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Abstract: Missing data is frequently encountered in many areas of statis-
tics. One popular approach to address this issue is through the use of
propensity score weighting. However, correctly specifying the statistical
model can be a daunting task. Doubly robust estimation is attractive, as
the consistency of the estimator is guaranteed when either the outcome
regression model or the propensity score model is correctly specified. In
this paper, we first employ information projection to develop an efficient
and doubly robust estimator via indirect model calibration. The resulting
propensity score estimator can be equivalently expressed as a doubly robust
regression imputation estimator by imposing the internal bias calibration
condition in estimating the regression parameters. In addition, using the
γ-divergence measure, we generalize the information projection to allow for
outlier-robust propensity score estimation. The study includes the presenta-
tion of certain asymptotic properties and findings from a simulation study,
which demonstrate that the proposed method enables robust inference, not
only in cases of various model assumptions being violated but also in the
presence of outliers. A real-life application is also presented using data from
the Conservation Effects Assessment Project.
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1. Introduction

Missing data represents a fundamental challenge in statistics. Ignoring missing
data can lead to biased estimates of parameters, loss of information, decreased
statistical power, increased standard errors, and weak generalizability of find-
ings, as highlighted by Dong and Peng (2013). In addition, the missing data
framework is very useful in defining problems in other research areas, such as
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causal inference or offline policy evaluation. Propensity score (PS) weighting is
a popular method to handle missing data. It often employs a response propen-
sity model, but correct specification of the statistical model can be challenging
in the presence of missing data. How to make the propensity score weighting
method less dependent on the response propensity model is an important prac-
tical problem.

In the quest for robust PS estimation, we find two distinct avenues. One ap-
proach embraces flexibility, employing nonparametric or semiparametric models
to construct robust propensity scores. The nonparametric kernel method (Hahn,
1998), the sieve logistic regression method (Hirano, Imbens and Ridder, 2003),
the general calibration method of Chan, Yam and Zhang (2016) using increasing
dimension of the basis functions, the generalized covariate balancing estimator
using tailored loss functions (Zhao, 2019) and the random forest approach of
Dagdoug, Goga and Haziza (2023) are examples of the robust propensity score
estimation method using flexible models. The other path, which we explore in
this paper, leans on the outcome regression model explicitly to achieve doubly
robust estimation. The literature is replete with investigations in this arena,
with notable contributors like Bang and Robins (2005), Cao, Tsiatis and Da-
vidian (2009), Kim and Haziza (2014), Han and Wang (2013), Chen and Haziza
(2017), and Yang, Kim and Song (2020).

Our journey takes the latter route as we construct a unified framework for
doubly robust PS estimation under the setup of missing at random (Rubin,
1976). To achieve the goal, we apply the information projection (Csiszár and
Shield, 2004) to the PS weighting problem, while adhering to covariate-balancing
constraints. Specifically, the initial PS weights are constructed from the working
PS model, but the balancing constraints, crucial for achieving double robustness
in the PS weighting estimator, are derived from the working outcome regression
model. This maneuver can be perceived as indirect model calibration. Informa-
tion projection is used to obtain the augmented PS model.

Remarkably, the PS weighting estimator that is obtained from information
projection can also be cast as a special type of regression imputation estimator,
incorporating balancing functions as covariates in the outcome regression model
and the regression coefficients are computed using the weights computed from
the final PS weights. This algebraic equivalence, known as self-efficiency, forms
the cornerstone of our journey toward outlier-robust PS estimation. In practice,
outliers do exist and the presence of outliers can significantly undermine the
efficiency of estimators. While outlier-robust procedures are well studied in the
literature on regression or classification (Stefanski, Carroll and Ruppert, 1986;
Wu and Liu, 2007; Zhang, Jiang and Chai, 2010), their application in the context
of missing data remains underexplored. To our best knowledge, the construction
of an outlier-robust PS weighting estimator has not been investigated in the
literature.

To fill in this important research gap, we embark on the creation of an outlier-
robust regression imputation technique and subsequently align it with a PS
weighting estimator by imposing the self-efficiency condition. In doing so, we
set forth on a path previously untraveled in the literature – a journey toward
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constructing an outlier-robust PS estimator. Specifically, the information pro-
jection approach to developing the augmented PS model and obtaining the
doubly robust PS estimation is based on the Kullback-Leibler divergence. The
γ-power divergence, originally proposed by Basu et al. (1998) and further de-
veloped by Eguchi (2021), is a generalization of the Kullback-Leibler divergence
to expand the class of statistical models by introducing an additional scale pa-
rameter γ. Furthermore, it is well known that the statistical model derived from
the γ-power divergence produces robust inferences against outliers. We adopt
the γ-power divergence to develop an outlier-robust regression imputation es-
timator. By self-efficiency, the regression estimator can be expressed as a PS
weighting estimator. Therefore, we obtain an outlier-robust PS weighting es-
timator. The resulting estimator is also robust against misspecification of the
response probability model.

The structure of the paper is as follows. In Section 2, the basic setup and
the research problem are introduced. In Section 3, we develop a balancing con-
straint to adjust propensity weights and construct an augmented propensity
model using information projection. In Section 5, we present the use of the γ-
power divergence to enlarge the class of propensity score models and develop
outlier-robust doubly robust estimators. Results from two limited simulation
studies are presented in Section 6. A real-life application using data from the
Conservation Effects Assessment Project is presented in Section 7. Some con-
cluding remarks are made in Section 8. All required proofs are presented in the
Appendix.

2. Basic setup

Suppose that there are n independently and identically distributed realizations
of (X, Y, δ), denoted by {(xi, yi, δi) : i = 1, . . . , n}, where xi is a vector of
observed covariates and δi is the missingness indicator associated with unit i.
In particular, δi = 1 if yi is observed and δi = 0 otherwise. Thus, instead
of observing (xi, yi, δi), we only observe (xi, δi, δiyi) for i = 1, . . . , n. We are
interested in estimating θ = E(Y ) from the observed sample.

Suppose that we have a working outcome regression (OR) model given by

m0 (x;β) ∈ span{b0(x), b1(x), . . . , bL(x)} (2.1)

for some given basis functions b1(x), . . . , bL(x) and b0(x) = 1. The model (2.1)
can be expressed equivalently as

yi = m(xi;β) + εi, m(xi;β) = β0 + β1b1(xi) + . . . + βLbL(xi)

for β = (β0, β1, . . . , βL)T, where εi is an error term that is independent of xi and
satisfies E(εi) = 0. Furthermore, the assumption of missing at random (Rubin,
1976) implies that εi and δi are conditionally independent given xi.
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We are interested in using the following propensity score weighting (PSW)
estimator

θ̂PSW = 1
n

n∑
i=1

δiωiyi. (2.2)

The following lemma provides a sufficient condition for the unbiasedness of the
propensity score weighting estimators under the model (2.1).

Lemma 2.1. Assume that the response mechanism is missing at random. If the
weights ωi’s satisfy

n∑
i=1

δiωi [b0(xi), b1(xi), . . . , bL(xi)] =
n∑

i=1
[b0(xi), b1(xi), . . . , bL(xi)] , (2.3)

then θ̂PSW in (2.2) is unbiased for θ under the OR model in (2.1).

By Lemma 2.1, condition (2.3) is the key condition that incorporates the
OR model into the PSW estimator. Condition (2.3) is often called the covariate
balancing condition (Imai and Ratkovic, 2014) in the missing data literature. It
is closely related to the calibration estimation in survey sampling (Deville and
Särndal, 1992). Under the OR model in (2.1), the covariate-balancing condition
in (2.3) implies that

n∑
i=1

δiωiE(Yi | xi) =
n∑

i=1
E(Yi | xi), (2.4)

which is often referred to as the model calibration (Wu and Sitter, 2001). To
distinguish from the direct model calibration of Wu and Sitter (2001), we may
call (2.3) the indirect model calibration.

The indirect model calibration condition also implies the following algebraic
equivalence.

Lemma 2.2. If the weights ωi satisfy (2.3), then we have

n∑
i=1

δiωiyi =
n∑

i=1
{δiyi + (1 − δi)bT

i β̂}, (2.5)

where β̂ satisfies
n∑

i=1
δi (ωi − 1)

(
yi − bT

i β̂
)

= 0, (2.6)

and bi = (1, b1(xi), . . . , bL(xi))T.

Lemma 2.2 means that, under (2.6), the PSW estimator that satisfies the
covariate-balancing condition is algebraically equivalent to a regression impu-
tation estimator using the balancing functions as covariates in the outcome
regression model. In other words, regression imputation under the outcome re-
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gression model in (2.1) can be viewed as a PSW estimator where the propensity
score weights ωi and the estimated regression coefficients β̂ are related by equa-
tion (2.6). Equation (2.5) means that the final propensity score weights ωi do
not directly use the outcome regression model (2.1) for imputation, but im-
plement regression imputation indirectly. Condition (2.5) is referred to as the
self-efficiency condition.

