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1. Introduction

1.1. Problem statement

We consider the following high-dimensional univariate Gaussian linear regression
model:

Y = Xβ∗ + ε. (1.1)



2888 P. Lacroix and M.-L. Martin

The random response vector Y =
(
(Yi){1≤i≤n}

)T
∈ Rn is regressed on p de-

terministic vectors: X1 =
(
(xi1){1≤i≤n}

)T
, . . . , Xp =

(
(xip){1≤i≤n}

)T
. The de-

sign matrix of size n × p is denoted by X = (X1, . . . , Xp). The noise ε =(
(εi){1≤i≤n}

)T
is assumed to be Gaussian: ε ∼ N (0, σ2In) with σ2 > 0. In the

high-dimensional context, additional assumptions of regularity are required and
we assume that β∗ is sparse, meaning that only a few coefficients are non-zero.
In the following, a variable Xj corresponding to a non-zero coefficient β∗

j is
called an active variable. Otherwise the variable is said to be non-active.

In this paper, we are interested in variable selection. We refer the reader to
[30] and references therein. To the best of our knowledge, some variable selection
procedures focus on the prediction of the response variable Y through a control
of the predictive risk. Others focus on limiting the number of selected non-
active variables through a control of the False Discovery Rate. There also exists
procedures where several cost functions are considered simultaneously. In the
line of the latter, our goal is to identify a set of variables from a model selection
procedure by limiting the selection of non-active variables while maintaining
accurate prediction performances.

1.2. Related works

In a variable selection procedure, a cost function has to be defined. The predic-
tive risk (PR) and the False Discovery Rate (FDR) are the common used cost
functions.

The penalized methods to control the predictive risk The penalization
procedure balances goodness of fit and sparsity: the smaller the penalty function,
the better the fitting to the data but the higher the number of selected variables.
In a high-dimensional setup, the most popular method is the Lasso criterion [51]
where the estimator β̂λ of β∗ is the solution of:

β̂λ = arg min
β∈Rp

{
||Y −Xβ||22 + λ|β|1

}
, (1.2)

where | · |1 and || · ||2 denote the �1-norm and the euclidean norm of a vector
respectively. The main challenge is to calibrate the hyperparameter λ > 0. If
λ is chosen to be proportional to σ

√
log(p)

n , then the predictive risk is bounded
[19, 18]. However, the noise being usually unknown, the choice of λ remains
tricky. Therefore, an alternative is to solve the Lasso criterion for a λ within
a reasonable interval by using subsamples [43] or resamples [5]. The selected
variables are then defined as the variables with the highest selection frequencies.
Such alternative is no longer sensitive to the choice of λ but the main challenge
lies in the threshold on the frequency defining the selected variables.

In this paper, we consider a model selection procedure composed of three
steps. The first step consists of solving the Lasso criterion on a relevant grid Λ.
Each λ ∈ Λ defines a variable subset to get a collection M of relevant subsets
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of variables with a wide range of sizes. In the second step, the least-squares
estimator onto each variable subset of M is calculated leading to a collection of
estimators

(
β̂m

)
m∈M

. Lastly, the following penalized least-squares minimiza-
tion is solved to select the best m of M:

m̂ = arg min
m∈M

{
||Y −Xβ̂m||22 + pen(Dm)

}
, (1.3)

where Dm is the dimension of the model m and the function pen is a penalty
function increasing with Dm.

Selecting m̂ from M by minimizing (1.3) corresponds to selecting λ̂ from Λ by
minimizing (1.2). Hence, the main challenge is the definition of pen that achieves
an optimal trade-off between goodness of fit and sparsity within M. Popular
methods of model selection include V− fold cross-validation [24, 4], AIC [2], Cp-
Mallows [42], BIC [45] and eBIC [20]. For these penalty functions, the predictive
risk is bounded when σ2 is known and when the sample size n tends to infinity.
When n is fixed, relatively small, and possibly smaller than the dimension p, a
non-asymptotic point of view is preferable to get properties for all couples of
(n, p). In this direction, [14] propose some penalty functions depending on the
collection complexity such that m̂ guarantees non-asymptotic optimal control
of the predictive risk. If the model collection is nested with a known variance,
pen(Dm) = 2σ2Dm allows to achieve an optimal non-asymptotic control of
the predictive risk [2]. If the model collection is fixed and large (for instance
with an exponential growth with Dm) and if the variance is unknown, this
optimal control is obtained with data-driven penalties [14, 8]. Lastly, if the model
collection is data-dependent and if the variance σ2 is unknown, the LinSelect
penalty [6, 27] guarantees an optimal control of the predictive risk.

Multiple testing methods to control the False Discovery Rate In the
multiple testing procedure, the p tests H0 = {β∗

j = 0} versus H1 = {β∗
j �= 0}

are performed independently to get a list of p-values. Variables associated with
a p-value smaller than a threshold are selected and the challenge is to find this
threshold to obtain an upper bound on a function of the number of selected
non-active variables. Several methods control the Family-Wise Error (FWER)
which is the probability of selecting at least one non-active variable [16, 47].
However, these methods tend to be conservative, leading to a tiny set of selected
variables. An alternative is to control the FDR which is the expectation of the
proportion of non-active variables among the selected ones. The authors of [9]
first provide a threshold assuming independence of the p-values. This hypothesis
is then relaxed in [10, 49, 44, 39].

Instead of considering the p-values, the knockoff filter method [7] introduces
copies of the columns of X constructed to function as non-active variables to
calibrate a threshold on test statistics.

The simultaneous control of several cost functions Controlling PR or
FDR is commonly performed independently in the literature and yield different
sets of selected variables. For a PR control, selected variables aim at correctly
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predicting a new observation of Y , without guaranteeing that the set of selected
variables does not contain non-active variables. Conversely, when the cost func-
tion is the FDR, the number of non-active variables is controlled at the price
that some active variables are not selected.

Therefore, recent works have been proposed to combine prediction and FDR
approaches to select all active variables without selecting non-active ones. For
instance, [54] propose a multi-step algorithm where a threshold procedure is
applied to some Lasso estimators computed for specific values of λ. In addi-
tion to prediction performances, a consistency property on the selected variable
set is satisfied under some conditions on X. Another idea is the post-selection
inference [11, 38] where the principle is to test the relevance of each selected
variable by a model selection procedure. Valid confidence intervals are provided
from conditional hypothesis tests for each model of the collection in addition to
a PR control. Their work has been generalized by [32, 21, 22] and a review can
be found in [53].

In a completely different direction, [25, 26] propose to control the False Neg-
ative Rate (FNR) in addition to the FDR. A good FNR control ensures that
most of the active variables are selected. So, minimizing a weighted sum of FDR
and FNR provide a set of variables close to the set of active variables. However,
improving FDR control deteriorates FNR control and vice versa. Hence, optimal
controls of both criteria are impossible to achieve.

Some other papers propose to combine the FDR with the PR. Additional
motivation to consider the PR is its behavior between the learning phase and
the over-fitting phase. In the learning phase, the addition of a variable in the
selected set drastically reduces the PR, whereas in the over-fitting phase, it
increases proportionally to the noise level. Firstly, in the standard multivariate
normal mean problem with a known variance, [1] propose a penalty function
in the model selection procedure built from a multiple testing procedure. They
obtain simultaneously sharp asymptotic bounds of the FDR and the PR. Then,
[15] propose the Sorted �1 penalized estimator (SLOPE) which is the minimizer
of the Lasso criterion (1.2) where λ is replaced by a p-vector built from a multiple
testing procedure. For the orthogonal design, their approach achieves a non-
asymptotic control of the FDR and satisfies a minimum value of the total mean
squared error with minimax convergence rate [50]. This asymptotic convergence
of the FDR has been generalized under a wide range of hypotheses, for instance,
for a random design in [34].

Ordered variable selection The ordered variable framework has attracted
much attention recently, especially to address high-dimensional problems. In
literature, a large class of methods exists dealing with variables having a natural
ranking: [12] for the regression framework, [40] with the nested lasso penalty
and [31] for covariance matrix estimation. This assumption allows for drastically
reducing the estimation complexity. We develop our theoretical framework under
this assumption. It can be applied to data sets where the assumption that an
ordering of the variables is available a priori (e.g., from suitable forms of prior
knowledge) is appropriate.
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However, in most applications, no canonical ranking of the variables is avail-
able and having a natural order on variables becomes a strong assumption. In
this case, alternatives consist of proposing a candidate order from random pro-
cedures and applying theoretical statistical methods on top of these random
variable rankings. Several approaches have been proposed in the literature to
provide such rankings. The most used ones are based either on a regularization
path which is built with the Lasso type equation solving [51] or on a decision
tree [41]. However, these approaches suffer from instability in that a small mod-
ification of the initial sample could radically change the variable order [33]. To
circumvent this instability problem, one solution is to add a sampling procedure
like the bootstrap [17]. We adopt this point of view in this article to generalize
our theoretical results to non-ordered variable selection.

1.3. Main contributions

The originality of this paper is to obtain a control of the FDR in addition to the
PR control in model selection through a convenient calibration of the penalty.

We assume variables are ranked according to their importance for the re-
sponse variable Y ; X1 being the most important one and Xp being the least
important one. In Gaussian linear regression, the order is given by the partial
correlation between Y and each Xj . A natural model collection is the one con-
taining the nested models respecting the variable order. This framework sounds
restrictive but allows to derive theoretical expressions of the FDR in the con-
sidered model selection procedure. According to [14], all the penalty functions
defined by:

pen(Dm) = Kσ2Dm, ∀m ∈ M, (1.4)

provide a non-asymptotic control of the PR for K > 1 when variables are ranked.
Theoretical bounds on the FDR in model selection: Although the

model selection procedure is built for a PR control, we obtain non-asymptotic
lower and upper bounds on the FDR with respect to K > 0 when σ2 is known.
We show that these bounds only involve some evaluations of cumulative distri-
bution functions of the standard Gaussian and of some chi-squared variables.
Whatever the noise level, FDR is always strictly positive. When K tends to
infinity, the FDR converges to 0 with an exponential rate. So, a low value of the
FDR is satisfactory as soon as the value of K is not too large.

Calibration of the hyperparameter K: The obtained theoretical bounds
depend on the parameters β∗ and σ2. We replace them with estimators to obtain
completely data-dependent bounds on the FDR. Then, we propose a calibration
of the hyperparameter K to control a trade-off between FDR and PR. Our
algorithm is validated on an extensive simulation study and is compared with
several existing variable selection procedures.

Towards a non-ordering variable selection: From a practical point of
view, a crucial assumption of this work is the knowledge of the variable ranking.
We investigate empirically an extension in which the variable ordering is not
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given beforehand but estimated using a data-driven procedure to build random
model collections.

1.4. Outline of the paper

The rest of the paper is organized as follows. Section 2 introduces the Gaus-
sian linear regression model and some notations. Section 3 contains theoretical
results. Since an increase of the hyperparameter K leads to a decrease of the
FDR, it motivates the study of the FDR function in model selection with re-
spect to K. As the FDR has an intractable expression, bounds are obtained
when the variable order and the variance are known. We establish an expo-
nential convergence rate of the FDR function when K tends to infinity. The
special case of orthogonal design matrix is studied to illustrate the main re-
sults. In Section 4, an algorithm is proposed to calibrate the hyperparameter
K in the penalty function to achieve a suitable trade-off between FDR and PR
controls. It is based on simultaneous evaluations of the prediction performance
and the FDR of the models, which are calculated from properly chosen esti-
mators of σ2 and β∗. We then present a study to generalize our procedure to
non-ordered variable selection and we compare our algorithm with some existing
variable selection procedures. Section 5 contains a conclusion and a discussion
of prospective work. In Section 6, proofs of all the theoretical results are pro-
vided. Lastly, the simulation protocol considered in this paper is described in
Section 7.

