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1. Introduction

Standard regression approaches assume that some finite number of the response
distribution characteristics, such as location and scale, change as a (parametric
or nonparametric) function of predictors. However, it is not always appropriate
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to assume a location/scale representation, where the error distribution has un-
changing shape over the predictor space, X . In fact, it often happens in applied
research that the distribution of responses under study changes with predictors
in ways that cannot be reasonably represented by a finite dimensional functional
form [see, e.g., 26, 29, 25, 44, 42]. Because this can seriously affect the answers
to the scientific questions of interest, more general regression approaches have
been developed, which are usually referred to as density regression or fully non-
parametric regression [see, e.g., 66, 73].

Fully nonparametric regression or nonparametric conditional density estima-
tion can be seen as an extension of traditional regression models, where it is
assumed that yi | Fxi

ind.∼ Fxi , i = 1, . . . , n, and that the parameter of interest
is the set of predictor-dependent probability measures F = {Fx : x ∈ X}, where
Fx is a probability measure defined on the sample space (Y ,B(Y)), with B(Y)
being the Borel σ-field of Y . This paper focuses on the definition and the prop-
erties of Bayesian nonparametric (BNP) priors for the set F , where the either
the sample Y or the predictor space X can be general Polish spaces.

Most of the BNP priors used to account for the dependence of predictors
on set of probability measures F are generalizations of the Dirichlet process
(DP) [31, 32] and Dirichlet process mixture (DPM) models [58]. Let D(Y) be
the space of all probability measures, with density w.r.t. Lebesgue measure,
defined on (Y ,B(Y)). A DPM model is a stochastic process, F , defined on an
appropriate probability space (Ω,F ,P), such that for almost every ω ∈ Ω, the
density function of F is given by

f(y | G(ω)) =
∫

Θ
ψ(y,θ)G(ω)(dθ), y ∈ Y, (1)

where ψ(·,θ) is a continuous density function on (Y ,B(Y)), for every θ ∈
Θ, and G is a DP, whose sample paths are probability measures defined on
(Θ,B(Θ)), with B(Θ) being the corresponding Borel σ-field. If G is a DP
with parameters (M,G0), where M ∈ R

+
0 and G0 is a probability measure on

(Θ,B(Θ)), written as G | M,G0 ∼ DP(MG0), then the trajectories of the pro-
cess can be a.s. represented by the following stick-breaking representation [79]:
G(B) =

∑∞
i=1 πiδθi(B), B ∈ B(Θ), where δθ(·) is the Dirac measure at θ,

πi = Vi

∏
j<i(1− Vj), with Vi | M iid∼ Beta(1,M), and θi | G0

iid∼ G0. Discussion
of properties and applications of DP can be found, for instance, in [66].

Most of the BNP extensions incorporate dependence on predictors via the
mixing distribution in (1), by replacing G with Gx, and the prior specification
problem is related to the modeling of the collection of predictor-dependent mix-
ing probability measures {Gx : x ∈ X} [73]. Some of the earliest developments
on predictor-dependent DP models appeared in [22], who defined dependence
across related random measures by introducing a regression for the baseline
measure of marginally DP random measures. A more flexible construction was
proposed by [59], called the dependent Dirichlet process (DDP). The key idea
behind the DDP is to create a set of marginally DP random measures and to
introduce dependence by modifying the stick-breaking representation of each el-
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ement in the set. Specifically, [59] generalized the stick-breaking representation
by assuming Gx(B) =

∑∞
i=1 πi(x)δθi(x)(B), B ∈ B(Θ), where the point masses

θi(x), i ∈ N, are independent stochastic processes with index set X , and the
weights take the form πi(x) = Vi(x)

∏
j<i[1 − Vj(x)], with Vi(x), i ∈ N, be-

ing independent stochastic processes with index set X and Beta(1,M) marginal
distribution. We refer the reader to [6] for a formal definition of the DDP.

Other extensions of the DP for dealing with related probability distributions
include the DPM mixture of normals model for the joint distribution of the
response and predictors [64], the hierarchical mixture of DPM [67], the predictor-
dependent weighted mixture of DP [29], the kernel-stick breaking process [28],
the probit-stick breaking processes [21, 76], the cluster-X model [65], the PPMx
model [68], and the general class of stick-breaking processes [6], among many
others. Dependent neutral to the right processes and correlated two-parameter
Poisson-Dirichlet processes have been proposed by [30] and [56], respectively, by
considering suitable Lévy copulas. The general class of dependent normalized
completely random measures has been discussed, for instance, in [57]. Based on a
different formulation of the conditional density estimation problem, [81] and [43]
proposed alternatives to convolutions of dependent stick-breaking approaches.

All of the dependent BNP approaches described previously have focused on
responses and parameters defined on Euclidean spaces, and are not appropriate
for spaces in which the Euclidean geometry is not valid. A relevant example of
this situation arises in statistical shape analysis, where one of the main spaces
of interest is Kendall’s shape space [48], which can be viewed as the quotient
of a Riemannian manifold. Kendall’s space is a natural underlying space for
applications in different areas, including morphometry [23], meteorology [61],
archeology [27] and genetics [17]. In these contexts, to employ standard statis-
tical procedures that do not take into account the geometrical properties of the
underlying spaces can lead to wrong inferences, which explains the increasing
interest in the development of statistical models for more general Polish spaces.

To date, the development of statistical procedures for non Euclidean spaces
has focused on the problem of mean estimation [see, e.g., 14, 15, 16], density
estimation [see, e.g., 70, 11, 12], and on the regression problem for Euclidean re-
sponses based on non Euclidean predictors [see, e.g., 71, 13]. [14, 15, 16] studied
the problem of nonparametric estimation of a location parameter on a Rieman-
nian manifold, by means of the concept of the Fréchet mean [37], and derive its
asymptotic distribution. [70] studied the density estimation problem on a com-
pact Riemannian manifold, by adapting kernel-type techniques. [11, 12] consid-
ered the problem of density estimation for data supported on a complete metric
space from a BNP point of view. [71] considered the nonparametric regression
problem for a real-valued response and with predictors supported on a closed
Riemannian manifold. [13] studied the problem of prediction of a categorical
response based on predictors supported on a general manifold. Related to these
problems, the authors in [18] construct a suitable prior for real-valued func-
tions defined on compact manifolds, and study the asymptotic behavior of the
posterior distribution in problems of mean estimation, density estimation, and
standard regression.
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This work has three main parts. In the first, we generalize the definition of
a DDP, originally proposed on Euclidean spaces, to more general Polish spaces
and establish its basic properties. It is important to stress that the existing
DDP definitions given in [59, 60] and [6] cannot be directly extended to more
general spaces because they make use of the concept of cumulative distribution
function. In our definition, the existence of a DDP in a general Polish space is
justified by the extension of Kolmogorov’s consistency theorem proposed in [69].
In Section 3 we define the DDP for general Polish spaces, and introduce some
parsimonious variants that share similar properties. In Section 4.1 we provide
sufficient conditions under which the sample paths of a DDP are continuous
under the weak, strong and uniform topologies on the space of probability mea-
sures. In Section 4.2 we study the support of a DDP under different topologies,
aiming to provide sufficient conditions under which a DDP has full support,
or at least contains a sufficiently large set of functions of interest. Finally, in
Section 4.3 we provide conditions under which a measure of association is con-
tinuous.

In the second part, we focus on DDP mixture models, providing sufficient con-
ditions under which they have a continuous density with respect to a base mea-
sure, and have appealing properties regarding continuity, support, association
structure, and consistency under i.i.d. sampling. Section 5 introduces a frame-
work to study DDP mixtures and its variants, with a focus on the regularity
of the probability density of the mixture. In Section 6.1 we provide sufficient
conditions for a DDP mixture model to have continuous sample paths. In par-
ticular, the strong regularizing properties of a mixture allows us to show that
under mild conditions the sample paths are almost surely uniformly continuous.
In Section 6.2 we leverage the fact that the mixtures we study have a density
to study the support in the topologies induced by the Hellinger and L∞ dis-
tances, and by the Kullback-Leibler divergence. In Section 6.3 we briefly discuss
the regularity of some measures of association. In Section 6.4 we discuss the
conditions under which the mixture satisfies posterior consistency.

Finally, in Section 7 we discuss nontrivial examples where the response lies
on a non Euclidean space. The first example deals with circular data, whereas
the second deals with shape analysis in Kendall’s shape space. In both cases we
present explicit constructions and show how they satisfy our sufficient conditions
for the models to have appealing theoretical properties. We conclude the article
with some brief remarks.