We now wish to achieve double robustness by including the PS model. Sup-
pose that we have the following working PS model

P (δ = 1 | x) = π1(x;φ0)

for some φ0 with a known function π1(·) ∈ (0, 1). An example is the logistic re-
gression model such as logit{π1(x;φ0)} = xTφ0. Under the working propensity
score model, the PS weights are computed as ωi = {π1(xi; φ̂)}−1 := d̂i, where
φ̂ is the maximum likelihood estimator (MLE) of φ. However, the PS weight
d̂i does not necessarily satisfy the balancing condition in (2.3). Therefore, to
reduce the bias due to model misspecification in the propensity score model, it
makes sense to impose the balancing condition in the final weighting. To achieve
this goal, Hainmueller (2012) proposed the so-called entropy balancing method
that minimizes

Q(ω) =
n∑

i=1
δiωi log(ωi/d̂i), (2.7)

subject to the balancing constraint in (2.3). Chan, Yam and Zhang (2016) gen-
eralized this idea further to develop a general calibration weighting method that
satisfies the covariance balancing property with increasing dimensions of basis
functions b(x). However, the choice of distance measure is somewhat unclear.
In the next section, we adopt the information projection approach to develop a
unified approach to doubly robust propensity score weighting.

3. Proposed method

We now develop an alternative approach to modifying the initial propensity
score weights to satisfy the covariate balancing condition in (2.3). The pro-
posed approach consists of two parts. One is the modeling part and the other
is the parameter estimation part. In the modeling part, we use information
projection innovatively to obtain the propensity score model incorporating the
moment constraints from the outcome regression model. Information projection
is a powerful tool for incorporating the moment constraints into the final model.

3.1. Information projection

Instead of using a distance measure for propensity weights, as in (2.7), we use
the Kullback-Leibler divergence measure properly to develop the information
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projection under some moment constraint obtained from the outcome regres-
sion model. Because the Kullback-Leibler divergence is defined in terms of den-
sity functions, we need to formulate the weighting problem as an optimization
problem for density functions.

To apply the information projection, using the Bayes theorem, we obtain

P (δ = 0 | x)
P (δ = 1 | x) = 1 − p

p
× f0(x)

f1(x) ,

where p = P (δ = 1), and fk(x) = f(x | δ = k) is the density function for x
given δ = k for k = 0, 1. Thus, the propensity score (PS) weight can be written
as

ω(x) ≡ 1
P (δ = 1 | x) = 1 + c× f0(x)

f1(x) . (3.1)

where c = 1/p − 1. For a fixed f1, the propensity weight function ω(x) is
completely determined by f0. Furthermore, assume that the basis function b(x)
in the outcome regression model in (2.1) is integrable in the sense that

pE1{b(X)} + (1 − p)E0{b(X)} = E{b(X)}, (3.2)

where Ek{b(X)} =
∫
b(x)fk(x)dμ(x) for k = 0, 1 and μ is the Lebesgue mea-

sure. Thus, for a given f1, equation (3.2) can serve as a constraint on f0 when
E{b(X)} is known.

Let π
(0)
1 (x) be the PS function corresponding to a “working” model for

π1(x) = P (δ = 1 | x). For a fixed f1, by (3.1), we can define f
(0)
0 to satisfy

1
π

(0)
1 (x)

= 1 + c× f
(0)
0 (x)
f1(x) . (3.3)

We can treat f
(0)
0 as the baseline density for f0 derived from the working PS

function π
(0)
1 (x). Our objective is to modify f

(0)
0 to satisfy (3.2). Finding the

density function f0 satisfying the balancing condition in (3.2) can be formulated
as an optimization problem using the Kullback-Leibler divergence. Given the
baseline density f

(0)
0 , the Kullback-Leibler divergence of f0 at f (0)

0 is defined by

DKL

(
f0‖f (0)

0

)
=

∫
log

(
f0

f
(0)
0

)
f0dμ. (3.4)

Given f
(0)
0 , we wish to find the minimizer of DKL(f0‖f (0)

0 ) subject to (3.2). The
Lagrangian function can be formulated as

L(f0,λ) =
∫

log
(
f0/f

(0)
0

)
f0dμ

+ λT
[
p

∫
b(x)f1(x)dμ + (1 − p)

∫
b(x)f0(x)dμ− E{b(X)}

]
,

(3.5)
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where λ is the Lagrange multiplier. As f1 is fixed and E{b(X)} is known, by
taking the derivative with respect to f0 in (3.5), one may arrive at f∗

0 (x;λ) ∝
f

(0)
0 (x) exp{bT(x)λ}. Furthermore, the density constraint

∫
f∗
0 (x;λ)dx = 1

leads to
f∗
0 (x;λ) = f

(0)
0 (x) exp{bT(x)λ}∫

exp{bT(x)λ}f (0)
0 (x)dμ(x)

, (3.6)

with abuse of notation for λ. By (3.6), we obtain

f∗
0 (x;λ)
f1(x) = f

(0)
0 (x)
f1(x) ×

exp{
∑L

j=1 λjbj(x)}∫
exp{

∑L
j=1 λjbj(x)}f (0)

0 (x)dμ(x)
. (3.7)

Combining the above results, we can establish the following lemma.

Lemma 3.1. Given the PS function π
(0)
1 (x) from the working PS model, the

final PS function minimizing the Kullback-Leibler divergence in (3.4) subject to
the balancing condition (3.2) is given by

π∗
1(x;λ) = π

(0)
1 (x)

π
(0)
1 (x) + {1 − π

(0)
1 (x)} exp

{
λ0 +

∑L
j=1 λjbj(x)

} , (3.8)

where λ0, λ1, . . . , λL are the Lagrange multipliers satisfying (3.2).

In (3.8), the Lagrange multiplier λ is determined to satisfy the balancing
condition (3.2) with

E0{b(X)} =
∫
b(x)O(0)(x) exp{

∑L
j=1 λjbj(x)}f1(x)dμ(x)∫

O(0)(x) exp{
∑L

j=1 λjbj(x)}f1(x)dμ(x)
.

where O(0)(x) = {π(0)
1 (x)}−1 − 1. If the working propensity score model is

correct, then the balancing constraint (3.2) is already satisfied. In this case, we
have λj ≡ 0 for all j = 1, . . . , L. Thus, the information projection is used to
obtain the augmented propensity score model (Kim and Riddles, 2012).

Figure 1 presents a graphical summary of obtaining the augmented PS model
in (3.8). Using the relationship in (3.1), we can transform π1(x) to f0(x) and
then apply the information projection to obtain f∗

0 (x) in (3.6), which in turn
finds π∗

1(x) in (3.8) by applying (3.1) again.
In practice, the base functions for the “working” outcome model are chosen

by standard model selection techniques. For example, Shortreed and Ertefaie
(2017) used adaptive Lasso to select the covariates in the outcome regression
model.

3.2. Model parameter estimation

We now discuss parameter estimation in the augmented propensity score model
in (3.8). Suppose that the working propensity score model is given by π

(0)
1 (x;φ)
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Fig 1. A graphical illustration of obtaining π∗
1(x) in (3.8) using the information projection for

f0, where the line running halfway across the right circle represents the space of f1 satisfying
the covariate-balancing constraints.

with the unknown parameter φ. We can estimate φ by maximizing


(φ) =
n∑

i=1

[
δi log

{
π

(0)
1 (xi;φ)

}
+ (1 − δi) log{1 − π

(0)
1 (xi;φ)}

]
with respect to φ. Note that the propensity score model has nothing to do with
the OR model in (2.1).

Now, to incorporate the OR model in (2.1), we use the augmented propensity
score model in (3.8) to obtain the final propensity score weights

ω̂i = 1 + (d̂i − 1) exp

⎧⎨
⎩

L∑
j=0

λ̂jbj(xi)

⎫⎬
⎭ , (3.9)

where d̂i = {π(0)
1 (xi; φ̂)}−1 and λ̂0, λ̂1, . . . , λ̂L are computed from the calibration

equation:
n∑

i=1
δiω̂ibj(xi) =

n∑
i=1

bj(xi), ∀j = 0, 1, . . . , L. (3.10)

By construction, the PS weights in (3.9) satisfies the covariate-balancing prop-
erty on the basis functions in the outcome regression model in (2.1). By
Lemma 2.1, the covariate balancing property implies unbiasedness of the PSW
estimator under the OR model. On the other hand, if the working PS model is
correct, then λ̂j → 0 in probability as n → ∞ for j = 0, 1, . . . , L. In this case,
ω̂i will converge to d̂i and the PSW estimator is consistent under the PS model.

