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Abstract: We establish nonparametric identification of auction models
with continuous and nonseparable unobserved heterogeneity using three
consecutive order statistics of bids. We then propose sieve maximum likeli-
hood estimators for the joint distribution of the unobserved heterogeneity
and the private value, as well as their conditional and marginal distribu-
tions. Lastly, we apply our methodology to a novel dataset from judicial
auctions in China. Our estimates suggest substantial gains from account-
ing for unobserved heterogeneity when setting reserve prices. We propose a
simple scheme that achieves nearly optimal revenue by using the appraisal
value as the reserve price.
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1. Introduction

Empirical auction literature often estimates the underlying bidder value dis-
tributions using the recorded bids to answer some counterfactual questions to
inform policy recommendations about auction design such as optimal reserve
prices [32], limiting competition to soften the winner’s curse [13], the choice
of auction format [39], bid discounts or entry subsidies [33], and quantifying
damages and inefficiency of collusion [5]. See also, e.g., [26].

A prevalent challenge to identifying and estimating the underlying bidder
value distribution is that bidders often have more information about the item
for sale than the researcher, resulting in auction-level unobserved heterogeneity
(UH). Ignoring this UH wrongly attributes auction-level variations to bidder
value distribution dispersion, leading to overestimating the variation in bidder
values and, hence, information rents to bidders and poor policy recommenda-
tions about auction design. For instance, [25] finds that UH accounts for two-
thirds of price variation after controlling for information provided in the eBay
Motors auctions and that ignoring this feature would dramatically mis-estimate
the welfare measures. See also discussion in, e.g., [28], [44] and [38].
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The existing literature adapts measurement error approaches to tackle such
an issue. Suppose the analyst observes all bids. The analyst could then identify
the value distribution using observed bids as measurements for the unobserved
characteristics since these bids are independent conditional on such unobserved
characteristics.

However, this conditional independence condition fails when the analyst only
observes incomplete bid data. This could occur for various reasons. First, in
English or ascending outcry auctions, the bidder with the highest value only
needs to outbid the bidder with the second-highest value to win, which means
the recorded bids do not contain the highest value. Moreover, even in first-price
sealed-bid auctions, where all bids are supposed to be submitted to the auc-
tioneer, the auctioneer may still not record all the bids in practice: sometimes
the auctioneer only records the most competitive bids, such as the top three
bids in regular auctions or apparent low bids in procurement auctions. Thus,
the econometrician can only observe a few order statistics of the bids, i.e., in-
complete bid information. For instance, the U.S. Forest Service timber auctions
only record at most the top 12 bids regardless of the number of bidders. The
Washington State Department of Transportation provides an online archive of
bid opening results that are six months or older, but only for the top three
apparent low bids. Even if the auctioneer records all bids, the most competitive
bids are often more accessible to the public. For instance, The Federal Deposit
Insurance Corporation resolves insolvent banks using first-price auctions but
only publishes the top two bids and bidders’ identities [1]. The three apparent
low bids are one-click downloadable on the website of the California Department
of Transportation. These order statistics are naturally dependent, invalidating
conventional identification strategies.

We provide identification results for auction models using order statistics of
bids. We make three contributions in this paper. First, our paper is the first
to study identification of auction models with continuous and nonseparable UH
using incomplete bid data. Our specification allows for flexibility in how UH
affects both bidder value and the equilibrium bidding strategy – namely the
mapping from a bidder’s private value to his/her bid.1

Our identification strategy adapts [29] for nonclassical measurement error
models to the auction setting. This extension is nontrivial in that we only ob-
serve order statistics of UH-contaminated bids. As a result, we cannot achieve
a parsimonious conditional independence structure as in their work.2 Instead,
we follow [40] and consider the most common case of incomplete bid data: con-
secutive order statistics of bids. Their main insight is that consecutive order
statistics have a semi-multiplicatively separable joint distribution with a simple
indicator function capturing the correlation. Unlike both papers using two mea-
surements with an instrument, we use three consecutive order statistics of bids.
Given a partition on the range of the measurements, we again obtain a separa-

1Even if one assumes separable UH in the value, separability passing to the bid often
requires additional institutional features or assumptions. See, e.g., [3].

2They assume that the outcome variable is independent of the observed independent vari-
able and an instrument conditional on the unobserved true regressor.
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ble structure traditionally achieved under conditional independence. This turns
the identification problem into an operator diagonalization problem, allowing
constructive identification arguments using linear operator tools. Moreover, we
use these tools differently by considering bounded linear operators defined on
a Hilbert space and taking values in another Hilbert space. This space differs
from the L1 space adopted in [29], which focuses on a Banach space. While we
could also work with Banach space, using Hilbert space simplifies the analysis
of relevant operators and thus our proofs thanks to many existing theoretical
results.3

Second, we propose sieve maximum likelihood estimators (MLE) of the model
primitives and provide conditions that guarantee their consistency. The estima-
tion of auction models allows for counterfactual policy analysis, such as com-
puting the optimal reserve price. If UH is common knowledge among agents in
the auction, it is a critical control in policy analysis. Therefore, optimal policy
recommendation requires estimating the joint distribution of UH and bidder
private value.4 In particular, we approximate the joint density of bids and UH
using the tensor product of two univariate sieve bases. We then represent the
marginal density of the UH and the conditional distribution of the value using
the sieve-approximated joint distribution. Therefore, these distributions are all
estimated nonparametrically.5 [29] proposes sieve approximations to the condi-
tional distribution and marginal distribution. Our sieve approximation to the
joint distribution is more convenient as we just need to impose the normalization
assumption on the joint distribution approximation once.

The consistency of our estimator relies on the condition that the sieve space
approximates well the joint distribution of bids and UH. To formalize this intu-
ition, we quantify the complexity of this space using bracket entropy and prove
the consistency of the sieve MLEs for the joint, conditional, and marginal den-
sities. We establish a concentration inequality based on the bracketing number,
a similar notation to covering numbers used in [29]. In Appendix B.2 we further
investigate the properties of B-splines and Bernstein polynomials, both of which
are popular in empirical applications.

Lastly, we apply our identification and estimation method to a novel dataset
from judicial auctions conducted by a municipal court in China. By default, this
court uses 70% of the appraisal value as the starting price, which also serves as a
reserve price. Our estimation results suggest substantial gains from accounting
for UH when designing reserve prices. The court can gain 5.81% more revenue
using an optimal reserve price for each item. However, this scheme is complex;
the seller would need to know UH and recover the conditional density of bidder
values. Instead, we propose a simple scheme that achieves nearly optimal revenue
by using the appraisal value as the reserve price. Specifically, using the estimated

3For instance, it is straightforward to define the adjoint operator by using the concept of
inner product in Hilbert spaces.

4Since there is a known mapping between the bid distribution and the value distribution,
we will use the two terms interchangeably. See [21] and [6] for this mapping.

5In contrast, previous research only focuses on the estimation of the joint distribution using
a semiparametric structure [8] and [29] or a nonparametric structure [49].
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model, we find that using the appraisal value as the reserve price achieves 98.85%
of the potential gains from the optimal reserve prices.

Literature review

The auction literature has widely applied techniques developed in the mea-
surement error literature for identifying auction models with UH. If the UH is
continuous and has a separable structure on bidder valuations, identification
relies on the deconvolution approach and requires two random bids for each
auction. See [35], [34], and [32], among others. If the UH is finite and discrete,
which by nature is nonseparable, identification relies on the condition that the
bids are independent conditional on the UH and requires three random bids for
each auction. See [27], [28], and [38].

Moreover, the literature has seen rapid growth in identifying and estimating
auction models using order statistics of bids. [6] shows that symmetric indepen-
dent private value (IPV) auctions are identifiable by the transaction price and
the number of bidders using the one-to-one mapping between the distribution of
an order statistic and its parent distribution; [30] identifies asymmetric second-
price auctions using the winner’s identity and the transaction price; [20] shows
that IPV first-price auctions without observable competition is identifiable us-
ing the transaction price; [42] studies large sample properties for nonparametric
estimators using order statistics of bids.

A growing literature tackles the identification of auction models with UH and
incomplete bid information. Assuming the UH is finite and discrete, [41] provides
identification results from (any) five order statistics to restore the conditional in-
dependence condition by the Markov property of order statistics. [40] provides
an alternative identification strategy using two consecutive order statistics of
bids and an instrument. Finiteness simplifies their identification arguments be-
cause model restrictions can be written in matrix algebra. In contrast, we use
linear operators, which is not a trivial extension of the matrix operations. More-
over, we extend our identification results to allow for binding reserve prices and
apply them in our empirical application.

In the framework of additively separable continuous UH, [25] achieves point
identification using English auction models, assuming piecewise real analytic
density functions and using variations in the number of bidders across auctions;
[17] provides identification results for ascending auctions, relying on reserve
prices and two order statistics of bids. [10] studies deconvolution using two
order statistics. Our paper is the first to show point identification of auction
models with continuous and nonseparable UH using incomplete bid data.

The remainder of this paper is organized as follows. Section 2 presents our
main identification results. Section 3 proposes sieve maximum likelihood esti-
mators. We showcase the finite-sample performance of the proposed estimator
in Section 4. Section 5 presents an application to judicial auctions in China.
Section 6 concludes. The Appendix contains detailed proofs of the identification
results and the asymptotic properties.
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2. Main identification results

2.1. Identification assumptions and steps

For simplicity, we abstract from observable (to the analyst) characteristics. Sup-
pose n ≥ 2 symmetric bidders participate in an auction with zero reserve price.6
All bidders observecharacteristic T before they submit bids.7 We assume that the
unobserved characteristic T is continuous.8 Our identification strategy applies
regardless of whether the seller observes T or not. Among n potential bidders,
bidder i, where i = 1, ..., n, draws his/her value Vi from the conditional value
distribution fV |T(v|τ) and submits a bid Xi. We consider the situation wherein
the latent auction characteristic and bids/values are continuous. We denote the
marginal distribution of the latent characteristic T as fT(τ) and the optimal
conditional bid distribution as fX|T(x|τ), where x is the optimal bid.

We first introduce the standard assumption regarding the value distribution.

Assumption 1. (Conditional Independence) Bidder values, V1,..., Vn, are i.i.d.
conditional on the auction-level heterogeneity T.9

In a first-price auction, the bidder with the highest bid wins and pays his own
bid price. [21] provides a one-to-one mapping between the conditional value dis-
tribution fV |T(v|τ) and the conditional bid distribution fX|T(x|τ) given that
the competition n is known. Thus, the identification of the conditional value
distribution boils down to recovering the conditional bid distribution fX|T(x|τ)
from the bid data. If the data record all bids in each auction, the conditional
independence property passes from values to bids. Consequently, the joint dis-
tribution of three independent bids, e.g., X1, X2, and X3, denoted as f(x, y, z),
has the following multiplicatively separable structure:

f(x, y, z) =
∫
T
fX|T(x|τ)fX|T(y|τ)fX|T(z|τ)︸ ︷︷ ︸

repeated measurements

fT(τ)dτ, (1)

based on which the conditional densities fX|T(x|τ) can be identified via eigen-
function decomposition [29]. The main idea is to exploit the property that the

6We assume the number of potential bidders is known. Otherwise, we can treat it as
an additional dimension of UH, as in [40], or construct it through alternative data sources.
In procurement auctions, we can construct it using the number of qualified firms in the local
market via public information, such as the list of qualified firms and their contact information.

7While we focus on regular auctions here, our results extend trivially to procurement
auctions.

8UH may arise for many reasons. Discrete examples include an unknown number of bid-
ders ([40]), implicit reserve prices or bidding costs ([28]), unknown bidder types or bounded
rationality ([2]), and multiple equilibria ([50], [38]). Continuous ones include traffic intensity
and quality of the existing surface in highway procurement auctions ([32]), unobserved quality
of timber ([23]), and rust, dents, and tire quality of second-hand automobiles ([44]).

9In some settings, heterogeneity across bidders might be more interesting. It is worth noting
that common unobserved auction-level factors with homogeneous bidders are also prevalent in
the existing literature. See [26]. Moreover, one can test whether the bidders’ value distributions
are symmetric or asymmetric following [36].
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recorded bids are repeated measurements of UH. Under Assumption 1, their
correlation reveals how UH affects the bids. Specifically, the observed joint dis-
tribution on the left-hand side of (1) identifies the conditional and marginal
distributions on the right-hand side.

Unfortunately, the auctioneer often does not record all bid information, and
instead only records the most competitive bids. That is, the data essentially
record a few order statistics of all bids, under which the conditional indepen-
dence condition fails to hold. This is because order statistics are ordered by
definition.

In an ascending auction, the bidder with the highest bid wins and pays the
second-highest submitted price, so a weakly dominant strategy is to continue
bidding until the standing bid reaches one’s value. Therefore, all bidders bid
their values except the one with the highest value, who can simply outbid the
second-highest value by a small amount. That is, the highest bid and the sec-
ond highest bid reveal essentially the same information regarding the second
highest value, indicating that the highest bid is redundant. Because of this par-
ticular auction format, it is impossible to observe the highest value from the
bids. Equivalently, we can view the auction as everyone bids her/his value, but
the auction fails to observe the highest bid/value. Consequently, one cannot
follow the aforementioned identification results to recover the conditional value
distribution fV |T(v|τ), because the conditional independence condition fails.

Facing the data limitation of incomplete bids, this paper focuses on iden-
tifying the conditional bid distribution fX|T(x|τ) for both first-price and as-
cending auctions from any three consecutive order statistics of all bids, i.e.,
{Xr−2:n, Xr−1:n, Xr:n}, where Xr−2:n ≤ Xr−1:n ≤ Xr:n. Once the conditional
bid distribution is identified, the conditional value distribution can be identified
using the one-to-one mapping between the bid and the value.

Let V, X , and T denote the supports of the distributions of the random
variables V , X, and T, respectively. We first introduce the following regularity
assumption.

Assumption 2. (Bound and Continuity) The joint density of X and T admits
a bounded and continuous density with respect to the product measure of some
dominating measure μ (defined on X ) and the Lebesgue measure on T . All
marginal and conditional densities are also bounded and positive.

We use fr−2,r−1,r:n(·) and fr−2,r−1,r:n(·|τ) (r ≥ 3) to represent the uncon-
ditional and conditional joint probability density functions (PDF) of the three
order statistics, respectively, and fX

r:s(·) and f
X|T
r:s (·|τ) represent the uncondi-

tional and conditional PDF of the rth order statistic of measurements X out of
a sample of size s (r ≤ s).

The identification exploits the fact that the conditional joint distribution
of three consecutive order statistics has a multiplicative separable structure.
Specifically, the unconditional joint distribution, which can be estimated from
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the data, can be expressed as

fr−2,r−1,r:n(x, y, z) =
∫
T
fr−2,r−1,r:n(x, y, z|τ)fT(τ)dτ

= cr,n 1(x ≤ y ≤ z)︸ ︷︷ ︸
correlation

∫
T
f
X|T
r−2:r−2(x|τ)fX|T(y|τ)fX|T

1:n−r+1(z|τ)︸ ︷︷ ︸
multiplicatively separable

fT(τ)dτ, (2)

where cr,n = n!
(r−2)!·(n−r+1)! , and 1(·) is the indicator function. The first equality

holds by the law of total probability, and the second extends [40]’s Lemma 1
to three consecutive order statistics.10 This joint distribution of the consecutive
order statistics has a semi-separable structure in the sense that we can sepa-
rate the observed joint density function into the integration of three density
functions, which is similar to (1) in the measurement error literature, but it
has an extra restriction by the nature of order statistics, i.e., 1(x ≤ y ≤ z),
which cannot be separated. This semi-separable structure precludes us from
readily borrowing the same identification procedure in the existing literature to
identify the conditional latent distributions directly.