2. Preliminaries

In this work, we suppose that we observe regression data {(xi, yi) : i = 1, . . . , n},
where xi ∈ X is a p-dimensional vector of exogenous predictors. Notice that the
exogeneity assumption allows us to treat the problem of conditional density
estimation as a fully non-parametric regression problem, regardless of the data
generating mechanism of the predictors, that is, to treat predictors as fixed by
design even though they are randomly generated [see, e.g. 4, 5, 36].
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We let (Ω,F ,P) be a complete probability space. If S is a measurable space
and X : Ω → S is a S-valued random variable, we usually write Xω or X(ω)
to denote its value at ω. If {Xt : t ∈ T} is a process of S-valued random
variables on T we write Xω

t := Xt(ω) := X(t, ω) to denote its values at (t, ω).
In particular, outcomes always appear as superscripts and as the last argument
of a function.

If X ,Y are two sets we denote a generic element with the same letter in
lowercase boldface. If F : X × Y → S then we write Fx for a fixed x ∈ X
to denote the function Fx : Y → S defined as Fx(y) = F (x,y). Similarly, we
denote Fy for fixed y ∈ Y the function defined as Fy(x) = F (x,y).

We recall that a Polish space is a separable and completely metrizable topo-
logical space. The sets X ,Y , and Θ are always assumed to be Polish spaces,
with complete metrics dX , dY , and dΘ, respectively.

The set Θ represents the set of parameters onto which we define a prior.
Hence, we endow Θ with the Borel σ-algebra B(Θ) and let P(Θ) be the space
of probability measures on (Θ,B(Θ)). Since Θ is Polish, the elements of P(Θ)
are regular [24], i.e., for any P ∈ P(Θ) and B ∈ B(Θ) we have that

P (B) = inf{P (U) : B ⊂ U, U open},
P (B) = sup{P (K) : B ⊃ K, K compact}.

In particular, finite collections of elements in P(Θ) are always tight. We let
Cb(Θ) be the space of real-valued, bounded continuous functions on Θ endowed
with the norm ‖f‖C := sup{|f(θ)| : θ ∈ Θ}.

If n is a positive integer, we let [n] := {1, . . . , n}. Finally, we use the ab-
breviations “a.s.” for almost surely, “a.e.” for almost everywhere, and “i.i.d.” for
independent and identically distributed.

3. Dependent Dirichlet processes on Polish spaces

Dependent Dirichlet processes (DDP) are a class of P(Θ)-valued stochastic pro-
cesses on X defined on (Ω,F ,P). If {Gx : x ∈ X} is a DDP then

Gω
x =

∞∑
i=1

πω
i,xδθω

i,x
,

a.s. for a sequence ({πi,x : x ∈ X})i∈N of processes such that πi,x ≥ 0 for every
i ∈ N and x ∈ X and

∑
i∈N

πi,x ≡ 1 a.s., and a sequence ({θi,x : x ∈ X})i∈N of
i.i.d. Θ-valued processes. The distinctive feature of the DDP is that the processes
({πi,x : x ∈ X})i∈N are defined in terms of a stick-breaking process. Let ({Vi,x :
x ∈ X})i∈N be a sequence of i.i.d. processes with Vi,x ∼ Beta(1, αx) for some
αx ∈ R+ and any x ∈ X . Then, the stick-breaking process asociated to ({Vi,x :
x ∈ X})i∈N is

πω
i,x :=

{
V ω
i,x i = 1,

V ω
i,x

∏i−1
j=1(1 − V ω

j,x) i > 1.
(2)

We now generalize the definition in [6] to Polish spaces.
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Definition 3.1. A dependent Dirichlet process (DDP) with parameters
(ΨV ,ΨΘ), denoted as GX ∼ DDP(ΨV ,ΨΘ), is a P(Θ)-valued stochastic process
GX = {Gx : x ∈ X} defined on (Ω,F ,P) such that:

1. There exists a sequence ({Vi,x : x ∈ X})i∈N of separable i.i.d. processes,
with a law characterized by a finite-dimensional parameter ΨV , and with
marginal distribution Beta(1, αx) for some αx ≥ 0 for any x ∈ X .

2. There exists a sequence ({θi,x : x ∈ X})i∈N of i.i.d. processes, with a law
characterized by a finite-dimensional parameter ΨΘ, and with marginal
distribution G0

x ∈ P(Θ) for any x ∈ X .
3. There exists a null set N ⊂ Ω such that for every x ∈ X , B ∈ B(Θ), and

ω ∈ Ω \N ,

Gω
x(B) =

∞∑
i=1

πω
i,xδθω

i,x
(B), (3)

where the sequence ({πi,x : x ∈ X})i∈N is given by the stick-breaking
process in (2).

It is of interest to determine when a DDP can be constructed from a pre-
scribed αX := {αx : x ∈ X} and G0

X := {G0
x : x ∈ X}. First, we can construct

a sequence of processes ({θi,x : x ∈ X})i∈N satisfying Condition 2 in Defini-
tion 3.1 from a prescribed G0

X by constructing first a process {θx : x ∈ X}
with marginals {G0

x : x ∈ X} using an extension of Kolmogorov’s consistency
theorem to Polish spaces [see Section III.3 in 69]. Remark that in this case the
separability of the resulting process is not required.

Second, we can construct a sequence of processes ({Vi,x : x ∈ X})i∈N sat-
isfying Condition 1 in Definition 3.1 from a prescribed αX using Kolmogorov’s
consistency theorem and a consistent family of copula functions as in [6]. How-
ever, Definition 3.1 requires this process to be in addition separable. This ensures
that the set of outcomes for which the left-hand side in (3) is not a probability
measure is a measurable set. In fact, if for every x ∈ X we define the event

Nx :=
{
ω ∈ Ω :

∞∑
i=1

πω
i,x < 1

}
=

{
ω ∈ Ω :

∞∑
i=1

log(E(1 − V ω
i,x)) = −∞

}
,

then the left-hand side in (3) fails to be a probability measure if

ω ∈
⋃
x∈X

Nx.

However, the above set may not be measurable. The separability of the processes
ensures there exists a countable set XV ⊂ X such that⋃

x∈X
Nx =

⋃
x∈XV

Nx.

Therefore,

P

( ⋃
x∈X

Nx

)
≤

∑
x∈XV

P(Nx),
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whence it suffices to ensure P(Nx) = 0 for every x ∈ XV . Since any stochastic
process on a separable space with a.s. continuous sample paths is separable, an
alternative, standard way to build a separable process on X with Beta(1, αx)
marginal distributions is to transform a real-valued process over X with a.s.
continuous sample paths using the quantile function of the beta distribution [59,
60]. Specifically, let {Zx : x ∈ X} be a real-valued stochastic process with a.s.
continuous sample paths, and with continuous cumulative distribution function
FZ,x at x ∈ X . Let FB,x denote the cumulative distribution function of a
Beta(1, αx) distribution. Then, the process {V ω

x : x ∈ X} defined as

V ω
x := F−1

B,x(FZ,x(Zx)),

is separable, has a.s. continuous sample paths, and has marginal distribution
Beta(1, αx). The choice for the base process {Zx : x ∈ X} depends on the
structure of X . When it is a Gaussian process, there are known conditions
under which it admits a modification with a.s. continuous sample paths. For
example, Theorem 2.3.1 in [53] and [72] provide sufficient conditions for the
existence of such a modification when X is compact. Another possibility when
X is a manifold is to use diffusion processes [41] or processes based on heat
kernels [18].

Although the DDP is flexible, it is of interest to define parsimonious variants
for which either the support points or the weights are independent of x. These
parsimonious versions should be understood not only as simplifications of the
DDP, but also as useful models with comparative advantages over the DDP that
make them suitable in specific settings. The first parsimonious version removes
the dependence of the weights on x.

Definition 3.2. A single-weights dependent Dirichlet process (wDDP) with pa-
rameters (α,ΨΘ), denoted as GX ∼ wDDP(α,ΨΘ), is a P(Θ)-valued stochastic
process GX = {Gx : x ∈ X} on X and defined on (Ω,F ,P) such that:

1. There exists a sequence {Vi}i∈N of i.i.d. processes, with a common law
Beta(1, α) for some α ≥ 0.

2. There exists a sequence ({θi,x : x ∈ X})i∈N of i.i.d. processes, with a
law characterized by a finite-dimensional parameter ΨΘ, and marginal
distribution G0

x ∈ P(Θ) for any x ∈ X .
3. There exists a null set N ⊂ Ω, such that for every x ∈ X , B ∈ B(Θ), and

ω ∈ Ω \N ,

Gω
x(B) =

∞∑
i=1

πω
i δθω

i,x
(B),

where the sequence {πi}i∈N of random variables is defined as

πω
i :=

{
V ω
i i = 1,

V ω
i

∏i−1
j=1(1 − V ω

j ) i > 1.
(4)

One of the advantages of the single-weights DDP is that it avoids any diffi-
culty that may arise in the construction of a separable process {Vi,x : x ∈ X}
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with Beta(1, αx) marginals for x ∈ X . However, it implicitly assumes that we
may still be able to construct a process {θx : x ∈ X} with prescribed marginals
{G0

x : x ∈ X}. Hence, this variant is desirable when the structure of X is
complex relative to that of Θ.