As discussed in Section 2, the propensity score estimator satisfying the in-
direct model calibration condition can be expressed as a regression imputation
estimator. Since ω̂i satisfy (3.10), by Lemma 2.2, we can obtain

1
n

n∑
i=1

δiω̂iyi = 1
n

n∑
i=1

{δiyi + (1 − δi)ŷi} , (3.11)
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where ŷi = bT
i β̂ and

β̂ =
{

n∑
i=1

δi (ω̂i − 1) bibT
i

}−1 {
n∑

i=1
δi (ω̂i − 1) biyi

}
. (3.12)

Note that, by (3.9), β̂ in (3.12) can be expressed as the minimizer of

Q(β) =
n∑

i=1
δi

(
yi − bT

i β
)2

(d̂i − 1)ĝi, (3.13)

where ĝi = exp(bT
i λ̂). The first term d̂i−1 is the adjustment term to incorporate

the working PS model into the regression imputation. The second term ĝi =
exp(bT

i λ̂) is to achieve covariate balance in the PS weights, which is a sufficient
condition for self-efficiency.

Now, if gi = 1 is used in (3.13), then the self-efficiency in (3.11) will not be
satisfied. Instead, we only obtain

1
n

n∑
i=1

{δiyi + (1 − δi)ŷi} = 1
n

n∑
i=1

{
ŷi + δid̂i (yi − ŷi)

}
. (3.14)

Condition (3.14) is called the internal bias calibration (IBC), which was orig-
inally termed by Firth and Bennett (1998) in the context of design-consistent
estimation of model parameters under complex sampling. The imputation esti-
mator satisfying the IBC condition (3.14) achieves consistency even when the
outcome regression model is incorrect, as long as the working PS model is cor-
rect. Thus, the IBC condition is a sufficient condition for the double robustness
of the regression imputation estimator.

For the choice of ĝi = exp(bT
i λ̂), under the PS model, we obtain ĝi → 1 in

probability as n → ∞. Thus, the IBC condition in (3.14), or double robustness
of the regression imputation estimator, holds approximately.

Equation (3.11) deserves further discussion. In the PSW estimation, for a
given φ̂, the final estimator θ̂PSW is a function of estimated nuisance parameter
λ̂ while the regression imputation estimator is a function of other estimated
nuisance parameter β̂. Thus, λ̂ and β̂ are in one-to-one correspondence with
each other through the following estimating equation:

n∑
i=1

δi(yi − bT
i β̂)bi(d̂i − 1) exp(bT

i λ̂) = 0. (3.15)

In summary, the proposed method can be implemented in the following steps.

1. Specify a working PS model π(0)
1 (x;φ) and estimate φ using the ML esti-

mation method to get d̂i = {π(0)
1 (x; φ̂)}−1.

2. Specify a working OR model in (2.1) to construct the augmented PS model
in (3.8).

3. Compute λ̂ from the calibration equation in (3.10) to obtain ω̂i in (3.9).
4. Also, compute β̂ from (3.12) to obtain the regression imputation estimator

in (3.11).
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4. Statistical properties

Now we formally describe the asymptotic properties of the augmented PSW
estimator using the final propensity score weight (3.9) with the calibration con-
straint in (3.10). By the algebraic equivalence established in Lemma 2.2, the
result is directly applicable to the regression imputation estimator using the
regression coefficient in (3.12).

Let π(0)
1 (x;φ) be the working propensity score model, where φ ∈ R

p. We can
estimate φ by solving

U1,n(φ) ≡ 1
n

n∑
i=1

{
δi

π
(0)
1 (xi;φ)

− 1
}
h(xi;φ) = 0 (4.1)

for some h(x;φ) such that the solution to (4.1) exists uniquely almost every-
where. The estimating equation (4.1) for φ includes the score equation for φ as
a special case. For a given φ̂, let Û2(λ | φ̂) be the estimating equation for λ.
By (2.3), we can estimate λ by solving

U2,n(λ | φ̂) ≡ 1
n

n∑
i=1

δiω(xi; φ̂,λ)bi −
1
n

n∑
i=1

bi = 0, (4.2)

where

ω (xi;φ,λ) = 1 +
{

1
π

(0)
1 (xi;φ)

− 1
}

exp
(
bT
i λ

)
. (4.3)

Further, define

Gn(φ) = 1
n

n∑
i=1

[{
1 − δi

π
(0)
1 (xi;φ)

}{
∂h(xi;φ)

∂φ

}T

+ δi

{π(0)
1 (xi;φ)}2

∂π
(0)
1 (xi;φ)
∂φ

hT(xi;φ)
]
.

We have the following assumptions before the statement of our main theorem.

Assumption 4.1. The estimating equation U1,n(φ) = 0 has a unique solution
φ̂ and there exists a function U1(φ) such that U1,n(φ) → U1(φ) uniformly as
n → ∞ and U1(φ) = 0 has a unique solution φ∗. Further, The estimating
equation U2,n(λ | φ∗) = 0 has a unique solution λ̂ and there exists a function
U2(λ | φ∗) such that U2,n(λ | φ∗) → U2(λ | φ∗) uniformly as n → ∞ and
U2(λ | φ∗) = 0 has a unique solution λ∗.

Assumption 4.2. The limiting function U1(φ) is differentiable and ∂φU1(φ) is
continuous on a compact set G1 containing φ∗. In addition, the limiting function
U2(φ | φ∗) is differentiable and ∂λU2(λ | φ∗) is continuous on a compact set
G2 containing λ∗.
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Assumption 4.3. The matrices ∂φU1(φ) |φ=φ� and ∂λU2(λ | φ∗) |λ=λ∗ are
both non-singular.

Assumption 4.4. There exists a function G(φ) such that Gn(φ) → G(φ)
uniformly as n → ∞ and G(φ∗) is non-singular.

Assumptions 4.1 – 4.3 are commonly used in estimating equation theory and
also ensure the existence of λ∗ and φ∗; see Newey and McFadden (1994) and Kim
and Rao (2009) for more details. Note that λ∗ and φ∗ are the probability limits
of λ̂ and φ̂, respectively. Assumption 4.3 also guarantees the existence of β∗,
which is the probability limit of β̂ in (3.12).Assumption 4.4 ensures the existence
of the nuisance parameter κ∗ defined in the following Theorem 4.1, which helps
us represent the influence function for the proposed estimator. If the maximum
likelihood estimation is used to estimate φ, then φ∗ can be understood as the
minimizer of the cross-entropy

H(π1, π
(0)
1 (φ))=−E

[
π1(x) log

{
π

(0)
1 (x;φ)

}
+ {1 − π1(x)} log

{
1 − π

(0)
1 (x;φ)

}]
with respect to φ, where π1(x) = P (δ = 1 | x) is the true response probability.
Now, using (4.3), we can treat

θ̂APSW = 1
n

n∑
i=1

δiω(xi; φ̂, λ̂)yi := θ̂APSW(φ̂, λ̂) (4.4)

as a function of (φ̂, λ̂) and apply the standard Taylor linearization to obtain
the following theorem, whose proof is presented in the Appendix.

Theorem 4.1. Let θ̂APSW in (4.4) be the PSW estimator under the augmented
PS model in (3.8) with φ̂ and λ̂ satisfying (4.1) and (4.2), respectively. Under
the regularity conditions described in the Appendix, we have

θ̂APSW − θ = 1
n

n∑
i=1

η(xi, yi, δi) + op(n−1/2), (4.5)

where

η(xi, yi, δi) = bT
i β

∗ − θ + δiω(xi;φ∗,λ∗)
(
yi − bT

i β
∗
)

+
{

1 − δi

π
(0)
1 (xi;φ∗)

}
hT
i κ

∗, (4.6)

hi = h(xi;φ), ω(x;φ,λ) is defined in (4.3), and κ∗ is the probability limit of
κ̂ that satisfies
n∑

i=1
δi(π̂−1

1,i−1)
{

exp(bT
i λ̂)(yi − bT

i β̂) − hT
i κ̂

}[
∂

∂φ
logit

{
π

(0)
1 (xi;φ)

} ∣∣∣
φ=φ̂

]
= 0,

(4.7)
where π̂1,i = π

(0)
1 (xi; φ̂).
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In (4.6), η(x, y, δ) is called the influence function of θ̂APSW (Tsiatis, 2006).
Note that we can obtain

E {η(X, Y, δ)} = E {δω(X;φ∗,λ∗)Y } − θ

+ E
[
{1 − δω(X;φ∗,λ∗)}bT(X)β∗

]
+ E

[{
1 − δ

π
(0)
1 (X;φ∗)

}
hT(X)κ∗

]
,

where the second term is equal to zero by the definition of λ∗ and the third
term is equal to zero by the definition of φ∗. If the outcome regression model is
correctly specified, we have

E {δω(X;φ∗,λ∗)Y } = E
{
δω(X;φ∗,λ∗)bT(X)β∗}

= E
{
bT(X)β∗} = E(Y ),

where the second equality follows from the definition of λ∗. Furthermore, the
correct specification of the outcome regression model gives κ∗ = 0. Thus, we can
summarize the asymptotic result in the outcome regression model as follows.