Fortunately, the restriction by the indicator function can be safely circum-
vented if we divide the original support by two cutoff points c1 and c2, where
c1 < c2, to separate the support into three parts, referred to as “low”, “middle”,
and “high”. We denote these segments as Xl ≡ {x : x ≤ c1},Xm ≡ [c1, c2], and
Xh ≡ {x : x ≥ c2}, respectively. Our context of three order statistics calls for a
three-part discretization, which extends [40]’s two-part discretization using two
order statistics and an IV. That is, the separable structure of the joint distri-
bution fr−2,r−1,r:n(x, y, z) reappears if we always restrict x ∈ Xl, y ∈ Xm, and
z ∈ Xh. Specifically, if x ∈ Xl, y ∈ Xm, and z ∈ Xh, the joint distribution can
be expressed as

fr−2,r−1,r:n(x, y, z) = cr,n

∫
T
f
X|T
r−2:r−2(x|τ)fX|T(y|τ)fX|T

1:n−r+1(z|τ)fT(τ)dτ, (3)

which has the same structure as the measurement error models but a different
conceptual interpretation for each component. Figure 1 provides a visualization
of the discretization.

Fig 1. Discretization.

Following the identification strategy developed in [29], we introduce the fol-
lowing integral operator that associates a function of two variables.

10The joint distribution of any three order statistics does not have such a multiplicatively
separable structure, i.e., fr,s,t:n(x, y, z) ∼ f(x)f(y)f(z)[F (x)]r−1[F (y) − F (x)]s−r−1[F (z) −
F (y)]t−s−1[1−F (z)]n−t, where r < s < t, see [15]. We derive Equation (2) in Appendix A.1.
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Definition 2.1. Let Lx|τ denote an operator that maps function g, where g ∈
G(T ), to Lx|τg ∈ G(Xl); and Hx|τ maps function g, where g ∈ G(Xh), to Hx|τg ∈
G(T ). Specifically, the two operators are defined as

[Lx|τg](x) ≡
∫
T
fX|T(x|τ)g(τ)dτ and [Hx|τg](τ) ≡

∫
Xh

fX|T(x|τ)g(x)dx.

Note that both operators involve one segment of bid support X . We further
introduce another linear operator based on the joint distribution and the diago-
nal operator defined as follows. In particular, for a given y ∈ Xm, let Jy denote
an operator mapping g ∈ G(Xh) to Jyg ∈ G(Xl):

[Jyg](x) ≡
∫
Xh

fr−2,r−1,r:n(x, y, z)g(z)dz.

Given a particular partition {Xl,Xm,Xh}, Jy is defined for every given y in Xm.
Let ΔX=y,T denote the diagonal operator mapping g ∈ G(T ) to ΔX=y,Tg ∈ G(T ):

[ΔX=y,Tg](τ) ≡ cr,nf
X|T(y|τ)fT(τ)g(τ).

We derive the equivalence of operators in Appendix A.2 as follows:

Jy = LXr−2:r−2|TΔX=y,THX1:n−r+1|T, (4)

based on Equation (3) and by exploiting the following features: (i) an inter-
change of the order of integrations (justified by Fubini’s theorem), (ii) the def-
inition of HX1:n−r+1|T, (iii) the definition of ΔX=y,T operating on HX1:n−r+1|Tg,
and (iv) the definition of LXr−2:r−2|T operating on [ΔX=y,THX1:n−r+1|Tg]. Note
that such equivalence between the operators holds for any value of y ∈ Xm.

For identification, we impose the following injective assumption.

Assumption 3. (Injective) There exists one division of the domain such that
the operators LT|Xr−2:r−2 and HX1:n−r+1|T are injective for G = L2, where L2(X )
denotes the set of all square-integrable functions with domain T and Xh, respec-
tively.

It is worth noting that our identification is agnostic about the specific division
of the domain that Assumption 3 is satisfied, i.e., specific values of c1 and c2.
The identification holds as long as there exists one pair of those constants and
the associated rank conditional holds. One does not need to determine those
constants for identification. Moreover, there might exist multiple pairs of c1
and c2 that the identification results apply, which could be used to conduct an
over-identification test.

An operator A is injective if Af = Ag implies f = g for any f, g in the do-
main of A. A linear operator being injective is equivalent to the family of kernel
functions used to define the operator being complete; see [29]. In our context,
if the family of distributions {fX|T

r−2:r−2(x|τ) : x ∈ Xl} is complete over L2(T ),
that is, the unique solution g̃ to the equation

∫
T g(τ)fX|T

r−2:r−2(x|τ)dτ = 0 for
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all x ∈ Xl is g̃(·) = 0, then LT|Xr−2:r−2 is injective under Assumption 2. We
further provide conditions on the parental distributions under which the family
of the order statistics’ distributions is complete in Appendix A.3. However, the
equivalence between the injectiveness of operator HX1:n−r+1|T and the complete-
ness of the kernel function family {fX|T

1:n−r+1(x|τ) : τ ∈ T } over L2(Xh) is not
straightforward, because the operator is defined only in a segment of the sup-
port. We prove that as long as the original distribution family is complete, i.e.,
{fX|T

1:n−r+1(x|τ) : τ ∈ T } over L2(X ) is complete, there exists at least one division
of the support such that operator HX1:n−r+1|T is injective. See Appendix A.3.

Completeness of the relevant family of distributions provides one way to
characterize the injectivity of an operator. Intuitively, the family of distributions
{fX|T(x|τ) : x ∈ X} being complete implies there is sufficient variation in the
conditional density of X across different values of T. An example of such a
complete distribution is a normal distribution with mean τ and variance 1.
On the other hand, if the conditional density of X does not vary sufficiently
across τ , such as the standard normal distribution, the distribution family is
not complete. Obviously, in such a scenario, X is independent of T, and hence
we can easily find g �= 0 such that

∫
g(τ)fX|T(x|τ)dτ = 0 for any x.

Assumption 3 also specifies that we consider the identification with G = L2.
Such consideration is due to the following two reasons. First, this space is suf-
ficiently large such that the density can be sampled everywhere, which ensures
a one-to-one mapping between a density function and its corresponding oper-
ator. Thus, the density function can be uniquely determined by the associated
operator with such a choice of G.11 Second, it is a Hilbert space if equipped
with the norm ‖g‖L2 =

(∫
X g2(x)dx

)1/2 for any g ∈ G(X ). One advantage of
considering Hilbert spaces is that it is easier to use properties of the operators
such as LXr−2:r−2|T and HX1:n−r+1|T later, because there are many existing the-
oretical results developed for operators defined in Hilbert spaces. For instance,
it is straightforward to define the adjoint operator by using the concept of inner
product in Hilbert spaces. It is also worth noting that this space differs from
the L1 space adopted in [29], which is a Banach space.

If an operator is injective, its inverse is well-defined but may be defined over a
restricted domain. We further prove that LXr−2:r−2|T is surjective in addition to
being injective so that the domain of its inverse is the whole space L2(X ). This
is important for proving the equivalence of operators defined in the data and
in the distributions to be identified. We summarize this result in the following
lemma and relegate the proof to Appendix A.4.

Lemma 2.2. If Assumptions 1-3 hold, then L−1
Xr−2:r−2|T exists and is densely

defined over L2(Xl).

Lemma 2.2 essentially indicates that operator LXr−2:r−2|T is surjective if it is
injective. We use the following simple example to facilitate understanding the

11Because fX
r−2:r−2(x|τ0) = lim

n→∞
[LXr−2:r−2|Tgn,τ0 ](x), where gn,τ0(τ) = n1(|τ − τ0| ≤

n−1), a sequence of bounded and square-integrable functions,the space G = L2 is sufficiently
rich.
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necessity of the surjective property and the difference between linear operators
and matrices. Suppose that D1 and D2 are two linear spaces, and L is a linear
transformation from D1 to D2. If both D1 and D2 are finite-dimensional, L is
injective if and only if it is surjective. In particular, if dim(D1) = dim(D2) and
L is associated with a square matrix A, then L is both injective and surjective
if and only if A has full rank. But this relationship does not trivially hold in
infinite-dimensional cases. For example, let {ei}∞i=1 be the basis of D1 as well as
D2. We assume that Lei = ei+1 for every i ≥ 1. Such an operator L is obviously
injective but not surjective, because the base e1 is missing in its range.

Since HX1:n−r+1|T is injective under Assumption 3, we can eliminate the com-
mon operator HX1:n−r+1|T by equivalence of operators specified in Equation (4)
for any two different values of y, i.e., y1 and y2, leading to the following main
equation for identification:

Jy1J
−1
y2

= LXr−2:r−2|TΔX=y1,TΔ−1
X=y2,TL

−1
Xr−2:r−2|T. (5)

By Lemma 2.2, the relation (5) is established over a dense subset of L2(Xl).
In fact, it can be further extended to the full space L2(Xl) by leveraging the
extension procedure of linear operators. This equation ensures that operator
Jy1J

−1
y2

can be represented as an eigenvalue-eigenfunction decomposition with
the two unknown operators LXr−2:r−2|T and ΔX=y1,TΔ−1

X=y2,T being the eigen-
functions and eigenvalues, respectively. Consequently, diagonalizing operator
Jy1J

−1
y2

, which can be computed from the data directly since it is defined us-
ing observable densities, provides the eigenfunctions LXr−2:r−2|T, indexed by
the latent UH, and further provides the unobserved densities of order statistic
Xr−2:r−2|T.

Note that there are three features prevalent in identification using decompo-
sition: The identification may not be unique; the identification is up to scales;
the identification is up to ordering and location. We tackle the three issues one
at a time below.

Unique decomposition

To guarantee unique decomposition, we impose restrictions on the relationship
between observed measurement X and UH T in segment Xm.
Assumption 4. (Distinct) there exists one division of the domain such that,
for all τ1, τ2 ∈ T , the set {(y1, y2) : fX|T(y1|τ1)

fX|T(y2|τ1) �= fX|T(y1|τ2)
fX|T(y2|τ2) , where (y1, y2) ∈

Xm ×Xm} has positive probability whenever τ1 �= τ2.
This assumption is weaker than assuming that the associated operator is

injective in segment Xm. Note that we just need one division where such an
assumption holds. This assumption fails only if the distribution of the measure-
ment conditional on the latent factor is the same at some pair of two distinct
values τ1 and τ2. Assumption 4 guarantees unique eigenvalues, so that conduct-
ing the decomposition to operator Jy1J

−1
y2

identifies operator LXr−2:r−2|T, and
thus identifies the conditional density f

X|T
r−2:r−2(x|τ), for x ∈ Xl.
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Our identification is agnostic about the specific values of y1 and y2, and only
requires to have one pair of y1 and y2 that Assumption 4 holds. If our model is
correctly specified, different pairs of y1 and y2 should lead to the same identified
components. Therefore, we could in theory use different pairs of y1 and y2 to
conduct an over-identification test.

However, even if the decomposition is unique, such identification is up to
scales and locations. That is, the conditional density f

X|T
r−2:r−2(x|τ) is identified

as the true density multiplied by an unknown constant, which could differ for
each UH. The existing literature relies on the property that the total probability
is equal to 1 for each conditional distribution to pin down the scales. Such an
approach is not feasible in our framework because, from the decomposition, we
only identify the conditional distribution in one segment of the full support, i.e.,
Xl. Mover, one can neither pin down the ordering or the actual values of UH,
which calls for extra restrictions.

To proceed, we propose to leave the ordering of the UH and the scales in the
low segment undetermined and proceed to identify the conditional distributions
in the other two segments first. In this procedure, we mainly use Equation (5).
One main feature worth noting during this process is that we keep the value
of the UH consistently matched across the three segments. Furthermore, the
undetermined scales are the same for the same UH in the same segment but
may vary across UH or segments. Given these, we can then pin down the scales
and order in what follows.

Unique scale

Note that we can identify the conditional distributions in all three segments up
to different scales. That is, each segment of the conditional distribution is as-
sociated with one scale parameter, so together there are three scale parameters
to pin down for each conditional distribution. These scales can then be pinned
down by invoking the continuity of the component PDFs and the total probabil-
ity argument. First, the PDFs identified separately in the three segments should
be the same at the cutoff points due to the continuity of the true conditional dis-
tributions. Second, the fact that each conditional distribution should integrate
to 1 provides the third restriction on the scales. These restrictions uniquely pin
down the scales.

Unique ordering and location

Given that the conditional distributions are identified in the full support, we
provide a condition using the auction setting to pin down the exact location of
the UH. Specifically, letting UH be the unobserved quality of the auctioned item,
we would expect that bidders’ values/bids are, on average, higher and of better
quality. For instance, in second-hand automobile auctions, omitted details from
the car description, such as dents and scratches, are revealed upon pre-auction
inspection and enter bidder values.
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Assumption 5. (Monotonicity and Location) The expected value/bid is strictly
monotone with UH; that is, E(X|T = τ) is strictly monotone with τ for all
τ ∈ T . Moreover, we assume that the support of UH is [0, 1].

The monotonicity assumption is useful to pin down UH’s relative ordering.
However, its exact location/value is still unidentified. That is, one could always
apply an affine transformation to the UH and obtain an observationally equiva-
lent model that satisfies all assumptions. To pin down UH’s exact location, we
normalize its support to be [0, 1], which is without loss of generality. Such a
normalization is similar to the mean zero normalization.

Theorem 2.3. If Assumptions 1-5 are satisfied, conditional bid distribution
fX|T(x|τ) for x ∈ X and τ ∈ T and UH’s distribution fT(τ) for any τ ∈ T are
identified using any three consecutive order statistics of bids.

We summarize the main steps of the proofs below and leave the details to
Appendix A.6.12 The identification proceeds sequentially. First, we identify op-
erator LXr−2:r−2|T from the decomposition of Equation (5). Such identification
is unique by Assumption 4, but up to scales and location. Second, we identify
the operator HX1:n−r+1|T up to different scales, similar to the identification of
LXr−2:r−2|T. Third, for any value y ∈ Xm, we can identify operator ΔX=y,T up
to the same scales for all y once we plug the identified operators LXr−2:r−2|T
and HX1:n−r+1|T into Equation (4). Using the one-to-one mapping between op-
erators and the associated densities, we then identify the unobserved densities
f
X|T
r−2:r−2(x|τ) for x ∈ Xl, fX|T(y|τ)fT(τ) for y ∈ Xm, and f

X|T
1:n−r+1(z|τ) for

z ∈ Xh up to scales. The scales are the same in the same segment but may vary
across different segments. Furthermore, we show that the one-to-one mapping
between the distribution of an order statistic and its parent distribution can be
extended from the full support to a segment. Thus, we identify the conditional
distribution up to different scales in all three segments. Lastly, the scales are
then pinned down using three restrictions.

Once the conditional bid distributions are identified as in Theorem 2.3, we
can exploit the one-to-one mapping between the conditional value and bid dis-
tributions to recover the conditional value distributions, which are the target
of interest. Specifically, for ascending auctions, where bidders’ weakly dominant
strategy is to bid their values, the conditional value distribution is the same as
the conditional bid distribution;13 for first-price auctions, we can identify the
conditional value distribution by exploiting the one-to-one mapping established
in [21]. We summarize this result in the following Corollary.

Corollary 2.4. If Assumptions 1-5 are satisfied, the conditional value distribu-
tion fv|T(v|τ) for v ∈ V and τ ∈ T and the latent variable’s distribution fT(τ)
for τ ∈ T are identified using any three consecutive order statistics of bids.

