmiel, Inglot & Ledwina, 2020).

Additionally, alternative A
0
8(θ) in the simulation of Section 2.5 has been ex-

tensively used in Experiment D2 of Boero, Smith & Wallis (2004).
As competitors to PQ̃(α)(β̃), we have considered the following tests:

• the Anderson-Darling (AD) test adjusted for unknown parameters;
• the Shapiro-Wilks (SW) test;
• the del Barrio, Cuesta-Albertos, Matran & Rodriguez (1999) test BCMR.
• at the reviewer’s request, the data driven smooth test of Janic & Ledwina

(2009) with test statistic W ∗
S1(β̃[ns]).

We recall that our main focus here pertains to the interpretation of the new
components, provided the related test statistic PQ̃(α)(β̃) exhibits a generally
good behavior, as we now show.

Taking α = 0.05 and n = 100, we have investigated PQ̃(α)(β̃) with the del
Barrio, Cuesta-Albertos, Matran & Rodriguez (1999) BCMR oracle test using
S(n) = 4; this yields a(n, 0.05; β̃) = 3.18, see Appendix B. The power func-
tions for the twelve alternatives were simulated in their θ range for each of the
tests MD(n)(β̃) of (15) with D(n) = 31 and D(n) = 127, AD, SW, BCMR,
W ∗

S1(β̃[ns]) and PQ̃(α)(β̃). The 5% critical value for each test was obtained
from 100 000 replications under the null distribution, while the powers were
computed from 10 000 Monte Carlo runs. As in Section 2.5, we extracted from
each power curve one representative value of θ which provided interesting pow-
ers. As a result of these choices, the obtained powers give a comprehensive view
of the comparative behaviour of the above tests in a wide range of situations.
The results are reported in Table C.2 along the selected value of θ and roughly
sorted from thin to fat-tailed. As can be seen, none of the other tests dominates
PQ̃(α)(β̃), which emerges as a good competitor over our range of alternatives.

Power comparisons between the case where F0(· ; β) is fully specified and
those where β is estimated seldom appear in the literature. Here, in addition
to our concern regarding well-balanced set of alternatives, we have made the
deliberate choice of selecting three alternatives in common in Tables 1 and C.2,
namely the Fan local alternative (A0

4 and A4), the normal contamination (A0
5

and A5) and the Lehmann contamination (A0
9 and A9). This was done to explore

the difficulties in going from a simple to a composite null model. It is interesting
to see the strong impact the estimation process has on the CC(·). Basically, the
expression for CC(·) is modified from (1) to (11) in which the denominator
is different while additionally, in (11), β(F ) plays a role. More precisely, in
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Fig C.1. CC(·;β(F )) (solid red) for the alternative distributions in Table C.2 for testing the
composite null hypothesis Φ

(
(x − β1)/β2

)
with (β1, β2) unknown. The black dotted curve

represents CC(·) of (1) corresponding to the simple null model Φ(x).

the case of a simple null hypothesis, Φ(·) is the reference distribution to an
alternative F (·). When the null hypothesis is composite, the reference CDF for
the same F (·) is Φ

(
(x− β1(F ))/β2(F )

)
which is now adjusted to F (·). The new

denominator in (11) plays a strong role in the central region of (0, 1) while the
standardization of Φ(·) via the use of β(F ) affects the tails of the reference
distribution and thus plays an essential role for p close to 0 and 1.

For the three alternatives in common, Figure C.1 shows that pairs of CC(·)
and CC(·; β(F )) can be very different and this affects the powers in a way that
is difficult to predict without such additional insight. Figure C.1 exhibits more
cases where CC(·) and the associated CC(·; β(F )) are rather different, e.g. A1,
A3, A7 and A10, with the selected parameter θ. In particular, it can be noticed
that the estimation of β strongly affects the related shape of CC(·; β(F )) in the
case of relatively heavy-tailed alternatives, as then the pertaining β2(F ) is often
large. It should also be remembered that the required

√
n-consistency of the

MLE of β implies a substantial restriction on the allowable class of alternatives
F (·) to those having finite fourth moment. Also, it should be stated that large
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Table C.2

Powers (n = 100, α = 0.05) of MD(n)(β̃) of (15) with D(n) = 31 and D(n) = 127, the
Anderson-Darling (AD), the Shapiro-Wilks (SW), the oracle BCMR, the Janic & Ledwina

(2009) test (W ∗
S1(β̃[ns])) and our PQ̃(α)(β̃) tests for H: Φ

(
(x− β1)/β2

)
with (β1, β2)

unknown, against the set of alternatives A1(θ) to A12(θ).