Corollary 4.1. Suppose that the regularity conditions in Theorem 4.1 hold and
the outcome regression model is correctly specified. Then,

√
n
(
θ̂APSW − θ

)
L−→ N(0, VOR), (4.8)

where

VOR = var {E(Y | X)} + E
[
δ{ω(X;φ∗,λ∗)}2 var (Y | X)

]
. (4.9)

Now, consider the case where the propensity score model is correctly specified.
In this case, we obtain λ∗ = 0 and π

(0)
1 (x;φ∗) = P (δ = 1 | x). Thus,

E {δω(X;φ∗,λ∗)Y } = E
[
P (δ = 1 | X){π(0)

1 (X;φ∗)}−1Y
]

= E(Y ).

Therefore, we can obtain the following result.

Corollary 4.2. Suppose that the regularity conditions in Theorem 4.1 hold and
the propensity score model is correctly specified. Then,

√
n
(
θ̂APSW − θ

)
L−→ N(0, VPS), (4.10)

where

VPS = var (Y ) + E

[{
1

π1(X) − 1
}
{Y − bT(X)β∗ − hT(X)κ∗}2

]

and π1(X) = P (δ = 1 | X).
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Thus, the efficiency gain using the estimated propensity score function over
the true one is visible only when the PS model is true but the OR model is
incorrect.

If the two models, the OR model and the PS model, are correctly specified,
then the two variance forms are equal to

var {η(X, Y, δ)} = var {E(Y | X)} + E
[
{P (δ = 1 | X)}−1 var (Y | X)

]
,

which is equal to the lower bound of the semiparametric efficient estimator
considered in Robins, Rotnitzky and Zhao (1994). The influence function in
(4.6) can also be used to develop the linearized variance estimation formula for
θ̂APSW regardless of whether the outcome regression model or the propensity
score model holds.

In summary, the influence function in (4.6) can be reduced to the following
limits under each model as follows:

Correct OR:

η(xi, yi, δi)

Correct RP:

= δi ω
∗
i︸︷︷︸⏐⏐⏐&

π−1
1,i

yi − θ + (1 − δi ω
∗
i︸︷︷︸⏐⏐⏐&

π−1
1,i

)bT
i

β'⏐⏐⏐︷︸︸︷
β∗ + (1 − δi/π

(0)
1,i (φ

∗)︸ ︷︷ ︸⏐⏐⏐&
π1,i

)hT
i

0'⏐⏐⏐︷︸︸︷
κ∗ ,

(4.11)
where π1,i = P (δ = 1 | xi), the upward arrows point to the limits under the
correct OR model and the downward arrows points to the limits under the
correct RP model.

In the next section, we address how to obtain the robust propensity score
weighting estimator against model misspecification of the propensity score model
and outliers in the outcome regression model.

5. Adding outlier-robustness

In many real cases, outliers exist in addition to missingness. In this case, impos-
ing robustness against outliers is an important practical problem. This section
discusses how to allow robust inference against outliers in the outcome variable
in the context of doubly robust estimator. In the presence of outliers, one may
use the heavy-tailed distribution (e.g. t-distribution) (Lange, Little and Taylor,
1989) to allow robust inference against outliers. However, it is not straightfor-
ward to extend the indirect model calibration condition to the t-distribution.

Basu et al. (1998) introduced the density power divergence as a generaliza-
tion of Kullback-Leibler divergence to expand the class of statistical models by
introducing an additional scale parameter γ. Density power divergence is also
called γ-power divergence (Eguchi, 2021). We can use the γ-power divergence
to develop an outlier robust imputation method. Specifically, we employ the
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following M -estimator to handle the misspecification of the propensity score
model. Define

Qγ(β | λ) =
n∑

i=1
δi(d̂i − 1)Ψγ

(
yi − bT

i β
)
gi(λ), (5.1)

where Ψγ is an objective function that reduces the effect of outliers, and gi =
exp(bT

i λ) is the adjustment term to achieve the self-efficiency. Thus, under some
suitable choice of Ψγ , the resulting estimator is not only doubly robust, but also
outlier-robust. Note that the Huber-type loss function could be used in (5.1), but
it is computationally less attractive as the Huber loss function is non-smooth.

To incorporate the γ-divergence, we now consider the following minimization
problem,

arg min
(β,σ2)

Qγ(β;σ2 | λ)

= −(2πσ2)−
γ

1+γ

n∑
i=1

δi(d̂i − 1) exp
{
− γ

2σ2 (yi − bT
i β)2

}
gi(λ). (5.2)

That is, in (5.1), we use

Ψγ (x) = −(2πσ2)−
γ

1+γ exp
{
− γ

2σ2x
2
}
. (5.3)

As a result, the optimization problem (5.2) can be solved by the
iterated reweighted least squares method. That is, we use

n∑
i=1

δi
(
yi − bT

i β
)
(d̂i − 1)gi(λ)qγ,i(β, σ2)bi = 0 (5.4)

n∑
i=1

δi

{(
yi − bT

i β
)2 − σ2

1 + γ

}
(d̂i − 1)gi(λ)qγ,i(β, σ2) = 0 (5.5)

to estimate β and σ2 for given λ, where

qγ,i(β, σ2) = exp{−0.5γσ−2(yi − bT
i β)2}. (5.6)

Note that during the iterative reweighted least squares estimation procedure,
if |yi − bT

i β̂| 
 0, then the effect of the i-th subject for the estimation of β will
be greatly mitigated as ŵγ,i will be smaller, indicating the robustness of our
proposed method. The parameter γ > 0 plays the role of the tuning parameter
for robust estimation. As the value of γ increases, the estimator becomes more
robust but less efficient.

Let β̂q and σ̂2
q be the solution to the above estimating equations, (5.4) and

(5.5). Further, let q̂γ,i = qγ,i(β̂q, σ̂
2
q ). We can construct robust imputation with

ŷi = bT
i β̂q easily. Furthermore, we can use the robust imputation to construct
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robust propensity score weights with calibration constraints. Specifically, by
(5.4), we can obtain

n∑
i=1

δi

(
yi − bT

i β̂q

)
bi(d̂i − 1)gi(λ̂)q̂γ,i = 0. (5.7)

In a similar fashion of derivation for Lemma 2.2, it yields that
n∑

i=1
{δiyi + (1 − δi)ŷi} =

n∑
i=1

δiω̂γ,iyi, (5.8)

where ŷi = bT
i β̂q and

ωγ,i(xi;λ,β, σ2, φ̂) = 1 + (di(φ̂) − 1)gi(λ)qγ,i(β, σ2). (5.9)

Note that (5.8) is the self-efficiency of the propensity score weights in (5.9). The
final PS weights satisfy

n∑
i=1

δiω̂γ,ibi =
n∑

i=1
bi. (5.10)

Thus, for given q̂γ,i’s, we can compute λ̂ from calibration constraints in (5.10).
That is, we can treat (5.4), (5.5), and (5.10) as the estimating equations for
β, σ2 and λ. Note that (5.9) is equivalent to (3.9) for qγ,i = 1. The additional
factor qγ,i(β, σ2) controls the effect of outliers in the final weighting.

Let β∗ and σ∗2 be the probability limits of β̂q and σ̂2
q , respectively. The

following theorem presents the Taylor linearization for our proposed estimator
in (5.8).

Theorem 5.1. Let θ̂APSW,γ = n−1 ∑n
i=1 δiω̂γ,iyi be the propensity score weight-

ing estimator under the augmented propensity score model in (3.8) with φ̂ and
λ̂ satisfying (4.1) and (5.7), β̂q and σ̂2

q minimizing (5.2) respectively. Under the
regularity conditions described in the Appendix, we have

θ̂APSW,γ − θ = 1
n

n∑
i=1

ηγ(xi, yi, δi) + op(n−1/2), (5.11)

where

ηγ(xi, yi, δi) = bT
i μ− θ + δiω

∗
γ,i(yi − bT

i μ
∗) + {1 − δidi(φ∗)}κ∗Th(xi;φ∗)

+ δi{ω∗
γ,i − 1}(yi − bT

i β
∗)bT

i ζ
∗

+ δi{ω∗
γ,i − 1}(yi − bT

i β
∗)2ν∗

{
(yi − bT

i β
∗)2 − σ∗2/(1 + γ)

}
,

(5.12)

where ω∗
γ,i = ωγ,i(xi;λ∗,β∗, σ∗2,φ∗) and μ∗, κ∗, ν∗, ζ� are the probability

limits of the solutions for the equations presented in the Appendix.
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Note that the first line and the last line has the same structure as in (4.6)
of Theorem 4.1. The other two lines are the additional part of the influence
functions that reflect the effect of the gamma-divergence model. Specifically,
the second line reflects the estimation effect of β̂q, and the third line reflects the
estimation effect of σ̂2

q .
Regarding the choice of the tuning parameter γ, we can use cross-validation

to choose the optimal γ. Specifically, we can randomly partition the sample into
K-groups (S1, · · · , SK) and then compute

MSPE(γ) =
K∑

k=1

∑
i∈Sk

δi

{
yi − ŷ

(−k)
i (γ)

}2

where ŷ
(−k)
i (γ) = bT

i β̂
(−k)
q and β̂

(−k)
q is obtained by solving the same estimation

formula using the sample in Sc
k. The minimizer of MSPE(γ) can be used as the

optimal value of the tuning parameter. Furthermore, instead of cross-validation,
we can use other approximation-based methods (Sugasawa and Yonekura, 2021;
Basak, Basu and Jones, 2020) that are computationally less expensive. As we
can find in our simulation study in Section 6, the optimal choice of γ is not
critical. The simulation result shows similar performances for different values of
γ.