2. Model and notations

Let us consider the Gaussian linear regression model given in (1.1). We define
q = min(n, p) and assume that (X1, . . . , Xq) is a family of linearly independent
vectors. We consider the deterministic and nested model collection of linear
spaces:

M =
{
m0 = {0},m1 = Span(X1), . . . ,mq = Span(X1, X2, . . . , Xq)

}
. (2.1)

By construction, the true model m∗ = Span
(
Xj , j s.t. β∗

j �= 0
)

belongs to M.
For each m ∈ M, Dm is the dimension of m and β̂m is the least-squares

estimator onto m:
β̂m = arg min

{β,Xβ∈m}

{
||Y −Xβ||22

}
.

With the definition of q and properties on the family (X1, . . . , Xq), β̂m is unique
for each m ∈ M.

For all K > 0, we define the function critK on M as:

critK(m) = ||Y −Xβ̂m||22 + Kσ2Dm,
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and the selected model m̂(K) by:

m̂(K) = arg min
m∈M

{
critK(m)

}
. (2.2)

We define PR(m) the predictive risk associated to the model m ∈ M by:

PR(m) = E

[
||Y −Xβ̂m||22

]
, (2.3)

where E denotes the expectation under the distribution of Y satisfying (1.1).
We define successively FP (m) the number of variables contained in m but not
in m∗, the false discovery proportion by:

FDP(m) = FP(m)
max(Dm, 1) ;

and the False Discovery Rate by:

FDR(m) = E

[
FDP(m)

]
,

where E still denotes the expectation under the distribution of Y satisfying (1.1),
so that FDR(m) is deterministic even in the case where m is random.

Finally, the notation 〈., .〉 denotes the canonical scalar product in Rn, ΠX
denotes the orthogonal projection function onto the space X , Φ denotes the
standard Gaussian cumulative distribution function and Fχ2(k) is the cumulative
distribution function of a chi-squared variable with k degrees of freedom. By
convention, an intersection or an union from indices k to � with k > � are the
intersection or the union over an empty set. In the same way, the set {k, . . . , �}
is empty if k > �.

3. Main results

In this section, the variance σ2 is supposed to be known. We first present in-
tuitions that lead to study FDR(m̂(K)) in model selection. Non-asymptotic
bounds on FDR(m̂(K)) are obtained in Theorem 3.2, as well as asymptotic be-
haviors when K tends to infinity in Corollary 3.4. Finally, the particular case
where X is the orthogonal design matrix is studied to illustrate the main results.

3.1. Intuitions

According to [14], the penalty function (1.4) satisfies a non-asymptotic control
of the PR if and only if K > 1. The constant K = 2 allows to achieve the optimal
asymptotic control of the PR. Hence, 2 is commonly chosen in practice but other
values of K close to 2 can give identical if not better non-asymptotic prediction
performances. In this direction, we propose to calibrate the hyperparameter
K among those leading to prediction performances close to or better than for
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Fig 1. Curves of the empirical values of FDR
(
m̂(K)

)
and PR

(
m̂(K)

)
for the toy data set

described in Section 7. The vertical lines correspond to K = 3.

Table 1

Values of the empirical estimators of PR(m̂(K)) and FDR(m̂(K)) according to K for the
toy data set described in Section 7.

K 0.1 1 2 3 4 5 6 7 8 9 10
empirical

FDR(m̂(K)) 0.80 0.38 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
empirical

PR(m̂(K)) 2.01 1.55 1.25 1.24 1.25 1.26 1.28 1.30 1.32 1.33 1.36

K = 2 while satisfying a control of the FDR. The calibration is based on both
PR(m̂(K)) and FDR(m̂(K)) functions with respect to K.

We propose an example to illustrate our point and intuition. In Figure 1, we
plot the empirical estimators of PR(m̂(K)) and FDR(m̂(K)) on a regular grid
of positive values of K. Graphs are obtained from the toy data set described in
Section 7 and values are transferred to Table 1. We observe that the empirical
values of PR(m̂(K)) are kept low for K ∈ [2, 4] while the FDR(m̂(K)) function
decreases with K until 0. Here, the choice K = 3 is more judicious than K = 2:
it ensures a stronger and positive control of the FDR while satisfying similar
prediction performances (a FDR of zero is not relevant as it means that no
variable is selected). We also observe that while FDR decreases with K, PR
increases from a certain value of K ≥ 2. To control PR and FDR simultaneously,
the constant K must be close to 2.

Increasing the constant K to limit the non-active variable selection is known
for the asymptotic point of view. Indeed, AIC and Cp-Mallows penalties [2, 42],
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where K equals 2, give asymptotically the best set of variables for prediction per-
formances; while BIC penalty [45], where K is fixed to log(n), exactly recovers
asymptotically the set of active variables. Obtaining the asymptotic properties
of AIC, Cp-Mallows and BIC penalties simultaneously is impossible [52], but it
suggests that a value of K ∈ [2, log(n)] would get reasonable (but not neces-
sarily optimal) values for both PR and FDR in a non-asymptotic framework.
In this way, we propose to study the function FDR

(
m̂(K)

)
in the model selec-

tion procedure (2.2) where the penalty function is (1.4) in the ordered variable
setting.

3.2. Bounds on the FDR in model selection

3.2.1. FDR expression in model selection for ordered variables

Let us assume that K > 0 and critK is injective on M. If D∗
m = q, FDR(m̂(K)) =

0. Otherwise, the FDR(m̂(K)) is expressed within the model selection procedure
as:

FDR(m̂(K)) =
q∑

r=Dm∗+1

r −Dm∗

r
P

({
q
∩
�=0
��=r

{critK(mr) < critK(m�)}
})

. (3.1)

A detailed proof of (3.1) can be found in Subsection 6.1.
By using the decomposition{

r−1
∩
�=0

{critK(mr) < critK(m�)}
}⋂{ q

∩
�=r+1

{critK(mr) < critK(m�)}
}

of the term
q
∩
�=0
��=r

{critK(mr) < critK(m�)}, we obtain the following proposition:

Proposition 3.1. Let us consider the ordered variable framework and the model
collection (2.1) where q = min(n, p), m∗ ∈ M and D∗

m < q. Let us assume that
critK is injective on M. Let (u1, . . . , un) be an orthonormal basis of Rn such
that Span(X1, . . . , Xj) = Span(u1, . . . , uj), ∀j ∈ {1, . . . , q}.

Then, ∀K > 0,

FDR(m̂(K)) =
q∑

r=Dm∗+1

r −Dm∗

r
Pr(K) Qr(K,β∗, σ2), (3.2)

where for each r ∈ {Dm∗ + 1, . . . , q},

Pr(K) = P

(
q
∩

�=r+1

{ �∑
k=r+1

Z2
k < K(�− r)

})
, (3.3)

where Zk
i.i.d.∼ N (0, 1), ∀k ∈ {r + 1, . . . , q},

and Qr(K,β∗, σ2) = P

(
r−1
∩
�=0

{ r∑
k=�+1

〈Y, uk〉2 > Kσ2(r − �)
})

.
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A proof of Proposition 3.1 can be found in Subsection 6.1.

3.2.2. General bounds

In (3.2), the Pr(K) terms do not depend on data. Conversely, the Qr(K,β∗, σ2)
terms depend on the data. Thus, to understand the behavior of the FDR function
with respect to m̂(K), we propose to bound the Qr(K,β∗, σ2) terms in the
following theorem:

Theorem 3.2. Let us consider the ordered variable framework and the model
collection (2.1) where q = min(n, p). Let us suppose that m∗ ∈ M and D∗

m < q.
The notation Φ stands for the standard Gaussian cumulative distribution func-
tion and Fχ2(k) is the cumulative distribution function of a chi-squared variable
with k degrees of freedom. Let us assume that ∀K > 0, critK is injective on M.
Let (u1, . . . , un) be an orthonormal basis of Rn such that Span(X1, . . . , Xj) =
Span(u1, . . . , uj), ∀j ∈ {1, . . . , q}.

Then, ∀K > 0, m̂(K) satisfies:

b(K,β∗, σ2) ≤ FDR(m̂(K)) ≤ B(K,β∗, σ2), (3.4)

where
[
K �→ b(K,β∗, σ2)

]
and
[
K �→ B(K,β∗, σ2)

]
are two real-valued func-

tions on R+ defined by:

b(K,β∗, σ2) =
q∑

r=Dm∗+1

(
r −Dm∗

r
Pr(K) f

r
(K,β∗, σ2)

)
,

B(K,β∗, σ2) =
q∑

r=Dm∗+1

(
r −Dm∗

r
Pr(K) fr(K,β∗, σ2)

)
, (3.5)

where for all K > 0, Pr(K) is defined in (3.3) and

1. for each r ∈ {Dm∗ + 1, . . . , q} and for all � ∈ {1, . . . , r}, f
�
(·, β∗, σ2) is

defined by:

f1(K,β∗, σ2) = G1

f
�
(K,β∗, σ2) = G� + H� f

�−1(K,β∗, σ2), ∀� ∈ {2, . . . , r},

with for � ∈ {1, . . . , Dm∗}:

G� = 2 −
(

Φ
(√

�K − 〈Xβ∗, u�〉
σ

)
+ Φ
(√

�K + 〈Xβ∗, u�〉
σ

))
,

for � ∈ {2, . . . , Dm∗}:

H� = Φ
(√

�K − 〈Xβ∗, u�〉
σ

)
+ Φ
(√

�K + 〈Xβ∗, u�〉
σ

)
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−
(

Φ
(√

K − 〈Xβ∗, u�〉
σ

)
+ Φ
(√

K + 〈Xβ∗, u�〉
σ

))
,

for � ∈ {Dm∗ + 1, . . . , r} :

G� = 2
(

1 − Φ
(√

�K
))

H� = 2
(

Φ
(√

�K
)
− Φ
(√

K
))

,

2. ∀r ∈ {Dm∗ + 1, . . . , q}, fr(·, β∗, σ2) is defined by:

fr(K,β∗, σ2) = 1 − max
(

max
�∈{1,...,r−Dm∗}

(
Fχ2(�)(�K)

)
,

max
�∈{r−Dm∗+1,...,r}

(
Fχ2(�)

(�K
2 −

Dm∗∑
k=r−�+1

〈Xβ∗, uk〉2
σ2

)))
.

A proof of Theorem 3.2 can be found in Subsection 6.2.
Hence, although the model selection procedure is built for prediction perfor-

mances, bounds on the FDR are derived with respect to m̂(K). Terms f
r
(K,β∗,

σ2) and fr(K,β∗, σ2) only involve evaluations of cumulative distribution func-
tions of the standard Gaussian and chi-squared variables. So, they have a fully
explicit form which simplifies the understanding of the behavior of the FDR in
model selection. However, they depend on the unknown parameters β∗ and σ2

for which estimators are proposed in Section 4.1.2.

3.2.3. Strictly positive FDR

The following corollary gives a lower bound on the FDR independent from σ2.

Corollary 3.3. Under the assumptions and definitions of Theorem 3.2, ∀K >
0:

FDR(m̂(K)) ≥
q∑

r=Dm∗+1

(
r −Dm∗

r
Pr(K) 2

√
2

√
π
(√

rK +
√
rK + 4

)e− rK
2

)
> 0.

