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Abstract: Comparing the survival times among two groups is a common
problem in time-to-event analysis, for example if one would like to under-
stand whether one medical treatment is superior to another. In the stan-
dard survival analysis setting, there has been a lot of discussion on how to
quantify such difference and what can be an intuitive, easily interpretable,
summary estimand. In the presence of subjects that are immune to the
event of interest (‘cured’), we illustrate that it is not appropriate to just
compare the overall survival functions. Instead, it is more informative to
compare the cure fractions and the survival of the uncured subpopulations
separately from each other. Our research is mainly driven by the question:
if the cure fraction is similar for two available treatments, how else can we
determine which is preferable? To this end, we estimate the mean survival
times in the uncured fractions of both treatment groups and develop both
permutation and asymptotic tests for inference. We first propose a nonpara-
metric approach which is then extended to account for covariates by means
of the semi-parametric logistic-Cox mixture cure model. The methods are
illustrated through practical applications to breast cancer and leukemia
data.
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1. Introduction

In many applications, it is of interest to compare survival probabilities among
two different samples, e.g., two treatment arms. One common approach is to test
for the equality of the survival functions although it does not provide information
on the size of the difference. Alternatively, as a graphical tool, one could plot the
difference between the two estimated survival curves together with confidence
bands. However, in practice it is preferred to have a summary measure of such
difference. This facilitates the understanding and interpretation of study results
even though it provides limited information since no single metric can capture
the entire profile of the difference between two survival curves. The hazard ratio
(HR) is commonly used to quantify this difference under the assumption that the
ratio of the two hazard functions remains constant over time; for example, the
proportionality of hazard rates is central to the famous semiparametric model
by Cox [13]. However, such assumption is often not satisfied in practice and the
use of the HR would be problematic.

An alternative approach is given by the restricted mean survival time (RMST),
which is a popular estimand. The difference between restricted mean survival
times for different groups has been advocated as a useful summary measure
that offers clinically meaningful interpretation [54, 43, 44, 1, 63]. The RMST
is defined as the expected lifetime truncated at a clinically relevant time point
7. The restriction to 7 is used to accommodate the limited study duration, as
a result of which the upper tail of the survival function cannot be estimated,
unless one is willing to assume a specific parametric model for extrapolation
beyond the range of the observed data. In observational studies, one can then
adjust for imbalances in the baseline covariates between the two groups by using
regression-based methods to estimate the RMST; see [11, 12, 1] and references
therein. [57] developed a nonparametric estimation procedure for causal esti-
mands in the presence of a cure fraction: the restricted average causal effect and
the survival probability causal effect; more on cure models will follow below.

In two-sample problems, one popular class of hypothesis tests arises from
the random permutation technique. That is, keeping the data fixed, a random
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permutation of the sample group correspondence annihilates the differences be-
tween both (permuted) groups. If the two sample groups had the same data
generating mechanism, i.e., if the samples were exchangeable, then the score of
a test statistic can be deemed one particular realization of the permutation-
based test statistic. This explains the property that permutation tests are exact
for finite sample sizes in the special case of exchangeability. Recently, [22] and
[58] investigated a random permutation method for inference on the difference
in restricted mean (net) survival times. While their test is finitely exact un-
der exchangeable data, [22] stated for the case of non-exchangeable data that
“Further research to develop methods for constructing confidence intervals for
RMST difference with a small sample data is warranted. It is quite challeng-
ing to construct an exact confidence interval for the difference in RMST.” [15]
continued in the direction of this remark and analyzed a studentized permu-
tation version of the just-mentioned approach. Their resulting hypothesis test
is exact under exchangeability and it even controls the type-I error probability
asymptotically under non-exchangeability. Because of this additional feature of
exactness under exchangeability, permutation tests also enjoy great popularity
in survival analytic applications beyond the RMST: for instance, [4] and [14]
researched permutation-based weighted log-rank tests.

In this paper, we will consider the not unusual case that some of the subjects
are immune to the event of interest (‘cured’) instead of the classical survival
problem. The challenge arises because, in absence of additional information, the
cured subjects (for which the event never takes place) cannot be distinguished
from the susceptible ones as a result of censoring. Cure rate models, which
account for the presence of a cured subpopulation have become increasingly
popular particularly for analyzing cancer survival and evaluating the curative
effect of treatments. More in general, they have found applications in many
other domains including fertility studies, credit scoring, demographic and social
studies analyzing among other things time until marriage, time until rearrest
of released prisoners, time until one starts smoking. For a complete review on
cure models methodology and applications, we refer the reader to [2, 42, 27].
In presence of immune subjects, comparing survival between two samples be-
comes more complicated than in the standard setting since one can compare
overall survivals, cure chances, and survival probabilities for the uncured sub-
jects. Several papers have focused on testing for differences in the cure rates in
a nonparametric setting. [25, 21, 48, 26] On the other hand, different methods
have been proposed to test for equality of the survival functions among the
uncured subpopulations. [29, 51, 64, 7, 5]

However, as in the standard survival analysis setting, testing for equality of
the two distributions, i.e., with the aim to detect any difference in the two dis-
tributions, would not be sufficient for many practical applications. Thus, apart
from comparing the cure probabilities, it would be meaningful to compare rel-
evant estimands for the subpopulation of uncured subjects. To this end, we
propose to analyze mean survival times of the uncured. This has the advantage
of being an easy-to-interpret extension of the RMST in the present context,
whereas we will not impose a time restriction. Hence, we will use the abbrevia-
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Fic 1. Different constellations of survival curves in two-sample problems.

tion MST for our purposes. To illustrate the different concepts in the context of
survival models with cure fractions, see Figure 1. It illustrates different scenarios
of different or equal cure fractions p, time points 7y when the plateau is reached,
and mean survival times for the uncured patients. Recently, a nonparametric
estimation procedure for the restricted average causal effect was developed in
[57]. Differently from our approach, they did not condition on the subpopulation
of the uncured individuals but instead consider the overall restricted mean sur-
vival time of the general population and focus on a propensity score adjustment
for observational data. We argue that in the presence of a cure fraction, even
in the context of a randomized clinical trial, it is more informative to compare
separately the cure rates and the survival of the uncured. However, we discuss
that conditioning on the uncured subpopulation makes our estimand difficult to
interpret in a causal framework.

Measures other than the first moment could obviously also be used to sum-
marize the survival curves of the uncured patients, e.g., the median or other
quantiles of these proper survival functions, or other moments. In our opin-
ion, however, the mean offers the easiest interpretation: how much (in absolute
numbers) of the wholly available area of 7y is below the survival curve? The
more, the better. This offers another means of comparing the usefulness of two
(or more) treatments: which treatment prolongs the mean survival times most
effectively, next to comparing the cure fractions?

The agenda for the present paper and the benefits of the proposed procedure
are as follows:

e We will propose an estimand for comparing the lifetimes of the uncured
subjects via mean survival times.
e This will allow for comparisons in two-sample problems.
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Restrictions of time will not be necessary.

Only weak assumptions, e.g., for the sake of identifiability will be made.
In particular, hazard rates are generally allowed to be discontinuous.
Inference will be based on the random permutation method which gives
rise to finitely exact hypothesis tests in the case of exchangeable samples
and, otherwise, good small sample properties.

We start by considering a nonparametric model with a constant cure rate and
then extend the method to a semiparametric mixture cure model that allows for
expressions of mean survival times conditionally on covariates. For the latter,
we will assume a logistic-Cox mixture cure model [50, 40] since it is the most
widely used in practice. In particular, a logistic model is assumed for the cure
probabilities and a Cox proportional hazards (PH) model for the survival times
of the uncured subjects. Note, however, that the baseline hazards for the un-
cured subpopulations in the two groups are in general different, leading to non-
proportional hazards. Despite this model choice, the estimation procedure and
the results could be similarly extended to other semiparametric mixture cure
models, e.g. [28, 62, 32]. Recently, the problem of estimating the conditional
mean survival time for the uncured in a one-sample context has been consid-
ered in [10]. They assume a semiparametric proportional model for the mean
(residual) life of the uncured and propose an estimation method via inverse-
probability-of-censoring weighting and estimating equations. As a consequence,
their approach also requires estimation of the censoring distribution.

In the nonparametric setting, it has been observed that the permutation
approach improves upon the asymptotic method for small sample sizes, while
maintaining good behavior asymptotically [22, 58, 15]. To the best of our know-
ledge, the permutation approach has not been used before for semiparametric
models in a similar context of maximum likelihood-based estimators that we will
pursue. One notable permutation-based inference approach in the survival lit-
erature concerns the weighted logrank test [4]; there, the semiparametric model
arises from the form of the null hypothesis which is a cone or subspace of hazard
derivatives.

Given also the complexity of our model, several challenges arise from both
the computational and theoretical point of view. In order to obtain results on
the asymptotic validity of the permutation approach, we first derive a gen-
eral Donsker-type theorem for permutation based Z-estimators. Secondly, when
fitting the model to the permuted sample, there is an issue of model misspeci-
fication. This leads to the convergence of the estimators to a minimizer of the
Kullback-Leibler divergence. Thirdly, since the variance estimators need to be
computed via a bootstrap procedure, the combination of bootstrap and permu-
tation becomes computationally expensive. Hence, it is of interest to investigate
whether the gain in accuracy is sufficient to compensate for the increased com-
putation cost compared to the asymptotic approach.

This article is organized as follows. In Section 2, we focus on the simpler
unconditional nonparametric approach describing the model, estimand, estima-
tion procedure and the random permutation scheme. We present large sample
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properties, which are crucial for inference, and also offer a toy example for a
discussion about comparisons of survival times in the two-sample problem. In
Section 3, we propose an estimator in a semi-parametric conditional model for
the difference in conditional mean survival times of the uncured and derive its
asymptotic distribution. The random permutation approach for inference is ex-
tended to this setting and its asymptotic validity is justified. Section 4 contains
a description of an extensive simulation study as well as the numerical results.
Data from studies of leukemia and breast cancer are illustrated and analyzed in
the light of the proposed methods in Section 5. We conclude with a discussion
in Section 6. All proofs are contained in Appendices A—C. The R code with an
implementation of our methods is available in the GitHub repository https://
github.com/eni-musta/MST_uncured.

2. Unconditional model
2.1. Model and notation

We consider i.i.d. survival times T11,...,7T1,, and To1,...,To,, from two in-
dependent groups (i = 1,2) that consist of a mixture of cured and uncured
individuals, meaning that a fraction of the study population in each group (the
cured ones) would not experience the event of interest. We denote the event
time of the cured individuals by co and assume that, for the uncured ones, the
event can happen on the interval [0, 7], 7 = 1,2, respectively for each group.
We do not assume the cure threshold 75; < oo to be known in advance but
depending on the application at hand one might have some information about
it; for example in oncology based on the medical knowledge 7y ; is expected to
be somewhere between 5 or 10 years depending on the cancer type.

For the remainder of this paper, we denote by (2, .4,P) the underlying prob-

ability space, E denotes expectation, % denotes convergence in distribution, 4
denotes equality in distribution, and 2 denotes convergence in probability.

Let us denote by F; and S; = 1 — F;, ¢ = 1,2, the improper cumulative
distribution function and the improper survival function of the time-to-event
variables in the two treatment groups. Let F,; and S,; = 1 — F,; be the
proper cumulative distribution function and survival function for the uncured
individuals in the two treatment groups. Let

pi =P(Tin > 10,:) = Si(70,:) € (0, 1)
denote the cure fractions in both groups. In particular, we have
Fi(t) = (1 —pi)Fui(t),  Si(t) =pi + (1 —pi)Sui(t). (1)

In the presence of right censoring, instead of the survival times, we observe the
follow-up times Y1, ...,Y,, and the censoring indicators A;,...,A;y,,, where
Y, = min{T;;,Cy;}, Ay = 1(1,,<c;;y and Cj; are the censoring times. We
assume that censoring is independent of the survival times and has bounded
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support [0, 73] in each group. In particular, because of the finite censoring times,
all the cured individuals will be observed as censored. In order to be able to
identify the cure fraction, we need 79; < 7; and F; continuous at 7; in case
To,i = T4, which is known as the sufficient follow-up assumption [34]. The idea is
that, since the cure status is not observed and F, ;(-) is left unspecified, if 7; <
7p,; then the events {T;1 € (7;,70,]} and {T};1 = oo} would be indistinguishable.
As a result, the cure rate could not be identified. A statistical test for this
assumption is proposed in [34] but its practical behavior is not very satisfactory
given the unstable behaviour of the Kaplan—Meier estimator in the tail region.
In practice, a long plateau of the Kaplan—Meier estimator, containing many
censored observations, is considered to be an indication of sufficient follow-up.

Comparison of overall survival

We first illustrate why comparing overall survival functions is not appropriate
in the presence of a cure fraction. The difference in overall survival combines to-
gether the difference in cure fractions and in the survival times of the uncured in
a way that it is difficult to interpret. For example, if group one has a higher cure
fraction but lower survival times for the uncured, the overall survival functions
might cross and the difference between them would be a weighted combination
of the two effects:

S1(t) = Sa(t) = (p1 — p2){1 — Su2(t)} + (1 = p1){Su,1(t) — Su2(t)}-

On the other hand, if the two groups have the same cure fraction p, then

S1(t) = S2(t) = (1 = p){Sua(t) — Sua2(t)}

This means that, particularly for a large cure fraction, the observed difference
in overall survival functions is much smaller than the actual difference of the
survival functions for the uncured.

Using a one number summary of the difference in overall survival is even more
problematic in the presence of a cure fraction. First, the proportional hazard
assumption is clearly violated on the level of the whole population and, as a
result, the hazard ratio cannot be used. For the Mann—Whitney effect, what
counts are the chances of having longer survival times for one group compared
to the other, but the actual difference between these times does not matter.
So one cannot distinguish between having a larger cure fraction or just slightly
longer survival.

Consider for example the following hypothetical scenario: patients receiving
treatment A have a 20% chance of being cured while with treatment B there
is no cure chance; a random person receiving treatment B lives several months
longer compared to an uncured patient who received treatment A. Let 77 and
Ty represent the random lifetimes of patients receiving treatments A and B, re-
spectively. According to the above description, the Mann—Whitney effect would
then be

1
B(Ty > Tp) + 5P(Ty = Tz) = 02 < 0.5,
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leading to the conclusion that treatment B should be preferred. This is counter-
intuitive because, given the small difference in survival times of the uncured,
in practice one would probably prefer the treatment that offers some chance of
getting cured. On the other hand, if one would use the restricted mean survival
time as an estimand, the actual survival times matter. However, because of the
restriction to a specified point 7 (duration of the study), there would still be no
distinction between the cured individuals and those who survive more than 7:

RMST) = E[min(T},7)] = (1 — p)E[min(T;, 7)|T; < 7] + 7pi, i =1,2.

To illustrate this, consider the following example: patients receiving treatment
A have 20% chance of being cured, while with treatment B there is no cure
chance; a random person receiving treatment B lives on average 60 months,
while an uncured patient who received treatment A lives on average 24 months.
Let us assume that 791 = 79,2 = 120 months. If the duration of the study was
also 120 months (sufficient follow-up), we would obtain

RMSTS) — RMST3) = 0.8 - E[Ty|T) < 120] 4 120 - 0.2 — E[Ty] = —16.8,

leading to the conclusion that treatment B should be preferred. However, if the
study had continued for longer, e.g., 240 months, we would obtain

RMSTS)) — RMSTS) = 0.8 E[T1|T) < 240] + 240 - 0.2 — E[T}] = 7.2,

suggesting that treatment A is better, which contradicts the previous conclusion.

For these reasons, we think that in the presence of a cure fraction, it is
more informative to compare separately the cure fractions and the survival
functions of the uncured. In practice, one can then make a personalized decision
by choosing to put more weight to one component compared to the other, based
on the life expectancy if uncured and the risks one is willing to take. For example,
for children there is an essential difference between cure and 10 year survival,
while such difference might be less significant for elderly patients.

Mean survival time of the uncured

The problem of comparing cure fractions has already been considered in the
literature. Here, we focus on comparing the survival times of the uncured. In
particular, we propose the mean survival time as a summary estimand.

We are interested in the difference of mean survival times of the uncured
individuals among the two groups,

MSTHJ — MST%Q = E[Tll | T11 < OO} — E[Tgl | Tgl < OO}

In combination with the cure fractions, such mean survival times provide useful
summaries of the improper survival curves. Using the relations in (1), we obtain
the following expression for the mean survival times:

T0,i T0,i . — .
MSTW-:/ Sw-(s)ds:/ Sils) —pigs o0
0 0 1-pi
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2.2. Estimation, asymptotics, and random permutation
Estimators and their large sample properties

Estimation of the cure rate and of the nonparametric survival function in this
setting has been considered in [33, 34] and is based on the Kaplan-Meier (KM)
estimator. In particular, we can estimate S; and p; by

Sit)y= 1] (1—dgi((;))> and  pi = Si(Vi (m,)),

s€(0,t]

respectively, where Y; (,,,) is the largest observed event time in group i; here,
m; is the total number of observed events in group ¢ and the subscript (m;)
indicates the m;-th order statistic of the observable event times. Furthermore,
in the display above, the counting processes N;(s) = Z;“:l Ty, <s,A,,—=1} count
the number of observed events up to time s and R;(s) = 22;1 Ly,;>s) count
the numbers of individuals at risk at time s. By a plug-in method, we estimate
the mean survival time of the uncured by

— }/'i,(m,i) A, — D
MST, ;= / 7&(8) - Pi ds
0 1—p;

Let mh = ]\/45\Tu,1 — ]\/45\Tu72 be an estimator of m = MST, 1 — MST, 5.
Using the asymptotic properties of the KM estimator, we obtain the following
result for the mean survival times, for which we define

/s {1— <—>}’ @)

H;(t) =PYn <t)={1-F,)H1l -G}, and G;(t) = P(C;1 < t) denotes
the distribution of the censormg times.