For variance estimation, we can use the influence function in (5.12) to con-
struct a linearization variance estimator. Specifically, the linearization variance
estimator for θ̂APSW,γ for a given γ is

V̂(θ̂APSW,γ) = 1
n(n− 1)

n∑
i=1

(η̂γ(xi, yi, δi) − η̄γ)2, (5.13)

where

η̂γ(xi, yi, δi)

= bT
i μ̂ + δiω̂γ,i(yi − bT

i μ̂) +
{

1 − δidi(φ̂)
}
κ̂Th(xi; φ̂)

+ δi{ω̂γ,i − 1}(yi − bT
i β̂q)bT

i ζ̂

+ δi{ω̂γ,i − 1}(yi − bT
i β̂q)2ν̂

{
(yi − bT

i β̂q)2 − σ̂2
q/(1 + γ)

}
, (5.14)

ω̂γ,i = ωγ,i(xi; λ̂, β̂q, σ̂
2
q , φ̂) and

η̄γ = 1
n

n∑
i=1

η̂γ(xi, yi, δi).

Note that β̂q, σ̂2
q and λ̂ are estimated from (5.4), (5.5) and (5.10), μ̂, κ̂, ν̂ and ζ̂

can be estimated from the procedure listed in the Appendix. A flowchart of the
inference procedure for the robust augmented PSW estimator is presented in
Fig 2, where the equations (E.2) and (E.6) are estimating equations presented
in Appendix E.
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Fig 2. Illustration of the inference procedure for the robust augmented PSW estimator.

6. Empirical studies

6.1. Simulation study

We examine the performance of proposed methods under various propensity
score models. Let X = (X1, X2, X3, X4, X5)T, where X ∼ N(0, I5×5) follow
the standard multivariate normal distribution. The simulation experiment can
be described as a 2 × 2 factorial design with two factors. The sample size is
100 and the Monte Carlo sample size is 1, 000. The first factor is the outcome
regression model (OM1, OM2) and the second factor is the propensity score
model (PM1, PM2).

The models for generating Y are described as follows: OM1, where Y | X
follows a normal distribution with mean E(Y | X) = 1 + X1 + X2 + X3 +
X4 +X5 and variance 1; OM2, where Y | X follows a normal distribution with
E(Y | X) = 1 + 0.25{cos(3πX1) + 1}X3

2 + 0.25{sin(3πX4)− 1}X3
3 + cos(3πX5)

and variance 1. For calibration, we use b(X) = (1, X1, X2, X3, X4, X5)T as
the calibration variable. Thus, the implicit model calibration using b(X) =
(1, X1, X2, X3, X4, X5)T is justified under the OM1 outcome model, but it is
incorrectly specified under the OM2 outcome model. In addition, the models for
generating δ can be described as follows: PM1, where δ | X follows Bernoulli
distribution with logit{P (δ = 1 | X)} = φ0 + 0.25X1 + 0.25X2 + 0.25X3 +
0.25X4 +0.25X5, where φ0 is chosen to achieve 60% response rates; PM2, where
δ | X follows the Bernoulli distribution with P (δ = 1 | X) = 0.8 if a+X1+X2 >
0, and P (δ = 1 | X) = 0.4 otherwise, where a is chosen to achieve 60% response
rates. Further, we use

logit
{
π

(0)
1 (X;φ)

}
= φ0 + φ1X1 + φ2X2 + φ3X3 + φ4X4 + φ5X5. (6.1)

as the working model for the propensity score function, where logit(x) = log{x/
(1 − x)}. Thus, the working propensity score model is correctly specified under
PM1 only.

For each sample, we compute the following propensity score estimators.
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(i) Mean of the complete cases (CC): θ̂CC = n−1
1

∑n
i=1 δiYi, that is, mean of

observed Yi’s, where n1 =
∑n

i=1 δi.
(ii) Maximum likelihood estimation (MLE): the classical propensity score esti-

mator θ̂PSW = n−1 ∑n
i=1 δid̂iYi using d̂i = 1/π(0)

1 (Xi; φ̂) as the estimated
propensity score weight, where φ̂ is the maximum likelihood estimate of
φ from the working propensity score model in (6.1).

(iii) Entropy balancing method in Hainmueller (2012): θ̂HM = n−1 ∑n
i=1 δiω̂iYi,

where ω̂i is obtained from (2.7).
(iv) Regularized calibration method in Tan (2019): θ̂Tan =

n−1 ∑n
i=1 δi{π

(0)
1 (Xi; φ̂)}−1Yi, where the logistic regression coefficients

φ̂ are obtained by minimizing 
CAL(φ) =
∑n

i=1[δi exp{−φTf(Xi)} −
(1 − δi)φTf(Xi)], where we take the identity mapping for f(·) in this
simulation.

(v) Augmented propensity score weighting estimator (APS): θ̂APSW =
n−1 ∑n

i=1 δiω̂
∗
i Yi using ω̂∗

i in (3.9).
(vi) Augmented propensity score weighting estimator with γ-divergence

(APSγ): the augmented propensity score weighting estimator in (5.8) us-
ing γ = 0.3, 0.5, 0.7, 1.

Table 1

Bias, standard error (S.E.), root mean square error (RMSE) for estimators comparison
with sample size 100 and Monte Carlo sample 1, 000. All criteria are multiplied by 10. The
errors from outcome models are generated from i.i.d. standard Gaussian distribution. CC:

mean of the complete cases; MLE: maximum likelihood estimation; APS: augmented
propensity score weighting estimator; APSγ : augmented propensity score weighting with

γ-divergence estimator, for γ = 0.3, 0.5, 0.7, 1; HM: entropy balancing method in
Hainmueller (2012); Tan: regularized calibration method in Tan (2019)

MethodModel Criteria CC MLE APS APS0.3 APS0.5 APS0.7 APS1 HM Tan
Bias 4.62 0.04 −0.01 −0.00 −0.02 −0.02 −0.00 −0.01 0.03
S.E. 3.26 3.02 2.77 2.72 2.72 2.75 2.72 2.76 2.77OM1PM1

RMSE 5.65 3.02 2.77 2.72 2.71 2.74 2.72 2.76 2.77
Bias 0.03 −0.02 −0.03 −0.02 −0.01 0.01 −0.03 −0.03 −0.02
S.E. 2.75 2.95 2.78 2.48 2.48 2.47 2.45 2.70 2.69OM2PM1

RMSE 2.75 2.95 2.78 2.48 2.47 2.47 2.45 2.70 2.69
Bias 3.72 −0.54 −0.02 −0.01 −0.05 −0.05 −0.02 −0.03 0.01
S.E. 3.28 3.51 2.76 2.76 2.76 2.71 2.73 2.75 2.75OM1PM2

RMSE 4.96 3.55 2.76 2.76 2.76 2.72 2.73 2.75 2.75
Bias 1.24 −0.61 −0.22 −0.08 −0.03 −0.04 −0.04 −0.26 0.01
S.E. 2.76 4.19 2.93 2.60 2.58 2.59 2.55 2.81 2.83OM2PM2