12We thank Yingyao Hu and Ji-Liang Shiu for valuable insights about proving the theorem.
13Many empirical studies adopt the same assumption in ascending auctions; see, e.g., [37],

[4], and [26]. We exclude other possible bidding strategies such as jump bidding allowed in
[24]. Such abstraction is a good approximation for online auctions and button auctions. For
instance, eBay allows bidders to set up a proxy bid.
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The identification results in Theorem 2.3 are achieved under the assumption
that the reserve price is not binding. However, in practice, the reserve price
appears to be binding in many cases, leading to a truncation in the observed
bid distribution. We show in the following corollary that we can still identify the
bid/value distribution with a truncation. We can also identify the conditional
probability of the truncation when the number of potential bidders is observed.

Remark 1. Our results are useful for many auction-based applications such as
online advertising auctions and other settings including beauty contests, war of
attrition models, where many players compete for multiple prizes, wage offers,
where only the top offers are recorded, and repeated experiments such as in
reliability testing, where consecutive low-order failure times are recorded.

2.2. Reserve price for ascending auctions

If the reserve price is binding, the optimal bidding strategy for any bidder is to
submit the optimal bid computed without reserve prices when such an optimal
bid is above the reserve price, and to not bid otherwise. Therefore, the presence
of a binding reserve price R creates a truncation in the observed bid distribution,
i.e., F̃X|T(x|τ) ≡ FX|T(x|τ)−FX|T(R|τ)

1−FX|T(R|τ) , where x ∈ [R, x]. Let n denote the number
of actual bidders and N denote the number of potential bidders. In first-price
auctions, even if entry is exogenous, the observed bid distribution depends on
both N and n, while in ascending auctions, it only depends on n. Therefore, to
illustrate the intuition, we focus on ascending auctions.

Under such a situation, even with a truncation caused by a binding reserve
price, we can still follow the identification strategy in Theorem 2.3 to identify
the truncated CDF F̃X|T(x|τ), PDF f̃X|T(x|τ), and the marginal distribution of
the UH without information on N as long as n is known. Specifically, the joint
distribution of three consecutive active bids with a bidding reserve price can be
expressed as

f̃r−2,r−1,r:n(x, y, z)

= cr,n · 1(x≤y≤z) ·
∫
T
f̃
X|T
r−2:r−2(x|τ)f̃X|T(y|τ)f̃X|T

1:n−r+1(z|τ)fT(τ)dτ.

A few features are worth noticing. First, identification using eigen-decomposition
applies regardless of whether N is observed, as the bidding strategy does not
vary with N under exogenous entry. Second, without observing bids below the
reserve price, there is no information to identify the bid/value distribution for
this segment. Lastly, we establish that we can identify the conditional probability
of the truncation FX|T(R|τ).

Corollary 2.5. In ascending auctions, when N is observed and has large sup-
port, the conditional probability of truncation FX|T(R|τ) is identified using the
distribution of the number of actual bidders conditional on the potential bidders.



2490 Y. Luo et al.

Therefore, for all x ≥ R, FX|T(x|τ) is identified from

F̃X|T(x|τ) ≡ FX|T(x|τ) − FX|T(R|τ)
1 − FX|T(R|τ)

.

Intuitively, the distribution of n conditional on N is a mixture of binomial
distributions with the success probability being the conditional truncated prob-
ability. That is,

Pr(n|N) =
∫
τ∈T

CN,n[1 − FX|T(R|τ)]n[FX|T(R|τ)]N−ndF T(τ), (6)

where Pr(n|N) is estimable from the data, CN,n is a constant, F T(τ) can be
treated as known, and conditional truncation probability FX|T(R|τ) is the ob-
ject of interest. This is similar in structure but differs conceptually from the
identification in the mixture literature [22], where the goal is to identify the
mixture distribution with the success probability taking any value in [0, 1]. We
show that our identification problem can be viewed as a dual problem by chang-
ing variables in the integral. The detailed proof for Corollary 2.5 can be found
in Appendix A.7.

2.3. The number of order statistics

Our discussion so far assumes that three consecutive order statistics of bids are
available. There are various ways to extend this main identification result. First,
the required number of consecutive order statistics reduces to two if there exists
an instrument that is independent of the bids conditional on UH; see [40].14
Second, while consecutiveness barely restricts the data with incomplete bids,
exploiting the Markov property of order statistics relaxes this requirement. In
Appendix C, we show that any four order statistics identify the model.15

3. Sieve maximum likelihood estimation

3.1. Consistency of sieve estimation

Note that conducting counterfactual policy analysis requires one to estimate
the joint distribution of UH and bidder private values. In principle, the condi-
tional bid distribution and UH’s marginal distribution could be estimated fully
nonparametrically by following the constructive identification argument step-
by-step. Specifically, one could do a partition in the full support and conduct
eigenfunction decomposition to estimate the distribution of the order statistics

14Measurement error approaches are inapplicable when only one order statistic, such as
the winning bid, is observed. This calls for alternative strategies, such as density discontinuity
approaches first proposed by [20].

15The idea of using Markov property for dealing with UH and incomplete bid data simul-
taneously is first explored in [41], who uses five order statistics in finite UH framework.
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in the three segments, then use the one-to-one mapping between the distribution
of an order statistic and its parent distribution to estimate the parent distri-
bution. Such a fully nonparametric estimator not only poses a high demand on
the data but is also of low efficiency, as it depends critically on the partition of
the support and involves sequential estimation.

Considering the fact that, in applications, the analyst oftentimes can only
access modest-sized data, we propose to estimate these two densities using the
method of sieves [19, 46, 9, 7] to fully exploit variations in the data instead
of relying on a particular partition. We establish consistency and convergence
rates for such estimators.

Our strategy is to first provide some regularity assumptions on the sieve
approximation for consistency, which usually depends on the smoothness of
the function to be approximated and the complexity of the sieve space. Such
complexity is characterized by its upper bound and bracketing numbers.16

We represent the log-likelihood function of the joint distribution of the three
consecutive order statistics, i.e., data ≡ {Xr−2:n = xi, Xr−1:n = yi, Xr:n =
zi}mi=1, as follows:

logL(data; fX|T, fT) = 1
m

n!
(r−3)!(n−r)!

∑m
i=1 log

∫
τ
[FX|T(xi|τ)]r−3fX|T(xi|τ)

fX|T(yi|τ)[1 − FX|T(zi|τ)]n−rfX|T(zi|τ)fT(τ)dτ.

As both the conditional density and the marginal density can be derived
from a joint density, we propose to approximate joint distribution fX,T(x, τ) by
using tensor product bases of univariate series. Specifically, let Bm be the finite-
dimensional sieve space and ξ1, . . . , ξpm be its basis, where pm is the number of
basis functions in the sieve space.

With slight abuse of notation, we denote the sieve representation of this joint
distribution as f. We then represent the marginal distribution, the conditional
distribution, and the CDF of such a conditional distribution as follows:

fT(τ) =
∫
X
fX,T(x, τ)dx �

∫
X
f(x, τ)dx, (7)

fX|T(x|τ) = fX,T(x, τ)
fT(τ) � f(x, τ)∫

X f(x, τ)dx
, (8)

FX|T(x|τ) =
∫ x

−∞
fX|T(t|τ)dt �

∫ x

−∞ f(t, τ)dt∫
X f(x, τ)dx

.

Consequently, the sieve estimator for the joint distribution of the three observed
consecutive bids can be represented as

f̂ = arg max
f∈Bm

logL
(

data; f(x, τ)∫
X f(x, τ)dx

,

∫
X
f(x, τ)dx

)
. (9)

Next, we show that under some regularity conditions the proposed sieve esti-
mator for the joint distribution in Equation (9) is consistent. Once the joint dis-
tribution is consistently estimated, the conditional and marginal distributions,

16In contrast, [29] uses a covering number to characterize complexity.
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specified in Equations (7) and (8) respectively, are also consistently estimated.
Let fX,T

0 (x, τ) denote the true joint density, and let fX|T
0 (x|τ) and fT

0 (τ) denote
the true conditional density of X given T = τ and the marginal density of the
latent variable, respectively. We introduce some regularity conditions.

Assumption 6. (Compactness) X has a compact support. Without loss of gen-
erality, we assume that its support is [0, 1].

This compact support assumption is standard in the auction literature. More-
over, we can linearly transform random variables with compact support to ones
that have support on [0, 1]. Note that such a transformation has to be linear,
rather than an arbitrary monotone transformation. The linear transformation
is for the convenience of using the observed data in estimation. The support
of the two random variables, X and T, plays an important role in choosing an
appropriate sieve space to perform maximum likelihood estimation. For exam-
ple, the trigonometric sieve is inapplicable when the support is R. In this case,
Hermite polynomials and B-splines are preferable. A B-spline approximation
is also useful when the support is compact. It is worth emphasizing that our
identification results hold regardless of this normalization.

Assumption 7. (Sieve approximation) There exists fX,T
m (x, τ), which is repre-

sented in terms of the bases ξ1, . . . , ξpm in the sieve space, for some β > 0, such
that

‖fX,T
m (x, τ) − fX,T

0 (x, τ)‖L∞([0,1]2) = O(p−β
m ).

Assumption 7 ensures that the joint density can be approximated sufficiently
well in the sieve space. It is worth noting that the sieve space constructed
by either B-spline or Bernstein basis functions, which are popular sieve spaces
in auctions, satisfies Assumption 7. With this assumption satisfied, by Equa-
tions (7) and (8), both the conditional density and the marginal density can be
approximately sufficiently well by functions in the sieve space. That is, there
exist fX|T

m (x|τ) and fT
m(τ), both represented in terms of ξ1, . . . , ξpm in the sieve

space, such that

‖fX|T
m (x|τ) − f

X|T
0 (x|τ)‖L∞([0,1]2) = O(p−β

m ), and
‖fT

m(τ) − fT
0 (τ)‖L∞([0,1]2) = O(p−β

m ).

To study the asymptomatic properties of the proposed estimator, we first
establish the relationship among the sieve estimator, the sieve representation,
and the underlying true densities. Let G(x, y, z; fX|T, fT) be the log-likelihood
function from one single observation that depends on the conditional density of
X given T = τ and the marginal density of T.

Lemma 3.1. Let f̂X|T
m (x|τ) and f̂T

m(τ) denote the estimated conditional density
of X and the marginal density of the latent variable T, respectively. We have
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1√
m
Gm

[
log G(x, y, z; f̂X|T

m , f̂T
m)

G(x, y, z; fX|T
m , fT

m)

]
≥ P

[
log G(x, y, z; fX|T

m , fT
m)

G(x, y, z; fX|T
0 , fT

0 )

]

+ P

[
log G(x, y, z; fX|T

0 , fT
0 )

G(x, y, z; f̂X|T
m , f̂T

m)

]
, (10)

where Gm =
√
m(Pm − P ), Pm denotes the empirical measure of data

(xi, yi, zi)mi=1, and P denotes the true distribution.

Lemma 3.1 holds by definition of f0 and f̂ . The detailed proof can be found in
Appendix B.1. This inequality follows from that our sieve estimator maximizes
the empirical measure of the log-likelihood function over the sieve space. The
left-hand side measures the difference between the empirical and true measures
for the log-likelihood ratio. The first term on the right-hand side measures how
close the sieve approximation is to the true functions; the second term measures
how close our sieve estimator is to the true functions. To find an upper bound
on the second term in order to establish consistency and the convergence rate
of sieve estimators, we first bound the left-hand side from above using empirical
process techniques and then bound from below the first term using the Lipschitz
continuous property of G.

To accomplish (11), we resort to empirical process theories and impose re-
strictions on the complexity of the sieve space. We first introduce the following
two assumptions to characterize its complexity.

Assumption 8 (Bound of sieve space). The logarithm of the upper bound over
Bm, denoted by Qm, satisfies log{supf∈Bm

‖f‖L∞([0,1]2)} ≤ Qm = O(log logm).

Assumption 9 (Bracketing number). The ε bracketing number of the sieve
space Bm is of order O

(
(e2Qm/ε)pm+2) for some constant pm = O(mα) with

0 < α < 1/2.

Intuitively, Qm would be larger for a larger space. We define the bracketing
number following [48]. Specifically, given two functions l and u, the bracket [l, u]
is the set of all functions f with l ≤ f ≤ u. An ε-bracket is a bracket [l, u] with
‖u− l‖ ≤ ε under a certain norm ‖ · ‖. The ε bracketing number N[](ε,B, ‖ · ‖)
is the minimum number of ε-brackets needed to cover B. A larger ε bracketing
number corresponds to a more complex sieve space.

To guarantee consistency, we consider the function class Fm, defined by{
log G(x, y, z; f̃X|T

m , f̃T
m)

G(x, y, z; fX|T
m , fT

m)
: f̃X|T

m = fm(x, τ)∫
X fm(x, τ)dx

, f̃T
m =

∫
X
fm(x, τ)dx

}
,

where fm is represented in terms of ξ1, . . . , ξpm in sieve space Bm. If the com-
plexity of sieve space Bm satisfies Assumptions 8-9, we are able to quantify the
upper bound on Fm, which is the upper bound on the left-hand side of (10).

We now establish consistency of the proposed sieve estimator.
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Theorem 3.2. Under Assumptions 6-9, the proposed sieve MLE for the joint
distribution is consistent. Moreover, both the conditional and marginal distribu-
tions are consistently estimated. That is,

‖f̂X|T
m (x|τ) − f

X|T
0 (x|τ)‖L2

p−→0, and ‖f̂T
m(τ) − fT

0 (τ)‖L2

p−→0.

The convergence rate for these estimators is derived to be B(m, pm, Qm)1/2,
where B(m, pm, Qm) = ec2Qmpm log pm/

√
m + ec2Qm/pβm, with c2 being a con-

stant.

The detailed proof is given in Appendix B.1. Note that we consider L2 conver-
gence of our proposed estimator. Establishing the (uniform) convergence rate is
beyond the scope of this paper and thus left for future research. As pointed out
in [42], the uniform rate depends on r, and the nonparametric MLE of the par-
ent distribution obtained using order statistics may have a slower convergence
rate near the tail of the parent distribution. The primary reason is that the
mapping from the distribution of order statistics to the corresponding parent
distribution may not be Lipschitz continuous. The derivative of this mapping
may diverge near the tail. In this context, we found similar issues with respect
to the proposed sieve MLE using Berstein polynomials from simulation studies.

3.2. The conditional value distributions

Theorem 3.2 concerns the distribution of UH and the conditional bid distri-
butions. While the bid equals the value in ascending auctions, recovering the
value distributions in first-price auctions requires several additional steps. First,
we estimate the conditional bid quantile functions b̂(α|τ) by inverting the esti-
mated conditional bid distribution. That is, b̂(α|τ) = F̂−1(α|τ), where we have
omitted supscript X|T for simplicity. Second, following [21], we can recover the
conditional value quantile function

v̂(α|τ) = b̂(α|τ) + 1
n− 1αb̂

′(α|τ), (11)

which allows construction of the conditional value density and distribution. By
the continuous mapping theorem [11], the estimated conditional value quantile
function, density, and distribution are also consistent. Moreover, if we impose
higher-order smoothness assumptions on the value distribution, we may achieve
a faster convergence rate, which is similar to the results in [42].

4. Simulation studies

In this section, we first conduct Monte Carlo experiments to demonstrate the
proposed sieve estimator’s finite sample performance using Bernstein polynomi-
als as bases. The results show that the sieve estimators perform well even with
a modest sample size. Second, we compare the performance of our proposed
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Fig 2. Estimated fT(τ) with Bernstein Polynomials. Note: the red solid line depicts the true
density. The black dashed line represents the average of the estimated densities based on
our proposed method, with black dotted lines indicating the 5% and 95% pointwise quantiles.
In contrast, the blue dashed line shows the average of the estimated density based on the
naive imputation accompanied by blue dotted lines for the respective 5% and 95% pointwise
quantiles.

estimator with a naive imputation method to further provide evidence of the
effectiveness of our method.