A proof of Corollary 3.3 can be found in Subsection 6.3.
From Corollary 3.3, FDR(m̂(K)) is always strictly positive, whatever the

values of K > 0 and σ2.

3.2.4. Asymptotic analysis

The following corollary gives the asymptotic behavior of the FDR function in
model selection when K tends to infinity.
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Corollary 3.4. Under the assumptions and the definitions of Theorem 3.2, the
FDR(m̂(K)) function tends to 0 when K tends to infinity and satisfies ∀η > 0,

FDR(m̂(K)) = o
K−→+∞

(
e−K( 1

2−η)
)
. (3.6)

Furthermore, ∀η > 0, ∃Cη > 0, ∃Lη > 0, ∀K > Lη, we have:

FDR(m̂(K)) ≥ Cηe
−K

(
Dm∗+1+2η

2

)
. (3.7)

So, ∀ε > 0,

−Dm∗

2 − 1
2 − ε ≤ lim inf

K−→+∞

1
K

log
(
FDR(m̂(K))

)
lim sup
K−→+∞

1
K

log
(
FDR(m̂(K))

)
≤ −1

2 + ε. (3.8)

A proof of Corollary 3.4 can be found in Subsection 6.4.
From Equation (3.6), FDR(m̂(K)) tends to 0 when K tends to +∞ with

at least an exponential convergence rate and Equation (3.7) suggests that the
exponential convergence rate is optimal.

Remark 3.5. With no signal (β∗ = 0 and Dm∗ = 0), the asymptotic bounds
in (3.8) are −1

2 − ε and −1
2 + ε and consequently:

log
(
FDR(m̂(K))

)
∼

K→+∞
−1

2K.

Remark 3.6. The asymptotic upper and lower bounds (3.6) and (3.7) are sat-
isfied whatever the value of σ2 > 0. It is possible to obtain the following sharpest
asymptotic upper bound: ∀η̃ > 0,

FDR(m̂(K)) = o

(
e
−
(
K

(Dm∗+1−η̃)
4 − 1

2σ2

Dm∗∑
k=1

〈Xβ∗,uk〉2
))

(3.9)

in the asymptotic regime where K −→ +∞ and σ −→ 0 with 1
σ = o

σ−→0
(
√
K).

The reader can find a proof in Subsection 6.4.

3.3. Illustrations of the main result in the orthogonal case

We propose to analyze the particular case where the design matrix X is or-
thogonal since it leads to simplified forms for the FDR bounds that are easy to
calculate.
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Fig 2. Left: curves of the empirical values of FDR(m̂(K)) (red) and of terms b(K, β∗, σ2)
(green) and B(K,β∗, σ2) (blue) for the orthogonal design matrix X for the toy data set
described in Section 7. Right: curves are plotted only for K ≥ 2.

Corollary 3.7 (Application on the orthogonal case). Under assumptions of
Theorem 3.2 and by assuming that (X1, . . . , Xq) are orthonormal with respect
to 〈., .〉, then, ∀K > 0, FDR(m̂(K)) satisfies the same inequalities as (3.4)
where:
for � ∈ {1, . . . , Dm∗}:

G� = 2 −
(

Φ
(√

�K − β∗
�

σ

)
+ Φ
(√

�K + β∗
�

σ

))
,

for � ∈ {2, . . . , Dm∗}:

H� = Φ
(√

�K − β∗
�

σ

)
+ Φ
(√

�K + β∗
�

σ

)
−
(

Φ
(√

K − β∗
�

σ

)
+ Φ
(√

K + β∗
�

σ

))
,

for all r ∈ {Dm∗ + 1, . . . , q}:

fr(K,β∗, σ2) = 1 − max
(

max
�∈{1,...,r−Dm∗}

(
Fχ2(�)(�K)

)
,

max
�∈{r−Dm∗+1,...,r}

(
Fχ2(�)

(�K
2 −

Dm∗∑
k=r−�+1

β∗2
k

σ2

)))
,

and all other terms are the same as those defined in Theorem 3.2.

A proof of Corollary 3.7 can be found in Subsection 6.5.
In Figure 2, we plot the empirical estimation of the FDR(m̂(K)) with the

functions b(K,β∗, σ2) and B(K,β∗, σ2) on a grid of positive K (left) and for
K ≥ 2 (right). Graphs are obtained from the toy data set described in Section 7
where X is orthogonal. The left figure is devoted to illustrate Corollary 3.7. The
FDR values are well smaller than the upper bound values and larger than the
lower bound ones. From the right figure and in accordance with Corollary 3.4,
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the empirical values of FDR(m̂(K)) tend to 0 when K increases and the con-
vergence rate seems to be exponential. Moreover, the curves of b(K,β∗, σ2) and
B(K,β∗, σ2) frame the empirical FDR and the difference between the three
functions becomes quickly negligible for K larger than 2.

4. Trade-off between the PR and the FDR controls

While bounds b(K,β∗, σ2) and B(K,β∗, σ2) are easily understandable and fully
implementable, they depend on β∗, σ2 and D∗

m. These quantities are unknown
in practice. For a practical use, we propose to replace the theoretical bounds
on the FDR as well as the theoretical expression of the PR with observable
quantities (Subsection 4.1). Then, we propose an algorithm to calibrate the
hyperparameter K from the data set such that both PR and FDR are controlled
(Subsection 4.2).

As variables are not usually naturally ranked, we explore the robustness of
our algorithm under perturbations of the correct variable ordering and present
approaches for obtaining a variable ordering in a data-driven manner. Results
are provided in Subsection 4.3. Lastly, our algorithm is compared with some
existing variable selection procedures in Subsection 4.4, in terms of both PR
and FDR.

4.1. Estimation of the unknown quantities appearing in our bounds

For a practical use, we propose a new version of the predictive risk metric to
evaluate the prediction performances of the selected estimator β̂m̂(K). The main
advantage is that our approach does not require splitting the dataset in two sets
(training and validation sets). The key is to compare β̂m̂(K) with β̂m̂(2) which is
the benchmark (Section 4.1.1). As for the theoretical bounds of the FDR, the
unknown parameters β∗, σ2 and Dm∗ have to be estimated. Using the simulation
study, β∗ is estimated by β̂m̂(4), Dm∗ is estimated by Dm̂(4) and σ2 is estimated
by using the slope heuristic method [14] (Section 4.1.2).

4.1.1. Estimation of the PR

Commonly, the predictive risk is evaluated with the mean squared error on a
validation set independent from the training set used to estimate the parameters
(see Formula (7.1) for the definition). However, it requires separating the dataset
in two parts which increases the estimation errors. Here, we propose to use the
entire dataset to both apply the model selection procedure and evaluate the
predictive risk. Intuitively, the response vector Y is replaced with Xβ̂m̂(2) which
provides good prediction performances [14]. Moreover, by re-expressing the PR,
it is straightforward to show that for all K > 0 and K

′
> 0:
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E[||Y −Xβ̂m̂(K)||22] − E[||Y −Xβ̂m̂(K′ )||22]
= E[||Xβ̂m̂(2) −Xβ̂m̂(K)||22] − E[||Xβ̂m̂(2) −Xβ̂m̂(K′ )||22]

− 2E[〈Xβ̂m̂(2) − Y,Xβ̂m̂(K′ ) −Xβ̂m̂(K)〉]. (4.1)

According to [13], the constant 2 provides the optimal asymptotic control of (2.3),
so ||Y − Xβ̂m̂(2)||2 is close to 0. Moreover, Xβ̂m̂(2) is close to ΠIm(X)(Y ), so
Xβ̂m̂(2) − Y almost belongs to the subspace Im(X)⊥. In addition, Xβ̂m̂(K) and
Xβ̂m̂(K′ ) belongs to Im(X), so the last term in (4.1) is close to 0 and is neg-
ligible compared to the two others. So, for all K > 0 and K

′
> 0, E[||Y −

Xβ̂m̂(K)||22]−E[||Y −Xβ̂m̂(K′ )||22] equals E[||Xβ̂m̂(2)−Xβ̂m̂(K)||22]−E[||Xβ̂m̂(2)−
Xβ̂m̂(K′ )||22] up to an additive negligible term. Hence, the constant K minimizing
E[||Xβ̂m̂(2)−Xβ̂m̂(K)||22] and the one minimizing E[||Y −Xβ̂m̂(K)||22] are almost
equal. Therefore, to evaluate the prediction performances of m̂(K), we propose
to compare prediction performances of the estimates Xβ̂m̂(K) and Xβ̂m̂(2). We
introduce the following term that we call estimated difference in predictions:

d̂iff-PR(m̂(K)) = 1
n

n∑
i=1

((
Xβ̂m̂(2)

)
i
−
(
Xβ̂m̂(K)

)
i

)2
. (4.2)

For the rest of the paper, the empirical version of (4.2) is calculated averaging
over 100 independent data sets and is denoted diff-PR. If this difference is sig-
nificantly smaller than the noise level σ2, the model m̂(K) has performances
similar to those satisfied by m̂(2).

4.1.2. Estimation of the FDR

The functions b(·, β∗, σ2) and B(·, β∗, σ2) are explicit and easily implementable
but depend on β∗, σ2 and D∗

m, which are unknown.
We propose:

1. to apply the slope heuristic method [14] to get an estimator σ̂2 of σ2,
2. to replace β∗ by the estimator β̂m̂(4),
3. to replace Dm∗ by the number of non zero in β̂m̂(4).

Choices of these estimators are crucial since they are proposed as inputs to the
algorithm. Justifications of the choices are provided in the Supplementary file
[36] in which an extensive simulation study is presented.

4.2. A data-dependent calibration of K in the model selection
procedure

We propose a completely data-driven calibration of the hyperparameter K up
to α and γ. These parameters α and γ are set by the user given values of the
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FDR and PR that are still deemed acceptable. The algorithm depends on the
functions K −→ B(·, β̂m̂(4), σ̂

2) and K −→ d̂iff-PR(m̂(K)) to obtain a lower
bound on both PR and FDR.

We propose the following algorithm:

Algorithm 1: Algorithm to calibrate K

1. Choose α the threshold for the FDR control and γ the threshold for
the estimated risk estimated difference in predictions (4.2).

2. Compute I1 =
{
K ≥ 2, B(K, β̂m̂(4), σ̂

2) ∈ ]0, α[
}

.

3. Compute I2 =
{
K ≥ 2, d̂iff-PR(m̂(K)) < γ × σ̂2

}
.

4. If I1 ∩ I2 �= ∅, return min
{
K, K ∈ I1 ∩ I2

}
;

Otherwise, return min
{
K,K ∈ I1

}
or take a larger value of either α

or γ.

Curves of Figure 3 are generated from the toy data set and from the sim-
ulation protocol described in Section 7. Parameters α and γ are free and are
defined by the user for maximum acceptable values for FDR and PR. In this
example, we choose α = 0.05 and γ = 0.1. The graph at the bottom right shows
that there exists some constants K for which a trade-off between both theoret-
ical FDR and PR and both empirical FDR and PR can be achieved. Here, the
range of K values is given by the interval [2, 6]. These values correspond to a
selected model dimension close to Dm∗ (Figure 3 at the bottom left). By apply-
ing our algorithm on this example, we get I1 = [3.3, 10] and I2 = [2, 5.8] and
so, our proposed algorithm returns K = 3.3. The evaluation of the prediction
performances provided by the selected model m̂(3.3) is equal to 1.14 and we get
B(3.3, β̂m̂(4), σ̂

2) = 0.03. The constant K = 3.3 corresponds to a low value of
both empirical predictive risk and FDR functions. Indeed, the empirical predic-
tive risk of m̂(3.3) is equal to 1.24 and the empirical FDR of m̂(3.3) is equal to
0.01. To compare with the usual choice K = 2, the empirical predictive risk of
m̂(2) is equal to 1.25 and the empirical FDR of m̂(2) is equal to 0.05. Hence, our
proposed algorithm allows to maintain the prediction performances from m̂(2),
reinforce the control of the FDR criterion and so gain a convenient trade-off
between PR and FDR.