Theorem 2.1. For i = 1,2, assume p; € (0,1) and that one of the following
conditions holds:

a) T0,i < T;
b) 10 =i, F; is continuous and

T dF() ,
/0 TG0 — () < o0; (3)

¢) 10 =T, F; is continuous at 7;, limeyr, {F;(1;) — Fi(t)}?vi(t) = 0, and

y T To<qy(s—)<135i(s)
1m
i Sy {1 — GZ(S—)}SZ(S—)

Then the random wvariable \/11_2(]\/4-57@Z — MST, ;) is asymptotically normally
distributed, i.e.

dFi(S) = 0.

Vii(MST ; — MST ;) % N; ~ N(0,02)

as n — oo. The limit variance o? is defined in (10) in the appendiz.
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The extra technical conditions in b) and c) of the previous theorem are the
conditions needed to obtain weak convergence of the normalized Kaplan—Meier
estimator to a Gaussian process [20, 61]. Note that in the particular case 79; <
T;, the conditions unrelated to the continuity of F; are automatically satisfied,
leading to no extra requirements for case a). Continuity of F; is nowhere needed
in case a).

Remark 1. Theorem 2.1 still holds in the case of p; = 0, i.e., in the absence of
a cure fraction. In this case, the estimand reduces to the common (unrestricted)
mean survival time. However, we have not made this explicit in the statement of
the theorem because we generally assume the presence of a cure fraction which
should, in practice, be confirmed by medical expert knowledge.

From the independence assumption between the two groups and Theorem 2.1,
we obtain the following result for which we define a,, = \/n1na/(n; + ng).

Corollary 2.1.1. Assume that n1/(n1 +n2) — K € (0,1) as min(ny, ng) — oo.
Under any of the two conditions in Theorem 1, we have that a,(1h — m) is
asymptotically normally distributed with mean zero and variance

02 =(1—r)o? + ko2,

The canonical plug-in estimator of o2, say

§7= 2 g1y 52 (4)
ni + na ny + na

is obviously consistent. Hence, the combination of Theorem 2.1 and Corol-

lary 2.1.1 could be used to justify inference methods for M ST, 1 — MST, >

based on the asymptotic normal approximation. However, such inference proce-

dures can usually be made more reliable by means of resampling methods.

Inference via random permutation across samples

We propose random permutation to construct inference methods for m. To in-
troduce this procedure, let 7 = (71, ..., T, +n,) be any permutation of (1,2,...,
n1+nsg). When applied to the pooled sample, say, (Y1, A1), ..., (Vni+nay Dngtng)s
this permutation leads to the permuted samples (Yr,,Ar,),...,(Yz, ,Ax, )

and (YTFn1+1’A7Tn1+1)7 et (Yﬂ'n1+n2 ’ Awn1+7l2).
In the special case of exchangeability, i.e. H§*" :(Y1;,Aq1;) 4 (Ya;, Asj),

m= J\?S\Tu,l — ]\75\7“%2 would have the same distribution as m™ = HS\Tzl —
]\/45\712,2. Here, MS\TZZ are the estimators of the mean survival times, just
based on the i-th permuted sample. So, under a sharp null hypothesis ngCh' of
exchangeability, a test for the equality of mean survival times would reject the
null hypothesis if 71 belongs to the a X 100% most extreme values of m™ across
all (ny + ng)! permutations.

However, under the weak null hypothesis of equal mean survival times, Hy :
m = 0, the samples are in general not exchangeable. As a consequence, the
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asymptotic variances of m and m™ cannot be assumed equal and hence they
must be studentized. We will thus focus on m™ /6™ as the permutation version
of /&, where
ng . ny .
6™ = 2 UTQ + : 0523 (5)
ny +ne ny +ng

and 07?2 is the plug-in variance estimator based on the i-th permuted sample.
Consequently, our aim is to compare m/é to the conditional distribution of
m” /6™ given the data to reach a test conclusion.

Because it is computationally infeasible to realize 1™ /6™ for all (ny + ng)!
permutations, we will realize a relatively large number B of random permuta-
tions 7 and approximate the conditional distribution by the collection of the
realized ™ /6™ of size B.

In the following, we will discuss the asymptotic behaviour of m™ /67 to justify
the validity of the resulting inference procedures. From now on, we understand
the weak convergence of conditional distributions in probability as the conver-
gence of these distributions to another with respect to the bounded Lipschitz
metric in probability; see e.g. Theorem 1.12.4 in [55].

Theorem 2.2. Assume that 79, < 7; and p; € (0,1) for i = 1,2. Then, as
ny, N2 — 00 with n1/(n1 +n2) — & € (0,1), the conditional distribution of
anMm™ given the data converges weakly in probability to the zero-mean normal
distribution with variance given in (11) in the appendiz.

Under continuity assumptions similar to those in Theorem 2.1 and additional
assumptions on the censoring distributions, we conjecture that a similar weak
convergence result holds for the case of 79 ; = 7. This could potentially be shown
by extending the results of [16] to the random permutation method instead of
the classical bootstrap. Deriving such results, however, is beyond the scope of
the present paper.

The structure of the asymptotic variance in the previous theorem motivates
a canonical permutation-type variance estimator ™2, that is, the plug-in es-
timator based on the pooled sample. Due to the obvious consistency of this
estimator, we arrive at the following main result on the permuted studentized
mean survival time:

Corollary 2.2.1. Assume that 10, < 7 and p; € (0,1) and F; is contin-
uwous for i = 1,2. Then, as ny,ny — oo with 0 < liminfny/(ny + ng) <
limsupny/(n1 + n2) < 1, the (conditional) distributions of a,™™ /6™ (given
the data) and a,(m — m)/6 converge weakly in probability to the same limit
distribution which is standard normal.

We conclude this section with a remark on the inference procedures deduced
from the random permutation approach.

Remark 2. Corollary 2.2.1 gives rise to asymptotically exact 1- and 2-sided
tests for the null hypotheses Hél) :m < 0, Hé2) :m > 0, or Hés) :m =20
against the respective complementary alternative hypotheses: comparing 7 /&
with data-dependent critical value(s) obtained from the collection of realized
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m”™ /6™ (for fixed data) allows for controlling the chosen significance level a €
(0,1) as n1,my — oo under the assumptions made above. A similar remark
holds true for more general null hypotheses in which m is compared to some
hypothetical value mgy € R. In addition, as a well-known property of permutation
tests based on studentized test statistics, the just-mentioned tests are exact in
the special case of exchangeability between both sample groups for which my = 0
is automatically fulfilled. Similarly, by inverting hypothesis tests into confidence
intervals, asymptotically exact confidence intervals for m can be constructed;
see the Section 4.1 for details.

3. Conditional model
3.1. Model and notation

Assume now that in addition to the follow-up times Y;1,...,Y;,, and the cen-
soring indicators A1, ..., Ay, we also observe two covariate vectors X;; € RP
and Z;; € R, 4 =1,2, j =1,...,n;, representing the variables that affect the
probability of being susceptible (p;; incidence) and the survival of the uncured
(Su,i; latency), respectively. In this way, we allow for these two components of
the model to be affected by different variables. However, we do not exclude sit-
uations in which the two vectors X and Z are exactly the same or share some
components.

Using the framework of mixture cure models, the relations in (1) now hold
conditionally on the covariates. In particular, we have that the survival function
of T;; given X;; and Z;; is given by

Sitlz, z) = P(Tin > t|Xp = 2, Zin = 2) = pi(z) + (1 — pi(2))Sui(t]z),  (6)

where S, ;(t|z) = P(T;1 > t|Zi1 = 2,T;n < 00) denotes the conditional sur-
vival function of the susceptibles, which is independent of X given Z, and
pi(x) = P(T;1 = oo|X;1 = z) denotes the conditional cure probability in group
1, which is independent of Z given X. Instead of independent censoring, now we
assume that censoring is independent of the survival times conditionally on the
covariates: T L C'| (X, Z).

Among various modeling approaches for the incidence and the latency, the
most common choice in practice is a parametric model, such as logistic regres-
sion, for the incidence and a semiparametric model, such as Cox proportional
hazards, for the latency [27, 60, 49, 59]. The popularity of such choice is pri-
marily due to simplicity and interpretability, particularly when dealing with
multiple covariates. We focus on this type of models and assume that

1—pi(z) = o(+ @),

where ¢ : R — [0,1] is a known function, 7; € RP*! and 4! denotes the
transpose of the vector ~;. Here, the first component of z is taken to be equal
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to one and the first component of ; corresponds to the intercept. In particular,
for the logistic model, we have

eu

T ltew

¢(u) (7)

One can in principle allow also for a different function ¢ in the two groups but
for simplicity we assume that to be the same. For the latency, we assume a semi-
parametric model S, ;(¢|z) = Sy :(t|z; Bi, A;i) depending on a finite-dimensional
parameter 5; € R?, and a function A;. For example, for the Cox proportional
hazards model, we have

Sui(tlz) = exp{—Ai(t) exp(8] =)}, (®)

where A; is the baseline cumulative hazard in group i.

One challenge with mixture cure models is model identifiability, i.e., ensur-
ing that different parameter values lead to different distributions of the ob-
served variables. General identifiability conditions for semiparametric mixture
cure models were derived by [38]. In the particular case of the logistic-Cox model
the conditions are:

(I1) for all z, 0 < ¢(7fx) <1,

(I12) the function S, ; has support [0; 79 ;] for some 79 ; < o0,
(IS) P(Cil > TO,i|Xi1; Z’Ll) > 0 for almost all X;; and Zz}l;
(I4) the matrices Var(X;1) and Var(Z;1) are positive definite.

Condition I3 corresponds again to the assumption of sufficient follow-up. In
practice, this can be evaluated based on the plateau of the Kaplan—Meier esti-
mator and the expert (medical) knowledge.

In the presence of covariate information, we are now interested in the differ-
ence of mean survival times of the uncured individuals among the two groups
conditional on the covariate values:

MSTu,l,z — MSTu’Q’Z = E[TM | T11 < OO,ZH = Z} — E[Tzl | T21 < 00, Zgl = Z]

Note that we use only the covariate Z because that affects the survival of the un-
cured individuals. In combination with the conditional cure probabilities p;(x),
such conditional mean survival times provide useful summaries of the condi-
tional survival curves.

3.2. Estimation, asymptotics, and random permutation
The conditional mean survival time can be written as
T0,i
MST, ;. = / Su.i(s|z) ds i=1,2.
0

This leads to the following estimator:

Y.

i,(mg)

]\75\TMZ = / Su.i(s|z) ds,
0
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where S, ;(+|2) is an estimate of the conditional survival function for the uncured
and Y; () is the largest observed event time in group 7.

Next we focus on the logistic-Cox mixture model, given by (7)—(8), and con-
sider the plug-in estimate

Sui(t]z) = exp <71A\i(t)eBiT ) :

where Ai, Bl are the maximum likelihood estimates of A; and [3; respectively.
Maximum likelihood estimation in the logistic-Cox model was initially proposed
by [50, 40] and is carried out via the EM algorithm. The procedure is imple-
mented in the R package smcure [9]. In practice, the survival S, ;(t|2) is forced
to be equal to zero beyond the last event Y; (,,,,), meaning that the observations
in the plateau are considered as cured. This is known as the zero-tail constraint
as suggested in [50, 52| and is reasonable under the assumption of sufficient
follow-up: 79,; < 7;, which follows from (I3).

The asymptotic properties of the maximum likelihood estimates Ai, Bi, s
were derived in [31] under the following assumptions:

(Al) The function A;(t) is strictly increasing, continuously differentiable on
[0,7’077;) and Ai(TO,i) = limtﬁ.rori Az(t) < 00.

(A2) ~;, B; lie in the interiors of compact sets and the covariate vectors Z;; and
X;; have compact support: there exist K; > 0 such that:
P([|Zi;]] < K; and || X35 < K;) = 1.

(A3) There exists a constant € > 0 such that P(T;; = 1o | Tin < 00,Z;1) > €
with probability one.

(A4) P(Yi1 >t | Zi1, Xi1) is continuous in t < 79 ;.

Assumptions (A1),(A3) are formulated slightly in a different way in [31] but,
given the identifiability constraints (I1)—(14), they reduce to the ones stated
above. In particular, assuming that the survival distribution for the uncured
has a positive mass at the end point of the support (A3) is a technical condition
needed to guarantee that A; stays bounded on [0, 79 ;] while ensuring the iden-
tifiability of the model. In the Cox model without cure fraction, one does not
encounter this problem because the support of the event times is larger than
the follow-up of the study. Even though (A3) might seem not realistic, one can
think of such assumption being satisfied with a very small €. In such case it is
unlikely to observe events at 7y, as we see in real-life scenarios. If instead of
the maximum likelihood estimation, one considers estimation via presmoothing
as proposed in [37], this condition can be avoided at the price of additional
technicalities. This is because the conditional probability of {T" = oo} is iden-
tified beforehand by means of a nonparametric smooth estimator. As a result,
when estimating A; in the second step, one could restrict to a smaller interval
[0,7*] C [0, 7p,:]; see the discussion in Section 5.1 of [37].

Let m, = ]\/45\Tu)1,z - ]\/45\Tu,272 be an estimator of m, = MST, 1. —
MST, o .. Using the large sample properties of the estimators A; and Bl from
[31], we first derive the limit distribution of the process \/n_z{§u1(|z) —Su,i(-12)}
and then obtain the following result for the conditional mean survival time.



Mean survival of uncured patients in two samples 3121

Theorem 3.1. Assume that the identifiability conditions (I1)-(1}) and the as-
sumptions (A1)-(A4) are satisfied. Then, for any z € Z, the random variable
VNi(E; . — E; ) is asymptotically normally distributed, i.e.,

Vi(MST i — MST, ;) % Ny ~ N (0,02,)

as n; — oo. The limit variance o2 is defined in (18) in the Appendiz B.

2

Remark 3. Based on the proof of Theorem 3.1, we cannot guarantee that the
convergence result still holds under the absence of a cure fraction, i.e., p; = 0,
i=1,2.

From the independence assumption between the two groups and Theorem 3.1,
we obtain the following result:

Corollary 3.1.1. Assume that n1/(n1+mn2) — k € (0,1) as min(ny,ng) — co.
Then a,(h, —m,) is asymptotically normally distributed with mean zero and
variance

ag =(1- H)Uiz + ﬁag’z.

We restrict for simplicity to the logistic-Cox model and the maximum like-
lihood estimation method but the previous results can be generalized to other
estimation methods or other semiparametric mixture cure models. For example,
if the presmoothing approach introduced in [37] is used instead of the MLE,
then the asymptotic properties could be derived in the same way using Theo-
rem 4 in [37]. We also note that because of their complicated expressions, the
variances of the estimators in the semiparametric mixture cure model are esti-
mated via a bootstrap procedure [9]. As a result, we will also use the bootstrap
to estimate o, .

As in Section 2, we would like to investigate whether the asymptotic infer-
ence can be made more reliable by means of a permutation approach. Again
7 = (71,...,Tn,+n,) denotes any permutation of (1,2,...,n; + ng). Write
(Y;,A5,X,,Z;), j=1,...,n1 + ny for the pooled sample which consists of the
data points of the first group (j < np) and those of the second group (j > ny).
Applying 7 to the pooled sample leads to the permuted samples

(Yﬂ‘l ) Aﬂ'l ’ Xﬂ'u Z7|'1 )7 s (Yﬂ'n,l ) Aﬂ'nl ) X‘n'n,l ) Zﬂ'nl) and
A X Zrniii)se s Yo Do X s Zn s )-

Tny419

(YTrn1+17 Tnq+1)

In the special case of exchangeablhty, for any z, mz Would have the same dis-

tribution as mJ MSTu 1.2 MSTu 2., Here, MSTU ;,» are the estimators of
the condltlonal mean survival times, Just based on the i-th permuted sample.
Since the samples are in general not exchangeable and, as a consequence,
the asymptotic variances of 7, and M7 cannot be assumed equal, we use their
studentized version. We will thus focus on ] /67 as the permutation version
of 1 /6., where 672 is the estimated variance of M7, estimated via bootstrap.
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Because it is computationally infeasible to realize 77 /67 for all (ny 4 ns)! per-
mutations, we will realize a relatively large number B of random permutations
7w and approximate the conditional distribution by the collection of the realized
m7 /67 of size B. In the following, we will discuss the asymptotic behaviour of
m7T /6T to justify the validity of the resulting inference procedures.

One challenge that arises in this setting is that, since we are assuming a
semiparametric model, the permuted samples will in general not follow the same
model. Hence, when we fit the logistic-Cox model to obtain the estimates in the
permuted samples, the model is misspecified. Hence, we first show in a series of
lemmas in Appendix B that the maximum likelihood estimators converge to the
parameters of a logistic-Cox likelihood that minimize the Kullback-Leibler (KL)
divergence from the true distribution of the pooled data; denote this by P. We
can indeed argue that such a minimizer exists and we assume that it is unique.
In case of non-uniqueness, we expect that the results can be extended and,
depending on the starting point of the algorithm, the estimates would converge
to one of such minimizers. However, such extension is beyond the scope of the
current paper. In practice, we observed that the EM algorithm converges and
the limit was stable with respect to the initial point, which might indicate that
the minimizer was indeed unique.