The second parsimonious variant of the DDP relaxes the dependence of the
support points on x.

Definition 3.3. A single-atoms dependent Dirichlet process (θDDP) with pa-
rameters (ΨV , G

0), denoted as GX ∼ θDDP(ΨV , G
0), is a P(Θ)-valued stochas-

tic process GX = {Gx : x ∈ X} on X and defined on (Ω,F ,P) such that

1. There exists a sequence ({Vi,x : x ∈ X})i∈N of separable i.i.d. processes,
with a law characterized by a finite-dimensional parameter ΨV , and with
marginal distribution Beta(1, αx) for some αx ≥ 0 for any x ∈ X .

2. There exists a sequence {θi}i∈N of i.i.d. Θ-valued random variables, with
common law G0 ∈ P(Θ).

3. There exists a null set N ⊂ Ω, such that for every x ∈ X , B ∈ B(Θ), and
ω ∈ Ω \N ,

Gω
x(B) =

∞∑
i=1

πω
i,xδθω

i
(B),

where the sequence ({πi,x : x ∈ X})i∈N is given by (2).

A single-atoms DDP can be easier to construct in situations where the struc-
ture of Θ is complex. As matter of fact, the construction of a stochastic process
{θx : x ∈ X} can be difficult for general spaces X and Θ, particularly when
it needs to satisfy additional properties, such as a.s. continuity of its sample
paths. Some specific constructions are available in particular cases of interest.
For example, if Θ is Kendall’s planar shape space [see, e.g. 49], diffusion pro-
cesses have been proposed under two different approaches: (i) directly on the
landmarks, on the space of configurations, which is referred to as Euclidean
diffusion of shape [see, e.g., 48, 50, 51, 54], and (ii) directly on Θ, via infinites-
imal generators [see, e.g., 55, 52, 3, 38] and the solution of partial differential
equations [see, e.g., 41].

Neither the DDP nor its variants require the continuity of the sample paths
of the process ({Vi,x : x ∈ X})i∈N nor those of ({θi,x : x ∈ X})i∈N. However,
imposing this additional condition endows the DDP and its variants of some
desirable properties that are the focus of this work.

Definition 3.4. We define the following variants.

1. A continuous parameter DDP is a DDP such that both the separable i.i.d.
processes ({Vi,x : x ∈ X})i∈N and the i.i.d. processes ({θi,x : x ∈ X})i∈N

have a.s. continuous sample paths.
2. A continuous parameter wDDP is a wDDP such that the i.i.d. processes

({θi,x : x ∈ X})i∈N have a.s. continuous sample paths.
3. A continuous parameter θDDP is a θDDP such that the separable i.i.d.

processes ({Vi,x : x ∈ X})i∈N have a.s. continuous sample paths.
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4. Properties of dependent Dirichlet processes on Polish spaces

4.1. Continuity

The continuity of the sample paths of a process is an important property that
also plays a critical role in statistical applications. On one hand, it allows us to
determine suitable topologies for the spaces containing the sample paths. On the
other, it ensures that the process will be able to borrow strength across sparse
data sources regarding the predictors. In fact, continuity eliminates the need for
replicates of the responses at every value of the predictors to obtain adequate
estimates of the predictor-dependent probability distributions [see, e.g., 7, 82].

For the DDP and its variants, the sample paths are functions from X into
P(Θ) and their continuity depends on the topologies on these spaces. Although
we always assume that X is endowed with its metric topology, there are several
standard choices for the topology on P(Θ). Although we mostly focus on the
weak topology, we will also study the effect of considering the strong (or weak-*)
and uniform (or norm, or total variation) topologies on P(Θ).

For the weak topology on P(Θ) we denote CW (X ,P(Θ)) the space of weakly
continuous functions from X into P(Θ). These are the functions P : X → P(Θ)
such that for any f ∈ Cb(Θ) the function

F (x) =
∫

Θ
f(θ)dPx(θ),

is continuous on X . The following theorem shows that when the underlying
stochastic processes have a.s. continuous sample paths, the DDP and its variants
have a.s. weakly continuous sample paths. We defer its proof to Appendix A.1.1.

Theorem 4.1. Let GX be a P(Θ)-valued process. Suppose that GX is a continu-
ous parameter DDP, a continuous parameter wDDP, or a continuous parameter
θDDP. Then, for a.e. ω ∈ Ω,

lim
x→x0

∫
f(θ)dGω

x(θ) =
∫

f(θ) dGω
x0

(θ),

∀x0 ∈ X and f ∈ Cb(Θ).

Consequently, to construct a DDP or any of its variants with a.s. weakly
continuous sample paths it suffices to construct suitable continuous processes
on X . As discussed earlier, a process {Vx : x ∈ X} with the desired properties
can be constructed from a real-valued base process {Zx : x ∈ X} on X with
a.s. continuous sample paths which can be, for instance, a suitable Gaussian
process.

To our knowledge, there is no similar, standard way to construct a process
{θx : x ∈ Θ} with the desired properties for general X and Θ. When X =
R

d there are well-known sufficient conditions that ensure the there exists a
modification of a Θ-valued process {θx : x ∈ X} with a.s. continuous sample



2074 A. Iturriaga et al.

paths [46, Theorem 2.23]. This modification exists if there exists exponents
α > 0, γ > 0, and a constant C > 0, such that, ∀x,x′ ∈ X ,

E(dΘ(θx,θx′)α) ≤ CdX (x,x′)d+γ , (5)

where dΘ is a complete metric on Θ. This result can be applied to a Polish space
X that is homeomorphic to R

d for some d.
When Θ is a Riemannian manifold, processes with a.s. continuous sample

paths can be defined through diffusion processes [see, e.g., 41]. When Θ is also
a quotient space Θ = A/G for a locally compact space A and a group G, then
a Θ-valued process with a.s. continuous sample paths can be constructed as
follows. Let Q : A → Θ be the canonical quotient map and let A : X × Ω → A
be a process with a.s. continuous sample paths. Since the canonical quotient
map is continuous, the process {Q(A(x)) : x ∈ X} has a.s. continuous sample
paths.

As mentioned earlier, the variants of the DDP should not be thought only
as simplifications of the DDP but also as processes with distinct properties.
Endowing P(Θ) with the strong topology already allows us to distinguish the
properties of these processes. Let CS(X ,P(Θ)) be the vector space of strongly
continuous functions from X into P(Θ). These are the functions P : X → P(Θ)
such that for any f ∈ L∞(Θ) the function

F (x) =
∫

Θ
f(θ)dPx(θ),

is continuous on X . The following theorem shows that, under the same hy-
pothesis of Theorem 4.1, the θDDP has a.s. strongly continuous sample paths.
Although this is really a corollary of Theorem 4.4, we present this statement
independently for clarity.

Theorem 4.2. Let GX be a P(Θ)-valued process. Suppose that GX is a con-
tinuous parameter θDDP. Then, for a.e. ω ∈ Ω,

lim
x→x0

∫
f(θ)dGω

x(θ) =
∫

f(θ) dGω
x0

(θ),

∀x0 ∈ X and f ∈ L∞(Θ).

A natural question is whether the DDP or the wDDP can have a.s. strongly
continuous sample paths under similar assumptions. To our knowledge, this
cannot be the case unless substantially stronger conditions are imposed on these
processes. We defer the proof of the following theorem to Appendix A.1.2.

Theorem 4.3. Let GX be a P(Θ)-valued process. Suppose that GX is a con-
tinuous parameter DDP or a continuous parameter wDDP. Let x0 ∈ Ω. If for
a.e. ω ∈ Ω we have that

lim
x→x0

∫
f(θ)dGω

x(θ) =
∫

f(θ)dGω
x0

(θ),

∀ f ∈ L∞(Θ), then for a.e. ω ∈ Ω there exists an open neighborhood Uω ⊂ X of
x0 and at least one iω ∈ N such that θω

iω is constant on Uω.
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Since for the DDP and wDDP the sequence of processes ({θi,x : x ∈ X})i∈N

is independent and identically distributed, the above implies that when the
process has a.s. strongly continuous paths at x0 the process {θ1,x : x ∈ X}
must have a.s. constant sample paths near x0. Although this suggests that the
main issue is the behavior of the atoms themselves, the proof shows that the
main issue is the independence between the processes ({Vi,x : x ∈ X})i∈N and
({θi,x : x ∈ X})i∈N. We conjecture that for the DDP and wDDP to have a.s.
strongly continuous paths, it is necessary to introduce dependence between these
processes.