In the supplementary file [36], the algorithm 1 is applied to several data sets
generated from various sets of parameters and described in Table 4. Each time,
the hyperparameter K is strictly larger than the commonly used constant 2 and
provides a low value of FDR while maintaining the prediction performances
given by m̂(2).
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Fig 3. Top: Curves of the empirical functions FDR
(
m̂(K)

)
(red) and diff-PR

(
m̂(K)

)
(blue),

of the B(K, β̂m̂(4), σ̂
2) functions (pink) and of ̂diff-PR

(
m̂(K)

)
(violet) for K ≥ 2 for the

toy data set. Bottom: Curves of the Dm̂(K) as function of K averaged over the 1000 data
sets (left) and values of the empirical FDR

(
m̂(K)

)
and F̂DR

(
m̂(K)

)
as functions of diff-PR(

m̂(K)
)

and ̂diff-PR
(
m̂(K)

)
(right) for all K > 0 and for the toy data set.

4.3. Towards non-ordered variable selection

For most applications, no canonical order of variables is available and our algo-
rithm cannot be applied directly. We propose to generate candidate orders from
random procedures to use our method when an ordering of the variables is not
given a priori.

More precisely, we first study the robustness to variable ordering of our
method (Subsection 4.3.1) and provide some procedures to construct variable
orders in practice (Subsection 4.3.2). Our algorithm 1 is then applied from the
generated rankings in Subsection 4.4.
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Fig 4. Curves of the empirical functions FDR
(
m̂(K)

)
(red) and diff-PR

(
m̂(K)

)
(blue), of

the B(K,β∗, σ2) functions (blue), the B(K, β̂m̂(4), σ̂
2) functions (pink) and ̂diff-PR

(
m̂(K)

)
(violet) for the toy data set and for the three perturbed collections.

4.3.1. Robustness to variable ordering

We propose numerical experiments where the assumption of ordered variables
is not fulfilled. The goal is to test the robustness to variable ordering of our
algorithm by measuring how this impacts its performances. We consider the
toy data set where the size of the true model is Dm∗ = 10 and we consider
three collections which are the results of a random permutation of the nested
model collection (2.1) on respectively the first ten, the first twelve and the
first fifteen variables. Hence, active variables remain first in the first collection;
perturbations may introduce non-active variables among the first ten variables
in the second collection, while in the third collection, some active variables can
be pushed far into the collection.

To test the robustness to variable ordering of our algorithm, Figure 4 shows
how the empirical values of FDR behaves in relation to its estimated upper
bound as well as the empirical and estimated differences in predictions for
the three perturbed collections. We observe that when the permutation con-
cerns only the active variables (on the nested model collection (2.1)), values of
the empirical values of FDR are smaller than the values of B(K,β∗, σ2) and
B(K, β̂m̂(4), σ̂

2) which are close. For prediction, the diff-PR function has the
same behavior than for the nested model collection (2.1).

When the permutation concerns the first twelve and the first fifteen variables,
the empirical values of FDR is higher than B(K,β∗, σ2) and B(K, β̂m̂(4), σ̂

2) as
soon as K ≥ 2 and with an increasing deviation when the error on estimated
variable order increases. Moreover, we observe that the rate of the empirical
values of FDR decay is much slower and values are high whatever the value
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of K: above 0.13 and 0.28 for the second and third perturbed model collection,
respectively. For prediction, the diff-PR function is stable for K ≥ 2.

Hence, permutations among only the active variables have no effect on FDR
and PR. However, as soon as a non-active variable is ranked before an active
variable, the theoretical guarantees of Theorem 3.2 no longer hold and empirical
values of FDR can be high whatever the value of K. To tackle this problem,
one solution consists of combining our algorithm with a method discriminating
active and non-active variables. We consider this direction for the rest of this
section.

4.3.2. Random variable order

We consider four strategies to estimate variable orders. The Bolasso procedure
[5] consists of solving the Lasso equation (1.2), through the LARS algorithm
[23], on several resamples and for different values of λ. Variables are ranked
according to their occurrence frequency in the models averaged over the λ’s and
the resamples. The random forests [17] are aggregation of several binary deci-
sion trees. The tree predictors are generated on bootstrap resamples and on a
subset of variables randomly chosen. Here, we combine the random forest with
the recursive feature elimination (RFE) algorithm [29] whose efficiency has been
proved especially for correlated variables [28]. Variables are ordered according
to their importance defined by the random forest. The Sorted �1 penalized es-
timator (SLOPE) [15] is obtained by solving the Lasso equation (1.2) with λ
a p-vector calculated from a multiple testing procedure. Lastly, the knockoff
method [7] consists of building a non-active copy X̃j of each Xj and solving the
Lasso equation (1.2) for several values of λ on the augmented matrix composed
on the Xj and X̃j variables. Variables are then sorted according to the values
of

Wj = max
(
Zj , Z̃j

)
× sign

(
Zj − Z̃j

)
,

for all j ∈ {1, . . . , p}, where Zj and Z̃j correspond to the largest λ for which Xj

and X̃j are respectively selected. For each strategy, a random model collection,
on which model selection can be applied is defined from the estimated variable
order. Bolasso and random forest both provide a variable order from a prediction
point of view, whereas SLOPE and the knockoff method provide a variable order
by considering both PR and FDR controls.

To quantify the ability to discriminate between active and non-active vari-
ables, we calculate the proportion of active variables in models of size 5, 10, 15
and 20 of each random collection. Results are presented in Table 2 where each
value is the average over 100 independent iterations. With Bolasso, random
forests and SLOPE, 50 resamples for the construction of random collections are
considered.

The collection built by the knockoff method is the collection containing the
fewest non-active variables in the models of size 5 and 10. For models of size
15 and 20, Bolasso and SLOPE are slightly better and the proportion of active
variables is always larger than 0.9. We observe with the model of size 20 that
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Table 2

Proportion of active variables in models of size 5, 10, 15 and 20 for random collections built
with Bolasso, SLOPE, random forest and the knockoff method. Each value is the average

over 100 independent iterations.

Bolasso SLOPE random
forests

the knockoff
method

Dm = 5 0.99 0.99 0.98 1.00
Dm = 10 0.83 0.83 0.82 0.85
Dm = 15 0.92 0.92 0.90 0.90
Dm = 20 0.95 0.95 0.93 0.92

there are active variables far away in the collections, which is undesirable. Since
Bolasso is slightly better than SLOPE on scenarios described in Table 4 (see
the supplementary file [36]), we consider the random collections built with the
knockoff method and Bolasso in the following.

4.4. Comparison with other variable selection methods

Performances of Algorithm 1 are compared with three variable selection proce-
dures. The LinSelect penalty [27] is a model selection criterion introduced in
a non-asymptotic setting to take into account of the randomness of the model
collection. The penalty function provides a sharp oracle inequality. The V -fold
cross-validation [3, 48, 46] is the most popular, adaptive and simple variable
selection method. The final selected model is the one with the best prediction
performance accuracy over the data sets obtained by splitting the initial data set
into a training set and a validation set. The last method is the knockoff method
where the final variable subset is composed by Xj such that Wj ≥ T where T is
defined to satisfy a given control of FDR. LinSelect and V -fold cross-validation
aim at providing a control of PR while the knockoff method aims at providing
a control of FDR.

We consider the 50-fold cross-validation and evaluate PR and FDR of our
algorithm and of the three variable selection procedures on the nested model
collection (2.1) where the active variables are properly ranked before the non-
active variables and on random collections built with Bolasso and with the
knockoff method.

Table 3 shows the performances of the four variable selection procedures. As
the knockoff method is a procedure for both collection generation and variable
selection, the knockoff collection is only used with the knockoff variable selec-
tion method. On the nested model collection (2.1), our algorithm provides the
smallest values in both FDR and PR and the average of the selected model
sizes is the closest to the true model size. LinSelect behaves in a similar way
while the 50-fold cross validation selects a model located in the over-fitting area
providing a high value of both PR and FDR. On random model collections, per-
formances are deteriorated for all methods, as expected, and are slightly better
on model collections built with the knockoff method than with Bolasso. Our
algorithm provides the smallest PR but LinSelect provides the smallest FDR.
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Table 3

Results of the dimension, PR and FDR of the selected models obtained by LinSelect, the
50-fold CV, the knockoff method and our algorithm, applied on the nested model

collection (2.1) and on random collections built with Bolasso and the knockoff method. Each
value is the average over 100 independent iterations. PR and FDR of each selected model
are the empirical quantities. Input parameters of our algorithm are fixed to γ = 0.1 and

α = 0.05. Note that the knockoff variable selection method is adapted for only the knockoff
random model collection.

Dm̂ PR(m̂) FDR(m̂)
nested model collection
LinSelect 8.86 1.35 0.01
50-fold CV 26.42 2.29 0.45
Knockoff
Our algorithm 9.37 1.25 0.00
Bolasso collection
LinSelect 10.17 1.93 0.07
50-fold CV 22.10 2.77 0.37
Knockoff
Our algorithm 13.96 1.59 0.25
the knockoffs collection
LinSelect 8.86 1.81 0.03
50-fold CV 20.85 2.45 0.35
Knockoff 0.00 14.10 0.00
Our algorithm 13.33 1.65 0.18

While LinSelect is designed to control the PR theoretically, we remark that it is
apparently also a relevant candidate to control FDR and to achieve a trade-off
between both PR and FDR. The 50-fold cross validation method provides poor
results while the knockoff method selects the empty set of variable. The size of
the model selected by our algorithm is larger when the collections are random
and provides high values of FDR. These results show that a meticulous choice
of γ and α is important to improve our algorithm performances.

The robustness of our algorithm to variable order, the construction of random
model collections and performances of the four variable selection procedures
are studied on several data sets generated from various sets of parameters and
described in Table 4. Results are presented in the supplementary file [36], and
the conclusions remain the same.

5. Conclusions

The variable selection procedure in a high-dimensional Gaussian linear regres-
sion with sparsity assumption is commonly used to identify a set of variables
with prediction performances or with as few non-active variables as possible.
For prediction performances, the PR is usually controlled via a penalized least-
squares minimization; to avoid the selection of non-active variables, the FDR
is usually controlled via a multiple testing approach. Controlling the PR tends
to select too many variables, including non-active ones, whereas controlling the
FDR tends to select too few variables, leaving out some active ones.