RMSE 3.03 4.23 2.94 2.60 2.58 2.59 2.54 2.82 2.83

Figure 3 shows the results of the simulation study above, where the dashed
line represents the true parameter θ = E(Y ). Table 1 presents the corresponding
bias, standard error, and root mean square error for each method. Since the
consistency of all estimators is guaranteed under OM1PM1, we can see that all
estimators give similar performances except for the mean of the complete cases
method. However, under OM1PM2, the consistency of the generalized linear
model method is no longer guaranteed, while that of other estimators is still
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Fig 3. Boxplots for estimators comparison with sample size 100 and Monte Carlo sample
1, 000. The errors from outcome models are generated from i.i.d. standard Gaussian distribu-
tion. CC: mean of the complete cases; MLE: maximum likelihood estimation; APS: augmented
propensity score weighting estimator; APSγ : augmented propensity score weighting with γ-
divergence estimator, for γ = 0.3, 0.5, 0.7, 1; HM: entropy balancing method in Hainmueller
(2012); Tan: regularized calibration method in Tan (2019).
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Fig 4. Boxplots for estimators comparison with sample size 100 and Monte Carlo sample
1, 000; 20% of the samples are contaminated with the additive noise that eight times a ran-
dom variable generated from Student’s t distribution with degree freedom of 8. The errors
from outcome models are generated from i.i.d. standard Gaussian distribution. CC: mean of
the complete cases; MLE: maximum likelihood estimation; APS: augmented propensity score
weighting estimator; APSγ : augmented propensity score weighting with γ-divergence esti-
mator, for γ = 0.3, 0.5, 0.7, 1; HM: entropy balancing method in Hainmueller (2012); Tan:
regularized calibration method in Tan (2019).
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Table 2

Bias, standard error (S.E.), root mean square error (RMSE) for estimators comparison
with sample size 100 and Monte Carlo sample 1, 000; 20% of the samples are contaminated

with the additive noise that eight times a random variable generated from Student’s t
distribution with degree freedom of 8. The errors from outcome models are generated from
i.i.d. standard Gaussian distribution. All criteria are multiplied by 10. CC: mean of the
complete cases; MLE: maximum likelihood estimation; APS: augmented propensity score

weighting estimator; APSγ : augmented propensity score weighting with γ-divergence
estimator, for γ = 0.3, 0.5, 0.7, 1; HM: entropy balancing method in Hainmueller (2012);

Tan: regularized calibration method in Tan (2019)

MethodModel Criteria CC MLE APS APS0.3 APS0.5 APS0.7 APS1 HM Tan
Bias 4.62 0.00 −0.05 −0.10 −0.09 −0.14 −0.13 −0.04 0.69
S.E. 6.48 6.62 6.59 4.52 4.46 4.44 4.36 6.51 6.50OM1PM1

RMSE 7.95 6.62 6.59 4.52 4.46 4.44 4.36 6.51 6.53
Bias 0.03 −0.06 −0.06 −0.01 −0.07 −0.01 −0.18 −0.06 −0.05
S.E. 6.11 6.51 6.54 4.45 4.38 4.37 4.21 6.43 6.24OM2PM1

RMSE 6.11 6.51 6.53 4.45 4.37 4.37 4.21 6.42 6.23
Bias 3.66 −0.64 −0.14 −0.07 −0.02 −0.04 0.05 −0.14 0.38
S.E. 6.39 7.43 6.54 4.56 4.62 4.55 4.55 6.45 6.43OM1PM2

RMSE 7.36 7.45 6.54 4.56 4.61 4.55 4.54 6.45 6.44
Bias 1.18 −0.71 −0.34 −0.18 −0.16 −0.13 −0.05 −0.37 0.17
S.E. 6.04 7.67 6.57 4.37 4.39 4.30 4.37 6.44 6.15OM2PM2

RMSE 6.15 7.69 6.58 4.37 4.39 4.30 4.36 6.44 6.15

valid. In OM1PM2, the covariate balancing condition becomes critical, and so
all methods satisfying the covariate balancing will be unbiased. In OM2PM1,
the proposed augmented PSW estimator is still consistent, as the propensity
score model is correctly specified. Our proposed augmented PSW estimator
with γ-divergence has relatively lower root mean square error compared to other
estimators. Our proposed augmented PSW estimator with γ-divergence is biased
in this scenario due to the misspecification of the outcome model, where other
estimators are built under the correct specified response model. In OM2PM2,
our proposed augmented PSW estimator with γ-divergence is robust against
other estimators, with fewer outliers and the smallest root mean square error.

We also investigated the performance of the proposed linearization variance
estimator in (5.13). We computed confidence intervals based on asymptotic nor-
mality. The results are presented in Table 3. The performances are satisfactory
when the ourcome regression model is specified correctly.

In addition, we check the robustness of the augmented propensity score
weighting estimator with γ-divergence against outliers. After the data are gener-
ated under the same 2× 2 factorial design as in the previous simulation setting,
additional noise eight times a random variable generated from Student’s t dis-
tribution with degree freedom of 8 is added to 20% of the observed outcomes.
Again, the sample size is 100 and the Monte Carlo sample size is 1, 000.

Figure 4 shows the performance of various estimators, where the dashed line
represents the true mean of y′is. Table 2 presents the corresponding bias, stan-
dard error, and root mean square error for each method. Compared to other es-
timators, in all four scenarios, our proposed augmented propensity score weight-
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Table 3

Linearized variance estimation for gamma divergence method where the errors are i.i.d.
from standard Gaussian distribution

MethodModel Nominal coverage rate APS0.3 APS0.5 APS0.7 APS1.0
90% 88.5 % 89.3 % 89.0 % 90.4 %OM1RM1 95% 94.2 % 94.5 % 94.4 % 96.0 %
90% 89.2 % 89.8 % 90.6 % 90.3 %OM1RM2 95% 94.5 % 94.8 % 95.2 % 95.1 %

ing estimator with γ-divergence apparently gives the smallest root mean square
error, which validates our robustness claim in Section 5.

6.2. Real data application

We further check our proposed estimators for artificial missingness with real
data from the California API program (http://api.cde.ca.gov/ or survey
package (Lumley, 2010) in R (R Core Team, 2022)). Within the data set, stan-
dardized student tests are performed to calculate the API for California schools.
Specifically, we select the API for year 2000 (api00) as the response variable. For
covariates, we set the API for year 1999 (api99) as X1, the percentage of students
eligible for subsidized meals (meals) as X2, the percentage of English language
learners (ell) as X3, the average level of parental education (avg) as X4, the
percentage of fully qualified teachers (full) as X5, and the number of students
enrolled (enroll) as X6, where the words in parentheses are the abbreviations
for variable names in the dataset. We artificially created the missingness with
the following two response mechanisms: PM3, where δ | X follows the Bernoulli
distribution with logit{P (δ = 1 | X)} = φ0 + 2X1 +X2 + 0.5X3, and φ0 is cho-
sen to achieve the 60% response rates; PM4, where δ | X follows the Bernoulli
distribution with P (δ = 1 | X) = 0.8, if a+2X1 +X2 +X3 +X4 +X5 +X6 > 0,
P (δ = 1 | X) = 0.4 otherwise, and a is chosen to achieve the response rates
60%.

We compare the same estimators as in previous subsections with 1000 Monte
Carlo samples. In particular, the mean of the complete cases method does not
behave well in both cases and will affect the scale of the resultant box plots, so
we do not show its performance. Furthermore, we adopt the MSPE as the 5-fold
cross-validation criterion for the selection strategy of γ, as described in Section 5.
For each Monte Carlo sample, we select the best γ from {0.1, 0.2, . . . , 1} and
denote the corresponding estimator as APSγ . The results are summarized with
box plots in Figure 5, where the dashed line denotes the true population mean.
As we can see, the estimator APSγ always gives the unbiased estimate with a
relatively low root mean square error, outperforming other estimators.

http://api.cde.ca.gov/
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Fig 5. Estimators comparison in real data with 1000 Monte Carlo sample, with artificially
missingness mechanism PM3 and PM4. APS: augmented propensity score weighting estima-
tor; APSγ : augmented propensity score weighting with γ-divergence estimator, where γ is
chosen by the cross-validation method based on MSPE criterion; MLE: maximum likelihood
estimation; HM: entropy balancing method in Hainmueller (2012); Tan: regularized calibra-
tion method in Tan (2019).

7. Application to CEAP data

The Conservation Effects Assessment Project (CEAP) is a program initiated
by the United States Department of Agriculture (USDA) Natural Resources
Conservation Service (NRCS). CEAP collects and analyzes data from various
sources, including field studies, monitoring sites, and modeling, to evaluate the
impact of water and wind erosion. Further details of the CEAP data can be
found in Berg and Yu (2019). The farmer’s interview data together with the
NRI data serve as input to the revised Universal Soil Loss Equation (RUSLE2)
to generate a measure of sheet and rill erosion. In addition, RUSLE2 is also
an advancement of a traditional approximation called the Universal Soil Loss
Equation (USLE). For the CEAP sample, the RUSLE2 suffers from missingness
due to the refusal of the farmer interviewed, while the corresponding USLE is
available.