Secondly, to obtain the asymptotic distribution of the permuted estima-
tors, we first obtain a general Donsker-type theorem for permutation based
Z-estimators (see Appendix C). That result holds in a great generality, so it
would also apply to countless other two-sample problems. Thus, it is of interest
of its own. But let us first return to the main result about the permuted esti-
mators in the present context. To this end, we define the KL divergence of a
probability measure IP; from another one, Ps:

dP,

KL(P,|Py) = /log (dTD)d]P’l;

here, P; is assumed absolutely continuous with respect to Py, such that the

Radon-Nikodym derivative % exists.
2

Theorem 3.2. Assume that the identifiability conditions (11)-(14) and (A1)-
(A4) hold. Assume also that the minimizer of argmin KL(P| - ) over the model
space of logistic-Cox models is unique; also see (19) in Appendiz B. Then, for
any z € Z, as min(ng,n2) — 0o with n1/(n1 +n2) — k& € (0,1), the conditional
distribution of a,m7 given the data converges weekly in probability to the zero-
mean normal distribution with variance o™ given in (27) in Appendiz B.

Corollary 3.2.1. Under the assumptions of the previous theorem, for any z €
Z, asmin(ny, na) — oo with 0 < liminfny /(n1+ns2) < limsupni/(n1+ns2) < 1,
the (conditional) distributions of a,m7 /67 (given the data) and ay,(1h,—m,)/5.,
converge weakly in probability to the same limit distribution which is standard
normal.
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4. Simulation study
4.1. Unconditional model

In this section, we study the finite sample performance of both the asymptotic
and the permutation approach for the nonparametric model described in Sec-
tion 2. We construct confidence intervals for m and test the one sided hypothesis
Hy : m < 0 versus Hy : m > 0. In order to cover a wide range of scenarios,
we consider nine settings as described below. Settings NP1-NP4 correspond to
having two samples with the same mean survival time for the uncured (m = 0)
but possibly different distributions, while settings NP5-NP9 correspond to hav-
ing two samples with different mean survival times for the uncured (m # 0)
with different magnitudes and signs for m. The cure and censoring rates also
vary across the settings. In all of the following settings, the survival times for
the uncured are truncated at 7o ; equal to the 99% quantile of their distribution
in order to satisfy the assumption of compact support. The censoring times are
generated independently from an exponential distribution with parameter Ac;
and are truncated at 7; = 79 ; +2. The truncation of the censoring times is done
only to reflect the bounded follow-up but 7; does not play any role apart from
the fact that 7; > 7y ;. Note also that the reported censoring rate includes the
cured subjects, which are always observed as censored, hence it is larger than
the cure rate.

Simulation settings

Setting NP1. The two samples are exchangeable (m = 0): cure rate 40%, Weibull
distribution for the uncured with shape and scale parameters 0.75 and 1.5 re-
spectively, censoring rate around 50% (Ac; = 0.3, i = 1,2).

Setting NP2. The uncured have the same Weibull distribution in both samples
(m = 0) with shape and scale parameters 0.75 and 1.5 respectively. The cure
rate is 20% in sample 1 and 60% in sample 2, the censoring rate is around 30%
and 70% in sample 1 and 2 respectively (A¢,1 = 0.25, A2 = 0.5).

Setting NP3. The uncured have the same Weibull distribution in both samples
(m = 0) with shape and scale parameters 0.75 and 1.5 respectively. The cure
rate is samples 1 and 2 is 60% and 20% respectively; censoring rate is around
65% and 25% respectively (Ac1 = 0.3, Ac2 = 0.1).

Setting NP4. The uncured in sample 1 follow a Weibull distribution with shape
and scale parameters 0.75 and 1 respectively, while the uncured in sample 2
follow a Gompertz distribution with scale parameter 1 and shape parameter
0.327. The parameters are chosen such that the two groups have the same mean
survival time (so m = 0). The cure rate is 40% in both samples; censoring rate
is around 50% in both samples (Ac1 = 0.2, A¢2 = 0.15).

Setting NP5. The uncured in the two samples have different Gompertz distri-
butions with the same scale parameter 1 and shape parameters 0.1 and 0.5
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respectively. The difference of mean survival times is m = 1.09. For this choice
of parameters, the supports of the event times in the two samples are [0, 3.8]
and [0, 2.3] respectively. The cure rate is 40% in both samples; censoring rate is
around 65% in sample 1 and 45% in sample 2 (A¢1 = 0.3, Ac2 = 0.1).

Setting NP6. This is the same as Setting NP5 but the two groups are exchanged,
ie. m = —1.09.

Setting NP7. The uncured in the two samples have different Gompertz distri-
butions with the same scale parameter 1 and shape parameters 0.08 and 0.1
respectively. The difference of mean survival times is m = 0.18 For this choice
of parameters, the supports of the event times in the two samples are [0,4.1]
and [0, 3.9] respectively. The cure rate is 60% in sample 1 and 20% in sample
2; censoring rate is around 70% in sample 1 and 40% in sample 2 (A1 = 0.2,
Ac2 = 0.15).

Setting NP8. The survival distributions of the uncured are as in Setting NP7,
i.e., m = 0.18. The cure rate in samples 1 and 2 is 30% and 20% respectively;
censoring rate is around 44% in sample 1 and 34% in sample 2 (A¢c1 = 0.1,
Ac2 =0.1).

Setting NP9. The event times of the uncured in the sample 1 follow a Gompertz
distribution with scale parameter 1 and shape parameter 0.08, while in sample
2 they follow a Weibull distribution with shape and scale parameters 2 and 0.28
respectively. Both distributions have support [0, 4.1] but different mean survival
times (m = 0.52). The cure rate is 40% in both samples; censoring rate is around
50% in both samples (Ac,1 = 0.1, A¢2 = 0.1).

Simulation results

First, considering different sample sizes n; = 2no € {50,200} or ny = ngy €
{100,200}, 95% confidence intervals for m are constructed based on both the
asymptotic approximation and the permutation approach:

In = [m:Fql—a/Qa_/an]v I;Lr = [m—CI{La/Q&am—qg/g&]»

where & is given in (4), ¢1_o denotes the 100(1 — a)%-quantile of the standard
normal distribution, & = 0.05 and ¢T__, denotes the 100(1 — o) %-quantile of the
conditional distribution of 7™ /8™ for the permutation approach. Note that ¢7_,

is a random quantile that depends on the available data, with a,q]_,, B gi_a as
n — oo. We take B = 500 random permutations, which seemed to be sufficient
since increasing B to 1,000 did not have much effect in the results. Average
length and coverage probabilities over 1,000 repetitions are reported in Table 1.
The coverage rates closest to 95% among both types of confidence intervals is
printed in bold-type.

We observe that the confidence intervals based on the permutation approach
are in general slightly wider and have better coverage, particularly for small
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TABLE 1
Coverage probabilities (CP) in % and average length (L) of 95% confidence intervals using
the asymptotic approach (M1) and the permutation approach (M2) for different sample
sizes. Next to the setting name we report the true m in parentheses and below the true
standard deviations of the survival times in each sample (sd1,sdz2).

Sett. ny =2n9 =50 | n1 =ng =100 | n1 = 2n9 =200 | n; = n2 = 200

M1 M2 M1 M2 M1 M2 M1 M2

NP1 (0) L 1.34 1.15 0.83 0.88 0.74 0.80 0.62 0.64
(0.86,0.86) CP | 88.4 93.1 93.0 94.3 93.3 95.4 94.1 94.2
NP2 (0) L 1.04 1.22 0.91 1.00 0.84 0.92 0.73 0.78
(0.86,0.86) CP | 76.0 87.2 86.6 90.0 83.5 87.6 89.4 90.6
NP3 (0) L 1.18 1.37 0.82 0.87 0.66 0.71 0.60 0.62
(0.86,0.86) CP | 89.8 93.5 88.8 90.1 93.3 92.9 92.0 92.2
NP4 (0) L 1.44 1.64 1.08 1.12 0.87 0.90 0.83 0.84

(1.47,1.33) | CP | 86.3 87.2 84.2 86.5 89.5 88.9 89.2 89.3
NP5 (1.09) L | 1.02 1.22 0.67 0.69 0.53 0.54 0.48 0.48
(0.91,0.57) | CP | 93.1 95.9 93.6 94.6 95.0 94.8 95.2 95.4
NP6 (—-1.09) | L | 1.18 1.34 0.67 0.69 0.64 0.66 0.48 0.48
(0.57,0.91) | CP | 86.4 89.2 93.6 94.7 93.3 93.3 95.0 94.7
NP7 (0.18) L | 131 1.52 0.83 0.85 0.67 0.69 0.60 0.60
(0.95,0.91) | CP | 92.3 95.7 94.3 94.5 93.3 92.9 93.7 93.6
NP8 (0.18) L | 1.07 1.15 0.64 0.65 0.55 0.55 0.45 0.45
(0.95,0.91) | CP | 94.1 95.6 93.3 93.3 94.8 94.7 93.9 93.5
NP9 (0.52) L | 118 1.30 0.71 0.72 0.61 0.61 0.50 0.50
(0.95,0.86) | CP | 92.5 94.1 94.2 94.8 94.2 94.6 94.4 94.6

sample sizes. As the sample sizes increase, the two approaches give more com-
parable results. For some settings, much larger sample sizes are needed to have
coverage close to the nominal level but, for most of them, coverage is close to
95%. When the sample sizes are the same, settings NP2 and NP3 are almost
the same, with setting NP3 having less censoring, leading to shorter confidence
intervals and better coverage. When ny = 2ns, setting NP2 is more difficult
because the smaller sample has a very large cure and censoring rate, leading
to worse coverage probabilities. Similarly, when the sample sizes are the same,
setting NP5 and NP6 are the same, leading to same length confidence intervals
and approximately same coverage (due to sampling variation). When ny = 2no,
setting NP6 is more difficult because it has higher censoring rate in the smaller
sample. As a result, we observe longer confidence intervals and worse coverage
probabilities. Setting NP8 is similar to setting NP7 but the first sample has
lower cure rate, leading to shorter confidence intervals. When the two samples
are not comparable in terms of cure and censoring rate, increasing the sample
size of the sample in which it is easier to estimate M ST, ;, does not usually
lead to better coverage (compare settings NP2 and NP3, NP5 and NP6). On
the other hand, increasing the sample size of the sample in which estimation of
MST, ; is more difficult usually leads to better coverage. In Table 1, we also
report the standard deviations of the survival times of the uncured for each
sample. We notice that in general the variances are comparable across settings
and do not show any particular relation with the performance of the methods,
except setting NP4 which has higher variance and lower coverage.
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TABLE 2
Coverage probabilities (CP) in % and average length (L) of 95% confidence intervals for m
using the asymptotic approach (M1) and the permutation approach (M2) for different
sample sizes.

Sett. ni,2n2 = 600 | ni1,2ne = 1200 | n1,2ns = 4000 | n1,2n2 = 10000
M1 M2 M1 M2 M1 M2 M1 M2
NP2 L 0.57 0.60 0.44 0.45 0.26 0.26 0.12 0.12
(m=0) | CP | 844 87.6 88.4 89.9 92.1 92.0 94.5 94.2

ni,n2 = 500 ni,n2 = 1000 ni,n2 = 2000
M1 M2 M1 M2 M1 M2
NP3 L 0.40 0.40 0.28 0.28 0.20 0.20
(m=0) | CP | 93.8 93.6 92.5 91.9 94.8 94.4
NP4 L 0.55 0.56 0.39 0.40 0.28 0.28
(m=0) | CP | 92.3 92.3 94.2 94.2 94.1 94.5

We further investigate settings NP2, NP3, NP4 which exhibit the worst per-
formance in terms of coverage probabilities. In setting NP2, as estimation in
the second sample is more difficult (because of higher cure and censoring rates),
the performance of both the asymptotic and permutation approach in worse
when the size of sample 1 is larger than the size of sample 2. In setting NP3,
estimation of the first sample is more challenging and we observed that the cov-
erage is better when the size of sample 1 is larger. In setting NP4, both samples
have the same censoring and cure rate but the coverage seems to be worse when
the sample sizes are the same. Results for larger sample sizes under the most
difficult scenarios for each of these three settings are reported in Table 2. They
show that, as expected, the coverage probabilities for both approaches converge
to the nominal level.

In addition, we selected 2 of the settings (setting NP4 and NP9) and further
investigated the effect of the censoring and cure rates for sample sizes 100 — 100
and 200—100. First, we keep the cure rate fixed at 40% (moderate) and consider
3 censoring levels: 45% (low), 50% (moderate) and 60% (high). Secondly, we vary
the cure rate: 20% (low), 40% (moderate) and 60% (high), while maintaining
the same moderate censoring level equal to the cure rate plus 10%. Average
length and coverage probabilities over 1,000 repetitions are reported in Table 3.
As expected, we observe that, as the censoring or cure rate increases, the length
of the confidence intervals increases. In setting NP4 the coverage deteriorates
significantly for a high censoring rate, while in setting NP9 the coverage remains
stable and close to the nominal value throughout all scenarios.

Next, we consider a one-sided hypothesis test for Hy : m < 0 versus Hy : m >
0 at level 5%. The rejection rates for the test are reported in Table 4. Looking
at settings NP1-NP4 and NP6 for which Hy is true (with m = 0 for settings
NP1-NP4), we observe that most of the time the rejection rate is lower or close
to 5% for both methods. Setting NP2 is again the most problematic one with
rejection rate higher than the level of the test. This might be because in setting
NP2 the second sample has a high cure (and censoring) rate, which might lead
to underestimation of the mean survival times for the uncured in sample 2 and



Mean survival of uncured patients in two samples 3127
TABLE 3
Coverage probabilities (CP) in % and average length (L) of 95% confidence intervals using
the asymptotic approach (M1) and the permutation approach (M2) for different sample
sizes, censoring and cure rates.

censoring rate

low moderate high

Sett. | ni/no | M1 M2 M1 M2 M1 M2
NP4 100/100 L 0.87 0.89 1.08 1.12 1.12 1.23
CP | 924 92.6 | 840 86.5 | 68.7 72.2

(m=0) 200,/100 L 0.67 0.71 0.87  0.90 1.06 1.17
CP | 93.8 929 | 89.5 889 76.8 77.3

NP9 100/100 L 0.67 0.68 | 0.71 0.72 | 0.79  0.82
CP | 94.1 939 | 942 94.8 | 929 94.3

(m = 0.52) | 200/100 L 0.58 0.58 | 0.61 0.61 0.69 0.71
CP | 94.5 94.2 942 94.6 | 94.7 946

cure rate
low moderate high

Sett. | ni/na | Ml M2 | MI M2 | MI M2
NP4 100/100 L 0.85 0.92 1.08 1.12 1.21 1.21
CP | 90.6 91.4 | 840 86.5 | 8.1 89.0

(m=0) 200/100 L 0.66  0.72 0.87  0.90 1.20 1.31
CP | 93.0 93.0 | 89.5 889 | 80.6 80.7

NP9 100/100 L 0.59 0.60 | 0.71 0.72 | 092  0.96
CP | 94.3 94.3 | 942 94.8 | 944 95.5

(m = 0.52) | 200/100 L 0.51 0.51 0.61 0.61 0.80 0.82
CP | 958 95.6 | 942 94.6 | 93.2 93.8

as a result an overestimation of m. For settings NP2, NP3, and NP4 we also
considered larger sample sizes. The results are reported in Table 5. In particular,
we observe that the rejection rates in setting NP2 decrease and approaches
the significance level as the sample size increases. In terms of power, as m or
the sample size increase, the power increases. Both methods are comparable,
with the permutation approach usually leading to slightly lower rejection rate
under both hypothesis. Again, in settings NP4 and NP9 we also investigate the
effect of the censoring and cure rate as above. Results are given in Table 6. As
the censoring or cure rate increases, the power of the test decreases, while the
rejection rate in setting NP4 (Hj is true) remains below the 5% level throughout
all scenarios.

Finally, to acknowledge that the case of unbalanced sample sizes where the
smaller sample meets the higher censoring rate, we would like to point to [15].
For very small sample sizes, their studentized permutation test about the RMST
also exhibited the worst control of the type-1 error rate in this challenging con-
text; see Table 1 therein, and also Tables S.1 and S.2 in the supplementary
material accompanying that paper. Of note, their proposed permutation test is
still quite accurate with a size not exceeding 6.8% even in the most challenging
setting.

To give an idea of the computational cost of both approaches we provide in
Table 7 the average running times over 10 replications for some of the settings
and sample sizes. The computations are done on an Intel Core i7 CPU laptop.
We observe that the permutation approach is around 500 times more computa-
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TABLE 4
Rejection rate in % for testing the hypothesis Ho : m < 0 versus Hy : m > 0 at level 5%
using the asymptotic approach (M1) and the permutation approach (M2) for different
sample sizes. Settings under Ho are indicated by NP* (m =0) and NP** (m < 0).

Sett. m ny =2n2 =50 | n1 =n2 =100 | n1 = 2n2 =200 | n1 =ng = 200
M1 M2 M1 M2 M1 M2 M1 M2
NP1* 0 5.6 5.0 6.9 4.9 5.9 5.4 6.2 5.5
NP2* 0 20.9 19.0 17.5 14.0 18.0 17.2 14.3 12.1
NP3* 0 0.9 0.8 2.3 1.7 0.6 0.5 2.4 2.2
NP4* 0 0.6 0.2 2.3 0.6 0.3 0.2 1.9 0.7
NP5 1.09 | 96.5 94.1 100 100 100 100 100 100
NP6** —1.09 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NP7 0.18 11.7 9.5 21.3 21.0 23.0 22.1 30.5 30.3
NP8 0.18 15.1 13.0 30.3 29.3 33.3 33.0 45.0 45.0
NP9 0.52 55.4 50.0 87.4 86.4 94.8 94.4 97.3 98.7
TABLE 5

Rejection rates in % for testing the hypothesis Ho : m < 0 versus Hi : m > 0 at level 5%
using the asymptotic approach (M1) and the permutation approach (M2) for different
sample sizes. For all settings m = 0.