This work shows that a convenient trade-off between PR and FDR can be
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achieved in ordered variable selection. The originality of this paper is to obtain
this trade-off through a proper calibration of the hyperparameter K in the
penalty of the model selection (1.4). Firstly, theoretical results lead to non-
asymptotic lower and upper bounds on the FDR

(
m̂(K)

)
function when σ2 is

known. Asymptotic behaviors suggest that bounds are optimal. Secondly, the
proposed methodology provides an algorithm to calibrate the hyperparameter
K in the penalty function when σ2 is unknown. This algorithm is based on
completely data-driven terms: the estimated difference in predictions and the
estimated upper bound on the FDR where the choices of estimators σ̂2 and
β̂m̂(4) are derived from an extensive simulation study. The hyperparameter K

is calibrated from the dataset to ensure d̂iff-PR(m̂(K)) < γ × σ̂2 under the
constraint B(K, β̂m̂(4), σ̂

2) < α. Our algorithm is validated on an extensive
simulation study and allows to obtain a selected model ensuring a small value
of both theoretical PR and FDR. The calibrated hyperparameter K is strictly
larger than the commonly used constant K = 2. Moreover, PR and FDR values
of the selected model with our algorithm are the smallest values compared with
the existing variable selection procedures considered in the paper. Lastly, we
propose a preliminary response to construct a random model collection to extend
our work to non-ordered variable selection. The performances of our algorithm
deteriorate as soon as a non-active variable is ranked before an active one, but
combined with procedures with high ability to discriminate between active and
non-active variables, our algorithm is competitive with some existing variable
selection procedures.

If the selected model is the largest one of the nested model collection (with
dimension equals q), the associated lower and upper bounds values equal 0. In
this case, a distinction between Dm∗ = q and Dm∗ < q is not possible without
additional arguments. This is a limitation of our work.

The main perspective of our work is to generalize our theoretical results to
non-ordering variable selection. The ordered variable assumption is the key in-
gredient of our proofs and appears in the second line of the proof where the ratio
is fixed, allowing randomness only on m̂ that we control thanks to the ordered
model selection theory. Hence, relaxing this assumption requires new technical
arguments and this is a real challenge for future work. Moreover, for non-ordered
variable selection, the penalty function (1.4) has to include a logarithmic term
to take into account that all possible models should be explored but this is com-
putationally infeasible given the combinatorial nature of the problem. In this
case, two hyperparameters have to be calibrated. Another way to generalize our
work to non-ordered variable selection is to detect the value of K from which
the theoretical FDR is larger than the theoretical upper bound on the FDR and
quantify the gap between the theoretical upper bound and the FDR.

One way to improve the performances of our algorithm can be a meticulous
choice of the algorithm input parameters α and γ, which are arbitrarily fixed in
our work.

Achieving a trade-off between FDR and PR is not trivial and investigating
alternatives in this direction can be considered in future work. In particular,
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in this work, the model collection is constructed from a prediction point of
view method (minimization of the least squares values). It could be judicious to
introduce the FDR metric from the step of model collection generation.

A possible opening is to study the potential characteristics of the hyperpa-
rameter K provided by our algorithm in a theoretical point of view (dependence
in β∗ and σ2). Another possible extension is to study the false negative rate
(FNR) function in the model selection procedure, similarly and in addition to
the FDR one. This can provide a more powerful method, similarly to [25, 26].

Finally, another generalization is to extend our theoretical results to unknown
variance, random model collections or to non-fixed designs, which are more
general frameworks adapted to some application points of view. These extensions
are much more intricate.

6. Proofs of theoretical results

This section contains proofs of all the theoretical results of this paper.

6.1. FDR expression in model selection

Proof of Formula 3.1.
If D∗

m = q, then FP(m) = 0 for all m ∈ M and FDR(m) = 0 for all m ∈ M.
Let us now suppose that D∗

m < q. The FDP expression within the model
selection procedure is:

∀K > 0, FDP(m̂(K)) = FP(m̂(K))
max(Dm̂(K), 1)

=
(*)

Dm̂(K) −Dm∗

Dm̂(K)
1{Dm̂(K)>Dm∗}

=
q∑

r=1

r −Dm∗

r
1{r>Dm∗}1{Dm̂(K)=r}

=
(**)

q∑
r=Dm∗+1

r −Dm∗

r
1{m̂(K)=mr}

=
(***)

q∑
r=Dm∗+1

r −Dm∗

r
1⎧⎨
⎩ q

∩
�=0
��=r

{critK(mr)<critK(m�)}

⎫⎬
⎭
.

(*) and (**) are due to the fact that models (m)m∈M are nested and m∗ ∈ M.
(***) is obtained since the critK function is injective on M. Finally, by taking
the expectation, we obtain the FDR expression (3.1).

Proof of Proposition 3.1.
Before proving Proposition 3.1, let us cite and prove two lemmas.
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Lemma 6.1. For r ∈ {Dm∗ + 1, . . . , q} and for all � ∈ {0, . . . , r − 1}:

||Y −Xβ̂mr ||22 − ||Y −Xβ̂m�
||22 = −

r∑
k=�+1

〈Y, uk〉2.

Lemma 6.2. For r ∈ {Dm∗ + 1, . . . , q} and for all � ∈ {r + 1, . . . , q}:

||Y −Xβ̂mr ||22 − ||Y −Xβ̂m�
||22 =

�∑
k=r+1

〈Y, uk〉2.

Proof of Lemma 6.1.
For r ∈ {Dm∗ + 1, . . . , q} and � ∈ {0, . . . , r − 1}:

||Y −Xβ̂mr ||22 − ||Y −Xβ̂m�
||22 = ||Xβ̂mr ||22 − ||Xβ̂m�

||22 + 2〈Y,Xβ̂m�
−Xβ̂mr 〉

= ||Xβ̂mr ||22 − ||Xβ̂m�
||22 + 2〈Y −Xβ̂mr , Xβ̂m�

〉
− 2〈Y −Xβ̂mr , Xβ̂mr〉 + 2〈Xβ̂mr , Xβ̂m�

〉 − 2||Xβ̂mr ||22
= −||Xβ̂mr ||22 − ||Xβ̂m�

||22 + 2〈Xβ̂mr , Xβ̂m�
〉 = −||Xβ̂mr −Xβ̂m�

||22.

The last line is due to the fact that Y −Xβ̂mr ∈ (mr)⊥ ⊂ (m�)⊥ since m� ⊂ mr

and Xβ̂mr is the projection of Y onto mr.
Then,

||Xβ̂mr −Xβ̂m�
||22 = ||Πmr(Y ) − Πm�

(Y )||22
= ||ΠSpan(X1,...,Xr)(Y ) − ΠSpan(X1,...,X�)(Y )||22
=
(*)

||ΠSpan(u1,...,ur)(Y ) − ΠSpan(u1,...,u�)(Y )||22

= ||ΠSpan(u�+1,...,ur)(Y )||22

= ||
r∑

k=�+1

〈Y, uk〉uk||22

=
(**)

r∑
k=�+1

〈Y, uk〉2.

(*) come from the definition of (u1, . . . , un) and (**) is obtained by Parseval’s
identity.

Proof of Lemma 6.2.
For r ∈ {Dm∗ + 1, . . . , q} and l ∈ {r + 1, . . . , q}:

||Y −Xβ̂mr ||22 − ||Y −Xβ̂m�
||22 = ||Xβ̂mr ||22 − ||Xβ̂m�

||22 + 2〈Y,Xβ̂m�
−Xβ̂mr 〉

= ||Xβ̂mr ||22 − ||Xβ̂m�
||22 + 2〈Y −Xβ̂m�

, Xβ̂m�
〉
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− 2〈Y −Xβ̂m�
, Xβ̂mr〉 + 2||Xβ̂m�

||22
− 2〈Xβ̂m�

, Xβ̂mr〉
=
(*)

||Xβ̂mr ||22 + ||Xβ̂m�
||22 − 2〈Xβ̂m�

, Xβ̂mr 〉

= ||Xβ̂m�
−Xβ̂mr ||22.

(*) is due to the fact that Y − Xβ̂m�
∈ (m�)⊥ ⊂ (mr)⊥ since mr ⊂ m�, and

Xβ̂m�
is the projection of Y onto m�.

Then,

||Xβ̂m�
−Xβ̂mr ||22 = ||Πm�

(Y ) − Πmr (Y )||22
= ||ΠSpan(X1,...,X�)(Y ) − ΠSpan(X1,...,Xr)(Y )||22
=
(*)

||ΠSpan(u1,...,u�)(Y ) − ΠSpan(u1,...,ur)(Y )||22

= ||ΠSpan(ur+1,...,u�)(Y )||22

= ||
�∑

k=r+1
〈Y, uk〉uk||22

=
(**)

�∑
k=r+1

〈Y, uk〉2.

(*) come from the definition of (u1, . . . , un) and (**) is obtained by Parseval’s
identity.

Proof of Proposition 3.1.

Starting from (3.1), we decompose the event
{

q
∩
�=0
��=r

{critK(mr) < critK(m�)}
}

by the intersection of these two events{
r−1
∩
�=0

{critK(mr) < critK(m�)}
}

and
{

q
∩

�=r+1
{critK(mr) < critK(m�)}

}
.

By using the definition of the critK function, we have for r ∈ {Dm∗ + 1, . . . , q}
and � ∈ {0, . . . , r − 1, r + 1, . . . , q}:{

critK(mr) < critK(m�)
}

=
{
||Y −Xβ̂mr ||22 + Kσ2r < ||Y −Xβ̂m�

||22 + Kσ2�
}

=
{
||Y −Xβ̂mr ||22 − ||Y −Xβ̂m�

||22 < Kσ2(�− r)
}
.

So, by applying Lemma 6.1, � ∈ {0, . . . , r − 1}:

{
critK(mr) < critK(m�)

}
=
{ r∑
k=�+1

〈Y, uk〉2 > Kσ2(r − �)
}
,
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and by applying Lemma 6.2, � ∈ {r + 1, . . . , q}:

{
critK(mr) < critK(m�)

}
=
{ �∑
k=r+1

〈Y, uk〉2 < Kσ2(�− r)
}
.

In this way,
{

q
∩
�=0
��=r

{critK(mr) < critK(m�)}
}

is decomposed by two events:

{
r−1
∩
�=0

{
r∑

k=�+1

〈Y, uk〉2>Kσ2(r − �)
}}

∩
{

q
∩

�=r+1

{
�∑

k=r+1

〈Y, uk〉2<Kσ2(�− r)
}}

.

Let us define U the n × n matrix such that uk is the k-th column of U .
Since ε ∼ N (0, σ2In) and (u1, . . . , un) is an orthonormal basis of Rn, we get

UT ε =
(
〈ε, u1〉, . . . , 〈ε, un〉

)T
∼ N (0, σ2UInU

T ) = N (0, σ2In). Hence, random
variables (〈Y, ui〉)i∈{1,...,n} are independent with 〈Y, ui〉 ∼ N

(
〈Xβ∗, ui〉, σ2) for

all i in {1, . . . , n}. Since the first event of the previous decomposition depends
only on random variables 〈Y, ui〉 for i ∈ {1, . . . , r − 1} whereas the second one
depends only on random variables 〈Y, ui〉 for i ∈ {r + 1, . . . , q}, the two events
are independent. Hence, from (3.1), we obtain for all K > 0:

FDR(m̂(K)) =
q∑

r=Dm∗+1

r −Dm∗

r
P

(
r−1
∩
�=0

{
r∑

k=�+1

〈Y, uk〉2 > Kσ2(r − �)
})

× P

(
q
∩

�=r+1

{
�∑

k=r+1

〈Y, uk〉2 < Kσ2(�− r)
})

.

Moreover, since 〈Xβ∗, uk〉 = 0,∀k > Dm∗ and since r ≥ Dm∗ + 1, we have:

r∑
k=�+1

〈Y, uk〉2 =
r∑

k=�+1

〈ε, uk〉2.