Alternative M31(β̃) M127(β̃) AD SW BCMR W ∗
S1(β̃[ns]) PQ̃(α)(β̃)

A1(3.0) 42 38 47 74 70 59 68
A2(0.7) 64 60 75 40 41 57 57
A3(−0.5) 27 29 43 46 47 46 45
A4(0.4) 82 80 78 43 45 39 65
A5(0.15) 17 21 28 29 30 26 28
A6(0.3) 58 58 73 68 70 64 69
A7(2.0) 47 44 56 47 51 60 56
A8(1.6) 34 34 47 55 58 61 53
A9(0.1) 53 55 68 80 82 80 75

A10(0.025) 27 28 43 57 55 47 50
A11(1.2) 39 37 54 54 56 60 56
A12(0.25) 77 74 71 58 56 63 66

differences in the forms of the CC are sometimes almost imperceptible at the
level of densities. This is the case for the Fan alternative (A0

4 (0.4) and A4(0.4)).
Finally, going from the simple null hypothesis to a composite one, the selection
rule had to be adapted in an intricate way to preserve the good properties of
our procedures.

Hence, it can be concluded that the case of unknown parameters is a problem
whose complexity is of an order of magnitude above the fully specified case.

Appendix D: Proofs

D.1. Proof of Proposition 1

We have that F̂n

(
F−1

0 (ps,j)
)

= n−1 ∑n
i=1 I(F0(Xi) ≤ ps,j) where F0(Xi) are

i.i.d. U(0, 1) under H0. Let αn(t), t ∈ [0, 1], denote the uniform empirical pro-
cess. Then it holds that

MD(n) = max
1≤j≤D(n)

∣∣αn(pS(n),j)
∣∣

(pS(n),j(1 − pS(n),j))1/2
.

Because D(n) = o(n2δ), δ ∈ (0, 1/2), for sufficiently large n we get pS(n),1 ≥
εn = [logn]3/n. Moreover, for the quantity

sup
εn≤t≤1−εn

|αn(t)|
(t(1 − t))1/2

,

the Darling-Erdös theorem holds, see Jaeschke (1979). This implies that

MD(n) = OP ((log logn)1/2). (D.1)
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Let c(n, α) denote the α-th critical value of PR(α). On the set {MD(n) >
m(n, α)}, the value of PR(α) is equal to PD(n). Moreover, it holds that

pr
(
PR(α) ≥ c(n, α)

)
= pr

(
PR(α) ≥ c(n, α) | MD(n) ≤ m(n, α)

)
× pr

(
MD(n) ≤ m(n, α)

)
+ pr

(
PD(n) ≥ c(n, α)

)
− pr

(
PD(n) ≥ c(n, α),MD(n) ≤ m(n, α)

)
.

Hence, it is enough to show that, under F (·), the test rejecting for large values
of MD(n) is consistent and pr(PD(n) ≥ c(n, α)) → 1 as n → ∞.

We start by showing that, under F (·), the test rejecting for large values of
MD(n) is consistent. By (D.1), m(n, α) is O((log logn)1/2). On the other hand,
using the definition of (s0, j0), we have for n large enough

pr
(
MD(n) > m(n, α)

)
= pr

(
max

1≤j≤D(n)
|n1/2γ̂j(ps,j)| > m(n, α)

)
(D.2)

≥ pr
(
n1/2|γ̂j0(ps0,j0)| > m(n, α)

)
= pr

(∣∣∣n1/2γj0(ps0,j0) − Vn

∣∣∣ > m(n, α)
)
,

where

Vn =
n1/2[F̂n

(
F−1

0 (ps0,j0)
)
− F

(
F−1

0 (ps0,j0)
)
]

{ps0,j0(1 − ps0,j0)}1/2 ,

while γj0(ps0,j0) = γs0,j0 is defined in (4). The numerator in the formula for
Vn is OP (1) while the denominator’s impact onto Vn is at most of the order
(D(n))−1/2. Due to the assumption on D(n), the term Vn is oP (nδ), δ ∈ (0, 1/2).
Hence, in view of (D.2) and the range of m(n, α), we conclude that under F (·),
pr
(
MD(n) > m(n, α)

)
→ 1.