Sett. n1 = 2n2 =600 | n1 =2ng = 1,200 | n1 = 2n2 = 4,000 | n1 = 2n2 = 10,000
M1 M2 M1 M2 M1 M2 M1 M2
NP2* | 18.8 15.0 15.5 132 [ 77 10.1 | 34 7.0

n1 = ng = 500 n1 = ng = 1,000 n1 = n2 = 2,000

M1 M2 M1 M2 M1 M2
NP3* 2.8 2.7 3.6 3.8 4.1 4.2
NP4* 2.0 1.7 2.3 1.9 3.4 3.2

tionally expensive than the asymptotic one because essentially the estimation
procedure has to be repeated for the 500 permutation samples.

4.2. Conditional model

In this section, we investigate the practical performance of the permutation ap-
proach and of the asymptotic method when comparing conditional mean survival
times for the uncured subpopulations as described in Section 3. We consider two
samples of size 200 and 100, respectively, from logistic-Cox mixture cure models.
Note that, in practice, semiparametric cure models are usually not used for sam-
ple sizes much smaller than these because of their complexity (more parameters
need to be estimated compared to standard Cox model for example) and the
need to observe a long plateau with a considerable amount of censored obser-
vations (as a confirmation of the sufficiently long follow-up assumption). Since
the permutation approach is computationally intensive and asymptotically we
expect the behavior of the two methods to be more similar, we also did not
consider larger sample sizes. Instead, we focus on three different scenarios as
described below by varying the distributions of the uncured subjects, the cure
proportions and the censoring rates. For simplicity, we also consider the same
covariates in the incidence and latency components, i.e., X = Z.
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TABLE 6
Rejection rate in % for testing the hypothesis Hy : m > 0 at level 5% using the asymptotic
approach (M1) and the permutation approach (M2) for different sample sizes, censoring and
cure rates.
censoring rate
low moderate high
Sett. m | mi/mna | M1 M2 | MI M2 | M1 M2

NP4* 0 100/100 | 3.0 1.6 2.3 0.6 1.7 0.2
200/100 | 2.9 1.0 0.3 0.2 2.4 0.0
NP9 0.52 | 100/100 | 91.9 91.6 | 874 86.4 | 79.7 79.1
200/100 | 959 95.0 | 94.8 944 | 89.0 87.5

cure rate
low moderate high

Sett. m | mi/ne | M1 M2 | M1 M2 | MI M2
NP4* 0 100/100 2.8 1.0 2.3 0.6 2.4 0.8
200,/100 3.6 1.1 0.3 0.2 1.9 0.1
NP9 0.52 | 100/100 | 95.7 955 | 874 86.4 | 73.1 72.0
200/100 | 99.2 99.0 | 94.8 944 | 795 77.6

TABLE 7
Average running time (in seconds) over 10 replications of the asymptotic and permutation
method.
ni = ng = 100 n1 = n2 = 200
Sett. asymp. perm. | asymp. perm.

NP1* 0.52 279.13 0.94 461.76
NPp2* 0.65 333.00 0.97 465.88
NP8 1.17 576.14 2.57 1203.77

Simulation settings

Setting SP1. Both samples are generated from the logistic-Cox mixture cure
model with Weibull baseline distribution with shape parameter 0.75 and scale
parameters 1.5 and 2, respectively. The survival times of the uncured sub-
jects are truncated at 704, ¢ = 1,2 equal to the 99% quantile of the corre-
sponding baseline Weibull distribution in order to have finite supports. We
consider two independent covariates Z; and Z,, which affect both the cure
probability and the survival of the uncured. In the first sample, Z; ~ N(0,1),
Zy ~ Bern(0.4) while in the second sample Z; ~ N(1,1), Zy ~ Bernoulli(0.6).
The regression coefficients are y; = (0,0.5,0.8), 1 = (0.3,0.5), 72 = (0.1, 1, 0.6),
B2 = (0.3 + log(0.75),0.5). This corresponds to having around 43% and 24%
cured subjects in each sample. The censoring times are generated independently
of the other variables from exponential distributions with parameters 0.4 and
0.2, respectively. They are truncated at 7, = 19 ; + 2, i = 1,2 to reflect the lim-
ited length of studies in practice. The censoring rate in sample 1 is 52%, while
in sample 2 it is 28%. In both cases, we have around 15% of the observations
in the plateau. In this setting, the covariate distributions, the cure and cen-
soring rates, and the survival distributions of the uncured are different among
the two samples. However, depending on the covariate values, the conditional
mean survival times of the uncured can be the same, i.e., m, = 0. We consider
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a range of possible covariate values, see Table 8, including some extreme and
unlikely values in order to get more different mean survival times between the
two groups.

Setting SP2. Both samples are generated from logistic-Cox mixture cure models
with Gompertz baseline distribution with shape parameter 1 and rate parame-
ters 0.1, 0.3, respectively. The survival times of the uncured subjects are trun-
cated at 19,4, @ = 1,2, equal to the 99% quantiles of the corresponding baseline
distributions in order to have finite supports. We consider two independent co-
variates, Z1 ~ N(0,1) and Zy ~ Unif(—1,1) with the same distribution in both
samples. The regression coefficients are v; = v2 = (0.8, —1,1), 51 = (—0.6,0.5),
v2 = (0.1,1,0.6), B2 = (—0.05,0.4). This corresponds to having around 35%
cured subjects in each sample. The censoring times are generated independently
of the other variables from exponential distributions with parameters, 0.1 and
0.2, respectively. They are truncated at 7; = 79,; +2, ¢ = 1,2, to reflect the lim-
ited length of studies in practice. The censoring rate in sample 1 is 46%, while
in sample 2 it is 48%. In both cases, we have around 20% of the observations in
the plateau. In this setting, the covariate distributions, the cure rates, and the
censoring rates are the same for both samples. The survival distributions of the
uncured are different but again, for certain values of the covariates, the condi-
tional mean survival times of the uncured are the same. We consider different
covariate values as in Table 8. In particular, zg is a very extreme and unlikely
value but it was considered in order to have a case with larger negative value
for m,.

Setting SP3. Both samples are generated from the same distribution as for sam-
ple 1 in setting SP1. This means that the two samples are exchangeable and for
any covariate value we have m, = 0.

Setting SP4. In this setting the data is not generated under the logistic-Cox
model to investigate robustness to model misspecification. The link function for
the incidence model is given by

o(s) = %[1 + tanh(0.2 + s%)],

which is shown in Figure 2 together with the logistic function for comparison.
The survival times for the uncured are generated from the accelerated failure
time model

Su,i(t]z) = exp{—A;(texp(8] 2))}

with Weibull baseline distribution with shape parameter 0.75 and scale param-
eters 1.5 and 2.5 respectively. The survival times of the uncured subjects are
truncated at 79;(2), ¢ = 1,2, equal to the 99% quantile of the corresponding
conditional distributions. We consider two independent covariates Z; and Z5 as
in setting SP1 which affect both the cure probabilities and the survival of the un-
cured. The regression coefficients are v; = (—0.2,0.5,0.8), 72 = (—0.05,1,0.2),
61 = (0.3,0.1), B2 = (—0.1,0.1). This corresponds to having around 38% and
18% cured observations in each sample. The censoring times are generated inde-
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Fic 2. The link function for the incidence model in setting SP4 (solid line) and the logistic
function (dashed line).

TABLE 8
Covariate values z and corresponding difference in conditional mean survival times for the
uncured m, for Settings SP1, SP2 and SP4.

Sett. z1 = (0,1) z2 = (—1,0) z3 = (1,0) za = (1,1)
SP1 mp = 0.11 mo = 0.5 m3 = 0 myg =0
z5 = (2,1) z6 = (4,0) z7 = (—4,0) zg = (—3,1)
ms = —0.07 mg = —0.3 my = 1.68 mg = 0.83
Sett. | z1 = (—2,0) 22 = (—1.85,0.8) 23 = (—2.16, —0.8) 24 = (0,0)
SP2 m1 =0 mo =0 m3 =0 my = 0.79
z5 = (1,0.5) z6 = (—1,-0.5) z7 = (—3,0.5) zg = (—6,0)
ms = 1.16 me = 0.43 my = —0.31 mg = —0.82
29 = (2,0) z10 = (—1.5,0) z211 = (—2.5,0)
mg = 1.65 mio = 0.18 m11 = —0.16
Sett. z1 = (0,1) z2 = (—1,0) z3 = (1,0) z4 = (—1.94,1)
SP4 m1 = 0.36 mo = 0.14 m3 = 0.53 myg =0
25 = (—4,1) 26 = (—1.85,0) 27 = (3,0) zs = (=2.5,1)
ms = —0.24 me =0 my7 = 0.71 mg = —0.08

pendently of the other variables from exponential distributions with parameters
0.4 and 0.2, respectively. They are truncated at 7; = 10, which is larger than
7p,i(%) for the observed values of z to guarantee sufficient follow-up. The censor-
ing rate in sample 1 is 50%, while in sample 2 it is 23%. In both cases, we have
around 12% of the observations in the plateau. We consider different covariate
values as in Table 8.

Simulation results

For each setting and covariate value, we construct 1 — a = 95% confidence
intervals for m, based on the asymptotic and the permutation approach

IZ = [mz + q17a/26'z/an]7 I;r = [mz - qirfa/zamz - qg/Q&z]

where 171, is computed as in Section 3.2, 62 is the variance of a,, estimated
via the bootstrap, qi_q /2 denotes the (1 —a/2)-quantile of the standard normal
distribution and ¢f_, , is the (1 — a/2)-quantile of the conditional distribu-

tion of M7 /67. Due to the computational cost, we use 100 bootstrap samples
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TABLE 9
Coverage probabilities (CP) in % and length (L) of 95% confidence intervals using
asymptotic approach (M1) and the permutation approach (M2) for different choices of z in
Setting SP1. Next to the covariate we report m, in parentheses and the true standard
deviations of the survival times of the uncured conditional on z for each sample.

z1 (—0.11) z2 (0.5) z3 (0) z4 (0)
(0.48,0.33) (1.13,0.59) (0.61,0.58) (0.32,0.32)
M1 M2 M1 M2 M1 M2 M1 M2
L 0.498 0476 | 1.294 1.385 | 0.703 0.716 | 0.372 0.353
CP 96.5 95.3 90.6 89.8 94.5 95.5 97.4 96.3
z5 (—0.07) z6 (—0.3) z7 (1.68) zg (0.83)
(0.22,0.32) (0.73,0.56) (1.70,0.62) (1.22,0.34)
M1 M2 M1 M2 M1 M2 M1 M2
L 0.429 0.393 | 1.168 1.012 | 2.606 3.119 | 1.846 1.925
CP 98.3 96.4 95.6 91.4 68.6 72.5 85.9 85.6
TABLE 10

Coverage probabilities (CP) in % and length (L) of 95% confidence intervals using the
asymptotic approach (M1) and the permutation approach (M2) for different choices of z in
Setting SP2. Next to the covariate we report m, in parentheses and the true standard
deviations of the survival times of the uncured conditional on z for each sample.

z1 (0) z2 (0) z3 (0) z4 (0.79)
(0.67,0.67) (0.60,0.60) (0.74,0.73) (0.91,0.68)
M1 M2 M1 M2 M1 M2 M1 M2
L 0.970 0.952 | 1.003 0.985 | 1.308 1.291 | 0.641  0.64
CP | 93.9 93.3 92.9 92.8 94.1 93.4 97.0 97.0
z5 (1.16) z6 (0.43) z7 (—0.31) zg (—0.82)
(0.95,0.65) (0.85,0.71) (0.48,0.61) (0.19,0.62)
M1 M2 M1 M2 M1 M2 M1 M2
L 1.038 1.060 | 0.851 0.845 | 1.311 1.263 | 2.097 1.669
CP | 97.1 97.3 94.3 94.2 92.7 91.9 89.9 81.5
z9 (1.65) z10 (0.18) z11 (—0.16)
(0.94,0.70) (0.73,0.67) (0.60,0.66)
M1 M2 M1 M2 M1 M2
L 1.526 1.571 | 0.785 0.775 | 1.158 1.130
CP | 98.1 97.5 | 94.0 93.3 93.2 93.1

combined with 500 random permutation samples. This procedure was repeated
1,000 times. The lengths and coverage probabilities of the confidence intervals
are given in Tables 9-12. The coverage rates closest to 95% among both types of
confidence intervals is printed in bold-type. For the exchangeable Setting SP3,
since the permutation confidence intervals are exact, we only provide the results
of the asymptotic approach.

We observe that the coverage of both confidence intervals is very low for some
covariate values. That happens mainly when m, is large in absolute value (either
positive or negative depending on the setting). This seems to be because, for
certain covariate values, the errors that we make in the estimation of the coeffi-
cients and baseline survival get amplified when computing the survival function
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TABLE 11
Coverage probabilities (CP) in % and length (L) of 95% confidence intervals using the
asymptotic method for different choices of z in Setting SP3. The true value of m, is 0 for
all z. In parentheses we report the true standard deviations of the survival times of the
uncured conditional on z (same for both samples).

21 22 23 24 25 26 27 28
(0.48) (1.13) (0.61) (0.32) (0.22) (0.73) (1.70) (1.22)
L 0.707 0.795 0.974 0.587 0.680 1.338 3.512 2.726
CP 94.7 91.0 95.3 97.0 98.6 99.0 83.5 90.1
TABLE 12

Coverage probabilities (CP) in % and length (L) of 95% confidence intervals using
asymptotic approach (M1) and the permutation approach (M2) for different choices of z in
Setting SP/. Next to the covariate we report m, in parentheses and the true standard
deviations of the survival times of the uncured conditional on z for each sample.

z1 (0.36) z2 (0.14) z3 (0.53) z4 (0)
(0.78,0.39) (1.16,0.39) (0.64,0.49) (1.39,0.32)
M1 M2 M1 M2 M1 M2 M1 M2
L 0.759 0.764 | 1.313 1.348 | 0.751 0.745 | 1.748 1.787
CP | 89.9 87.3 75.1 83.5 | 40.4 32.8 57.1 64.2
25 (—0.24) 26 (0) 27 (0.71) 28 (—0.08)
(2.58,0.26) (1.5,0.35) (0.35,0.59) (1.65,0.30)
M1 M2 M1 M2 M1 M2 M1 M2
L 2.786  3.109 | 1.779 1.861 | 1.102 1.005 | 2.062 2.153
Cp 41.9 51.7 56.3 66.2 15.5 11.5 50.7 58.1

conditional on z, resulting in a biased estimate for m,. Much larger sample sizes
would be needed to get a good estimate of m, for such covariate values z. In
the other cases, the coverage probabilities are close to the nominal value and
the two methods are comparable. For some z, the permutation approach does
slightly better than the asymptotic one, but vice versa for other choices of z.
For settings SP1 and SP3 we notice that the performance of both methods is
worse when there is large variability of the survival times of the uncured in each
sample, for example for covariate values zs, 27, zs. However, this does not seem
to be the case in setting SP2. For setting SP4 with model misspecification we
observe that the coverage probabilities are in general very low for both meth-
ods. This poor performance seems to be mainly related to the misspecified Cox
model for the latency. For example, for the worse case with covariate value z7,
the mean survival time in the first (second) sample is underestimated (overes-
timated) since 87 z; > 0 (81 27 > 0), leading to large underestimation of m,.
Hence, one needs to be very cautious to model misspecification. For the real
data application, we have first performed a goodness of fit test for the model
assumption.

Next, we consider testing the hypothesis Hy : m, = 0 against Hy : m, # 0 at
level o = 5%. Again the variance of 71, is estimated via the bootstrap with 100
bootstrap samples and the quantiles of 71, /6, are estimated via 500 permutation
samples. The procedure was repeated 1,000 times. In Tables 13-15, we report
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TABLE 13
Rejection rates of Ho in % for the asymptotic approach (M1) and the permutation approach
(M2) and different choices of z in Setting SP1. Value of m. is reported in parentheses.

Z1 (—0.11) z2 (0.5) z3 (0) z4 (0)
M1 M2 M1 M2 M1 M2 M1 M2
Rejection rate | 14.1 11.8 | 22.9 15.2 5.5 4.5 2.6 3.7
z5 (—0.07) z6 (—0.3) z7 (1.68) zg (0.83)
M1 M2 M1 M2 M1 M2 M1 M2
Rejection rate | 6.9 13.6 | 8.5 17.8 | 33.6 19.5 | 26.7 22.1
TABLE 14

Rejection rates of Ho in % for the asymptotic approach (M1) and the permutation approach
(M2) and different choices of z in Setting SP2. Value of m. is reported in parentheses.

z1 (0) z2 (0) z3 (0) z4 (0.79)
M1 M2 | M1 M2 | M1 M2 M1 M2
Rejection rate 6.1 6.7 7.1 7.2 5.1 6.6 99.9 100.0
z5 (1.16) z6 (0.43) z7 (—0.31) zg (—0.82)
M1 M2 M1 M2 M1 M2 M1 M2
Rejection rate | 99.5 99.3 | 48.3 49.3 | 154 199 | 30.6  52.7
z9 (1.65) z10 (0.18) z11 (—0.16)
M1 M2 M1 M2 M1 M2
Rejection rate | 99.2  99.0 | 141 151 [ 9.7 118 |
TABLE 15

Rejection rates of Ho in % for the asymptotic method and different choices of z in
Setting SP3. Hy is true for all choices of z.

|z [ 22 | 2 | 2a | 2 | 2% | 21 | =
Rejection rate | 5.3 [ 9.0 [ 4.7 [ 3.0 [ 1.4 [ 1.0 | 16.5 | 9.9

the percentages of the cases in which Hy was rejected.