We focus on ascending auctions. The data-generating process is as follows.
We first generate the latent variable T using beta distribution Beta(α∗, β∗),
where α∗ = 3 and β∗ = 1.5. We then generate the measurement/value/bid X
using the conditional distribution fX|T(x|τ), which is specified again as beta
distributions, with α(τ) = 1.5 and β(τ) = 1.5(1 + τ). To generate a set of order
statistics, we generate n = 4 measurements for each τt and record the lowest
three, i.e., X1:n = xt, X2:n = yt, X3:n = zt. Repeating this process 1, 000 times
produces a sample of 1, 000 consisting of the lowest three order statistics.

In estimation, we choose the number of basis functions to be p = 5. To guar-
antee that the sieve approximation functions are valid density functions, we
impose restrictions on the sieve parameters θ. Specifically, θij ’s satisfy θij ≥ 0
and

∑
ij θij = 1. For ease of computation, we re-parametrize those parameters

as θij = exp(γij)/{
∑

ij exp(γij)}, where γ11 is normalized to be 0, so that the
restrictions are trivially satisfied and parameters are identifiable. We consider
100 independent simulation runs. Figures 2 and 3 display the pointwise 5%,
mean, and 95% quantile of the estimated marginal distribution fT(τ) and the
conditional distributions fX|T(x|τ) for τ = 0.25, 0.50, 0.75, respectively. We ob-
serve that even with a sample size of 1000, our density estimator performs quite
well with the mean very close to the true density and the 5% and 95% quantiles
tightly cover the true density.

The identification problem we tackle can also be treated as a missing data
problem. What is unique is that auction-level heterogeneity T is completely miss-
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Fig 3. Estimated fX|T(x|τ) for τ = 0.25, 0.50, 0.75 with Bernstein Polynomials. Note: in each
panel, the red solid line depicts the true density. The black dashed line represents the average
of the estimated densities based on our proposed method, with black dotted lines indicating
the 5% and 95% pointwise quantiles. In contrast, the blue dashed line shows the average of
the estimated density based on the naive imputation accompanied by blue dotted lines for the
respective 5% and 95% pointwise quantiles.

ing. Our approach to this problem tackles the missing data directly and recovers
the primitive for each unobserved level of UH. A natural question is how a naive
imputation method performs. For example, we can fill in the missing auction-
level heterogeneity T by the average of the observed order statistics

T̃ = Xr−2:n + Xr−1:n + Xr:n

3 .

Note that the larger the auction-level heterogeneity value, the more left-skewed
the density is in our data-generating process. Therefore, the higher the imputed
heterogeneity, the more likely the auction is from a less left-skewed density. To
make the imputed heterogeneity comparable with the one from our proposed
approach, we bring all imputed values into the range [0, 1] and reverse their
order. Specifically, we normalize T̃ by taking the additive inverse, subtracting
the minimum, and dividing by the range in the simulation results. Intuitively
such a naive imputation method leads to biased estimates.

We also conduct a simulation exercise to compare the performance of this
naive method with that of our method. Specifically, after imputing the missing
heterogeneity, we represent the log-likelihood function of the joint distribution
of the three consecutive order statistics and the imputed heterogeneity, i.e.,
data ≡ {Xr−2:n = xi, Xr−1:n = yi, Xr:n = zi, T̃ = τ̃ i}mi=1, as follows:

l̃ogL(data; fX|T, fT) = 1
m

n!
(r−3)!(n−r)!

∑m
i=1 log

{
[FX|T(xi|τ)]r−3fX|T(xi|τ)

fX|T(yi|τ)[1 − FX|T(zi|τ)]n−rfX|T(zi|τ)fT(τ)
}
.
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We present the estimation results in Figures 2 and 3, from which we can see
that the naive imputation leads to biased estimates of the marginal distribution
fT(τ) and the conditional densities fX|T(x|τ = 0.25) and fX|T(x|τ = 0.50), but
estimation of fX|T(x|τ = 0.75) is less affected. This result validates the effec-
tiveness of our proposed estimator. That is, our proposed estimator generates
unbiased and consistent estimation of the underlying distributions, while the
naive imputation estimation results in biased and inconsistent estimation due
to the unsatisfactory treatment of the unobserved heterogeneity. However, the
confidence band is narrower in the naive imputation method than that of our
estimator because the unobserved heterogeneity is imputed.

After demonstrating that our estimator produces more unbiased and consis-
tent estimations than the naive imputation, we conduct two additional sets of
experiments to assess the performance of our estimator compared with the naive
imputation method under various simulation settings. First, we investigate the
performance of the proposed estimator using different conditional distribution
functions. Specifically, we modify the β parameter in the conditional distribution
fX|T(x|τ) as follows: β(τ) = 1.5 + 1.5τγ, with γ ranging from 0 to 1.8 in in-
crements of 0.2. Intuitively, as γ increases, the conditional distribution becomes
more sensitive to the unobserved heterogeneity, indicating that the unobserved
factor plays a bigger role in determining the overall value.

To compare the performance of our proposed estimator with that of the
naive imputation method, we compute the average of the IMSE of f̂T(τ)17 with
varying values of γ and the corresponding standard error, and plot these val-
ues in Figure 4. Several distinct patterns emerge from this comparison. First,
our method performs better than the naive imputation when γ is below 0.5,
while the naive imputation outperforms our method as γ increases. Secondly,
the IMSE of the proposed estimator rises with increasing γ, indicating wors-
ening performance with higher heterogeneity. Conversely, the naive imputation
improves as γ increases, since a simple average better approximates the unob-
served heterogeneity when it plays a significant role in determining the overall
value.

We conduct the same analysis for the conditional distributions and plot the
average and standard error of IMSEs across 100 repetitions for both our pro-
posed estimator and the naive imputation method in Figure 5. Similar patterns
to those previously described emerge for the conditional distributions. Specifi-
cally, our proposed estimator performs better for τ = 0.25 and τ = 0.5 when γ
is low. However, for τ = 0.75, the pattern reverses, with our proposed estimator
performing better as γ increases

Secondly, we study how our proposed estimator performs with different num-
bers of measurements. Specifically, we vary the number of measurements, n,
from 4 to 22, examining the impact of tail order statistics. Intuitively, an in-
crease in the number of bidders (n) intensifies bid selectivity, reducing the in-
formational value for estimation. Figure 6 displays the average IMSE of f̂T(τ)

17For an arbitrary function g defined on [0, 1] and its estimate ĝ, we define integrated
mean square error (IMSE) of ĝ as

∫ 1
0 ĝ(t) − g(t)2dt.
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Fig 4. The average and standard error of IMSEs of estimated fT(τ) for varying values of γ.
The black solid and blue dashed lines represent the average of the IMSEs across 100 simulation
runs of our proposed method and the imputation method, respectively.

Fig 5. The average and standard error of IMSEs of estimated fX|T(x|τ) for varying values
of γ. The black solid and blue dashed lines represent the average of the IMSEs across 100
simulation runs of our proposed method and the imputation method, respectively.

for both our method and the naive imputation method, plotted against varying
values of n with corresponding standard errors. As n increases, the estimation
of the marginal density of T by our proposed estimator becomes less accurate.
This decline in accuracy also applies to our estimated conditional density of
X given T = τ . These findings underscore the conclusions drawn at the end of
Section 3.1. In contrast, the naive imputation method performs more stably as
n varies.
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Fig 6. The average and standard error of IMSEs of estimated fT(τ) for varying values of n.
The black solid and blue dashed lines represent the average of the IMSEs across 100 simulation
runs of our proposed method and the imputation method, respectively.

5. Empirical application

In this section, we apply our methodology to an empirical analysis of judicial
auctions in China. Chinese courts began holding online auctions in 2012 through
taobao.com, the shopping site of Chinese e-commerce giant Alibaba. As of 2022,
almost all of China’s courts have registered on this judicial sales platform, auc-
tioning assets ranging from cars, diamonds, property, land use rights, and Boeing
747s to company shares. As of December 2019, over 500,000 items have been
sold, with turnover reaching about 1.3 trillion yuan on the Taobao judicial sales
platform.18

The court first posts the property-related information on taobao.com, includ-
ing the appraisal value, obtained through a third-party appraisal company, and
a starting price. Potential buyers can view the information page online and visit
the property physically before the auction starts. Interested bidders can regis-
ter to participate in the bidding by paying a security deposit and then bid in
an ascending fashion. They can also set up automatic bidding.19 The highest
bidder wins the object and pays his/her bid.

18Source: China Daily.
19On average, a sold item receives 55 bids from 3 bidders, suggesting that jump bidding

may not be a big concern.

https://global.chinadaily.com.cn/a/201912/26/WS5e0411dda310cf3e35580b5c_2.html
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Fig 7. The average and standard error of IMSEs of estimated fX|T(x|τ) for varying values
of n. The black solid and blue dashed lines represent the average of the IMSEs across 100
simulation runs of our proposed method and the imputation method, respectively.

5.1. Data

We collected a sample of residential property auctions from taobao.com, which
contains all sales by the court in Jiangmen city of Guangdong Province between
January 2018 and June 2020. We drop a few sales below ten thousand RMB
or above five million RMB. In total, we have 477 auctions with 329 successful
sales. By default, this court uses 70% of the appraisal value as the starting price,
which also serves as a reserve price.

These auctions are subject to UH for many reasons. A third party provides
appraisal based on available information at hand but may miss important details
that become revealed upon careful study of the listing and a physical visit.
For example, any unpaid electricity bills or property management fees of a
sold property are the responsibility of the winning bidder. Some condos may
have defects that are unknown to the appraisal firm. These unobserved factors
constitute a significant portion of potential bidders’ values. But how they enter
bidder value is unknown. Therefore, it is preferable to retain flexibility when
specifying how bidder value depends on UH and private information.

Following the literature, we homogenize the bids by dividing them by the
appraisal value.20 We further rescale the homogenized bids by dividing them by
the maximum value in estimation but report the results in homogenized terms
for convenience. As usual, the highest and second-highest bids are close to each
other, both revealing information about the second-highest value among all
bidders. To avoid redundant information, we use the highest bid as the second-
highest value among all the bidders and exclude the second-highest bid from
the data.21

20For the homogenization to be valid, we need either 1) the appraisal value to be realized
before the realization of UH or 2) the seller or the third-party appraisal company to have the
same access to UH but choose to ignore the additional knowledge.

21We obtained almost identical estimation and counterfactual results using the second
highest bid as the second highest valuation.
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Table 1 provides some summary statistics of our data consisting of 477 auc-
tions of residential property. The data include the appraisal value in millions
RMB, the number of bidders registered for participating in the auction (# of
potential bidders), the number of bidders who submitted a bid (# of bidders),
and whether the auction was successful (sold). For the auction that was suc-
cessful, we also compute the ratio of the winning bid and the appraisal value.
On average, each property is worth one million RMB, which is approximately
$140,000. Only about 70% of listings are sold successfully, at a transaction price
close to the appraisal value on average.

Table 1

Summary statistics.
Variable Obs Mean Std. Dev. Min Max

appraisal value (million RMB) 477 1.02 0.91 0.108 4.97
# of potential bidders 477 5.285 5.867 0 31

# of bidders 477 2.182 1.946 0 10
sold 477 0.690 0.463 0 1

winning bid
appraisal value 329 0.995 0.267 0.700 2.359

5.2. Empirical model with a binding reserve price

Our empirical model accounts for the binding reserve price. Upon arrival, N
potential bidders observe the realization of UH τ and draw i.i.d. private values
from FX|T(·|τ). Those with a valuation higher than reserve price R submit a
bid equal to their value. As a result, the amount of truncation for a given UH
is FX|T(R|τ), where R = 0.7.

Conditional on the number of potential bidders N , the probability of observ-
ing the bid vector bn ≡ {b1:n, ...., bn−1:n−1} is∫

fT(τ)p(n|N, τ)g(bn|n, τ)dτ,

where p(n|N, τ) = CN,n

[
1 − FX|T(R|τ)

]n [
FX|T(R|τ)

]N−n is the probability of
observing n active bidders given the number of potential bidders N and UH τ ,
and g(bn|n, τ) represents the joint PDF of the bid vector including all active
bids.22 If n = 0, g(0|n, τ) = 1 because there is no bid. If n = 1, g(R|1, τ) = 1
the bid will be R, as there is no reason to bid higher than the reserve price when
there is only one bidder. If 2 ≤ n ≤ N , the joint PDF simply becomes

g(bn|n, τ) = n!
[
1 − F̃X|T(bn−1:n)

]
Πn−1

j=1 f̃
X|T(bj:n). (12)

To estimate the model, we ignore the fact that we cannot identify FX|T(·|τ)
22Note that the identification requires the number of active bidders to be at least four. We

pool bids from all auctions, including those with fewer than four active bidders, to improve
estimation efficiency but rely on the auctions with n ≥ 4 for identification.
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Fig 8. Estimated Joint Density of UH and Bidder Value.

below the reserve price23 and approximate the joint density function using
Berstein polynomials, f(x, τ ; θ) ≈

∑
i,j θijβi(x)βj(τ), and solve the following

optimization problem:24

max
θ

L∑
�=1

log

⎡⎣∑
j

(∑
i

θij

){∫
βj(τ)p(n�|N�, τ ; θ)g(b�|n�, τ ; θ)dτ

}⎤⎦ . (13)

5.3. Empirical findings

We let the number of sieve bases J = 3. Figure 8 shows the estimated joint
density function of bidder value X and UH T in homogenized and rescaled
terms. Two important features are worth noting. First, the conditional densities
are skewed to the left. This suggests an abundance of low willingness-to-pay
amongst the potential bidders in the market, consistent with the observation
that the number of registered bidders exceeds the number of actual bidders.
Second, UH has important effects on bidder value. The higher T is, the more
skewed (to the left) the density becomes.

To demonstrate the practical use of our estimation results, we use the dis-
tribution estimated allowing for UH to calculate the optimal reserve price for

23Fortunately, this abstraction is barely binding for calculating the optimal reserve prices.
In fact, [24] shows that as long as the existing reserve price is below the optimal, we obtain
the same optimal p∗ by replacing F0 and f0 with the truncated version F and f , respectively.

24We approximate the integration by Monte Carlo simulations∫
βj(τ)p(n�|N�, τ)g(b�|n�, τ)dτ ≈ 1

Sj

Sj∑
i=1

p(n�|N�, τij)g(b�|n�, τij),

where τij represent i.i.d. random draws from the beta density function βj(·). By fixing the
random draws, we make the maximization smooth in the sieve parameters θ.
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Fig 9. UH-Specific Optimal Reserve Prices.

each UH. We should emphasize that we assume UH is only unobserved or la-
tent to researchers, but observed to bidders and auctioneers. So, it is practical
for auctioneers to use such information to compute the optimal UH-specific re-
serve price. Given the number of potential bidders, the optimal reserve price
maximizes

π(r,N) = N [1−F (r)]F (r)N−1(r−v0)

+ N(N−1)
∫ v

r

(v−v0)f(v) [1−F (v)]F (v)N−2dv,

where v0 is the seller’s reserve value for keeping the item. The first term repre-
sents the seller’s expected gain due to selling at the reserve price when only one
value is higher than r, and the second term represents the gain due to selling at
the second highest value when two values are higher than r. Its FOC leads to
the following optimal reserve price

r∗ = v0 + 1 − FX|T(r∗|τ)
fX|T(r∗|τ)

, (14)

which is strictly increasing in the reserve value. We can infer the auctioneer’s
reserve value from the series of judicial rules for judicial auctions issued by
the Supreme Court. Specifically, one important rule says that the reserve price
cannot be lower than 50% of the appraisal value. This seems a reasonable proxy
for v0, i.e., v0 = 0.5.