So, for all K > 0 and for each r ∈ {Dm∗ + 1, . . . , q}:

P

(
q
∩

�=r+1

{
�∑

k=r+1

〈Y, uk〉2<Kσ2(�−r)
})

= P

(
q
∩

�=r+1

{ �∑
k=r+1

Z̃k
2
<Kσ2(�−r)

})
,

where Z̃k
i.i.d.∼ N (0, σ2)

P

(
q
∩

�=r+1

{
�∑

k=r+1
〈Y, uk〉2 < Kσ2(�− r)

})
= P

(
q
∩

�=r+1

{ �∑
k=r+1

Z2
k < K(�− r)

})
,

where Zk
i.i.d.∼ N (0, 1).
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Hence, for all K > 0 and for each r ∈ {Dm∗ + 1, . . . , q},

P

(
q
∩

�=r+1

{
�∑

k=r+1
〈Y, uk〉2 < Kσ2(�− r)

})

does not depend on the data and we deduce the Formula (3.2) with:

Pr(K) = P

(
q
∩

�=r+1

{ �∑
k=r+1

Z2
k < K(�− r)

})
,

Qr(K,β∗, σ2) = P

(
r−1
∩
�=0

{ r∑
k=�+1

〈Y, uk〉2 > Kσ2(r − �)
})

,

where Zk
i.i.d.∼ N (0, 1), ∀k ∈ {r + 1, . . . , q}.

6.2. General bounds

Proof of Theorem 3.2.
We start from (3.2).

– bounds on the Qr terms.
For all K > 0 and for each r ∈ {Dm∗ + 1, . . . , q}, we recall that:

Qr(K,β∗, σ2) = P

(
r−1
∩
�=0

{
r∑

k=�+1

〈Y, uk〉2 > Kσ2(r − �)
})

,

and since 〈Xβ∗, uk〉 = 0,∀k > Dm∗ , we have:

Qr(K,β∗, σ2)

= P

(
r−1
∩
�=0

{
r∑

k=�+1

(
〈ε, uk〉21k>Dm∗ + 〈Y, uk〉21k≤Dm∗

)
> Kσ2(r − �)

})

= P

({
〈ε, ur〉2>Kσ2

}
∩ · · · ∩

{
〈ε, ur〉2+ · · ·+〈ε, uDm∗+1〉2 > Kσ2(r −Dm∗)

}
∩
{
〈ε, ur〉2 + · · · + 〈ε, uDm∗+1〉2 + 〈Y, uDm∗ 〉2 > Kσ2(r −Dm∗ + 1)

}
∩ · · ·

∩
{
〈ε, ur〉2 + · · · + 〈ε, uDm∗+1〉2 + 〈Y, uDm∗ 〉2 + · · · + 〈Y, u1〉2 > Kσ2r

})

= P

({
cr>Kσ2

}
∩
{
cr+cr−1>2Kσ2

}
∩ · · · ∩

{
cr+cr−1+ · · · + c1 > rKσ2

})

(6.1)

where c� = 〈Y, u�〉2 for � ∈ {1, . . . , Dm∗} and c� = 〈ε, u�〉2 for � ∈ {Dm∗ +
1, . . . , r}.
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Lower bound on Qr(K,β∗, σ2) for r ∈ {Dm∗ + 1, . . . , q}:

Lemma 6.3. Let us consider an integer s > 1, K > 0 and c1, . . . , cs s non-
negative random independent quantities. We define by E� the event {c� > �Kσ2}
for � ∈ {1, . . . , s} and by F� the event {Kσ2 < c� ≤ �Kσ2} for � ∈ {2, . . . , s}.

Then:{
cs > Kσ2

}
∩
{
cs + cs−1 > 2Kσ2

}
∩ · · · ∩

{
cs + cs−1 + · · · + c1 > sKσ2

}

⊇ Es �
(
Fs �

(
Es−1 �

(
Fs−1 �

(
Es−2 � · · · � (F3 � (E2 � (F2 � E1)))

))))
,

where ∩ and � denote respectively any intersection and a disjoint intersection
of events, as well as ∪ and � denoting respectively any union and a disjoint
union of events.

Proof. We prove Lemma 6.3 by a recurrence on s ≥ 1.
For s = 1, both sets correspond to E1, so the inclusion is obvious. Let s ≥ 1

and suppose that the inclusion is true for s. With the definitions of Es+1 and
Fs+1, we obtain:{
cs+1>Kσ2

}
∩
{
cs+1+cs>2Kσ2

}
∩ · · · ∩

{
cs+1+cs+ · · ·+c1 > (s + 1)Kσ2

}

=
(
Es+1 � Fs+1

)

∩
({

cs+1 + cs > 2Kσ2
}
∩ · · · ∩

{
cs+1 + cs + · · · + c1 > (s + 1)Kσ2

})

=
(
Es+1 ∩

({
cs+1+cs>2Kσ2

}
∩ · · · ∩

{
cs+1+cs+ · · · + c1>(s + 1)Kσ2

}))

�
(
Fs+1 ∩

({
cs+1+cs>2Kσ2

}
∩ · · · ∩

{
cs+1+cs+ · · · + c1 > (s + 1)Kσ2

}))

=
(*)

Es+1

�
(
Fs+1 ∩

({
cs+1+cs>2Kσ2

}
∩ · · · ∩

{
cs+1+cs+ · · · + c1 > (s + 1)Kσ2

}))

⊇
(**)

Es+1 �
(
Fs+1

∩
({

cs>Kσ2
}
∩
{
cs+cs−1>2Kσ2

}
∩ · · · ∩ {cs+cs−1+ · · ·+c1>sKσ2}

))

⊇
(***)

Es+1 �
(
Fs+1 ∩

(
Es �

(
Fs �

(
Es−1 � · · · � (F3 � (E3 � (F2 � E1)))

))))
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⊇
(****)

Es+1 �
(
Fs+1 �

(
Es �

(
Fs �

(
Es−1 � · · · � (F3 � (E3 � (F2 � E1)))

))))
.

(*) is true since ci are non-negative for all i ∈ {1, . . . , s + 1} providing that

Es+1 ⊂
({

cs+1 +cs > 2Kσ2
}
∩· · ·∩

{
cs+1 +cs+ · · ·+c1 > (s+1)Kσ2

})
, (**)

comes from the inclusion
{
cs+1 > Kσ2

}
⊂ Fs+1. We obtain (***) by applying

the recurrence assumption at the step s. Independence of c1, . . . , cs+1 provides

the independence between Fs+1 and
(
Es�

(
Fs �

(
Es−1 � · · · � (F3 � (E3 � (F2 �

E1)))
)))

which gets (****).

Thus, the property is true for s + 1, which proves lemma.

By applying Lemma 6.3 on Formula (6.1) with s = r, we obtain:

Qr(K,β∗, σ2) ≥ P(Er)

+ P(Fr)
(
P(Er−1)+P(Fr−1)

(
P(Er−2)+ · · · + P(F3)

(
P(E2)+P(F2)P(E1)

)))
.

By using that 〈Y, u�〉 ∼ N (〈Xβ∗, u�〉, σ2) for � ∈ {1, . . . , Dm∗} and 〈ε, u�〉 ∈
N (0, σ2) for � ∈ {1, . . . , r}, we get:

For � ∈ {1, . . . , Dm∗} :

P(E�) = P

({
〈Y, u�〉2 > �Kσ2

})

= 2 −
(

Φ
(√

�K − 〈Xβ∗, u�〉
σ

)
+ Φ
(√

�K + 〈Xβ∗, u�〉
σ

))
= G�.

For � ∈ {2, . . . , Dm∗} :

P(F�) = P

({
Kσ2 < 〈Y, u�〉2 ≤ �Kσ2

})

= Φ
(√

�K − 〈Xβ∗, u�〉
σ

)
+ Φ
(√

�K + 〈Xβ∗, u�〉
σ

)
−
(

Φ
(√

K − 〈Xβ∗, u�〉
σ

)
+ Φ
(√

K + 〈Xβ∗, u�〉
σ

))
= H�.

For � ∈ {Dm∗ + 1, . . . , r} :

P(E�) = P

({
〈ε, u�〉2 > �Kσ2

})
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= 2
(

1 − Φ
(√

�K
))

= G�,

P(F�) = P

({
Kσ2 < 〈ε, u�〉2 ≤ �Kσ2

})

= 2
(

Φ
(√

�K
)
− Φ
(√

K
))

= H�.

Hence, a lower bound on Qr(K,β∗, σ2) is obtained for all K > 0:

f
r
(K,β∗, σ2) ≤ Qr(K,β∗, σ2) (6.2)

with:

f
r
(K,β∗, σ2) = Gr + Hr f

r−1(K,β∗, σ2)

and f1(K,β∗, σ2) = G1. (6.3)

Upper bound on Qr(K,β∗, σ2) for r ∈ {Dm∗ + 1, . . . , q}:
By using definitions of Lemma 6.3 and formula (6.1), we get:

Qr(K,β∗, σ2) ≤ min
(
P

({
cr > Kσ2

})
,P

({
cr + cr−1 > 2Kσ2

})
, . . . ,

P

({
cr + cr−1 + · · · + c1 > rKσ2

}))
. (6.4)

Since 〈ε, ui〉i∈{Dm∗+1,...,r}
i.i.d.∼ N

(
0, σ2), we have for all j ∈ {Dm∗ + 1, . . . , r}:

P

({
cr + · · · + cj > (r − j + 1)Kσ2

})
= 1 − Fχ2(r−j+1)

(
(r − j + 1)K

)
. (6.5)

For all j ∈ {1, . . . , Dm∗},

P

({
cr + · · · + cj > (r − j + 1)Kσ2

})

= P

({
cr + · · · + cDm∗+1 + cDm∗ + · · · + cj > (r − j + 1)Kσ2

})

= P

({
cr + · · · + cDm∗+1 +

(
〈Xβ∗, uDm∗ 〉 + 〈ε, uDm∗ 〉

)2 + · · ·

+
(
〈Xβ∗, uj〉 + 〈ε, uj〉

)2
> (r − j + 1)Kσ2

})
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≤
(**)

P

({
cr + · · · + cDm∗+1 + 2〈Xβ∗, uDm∗ 〉2 + 2〈ε, uDm∗ 〉2 + · · ·

+ 2〈Xβ∗, uj〉2 + 2〈ε, uj〉2 > (r − j + 1)Kσ2
})

≤ P

({
2cr + · · · + 2cDm∗+1 + 2〈ε, uDm∗ 〉2 + · · · + 2〈ε, uj〉2 > (r − j + 1)Kσ2

− 2〈Xβ∗, uDm∗ 〉2 − · · · − 2〈Xβ∗, uj〉2
})

=
(***)

P

({
2σ2Z2

r + · · · + 2σ2Z2
Dm∗+1 + 2σ2Z2

Dm∗ + · · · + 2σ2Z2
j

> (r − j + 1)Kσ2 − 2〈Xβ∗, uDm∗ 〉2 − · · · − 2〈Xβ∗, uj〉2
})

,

where (Z�)�∈{j,...,r}
i.i.d∼ N (0, 1).

= P

({
Z2
r + · · · + Z2

Dm∗+1 + Z2
Dm∗ + · · · + Z2

j

>
(r − j + 1)K

2 − 〈Xβ∗, uDm∗ 〉2
σ2 − · · · − 〈Xβ∗, uj〉2

σ2

})

= P

({
X >

(r − j + 1)K
2 − 〈Xβ∗, uDm∗ 〉2

σ2 − · · · − 〈Xβ∗, uj〉2
σ2

})
,

for X ∼ χ2(r − j + 1)

= 1 − Fχ2(r−j+1)

(
(r − j + 1)K

2 − 〈Xβ∗, uDm∗ 〉2
σ2 − · · · − 〈Xβ∗, uj〉2

σ2

)
. (6.6)

(**) provides from (a + b)2 ≤ 2(a2 + b2), ∀(a, b) ∈ R and (***) is true since
〈ε, ui〉i∈{1,...,r}

i.i.d.∼ N
(
0, σ2).