In Settings SP1 and SP2, the levels of the test seem to be close to the nom-
inal level and the power is larger when |m,| is larger, even though it does
not only depend on |m.| but also on the sign of m, (deviations in conditional
mean survival times might be easier to detect in one direction compared to the
other). In Setting SP1, the asymptotic method has more power when m > 0
(mq,ma, my, mg), while the permutation approach has more power when m < 0
(ms,me). In Setting SP2, we observe that the results for both methods are
comparable when m > 0 but the permutation approach has more power when
m < 0. For the exchangeable setting, the level of the asymptotic test is larger
than the nominal value for some of the covariate values (the ones for which the
coverage probabilities were anti-conservative; see above). For setting SP4, the
level of the test is very far from the nominal one for both the asymptotic and
permutation approach, which shows as before that model misspecification can
have serious consequences.
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TABLE 16
Rejection rates of Ho in % for the asymptotic approach (M1) and the permutation approach
(M2) and different choices of z in Setting SP4. Value of m. is reported in parentheses.
z1 (0.36) z2 (0.14) z3 (0.53) z4 (0)
M1 M2 M1 M2 | M1 M2 M1 M2
Rejection rate | 37.2 294 | 425 350 | 7.0 5.6 | 429 35.8

z5 (—0.24) z6 (0) z7 (0.71) zg (—0.08)
M1 M2 M1 M2 | M1 M2 M1 M2

Rejection rate | 44.3 33.4 | 43.7 338 | 7.8 127 | 42.3 342

TABLE 17
Average running time (in seconds) over 5 replications of the asymptotic and permutation
method.
n1 = n2 = 100
Sett. | asymp. perm.

SP1 33.57 11662.04
SP2 16.83 9803.54

To compare the computational cost of both approaches we provide in Table 17
the average running times over 5 replications for settings 1 and 2 and sample
size n1 = no = 100. The computations are done on an Intel Core i7 CPU laptop.
Overall, we conclude that, unless the two samples are exchangeable, there is no
clear advantage of using the permutation approach to justify its much higher
computational cost. This is different from what is observed previously in the
literature and it might be related to the fact that the logistic-Cox model is
misspecified in the permutation samples. Computationally, the EM algorithm
still converges and is stable with respect to the initial estimates. This suggest
that the problem should not be about the existence of a unique maximizer of
the likelihood for the misspecified model.

5. Application

In this section, we consider two real data applications of the developed methods.
The first one is a leukemia study with relatively small sample size for which the
nonparametric approach is appropriate, while the second is an observational
study of breast cancer for which the conditional semiparametric approach is
more appropriate.

5.1. Leukemia study

We consider a real data set from research on leukemia [24]; the study ran from
March 1982 to May 1987. 91 patients were treated with high-dose chemoradio-
therapy, followed by a bone marrow transplant. ny = 46 patients received allo-
geneic marrow from a matched donor and ny = 45 patients without a matched
donor received autologous marrow, i.e. their own. They were followed for 1.4
to 5 years. For other details such as additional patient characteristics and the
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frequency of the graft-versus-host disease among allogeneically transplanted pa-
tients we refer to the original study [24].

In our analysis, we are going to re-analyze relapse-free survival. The data
sets are available in the monograph [42]. They contain the (potentially right-
censored) times to relapse or death (in days), together with the censoring status.
It was argued in both [42] and [24] that a cure model is appropriate for the data.
The possibility of cure of leukemia patients after a bone marrow transplant has
been also argued in the medical literature around the time of this study, e.g.
[63, 47]. The authors of [42] first fit parametric accelerated failure time mix-
ture cure models (see Section 2.6) and did not find a significant difference in
either cure rates or survival times for the uncured. Additionally, in Section 3.6
of [42] they fit semiparametric logistic-Cox and logistic-accelerated failure time
(AFT) models. Under the logistic-Cox model they did find a borderline signif-
icant effect for the survival time distribution (latency) of the uncured between
both treatment groups (p-value of 0.054). In particular, they concluded that
the autologous group has significantly higher hazard than the allogeneic group
with an estimated hazard ratio of 1.88, p-value 0.04, and 95% confidence interval
(1.03,3.45). On the other hand, with the semiparametric logistic-AFT model, no
statistically significant difference is detected between the two groups (p-values of
0.42 for the incidence and 0.19 for the latency). However, the authors surmised
that these non-significant results are due to a bad fit of the logistic-AFT model,
as the logistic-Cox model found a borderline significant effect of the treatment
group.

Let us briefly summarize the data sets. The censoring percentages amounted
to 28% and 20% in the allogeneic and autologous groups, respectively, i.e. 13
and 9 patients in absolute numbers. The percentages of data points in plateaus
were 15% and 16% and the estimated cure fractions p; = 5}(7071-) were 26% and
19%, respectively. The test of [25] for the equality of cure fractions resulted in
a non-significant p-value of 0.453.

Figure 3 shows an illustration of the Kaplan-Meier curves. It shows that
the curves are crossing and very close to each other in during the first weeks.
After that, the curve for the autologous group clearly stays below the one for
the allogeneic group. However, that discrepancy melts down as time progresses,
hence the non-significant p-value for the equality of cure fractions.

On the other hand, the difference in estimated mean survival times for the
uncured patients amounts to m = 129. The 95% confidence intervals for those
mean survival differences were [3, 255] days (asymptotic) and [1, 255] days (per-
mutation). The two-sided hypothesis tests for equal mean survival times of the
uncured resulted in the p-values 0.045 (asymptotic) and 0.046 (permutation),
i.e., just significant at the significance level o = 5%. The random permutation-
based inference methods have been run with 5,000 iterations. The asymptotic
and the permutation-based inference methods thus agreed on their outcomes,
despite the rather small sample sizes. In view of the rather low censoring rates
and the simulation results for moderate censoring settings presented in Sec-
tion 4.1, we deem all applied inference methods reliable.
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Fic 3. Kaplan—Meier curves for relapse-free survival of the leukemia data.

5.2. Breast cancer study

In this section, we analyze a data set about breast cancer that is freely available.
In Appendix D, we provide the R code for accessing the data set. The data
come from an observational study that included 286 lymph-node-negative breast
cancer patients collected between 1980 and 1995. Thereof, 209 patients were
estrogen-receptor-positive (ER+) and 77 were ER-negative (ER-). These two
will later form the subgroups to be analyzed in a two-sample inference problem.
As additional covariates, we consider the patients’ age (ranging from 26 to 83
with a median of 52 years) and a tumour size score which is an integer number
between 1 and 4. We refer to [56] for a more complete description of the study
and other specifics of the dataset. Additionally, [3] compared this dataset in
the light of two competing models and corresponding statistical methods: a
logistic-Cox cure model versus a Single-Index/Cox model.

We, on the other hand, do not model the ER-status semiparametrically but
nonparametrically by means of two subgroups. Our aim is to conduct a regres-
sion analysis to investigate differences in disease progression expectations for
ER+/- patients while taking the covariates tumour size (ordinal) and age into
account. The outcomes of this two-sample analysis could be used to justify why
the two groups should not be pooled, and how or how not to model the ER-
status semiparametrically. These questions are relevant if one wishes to make
predictions, e.g., for the remaining expected lifetime of a patient.

From a technical point of view, we consider the composite endpoint of relapse-
free survival (measured in months), which here means that deaths and the
occurrence of distant metastases are combined into one event of interest. We
excluded those 8 patients from our analysis who had a tumour size exceeding 2.
This results in two samples of sizes ny = 203 (ER+) and ny = 75 (ER-).
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Age distribution, according to subgroup
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F1c 4. Bozplots summarizing the age distributions in the four relevant subgroups. TS is short
for tumour size.

Let us briefly summarize the data: in the ER+ subgroup, about 55% have
a tumour size score of 1, as opposed to 47% in the ER- subgroup. The age
distributions in the four subgroups (ER+/-, tumour size score 1/2) are generally
similar (rather symmetric, no outliers), although the patients with ER- and
smaller tumour sizes exhibit a smaller dispersion in age; see Figure 4. For both
groups, the latest uncensored events were observed after 80 and 48 months,
respectively. The censoring rates amount to 62% and 64%, respectively, and the
majority of censorings occurred in the plateau. Thus, there is sufficient follow-
up. Apart from the plateau of the Kaplan—Meier estimator, the possibility of
cure for breast cancer is recognized even from a medical perspective, see for
example [8, 6, 23]. Tt is also mentioned in the initial study of the data [56] that
around 60-70% of patients with lymph-node-negative breast cancer are cured.

Figure 5 shows the nonparametric Kaplan-Meier estimates for relapse-free
survival for the subsamples of ER+ and ER- patients. These two curves are
crossing twice: once, but insignificantly, soon after the time origin, and once
again after the last observed event in the ER- subgroup. These crossings under-
line that the classical proportional hazards model [13] might not be appropriate
for a combined modeling of all these data within a single, extended logistic-Cox
cure model: such a model would contradict crossing Kaplan—Meier curves as
seen in Figure 5 (after rescaling both curves to exhibit the same cure rate).

Our present approach is to compare the outcomes of two independently fitted
logistic-Cox models for both sample groups ER+/-. We have first checked the
proportional hazards assumption for the latency parts of the model by means
of the test proposed in [41]. The resulting p-values are 1 and 0.96, respectively,
for the covariates age and tumour size in sample 1; 1 and 0.81, respectively,
for the covariates age and tumour size in sample 2. Thus, there is no reason to
reject the proportional hazards assumption. We would also like to point out that
we do not rely on the proportional hazards assumption for ER status, which is
nonparametrically modeled in terms of two separate subgroups. We also test the
logistic model assumption for the incidence component using the goodness-of-fit
test proposed in [35]. The resulting p-values, estimated via bootstrap, were 0.982
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Fic 5. Nonparametric Kaplan—Meier curves for the estrogen receptor positive (ER+) and
negative (ER-) subgroups (time in months) of the breast cancer data.

TABLE 18
Point estimates, standard errors, and p-values of the parametric model components rounded
to three decimal places; values obtained from the smcure package in R.

ER Yo Y1 Y2 B1 B2
T [ —0.838(0.438) —0.018(0.013) _ 0.272(0.296)  —0.014(0.011) _ 0.482(0.260)
p = 0.056 p =0.158 p = 0.359 p = 0.206 p = 0.063
- 0.303(0.754) 0.011(0.021) —0.568(0.505) 0.010(0.026) 0.437(0.505)
p = 0.688 p=0.591 p=0.261 p = 0.708 p=0.387

for sample 1 and 0.988 for sample 2, showing no evidence against the logistic
model assumption.

Thus continuing with the two independently fitted logistic-Cox models, Ta-
ble 18 contains all point estimates of the parametric model components. Note
that none of the covariates was found to have a significant influence on any of
the two models. From the point estimates, we also see that for ER+ patients age
seems protective for both, incidence (y; < 0) and latency (81 < 0), and generally
harmful for ER- (71, 81 > 0). Also, a bigger tumour size is generally harmful for
ER+ patients (y2, 82 > 0) but, for ER- patients, it has a protective influence on
incidence (72 < 0) although a harmful influence on the latency (82 > 0). Testing
whether there is a significant difference of any of these parameters from 0 can be
easily achieved by studentizing the parameter point estimates and comparing
the results with quantiles from the standard normal distribution or those from a
corresponding permutation version of the studentized parameter estimates (see
Table 18).

Just like for the nonparametric test, the results from the semiparametric
model were unambiguous (see Table 19): for all considered covariate combina-
tions, uncured patients with ER+ have, at level « = 5%, a significantly larger
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TABLE 19
p-values for two-sided testing of equal mean survival times, Hy : m, = 0, and corresponding
95%-confidence intervals for the differences (rounded to full months), for different covariate
combinations. TS is short for tumour size and £10 y refers to the mean age 53.9 years plus
or minus ten years.

point estimate | hypothesis test | confidence interval
X=7Z method My p-value lower upper
TS1, —10 y asymptotic 15 0.019 2 27
permutation 15 0.020 2 27
TS1, mean age asymptotic 18 < 0.001 9 27
permutation 18 < 0.001 9 27
TS1, +10 y asymptotic 22 < 0.001 13 31
permutation 22 < 0.001 13 31
TS2, —10y asymptotic 11 0.014 2 19
permutation 11 0.032 0 19
TS2, mean age  asymptotic 14 0.001 6 23
permutation 14 0.008 4 22
TS2, +10y asymptotic 17 0.002 6 28
permutation 17 0.012 5 28

expected mean survival time than uncured patients with ER-. This difference
seems to grow with progressing age, especially for patients with tumour size 1.
This is in line with the parameter estimates related to age and latency. The
influence of the tumour size on the mean survival difference is not that obvious.
All in all, both the asymptotic and the permutation-based method resulted in
very similar outcomes.

6. Discussion

In this article, we considered a two-sample comparison of survival data in the
presence of a cure fraction. In such situations, instead of just looking at the
overall survival function, it is more informative to compare the cured fractions
and the survival of the uncured subpopulations. We propose the use of the mean
survival time as estimand, i.e., a summary measure of the survival curve for the
uncured subjects since it is easy to interpret. The mean survival time of an
uncured subpopulation is closely related to the restricted mean survival time
(RMST) which is popular in the survival literature without a cure fraction.
We introduced a nonparametric estimator of the mean survival time for the
uncured in absence of covariates and a semiparametric estimator for the condi-
tional M ST, that allows to adjust for potential confounders. Asymptotic and
permutation-based approaches were developed for inference on the difference
between the M ST,. In the nonparametric setting, based on our simulation re-
sults, both methods were quite reliable, with the permutation approach being
recommended particularly for small sample sizes. However, more caution is re-
quired when applying the methods in the presence of a high censoring or cure
rate, for which larger sample sizes are needed to obtain reliable results. In the
semiparametric setting, we encountered several theoretical and computational
challenges related to the permutation approach in a semi-parametric model.
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Moreover, based on our simulation study, we did not observe a clear advan-
tage of the permutation method over the asymptotic one, contrarily to existing
findings in the literature for the nonparametric setting.

The M ST, is useful in assessing whether there is a difference in the survival
times of the uncured among the two groups. However, we would like to point
out that, even within a randomized controlled trial, M ST, does not necessarily
have a causal interpretation as a direct effect of the treatment on survival of
the uncured. This is because of the conditioning on being uncured; the uncured
subpopulations between the two treatment arms might, in general, fail to be
comparable. In contrast, the approach for causal estimands in the presence of a
cure fraction in [57] does not refer specifically to the uncured subpopulation.

The following situation exemplifies the circumstances of our approach: it
might be that treatment A is more beneficial in curing patients compared to
treatment B and those who do not get cured with treatment A are the patients
with worse condition. As a result, the survival of the uncured for treatment A
might be worse compared to treatment B, but that does not mean that treatment
A shortens the survival of the uncured. However, the fact the M ST, does not
have an interpretation as a direct causal effect on the uncured is not a problem
when the goal is to choose which treatment should be preferred. Randomized
clinical trial data allow us to understand the causal effect of the treatment on
the joint distribution of 17—, and T17.4. One can then in practice define a
utility function, for example wylr—so + woT 1o for certain weights wq, ws
that represent whether the curative effect or the life prolonging one is more
important. Maximizing the expected utility reduces to choosing the treatment
that maximizes wiP(T' = 00) + weP(T' < 00) M ST, (similarly also conditionally
on a given covariate). On the other hand, if one is interested only in the causal
effect of the treatment on the uncured subpopulation, determining the relevant
quantity is not straightforward and extra caution is required since we are condi-
tioning on a post-treatment variable, which cannot be directly intervened upon.
If all the variables that can affect both the cure status and the survival time of
the uncured were observed, one can condition on those to estimate the effect of
treatment on the uncured as in our conditional semiparametric approach.

We would also like to point out that, instead of comparing the M ST;,’s over
some time horizon [0, 79], trivial adjustments of the methods and proofs would
allow for comparing the mean residual survival times as an alternative estimand.
Similarly as in [10], these are defined as MRST,;, = E[T —t | t < T < 0.
Moreover, here we considered the standard cure model setting where it is not
possible to identify the cured subjects. Another interesting extension of this
work would be to allow for partially observed cure status, as done for example
in [45] in the context of nonparametric latency estimation.

Furthermore, as one referee pointed out, it is straightforward to extend the
present theory to estimands of the form

/ o Su.i(s)d(s)ds (9)

0

for a bounded and continuous weight function ¢. For example, the choice ¢(s) =
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2s would lead to the second moments of the survival times of the uncured pa-
tients; higher moments could be expressed as well. Such estimands seem par-
ticularly important whenever the focus is not (only) on the mean but (also) on
other aspects of a population. Tests for homoskedasticity, i.e., equal variances
across both treatment groups, could be an interesting application, after some
more theoretical preparations; note that the variances are not of the form (9)
due to the subtraction of the squared mean. This could be considered in future
research.