Figure 9 shows the optimal reserve price for different levels of UH. The reserve
price is strictly monotone in UH, which is consistent with the monotonicity
assumption, i.e., Assumption 5, and the estimated joint density in Figure 8.
It is also reassuring that the optimal reserve prices are well above the current
reserve price, which means that underidentification below the reserve does not
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Fig 10. Simple v.s. Optimal Reserve Price Schemes.

prevent us from calculating the optimal reserve price.25 In Figure 10, the blue
dashed line shows the optimal expected seller gain as a function of UH. The
unconditional optimal gain

∑
N pNπ(r∗, N) is 36.61% of the appraisal value,

which is 5.81% higher than the current one (34.60% of the appraisal value).
To achieve the optimal gain, the seller would need to know the UH and recover

the conditional density of bidder values. However, the auctioneer may not have
perfect information on UH or it is difficult to imagine that the seller adopts
such a complex strategy. Simpler strategies that require less knowledge of the
value distributions are often preferable.26 In our context, we observe that the
optimal reserve price is almost constant and close to one when UH is above 0.4.
Moreover, the density of UH is heavily skewed to the right (near 1). Therefore, a
simple alternative to a complex UH-specific reserve price is to use the appraisal
value as the reserve price. We calculate the expected revenue in this simple
scheme. In this case, the unconditional expected gain is 36.59% of the appraisal
value, which achieves 98.85% of the potential gains from the optimal reserve
prices.27

6. Conclusion

Auction data often contain incomplete bids and miss some payoff-relevant covari-
ates. The conventional measurement error approaches to UH are inapplicable.

25The optimal reserve prices are still above 0.7 with more conservative values as low as
v0 = 0.1.

26[12] makes a similar point. They provide an approach to calculate optimal reserve prices
without fully recovering value distributions. Our approach can be applied to other datasets,
and similar simple strategies can be estimated as practical policy recommendations.

27The appraisal value as the reserve price is nearly optimal; this finding is robust to “large”
auctions, different seller reserve values, and alternative tuning parameters.
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In this paper, we extend the analysis of [29] to auctions with continuous UH
while accounting for incomplete bid data. Specifically, we provide point identifi-
cation results for auctions with nonseparable continuous UH using consecutive
order statistics of bids. We then propose sieve maximum likelihood estimators
jointly for the value distribution conditional on UH and its marginal distribu-
tion. We illustrate our methodology using a novel dataset from judicial auctions
conducted by a municipal court in China. After recovering the model primitives,
we propose a simple scheme that achieves nearly optimal revenue by using the
appraisal value as the reserve price.

Appendix A: Identification proofs

In this section, we provide the proof details omitted in the identification section.

A.1. Derivation of Equation (2)

Ignoring UH for the moment, the joint distribution of any three order statis-
tics does not have a multiplicatively separable structure, i.e., fr,s,t:n(x, y, z) ∼
f(x)f(y)f(z)[F (x)]r−1[F (y)−F (x)]s−r−1[F (z)−F (y)]t−s−1[1−F (z)]n−t, where
r < s < t; see [15]. Considering consecutive order statistics, we have

fr−2,r−1,r:n(x, y, z)

= n!
(r − 3)!(n− r)! [F (x)]r−3f(x)f(y)[1 − F (z)]n−rf(z)1(x ≤ y ≤ z)

≡ cr,nfr−2:r−2(x) · f(y) · f1:n−r+1(z) · 1(x ≤ y ≤ z),

where cr,n ≡ n!
(r−2)!(n−r+1)! , fr−2:r−2(x) is the PDF of the top-order statistic of

a sample of size r− 2, and f1:n−r+1(z) is the PDF of the bottom-order statistic
of a sample of size n − r + 1, and 1(·) is an indicator function. Bringing back
UH gives Equation (2) by the law of total probability.

A.2. Derivation of the equivalence of operators (Equation (4))

We derive the equivalence of the operators as follows. Specifically, for any given
x ∈ Xl and y ∈ Xm, we have

[Jyg](x)

≡
∫
Xh

fr−2,r−1,r:n(x, y, z)g(z)dz

=
∫
Xh

cr,n ·
∫
T
f
X|T
r−2:r−2(x|τ)fX|T(y|τ)fX|T

1:n−r+1(z|τ)fT(τ)dτg(z)dz

=
∫
T
f
X|T
r−2:r−2(x|τ)cr,nfX|T(y|τ)fT(τ)

{∫
Xh

f
X|T
1:n−r+1(z|τ)g(z)dz

}
dτ
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=
∫
T
f
X|T
r−2:r−2(x|τ)cr,nfX|T(y|τ)fT(τ)[HX1:n−r+1|Tg](τ)dτ

≡
∫
T
f
X|T
r−2:r−2(x|τ)[ΔX=y,THX1:n−r+1|Tg](τ)dτ

= [LXr−2:r−2|TΔX=y,THX1:n−r+1|Tg](x), (A.1)

which implies that the operators from both sides are equivalent.

A.3. Injectivity condition

Here, we prove that (i) the family of distributions {fX|T
r−2:r−2(x|τ) : x ∈ Xl} is

complete when the following condition is satisfied: if∫
T
g(τ)FX|T(x|τ)r−2dτ = 0

holds for all x ∈ Xl, we have g(τ) = 0, ∀τ ∈ T ; (ii) if the original distribution
family is complete, i.e., {fX|T

1:n−r+1(x|τ) : τ ∈ T } over L2(X ) is complete, there
exists at least one division of the support such that operator HX1:n−r+1|T is
injective.

Proof. (i) The proof is achieved by contraction. Specifically, if the family dis-
tribution {fX|T

r−2:r−2(x|τ) : x ∈ Xl} is not complete over L2(T ), there exists
g̃(τ) �= 0, such that∫

T
(r − 2)g̃(τ)fX|T(x|τ)FX|T(x|τ)r−3dτ = 0.

We can then integrate the component on the left-hand side of the above equation
with respect to the support of x, leading to∫

T

∫
x

(r − 2)g̃(τ)fX|T(x|τ)FX|T(x|τ)r−3dxdτ =
∫
T
g̃(τ)FX|T(x|τ)r−2dτ = 0,

which contradicts the provided condition. Therefore, we have proved that the
family of distributions {fX|T

r−2:r−2(x|τ) : x ∈ Xl} is complete given the condition
in (i) holds.

(ii) We only need to show that there exists at least a division, {Xl,Xm,Xh},
such that the unique solution to

∫
Xh

g(x)fX|T
1:n−r+1(x|τ)dx = 0 for all τ ∈ T is

g = 0. We show this by contradiction. Suppose, for any division {Xl,Xm,Xh},
there must exist a nonzero g such that∫

Xh

g(x)fX|T
1:n−r+1(x|τ)dx = 0,

for any τ ∈ T .
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We construct a new function g̃, which equals to g on Xh and 0 otherwise.
Obviously, g̃ �= 0, but we have∫

X
g̃(x)fX|T

1:n−r+1(x|τ)dx =
∫
Xh

g(x)fX|T
1:n−r+1(x|τ)dx = 0,

which holds for every τ ∈ T . This is contradictory to the assumption that the
family of distribution {fX|T

1:n−r+1(x|τ) : τ ∈ T } is complete on L2(X ).

A.4. Proof of Lemma 2.2

Proof. We first show that L∗
Xr−2:r−2|T, the adjoint operator of LXr−2:r−2|T, is

injective under Assumptions 1-3. To prove this, for any g1 ∈ L2(T ) and g2 ∈
L2(Xl), we have, from the definition of the adjoint operator,

〈LXr−2:r−2|Tg1, g2〉L2(Xl) = 〈g1, L
∗
Xr−2:r−2|Tg2〉L2(T ), (A.2)

where 〈·, ·〉 is the inner product defined on the L2 space. The left-hand side of
the equation above can be further expressed as∫

Xl

∫
T
f
X|T
r−2:r−2(x|τ)g1(τ)dτg2(x)dx.

Obviously, Equation (A.2) holds if and only if

[L∗
Xr−2:r−2|Tg2](τ) =

∫
Xl

f
X|T
r−2:r−2(x|τ)g2(x)dx.

The right-hand side of the equation above can be rewritten as∫
Xl

fT|Xr−2:r−2(τ |x) · f
Xr−2:r−2(x)
fT(τ) g2(x)dx.

Thus, the adjoint operator L∗
Xr−2:r−2|T is injective, according to the equivalent

of a family of distributions and given that LT|Xr−2:r−2 is injective.
Given that LXr−2:r−2|T is an operator from one Hilbert space to another

Hilbert space, its null space is the complement of the closure of the range of
L∗
Xr−2:r−2|T, denoted as R(L∗

Xr−2:r−2|T). Therefore, LXr−2:r−2|T is injective when
it is viewed as a mapping of R(L∗

Xr−2:r−2|T) to L2(Xl). It follows that L−1
Xr−2:r−2|T

exists.
Moreover, the closure of the range of LXr−2:r−2|T, R(LXr−2:r−2|T), is the or-

thogonal complement of the null space of L∗
Xr−2:r−2|T. This null space is {0},

because L∗
Xr−2:r−2|T is injective. Consequently, R(LXr−2:r−2|T) = L2(Xl). There-

fore, L−1
Xr−2:r−2|T is defined over a dense subset of L2(Xl).
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A.5. Derivation of the main identification equation (Equation (5) )

We first derive the main equation for identification in the following. Specifically,
we have the following equations for any two values of y:

Jy1 = LXr−2:r−2|TΔX=y1,THX1:n−r+1|T, (A.3)
Jy2 = LXr−2:r−2|TΔX=y2,THX1:n−r+1|T. (A.4)

From Equation (A.4), we obtain the following equivalence of the operator

Δ−1
X=y2,TL

−1
Xr−2:r−2|TJy2 = HX1:n−r+1|T, (A.5)

which holds for the same domain G(Xh) as in Equation (A.4) because the in-
verse operators (L−1

Xr−2:r−2|T and Δ−1
X=y2,T) were applied from the left side of

Equation (A.4) in the correct order.
We plug this equation back into Equation (A.3), leading to the following

equation:
Jy1 = LXr−2:r−2|TΔX=y1,TΔ−1

X=y2,TL
−1
Xr−2:r−2|TJy2 . (A.6)

Note that the operator Jy2 is injective, guaranteed by the injection of operators
LXr−2:r−2|T and HX1:n−r+1|T. Thus, we obtain the main equation for identifi-

cation by right multiplying the inverse of the operator Jy2 :

Jy1J
−1
y2

= LXr−2:r−2|TΔX=y1,TΔ−1
X=y2,TL

−1
Xr−2:r−2|T.

A.6. Proof of Theorem 2.3

Proof. This proof consists of the following steps: 1) we identify the conditional
marginal distribution fX|T(x|τ) in segment Xl up to scales, ordering, and loca-
tion, 2) we identify the conditional marginal distribution fX|T(x|τ) in segment
x ∈ Xh up to scales, ordering, and location, 3) we identify the conditional
marginal distribution fX|T(x|τ) in segment x ∈ Xm up to scales, ordering, and
location. Moreover, the ordering and location of UH are consistently matched
across all three segments, but scales may vary; 4) we then proceed to pin down
the scales and exact location of UH, and 5) we identify the marginal distribution
fT(τ).

Step 1 The identification of step 1) mainly consists of the following three
steps. First, we show that Equation (5) admits a unique representation. Sec-
ond, we provide sufficient conditions under which the eigen-decomposition of the
component on the left-hand side of Equation (5) is unique. Thus, the main equa-
tion for identification generates unique eigenfunctions f

X|T
r−2:r−2(x|T) for x ∈ Xl.

Lastly, we show that the conditional marginal distribution fX|T(x|τ) is identi-
fied in the same domain using the one-to-one mapping between the distribution
of an order statistic and its parent distribution in a given segment. The detailed
proofs for each step are as follows.
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First, we show that Equation (5) admits a unique representation. The opera-
tor on the left-hand side of Equation (5), Jy1J

−1
y2

, is determined by the densities
of the observed three consecutive order statistics and so can be viewed as known.
This equation implies that Jy1J

−1
y2

admits a spectral decomposition. More specif-
ically, the “diagonal elements” of operator ΔX=y1,TΔ−1

X=y2,T, i.e.,
{

fX|T(y1|τ)
fX|T(y2|τ)

}
for

given y1, y2 and for all τ , and the kernel of the integral operator LXr−2:r−2|T,
i.e., {fX|T

r−2:r−2(.|τ)} for all τ , are the eigenvalues and eigenfunctions of operator
Jy1J

−1
y2

, respectively.
We follow the sufficient and necessary conditions provided in Theorem XV.4.5

in [16] for the existence of a unique representation via spectral decomposition of
a linear operator. Specifically, if a bounded and linear operator A can be written
as A = U + V , and U is an operator represented as

U =
∫
σ

λQ(dλ), (A.7)

where Q is a projection-valued measure with the support being spectrum σ, a
subset of the complex field, and V is a “quasi-nilpotent” operator computing
with U , then this representation is unique. We apply this general result to our
problem where A = Jy1J

−1
y2

, σ ⊂ R, and V = 0. Thus, we need to prove
that linear operator A = Jy1J

−1
y2

is bounded, which can be accomplished by
showing that the spectrum of operator LXr−2:r−2|TΔX=y1,TΔ−1

X=y2,TL
−1
Xr−2:r−2|T

is a compact set, so that this operator is bounded because it is positive and its
spectrum is a compact set.

First, we prove that the spectrum of LXr−2:r−2|TDy1,y2L
−1
Xr−2:r−2|T is a compact

set. Because fX|T(y1|·)
fX|T(y2|·) is continuous and bounded by Assumption 2, denote the

range of
{

fX|T(y1|τ)
fX|T(y2|τ) : τ ∈ T

}
as I = [λ1(y1, y2), λ2(y1, y2)]. Denote the spectrum

of LXr−2:r−2|TDy1,y2L
−1
Xr−2:r−2|T as σ. We will show that I = σ, which consists of

the following two parts.
(i) σ ⊂ I. Define Dy1,y2 as an operator from L2(T ) to L2(T ) such that

(Dy1,y2g)(τ) = fX|T(y1|τ)
fX|T(y2|τ)

g(τ)

for any g ∈ L2(T ). Let σD denote the spectrum of Dy1,y2 . By definition,

[(Dy1,y2 − λ · id)g](τ) = fX|T(y1|τ)
fX|T(y2|τ)

g(τ) − λg(τ) =
{
fX|T(y1|τ)
fX|T(y2|τ)

− λ

}
g(τ).

For any λ /∈ I, fX|T(y1|τ)fX|T(y2|τ)−1 − λ �= 0 for any τ ∈ T . Following the
last displayed equation, [(Dy1,y2 − λ · id)g](τ) ≡ 0 implies that g ≡ 0. Hence
λ /∈ σD.

Next, we show that LXr−2:r−2|TDy1,y2L
−1
Xr−2:r−2|T −λ · id is invertible if λ /∈ I.

Actually, given that

LXr−2:r−2|TDy1,y2L
−1
Xr−2:r−2|T − λ · id = LXr−2:r−2|T(Dy1,y2 − λ · id)L−1

Xr−2:r−2|T,
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which is invertible because (Dy1,y2 − λ · id) is invertible from λ /∈ σD, it is thus
bijective if λ /∈ I; namely λ /∈ σ if λ /∈ I. It follows that σ ⊂ I.

(ii) I ⊂ σ. It is straightforward to verify that, for any λ ∈ I, we can find
a non-zero g ∈ L(Xl) such that (LXr−2:r−2|TDy1,y2L

−1
Xr−2:r−2|T − λ · id)g ≡ 0.

Actually, we can take g as a nonzero constant function to satisfy the equation
above.