Since the DDP and wDDP do not have a.s. strongly continuous paths, it is
clear they will not have a.s. continuous paths with respect to stronger topologies
on P(Θ). However, for the θDDP we can strengthen the topology on P(Θ) while
preserving this property. Consider the uniform topology on P(Θ) and denote as
CU (X ,P(Θ)) the set of uniformly continuous functions from X into P(Θ). The
total variation norm for any signed finite measure Q on (Θ,B(Θ)) is defined as

‖Q‖TV := sup
{∫

f(θ)dQ(θ) : f ∈ L∞(Θ), ‖f‖L∞ ≤ 1
}
.

Then the elements of CU (X ,P(Θ)) are the functions P : X → P(Θ) such that
for any x0 ∈ X

lim
x→x0

‖Px − Px0‖TV = 0.

By choosing indicator functions, it is clear the above is equivalent to

lim
x→x0

sup
B∈B(Θ)

|Px(B) − Px0(B)| = 0,

∀x0 ∈ X , which is an expression that is typically more interpretable in statis-
tical applications. For the uniform topology we can show that, under the same
assumptions of Theorem 4.2, the θDDP has a.s. uniformly (or norm) continuous
sample paths. This is also known as continuity in total variation. Its proof is
deferrered to Appendix A.1.3.

Theorem 4.4. Let GX be a continuous parameter θDDP. Then, for a.e. ω ∈ Ω,

lim
x→x0

‖Gω
x −Gω

x0
‖TV = 0,

∀x0 ∈ X .

4.2. Support

The sample paths of the DDP and its variants are elements of suitable spaces
of functions from X into P(Θ). It is of interest to characterize the size, in
a suitable sense, of the set containing the sample paths. This leads us to the
concept of support. A large support is an important and basic property that any
BNP model should possess. In fact, it is a minimum requirement, and almost a
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“necessary” property, for a BNP model to be considered “nonparametric.” This
property is also important because it typically is a necessary condition for the
consistency of the posterior distribution. In such settings, the full support of
the prior implies that the prior probability model is flexible enough to generate
sample paths sufficiently close to any element of the parameter space.

Given a topology T on P(Θ)X the support of a process is the smallest closed
set, in the sense of set inclusion, such that the probability it contains a sample
path is equal to one. We say it has full support, or that the support is full, if
it is equal to P(Θ)X . When the support is not full, its complement is a non-
empty open set. In particular, it contains a point with a neighborhood that is
disjoint from the support for which the probability of containing a sample path
is zero. Consequently, to prove that a process has full support with respect to
T it suffices to show that the probability that any element of a neighborhood
basis contains a sample path is positive.

We characterize the support of the DDP and its variant for common choices
of T starting from the weakest. We consider first the (weak) product topology,
or pointwise topology [47], on P(Θ)X . For reasons that shall be clear soon,
we call it the product-weak topology. In this topology, a neighborhood basis at
P 0 ∈ P(Θ)X is given by sets of the form{

P ∈ P(Θ)X :
∣∣∣∣
∫

Θ
fi,j(θ)dPxj

(θ) −
∫

Θ
fi,j(θ)dP 0

xj
(θ)

∣∣∣∣ < εi,j , i, j ∈ [n]
}
,

for ε1,1, . . . , εn,n > 0, x1, . . . ,xn ∈ X and f1,1, . . . , fn,n ∈ Cb(Θ). The following
theorem shows the DDP and its variants have full support with respect to this
topology. We defer its proof to Appendix A.2.1.

Theorem 4.5. Let GX be a P(Θ)-valued process on X . Suppose that one of the
following assertions holds.

1. GX ∼ DDP(ΨV ,ΨΘ), for any x1, . . . ,xn ∈ X the law of the random
vector

(θ1,x1 , . . . ,θ1,xn),
has full support on Θn, and the law of the random vector

(V1,x1 , . . . , V1,xn),

has full support on [0, 1]n.
2. GX ∼ wDDP(α,ΨΘ), for any x1, . . . ,xn ∈ X the law of the random

vector
(θ1,x1 , . . . ,θ1,xn),

has full support on Θn, and the law of the random variable V1 has full
support on [0, 1].

3. GX ∼ θDDP(ΨV , G
0), G0 has full support on Θ, and for any x1, . . . ,xn ∈

X the law of the random vector

(V1,x1 , . . . , V1,xn),

has full support on [0, 1]n.
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Then for any P 0 ∈ P(Θ)X we have that

P

({
ω ∈ Ω :

∣∣∣∣
∫

Θ
fi,j(θ)dGω

xj
(θ) −

∫
Θ
fi,j(θ)dP 0

xj
(θ)

∣∣∣∣ < εi,j , i, j ∈ [n]
})

> 0,

for ε1,1, . . . , εn,n > 0, x1, . . . ,xn ∈ X and f1,1, . . . , fn,n ∈ Cb(Θ). In conse-
quence, the process has full support on P(Θ)X endowed with the product-weak
topology.

The product-weak topology is often too coarse in statistical applications. The
topology we consider next is the compact-open topology on P(Θ)X [47]. In this
topology, a neighborhood basis at P 0 ∈ P(Θ)X is given by sets of the form{

P ∈ P(Θ)X : sup
x∈K

∣∣∣∣
∫

Θ
fi(θ)dPx(θ) −

∫
Θ
fi(θ)dP 0

x(θ)
∣∣∣∣ < εi, i ∈ [n]

}
, (6)

for ε1, . . . , εn > 0, f1, . . . , fn ∈ Cb(Θ) and K ⊂ X compact. As this topology is
stronger, it is unlikely the DDP and its variants will still have full support on
P(Θ)X . For this reason, we determine whether the support contains a subset of
P(Θ)X of functions of interest. If the weak topology on P(Θ) is of interest, it
becomes natural to consider whether the support contains the weakly continuous
functions from X into P(Θ).

If the support of a process does not contain CW (X ,P(Θ)) then there is at
least one P 0 ∈ CW (X ,P(Θ)) in the complement of the support. Since this set
is open, it contains at least one set of the form (6). The following result shows
that, under mild conditions, the support of both the DDP and θDDP contains
CW (X ,P(Θ)). We defer its proof to Appendix A.2.2.

Theorem 4.6. Let GX ∼ DDP(ΨV ,ΨΘ) or GX ∼ θDDP(ΨV , G
0). Suppose

that the following conditions hold:

1. The processes ({Vi,x : x ∈ X})i∈N have a.s. continuous sample paths.
2. For any ε > 0, for any continuous function h : X → [0, 1], and for any

K ⊂ X compact we have that

P

({
ω ∈ Ω : sup

x∈K
|V ω

1,x − h(x)| < ε

})
> 0. (7)

3. If GX ∼ θDDP(ΨV , G
0), then G0 has full support on Θ.

4. If GX ∼ DDP(ΨV ,ΨΘ), then for any open U ∈ B(Θ) and K ⊂ X compact
we have that

P({ω ∈ Ω : θω
1,x ∈ U, ∀x ∈ K}) > 0. (8)

Then, for any P 0 ∈ CW (X ,P(Θ)) we have that

P

({
ω ∈ Ω : sup

x∈K

∣∣∣∣
∫

Θ
fi(θ)dGω

x(θ) −
∫

Θ
fi(θ)dP 0

x(θ)
∣∣∣∣ < εi, i ∈ [n]

})
> 0,

for ε1, . . . , εn > 0, f1, . . . , fn ∈ Cb(Θ) and K compact. In consequence, the sup-
port of the process in P(Θ)X endowed with the compact-weak topology contains
CW (X ,P(Θ)).
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To our knowledge, the wDDP does not seem to be flexible enough for Theo-
rem 4.6 to hold. Briefly, this is because our proof method relies on approximating
simultaneously a finite collection of continuous functions h1, . . . , hn : X → [0, 1]
with 1− ε < h1 + . . .+hn ≤ 1 for some ε > 0 over a compact K ⊂ X using con-
tinuous sample paths of the weights of the process. In contrast to the DDP and
θDDP, the wDDP does not allow this, as every realization of the weights of the
process are a.s. constant. This suggests the DDP and θDDP should be preferred
when functions of the form x → P 0

x(A) for A ∈ B(Θ) may vary substantially
over any compact K ⊂ X .

To construct a process {Vx : x ∈ X} satisfying (7) we use the same construc-
tion outlined in Section 3. Let {Zx : x ∈ X} be a Gaussian process with mean
function μ and covariance kernel σ and a.s. continuous sample paths. We define
at any given x ∈ X the functions

F−1
B,αx

(t) = 1 − (1 − t)1/αx and FZ,x(z) = Φ
(
z − μx

σx,x

)
.

Observe that
|F−1

B,αx
(u) − F−1

B,αx
(v)| ≤ 1

αx
|u− v|.