In the semiparametric setting, we employed a logistic-Cox mixture cure model
because it is the most widely used semiparametric cure model. However, the
logistic model for the incidence could be replaced by any other parametric model
that might be more suitable in specific applications. Also, the Cox model for
the latency component could for example be replaced by an accelerated failure
time model; this would have the advantage that covariate-dependent terminal
times 7y ; of the disease occurrence could be modeled. In such cases, both the
estimators and the theory would need some adjustments but we expect that the
same challenges would arise and the practical performance would be similar to
the current model. Another possibility would be to allow for covariates without
imposing a specific model on the latency. For example, [39] focused on estimating
the cure rate, while leaving the distribution of the uncured unspecified, and
they obtained a nonparametric estimator for the conditional survival function
of the uncured. Another nonparametric estimator was proposed in [30], relying
on the Beran estimator for the conditional survival function. It would be of
interest to further extend our method to these nonparametric settings, which
are more robust towards model misspecification but require choice of tuning
parameters and suffer from the ‘course-of-dimensionality’ in presence of multiple
covariates.

Apart from the permutation approach for inference, one could also consider
a pooled bootstrap approach; cf. Section 3.7.2 of [55]. However, even with the
pooled bootstrap we would encounter the same theoretical and computational
problems and we expect that the practical behavior would be similar to the
permutation approach. Also, one would lose the benefit of the finite sample
exactness of the permutation-based inference procedures under exchangeabil-
ity.

Finally, to avoid the model misspecification issue for the permutation ap-
proach in the semiparametric setting, one could estimate a mixed model instead
of a logistic-Cox model in the permutation samples, i.e., fitting the correct model
of the pooled data, which is a linear combination of two logistic-Cox models.
Afterwards, we could estimate the MST as usual. Then one would still need
to develop the asymptotic results theoretically for the resulting estimator; these
asymptotics will not be the same as in the standard logistic-Cox model. In prac-
tice, we do not expect this approach to behave better since more parameters
need to be estimated for each permuted sample.
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Appendix A: Proofs for Section 2

Proof of Theorem 2.1. Since the KM estimator remains constant after the last
observed event time, we have p; = S;(79,;) and

R
0 1—Si(704)

Hence MS\TW - MST, ;= w(gl) —(S;), where

'l/J : D[O,To,i] - R w(e) _ /Oro,i %ﬁ;ﬁ:;)ds

and

DI[0,70,:] ={f € D[0,70,4] | sup [f(t)| <1},
t€[0,70,4)

where D[0, 79 ;] is the space of cadlag functions on the interval [0, 79 ;], equipped
with the Skorohod topology. We will derive the asymptotic distribution using the
functional delta method based on standard limit results for the KM estimator.

First, we consider for simplicity the case of a continuous distribution F; and
assume that either condition a) or b) of the theorem holds. From results of
[19, 61], we have that the stochastic process \/n;{Si(t) —Si(t)} converges weakly
in D[0, 79 ;] to the process S;(t)-B(v;(t)) where B is a standard Brownian motion
and v; is defined as in (2). Returning to the delta method, the function % is
Hadamard-differentiable tangentially to C[0, 7o ;] with derivative diy given by

B | To,i M o M
dibg - h = h(TO’”/O TR EIEL +/o - am)

Here C[0,79;] C D[0,7p,] is the space of continuous functions on the interval
[0, 70,5, equipped with the topology induced by the supremum norm. By Theo-

rem 3.9.4 in [55], we conclude that \/71_1{]\/4—5?#“Z — MST,;} converges weakly

to
Ni = Si(’Toyi)B(’Ui(TO,i)) ‘/OTOJ %

b [ SBu) - Sn)Bem
0

ds

1 —Si(70,i)
TO’iSfLS*i TO’iSiSBUS —p;B(v; (104
:piB(Ui(TO,i))/O (1(_)7pi)gdu+/o OEICH )1)_;: (wi(7o.0) ds

The variable N; is normally distributed with mean zero and variance

o (700 G (5)Sy(t) P
0‘?:/ / (s A t)dsdt + 5 (M STy — 70,)*vi(70,i
0 0 (1 —p)? ( ) (1 *pz‘)2< ’ i) 260

Pi T0,i
+2m(MSTu,z _TO’,L')/O Sl(s)vl(s) ds.
(10)
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If F; is not continuous and either condition a) or ¢) of the theorem is satisfied,
we only have weak convergence in D[0, 7;] of the stopped process

A

f/z(t) = \/n—lSl(tS/\l—(;/im)) {Sz(t A }/z,(n)) - Si(t A K,(n))}
B Si(t)gi(t/\ Yi,(n)) _
\/TTZ{ Sz(t/\y;,(n)) Sz(t)}

where Y; () denotes the largest observation in group i (see for example Theorem
3.14 in [34]). If 704 < 73, then Y ¢,y > 7o; with probability converging to one,
which leads to the uniform convergence of \/m;{Si(t) — Si(t)} on D[0,79,] as in
part a). Otherwise, if 79 ; = 7;, applying the Delta method as before, we would
obtain the limit distribution of

. o Si(t)gi(t/\)/ia(mi))
Vi {w@) - w(s)}, Q) = Si(t A Y ()

It then remains to deal with the difference \/n; {1/1(5'1) — w(QZ)} and show that

it converges to zero. For this one can use Lemma 3 in [61], which does not require
continuity of F;. O

Proof of Theorem 2.2. We begin by analyzing the asymptotic behaviour of

T Ty _ /n1n2 gr & &m &
(WI’WQ)_ n1+n2(sl 5752 S)

as a random element of (D[0, 79])2, where 75 = max(7y.1,70.2) and S denotes the
Kaplan—Meier estimator based on the pooled sample. We refer to Lemma 2 in the
online supplementary material to [17] for the result that, as min(ny, ne) — oo,
the conditional distribution of (W, WJ) converges weakly on (D[0,70])? in
probability to the distribution of the Gaussian process

(1 =r)SC)B(0(), =wS()B(v())-

Here, B again denotes a standard Brownian motion,

o ([RGB () + (1~ R)(1— Ga(um))dF(w)
S(t) = exp ( /O (1= G (u=))S1(u—) + (1= ) (1 = G2(u—))52(u_)>

is the limit of the pooled Kaplan—Meier estimator, and

oty = [ A= CLlu))dF ) + (1~ m)(1 - Galum))dFplw)
o {r(1=Gi(u=))S1(u=)+ (1= £K)(1 = Ga(u—))S%2(u—)}?

Now, write mzl = 4(S7) and MST, = ¢(S) for the estimated mean
survival time based on the pooled sample.
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We pointed out the Hadamard-differentiability of ¢ in the proof of Theo-
rem 2.1 above. This functional is even uniformly Hadamard-differentiable on
suitable subspaces, as we will point out in a forthcoming paper. Thus, a simple
extension of Theorem 3.9.11 in [55] to the random permutation case applies and
it follows that, conditionally on the data,

Vmina/(ni + ng)(MST,, | — MST,, MST, , — MST,)

converges weakly to the following two-dimensional Gaussian random vector, say,
(N1, N3) in probability:

™ 5(s) = S(70)

1 5(r))2 &

[S)B(m) |

" S(s)B(v(s)) — S(10)B(v(70))
+ /O I 5(m) ds} -(1—k,—kK)
- Bt [ 2L
™ S(s)B(v(s)) — pB(v(10))
+/0 1-p da] - (1= =),

where p = S(79). Finally, we take the difference of both entries of the pair to
conclude that the weak limit of the conditional distribution of

ning/(ny + nz)(f\//-’S\TZ,l - mz,z)

is normal with mean zero and variance

2 ) TOMUS . p2 . i
o 2_/0 /O 1 p)p (snt)d dt+(1_p)2(M5Tu 0)20(70)
4o P

. (11)
MST, — 7 / S(s)v(s)ds.
(1 _ p)g( 0) 0 ( ) ( )
As is apparent from a comparison of (10) and (11), both limit variances coincide
up to sample size-related factors if both samples are exchangeable. O

Appendix B: Proofs for Section 3

Proof of Theorem 3.1. Let 6; = (v;, ;) denote the vector of parameters of the
semiparametric mixture cure model. Consider the space H,, = {h = (h1,h2) €
BV[0,70,:] x RPT? ¢ ||hq]ly + ||h2]i < m}, where m < oo and ||hy]|, is the
absolute value of hi(0) plus the total variation of hq on the interval [0, 7 ;].
From Theorem 3 in [31] we have that the process

(n? (A= Ag), 0} (0, 0:)) (h) = n}/? / " ha(s) d(As—Ag)(s)+nl 2T (Bi—0;)
0
(12)
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indexed by h € H,, converges weakly in [°°(H,,) to a tight Gaussian process G;
in I°°(H,,) with mean zero and covariance process

CMQWﬂMW=AthOwﬂ@Mw) Mol (")
where
0i(h)(s) = E [ Ly, Vils 03, As) () gs(s: 03, Ag)e 20
EL/“nmgﬂw@&AMMmmmAnum@ﬂka””wmmﬁ,
S (13)
U@AMZE{/mﬂmpﬂ”ﬂ&%Am%&@ﬂﬁmm&ﬂmMﬁﬁ%ﬂM@ﬂ
i (14)

and

d(vT X;1) exp (—A(s) exp (BTZM))
1= 6(TXu) + 6(7TXi1) exp (—A(s) exp (BT Z;1))
Vi(s360i, A3)(h) = hi(s) — {1 — gi(s; 6, Ay) } €7 20

0

gi(s;0,\) =

Wi(s: 0, A;)= ({1 gi(s; oz,A)}Xﬂ,[ —{1—gi(s;Hi,Ai)}eﬁiTZ“Ai(s)} Zg)T

Using this result we first obtain weak convergence of the process v/n{S,.i(t|z) —
Su,i(t]z)} for fixed z € Z. By definition and a series of Taylor expansions we
have

V{8, i(t)2) — Sui(t]2)}
.y {exp (—f\i(t)e/??z> — exp <_Ai(t)€ﬁiTz>}

= — v {Ae’* — M) f exp (~Ai ()7 7) + Ry
- - m{xw A } exp (—A a>ﬂﬁ
- nz{e B exp( Ai(t)eP: ) Ri + Ry
S n{ ; } exp( (e )
5

A()exp( Ai(t)e iz)+R1+R2+R3

where the remainder terms R, Ro, R3 converge uniformly to zero in probability
because of the boundedness of A;, 8; and Theorems 2-3 in [31]. Note that, as in
assumption (A1), we denote by S, i(70,:|2) the left limit S, ;(70; — |2) so that
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Su.,i(-]2) is a continuous function, bounded from below away from zero. This
modification does not influence the value of M ST, ; ..
Consider the functions h € H,, of the form

ht,z = (hl;t,zv h’2;t,z)

= (11[0775](.)65% exp (—Ai(t)eﬁiTz> , (Op, zeﬁiTZAi(t) exp (—Ai(t)eﬁfz>>) )
(15)
where 0, denotes a zero vector in R” since we are not interested in the v compo-
nent. For an appropriate choice of m and any t € [0, 79 ;], such functions belong
to H, because of assumptions (A1)—(A2). For these functions we have

VI Sui(t]z) = Sui(tl2)} = (n2 (A — Ay),n2(B; — 6,))(hy.) + op(1)

from which we conclude that the process /n{Sy.i(t|z) — Su.i(t|z)} converges
weakly in D0, 70;] to a mean zero Gaussian process G , with covariance

pi=(t:17) = Cov(Gi (1), Gj .(t7))

T0,i 1 T 1 (16)
= ) hl;t,z(8)0(1)7i(ht*,z)(s)dAi(S) + h2;t,za(2)’i(ht*,z)7

where h; . is as in (15) and o(1);,0(2); as in (13), (14). Next we use the delta
method to obtain the asymptotic distribution of the conditional mean survival
time. We have

— Toi
RIS  wse — MST i) = /i / {Su.s(5]2) — Sus(s]2)}ds
0
— V{70, = Yi.(mi) }Sui(T0.5)-

The first term in the previous equation is equal to \/n_l{w(gm) —1(Sy,i)} where

(17)

T0,i
¥ :D[0,79;] = R Y(&) = / &(s)ds
0
The function v is Hadamard-differentiable with derivative
T0,i
dype - h = / h(s)ds.
0

By Theorem 3.9.4 in [55] it follows that \/n_l{qp(S*m)—qp(Sm)} converges weakly
to

T0,i
N, = / GZZ(S)ds
0

which is normal distributed with mean zero and variance

T0,i T0,i
0'1-272 = / / pi,z(s,t)dsdt, (18)
0 0
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where p; , is defined in (16). Next we show that the second term on the right
hand side of (17) converges to zero in probability, from which we can conclude
that the asymptotic distribution of \/n_z(mu” —MST, ;. ) is determined by
that of the first term Since S, .i(10,;) converges to Sy ;(70,:), it is sufficient to
show that /n;{70,i — Y (m,)} = op(1). This result have been proved in Lemma 5
of [30] under slightly different assumptions. Hence, for completeness we prove it
again for our setting below. For any § > 0 we have

P(v/ni{10,i = Yi,(ms)} > 0)

=P ( i,(m;) < To,; —

)

5§\
=P (Auyﬂ < 7o, —
, \/771

6 ng
= 1—P<Ai15/z‘1 > To,i — \/—n_lﬂ

= 1—/ / P(Ci1 > t|x, z) dFr, | x,,, 2., (t2, 2) dF (2, x, )(z,m)]
ZxX 7'0177’_

2
< |1 —/ P (Ciy > Tolz, 2) d(v] )P(Tin=70.4:|Ti1 <00, 2) dF(Z“,X“)(z,x)} .
ZxX

Because of assumptions (I11),(I3) and (A3), for some K > 0 we have

P(vni{10,i — Yi,(ms)} > 0)

<[1-K¢" —0.
This concludes the proof. O

In order to prove our main Theorem 3.2, we first need some preliminary
results, which are provided in the following lemmas. In what follows, we assume
that conditions (I1)—(I4) and (A1)—(A4) are satisfied.

Denote by A’r .. and 0” ;, the estimators of A and 6 = (v, 5) obtained by
fitting a logistic- Cox model to the i-th permuted sample, Wthh will be denoted
for notational convenience as (Af}, Y7, X7, Z71), ..., (AL, Y, X7, Z7,.)- Let
Ay, 4n, and 6, 4,, denote the estimators of A and 6 based on the pooled sam-
ple (A1,Y1,X1,71), ..., (Anitnys Yoy tnar Xngtna» Zni+ns ). Note that the true
distribution of the pooled sample is P = kP, + (1 — k)Py, where P; denotes
the distribution of the ith sample. In particular, P does not correspond to a
logistic-Cox model. Let Q4 ¢ be the corresponding distribution of a logistic-Cox
model with parameters (A, 6) and corresponding log-likelihood

1(6,y,2,2;A,0) = 6 {log p(v" ) + log fu(ylz; A, B) }
+(1—0)log {1 — ¢(v"z) + ¢(v"2)Su(ylz; A, B) }

By assumption (I2), the event times on the pooled sample happen on [0, 7],
where 7y = max{79 1, 70,2}. Hence S, (t|z; A, ) = 0 for t > 7y which corresponds
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to A being defined on [0, 7). In addition, P(A = 1,Y = 7y) > 0 by assumptions
(A3) and (I3). Hence, we can restrict on distributions )5 ¢ that have a positive
mass at Tp, meaning that lim; ,z ) A(f) < 400 and we can denote the limit by
A(To). To reflect the existence of the jump in the likelihood, for the terms with
A =1andY =7 we have f,(T|z;A, 8) = Su(T — |z;A,8) = exp(fA(%o)eBTz),
instead of the usual expression f,(t|z; A, 8) = Au(t|2; 8)Su(T — |2; A, 5). Here
A, denotes the hazard function corresponding to S, and the baseline hazard
function corresponding to A will be denoted by A. Define

(A,0) = argmax E5[I(A,Y, X, Z; A, 0)] = argmin KL(P|Qa ) (19)
A0 A0

where KL(:|-) denotes the Kullback-Leibler divergence between two distribu-
tions.

Lemma B.1. The argmaz defined in (19) exists.

Proof. We show that the argmax can be restricted on a bounded set, from
which the existence follows because of continuity. In the three steps below we
deal consequently with 5, A and ~.