Combining (i) and (ii), we have σ = I.
Second, we show that LXr−2:r−2|TDy1,y2L

−1
Xr−2:r−2|T is a bounded operator. By

definition, we have

‖LXr−2:r−2|TDy1,y2L
−1
Xr−2:r−2|T‖

= sup
‖u‖L2=1

〈LXr−2:r−2|TDy1,y2L
−1
Xr−2:r−2|Tu, LXr−2:r−2|TDy1,y2L

−1
Xr−2:r−2|Tu〉L2

= sup
‖u‖L2=1

∫
I
λ2dμu,u(λ)

≤ sup
λ∈I

|λ|2 sup
‖u‖L2=1

‖μu,u‖ ≤ sup
λ∈I

|λ|2 < ∞.

The last inequality follows from I and is compact. Therefore,
LXr−2:r−2|TDy1,y2L

−1
Xr−2:r−2|T is a bounded operator.

As a result, we prove that Jy1J
−1
y2

is bounded because

Jy1J
−1
y2

= LXr−2:r−2|TDy1,y2L
−1
Xr−2:r−2|T.

We define the projection-valued measure Q in the following way: For any
Λ ⊂ R,

Q(Λ) = LXr−2:r−2|TIΛL
−1
Xr−2:r−2|T,

where operator IΛ is defined as

[IΛg](τ) = 1

(
fX|T(y1|τ)
fX|T(y2|τ)

∈ Λ
)
g(τ),

we want to show that
∫
σ
λQ(dλ) = LXr−2:r−2|TΔX=y1,TΔ−1

X=y2,TL
−1
Xr−2:r−2|T.

Based on the definition of Q, we have∫
σ

λQ(dλ) =
∫
σ

λ

(
d

dλ
Q((−∞, λ])

)
dλ

= LXr−2:r−2|T

(∫
σ

λ
d1(−∞,λ]

dλ
dλ

)
L−1
Xr−2:r−2|T.

To find the operator
∫
σ
λ

d1(−∞,λ]
dλ dλ, we investigate its evaluation when operat-

ing on a function g. That is,[∫
σ

λ
d1(−∞,λ]

dλ
dλg

]
(τ) =

∫
σ

λ
d

dλ
1

(
fX|T(y1|τ)
fX|T(y2|τ)

∈ (−∞, λ]
)
g(τ)dλ
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=
∫
σ

λδ

(
λ− fX|T(y1|τ)

fX|T(y2|τ)

)
g(τ)dλ

= fX|T(y1|τ)
fX|T(y2|τ)

g(τ) = [ΔX=y1,TΔ−1
X=y2,Tg](τ),

where we have used the Dirac delta function δ satisfying the property that∫
δ(x − x0)h(x)dx = h(x0) for any function h continuous at x = x0. It follows

that
∫
σ
λQ(dλ) = LXr−2:r−2|TΔX=y1,TΔ−1

X=y2,TL
−1
Xr−2:r−2|T.

Second, we provide sufficient conditions under which the eigen-decomposition
given in Equation (5) is unique. Note that the uniqueness of the representation
in Equation (A.7) does not necessarily indicate that spectral decomposition of
Jy1J

−1
y2

in Equation (5) is unique. This uniqueness problem is similar in spirit to
a unique eigen-decomposition of a square matrix in the following two respects:

1. There is a unique eigen-space Sλ spanning eigenfunctions corresponding
to each eigenvalue λ. However, there are many different ways to select a basis
for this space.

1a. Each basis can be multiplied by a constant. Unlike in [29], where the
scaling problem of the eigenfunction {fX|T

r−2:r−2(·|τ)} could be addressed
using the fact that total probability is 1, we cannot apply the same logic
in our context because the eigenfunction in our context is density functions
in a segment of the full support.

1b. If the dimension of one eigen-space is larger than 1, then a new eigen-
function can be constructed through a linear combination of original basis
functions.

2. Our economic model indexes the eigenvalues by τ and establishes the one-
to-one mapping between eigenvalues and eigen-space. However, other methods
can be used to index eigenvalues. In other words, if we use λ(τ) to denote the
mapping between τ and λ (and hence Sλ(τ)), the choice of λ(τ) is not unique. The
supplementary material of [29] shows non-uniqueness of indexing eigenvalues in
some scenarios.

We harness Assumption 4 to address issue (1b). Note that the integral op-
erator LXr−2:r−2|T, with the kernel being the eigenfunction, depends on neither
y1 nor y2, but the eigenvalues fX|T(y1|τ)

fX|T(y2|τ) do. If there exist two different val-
ues of y, say y1 and y2, such that there are two eigenfunctions f

X|T
r−2:r−2(·|τ1)

and f
X|T
r−2:r−2(·|τ2) corresponding to the same eigenvalue, we can address this

issue by simply finding another pair of y that does not lead to this prob-
lem. In particular, for a given eigenfunction f

X|T
r−2:r−2(·|τ), let D(y1, y2, τ) ={

τ̃ : fX|T(y1|τ̃)
fX|T(y2|τ̃) = fX|T(y1|τ)

fX|T(y2|τ)

}
, the set of τ values that define eigenfunctions with

the same eigenvalue. Then, any linear combination of eigenfunctions indexed by
τ̃ for τ̃ ∈ D(y1, y2, τ) is a potential candidate for the eigenfunctions of Jy1J

−1
y2

.
Then, define v(τ) ≡ ∩(y1,y2)∈Y×Yspan({fX|T

r−2:r−2(·|τ̃) : τ̃ ∈ D(y1, y2, τ)}). If v(τ)
is one-dimensional, this set will uniquely determine the eigenfunction
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f
X|T
r−2:r−2(·|τ), even though such identification is up to scales. Next, we will

show that if the set v(τ) has more than one dimension, then Assumption 4
would be violated. When the dimension of v(τ) is greater than one, we can
at least find two eigenfunctions, say f

X|T
r−2:r−2(·|τ) and f

X|T
r−2:r−2(·|τ̃). Therefore,

∩(y1,y2)∈Y×YD(y1, y2, τ) must contain at least two points τ and τ̃ . It follows
that fX|T(y1|τ̃)

fX|T(y2|τ̃) = fX|T(y1|τ)
fX|T(y2|τ) for any (y1, y2) ∈ Y ×Y by definition of D(y1, y2, τ).

Thus, Assumption 4 is violated.
Lastly, we exploit the one-to-one mapping between f

X|T
r−2:r−2(x|T) and the

parent distribution fX|T(x|T) to identify fX|T(x|T) for x ∈ Xl. Specifically,

f
X|T
r−2:r−2(x|τ) = (r − 2)[FX|T(x|τ)]r−3fX|T(x|τ)

↔
∫ x

x

f
X|T
r−2:r−2(v|τ)dv = (r − 2)

∫ x

x

[FX|T(v)]r−3fX|T(v|τ)dv

↔
∫ x

x

f
X|T
r−2:r−2(v|τ)dv = [FX|T(x|τ)]r−2

↔ FX|T(x|τ) =
[ ∫ x

x

f
X|T
r−2:r−2(v|τ)dv

] 1
r−2

, (A.8)

where the first equality holds by definition, the second by taking the integral
over x̄ to any value in the low segment. Therefore, we can identify the conditional
CDF of the parent distribution at the low segment. Additionally, we can also
derive the conditional marginal distribution for x ∈ Xl as follows:

fX|T(x|τ) = 1
r − 2

[ ∫ x

x

f
X|T
r−2:r−2(v|τ)dv

] 1
r−2−1

f
X|T
r−2:r−2(x|τ). (A.9)

Note that the conditional marginal distribution in the “low” portion is identified
up to scales, ordering, and location.

Step 2 We now proceed to identify fX|T(x|T) for x ∈ Xh, which is achieved
given that operator LX1:n−r+1|T is identified up to scales, ordering, and location.

Specifically, we redefine the operator Jy by abuse of notation:

[Jyg](z) ≡
∫
Xl

fr−2,r−1,r:n(x, y, z)g(x)dx,

for any y ∈ Xm. Then, Jy is a map from L2(Xl) to L2(Xh) and satisfies

[Jyg](z) ≡
∫
Xl

fr−2,r−1,r:n(x, y, z)g(x)dx

=
∫
Xl

cr,n ·
∫
T
f
X|T
r−2:r−2(x|τ)fX|T(y|τ)fX|T

1:n−r+1(z|τ)fT(τ)dτg(x)dx

=
∫
T
f
X|T
1:n−r+1(z|τ)cr,nfX|T(y|τ)fT(τ)

(∫
Xl

f
X|T
r−2:r−2(x|τ)g(x)dx

)
dτ
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=
∫
T
f
X|T
1:n−r+1(z|τ)cr,nfX|T(y|τ)fT(τ)[HXr−2:r−2|Tg](τ)dτ

≡
∫
T
f
X|T
1:n−r+1(z|τ)[ΔX=y,THXr−2:r−2|Tg](τ)dτ

= [LX1:n−r+1|TΔX=y,THXr−2:r−2|Tg](z). (A.10)

Using the same approach as Step 1 for two points y1 and y2 in Xm, we are able
to uniquely recover the conditional distribution f

X|T
1:n−r+1(x|τ) for x ∈ Xh, up

to scales, ordering, and location. However, the ordering of UH can be matched
consistently with that in Step 1, because the eigenvalues are the same in both
decomposition.

Given that the conditional distribution for order statistic X1:n−r+1 in segment
Xh is identified up to scales, ordering, and location, we now exploit the one-to-
one mapping between the parent distribution and the distribution of its order
statistic to identify the parent distribution in the high segment. Specifically,

f
X|T
1:n−r+1(x|τ) = (n− r + 1)[1 − FX|T(x|τ)]n−rfX|T(x|τ)

↔
∫ x̄

x

f
X|T
1:n−r+1(x|τ)dx = (n− r + 1)

∫ x̄

x

[1 − FX|T(x|τ)]n−rfX|T(x|τ)dx

↔
∫ x̄

x

f
X|T
1:n−r+1(x|τ)dx = [1 − FX|T(x|τ)]n−r+1

↔ FX|T(x|τ) = 1 −
[ ∫ x̄

x

f
X|T
1:n−r+1(x|τ)dx

] 1
n−r+1

. (A.11)

We can then identify the conditional marginal distribution fX|T(x|τ) for any
x ∈ Xh. Note that such an identification is up to scales but has the same
ordering of UH as in Xl.

Step 3 The identification of fX|T(y|τ)fT(τ) for y ∈ Xm is achieved using
Equation (4). Specifically, since we have already identified fX|T(x|τ) for x ∈
Xl∪Xh, the numerator of

∫
y1∈Xm

fX|T(y1|T)dy1/f
X|T(y2|T) is known. As a result,

the denominator fX|T(y2|τ) is uniquely specified for any y2 ∈ Xm. Note that
such identification is up to scales, ordering, and location of UH.

Step 4 In summary, we can identify the conditional distribution fX|T(x|τ)
up to scales and ordering for the three segments Xl, Xm, and Xl. Note that
the scales may vary across the three segments. We invoke the continuity of
the component PDFs and the total probability argument. The scales can be
pinned down using the following three restrictions. First, the PDFs identified
separately in the three segments should be the same at the cutoff points due to
the continuity of the true conditional distributions. Second, the fact that each
conditional distribution should integrate to 1 provides the third restriction on
the scales. These restrictions uniquely identify the scales.

Once the scales are pinned down, we exploit Assumption 5 to resolve the
indexing problem in issue (2). Given monotonicity, we can fix the ordering of



2514 Y. Luo et al.

τ by using the conditional mean. And the further restriction on the support of
UH pins down the exact location of UH.

Step 5 The identification of the marginal distribution of UH is achieved by
using the unconditional joint distribution of order statistics Xr−1:n and Xr:n,
which can be represented as

fr−1,r:n(x, z) =
∫
T
c1r,nf

X|T
r−1:r−1(x|τ)fX|T

1:n−r+1(z|τ)fT(τ)dτ

for any x ≤ z. Let K denote an operator mapping g ∈ G(Xh) to Kg ∈ G(Xl∪Xm)
with the definition:

[Kg](x) ≡
∫
Xh

fr−1,r:n(x, z)g(z)dz.

Then, based on the above equation, we have for any x ∈ Xl ∪ Xm,

[Kg](x) ≡
∫
Xh

fr−1,r:n(x, z)g(z)dz

=
∫
Xh

c1r,n ·
(∫

T
f
X|T
r−1:r−1(x|τ)fX|T

1:n−r+1(z|τ)fT(τ)dτ
)
g(z)dz

=
∫
T
f
X|T
r−1:r−1(x|τ)c1r,nfT(τ)

(∫
Xh

f
X|T
1:n−r+1(z|τ)g(z)dz

)
dτ

=
∫
T
f
X|T
r−1:r−1(x|τ)c1r,nfT(τ)[HX1:n−r+1|Tg](τ)dτ

≡
∫
T
f
X|T
r−1:r−1(x|τ)[ΔTHX1:n−r+1|Tg](τ)dτ

= [LXr−1:r−1|TΔTHX1:n−r+1|Tg](x),

where the diagonal operator [ΔTg](τ) ≡ c1r,nf
T(τ)g(τ) for any τ ∈ T . That is to

say, we obtain the following operator equivalence:

K = LXr−1:r−1|TΔTHX1:n−r+1|T.

Note that operator HX1:n−r+1|T is injective and identified; operator LXr−1:r−1|T
is also known and injective since we have identified the conditional density of
fT(y|τ). The injection of LXr−1:r−1|T can be easily derived from the injection of
operator LXr−2:r−2|T. Hence,

L−1
Xr−2:r−2|TK = ΔTHX1:n−r+1|T.

The left side of this equation is a specified kernel, which maps a function
g ∈ G(Xh) to

∫
Xh

c1r,nf
T(·)fX|T

1:n−r+1(z|·)g(z)dz ∈ G(T ). Based on the one-to-one
mapping between the operator and its kernel, fT(τ)fX|T

1:n−r+1(z|τ) is identified
for any τ ∈ T . As the conditional density f

X|T
1:n−r+1(z|τ) has been identified pre-

viously, the marginal density of the latent factor, fT(τ), is then specified.
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A.7. Proof of Corollary 2.5

Proof. We show that when the number of potential bidders is observed and has
a large support, we can identify the conditional truncation probability. Specifi-
cally, the distribution of the number of active bidders conditional on the number
of potential bidders is a mixture of the Binomial distribution with the suc-
cess probability being the truncation 1 − FX|T(R|τ). Note that, the mixture
weight is the marginal distribution of UH, which is already identified from the
eigenfunction-decomposition. That is,

Pr(n|N) =
∫
τ∈T

Pr(n|N, τ)dF T(τ)

=
∫
τ∈T

CN,n(1 − FX|T(R|τ))n(FX|T(R|τ))N−ndF T(τ),(A.12)

where Pr(n|N) is estimable from the data, CN,n is a constant, F T(τ) is identified,
and FX|T(R|τ) is the unknown and the object of interest, which is continuous
because the unobserved heterogeneity τ is continuous.

It is worth emphasizing that our goal is to identify the UH-specific trun-
cated probability FX|T(R|τ) given that the mixture distribution F T(τ) can be
viewed as known. In contrast, the identification results developed in the mix-
ture literature mainly focus on identifying the mixture distribution of the success
probability, which takes any value in the interval [0, 1]. That is, let p denote a
general success probability, where p ∈ [0, 1], and G(p) denote the cumulative
distribution of p, and the goal is to identify G(p) for any p.