We are interested in estimating the population mean of RUSLE2 using USLE
as an auxiliary variable for calibration weighting in Arkansas. Specifically, the
total sampled points are 1509 and the fully observed are 406, with observed rate
26.9%. The normal quantile-quantile (Q-Q) plot generated from linear models
based on the complete cases is presented in Sub-figure (a) of Figure 6. By the
normal Q-Q plot, numerous outlier data points are evident, and the residuals
deviate from satisfying the assumption of a normal distribution. Therefore, given
this scenario, we have strong reasons to place greater trust in our suggested
robust approach. The associated mean estimation result is presented in Sub-
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Fig 6. Quantile-quantile plot and mean estimation with 95% confidence band for CEAP data
in Arkansas.

figure (b) of Figure 6, where the confidence 95% confidence intervals for the
APS method is constructed by (4.5) and (4.6) and the APSγ is constructed
by (5.13) and (5.14). In this presentation, our proposed method using gamma
divergence exhibits a narrow 95% confidence interval and yields a low RUSLE2
value.

8. Concluding remarks

We have applied the information projection to obtain an augmented PS model
that allows for doubly robust estimation. We have introduced self-efficiency to
obtain the algebraic equivalence between the PSW estimator and the regression
imputation estimator. In addition, γ-power divergence can be used to obtain
an outlier-robust regression imputation estimator, which can be expressed as a
PSW estimator under self-efficiency. In practice, an efficient and outlier-robust
PSW estimator is very attractive as the existence of outliers can often damage
the efficiency of the result estimator.

The tuning parameter is determined to balance the trade-off between statis-
tical efficiency and robustness against outliers. In the future, further theoretical
investigation on the effect of the choice of parameter γ on the final estimation
will be considered.

There are several directions for further extensions of the proposed method.
The proposed method is directly applicable to the calibration weighting in sur-
vey sampling (Fuller, 2009; Tillé, 2020). Other divergence measures such as
Hellinger divergence (Antoine and Dovonon, 2021) can be also considered in the
information projection.

The proposed method is based on the assumption of missing at random.
Extension to nonignorable nonresponse can also be an interesting research di-
rection. Furthermore, the proposed method can be used for causal inference,
including the estimation of the average treatment effect from observational stud-
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ies (Yang and Ding, 2020; Chen et al., 2021, 2023). Developing tools for causal
inference using the proposed method will be an important extension of this
research.

Appendix A: Proof of Lemma 2.1

If the balancing condition (2.3) holds, then the propensity score weighting esti-
mator can be expressed as

θ̂PSW = 1
n

n∑
i=1

δiωiyi

= 1
n

n∑
i=1

δiωi (mi + εi)

= 1
n

n∑
i=1

δiωimi + 1
n

n∑
i=1

δiωiεi

= 1
n

n∑
i=1

mi + 1
n

n∑
i=1

δiωiεi,

where mi = m(xi;β). Then

θ̂PSW − θ̂com = 1
n

n∑
i=1

(δiωi − 1) εi.

Under the MAR assumption, we can obtain

E
(
θ̂PSW − θ̂com | x1, . . . ,xn, δ

)
= 1

n

n∑
i=1

(δiωi − 1)E(εi | xi) = 0.

Thus, we can conclude that θ̂PSW is unbiased for θ.

Appendix B: Proof of Lemma 2.2

Note that we can express the covariate-balancing condition in (2.3) as
n∑

i=1
(1 − δiωi) bi = 0. (B.1)

Thus, as long as (B.1) is satisfied, we can write

θ̂PSW = n−1
n∑

i=1
δiωiyi + n−1

n∑
i=1

(1 − δiωi) bT
i β

= n−1
n∑

i=1

{
δiyi + (1 − δi)bT

i β
}

+ n−1
n∑

i=1
δi(ωi − 1)(yi − bT

i β)

for any β. Thus, as long as (2.6) hold, we can obtain (2.5).
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Appendix C: Proof of Theorem 4.1

Since λ̂ satisfies (4.2), we can obtain the following equivalence

θ̂APSW = 1
n

n∑
i=1

δiω
∗(xi; φ̂, λ̂)yi −UT

2,n(λ̂ | φ̂)β

= 1
n

n∑
i=1

{
bT
i β + δiω

∗(xi; φ̂, λ̂)(yi − bT
i β)

}
:= θ̂APSW(λ̂;β)

for any β. Now,

∂

∂λ
θ̂APSW(λ;β) = 1

n

n∑
i=1

δi
(
π̂−1

1,i − 1
)
exp

(
bT
i λ

)(
yi − bT

i β
)
bi.

Thus, for the choice of β̂ in (18), we can obtain

E

{
∂

∂λ
θ̂APSW(λ;β∗)

}
= 0.

Thus, the uncertainty associated with λ̂ is asymptotically negligible at β = β∗.
Thus, we obtain

θ̂APSW(λ∗;β∗) = 1
n

n∑
i=1

{
bT
i β

∗ + δiω̂
∗(xi; φ̂,λ∗)(yi − bT

i β
∗)

}
+ op(n−1/2).

(C.1)
Now, to apply Taylor linearization with respect to φ, we define

θ̂�(φ̂;κ) ≡ 1
n

n∑
i=1

{
bT
i β

∗ + δiω̂
∗(xi; φ̂,λ∗)(yi − bT

i β
∗)

}
−UT

1,n(φ̂)κ

= 1
n

n∑
i=1

[
δiyi + (1 − δi)

(
bT
i β

∗ + hT
i κ

)
+δi

(
π̂−1

1,i − 1
){

exp(bT
i λ

∗)(yi − bT
i β

∗) − hT
i κ

}]
.

Thus, we can choose κ∗ to satisfy

E

{
∂

∂φ
θ̂�(φ;κ∗)

∣∣∣
φ=φ∗

}
= 0,

which gives the final linearization form as in (4.5).
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Appendix D: Regularity conditions for Theorem 5.1

Before the statement of regularity conditions for Theorem 5.1, we first define a
few quantities. Let

U3,n(λ,β, σ2 | φ∗) =⎛
⎜⎝

1
n

[∑n
i=1 δi

{
1 + {di(φ∗) − 1}gi(λ)qγ,i(β, σ2)

}
bi −

∑n
i=1 bi

]
1
n

∑n
i=1 δi{di(φ∗) − 1}gi(λ)qγ,i(β, σ2)(yi − bT

i β)bi
1
n

∑n
i=1 δi{di(φ∗) − 1}gi(λ)qγ,i(β, σ2)(yi − bT

i β)2
{

(yi − bT
i β)2 − σ2

1+γ

}
⎞
⎟⎠ .

(D.1)

Further, define

s11 = −
n∑

i=1
δi

{
{di(φ̂) − 1}gi(λ)qγ,i(β, σ2)

}
bib

T
i ,

s12 =
n∑

i=1
δi{di(φ̂) − 1}gi(λ)qγ,i(β, σ2)(yi − bT

i β)bibT
i ,

s13 =
n∑

i=1
δi{di(φ̂) − 1}gi(λ)qγ,i(β, σ2)(yi − bT

i β)2
{

(yi − bT
i β)2 − σ2

1 + γ

}
bi,

s21 = −
n∑

i=1
δi{di(φ̂) − 1}gi(λ)qγ,i(β, σ2)

{ γ

σ2 (yi − bT
i β)

}
bib

T
i ,

s22 =
n∑

i=1
δi{di(φ̂) − 1}gi(λ)qγ,i(β, σ2)

{ γ

σ2 (yi − bT
i β)2 − 1

}
bib

T
i ,

s23 =
n∑

i=1
δi{di(φ̂) − 1}gi(λ)qγ,i(β, σ2)(yi − bT

i β)
{ γ

σ2 (yi − bT
i β)2 − 2

}
bi,

s31 = −
n∑

i=1
δi{di(φ̂) − 1}gi(λ)qγ,i(β, σ2) γ

2(σ2)2 (yi − bT
i β)2bT

i ,

s32 =
n∑

i=1
δi{di(φ̂) − 1}gi(λ)qγ,i(β, σ2) γ

2(σ2)2 (yi − bT
i β)3bT

i ,

s33 =
n∑

i=1
δi{di(φ̂) − 1}gi(λ)qγ,i(β, σ2)

×
[

γ

2(σ2)2 (yi − bT
i β)2

{
(yi − bT

i β)2 − σ2

1 + γ

}
− 1

1 + γ

]
.

Let

Sn(λ,β, σ2 | φ̂) =

⎛
⎝s11 s12 s13
s21 s22 s23
s31 s32 s33

⎞
⎠ .

In addition with the regularity conditions in Theorem 1, we need the following
additional assumptions.
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Assumption D.1. The estimating equation U3,n(λ,β, σ2 | φ∗) = 0 has a
unique solution (λ̂, β̂q, σ̂

2
q ) and there exists a function U3(λ,β, σ2 | φ∗) such that

U3,n(λ,β, σ2 | φ∗) → U3(λ,β, σ2 | φ∗) uniformly as n → ∞ and U3(λ,β, σ2 |
φ∗) = 0 has a unique solution (λ∗,β∗, σ∗2).