If we let Vx = F−1
B,αx

◦ FZ,x(Zx) then Vx has a.s. continuous sample paths and
Beta(1, αx) marginal distributions. Let K ⊂ X be compact, and let h : K →
(0, 1) be continuous. Then

|Vx − h(x)| ≤ 1
αx

|FZ,x(Zx) − FB,αx(h(x))| ≤ 1√
2παxσx,x

|Zx − h(x)|,

where h = F−1
Z,x ◦ FB,αx ◦ h. Note that if αx, μx and σx,x are continuous, then

so is h : X → R. Hence, if there exists c > 0 such that
√

2παxσx,x ≥ c, then

sup
x∈K

|Vx − h(x)| ≤ 1
c

sup
x∈K

|Zx − h(x)|.

Therefore, it suffices to choose a process Zx for which the event

P

{
ω ∈ Ω : sup

x∈K
|Zω

x − h(x)| < ε

}
> 0,

for any continuous function h : K → R. In other words, for every compact K the
support of the Gaussian process restricted to K in the supremum norm should
contain the space of continuous functions on K. A sufficient condition for this
is that the reproducing kernel Hilbert space (RKHS) associated to the process
is dense on the space of continuous functions. For example, when the space X
can be isometrically embedded in a Hilbert space [77] we can use the covariance
kernel

σx1,x2 = σ0e
−dX (x1,x2)2/τ2

.
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The induced RKHS spans the space of all smooth functions if τ > 0 is allowed to
vary freely [19]. In addition, although there is evidence no RKHS can contain the
space of all continuous functions on a compact set [80], universal kernels generate
Hilbert spaces that are dense in the space of continuous functions [62, 20].

It is natural to characterize the support of the DDP or its variants in stronger
topologies. One such topology arises when we endow P(Θ) with the strong
topology. In this topology, a neighborhood basis at P 0 ∈ P(Θ) is given by sets
of the form{

P ∈ P(Θ) :
∣∣∣∣
∫

Θ
fi(θ)dP (θ) −

∫
Θ
fi(θ)dP 0(θ)

∣∣∣∣ < εi, i ∈ [n]
}
,

for ε1, . . . , εn > 0 and f1, . . . , fn ∈ L∞(Θ). Hence, we consider the (weak)
product topology on P(Θ)X when P(Θ) is endowed with the strong topology.
We call this the product-strong topology. In this topology, a neighborhood basis
at P 0 ∈ P(Θ)X is given by sets of the form{

P ∈ P(Θ)X :
∣∣∣∣
∫

Θ
fi,j(θ)dPxj (θ) −

∫
Θ
fi,j(θ)dP 0

xj
(θ)

∣∣∣∣ < εi,j , i, j ∈ [n]
}
,

for ε1,1, . . . , εn,n > 0, x1, . . . ,xn ∈ X and f1,1, . . . , fn,n ∈ L∞(Θ). By choosing
simple functions, it becomes clear that the sets{

P ∈ P(Θ)X : |Pxj
(Bi) − P 0

xj
(Bi)| ∈ εi,j , i, j ∈ [n]

}
,

for x1, . . . ,xn ∈ X , ε1,1, . . . , εn,n > 0 open, and B1, . . . , Bn ∈ B(Θ) also form a
neighborhood basis at P 0.

Theorem 4.2 suggests that neither the DDP nor its variants will have full
support on the product-strong topology. However, we are still able to character-
ize some key features of their support. We first introduce the following technical
definition.

Definition 4.7. Let GX be a P(Θ)-valued random process on X .

1. For GX ∼ DDP(ΨV ,ΨΘ) we let

P(Θ)X |GX :=
{
P ∈ P(Θ)X : ∀x ∈ X : Px � G0

x

}
.

2. For GX ∼ wDDP(α,ΨΘ) we let

P(Θ)X |GX :=
{
P ∈ P(Θ)X : ∀x ∈ X : Px � G0

x

}
.

3. For GX ∼ θDDP(ΨV , G
0) we let

P(Θ)X |GX :=
{
P ∈ P(Θ)X : ∀x ∈ X : Px � G0} .

Therefore, we can associate to a DDP or to any of its variants a specific set
of functions from X into P(Θ). The following theorem shows that, in fact, the
support of DDP and its variants contain this set. Remark that the hypotheses
are essentially the same as those of Theorem 4.5. We defer the proof of the
theorem to Appendix A.2.3
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Theorem 4.8. Let GX be a P(Θ)-valued process on X . The following assertions
are true.

1. If GX ∼ DDP(ΨV ,ΨΘ) and, for any x1, . . . ,xn ∈ X , the law of the
random vector

(θ1,x1 , . . . ,θ1,xn),

has full support on Θn and the law of the random vector

(V1,x1 , . . . , V1,xn),

has full support on [0, 1]n, then the support of GX in the product-strong
topology contains P(Θ)X |GX .

2. If GX ∼ wDDP(α,ΨΘ) and, for any x1, . . . ,xn ∈ X , the law of the
random vector

(V1,x1 , . . . , V1,xn),

has full support on [0, 1]n, then the support of GX in the product-strong
topology contains P(Θ)X |GX .

3. If GX ∼ θDDP(ΨV , G
0), G0 has full support on Θ, and, for any x1, . . . ,xn

∈ X , the law of the random vector

(θ1,x1 , . . . ,θ1,xn),

has full support on [0, 1]n, then the support of GX in the product-strong
topology contains P(Θ)X |GX .

When P(Θ) is endowed with the strong topology, we can consider the asso-
ciated compact-open topology on P(Θ)X . In this topology, the neighborhood
basis at any P 0 ∈ P(Θ)X have the form (6) for f1, . . . , fn ∈ L∞(Θ).

In this case, the functions of interest are strongly continuous functions from
X into P(Θ). In contrast to Theorem 4.6 we cannot show that the support of
the DDP nor its variants contains this set. However, we can show the support
contains the intersection between CS(X ,P(Θ)) and the surrogate functions as-
sociated to a DDP or θDDP. To our knowledge, this result does not hold for the
w DDP for the same reasons discussed after Theorem 4.6. We defer the proof
of the following result to Appendix A.2.4.

Theorem 4.9. Let GX ∼ DDP(ΨV ,ΨΘ) or GX ∼ θDDP(ΨV , G
0). Suppose

that the following conditions hold:

1. The processes ({Vi,x : x ∈ X})i∈N have a.s. continuous sample paths.
2. For any ε > 0, continuous function h : X → [0, 1] and K ⊂ X compact we

have that

P

({
ω ∈ Ω : sup

x∈K
|V ω

1,x − h(x)| < ε

})
> 0.

3. If GX ∼ θDDP(ΨV , G
0), then G0 has full support on Θ.
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4. If GX ∼ DDP(ΨV ,ΨΘ), then there exists a measure G0 on Θ such that
G0

x � G0 for every x ∈ X and that for any A ∈ B(Θ) and K ⊂ X compact
we have that

G0(A) > 0 ⇒ P({ω ∈ Ω : θω
1,x ∈ A, ∀x ∈ K}) > 0.

Then, CS(X ,P(Θ)) ∩ P(Θ)X |GX is in the support of GX with respect to the
compact-strong topology.

4.3. Association structure

In statistical applications, it is of interest to study the behavior of the process
{Gx(B) : x ∈ X} for some fixed B ∈ B(Θ). If GX ∼ θDDP(ΨV , G

0) the
hypothesis of Theorem 4.2 ensure that the process {Gx(B) : x ∈ X} has a.s.
continuous sample paths. As a consequence, for any d ∈ N and f : [0, 1]d → R

the process
{f(Gω

x1
(B), . . . , Gω

xd
(B)) : (x1, . . . ,xd) ∈ X d},

has a.s. continuous sample paths. Furthermore, this holds for its expectation

FB(x1, . . . ,xd) := E(f(Gx1(B), . . . , Gxd
(B))). (9)

Some functions of this form that are of statistical interest are the measures of
association. For instance, the Pearson correlation coefficient is given by

ρ(Gx1(B), Gx2(B)) = E(Gx1(B)Gx2(B)) − E(Gx1(B))E(Gx2(B))
E(Gx1(B)2)1/2E(Gx2(B)2)1/2

.

It is clear that it is continuous whenever the denominator is non-zero. Continuity
implies

lim
x→x0

ρ(Gx(B), Gx0(B)) = 1.

On the other hand, if

lim
dX (x,x0)→∞

E(Gx(B), Gx0(B)) = E(Gx(B))E(Gx0(B)),

then it follows that

lim
dX (x,x0)→∞

ρ(Gx(B), Gx0(B)) = 0.

Since the DDP and wDDP may not have a.s. strongly continuous paths, the
above argument does not hold and, with positive probability, the process
{Gx(B) : x ∈ X} may have discontinuous sample paths. In this case, a measure
of association can act as a surrogate to study the regularity of this process, on
average, at any point. The following theorem states that, under mild conditions,
any function of the form (9) is continuous. Its proof is given in Appendix A.3.1.
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Theorem 4.10. Let GX be a P(Θ)-valued process on X and let B ∈ B(Θ).
Suppose that one of the following assertions holds.