Now we show convergence of pr
(
PD(n) ≥ c(n, α)

)
to 1. Because PR(α) ≤

PD(n) ≤ D(n) ×OP (log logn), then c(n, α) = o(n2δ × log logn). Similarly as in
the case of MD(n), we can write

pr
(
PD(n) ≥ c(n, α)

)
≥ pr

(
n1/2 |γ̂j0(ps0,j0)| ≥ c(n, α)1/2

)
= pr

( ∣∣∣n1/2γj0(ps0,j0) − Vn

∣∣∣ ≥ c(n, α)1/2
)
.

Taking into account the rate of growth of c(n, α), the same argument as above
finishes the proof. �

D.2. Proof of Proposition 2

We start by reducing the consistency problem. Let c̃(n, α) denote the α-th crit-
ical value of PQ̃(α)(β̃). In the sequel, all probabilities are computed under F (·).
Then,

pr
(
PQ̃(α)(β̃) ≥ c̃(n, α)

)
= pr

(
PQ̃(α)(β̃) ≥ c̃(n, α) | Tn ≤ t(n, α)

)
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× pr
(
Tn ≤ t(n, α)

)
+ pr

(
PQ̃(α)(β̃) ≥ c̃(n, α) | Tn > t(n, α)

)
× pr

(
Tn > t(n, α)

)
.

From pp.1-2 of the Supplementary Material to Ledwina and Wyłupek (2015), Tn
is consistent under the assumption that F (·) possesses a finite second moment.
Hence pr

(
Tn > t(n, α)

)
→ 1. In view of the above, to prove that pr

(
PQ̃(α)(β̃) ≥

c̃(n, α)
)
→ 1, it is enough to show that

pr
(
PQ̃(α)(β̃) < c̃(n, α) | Tn > t(n, α)

)
→ 0. (D.3)

The next step is to get the rate of growth of c̃(n, α). PQ̃(α)(β̃) ≤ PD(n)(β̃) ≤ Un,
where

Un = D(n)
[
n sup

0≤p≤1
|p− F̂n(β̃2F

−1
0 (p) + β̃1)|2

]
×
[

min
1≤j≤D(n)

σ2
S(n),j

]−1
.

Under H, the first expression in squared brackets is OP (1) by Durbin’s (1973)
theorem. The second expression is O(D(n)). As a consequence, Un = OP (D2(n))
and c̃(n, α) does not grow faster than D2(n). Hence, in view of the assumption
on D(n), c̃(n, α) = o(n).

Recall from Section 3.2 the indices s0 and j0 such that CC(ps0,j0 ;β(F )) �= 0.
We have from (13), (14)

Pd(s0)(β̃) = n

d(s0)∑
j=1

[ps0,j − F̂n

(
β̃2F

−1
0 (ps0,j) + β̃1

)
(ps0,j(1 − ps0,j))1/2

]2
= n

d(s0)∑
j=1

[
ĈC(ps0,j ; β̃)

]2
.

Now, we show that

pr
(
n1/2|ĈC(ps0,j0 ; β̃)| ≥ (c̃(n, α))1/2

)
→ 1, n → ∞. (D.4)

To this end, observe that

n1/2 ĈC(ps0,j0 ; β̃) = n1/2 CC(ps0,j0 ;β(F )) (D.5)
+ {W (1)

n (s0, j0; β̃) + W (2)
n (s0, j0; β̃)} × [σs0,j0 ]−1,

where

W (1)
n (s0, j0; β̃) = n1/2{F (β̃2F

−1
0 (ps0,j0) + β̃1) − F̂n(β̃2F

−1
0 (ps0,j0) + β̃1)},

(D.6)

while

W (2)
n (s0, j0; β̃) = n1/2{F (β2(F )F−1

0 (ps0,j0) + β1(F )) − F (β̃2F
−1
0 (ps0,j0) + β̃1)}.