Step 1. First we show that for any K > 0 there exists ¢ > 0 such that for any

¢ > ¢ we have infz g, P(c|fTZ| > K) > 0, where S?7! is the unit circle in
RY. Suppose by contradiction that there exists K such that for any ¢ we have
infzcg4-1 P(c|6TZ| > K) = 0. Note that the infimum is actually a minimum
because S77! is compact and the function is continuous. Hence, it means that
for any ¢ there exists 3 € S771 for which P(c |BTZ\ < K) = 1. Equivalently, for
any € > 0, there exists 5 € S9! for which P(|3T Z| < €) = 1. The closed subsets
of 9= defined by B,, = {# € S9! |]TD(|BTZ| < 1) =1} are non-empty for all
m and By, | B = Ny, B,,. B cannot be empty because then (B¢, ),, form an open
covering of the compact S7~! and there would exists a finite sub-covering, which
is impossible since all B,,, are non-empty. It follows that B is not empty, which
is equivalent to saying that there exists § € S9! for which P(|57Z| = 0) = 1.
This contradicts the assumption that Var(Z) has full rank.
Next, let n = 1A(%)inf, P(Y = 7|A = 1,Z = z) and choose K such that
x <ne® forallz > K. Let g = ¢ with 8 € S771, ¢ > & We will show that, as
¢ increases, the expectation in (19) becomes arbitrarily small. For fixed v and
A, we can write

Es[l(A,Y, X, Z; A, 0)]
— Ep[ABT Z1y cryy — AA(Y)e? 7] + Ry
=Ep HACBTZ]I{Y@,} — AN(Y)e” Z} ]l{BTZ>O}]l{c|BTZ|>K}}

~ 5T
+ Ep [{AcﬁTZ]l{y<.;0} — AA(Y)eCﬁ Z} ]I{BTZ<O}]1{C‘BTZ‘>K}:| + Ro,

where Ry and R denote terms_that are bounded in absolute value. Using
Ez:[AY)|Z,A = 1] > A(7)inf,P(Y = 7|A =1,Z = z) = 2n > 0, we ob-
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tain the following bound

Es[l(A,Y, X, Z; A, 0)] < Ep HACBTZ - QAnecﬁ_TZ} ]l{BTZ>O}]l{c|,§TZ|>K}:|
+ cEp :ABTZ]I{YGO}]I{BTZ@}]I{C‘5TZ‘>K}] + Ry
< —nEp [AQCBTZ]I{BTZ»}]I{C|5Tz|>1<}]
— cEp :A|BTZ|]1{Y<‘F0}]1{BTZ<O}]1{C\BTZ\>K}] + Ry

C~T
S e T

— cEp _A|BTZ|]1{Y<%0}]1{BTZ<O}]1{E\BTZ\>K}] + Ry
This further leads to

Es[l(A,Y, X, Z; A, 0)]

< —nefP(A=1,5"Z > 0,¢|67Z] > K)
K
c

—C

P(A=1Y <7,37Z <0,¢|"Z| > K) + Re
< —c—P(A=1Y <7,¢|7Z| > K) + Ry

< —c

o =X ol X

infP(A=1Y <7|Z=2) inf P(c|67Z]>K)+Rs
z Besa—t

Since both infimums are strictly positive, Ez[l(A,Y, X, Z; A, 0)] can be made
arbitrarily small for ¢ sufficiently large (and how large ¢ should be does not
depend on (). Hence, we can restrict the argmax on a bounded set for 3.

Step 2. Next we show that, there exists M > 0 such that it suffices to search
for the maximizer among A that are bounded by M. Let A be such that A(7y) >
M. We can construct A(t) = c¢A(t) with ¢ = M/A(7) € (0,1). We have A(7y) =
M and X = cA. We show that

Es[l(A,Y, X, Z; A, 0)] < Es[l(A,Y, X, Z; A, 0)).
Indeed we have
]F‘I?’[I(Aa K Xv Z; Av 0)] - E]?’[Z(Av Y, X» Za A? 0)]

— Bz |~Alogclpycqy — ANY)e? 7 + AcA(Y)e? Z

1- ¢ X) + 6" X)Su(Y]Z; A, B)
1= ¢(vIX) 4+ o(vITX)Su(Y|Z; A, B)

+(1—A)log

Since S, (Y|Z; A, B) > S,(Y|Z; A, B) the ratio is smaller than 1 and as a result
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the (1 — A) term in the expectation is negative. Hence

Es[l(A,Y, X, Z; A, 0)] — Es[l(A,Y, X, Z; A, 0)]

[

= B(A =LY <7)loge— (1 c)Es [AA(¥)e*"?]
( VEp {AA(Y)eﬁTZ]l{Y:%U}]
(

( —
<-P(A=1,Y <7y)loge— (1 —¢
=-P(A=1,Y < 7y)logc— (1 —c)A(T)Esp [AeBTZ]l{y:;O}} .

Since we are restricting § on a compact and Z is assumed to have bounded
support, there exist co > 0 such that A7 > co a.s.. It follows that

Es[l(A,Y, X, Z; A, 0)] — Es[l(A,Y, X, Z; A, )]

< -P(A=1,Y <7)loge— (1 —c)A(To)eaP(A = 1,Y = 7p)

=P(A=1,Y < 7)(log A(7p) — log M) — (A(To) — M)e2P(A = 1,Y = 7p)
1

< ]F)(A =1Y < 7_’0)(A(7_’0) — M)M — (A(7_'0) — M)CQP(A =1Y = _0)

= (A(7) — M) {%P(A =1,Y <) —cP(A=1,Y = %0)} <0

for large enough M since I@(A = 1,Y = 7) > 0 by assumption. Hence we
conclude that, there exists M such that it is sufficient to search for the maximizer
among A’s bounded by M.

Step 3. We can also restrict the argmax on a bounded set for v because as
7|l = oo, for fixed values of 5 and A, the expectation converges to —oo. Indeed
we have

=Ep [A log ¢(7TX)]1{7TX>0}] +Ep [A log ¢(7TX)]1{7TX§0}] + R3,

where R3 denotes terms bounded in absolute value. The first term is bounded
and using the same reasoning as with 8 it can be shown that the second term
converges to —oo.

We conclude that we can restrict the argmax on a bounded set, from which
the existance of the argmax follows as the criteria is continuous with respect to
the parameters. O

In what follows, we assume that the maximizer (/_\7 é) is unique. It will also be
useful to characterize it as the solution of the score equation defined similarly to
[31]. As in the proof of Theorem 3.1, consider H,,, = {h = (h1, h2) € BV|0, To] X
RPT9 : ||hqlly + ||he]l1 < m}, where m < oo and ||hy ||, is the absolute value of
h1(0) plus the total variation of hy on the interval [0, 7). Define the functions

Yia0)n(6,y,2,2) =6 [h(y) + hiy @ + hipz] — {p(v"x) — (1= 6)g(y, A, 0)} hjyx

{5 (1 0)g(y.A0)) {ﬁ / " ha(s)dA(s) + eﬁTZA@)hgTQz} ,
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where . .
o(y'z)exp (—A(t) exp (ﬂ z))
1= ¢(vTz) + d(v"x) exp (—A(t) exp (87 2))
We will denote by P7. ;4(a,6),n the score function for the i-th permuted sample

g(t, A, 0) =

PT biaeyn = ZA” hi(Y]) + h X7 + 13,27

_n_Z{(b TX7T _ Aﬂ g” Y;’;,Ae}hTXﬂ

- Z (AT + (1= AT)gh (YT, A, 6)}
i J=1

v
X {eBTZ?j/ ha(s)dA(s) + e 25 A (YR, Z”}
0

where h = (hhhg) = (hl,hzl,hQQ) S Hm and

p(vFXT) exp (—A(t) exp (BT Z]))
1— ¢(YTXT) + ¢(YTXT) exp (—A(t) exp (BT ZF))

g (t, A, 0) =

Similarly, Py, 4 n,% (A ,0),n and ]?’1/1( A,0),h are defined using the empirical distribu-
tion of the pooled sample or the true distribution of the pooled sample P =
Py + (1 — k)P, respectively. By definition (A, 6) is the solution of Pa0).n 2 0.

Lemma B.2. Assume that the mazimizer (A, 0) defined in (19) is unique. The
pooled mazimum likelihood estimator (A, 4y Ony4my) s a (weakly) consistent
estimator of (A,0).

Proof. We will pursue similar ideas as [31] in the proofs of his Lemma 2 and
Theorem 2. Comparing the arguments in [31] that lead to the maximum like-
lihood estimator in Display (12) of that paper, it is evident that the pooled
estimator /_\n1+n2 must exhibit a similar structure. In particular,

7l1+712
/ dN (s)
an+n2 R )exp(ﬁnl—i-nz ){AJ + (1 - Aj)gj (Yjv 9111-‘1-77,27 An1+n2)}’
where N = N; + N» is the pooled counting process, R;(s) = L¢y, >y denotes
the at-risk process of the j-th pooled individual and
¢(7" X;) exp(—A(t) exp(B” Z;))
1= o(v"X3) + o(v" X;) exp(—A(t) exp(87 Z;))

Gi(t; A, 0) =

Similarly, we define

/ dN(s)
+ n n a _ — = .
el D" Ry(s) exp(BTZ;){A; + (1= A;)g; (Y536, M)}
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We have already noticed that sup,,, ,,, A, 4ny (1) < 00 a.s.; also, following the
lines of Lemma 2 (ii) in [31], there exists a non-negative and integrable function
1 : [0, 70] — (0, 00) bounded away from 0 such that, for each w € €, there exists a
subsequence (n1,k, (W) +n2,k, (w)) such that sup;e g 7, \W(t) —n(t)] —
0. For notational convenience, we will write ny = ny %, + N2, from Nnow on.
Arguing for a fixed w and along subsequences had similarly been done by [36]
and [46] based on Helly’s theorem.

To prove the desired consistency of the pooled estimators, we will show that
the difference of the log-likelihoods, say £n, (An, , s, ) and 5, (As, , ) converges
to zero. Clearly,

M . .~7, 7, 77 _
:_i [Ai log gZ_(Y“A?’“’erf’“) + A;log A{\"’“( (B, — BT Z;
Tk i=1 gl(}/l’Aﬁkve) AAﬁk i
T log 25 An, )
Sz(}/zaAﬁkaa)
1 & P, Xi) .
- Z__l[ T (Y3) exp(BL, X0) + Ak, (7) exp(AT X))
ﬁ(Y) T g(ziﬁ éﬁ)
+ A; 1 -k e — Zi+ (1 — A;)log =0Tk Tk
BTy T OB = A2t (1= A log o e ]

where and S;(t; A, 0) = 1 — ¢(v7X;) + ¢(v7 X;) exp(—A(t) exp(BT Z;)).

The space of bounded, increasing functions with discontinuities only at 79 ;
and 79 2 is separable with respect to the supremum norm. Also, Euclidean spaces
are separable. Denote by (A;,0;)en a countable subset that is dense in the
product of the just-described spaces. For each [ € N, by the strong law of large
numbers,

1 &
g Z[Ai log(b(’YlTXi) — AN (t )exp(ﬁz )+ Ay logdA(Y;) + A; Bl g
i=1
+ (1= Ai) log S (Yi; A, 01)}

converges a.s. to its expectation, i.e., for all w € Q; with I@’(Ql) = 1. From now
on, we restrict w to be in the intersection [,y €; which also has probability 1
Consequently, also due to the continuity of the likelihoods in A and 6,

0 < Eﬁk (Z_X'ﬁk ) gﬁk) - Zﬁk (Aﬁk ) 0_)
(b(’y*TXl)_ * X T N_A X RT r7. X dA*(}/Z)
(TX;) {A"(t) exp(B" Zi)—A(t) exp(B” Zi)} + A;log aA(Y)
Si(Yi; A*,07)

Sake ) W

= Eg |A;log

+ A8 = B)TZ; + log
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where the expectation is taken with respect to X,Y, Z and A*, 8*, v* are fixed
(depending on w). For a.e. w, the conditional expectation in the previous display
represents a negative KL-divergence of the logistic-Cox model specified by (A, )
from the model specified by (A*(w), 0" (w)). As a consequence, it must be 0, i.e.,
0(A*,0%) = £(A,0) P-a.c.. We use this fact to identify all model components
one by one; every equality below is to be understood P-a.s..

We first consider A = 0 and Y > 7, for which S(Y;A*,0%) = ¢(v*TX) and
S(Y;A,0) = ¢(37X). From this we can identify v* = 4 a.s. for the logistic
model. Next, for A = 0 and Y < 7, we obtain S(Y; A*,6*) = S(Y; A, 6), hence

exp(—A*(Y) exp(8*7 Z)) = exp(~A(Y) exp(87 2))

Upon inserting different combinations of ¥ and Z, we conclude that 5* = § and
A=A as.. O

The following lemma establishes the consistency of randomly permuted Z-
estimators. Since the proof does not make use of the specific underlying model
structure, it is clear that this result holds more generally, i.e., also beyond
logistic-Cox cure models.

Lemma B.3. Assume the mazimizer (A, 9) deﬁned in (19) is unique. The per-

mutation estimators (AZ1 1,@,’{1 1) and (AZ2 2,922 o) converge in probability to
(A, 0).

Proof. First, we would like to point out that conditional convergence in prob-
ability (given a o-algebra) is equivalent to the unconditional convergence in
probability; a variant of Fact 1 in the Supporting Information of [18] similarly
holds for the present setting. That is why we do not distinguish between condi-
tional and unconditional consistency.

To prove the consistency of the permuted estimators, we are going to employ

the permutation version of the score equations, i.e., P} 1 0)n = 0 for all
indexing h, ¢ = 1,2. So far, we know by definition that Py zw([\ﬂ on oh = 0

and that Pp, 4n, w@nmwgnmz),h =0.

Also, since n1P, 19(a 6),n + nQIPZz 2¥(a0),h = (M1 4 12)Pry 4y Wia0),h, We
have that miP% 1¥;i, 6. o6 = ”2Pnz,2¢(/\n1+n2 By iny)she LHUS, De-
cause both of these permuted expressions are connected, we will only focus
on the index i = 1 from now on.

Furthermore, upon integrating out all permutations, it is easy to see that
the (conditional) expectation is E[Pguld}([\nﬁnz,§n1+n2),h | Vi, A X, Z; 2 i =
1,...,n1 + n2] = 0. Additionally, straightforward and standard algebra for per-
muted linear statistics for the conditional variance leads to

Var[P7, 1¥ i o | Yis Ny, X, Z; oy nitne] = Op((natna) ™).

"r1+n27 7I1+n2

Consequently, Chebychev’s inequality (applied to the conditional distribu-
tion) verifies that the permutation-based score equations evaluated at the point
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(A, +my> Onygny) all converge to 0 in probability. Similar convergences in prob-
ability (not necessarily to zero) also hold for other evaluation points.

Hence, the pooled estimator is asymptotically a solution to the permutation-
based score equations. Now, since (f\ghl,é;;hl) is another (finite sample) so-
lution and the “true” solution (A,é) is assumed to be unique, the permuted
estimator must approach the pooled estimator in probability as the sample

size goes in infinity. Anything else would contradict the continuity of the map
(A, 0) = Es(£(A, 0)). 0

Lemma B.4. Assume the mazimizer (A, ) defined in (19) is unique. Condi-
tionally on the observations, the process
124 n 3 /2 pr 5 )
(2 (A7 i = Ann) 00— n)). =12
defined as in (12) and indexed by h € H,, converges weakly in I1°(Hy,) to a
tight Gaussian process G in 1°°(Hy,), in outer probability.

Proof. We will apply Theorem C.1 from Appendix C. We need to show that the
sample specific estimators (A, é,’;z) satisfy the conditions of Theorem 3.3.1
in [55]. Consistency of the estimators was shown in Lemmas B.2 and B.3 above.
Verification of the other conditions can be done as in [31]. We omit the other
details here since the proof goes along the same lines as points a)-c) below.

a) To verify condition (28) of Theorem C.1, it suffices to show that for any

sequence €,, — 0,

(PT. i = Prtna)¥a0),n — (B s = Pry o)A, s B0ng)h

_ Sup ~1/2 > _ x
IA=Anytnyllc<en;, T V1B = Brytna |l V1Y = Vgt | VIIA = Ay s [l oo
||5_6n1+n2”§5nw
”'Y_'_Ynlﬁ»ng”SGni

(20)
converges to zero in probability given the data. For simplicity, we can write

( Zi,i - ]P)n1+n2)1/1(A,0),h - (le,z - Pn1+n2)w(f\nl+,L27§n1+n2)7h
6

= (P;Lr“z - Pnl +n2)aj1h

Jj=1

where

arn(8,y, 2, 2) = —hgz {o(v ) — 6(0, 10, ) }
a2,h(5’ya €T, Z) = (1 - (5)h§1x {g(y7A7 9) - g(y,An1+n2,§n1+n2>}

. [ _ y B
as n(0,y,x,2) = (S{Gﬁ z/ hi(s)dA(s) — eﬁgww"/ hl(s)dAn1+n2(s)}

0 0
. _
a4,h(57 Y, Z) = (5h§22 {eBTZAQ/) - eﬁnl+n22An1+n2 (y)}
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asn(@,y,2.2) = (1 6) {g@,A, 6)e"> /0 " ha(s)dA(s)

_ _ T Y _
- g(y7An1+n2a9n1+n2)6’8”1+"2z/ hl(s)dAnl-‘rnz (8)}
0

a6.4(6.9,2,2) = (1= )= {g(y, A, 6)e” *A(y)

2T
= 9(Ys My sy Oy o )eﬂ"ﬁ"z A0y (Y) } ’

(21)

Next we consider the third term. The other terms can be handled similarly.
First note that, by Lemma B.2, A,,, 1, and 6, ,, are consistent estimates of
A and 6, and as a result they are bounded on a set of probability converging to
one. From a Taylor expansion we have

(quz - Pnl +n2)a3,h
_ . y
= (B — Bny+n T [ 25ePmina* h1(s)dA(s)dA(PT . — Ppian,) (0,9, 2, 2
( 1+n2 ;.0 1+n2
0
_ y B
4 [ oot [Th(6d = Ry (HPE, ~ Pays) Br3:2.2)
0
aT Y —
+ob ( / §ePTina® / B (8)A(A = By 1) ()T, 5 — Py i) (6,9, z))
0

+ 03;(||B - Bnﬁr’ﬂz”)

For the first term, since the class of functions that we are integrating is Donsker
and uniformly bounded, by Theorem 3.7.2 in [55] it follows that, conditionally
on the observations

_ y
sup /zéeﬁTz/ hl(S)dA(S)d(]PZN,L - ]P)n1+n2)(67y7x7 Z) = 0};(1)
||A7/_\n1+n2 Hoogfni, 0
(22)
The second term can be rewritten as
To _
| Pam (= R0
where
2T
DH(S) = /5]1{y>8}€ﬁ Zd(le,z - Pnl'i‘"z)(év Y, z, Z)

By integration by parts and the chain rule we have

/0 " D () (5)A(A — Ay y)(5)