So, from (6.4), (6.5) and (6.6), we deduce that for all K > 0 and for each
r ∈ {Dm∗ + 1, . . . , q}:

Qr(K,β∗, σ2) ≤

min
(

1 − Fχ2(1)(K), . . . , 1 − Fχ2(r−Dm∗ )
(
(r −Dm∗)K

)
,

1 − Fχ2(r−Dm∗+1)

(
(r −Dm∗ + 1)K

2 − 〈Xβ∗, uDm∗ 〉2
σ2

)
,

1 − Fχ2(r−Dm∗+2)

(
(r −Dm∗ + 2)K

2 − 〈Xβ∗, uDm∗ 〉2
σ2 −

〈Xβ∗, uDm∗−1〉2
σ2

)
,

· · · ,

1 − Fχ2(r)

(
rK

2 − 〈Xβ∗, uDm∗ 〉2
σ2 −

〈Xβ∗, uDm∗−1〉2
σ2 − · · · − 〈Xβ∗, u1〉2

σ2

))
.
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Hence, an upper bound on Qr(K,β∗, σ2) is obtained for all K > 0:

Qr(K,β∗, σ2) ≤ fr(K,β∗, σ2)) (6.7)

with:

fr(K,β∗, σ2) = 1 − max
(

max
�∈{1,...,r−Dm∗}

(
Fχ2(�)(�K)

)
,

max
�∈{r−Dm∗+1,...,r}

(
Fχ2(�)

(�K
2 −

Dm∗∑
k=r−�+1

〈Xβ∗, uk〉2
σ2

)))
.

(6.8)

– bounds on the FDR.
By combining (3.2), (6.2), (6.3), (6.7), (6.8) and (3.3), we obtain:

q∑
r=Dm∗+1

(
r −Dm∗

r
Pr(K)f

r
(K,β∗, σ2)

)
≤ FDR(m̂(K))

and

FDR(m̂(K)) ≤
q∑

r=Dm∗+1

(
r −Dm∗

r
Pr(K)fr(K,β∗, σ2)

)
,

which allows us to obtain Theorem 3.2 with ∀K > 0,

b(K,β∗, σ2) =
q∑

r=Dm∗+1

(
r −Dm∗

r
Pr(K)f

r
(K,β∗, σ2)

)

and

B(K,β∗, σ2) =
q∑

r=Dm∗+1

(
r −Dm∗

r
Pr(K)fr(K,β∗, σ2)

)
.

6.3. Strictly positive FDR

Proof of Corollary 3.3.
From Theorem 3.2, we have ∀K > 0,

FDR(m̂(K)) ≥
q∑

r=Dm∗+1

(
r −Dm∗

r
Pr(K) f

r
(K,β∗, σ2)

)
. (6.9)

For the rest of the proof, we use the following Lemma:
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Lemma 6.4 (Frank R. Kschischang [35]). The complementary error function,
erfc(x), is defined, for x ≥ 0, as:

erfc(x) = 2
(
1 − FN (0, 12 )(x)

)
where FN (0, 12 ) denotes the cumulative function of the centered Gaussian with
the variance equals 1

2 .
Then,

∀x ≥ 0, 2e−x2

√
π
(
x +

√
x2 + 2

) ≤ erfc(x) ≤ e−x2

√
πx

.

We remark that for all x ≥ 0, 1 − Φ(x) = 1
2erfc

(
x√
2

)
. Then, for each r ∈

{Dm∗ + 1, . . . , q},

f
r
(K,β∗, σ2) = Gr + Hr

(
Gr−1 + Hr−1

(
Gr−2 + · · · + H2G1

))
≥ Gr

= 2
(

1 − Φ
(√

rK
))

= ercf
(√rK

2

)
≥

(**)

2
√
π
(√

rK
2 +

√
rK
2 + 2

)e− rK
2

= 2
√

2
√
π
(√

rK +
√
rK + 4

)e− rK
2 . (6.10)

(**) is provided by Lemma 6.4. So, from (6.9) and (6.10), we obtain:

∀K>0, FDR(m̂(K)) ≥
q∑

r=Dm∗+1

(
r −Dm∗

r
Pr(K) 2

√
2

√
π
(√

rK +
√
rK + 4

)e− rK
2

)
.

This lower bound is strictly positive and since the Pr(K) terms are all strictly
positive too, we deduce that the FDR function is a strictly positive function.

6.4. Asymptotic analysis

Proof of Corollary 3.4.
For all r ∈ {Dm∗ + 1, . . . , q} and by using the definitions from Theorem 3.2,
for � ∈ {1, . . . , Dm∗} :

G� = 2 −
(

Φ
(√

�K − 〈Xβ∗, u�〉
σ

〉
)

+ Φ
(√

�K + 〈Xβ∗, u�〉
σ

))
−→

K−→+∞
0;
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for � ∈ {2, . . . , Dm∗} :

H� = Φ
(√

�K − 〈Xβ∗, u�〉
σ

)
+ Φ
(√

�K + 〈Xβ∗, u�〉
σ

)
−(

Φ
(√

K − 〈Xβ∗, u�〉
σ

)
+ Φ
(√

K + 〈Xβ∗, u�〉
σ

))
−→

K−→+∞
0;

and for � ∈ {Dm∗ + 1, . . . , r} :

G� = 2
(

1 − Φ
(√

�K
))

−→
K−→+∞

0,

H� = 2
(

Φ
(√

�K
)
− Φ
(√

K
))

−→
K−→+∞

0;

which provides that f
r
(K,β∗, σ2) −→

K−→+∞
0.

Moreover, fr(K,β∗, σ2)) −→
K−→+∞

0. So, Qr(K,β∗, σ2) −→
K−→+∞

0. In the same

way, Pr(K) −→
K−→+∞

1. So, Pr(K)Qr(K,β∗, σ2) −→
K−→+∞

0.
Finally, for each r ∈ {Dm∗ + 1, . . . , q}, we deduce from (3.2) that

FDR(m̂(K)) −→
K−→+∞

0.

For each r ∈ {Dm∗ + 1, . . . , q} Pr(K) −→
K−→+∞

1, we deduce that for all

C1 ∈]0, 1[, there exists L̃C1 > 0 such that ∀K > L̃C1 and ∀r ∈ {Dm∗ +1, . . . , q},
we have C1 ≤ Pr(K). For the following, we fix C1 ∈]0, 1[.

By using (6.2), (6.7) and Pr(K) ≤ 1 for each r ∈ {Dm∗ +1, . . . , q}, we deduce
that:

∀K > L̃C1 , FDR(m̂(K)) ≥ C1

q∑
r=Dm∗+1

(
r −Dm∗

r
f
r
(K,β∗, σ2)

)
(6.11)

and

∀K > 0, FDR(m̂(K)) ≤
q∑

r=Dm∗+1

(
r −Dm∗

r
fr(K,β∗, σ2))

)
. (6.12)

– Upper bound on fr:
For each r ∈ {Dm∗ + 1, . . . , q} and for all K > 0:

fr(K,β∗, σ2)) = 1 − max
(

max
�∈{1,...,r−Dm∗}

(
Fχ2(�)(�K)

)
,

max
�∈{r−Dm∗+1,...,r}

(
Fχ2(�)

(�K
2 −

Dm∗∑
k=r−�+1

〈Xβ∗, uk〉2
σ2

)))
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= min
(

min
�∈{1,...,r−Dm∗}

(
P
(
X� > �K

))
,

min
�∈{r−Dm∗+1,...,r}

(
P
(
Y� >

�K

2 −
Dm∗∑

k=r−�+1

〈Xβ∗, uk〉2
σ2

)))
,

with X� ∼ χ2(�) and Y� ∼ χ2(�)

= min
(

min
�∈{1,...,r−Dm∗}

(
P
(
X� − � > �K − �

))
,

min
�∈{r−Dm∗+1,...,r}

(
P

(
Y�−�>

�(K − 2)
2 −

Dm∗∑
k=r−�+1

〈Xβ∗, uk〉2
σ2

)))
,

with X� ∼ χ2(�) and Y� ∼ χ2(�). (6.13)

So, for each r ∈ {Dm∗ + 1, . . . , q} and for all K > 0:

fr(K,β∗, σ2)) ≤ min
�∈{1,...,r−Dm∗}

(
P
(
X� − � > �K − �

))
, with X� ∼ χ2(�).

By the exponential inequality of [37] for X ∼ χ2(�) and � ∈ N∗:

∀x ≥ 0, P

(
X − � > 2

√
�x + 2x

)
≤ e−x. (6.14)

We apply (6.14) for each � = 1, . . . , (r−Dm∗) with x = �
4

(
1−

√
2K − 1

)2
which

is one solution of 2
√
�x + 2x = �K − � when K > 1. We obtain for all K > 1:

min
�∈{1,...,r−Dm∗}

(
P
(
X� − � > �K − �

))
≤ min

�=1,...,(r−Dm∗ )

(
e−

�
4

(
1−

√
2K−1

)2)

≤ e
(r−Dm∗ )

√
2K−1

2 e−
(r−Dm∗ )K

2 . (6.15)

So, from (6.12) and (6.15), we obtain for each r ∈ {Dm∗ + 1, . . . , q} and for
all K > 1:

FDR(m̂(K)) ≤
q∑

r=Dm∗+1

(
r −Dm∗

r
e

(r−Dm∗ )
√

2K−1
2 e−

(r−Dm∗ )K
2

)

≤ e−
K
2

q∑
r=Dm∗+1

(
r −Dm∗

r
e

(r−Dm∗ )
√

2K−1
2

)
.

For all η > 0 and r ∈ {Dm∗ + 1, . . . , q}, e
(r−Dm∗ )

√
2K−1

2 = o
K−→+∞

(
eηK
)
.

Hence, ∀η > 0

FDR(m̂(K)) = o
K−→+∞

(
e−K( 1

2−η)
)
,

which allows to obtain (3.6).
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Proof of Remark 3.6:
The inequalities (6.11) and (6.12) are also true when K −→ +∞ and σ −→
0 with 1

σ = o
σ−→0

(
√
K). To obtain the finest asymptotic upper bound (3.9),

we start from the equation (6.13) and we consider the second term. Similar to
previously, we apply (6.14) for each � = r −Dm∗ + 1, . . . , r with

x = �

4

(
1 −

√√√√K − 1 − 2
�

Dm∗∑
k=r−�+1

〈Xβ∗, uk〉2
σ2

)2

,

which is one solution of

2
√
�x + 2x = �(K − 2)

2 −
Dm∗∑

k=r−�+1

〈Xβ∗, uk〉2
σ2

when σ2(K − 1) > 2
r−Dm∗+1

Dm∗∑
k=1

〈Xβ∗, uk〉2 + 2. This condition is valid since

σ −→ 0 with 1
σ = o

σ−→0
(
√
K) leading to 1

σ2 = o
σ−→0

(K) and so σ2(K − 1) −→
+∞ when K −→ +∞. We obtain for all K > 0 such that σ2(K − 1) >

2
r−Dm∗+1

Dm∗∑
k=1

〈Xβ∗, uk〉2 + 2:

min
�∈{r−Dm∗+1,...,r}

(
P
(
Y� − � >

�(K − 2)
2 −

Dm∗∑
k=r−�+1

〈Xβ∗, uk〉2
σ2

)))

≤ min
�∈{r−Dm∗+1,...,r}

(
e

− �
4

(
1−
√
K−1− 2

�

Dm∗∑
k=r−�+1

〈Xβ∗,uk〉2
σ2

)2)

≤ e
1
2

Dm∗∑
k=1

〈Xβ∗,uk〉2

σ2
e

r
2

√
K−1− 2

r

Dm∗∑
k=1

〈Xβ∗,uk〉2
σ2

e−
rK
4 . (6.16)

(*) come from the fact that a minimum into a set is smaller than any value in
the set. We choose the value corresponding for � = 0.