1. GX ∼ DDP(ΨV ,ΨΘ) is a continuous sample paths DDP.
2. GX ∼ wDDP(α,ΨΘ) is a continuous sample paths wDDP.

Furthermore, suppose that for any d ∈ N the function

(x1, . . . ,xd) �→ P({ω ∈ Ω : θω
1,x1

∈ B, . . . ,θω
1,xd

∈ B}),

is continuous. Then, for any d ∈ N, and continuous f : [0, 1]d → R, the function
F : X d → R defined as

F (x1, . . . ,xd) := E(f(Gx1(B), . . . , Gxd
(B))).

is continuous.

5. Dependent Dirichlet process mixture models on Polish spaces

Let Y be a Polish space and let νY be a base measure on (Y ,B(Y)). To allow for
flexible statistical models, we also consider a nonempty Polish space Γ represent-
ing mixture parameters. We assume that Γ is endowed with the Borel σ-algebra
B(Γ). The mixture models we study are constructed from a fixed measurable
function ψ : Y × Γ × Θ → R+ such that

∀ (γ,θ) ∈ Γ × Θ :
∫
Y
ψ(y,γ,θ) dνY(y) = 1.

The mixture associated to P ∈ P(Θ)X is the map MP : Γ×X → P(Y), formally
defined as

∀ (γ,θ) ∈ Γ × Θ, B ∈ B(Y) : MP
γ,x(B) :=

∫
B

∫
Θ
ψ(y,γ,θ)dPx(θ)dνY(y).

In particular, a mixture model is a map

M : P(Θ)X → P(Y)Γ×X .

By construction, the measure MP
γ,x is absolutely continuous with respect to νY

for any (γ,x) ∈ Γ ×X . For this reason, we distinguish the set D(Y) ⊂ P(Y) of
probability measures on Y that admit a density with respect to νY . We often
use the identification

D(Y) ∼=
{
p ∈ L1(Y ,B(Y), νY) :

∫
p(y) dνY(y) = 1, p ≥ 0

}
.

In particular, for the mixtures we study we have an explicit form for their
density. For this reason, for P ∈ P(Y) we define the function ρP : Y ×Γ×X →
R+

ρP (y,γ,x) :=
∫

Θ
ψ(y,γ,θ)dPx(θ),
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representing the density of MP
γ,x with respect to νY . We sometimes write

ρPγ,x(y) := ρP (y,γ,x).

Hence, the mixture model M induces a map

ρ : P(Θ)X → D(Y)Γ×X .

Depending on the choice of νY and ψ the mixture model may have regularizing
properties and the density ρP may be, for instance, continuous. The following
lemma shows that, under mild regularity and decay assumptions on ψ, we can
characterize points of continuity of ρP when P : X → P(Θ) is weakly continu-
ous. The proof of the following result is deferred to Appendix A.4.1.

Lemma 5.1. Let P : X → P(Θ) be weakly continuous, and suppose that ψ
is continuous. Let (y0,γ0) ∈ Y × Γ. If for every ε > 0, there exists an open
neighborhood Uy0 ⊂ Y of y0, an open neighborhood Uγ0 ⊂ Γ of γ0, and a
compact KΘ ⊂ Θ, such that

sup{ψ(y,γ,θ) : (y,γ,θ) ∈ Uy0 × Uγ0 ×Kc
Θ} < ε, (10)

then, ρP is continuous on Uy0 × Uγ0 ×X .

The hypotheses imply that near y0 and γ0 the function ψ tends to zero “at
infinity” in θ. To gain insight into the consequences of these assumptions, we
consider the following example. Let Y = [0, 1] be endowed with the standard
topology, and let νY be the Lebesgue measure restricted to [0, 1]. Let

Θ := {(α, β) ∈ R
2 : α, β ≥ 1},

be endowed with the standard subspace topology, and let Γ = ∅. If we consider
the function

ψ(y, α, β) = yα−1(1 − y)β−1

B(α, β) ,

associated to a family of Beta(α, β) probability distributions on [0, 1], then the
mixture model would not satisfy the properties of the lemma. In fact, if y0 = 1/2
we can choose α = β = t to see that, from Stirling’s approximation,

ψ(y0, t, t) = 1
22t−2B(t, t) ∼ 1

22t−2
22t−1/2t2t−1/2
√

2πt2t−1
= 23/2

√
2π

t1/2,

for t � 1. Hence, ψ does not decay over Θ near y0. This can be mitigated by
restricting the values of both α and β to a compact set. A middle ground can be
achieved if, for example, one parameter is constrained to a compact set, whereas
the other becomes a mixture parameter. For example,

Γ := {α ∈ R : 1 ≤ α},

and
Θ := {β ∈ R : 1 ≤ β ≤ βmax}.
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In this case, the resulting mixture model satisfies the desired properties. Fi-
nally, note that failure to satisfy this condition is not always due to a lack of
compactness. For instance, we could consider the model

Θ := {(α, β) ∈ R
2 : α, β ∈ [1/4, 1/2]}.

In this case, not only ψ is discontinuous, but we also have that

lim
y→0

ψ(y, α, β) = ∞,

for any choice of α, β.
Due to the continuity properties of a DDP and its variants, the conclusions

of Lemma 5.1 follow from milder hypotheses. In fact, in this case the same
conclusion follows by only imposing boundedness. We defer the proof of this
result to Appendix A.4.2

Lemma 5.2. Let GX be a P(Θ)-valued process on X and let ψ : Y×Γ×Θ → R+.
Suppose that one of following conditions hold:

1. GX is a continuous parameter DDP with GX ∼ DDP(ΨV ,ΨΘ).
2. GX is a continuous parameter wDDP with GX ∼ wDDP(α,ΨΘ).
3. GX is a continuous parameter θDDP with GX ∼ θDDP(ΨV , G

0).

Furthermore, suppose that ψ is continuous. Let (y0,γ0) ∈ Y ×Γ. If there exists
an open neighborhood Uy0 ⊂ Y of y0, and an open neighborhood Uγ0 ⊂ Γ of γ0,
such that

sup{ψ(y,γ,θ) : (y,γ,θ) ∈ Uy0 × Uγ0 × Θ} < ∞,

then, for a.e. ω ∈ Ω the function ρG
ω is continuous at any (y,γ,x) ∈ Y×Γ×X .

6. Properties of dependent Dirichlet process mixture models on
Polish spaces

6.1. Continuity

Mixture models have a regularizing effect. Under the same assumptions of
Lemma 5.2 the mixture model M maps weakly continuous into uniformly con-
tinuous functions from X into P(Θ). We defer the proof of this result to Ap-
pendix A.5.1.

Theorem 6.1. Suppose that νY is locally finite and that ψ is continuous. Then,
for every P ∈ CW (X ,P(Θ)), the mixture MP is uniformly continuous, i.e.,

lim
(γ,x)→(γ0,x0)

‖MP
γ,x −MP

γ0,x0
‖TV = 0,

for any γ0 ∈ Γ and x0 ∈ X .

As a consequence of this result, the mixture of a continuous parameter DDP
or its variants has uniformly continuous sample paths.
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Corollary 6.2. Let GX be a P(Θ)-valued process on X and let ψ : Y ×Γ×Θ →
R+. Suppose that GX is a continuous parameter DDP, a continuous parameter
wDDP, or a continuous parameter θDDP. Then, for a.e. ω ∈ Ω, the mixture
MGω is uniformly continuous, i.e.,

lim
(γ,x)→(γ0,x0)

‖MGω

γ,x −MGω

γ0,x0
‖TV = 0,

for any γ0 ∈ Γ and x0 ∈ X .

6.2. Support

As in the case of a DDP or any of its variants, it is of interest to determine the
effect that a mixture has on the support. As for the mixture models that we
study the probability measures on Y admit a density with respect to νY , we may
interpret the sample paths of the mixture as elements of D(Y)Γ×X . This allows
us to consider other topologies defined in terms of the density of the mixture
model.

On D(Y) we consider the topology induced by the Hellinger distance

dH(p1, p2)2 := 1
2

∫
Y
(
√

p1(y) −
√
p2(y))2dνY(y) = 1 −

∫
Y

√
p1(y)p2(y)dνY(y),

by the L∞ distance

dL∞(p1, p2) := sup
y∈Y

|p1(y) − p2(y)|,

and by the Kullback-Leibler (KL) divergence

KL(p1‖ p2) :=
∫
Y
p1(y) log

(
p1(y)
p2(y)

)
dνY(y).

for p1, p2 ∈ D(Y).