(D.7)

The deterministic term in (D.6) is O(n1/2). The term W
(1)
n (s0, j0; β̃) can be

majorized by n1/2 supx∈R
|F (x) − F̂n(x)| and is thus OP (1). Using the equality
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F (x) − F (y) = (x− y)f(z∗), where f(·) is the density of F (·) and min{x, y} ≤
z∗ ≤ max{x, y}, we see that

W (2)
n (s0, j0; β̃) = n1/2{(β̃2 − β2(F ))F−1

0 (ps0,j0) + (β̃1 − β1(F ))}f(Z∗). (D.8)

Under the assumption on the fourth moment of F (·), β̃1 and β̃2 are n1/2-
consistent. By boundedness of f(·), the expression (D.7) is OP (1). Thus, by the
above, n1/2 ĈC(ps0,j0 ; β̃) = OP (n1/2). Because c̃(n, α) = o(n), we get Pd(s0)(β̃)
→ ∞.

Now,

pr
(
Q̃(α) < d(s0), Tn > t(n, α)

)
≤

s0−1∑
s=1

pr
(
Pd(s)(β̃) − 1.5 × d(s) ≥ Pd(s0)(β̃) − 1.5 × d(s0)

)
. (D.9)

For s < s0 it holds that CC(ps,j ;β(F )) = 0, (j = 1, . . . , d(s)). Therefore, by
(D.5) to (D.8) applied to such s and related ps,j , we have Pd(s)(β̃) = OP (1). But
it was earlier shown that Pd(s0)(β̃) → ∞ as n → ∞. It follows that pr

(
Q̃(α) <

d(s0)
)
→ 0 on the set {Tn > t(n, α)}, as n → ∞.

Getting back to (D.3), we have

pr
(
PQ̃(α)(β̃) < c̃(n, α)

)
= pr

(
PQ̃(α)(β̃) < c̃(n, α), Q̃(α) < d(s0)

)
(D.10)

+
D(n)∑
s=s0

pr
(
PQ̃(α)(β̃) < c̃(n, α), Q̃(α) = d(s)

)
.

If Q̃(α) ≥ d(s0), then PQ̃(α)(β̃) ≥ Pd(s0)(β̃). Moreover, on the set {Tn > t(n, α)},
the first summand in (D.10) is o(1). By the above

pr
(
PQ̃(α)(β̃) < c̃(n, α)

)
≤ o(1) + D(n) pr

(
Pd(s0)(β̃) < c̃(n, α)

)
≤ o(1) + D(n) pr

(
n1/2|ĈC(ps0,j0 ; β̃)| < (c̃(n, α))1/2

)
. (D.11)

This shows that we need to sharpen (D.4) by studying the rate at which the
probability appearing in (D.11) tends to 0. But in view of (D.5)–(D.8) the event
En = {n1/2 |ĈC(ps0,j0 ; β̃)| < (c̃(n, α))1/2} reads as

En = {n1/2 ln < W (1)
n (s0, j0; β̃) + W (2)

n (s0, j0; β̃) < n1/2 un},

where
ln = σs0,j0

{
−(n−1c̃(n, α))1/2 − CC(ps0,j0 ;β(F ))

}
,

un = σs0,j0

{
+(n−1c̃(n, α))1/2 − CC(ps0,j0 ;β(F ))

}
.

Because c̃(n, α) = o(n), we get ln = O(1) and un = O(1). If CC(ps0,j0 ;β(F )) <
0, then we can write pr(En) ≤ pr

(
W

(1)
n (s0, j0; β̃) + W

(2)
n (s0, j0; β̃) > n1/2 ln

)
.
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Otherwise, we can consider pr
(
En) ≤ pr(−W

(1)
n (s0, j0; β̃) + W

(2)
n (s0, j0; β̃) >

n1/2(−un)
)
. Hence, the triangle inequality, the DKW inequality applied to

W
(1)
n (s0, j0; β̃) and Markov’s inequality applied to both terms of W (2)

n (s0, j0; β̃)
appearing in (D.8) show that pr(En) = O(n−1). In view of the assumption
D(n) = o(n1/2) we have D(n) pr(En) = o(1) and by (D.11), the proof is com-
plete. �

D.3. Proof of Remark 2

The relations (D.5)–(D.8), expressed in terms of an arbitrary p ∈ [ε, 1−ε], imply
that

sup
ε≤p≤1−ε

n1/2|ĈC(p; β̃) − CC(p;β(F ))| = OP (1).

Hence the statement of Remark 2 follows. �
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