So, from (6.12), (6.15) and (6.16), we obtain for each r ∈ {Dm∗ + 1, . . . , q}

and for all K > 1 respecting σ2(K − 1) > 2
r−Dm∗+1

Dm∗∑
k=1

〈Xβ∗, uk〉2 + 2:

FDR(m̂(K)) ≤
q∑

r=Dm∗+1

(
r −Dm∗

r
min
(
e

(r−Dm∗ )
√

2K−1
2 e−

(r−Dm∗ )K
2 ,

e
1
2

Dm∗∑
k=1

〈Xβ∗,uk〉2

σ2
e

r
2

√
K−1− 2

r

Dm∗∑
k=1

〈Xβ∗,uk〉2
σ2

e−
rK
4

))

= min
(

q∑
r=Dm∗+1

(
r −Dm∗

r
e

(r−Dm∗ )
√

2K−1
2 e−

(r−Dm∗ )K
2

)
,
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q∑
r=Dm∗+1

(
r −Dm∗

r
e

1
2

Dm∗∑
k=1

〈Xβ∗,uk〉2

σ2
e

r
2

√
K−1− 2

r

Dm∗∑
k=1

〈Xβ∗,uk〉2
σ2

e−
rK
4

))

≤ min
(
e−

K
2

q∑
r=Dm∗+1

(
r −Dm∗

r
e

(r−Dm∗ )
√

2K−1
2

)
,

q∑
r=Dm∗+1

(
r −Dm∗

r
e

r
2

√
K−1− 2

r

Dm∗∑
k=1

〈Xβ∗,uk〉2
σ2

)
e
−
(

(Dm∗+1)K
4 − 1

2σ2

Dm∗∑
k=1

〈Xβ∗,uk〉2
))

.

(6.17)

For all η > 0 and r ∈ {Dm∗ + 1, . . . , q}, e
(r−Dm∗ )

√
2K−1

2 = o
K−→+∞

(
eηK
)
, inde-

pendently of the value of σ2. Hence, the first term in (6.17) is o
(
e−K( 1

2−η)
)
,∀η >

0 when K −→ +∞ and σ −→ 0 with 1
σ = o

σ−→0
(
√
K).

For all r ∈ {Dm∗ + 1, . . . , q}, e
r
2

√
K−1− 2

r

Dm∗∑
k=1

〈Xβ∗,uk〉2
σ2 ≤ e

r
2
√
K . Moreover, for

all η̃ > 0 and r ∈ {Dm∗ + 1, . . . , q}, e r
2
√
K = o

K−→+∞

(
eη̃K
)
, independently of

the value of σ2. Hence, the second term in (6.17) is

o

(
e
−
(
K

(Dm∗+1−η̃)
4 − 1

2σ2

Dm∗∑
k=1

〈Xβ∗,uk〉2
))

,

∀η̃ > 0 when K −→ +∞ and σ −→ 0 with 1
σ = o

σ−→0
(
√
K).

Hence,

FDR(m̂(K)) ≤ min
(
o
(
e−K( 1

2−η)
)
, o

(
e
−
(
K

(Dm∗+1−η̃)
4 − 1

2σ2

Dm∗∑
k=1

〈Xβ∗,uk〉2
)))

= o

(
e
−
(
K

(Dm∗+1−η̃)
4 − 1

2σ2

Dm∗∑
k=1

〈Xβ∗,uk〉2
))

.

∀(η, η̃) > 0 when K −→ +∞ and σ −→ 0 with 1
σ = o

σ−→0
(
√
K); which allows

us to obtain (3.9).

– Lower bound on f
r
:

From (6.10) and (6.11), we obtain:

∀K > L̃C1 , FDR(m̂(K))≥C1

q∑
r=Dm∗+1

(
r −Dm∗

r

2
√

2
√
π
(√

rK +
√
rK + 4

)e− rK
2

)

≥ C1
2
√

2
√
π
(√

qK +
√
qK + 4

) 1
Dm∗ + 1

q∑
r=Dm∗+1

(
e−

rK
2

)
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≥
(*)

C1
2
√

2
√
π
(√

qK +
√
qK + 4

) 1
Dm∗ + 1e

− (Dm∗+1)K
2

= 2
√

2C1√
π(Dm∗ + 1)

1√
qK +

√
qK + 4

e−K
(Dm∗+1)

2 .

(*) is true since each term in the sum is positive, so, the sum is larger than one
of them.

For all η > 0, ∃C̃η > 0, ∃L̃η > 0 such that ∀K > L̃η, we have C̃ηe
−ηK ≤

1√
qK+

√
qK+4 .

So,

∀η > 0, ∃C̃η > 0, ∃L̃η > 0, ∀K > max
(
L̃C1 , L̃η

)
,

FDR(m̂(K)) ≥ 2
√

2C1√
π(Dm∗ + 1)

C̃ηe
−K

(
Dm∗+1+2η

2

)
,

which gives (3.7) with Cη = 2
√

2C1√
π(Dm∗+1) C̃η and Lη = max

(
L̃C1 , L̃η

)
.

Formula (3.8) automatically follows from (3.6) and (3.7).

6.5. General bounds

Proof of Corollary 3.7.
By taking uj = Xj , ∀j ∈ {1, . . . , q}, then (X1, . . . , Xq, uq+1, . . . , un) is an or-
thonormal basis of Rn. Consequently, ∀j ∈ {1, . . . , q}, 〈Xβ∗, uj〉 = 〈Xβ∗, Xj〉 =
β∗
j , which concludes the proof.

7. Description of the simulation protocol

In this section, we first describe the data simulation and the four considered
scenarios. Then, some details of experimental protocol are provided.

Description of the data simulation Given values of n and p, we simu-
late Y ∼ N (β∗, In) where β∗ is a vector satisfying β∗

j ≥ β∗
j+1 for all j ∈

{1, . . . , Dm∗−1} to get ordered active variables. We consider four scenarios, de-
scribed in Table 4, where values of Dm∗ , β∗, n and σ2 vary and where the
number of variables p is always equal to 50.

The scenario (i) allows us to evaluate the impact of the sparsity of the param-
eter β∗. The scenario (ii) allows us to evaluate how the values of the non-zero
coefficients in β∗ complicate the identification of the active variables. In partic-
ular, the non-zero coefficients are close and, in the second configuration, some of
them are smaller than the noise level σ. The scenario (iii) allows us to evaluate
the behavior of our method in a high-dimensional context through the variation
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of the number of observations n, either smaller, equal or larger than the number
of variables p. The last scenario (iv) allows us to evaluate the impact of the
noise amplitude through different values of σ2.

Note that for a fair comparison, the datasets where n = 30 in scenario (iii)
are inlcuded in those where n = 50 which are included in those where n =
300. Moreover, for the sake of reproducibility, the seed of the random number
generator is identically fixed for each scenario.

The toy data set We call the toy data set the data set where n = p = 50,
Dm∗ = 10, β∗

10 = 2 and ∀j ∈ {1, . . . , 9}, β∗
j ∼ Unif(β∗

j+1 + 0.5, β∗
j+1 + 1.5). It

corresponds to the reference data set in all scenarios.

Empirical estimations For the empirical estimations, we simulate D a set
of 1000 data sets for each scenario. For each d ∈ D and for all K > 0, the
selected model m̂d(K) is obtained from (Y d, Xd). Since m∗ is known, the quan-
tity FDP(m̂d(K)) is calculable for each d ∈ D and the empirical estimator of
FDR(m̂(K)) is the average of the FDP(m̂d(K)). Concerning PR, we simulate
D̃ a new set of 1000 data sets for each scenario. New Ỹ d are generated on D̃,
from the model (1.1), and by using the Xd on D to respect the fixed design as-
sumption. The selected models m̂d(K) and the β̂d

m̂(K) estimators are extracted
by solving (2.2) from the training sets (Y d, Xd) on D. The PR is evaluated from

Table 4

Description of the four scenarios.
Sce-
nario
with
p = 50

Active
variable
number

Non-zero coefficient amplitude in
β∗

Number of
observa-
tions

Noise
amplitude

(i)
Sparsity

Dm∗ ∈
{1, 10, 20}

β∗
Dm∗ = 2,

∀j ∈ {1, . . . , Dm∗ − 1}
β∗
j ∼ Unif(β∗

j+1 + 0.5, β∗
j+1 + 1.5)

n = 50 σ2 = 1

(ii)
Com-
plexity

Dm∗ = 10

β∗
10 = 2 with

∀j ∈ {1, . . . , 9}
β∗
j ∼ Unif(β∗

j+1 + 0.5, β∗
j+1 + 1.5)

β∗
10 = 2

10 with
∀j ∈ {1, . . . , 9},
β∗
j ∼ Unif(β∗

j+1+0.05, β∗
j+1+0.15)

β∗
10 = 2 with

∀j ∈ {1, . . . , 9}
β∗
j ∼ Unif(β∗

j+1+0.05, β∗
j+1+0.15)

n = 50 σ2 = 1

(iii)
High-
dimension

Dm∗ = 10
β∗
Dm∗ = 2,

∀j ∈ {1, . . . , 9}
β∗
j ∼ Unif(β∗

j+1 + 0.5, β∗
j+1 + 1.5)

n ∈
{30, 50, 300} σ2 = 1

(iv)
Noise Dm∗ = 10

β∗
Dm∗ = 2,

∀j ∈ {1, . . . , 9}
β∗
j ∼ Unif(β∗

j+1 + 0.5, β∗
j+1 + 1.5)

n = 50 σ2 ∈
{0.1, 1, 4}
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the validation sets (Ỹ d, Xd) on D̃ by the mean squared error:

MSE(m̂d(K)) = 1
n

n∑
i=1

(
Ỹ d
i −

p∑
j=1

xd
ij β̂m̂d(K)j

)2
. (7.1)

The empirical estimator of PR(m̂(K)) is the average of the MSE(m̂d(K)).
To validate the quality of the empirical estimations, the central limit theorem

is applied to get the 95% asymptotic confidence intervals:[
FDR(m̂(K)) − 1.96 σ̂√

1000
,FDR(m̂(K)) + 1.96 σ̂√

1000

]
and [

PR(m̂(K)) − 1.96 σ̂√
1000

,PR(m̂(K)) + 1.96 σ̂√
1000

]
,

where σ̂ is the unbiased empirical estimator of the standard deviation σ. Since
their width do not exceed 0.011 and 0.07 for respectively the FDR and the
PR, they are tight, meaning that the empirical estimations are close to the
theoretical quantities FDR(m̂(K)) and PR(m̂(K)).

Description of the supplementary file

All the R scripts are available at https://github.com/PerrineLacroix/Trade_
off_FDR_PR.

Details about the estimation of the theoretical bounds of the FDR in The-
orem 3.2, graphs for the bounds B(K, β̂m̂(K̃), σ̂

2) applied on the 4 scenarios
described in Section 7, as well as the study of the robustness of variable or-
dering, of the construction of random model collections and of the comparison
of our algorithm with other variable selection procedures, are provided in a
supplementary file. It is complementary to Section 4. It is available in [36].
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