6.2.1. The Hellinger distance

We define the product-Hellinger topology on D(Y)Γ×X as follows. In this topol-
ogy, a neighborhood basis at P 0 ∈ D(Y)Γ×X is given by sets of the form{

P ∈ D(Y)Γ×X : dH(ρPγi,xi
, ρP

0

γi,xi
) < εi, i ∈ [n]

}
,

for some ε1, . . . , εn > 0, γ1, . . . ,γn ∈ Γ and x1, . . . ,xn ∈ X . The following result
shows that any neighborhood of the image of P ∈ P(Θ)X under the mixture on
the product-Hellinger topology contains, with positive probability, the image of
a sample path of a DDP or its variants under the same mixture. We defer the
proof of the following result to Appendix A.6.1.
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Theorem 6.3. Suppose that νY is locally finite, that ψ is continuous and sat-
isfies (10) for any (y,γ) ∈ Y ×Γ, and that the hypotheses of Theorem 4.5 hold.
Then, for any P 0 ∈ P(Θ)X the event{

ω ∈ Ω : dH(ρP
0

γi,xi
, ρG

ω

γi,xi
) < εi, i ∈ [n]

}
,

has positive probability for any ε1, . . . , εn > 0, γ1, . . . ,γn ∈ Γ, and x1, . . . ,xn ∈
X .

A stronger topology induced by the Hellinger distance is what we call the
compact-Hellinger topology on D(Y)Γ×X . In this topology, a neighborhood basis
at P 0 ∈ D(Y)Γ×X is given by sets of the form{

P ∈ D(Y)Γ×X : sup
(γ,x)∈KΓ×KX

dH(ρPγ,x, ρP
0

γ,x) < ε

}
,

for some ε > 0, KΓ ⊂ Γ compact, and KX ⊂ X compact. Note these neighbor-
hoods include sets of the form{

P ∈ D(Y)Γ×X : sup
x∈KX

dH(ρPγi,x
, ρP

0

γi,x
) < εi, i ∈ [n]

}
,

for ε1, . . . , εn > 0 and γ1, . . . ,γn ∈ Γ. The following result shows that any
neighborhood of the image of P ∈ P(Θ)X under the mixture on the product-
Hellinger topology also contains, with positive probability, the image of a sample
path of the DDP or its variants under the same mixture. We defer the proof of
the following result to Appendix A.6.1.

Theorem 6.4. Suppose that νY is locally finite, that ψ is continuous and sat-
isfies (10) for any (y,γ) ∈ Y ×Γ, and that the hypotheses of Theorem 4.5 hold.
Then, for any P 0 ∈ P(Θ)X the event{

ω ∈ Ω : sup
(γ,x)∈KΓ×KX

dH(ρP
0

γ,x, ρ
Gω

γ,x) < ε

}
,

has positive probability for any ε > 0, and compact KΓ ⊂ Γ and KX ⊂ X .

6.2.2. The L∞ distance

We define the product-L∞ topology on D(Y)Γ×X as follows. In this topology, a
neighborhood basis at P 0 ∈ D(Y)Γ×X is given by sets of the form{

P ∈ D(Y)Γ×X : dL∞(ρPγi,xi
, ρP

0

γi,xi
) < εi, i ∈ [n]

}
,

for some ε1, . . . , εn > 0, γ1, . . . ,γn ∈ Γ and x1, . . . ,xn ∈ X . Similarly to the
Hellinger distance, any neighborhood of the image of P ∈ P(Θ)X under the
mixture on the product-L∞ topology contains, with positive probability, the
image of a sample path of a DDP or its variants under the same mixture.
However, we require the additional hypothesis of compactness of Y . We defer
the proof of the following result to Appendix A.6.2.
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Theorem 6.5. Suppose that Y is compact, that ψ is continuous and satis-
fies (10) for any (y,γ) ∈ Y × Γ, and that the hypotheses of Theorem 4.5 hold.
Then, for any P 0 ∈ P(Θ)X the event{

ω ∈ Ω : dL∞(ρP
0

γi,xi
, ρG

ω

γi,xi
) < εi, i ∈ [n]

}
,

has positive probability for any ε1, . . . , εn > 0, γ1, . . . ,γn ∈ Γ, and x1, . . . ,xn ∈
X .

The compactness of Y allows the uniform control of the density ρP
0

γi,xi
over

Y . In the absence of this assumption, the density ρP
0

γi,xi
may be unbounded on

complements of compact subsets of Y . Our proof strategy can be extended for
non-compact Y with minor modifications if we assume the densities decay at
infinity. We have not stated this extension as we believe it imposes somewhat
artificial constraints on P 0 that may be hard to verify in practice.

The stronger compact-L∞ topology on D(Y)Γ×X can be defined similarly
as for the Hellinger distance. In this topology, a neighborhood basis at P 0 ∈
D(Y)Γ×X is given by sets of the form{

P ∈ D(Y)Γ×X : sup
(γ,x)∈KΓ×KX

dL∞(ρPγ,x, ρP
0

γ,x) < ε

}
,

for some ε > 0, KΓ ⊂ Γ compact, and KX ⊂ X compact. Note these neighbor-
hoods include sets of the form{

P ∈ D(Y)Γ×X : sup
x∈KX

dL∞(ρPγi,x
, ρP

0

γi,x
) < εi, i ∈ [n]

}
,

for ε1, . . . , εn > 0 and γ1, . . . ,γn ∈ Γ. The following result shows that any
neighborhood of the image of P ∈ P(Θ)X under the mixture on the product-L∞

topology also contains, with positive probability, the image of a sample path of
a DDP or its variants under the same mixture. In this case, we also assume that
Y is compact. We defer the proof of the following result to Appendix A.6.2.

Theorem 6.6. Suppose that Y is compact, that ψ is continuous and satis-
fies (10) for any (y,γ) ∈ Y × Γ, and that the hypotheses of Theorem 4.5 hold.
Then, for any P 0 ∈ P(Θ)X the event{

ω ∈ Ω : sup
(γ,x)∈KΓ×KX

dL∞(ρP
0

γ,x, ρ
Gω

γ,x) < ε

}
,

has positive probability for any KΓ ⊂ Γ compact, KX ⊂ X compact, and ε > 0.

6.2.3. The Kullback-Leibler divergence

The KL-divergence defines a premetric on D(Y) that induces a locally convex
topology on D(Y). This topology depends on which argument is used to define
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the neighborhood. Due to its connection to the consistency of Bayesian proce-
dures, we consider the neighborhood basis at P 0 ∈ D(Y) given by sets of the
form

{P ∈ D(Y) : KL(ρP
0‖ ρP ) < ε},

for ε > 0. The product-KL topology on D(Y)Γ×X is defined as follows. A neigh-
borhood basis for P 0 ∈ D(Y)Γ×X on the product-KL topology is given by sets
of the form {

P ∈ D(Y)Γ×X : KL(ρP
0

γi,xi
‖ ρPγi,xi

) < εi, i ∈ [n]
}
,

for some ε1, . . . , εn > 0, γ1, . . . ,γn ∈ Γ and x1, . . . ,xn ∈ X . In this case, we
obtain a result similar to that obtained for the Hellinger distance. In this case,
we also assume that Y is compact. We defer the proof of the following result to
Appendix A.6.3.

Theorem 6.7. Suppose that Y is compact, and that ψ is continuous, strictly
positive, and satisfies (10) for any (y,γ) ∈ Y × Γ. Furthermore, suppose that
the hypotheses of Theorem 4.5 hold. Then, for any P 0 ∈ P(Θ)X the event{

ω ∈ Ω : KL(ρP
0

γi,xi
‖ ρGω

γi,xi
) < εi, i ∈ [n]

}
,

has positive probability for any ε1, . . . , εn > 0, γ1, . . . ,γn ∈ Γ and x1, . . . ,xn ∈
X .

The compactness of Y ensures that ρP
0

γi,xi
is bounded above and below on

Y . This allows the direct control of the logarithm in the definition of the KL-
divergence. Our proof strategy would not hold for non-compact Y as the density
ρP

0

γi,xi
could become unbounded, and so would be the integrand in the KL-

divergence. Additional assumptions could preclude this from happening, i.e.,
one could assume ρP

0

γi,xi
is bounded above and below, so that our proof strategy

still yields the desired result. However, these assumptions seem artificial, and
difficult to prove in practice.

The stronger compact-KL topology on D(Y)Γ×X can be defined similarly as
for the Hellinger and L∞ distances. In this topology, a neighborhood basis at
P 0 ∈ D(Y)Γ×X is given by{

P ∈ D(Y)Γ×X : sup
(γ,x)∈KΓ×KX

KL(ρP
0

γ,x‖ ρPγ,x) < ε

}
,

for some ε > 0, KΓ ⊂ Γ compact, and KX ⊂ X compact. Note these neighbor-
hoods include sets of the form{

P ∈ D(Y)Γ×X : sup
x∈KX

KL(ρP
0

γi,x
‖ ρPγi,x

) < εi, i ∈ [n]
}
,

for ε1, . . . , εn > 0 and γ1, . . . ,γn ∈ Γ. The following result shows that any
neighborhood of the image of P ∈ P(Θ)X under the mixture on the product-L∞
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topology also contains, with positive probability, the image of a sample path of a
DDP or its variants under the same mixture. We defer the proof of the following
result to Appendix A.6.3.