We show that our identification problem can be viewed as the dual problem
of that in the conventional mixture model. Specifically, define a random variable
P , which is a function of the unobserved heterogeneity T using the truncated
probability, P ≡ 1−FX|T(R|T). Suppose the conditional truncating probability
varies with UH τ . That is, for any p ∈ [0, 1], there is at most one τ such that
p = 1−FX|T(R|τ). We can then reverse this relationship and represent the unob-
served τ as a function of the success probability p, i.e., τ = F−1

X|T(1−p,R). There-
fore, we can reformulate the above identification problem to resemble the prob-
lem in the mixture literature and thus can apply their results directly. That is,

Pr(n|N) =
∫
p∈[0,1]

CN,np
n(1 − p)N−ndF T(F−1

X|T(1 − p,R))

=
∫
p∈[0,1]

CN,np
n(1 − p)N−ndG(p), (A.13)

where the first equality holds by change of variables τ = F−1
X|T(1−p,R) and p =

1−FX|T(R|τ), and the second equality holds by redefining G(p) = F T(F−1
X|T(1−

p,R)), which is the cumulative distribution of p. Therefor, for some p ∈ [0, 1]
that there does not exist an unobserved value τ such that τ = F−1

X|T(1 − p,R),
G(p) = 0. Note that G(p) is unknown because FX|T(R|T) is unknown and
F−1
X|T(1 − p,R) is unknown.
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We then show that the first N moments of the mixture distribution G(p) is
identifiable from the distribution of the active bidders conditional on the num-
ber of potential bidders. The conditional distribution provides information on
the first N moments. Specifically,

Pr(n|N) = E[CN,np
n(1 − p)N−n]

= E[CN,np
n

N−n∑
r=0

CN−n,r(−1)rpr]

=
N−n∑
r=0

CN−n,rCN,n(−1)rE[pr+n]

=
N∑
i=n

CN−n,i−nCN,n(−1)i−nE[pi]

=
N∑
i=1

CN−n,i−nCN,n(−1)i−nE[pi], (A.14)

where the first equality is by change of variables, the second equality holds by
expressing (1 − p)N−n, the fourth equality holds by letting i = r + n, and the
last equality holds by CN−n,i−n = 0 for i − n ≤ 0. We can then rewrite the
above equation in matrix form

PN = AmN , (A.15)

where PN ≡ {Pr(n = 1|N), ...,Pr(n = N |N)}T is an N × 1 column vec-
tor, A ≡ {CN−n,i−nCN,n(−1)i−n}i,n is an N × N square matrix, and mN ≡
{E[p], E[p2], ..., E[pN ]}T is an N × 1 column vector collecting the N moments.
Note that A is invertible because it is an upper triangular matrix with nonzero
diagonal elements. Therefore, we can identify the first N moments of distribu-
tion G(p).

If N has a large support, following the exiting literature [22] that the dis-
tribution of a bounded variable is uniquely determined by its moments, we
can identify all moments of G(p) so that G(p) is identified. Consequently, the
truncated distribution 1 − FX|T(R|τ) is identified. Specifically, for a given p,
we have G(p) = F T(τ), so that we can recover τ by inverting the CDF of F T

since it is identified. Moreover, given that p = 1 − FX|T(R|τ), we can have
FX|T(R|τ) = 1 − p. Therefore, we can recover the value of the truncation dis-
tribution FX|T(R|τ) for any given τ .

Appendix B: Properties of the sieve estimators

In this part, we show the consistency of the sieve MLEs and further investigate
the consistency of estimates using B-splines and/or Bernstein polynomials.

We provide sieve estimators to approximate the joint distributions of bids and
unobserved heterogeneity. This is different from the estimator proposed in [29],
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where they approximate the conditional distribution of bids and the marginal
distribution of the unobserved heterogeneity. Our sieve estimator for approxi-
mating the joint distribution has the following advantages: First, HS concerns
the relationship between the dependent variable and the independent variable,
and the relationship between the latent variable and the instrumental variable.
In particular, they consider a parametric model for the conditional density of the
dependent variable given the latent variable and nonparametric models for the
conditional density of the independent variable and that of the latent variable.
For the latter two, they need to consider different sieve estimates. Consequently,
for each value of the latent variable and the instrument, normalization is needed,
which is more computationally burdensome. In contrast, we are concerned about
the bid/value distribution given the latent variable. The order statistics of bids
follow the same parent distribution. Hence, we can first use a bivariate sieve to
approximate the joint density of the bid and the latent variable. The densities
of interest can then be directly derived from the joint sieve estimator. Only
one normalization step is needed when implementing our sieve estimation pro-
cedure. Second, in [29], the density of the dependent variable given the latent
is assumed to be parametric, while the conditional densities of the independent
variable and the latent variable are modeled in a nonparametric way. Model
misspecification may be encountered due to the parametric assumption. How-
ever, our sieve estimator is under a fully nonparametric framework, and thus we
can circumvent the issue of model misspecifications. In practice, concerns about
slow convergence might be raised because of this fully nonparametric structure.
However, numerical studies demonstrate the resulting estimator from the sieve
estimator has a promising performance. Lastly, we adopt a new technique to
derive the consistency of our estimator. More specifically, we establish a con-
centration inequality based on the bracketing entropy and, from there, we derive
the consistency of our sieve estimator, while [29] uses a covering number.

B.1. Asymptotic properties

Proof of Lemma 3.1. Since (f̂X|T
m , f̂T

m) maximizes Pm[logG(x, y, z; f)] over the
sieve space, where Pm denotes the empirical measure of the data (xi, yi, zi)mi=1,
it follows that

Pm

{
logG(x, y, z; f̂X|T

m , f̂T
m)
}
≥ Pm

{
logG(x, y, z; fX|T

m , fT
m)
}
.

Therefore, we have

m−1/2Gm

{
log G(x, y, z; f̂X|T

m , f̂T
m)

G(x, y, z; fX|T
m , fT

m)

}
≥ P

{
log G(x, y, z; fX|T

m , fT
m)

G(x, y, z; fX|T
0 , fT

0 )

}

+ P

{
log G(x, y, z; fX|T

0 , fT
0 )

G(x, y, z; f̂X|T
m , f̂T

m)

}
. (B.16)
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Proof of Theorem 3.2. Under Assumption 7, to find the convergence rate of the
sieve MLE, we only need to quantify the convergence rate of the estimation
error in the sieve space.

Under Assumption 9, by Theorem 19.35 of [47], we have
√
m‖Pm − P ‖Fm ≤ Op(1)pmQc0

m log pm/
√
m

for some positive constant c0. Let (I) and (II) denote the two terms of the right-
hand side of (B.16), respectively. Since the functional G is Lipschitz continuous
with respect to each component, we have that

(I) ≥ −Op(1)
{
‖fX|T

m − f
X|T
0 ‖L∞ + ‖fT

m − fT
0‖L∞

}
≥ −Op(p−β

m ).

Note that (II) is the Kulback-Leibler information. We consider the Taylor ex-
pansion of it. Obviously, the first term in this expansion vanishes while the
second-order term in the expansion has a lower bound,

O(e−c1Qm)
∥∥G(x, y, z; fX|T

0 , fT
0 ) −G(x, y, z; f̂X|T

m , f̂T
m))

∥∥2
L2(P ),

for some positive constant c1 > 1.
Since we assume that the joint density is bounded, the joint probability mea-

sure P is equivalent to the product of the Lebsgue measure in [0, 1]3. Therefore,
by combining the results above, we have∫

0≤x≤y≤z≤1

{
G(x, y, z; fX|T

0 , fT
0 ) −G(x, y, z; f̂X|T

m , f̂T
m)
}2

dxdydz

≤ Op(1)B(m, pm, Qm),

where B(m, pm, Qm) = ec2Qmpm log pm/
√
m + ec2Qm/pβm, and c2 > 1 is a con-

stant.
Lastly, we show the consistency of f̂X|T

m and f̂T
m. To do this, we can consider

the square L2 distance between
∫
0≤x≤y≤z≤1 G(x, y, z; fX|T

0 , fT
0 )dxdz and∫

0≤x≤y≤z≤1 G(x, y, z; f̂X|T
m , f̂T

m)]2dxdz. This upper bound still holds for this
distance. After some simple algebra, it follows that∫ {

f̂X|T
m (y|τ)f̂T

m(τ) − f
X|T
0 (y|τ)fT

0 (τ)
}2

dτ ≤ Op(1)B(m, pm, Qm).

We can further justify that ‖f̂X,T
m −fX,T

0 ‖2
L2 is bounded by Op(1)B(m, pm, Qm).

Then, it is obvious that B(m, pm, Qm)1/2 is the convergence rate of both f̂
X|T
m

(x|τ) and f̂T
m(τ).

B.2. Popular sieve spaces in auctions

In this subsection, we evaluate the regularity assumptions for B-splines and
Bernstein polynomials, which are popular in empirical applications due to their
flexibility and the ease with which shape can be imposed. See, e.g., [14] and [31]
for using Bernstein polynomials in auctions.
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B.2.1. B-Splines

We want to show that the proposed MLE using B-splines as a sieve base satisfies
the regularity conditions in Theorem 3.2. We first express the joint density as

fX,T(x, τ) = exp{η(x, τ)}∫ ∫
exp{η(x, τ)}dxdτ ,

which is always positive and integrates to 1, qualifying it as a density func-
tion. As a result, the conditional and marginal densities can be expressed as
fX|T(x|τ) = exp{η(x,τ)}∫

exp{η(x,τ)}dx and fT(τ) =
∫
x

exp{η(x,τ)}dx∫ ∫
exp{η(x,τ)}dxdτ , respectively.

Next, we employ a tensor product of B-spline basis functions to approximate
η(x, τ). We first define an extended partition on the interval [0, 1], given by

�e = {s−p+1 = · · · = s−1 = 0 = s0 < s1 < · · · < sKm+1 = 1 = · · · = sp+Kn},

where p is the order of the spline basis and Km is the number of interior knots.
Let {Bp

j (t)}Km+p
j=1 be a normalized B spline basis of order p (degree p − 1)

associated with �e. The sieve space for the parameter η(x, τ) is defined as

Sm(p,Km, Qm) ={
η(x, τ) :

Km+p∑
i1,i2=1

|bi1,i2 | ≤ Qm, η(x, τ)

=
Km+p∑
i1,i2=1

bi1,i2B
p
i1

(x)Bp
i2

(τ),
Km+p∑
i1,i2=1

bi1,i2B
p
i1

(0) = 0
}
. (B.17)

Here, Qm is a constant that depends on sample size m. The first two con-
ditions in Sm(p,Km, Qm) ensure that the sieve space is a compact set in a
finite-dimensional space, and the third condition is equivalent to η(0, τ) = 0,
which is needed to ensure the identifiability of η.

We now prove that the sieve estimator using B-splines as a sieve base is
consistent. Specifically, we show that the sieve base of B-splines satisfies As-
sumption 7, which is critical for consistency. We introduce the following two
regularity conditions:

• (A1) For a known integer k ≥ 2, the true conditional density f0(x, z) sat-
isfies log f0(x, τ) ∈ W k,∞([0, 1]2), where W k,∞([0, 1]2) is a Sobolev space
consisting of the functions defined on [0, 1]2 with bounded kth derivative.

• (A2) (Qm, pm) satisfies Qm = O(log logm) and pm = O(mα) with 0 <
α < 1/4.

Assumption A1 characterizes the smoothness of the joint density function;
Assumption A2 is equivalent to Assumption 8. Together with Assumption 6,
these assumptions ensure that the logarithm of the true joint density function
can be approximated sufficiently well by the tensor product of B-spline basis
functions, i.e., Assumption 7 is satisfied. This is also one important reason why
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we prefer choosing B-spline as the univariate basis functions to construct the
sieve space. We summarize this result in the following proposition.

Lemma B.1. Under Assumptions A1 and 6, Assumption 7 is satisfied. That
is, there exist f

X|T
m (x|τ) and fT

m(τ), both of which are represented in terms of
basis functions in the sieve space, such that

‖fX|T
m (x|τ) − f

X|T
0 (x|τ)‖L∞([0,1]2) = O(p−k

m ),
‖fT

m(τ) − fT
0 (τ)‖L∞([0,1]2) = O(p−k

m ).

Proof of Lemma B.1. Following [45], we define a linear operator Qp, which is
a mapping from W k,∞([0, 1]p) to the sieve space. More specifically, for any
g ∈ W k,∞([0, 1]p),

Qp[g] =
Km+L∑

i1,...,ip=1
Γi1,...,ip [g]BL

i1(x1) · · ·BL
ip(xp),

where Γi1,...,ip are the linear functionals in L∞([0, 1]p). This mapping satisfies
that

Km+L∑
i1,...,ip=1

|Γi1,...,ip [g]| ≤ (2L + 1)p9p(L−1)||g||L∞([0,1]p),

and by Theorem 12.7 of [45],

‖Qp[g] − g‖L∞([0,1]p) ≤
C(L)
Kk

m

‖g‖Wk,∞([0,1]p).

Then, we define ηm(x, τ) = Q2[log f0(x, τ)]−Q2[log f0(x, τ)]|x=0, an element
in the sieve space. Hence,

fX|T
m (x|τ) = exp{ηm(x, τ)}∫ 1

0 exp{ηn(x, τ)}dx
, fT

m(τ) =
∫ 1
0 exp{ηm(x, τ)}dx∫ 1

0
∫ 1
0 exp{ηm(x, τ)}dxdτ

.

As a result,

‖fX|T
m (x|τ)−f

X|T
0 (x|τ)‖L∞([0,1]2) ≤ O(1)‖ log f0−Q2[log f0]‖L∞([0,1]2) ≤ O(K−k

m ).

Moreover, the same bound holds for ‖fm−f0‖L∞([0,1]2) and ‖fT
m−fT

0‖L∞([0,1]2).

We then prove that Assumption 9 is satisfied for sieve MLE using B-splines.
If the sieve space is Sm, constructed as in Equation B.17, and Assumption 6
and conditions A1-A2 are met, then the following space{

log G(x, y, z; f̃X|T
m , f̃T

m)
G(x, y, z; fX|T

m , fT
m)

: f̃X|T
m = exp{η̃m(x, τ)}∫ 1

0 exp{ηm(x, τ)}dx
,

f̃T
m =

∫ 1
0 exp{η̃m(x, τ)}dx∫ 1

0
∫ 1
0 exp{η̃m(x, τ)}dxdτ

, η̃m ∈ Sm

}
satisfies Assumption 9. A similar result can be found in [51].
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Corollary B.2. Under Assumption 6 and the regularity conditions (A1) and
(A2), the proposed MLE using B-splines as sieve bases is consistent.

B.2.2. Berstein polynomials

We approximate the joint density function of T and X using a mixture of beta
distributions as follows:

f(x, τ) =
∑
i,j

θijβi(x)βj(τ),

where βi(x) represents a beta density function with parameters α = i, β =
pm + 1 − i, and pm is the number of components in the mixture.28 We restrict
θij ≥ 0 and

∑
i,j∈{1,...,pm} θij = 1 to ensure that f is a joint density function.

That is, ∫
x,τ

f(x, τ)dxdτ =
∑

i,j∈{1,...,pm}
θij = 1.

Given the approximation of the joint distribution, we can represent the marginal
density function of x∗ as

fT(τ) =
∫
x

f(x, τ)dx =
∫
x

∑
i,j

θijβi(x)βj(τ)dx =
∑
j

{(∑
i

θij

)
βj(τ)

}
,

the conditional probability density function as

fX|T(x|τ) = f(x, τ)
fT(τ) =

∑
i,j θijβi(x)βj(τ)∑
j [(
∑

i θij)βj(τ)] ,

and the conditional cumulative distribution function as

FX|T(x|τ) =
∫ x

−∞
fX|T(x|τ)dx =

∑
i,j θijBi(x)βj(τ)∑
j [(
∑

i θij)βj(τ)] ,

where Bi(x) represents the CDF of the beta distribution βi(x).
According to these derivations, given T = τ , we can write the density func-

tions as mixtures of Beta distributions:

fT(τ) =
pm∑
j=1

w1jβj(τ), fX|T(x|τ) =
pm∑
i=1

w2i(τ)βi(x)

for some nonnegative weights {w1j , j = 1, . . . , pm} and {w2i(τ), i = 1, . . . , pm}
that satisfy

∑pm

j=1 w1j = 1 and
∑pm

i=1 w2i(τ) = 1. Let f̂X|T
m (x|τ) and f̂T

m(τ) denote
the sieve MLE of fX|T

0 (x|τ) and fT
0 , respectively.