Assumption D.2. The limiting function U3(λ,β, σ2 | φ∗) is differentiable
and ∂(λT,βT,σ2)TU3(λ,β, σ2 | φ∗) is continuous on a compact set G3 containing
(λ∗,β∗, σ∗2).

Assumption D.3. The matrix ∂(λT,βT,σ2)TU3(λ,β, σ2 | φ∗) |λ=λ∗,β=β∗,σ2=σ∗2

is non-singular.

Assumption D.4. There exists a function S(φ) such that Sn(λ,β, σ2 | φ∗) →
S(λ,β, σ2 | φ∗) uniformly as n → ∞ and S(λ∗,β∗, σ∗2 | φ∗) is non-singular.

Assumptions D.1 – D.3 are commonly used in estimating equation theory
and also ensure the existence of λ∗, β∗ and σ∗2. Assumption D.4 ensures the
existence of the nuisance parameter μ∗, ζ∗ and ν∗ defined in Theorem 5.1, which
helps us represent the influence function for the proposed robust estimator.

Appendix E: Proof of Theorem 5.1

By the normal equations, we have

θAPSW,γ(λ̂, β̂q, σ̂
2
q | φ̂;μ, ζ, ν)

= 1
n

n∑
i=1

δiωγ,i(xi; λ̂, β̂q, σ̂
2
q , φ̂)yi

− μT

n

[
n∑

i=1
δi

{
1 + {di(φ̂) − 1}gi(λ̂)qγ,i(β̂q, σ̂

2
q )

}
bi −

n∑
i=1

bi

]

+ ζT

n

n∑
i=1

δi{di(φ̂) − 1}gi(λ̂)qγ,i(β̂q, σ̂
2
q )(yi − bT

i β̂q)bi

+ ν

n

n∑
i=1

δi{di(φ̂) − 1}gi(λ̂)qγ,i(β̂q, σ̂
2
q )(yi − bT

i β̂q)2
{

(yi − bT
i β̂q)2 −

σ̂2
q

1 + γ

}

= 1
n

n∑
i=1

bT
i μ + 1

n

n∑
i=1

δiωγ,i(xi; λ̂, β̂q, σ̂
2
q , φ̂)(yi − bT

i μ)

+ ζT

n

n∑
i=1

δi{di(φ̂) − 1}gi(λ̂)qγ,i(β̂q, σ̂
2
q )(yi − bT

i β̂q)bi

+ ν

n

n∑
i=1

δi{di(φ̂) − 1}gi(λ̂)qγ,i(β̂q, σ̂
2
q )(yi − bT

i β̂q)2
{

(yi − bT
i β̂q)2 −

σ̂2
q

1 + γ

}
(E.1)
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for any μ ∈ R
p, ζ ∈ R

p and ν ∈ R. In addition, tedious derivation will lead⎛
⎜⎝

∂
∂λθAPSW,γ(β, σ2,λ | φ̂;μ, ζ, ν)
∂
∂β θAPSW,γ(β, σ2,λ | φ̂;μ, ζ, ν)
∂

∂σ2 θAPSW,γ(β, σ2,λ | φ̂;μ, ζ, ν)

⎞
⎟⎠ = 1

n

⎛
⎝s10 + s11μ + s12ζ + s13ν
s20 + s21μ + s22ζ + s23ν
s30 + s31μ + s32ζ + s33ν

⎞
⎠ (E.2)

where

s10 =
n∑

i=1
δi

{
{di(φ̂) − 1}gi(λ)qγ,i(β, σ2)yi

}
bi,

s20 =
n∑

i=1
δi{di(φ̂) − 1}gi(λ)qγ,i(β, σ2)

{ γ

σ2 (yi − bT
i β)

}
yibi,

s30 =
n∑

i=1
δi{di(φ̂) − 1}gi(λ)qγ,i(β, σ2) γ

2(σ2)2 (yi − bT
i β)2yi,

and other quantities are defined in Appendix D.
Therefore, we can choose μ∗, ζ∗ and ν∗ such that

E

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎝

∂
∂λθAPSW,γ(λ,β, σ2 | φ̂;μ∗, ζ∗, ν∗)
∂
∂β θAPSW,γ(λ,β, σ2 | φ̂;μ∗, ζ∗, ν∗)
∂

∂σ2 θAPSW,γ(λ,β, σ2 | φ̂;μ∗, ζ∗, ν∗)

⎞
⎟⎠

∣∣∣∣∣ λ=λ∗,
β=β∗,
σ2=σ∗2

⎫⎪⎪⎬
⎪⎪⎭ = 0, (E.3)

where ensures that

θAPSW,γ(λ∗,β∗, σ∗2 | φ̂;μ∗, ζ∗, ν∗)

= 1
n

n∑
i=1

bT
i μ

∗ + 1
n

n∑
i=1

δiωγ,i(xi;λ∗,β∗, σ∗2, φ̂)(yi − bT
i μ

∗)

+ ζ∗T

n

n∑
i=1

δi{di(φ̂) − 1}gi(λ∗)qγ,i(β∗, σ∗2)(yi − bT
i β

∗)bi

+ ν∗

n

n∑
i=1

δi{di(φ̂) − 1}gi(λ∗)qγ,i(β∗, σ∗2)(yi − bT
i β

∗)2
{

(yi−bT
i β

∗)2− σ∗2

1 + γ

}
= θAPSW,γ(λ̂, β̂q, σ̂

2
q , φ̂) + op(n−1/2). (E.4)

Finally, we have

θAPSW,γ(φ̂ | λ∗,β∗, σ∗2;μ∗, ζ∗, ν∗,κ)

= 1
n

n∑
i=1

bT
i μ

∗ + 1
n

n∑
i=1

δiωγ,i(xi;λ∗,β∗, σ∗2, φ̂)(yi − bT
i μ

∗)

+ ζ∗T

n

n∑
i=1

δi{di(φ̂) − 1}gi(λ∗)qγ,i(β∗, σ∗2)(yi − bT
i β

∗)bi
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+ ν∗

n

n∑
i=1

δi{di(φ̂) − 1}gi(λ∗)qγ,i(β∗, σ∗2)(yi − bT
i β

∗)2
{

(yi−bT
i β

∗)2− σ∗2

1 + γ

}
−UT

1,n(φ̂)κ (E.5)

holds for any ζ ∈ R
p. Apparently,

∂

∂φ
θAPSW,γ(φ | λ∗,β∗, σ∗2;μ∗, ζ∗, ν∗,κ)

= − 1
n

n∑
i=1

δid
2
i (φ)gi(λ)qγ,i(β∗, σ∗2)(yi − bT

i μ
∗) ∂

∂φ
π

(0)
1 (xi,φ)

− 1
n

n∑
i=1

δid
2
i (φ)gi(λ)qγ,i(β∗, σ∗2)(yi − bT

i β
∗)(ζ∗Tbi)

∂

∂φ
π

(0)
1 (xi,φ)

− ν∗

n

n∑
i=1

δid
2
i (φ)gi(λ)qγ,i(β∗, σ∗2)(yi − bT

i β
∗)2

×
{

(yi − bT
i β

∗)2 − σ∗2

1 + γ

}
∂

∂φ
π

(0)
1 (xi,φ)

− 1
n

n∑
i=1

[
{δidi(φ) − 1}

{
∂h(xi;φ)

∂φ

}T

− δid
2
i (φ)∂π

(0)
1 (xi,φ)
∂φ

hT(xi;φ)
]
κ.

(E.6)

As long as we choose κ∗ such that

E

{
∂

∂φ
θAPSW,γ(φ | λ∗,β∗, σ∗2;μ∗, ζ∗, ν∗,κ∗)

∣∣∣∣
φ=φ∗

}
= 0, (E.7)

the linearization form is attained.
In a nutshell, we can derive estimates for μ̂, ζ̂, ν̂, and κ̂ by solving the

estimation equations, which result from equating the formula in (E.2) to 0 and
that in (E.6) to 0.

Appendix F: Computational complexity

The main computation involved in our proposed method is solving the estimat-
ing equation. We apply the Newton-Raphson algorithm to solve the estimating
equation. For each step, the computational complexity is O(N3), where N is the
length of root. Recall that λ ∈ R

L+1 and φ ∈ R
p. By the flowchart 1 in Fig 2

in our revised manuscript, in each iteration, the computational complexity for
the augmented PSW estimator is O(nmax{p + L} + p3 + L3), where the first
term is the complexity to compute the estimating equation and the last two
terms are the complexity to solve the estimating equation. Therefore, suppose
we set K as the maximum iterations for the Newton-Raphson method, the final
computational complexity is O(K(nmax{p+L}+p3+L3)). In a similar fashion,
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the computational complexity for the robust augmented PSW estimator is also
O(K(nmax{p + L} + p3 + L3)). As a result, the computational complexity is
linear in n.
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