= Dn(fo)hl (7_'0)(A - An1+n2)(7_'0) -

= Dn(fo)hl(’?io)(A - An1+n2)(7io) -



Mean survival of uncured patients in two samples 3157

/ 5(A — D) ()ha ()" AT, ; — Py n) (6,4, 2)

/ (A A"1+n2)( )hl (y)SBTZd(]P):Lr,,l - Pn1+n2)(6v Y,z Z)

Again, by Theorem 3.7.2 in [55], it follows that, conditionally on the observations
D,, = 0%(1). Since hq is bounded, it follows

| Dr(70)ha (70) (A — Ay 4ny) (F0)|
sup - = op(1).
HA—An1+n2HwS€ni ”A - An1+n2||00

In addition we also have that sup,c(y -} [Dn(s)| = 0p(1) conditionally on the
observations and since hj is of bounded variation

TOA = Ay iy (8) D (5)dhy (5)

sup —~
||A71—\n1+n2 H‘X’<E"L ||A - A7l1+n2 HOO
< sup |Da(s) / dh(s)| = op(1).
t€[0,70]

Since [|[A — Ap,4nylloo < €n, implies ||A Al|so < &, for some &,, — 0, the

class {ga(y,9,2) = 6(A — A)(y)h (y)eB Z: ||A = Aljoo < &,,} is a Donsker class
(product of bounded variation functions, unlformly bounded) and

Bp [A(A = )i (V228 7] = 0(&) = o(1),
we have that, conditionally on the data,

swp Vi [ SR )7 AP, P 4) 0.0 2) = 0 (1),

HA_ATL1+712 Hooseni

Finally, since ||Ay, 1, — Allee — 0 a.s., by Proposition A.5.3 in [55] it follows
that, conditionally on the data,

- - 3T
3R = R @ ()7 AT, — P 20) (3.9 2) = 0p(1).
Combining all the results we obtain that

’ (PZL g Pnl +n2 )a3,h ‘

Sup 12 2 - =

A~ A7L1+'L2”°°<6"w i / v ”ﬁ - Bnr‘r’@” \ ||7 - 7n1+n2|| v ”A - An1+n2||oo
HB Bn1+n2”<€n7
1Y =n1+noll<en;

converges to zero in probability, given the data. The terms related to the other
a; can be treated similarly.
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b) Next we check condition (29). From (20) it follows in particular that,
conditionally on the data,

\/n_i(P:-u,i - ]Pnl-l-nz)w(]\,é),h - \/n—l(P:rL“z - Pnﬁ‘nz)w([\m_,_w,0_7,,1+,,,2),h = OX};(l)

almost surely. Hence, it is sufficient to show that
V(PR i = Poyna )¥@.6),0 ~ Z1 (23)

on [*°(H,,) in outer probability, where Z; is a tight random element (actually
a Gaussian process). This follows from Theorem 3.7.1. in [55] since the class of
functions {w( Agyn e H.m} is Donsker and bounded. This is already shown
in step 1 of the proof of Theorem 3 in [31] (the class of functions is the same,
just evaluated at a different point (A, 6)).

c) Since the functions (s g),n, b € Hm are the same as in [31], it can be
proved in the same way that ]f”z/)( A9).n 1S Fréchet-differentiable at (]\, é) and the
derivative is given by

Bz 0) (A, 0) — (A, 8)(h) = / " () d(A — A)() + (0 — )50 (h)

where 71y, 0(2) are defined as in (13)-(14) respectively, with Ep, replaced by

Ez and evaluated at (A, 6) instead of (A;,#;). Uniform Fréchet- differentiability
at 6 is implied by the Fréchet- differentiability on a neighborhood of ¢ and the
(operator) norm-continuity of (A,0) — Pi) (A,0)- Based on the boundedness of
all terms and because h € H,,, it is clear from the expressions in [31] that this
continuity holds. Also the proof that the derivative is continuously invertible
remains the same as in [31].

d) For condition (30) we have

(Prytna 6. — Pryina® ) — (Poon — Py )

6
= (Pry4ns — HDW’G,h = (Prygny — P)d’é,h = Z(Pn1+n2 - IEJJ)C_Lj,h

j=1

where a; 5, are defined as in (21) replacing (A, 41y Oy +ny) by (A, ). We can
deal with this similarly to what we did to show (20). The difference is that now
(A, 0) and (A, 6) are fixed and we consider the class of functions with respect to
h € H,,. For example, for the term corresponding to as j we have

(Pn1 +n2 T CL3 h

=(B-5) /2(566 Z/ hy(s)dA(8)A(Pp, 4ny — P) (8, y, 2, 2)
+/5eﬁ Z/o hi(s)d(A — A)(s)Ad(Pp, 4ny — P)(6,y, , 2) (24)

+op (/ seP" /Oy ha(s)d(A = A)(8)d(Pp, n, — ]P)(&y,x,z))
+op (18- 8l)-
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Note also that

— ’]’Ll

Pn1+n2 -P=

N2 ni
— (P, P P, —P - P —P
Tl1—|-’fl2( ! 1)+n1+n2( 2 2)+(n1+n2 ﬁ>( 1=F2)

and ny/(ny + ng) — k. Then the integral in the first term of (24) converges to
zero since the class of functions that we are integrating is Donsker and uniformly
bounded. The second term can be rewritten as

/ Doy ma(3)hn (s)d(A — R)(s)
where
n1+n2 /(51[{y>5}€ “d (Pn1+n2 —]P’)(é,y,x,z).

By integration by parts and the chain rule we again have

/0 " D (s (s)A(A — R)(5)

= Doy s (7o) (70) (A — &) (70) — / (A= R)() Doy s ()11 (5)

* / S(A — A) ()1 (y)e” 2 A(Prysny — P)(8,y. 2, 2).

By the Glivenko-Cantelli theorem, applied for both (P,, —P;), i = 1,2, and
the boundedness of the integrand we have sup,c( 7)) Dny+n,(s) = op(1). Since
hy € H,, are uniformly bounded, it follows that

| Dy nz (7o) (70) (A = A) (7o)

sup = =op(1).
71 €Hom A = Allso

In addition, since h; are functions of bounded variation and uniformly bounded
norm,

| Jo* (A = A)(5) Dy 4, (5)dha ()]

su

et HA—Alloo

< Sup Doy na(s) / dhy ()] = op(L).
36[0,77'0] 0

Finally, from Theorem 2.11.23 in [55] it follows that
VI [ 5 = D) ()b () AP, —Pi)(6,y, 7, 2)
sup =
bR 1A~ Al

is bounded in probability. Combining all the results we obtain

sup [Py e — B)azn| = op (116 — 61l v A — Alloo) -

hi1€Hm

The other terms can be handled similarly obtaining

[Py 0.0 = Py a5 1) — (oo n = Poog )|l = op (160 = 0] V A = Afloo) -
O
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Proof of Theorem 3.2. We proceed similarly to the proof of Theorem 3.1. From
Lemma B.4, it follows that the process

< 1/2(/\21,1' - An1+n2) 1/2(921,1 - én1+n2)>i:1,2<h)

converges to a Gaussian process G* = (G7, G3) with G5 = —\/k/(1 — k)G}. We
start by deriving the weak convergence of the process 4 /an( — S s S —

ni,l n2,2

Spyiny), Where a, = \/nina/(ny + na). By a series of Taylor expansions we can

write

Van{ Sy, 1(t12) = Snyins (H2)}
_ \/_{exp ( W )eBSfﬂ) — exp (4m+n2 (t)ePri+na* )}

A~ anT — 2 — 3
= =4 0an {Agl,l (t)eﬁnl Y12_1\”1 +n2 (t)eBE;IJr"zZ} €Xp (_Anl +n2 (t)eﬂ;l:lJrnZZ) + Rl

T

o — -7 _
= —Van {A:-Ll 1(t) —Anyin, (t)} emitna® exp ( Anl—i—ng( )6 n1+"2z>
o B B -
- \/_{ nl 1z - eﬁnﬁ-n?z} An1+n2 (t) exp (_An1+n2 (t)e n1tne ) + Rl + R2

N - 3T - 3T
= v { A, 1 () = A0 ] €7 exp (~A 1))

N _ T —p _ _ _

Qn {621,1 - ﬁnr‘rnz} ZeBTZA<t) eXp (_A(t>€'BTZ) + Ry + Ry + Rs

where the remainder terms converge to zero in probability. Considering functions
h € H,, of the form

ht,z = (hl;t,Z7 h2;t,z)
= <IL[0¢](~)65TZ exp (—A(t)eETZ) , (Op, zeBTZ]X(t) exp (—A(t)eBTZ))) ,
where 0, denotes a zero vector in R?, we have
Van {55, 1 (t]2) = Snygn, (t2)}
U= (A7, 1 = Anyn)s ) 207, 1 = Oy )Y (a,2) + 0+ (1)

from which we conclude that, given the data, the process ,/an{Sn1 1(t]z) —

Sy +ns (t]2)} converges weakly in D0, 7] to a mean zero Gaussian process G .
with covariance

p1,2(8,t) = COU(GLZ(S), é])z(t))
=) { [ A @A) + A 050 ) |
(25)

where (1), 0(2) are defined as in (13)-(14) respectively, with Ep, replaced by Eg
and evaluated at (A, ) instead of (A;,6;) Defining MST, . as the conditional
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expected lifetime of the uncured in the pooled sample, we have
Va (MSTU1Z_MSTu,z)

= Jan / (8T 1(£]2) = S (H2) )t (26)
- \/a{TO ml)}Snl, (TO) @{%0 - Y—(m)}gnﬂﬂm (%0)7
where Y™

L) and Y(,,) denote the largest uncensored observation in the first
pcrmutod sample and the pooled sample respectively. As in the proof of The-
orem 3.1, the second term and third term in the right hand side of the previ-
ous equation can be shown to converge to zero in probability. Considering the
map

b:D0R] SR (e = / " e(s) ds

which is Hadamard- differentiable, it follows that, given the data,

./an(MSTu 1,2 — MST,, 2 MSTU 2.2
mensional Gau551an random Vector

(N1,Np) = (/ Gi2(s dS/ Ga,.(s )Z(Nh—ﬁNl)-

Taking the differenee of both entries of the pair, we conclude that, given the

data, ‘/an(MSTu 1.z MSTU 2..) converges weakly in probability to a mean-
zero Gaussian random variable with variance

1 To 7o
o7? = m/o /O p1,2(s,t) dsdt, (27)

where p; , is defined in (25). This concludes the proof. O

— MST, ) converges weakly to a two di-

Appendix C: Permutation of Z-estimators in a two-sample set-up

In this appendix, we discuss the asymptotic properties of randomly permuted
Z-estimators. For this, we consider a two independent samples set-up with ny
and ») i.i.d. random vectors Wlla-”annl ~ ]P)l and ng,.. W2n2 ~ ]PQ,
respectively. Let © be a subset of a Banach space, ¥, 1,¥,,2 : © — L be
random maps, and ¥ : © — L be a deterministic map. Solutions (or approximate

solutions) 0, ; to the equations ¥, ;(6) £ 0 will be called Z-estimators. Due
to the ii.d. set-up, we assume the structure ¥,, ;(6)h = P,, ;1p.p, for given
measurable functions vy indexed by © and h € H for some index set H,
where P,,, ; denotes the i-th empirical process. Thus, we understand the equation
system in the space L = £>°(H).

For the random permutation approach, we randomly re-assign the ny + ns
observations of the pooled sample (Wiy, ..., Wiy, , Way, ..., Wa,,) = (W7,...,
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Wi, 4n,) to the groups 1 and 2 without changing the original sample sizes. For
a random permutation 7 of the numbers 1,...,n; + no, the permuted sam-
ples can be expressed as Wr(1), ..., Wren,) and Wrn,11)s -+, Wa(n, 4ns)- For
notational convenience, we denote the permuted samples by Wi, ..., W[ , for

sample group ¢ = 1, 2, and the corresponding i-th permutation empirical process
by P ;. Let W7 (0)h =P} tbgn = 0 for all h € H be the estimating equation

corresponding to ¥y, ;(0) S 0, just based on the i-th permuted sample. We
denote the (approximate) solution to the i-th permuted estimating equation by
o5, - For future uses, let G7 ; = \/ni(P}, ; — Py, 4p,) be the i-th normalized
permutation empirical process, where P,,+n, denotes the empirical process of
the pooled sample. The centering at P, ., seems reasonable, as this has an
interpretation as a conditional expectation:

E(Pzi,iwe,h | sz 1= 112a] = ]-7 .. '7ni) = Pn1+n2w9,h~

Let 0,,, 11, be the (approximate) solution to Py, yn,%e 1 20 for all h € H.
The following theorem represents a version of Theorem 3.3.1 of [55] for the
random permutation-based estimators.

Theorem C.1. Assume that —— — X € (0,1) as ny + ny — o0, define

- ni+nsz

P = APy + (1 — MNPy, and assume that Theorem 3.3.1 holds for each sample-
specific Z-estimator O,, 1 and O,, 2. Let the criterion functions .5 be such
that

IGT, oGy o — 5, )l = 0b (L VARIOT, i — Ol (28)

Conditionally on Wy1, Way, Wi, Was, ..., assume that

(Vni(Py, i = Pryny )05 nizy ~ (21, Zs) (29)

ni+ng,ft
on (£*(M))? in outer probability, where (Z1, Z) is a tight random element.

We assume that 6 — Pipg p, is uniformly Fréchet-differentiable in £>°(H) at 0
with a continuously invertible derivative Pipg . and that, for any 6,0,

1 (Pras-tn2 90,0 = Pryna ¥ 1) — (Bon—Pog )l = 0p (116 — ) (30)

as ny +ng — 0.
If 07 i and Oy, 10, satisfy ||PT; er

N4, n, i
is n;,i’

| = 0%(n~1/2), respectively, and if all three estimators con-

wllw = op(n™/?), i =1,2, and

||Pn1+n2¢§nl+n2,h _
verge in outer probability to 6, then

\/n_l(@d}é,h)('ggnz - §n1+n2) = 7\/’”_1(]?2“1 - Pn1+n2)¢é n T O}’(l)’ 1=1,2
(31)

~ —(Z1, Z2) (32)

ni+ngs
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as ny + ne — 0o conditionally on Wiy, Way, Wio, Waa, ..., in outer probability.
Finally,

(VL0 1 = Onyins)s V207, 5 = Onyyny)) ~> —((Pig ) ™' 21, (P ) ' Z2)
conditionally on Wiy, Wa1, Wia, Wao, ..., in outer probability.

Note that, due to the equality P} 5 —Pp, 1n, = =322 (PF, 1 —Pp,yn,), Z1 and

na

Zo are perfectly negatively linearly correlated: Zo = —,/ ﬁZl.

Proof. The essential steps of this proof are similar to those in the proof of
Theorem 3.3.1 of [55]. But for the sake of completeness, we shall present the
whole proof.

The assumed consistencies of the pooled and the permuted estimators and
then assumption (28) entail that

Vi (Prynaor b = Prytnoa, L. n)

= Vi(Pryn,Vor 0 — P iver ) +0p(1)
=—G7, vy .n+op(1)
== ni(Pzi,i - ]Pm-i-nz)wé

(33)

n+ 0p(L+ /il i = Onypns [)-

nitmngs

Approximation (30) implies that the norm of the left-hand side of (33) equals

Viai(IByoy, n— P, . 4

[+ 0p (107, i = Onyna [))- (34)

Additionally, the uniform Fréchet-differentiability of 6 — ]f%ﬁo,h at 0 and the
continuous invertibility of the derivative Pi); ;, respectively imply that

nll = 1(Bg ) (07, 5 = Ony o)l + 0167, i — bnysna )
(35)

Por. .1 — Pty

ni+ngs

and that the right-hand side in the previous display is bounded below by

C||927,1 - énﬁ-ng” + O(”eg“l - 0n1+n2”)

for some positive constant ¢. Combine this with (34) and (33) to see that

VIill07, i = Onitns ll(c + 0p(1)) < Op(1) + 0p(1+ Vnill07, ; = Onitns ),

conditionally on Wy1, Waq, Wio, Was, ... in probability. Thus, in the same man-
ner, 07, is \/n;-consistent for 0y, 1, in norm.

Next, apply the approximation in (30) to the left-hand side of (33) and use
the uniform Fréchet-differentiability of § — Py 5, at 6 to find that (33) equals

V(B ) (07 i = Onyna) + 0p (V07 5 — nyns ).
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Since O*P(\/TTZHHZL,Z - 9n1+n2||) and also 0}(1 + \/7TZ|‘92M - 0n1+n2||) in the
right-hand side of (33) are both 0% (1), the assertion given in (31) follows from
assumption (29).

The continuity of (]f%/}@ ) "' together with the continuous mapping theorem
and the just established conditional weak convergence (31) in outer probability
imply the corresponding conditional weak convergence

(\/n_l(ogl,l - 9_"1+7l2)7 \/77’_2(0;:2,2 - 0_7L1+n2)) ~ 7((@)1/.}@@)71217 (]TD%L@,IL)ilZQ)

in outer probability. O

Appendix D: R code for accessing the breast cancer data set

if (!require("BiocManager", quietly = TRUE))
install.packages ("BiocManager")

BiocManager: :install("curatedBreastData")
library(curatedBreastData)

# read the data, study id 2034
data(curatedBreastDataExprSetList)
D=curatedBreastDataExprSetList$study_2034_GPL96_all

# Relapse-free survival
Data=data.frame (Y=D$RFS_months_or_MIN_months_of_RFS,status=1-D$RFS,
age=D$age ,ER=D$ER_preTrt,sizeTum=D$tumor_stage_preTrt)
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