28One can allow different numbers for each of the two dimensions. We leave the optimal
choice for future research.
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The following result is from Theorem 5 of [43]. If we assume that pm = mα for
some α ∈ (0, 1), and the true joint density f0(x, τ) is continuous and bounded
away from 0, then we have for every ε > 0,

P{dH(fX|T
0 (x|τ), f̂X|T

m (x|τ)) > ε} < 4 exp(−mc1ε
2),

P{dH(fT
0 (τ), f̂T

m(τ)) > ε} < 4 exp(−mc2ε
2)

for some positive constants c1 and c2, where

dH(f, g) =
[∫ 1

0
{
√

f(x) −
√

g(x)}2dx

]1/2

is the Hellinger metric between two density functions with domain [0, 1]. It
follows that both f̂

X|T
m (x|τ)) and f̂T

m(τ) are consistent. A key technique to obtain
this result is to make use of the fact that, when the sieve space Fm is taken as
the mixture of Beta distributions with pm components, then N[](ε,Fm, dH) =
O((1/ε)pm). See Proposition 2 of [43]. Thus, Assumption 9 is satisfied for the
sieve space comprised of Beta mixtures.

Additionally, as stated in [18], if g(x) is a continuously differentiable proba-
bility density on (0,1] with bounded second derivative, then there exists a beta
mixture density, such that

sup
0<x≤1

∣∣∣∣g(x) −
pm∑
j=1

θjβj(x)
∣∣∣∣ = O(p−1

m ).

Moreover, if
∑pm

j=1 θj = 1 with each θj ∈ [0, 1], then

sup
0<x≤1

∣∣∣∣ pm∑
j=1

θjβj(x)
∣∣∣∣ ≤ pm.

Therefore, if Bm is constructed using a mixture of Beta distributions, and the
true joint density fX,T

0 is continuously differentiable and has bounded second
derivatives, Assumptions 7-9 are satisfied with suitable conditions on pm and
Qm, as in Assumption 8.

Corollary B.3. Assume that the true joint density fX,T
0 is continuously differ-

entiable and has bounded second derivatives. Under Assumption 6 and suitable
conditions on pm and Qm, the proposed MLE using Berstein polynomials as a
sieve base is consistent.

B.3. Some sieve examples

For reference, we provide a few alternative sieve bases: 1) Trigonometric linear
series as the base, where the space of Trigonometric polynomials on the real line
of degree p or less can be represented as:

TriPol(p) =
{
a0,

p∑
k=1

[ak cos(2kπx) + bk sin(2kπx)], x ∈ [0, 1]; ak, bk ∈ R

}
;



Order statistics to UH 2523

2) Hermite polynomials as the base, where the space of Hermite polynomials on
the real line of degree p or less is represented as:

HPol(p) =
{

p+1∑
k=1

akHk(x) exp
(
−x2

2

)
, x ∈ R : ak ∈ R

}
,

where Hk(x) is the probabilists’ Hermite polynomials.

Appendix C: Identification using four order statistics

Here, we extend the main identification results to the situation with four order
statistics that are not necessarily consecutive. The identification is also con-
ducted on different segments of the support due to the special feature of order
statistics. The identification process consists of several steps: 1) An eigenfunction-
decomposition argument identifies a linear integral operator, which is defined
using both the conditional distribution on a higher order statistic and the UH as
kernel function on the low segment. Therefore, we can identify the conditional
distribution in such a segment. 2) We use the fact that the operator defined on
the low segment is identified to identify the operator defined on the high seg-
ment and so identify the conditional distributions. 3) Both identifications are
up to scales, ordering, and location. We exploit similar features as in Theorem
1 to solve these problems.

Suppose we observe four order statistics that are not necessary consecutive.
Denote the four order statistics as ri, where i = 1, . . . , 4 and 1 ≤ r1 < r2 <
r3 < r4 ≤ n. For simplicity of notation, let xi denote the realized values of order
statistics Xri:n and omit n in all notation. The joint distribution of the observed
four order statistics can be represented as

fr1,r2,r3,r4:n(x1, x2, x3, x4)

=
∫
τ

fr1,r2,r3,r4:n(x1, x2, x3, x4|τ)fT(τ)dτ

= 1(x1 ≤ x2 ≤ x3 ≤ x4)

×
∫
τ

fr1|r2:n(x1|x2, τ)fr4|r3:n(x4|x3, τ)fr2,r3:n(x2, x3|τ)fT(τ)dτ.

The last equality holds due to the Markov property in order statistics. This
joint distribution of four order statistics has a semi-separable structure, in the
sense that we can separate the observed joint density function into three density
functions. This, again, is similar to that in the measurement error literature, but
it has an extra restriction by the nature of order statistics 1(x1 ≤ x2 ≤ x3 ≤
x4), which cannot be separated but can be controlled by dividing the support
accordingly.

Once the correlation between order statistics is controlled by restricting the
variation of the order statistics into the associated sub-support, we can derive
the equivalence between the linear operator defined in the data and the unknown
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densities that we are yet to identify. Given that the injective and distinct as-
sumptions are satisfied, we can then identify the latent density uniquely. Please
refer to the identification details in Appendix A.

To control for the correlation between order statistics, we follow the identifi-
cation argument in the situation with three consecutive order statistics. Specif-
ically, we divide the support into four segments and only exploit the variations
of x in the predetermined segments: x1 ∈ Xl ≡ {x : x ≤ c1}, x2 ∈ Xm1 ≡
[c1, c2], x3 ∈ Xm2 ≡ [c2, c3], x4 ∈ Xh ≡ {x : x ≥ c2}. The separable structure of
the joint distribution fr1,r2,r3,r4:n(x1, x2, x3, x4) reappears then. Specifically, if
x1 ∈ Xl, x2 ∈ Xm1, x3 ∈ Xm2, x4 ∈ Xh, the joint distribution can be expressed
as

fr1,r2,r3,r4:n(x1, x2, x3, x4)

=
∫
τ

fr1|r2:n(x1|x2, τ)fr4|r3:n(x4|x3, τ)fr2,r3:n(x2, x3|τ)fT(τ)dτ.

Step 1 We then exploit the equivalence of linear integral operators to identify
the conditional distribution. Particularly, we can derive the following operator
equivalence, fixing x2 ∈ Xm1 and x3 ∈ Xm2:

[Jx2,x3g](x1)

≡
∫
x4∈Xh

fr1,r2,r3,r4:n(x1, x2, x3, x4)g(x4)dx4

=
∫
x4∈Xh

∫
τ

fr1|r2:n(x1|x2, τ)fr4|r3:n(x4|x3, τ)fr2,r3:n(x2, x3|τ)fT(τ)g(x4)dx4

=
∫
τ

fr1|r2:n(x1|x2, τ)fr2,r3:n(x2, x3|τ)fT(τ)
∫
x4∈Xh

fr4|r3(x4|x3, τ)g(x4)dx4dτ

=
∫
τ

fr1|r2:n(x1|x2, τ)fr2,r3:n(x2, x3|τ)fT(τ)[HXr4 |Xr3=x3,Tg](x4)τ

≡
∫
τ

fr1|r2:n(x1|x2, τ)[Δx2,x3,THXr4 |Xr3=x3,Tg](τ)dτ

= [LXr1 |x2,TΔx2,x3,THXr4 |x3,Tg](x1). (C.18)

Equation (C.18) implies that the operators from both sides are equivalent for
any x2 ∈ Xm1, x3 ∈ Xm2. That is,

Jx2,x3 = LXr1 |x2,TΔx2,x3,THXr4 |x3,T. (C.19)

Since such equivalence holds for any x2 ∈ Xm1, x3 ∈ Xm2, we first have the
following equations at two different values of (Xr2 , Xr3): (c1, x3) and (x2, x3),
where x2 ∈ Xm1 and x3 ∈ Xm2, resulting in four matrix equations with common
components:

Jc1,x3 = LXr1 |c1,TΔc1,x3,THXr4 |x3,T,

Jx2,x3 = LXr1 |x2,TΔx2,x3,THXr4 |x3,T,

which share a common operator HXr4 |x3,T.
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Similarly, we then have the following equations at two different values of
(Xr2 , Xr3), (x2, c3) and (c1, c3):

Jx2,c3 = LXr1 |x2,TΔx2,c3,THXr4 |c3,T,

Jc1,c3 = LXr1 |c1,TΔc1,c3,THXr4 |c3,T,

which share a common operator HXr4 |c3,T.
We impose the following injective assumptions on all four operators:

Assumption 10. (Injective) there exists one division of the domain such that
the operators LXr1 |c1,T, LXr1 |x2,T, HXr4 |x3,T, and HXr4 |c3,T are injective for G =
L1.

With such an injective assumption being satisfied, we obtain the following
main equation:

Jc1,x3J
−1
x2,x3

Jx2,c3J
−1
c1,c3 = LXr1 |c1,TΔc1,x2,x3,c3L

−1
Xr1 |c1,T

, (C.20)

where the left-hand side matrix can be computed directly from the data, and
the right-hand side matrix is the linear integral operator LXr1 |c1,T with the
conditional density, with diagonal operator Δc1,x2,x3,c3 defined as

Δc1,x2,x3,c3 = Δc1,x3,TΔ−1
x2,x3,TΔx2,c3,TΔ−1

c1,c3,T.

Equation (C.20) indicates that the operator Jc1,x3J
−1
x2,x3

Jx2,c3J
−1
c1,c3 can be

represented as an eigenvalue-eigenfunction decomposition for the unknown op-
erators LXr1 |c1,T and Δc1,x2,x3,c3 being the eigenvalues and eigenfunctions, re-
spectively. The eigenfunctions LXr1 |c1,T, indexed by the latent factor, provide
the unobserved conditional densities of order statistic Xr1:n|Xr2:n = c1, T.

For unique decomposition, we further impose restrictions on the relationship
between the observed measurement X in segment Xm and the latent factor T.
Specifically,

Assumption 11. (Distinct) There exists one division of the domain such that
the set {

(x2, x3) : fr2,r3:n(c1, x3|τ1)fr2,r3:n(x2, x3|τ1)
fr2,r3:n(x2, c3|τ1)fr2,r3:n(c1, c3|τ1)

�= fr2,r3:n(c1, x3|τ2)fr2,r3:n(x2, x3|τ2)
fr2,r3:n(x2, c3|τ2)fr2,r3:n(c1, c3|τ2)

}
,

has positive probability for all τ1, τ2 ∈ T whenever τ1 �= τ2.

With both assumptions satisfied, we can identify operator LXr1 |c1,T up to
scales from Equation (C.20) using eigenfunction decomposition. Additionally,
we can identify the conditional density fr1|r2:n(x1|c1, τ) using the fact that the
identified operator is associated with this density. We further pin down the scales
using the fact that

∫
x1∈Xl

fr1|r2:n(x1|c1, τ)dx1 = 1. Once the scales are pinned
down, we identify the conditional density in segment “low,” i.e., fr1|r2:n(x1|c1, τ)
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for all x1 ≤ c1. Note that the conditional distribution fr1|r2:n(x1|c1, τ) is the
same as the density of r1th order statistics from a sample of size (r2 − 1) based
on the parent distribution that is truncated on the right at c1, i.e., fX(x|τ)

FX(c1|τ) .

Therefore, we identify this truncated distribution fX(x|τ)
FX(c1|τ) , indicating that we

identify the parent density fX(x|τ) in segment “low” up to an unknown scale
FX(c1|τ) for all x1 ≤ c1.

Step 2 Using the identified operator LXr1 |c1,T in segment “low,” we first iden-
tify an operator defined to be associated with the density in both segments
“middle” and “high” using the joint density of the first three OS:

fr1,r2,r3:n(x1, x2, x3) =
∫
τ

fr1|r2:n(x1|x2, τ)fr3|r2:n(x3|x2, τ)fr2:n(x2, τ)dτ.

We then exploit the equivalence of the linear integral operator when fixing
Xr2 = c1 to identify the conditional distribution. Particularly, we can derive the
following operator equivalence for Xr2 = c1 and any Xr3 = y ≥ c1. Specifically,

[Jc1g](x1) ≡
∫
y≥c1

fr1,r2,r3:n(x1, c1, y)g(y)dy

=
∫
y≥c1

∫
τ

fr1|r2:n(x1|c1, τ)fr3|r2:n(x3|c1, τ)fr2:n(x2, τ)dτdy

=
∫
τ

fr1|r2:n(x1|c1, τ)fr2:n(x2, τ)
∫
y≥c1

fr3|r2:n(y|c1, τ)g(y)dydτ

=
∫
τ

fr1|r2:n(x1|c1, τ)[fr2:n(x2, τ)MXr3 |c1,Tg](τ)dτ

= [LXr1 |c1,TΔc1,TMXr3 |c1,Tg](x1),

where MXr3 |c1,Tg](τ) ≡
∫
y≥c1

fr3|r2:n(y|c1, τ)g(y)dy and [Δc1,Tg](τ) ≡
fr2:n(x2, τ)g(τ). We obtain the equivalence of operators in the following:

Jc1 = LXr1 |c1,TΔc1,TMXr3 |c1,T.

Therefore, we can identify the operator MXr3 |c1,T up to scales, since the operator
LXr1 |c1,T is identified and operator Δc1,T is a diagonal. In addition, we identify
the conditional density fr3|r2:n(x3|c1, τ) up to scales. We can pin down the scales
using the fact that

∫
y≥c1

fr3|r2(y|c1, τ)dx = 1, so we identify fully fr3|r2(x3|c1, τ)
for all x ≥ c1. Note that the conditional distribution fr3|r2(x|c1, τ) is the same
as the density of (r3 − r2)th order statistics for a sample of size (n− r2) from a
distribution that is truncated on the right at c1, i.e., fX(x|τ)

1−FX(c1|τ) . Therefore, we

identify this truncated distribution fX(x|τ)
1−FX(c1|τ) and fX(x|τ) up to an unknown

scale [1 − FX(c1|τ)] for all x ≥ c1.



Order statistics to UH 2527

Step 3 To summarize, we identify the conditional distribution density fX(x|τ)
for x ≤ c1 up to an unknown scale FX(c1|τ) for all x1 ≤ c1 and identify
the conditional distribution fX(x|τ) for x ≥ c1 up to an unknown scale [1 −
FX(c1|τ)]. We then pin down the unknown FX(c1|τ) using the smoothness of
the conditional density, i.e.,

fX(x|τ)
FX(c1|τ) = fX(x|τ)

1 − FX(c1|τ) ,

which admits a unique and explicit solution for FX(c1|τ).
Note that the identification argument described above generates a continuous

conditional distribution without knowing the associated value of the latent true
factor T. The identification is up to ordering and location. Pinning down the
exact value of such location calls for extra restrictions, which typically depend
on the context of the latent factor. We use the same restriction as in the previous
section to pin down the location.

We summarize the identification result in the following theorem.

Theorem C.1. If Assumptions 1, 2, 10, 11, and 5 are satisfied, the conditional
density distribution fX(x|T) for x ∈ X and the marginal distribution for the
latent variable fT(τ) for τ ∈ T are identified using any four order statistics.
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