Theorem 6.8. Suppose that Y is compact, and that ψ is continuous, strictly
positive, and satisfies (10) for any (y,γ) ∈ Y × Γ. Furthermore, suppose that
the hypotheses of Theorem 4.5 hold. Then, for any P 0 ∈ P(Θ)X the event{

ω ∈ Ω : sup
(γ,x)∈KΓ×KX

KL(ρP
0

γ,x‖ ρG
ω

γ,x) < ε

}
,

has positive probability for any KΓ ⊂ Γ compact, KX ⊂ X compact, and ε > 0.

6.3. Association structure

As a consequence of Theorem 6.1, when ψ is continuous and the DDP or any of
its variants have a.s. weakly continuous sample paths, then their mixture will
have a.s. strongly continuous sample paths. Therefore, the process {MGω

γ,x(B) :
γ ∈ Γ, x ∈ X} for some fixed B ∈ B(Θ) has a.s. continuous paths. Following
the arguments in Section 4.3, for any d ∈ N and f : [0, 1]d → R the process

{f(MG
γ1,x1

(B), . . . ,MG
γd,xd

(B)) : (x1, . . . ,xd) ∈ X d},

has a.s. continuous sample paths. This also holds for its expectation

FB(γ1,x1, . . . ,γd,xd) := E(f(MG
γ1,x1

(B), . . . ,MG
γd,xd

(B))).

In some applications, it is useful to consider the parameter γ as random. Let
(γ1, . . . ,γd) be a random vector defined on (Ω,F ,P). Then the process

{FB(γ1,x1, . . . ,γd,xd) : (x1, . . . ,xd) ∈ X d},

has a.s. continuous sample paths. By the same arguments as before,

E(FB(γ1,x1, . . . ,γd,xd)) =
∫

Γd

FB(γ1,x1, . . . ,γd,xd) dPΓ(γ1, . . . ,γd),

where PΓ is the probability law of (γ1, . . . ,γd), is continuous.

6.4. Posterior consistency

An important property of mixture models induced by the DDP is their pos-
terior consistency. To study the asymptotic behavior of these mixture models,
we consider a random sample of size n given by pairs (yi,xi) for i ∈ [n]. As is
common in regression settings, we assume that x1, . . . ,xn contain only exoge-
nous covariates, which allows us to focus on the problem of conditional density
estimation, regardless of the mechanism generating the predictors. Let P 0 be
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the true probability measure generating the predictors admitting a density p0

with respect to a measure νX . By the exogeneity assumption, the true probabi-
lity model for the response variable and predictors takes the form m0(y,x) =
p0(x)q0(y | x). In this case, both p0 and {q0

x : x ∈ X} are in free variation,
where q0

x(y) := q0(y | x) denoting a conditional density defined on Y for every
x ∈ X .

Let mω(y,x) := p0(x)gωx(y) be the random joint distribution for the response
and predictors arising when {gx : x ∈ X} is a mixture model induced by a
θDDP. Since the KL divergence between m0 and the implied joint distribution
mω can be bounded as

KL(m0‖mω) =
∫
X

∫
Y
m0(y,x) log

(
m0(y,x)
mω(y,x)

)
dνY(y)dνX (x),

=
∫
X
p0(x)

∫
Y
q0(y | x) log

(
q0(y | x)
gωx(y)

)
dνY(y)dνX (x),

≤ sup
x∈X

∫
Y
q0(y | x) log

(
q0(y | x)
gωx(y)

)
dνY(y),

when x contains only continuous predictors, it follows that, under the assump-
tions of Theorem 6.8 when X is compact, for every ε > 0,

P({ω ∈ Ω : KL(m0‖mω) < ε})

≥ P

({
ω ∈ Ω : sup

x∈X

∫
Y
q0(y | x) log

(
q0(y | x)
gωx(y)

)
dνY(y) < ε

})
> 0.

Thus, by Schwartz’s theorem [78], it follows that the posterior distribution asso-
ciated with the random joint distribution induced by any of the proposed models
is weakly consistent, that is, the posterior measure of any weak neighborhood,
of any joint distribution of the form m0(y,x) = p0(x)q0(y | x), converges to 1
as the sample size goes to infinity. This result is summarized in the following
theorem.

Theorem 6.9. Suppose that assumptions of Theorem 6.8 hold. Then, the ran-
dom distribution mω(y,x) = p0(x)f(y|x, Gω

x) associated to the random joint
distribution induced by the process GX and the density p0 generating the predic-
tors, where

f(y | x, Gω
x) =

∫
Θ
ψ(y,θ)dGω

x(θ),

is weakly consistent, under independent sampling, at any joint distribution of
the form m0(y,x) = p0(x)f0(y | x) with

f0(y | x) =
∫

Θ
ψ(y,θ)dP 0

x(θ),

and P 0 ∈ CS(X , νY).
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Although Theorem 6.9 assumes that x contains only continuous predictors,
a similar result can be obtained when x contains only predictors with finite
support (e.g., categorical, ordinal and discrete predictors) or mixed continuous
and predictors with finite support. The theorem can be also extended for more
general DDP mixture models.

Theorem 6.10. Suppose that assumptions in Theorem 6.8 hold and that X is
compact. Then, the posterior distribution associated to the random joint distri-
bution

m(y,x,γω) = p0(x)f(y | x, Gω
x,γ

ω),

where p0 is the density generating the predictors and

f(y | x, Gω
x,γ

ω) =
∫

Θ
ψ(y,θ,γω)dGω

x(θ),

is weakly consistent, under independent sampling, at any joint distribution of
the form

m0(y,x,γ0) = p0(x)f0(y | x,γ0),

with
f0(y | x,γ0) =

∫
Θ
ψ(y,θ,γ0)dP 0

x(θ),

where P 0 ∈ CS(X , νY) and γ0 ∈ Γ.

7. Illustrations

In this section we include two concrete and nontrivial applications where the
data lies on a non Euclidean space and the covariates may or may not lie on
an Euclidean space. The first example deals with circular data, whereas the
second deals with shape analysis in Kendall’s shape space. We present explicit
constructions for both, and we show how these satisfy the conditions required
by our theoretical results.

7.1. Circular data

In several applications there is a natural interest in the relation between cir-
cular data and Euclidean covariates. Examples include wild fire occurrences in
ecology [2], the propagation of waves in oceanography [45], sudden infant death
syndrome in medicine [63], and the relationship between the distance an animal
has traveled and the direction of its movement; additional covariates, such as
the type of species and the travel time, could be also included [34].

The majority of regression models for this type of data are parametric [34],
which limits their application, for instance, in scenarios involving multimodal
distributions [1]. Although frequentist non-parametric approaches have been
recently proposed in the literature [1], it is challenging to assess uncertainty or
to perform predictions with them. Hence, we show how to construct a suitable
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DDP mixture model to illustrate the applicability of BNP models to this type
of problem.

Circular data can be represented as points on the unit circle S1 = {y ∈ R2 :
‖y‖ = 1}. By choosing an arbitrary but fixed reference point, the elements of S1

can be represented as angles. Thus, without loss of generality, we let Y = [0, 2π)
denote R endowed with the usual equivalence relation y ∼ y + 2πk, for k ∈ Z.
A natural parametric candidate for constructing a BNP model in this context
is the von Mises distribution, which density is given by

ψ(y,γ,θ) = exp(γ cos(y − θ))
2πI0(γ) , y ∈ Y, θ ∈ Θ, γ ∈ Γ,

where I0 is the 0-th modified Bessel function of the first kind,

I0(γ) = 1
2π

∫ 2π

0
exp(γ cos(y)) dy,

θ ∈ Θ = [0, 2π) is the location parameter, and γ ∈ Γ = R+ is the dispersion
parameter.

We assume Euclidean covariates, X = Rp, and use the DDP to build a P(Θ)-
valued stochastic process. To construct the stochastic process associated to the
weights, we consider Gaussian random fields, {Zx : x ∈ X}, with covariance
functions given by

k1(xi,xj) = exp(−a‖xi − xj‖2),

for a > 0, and define
Vx = F−1

B,x(FZ,x(Zx)),

where FZ,x is the continuous cumulative distribution function of Zx and

F−1
B,x(u) = 1 − (1 − u)1/αx ,

where x → αx is continuous.
Several options to construct the stochastic process associated to the atoms

can be considered, such as SinCos-GP and Angle-GP [39]. We study here the
construction based on the Angle-GP. Let {Zsin

x : x ∈ X} and {Zcos
x : x ∈ X} be

Gaussian random fields with the same covariance functions

k2(xi,xj) = exp(−b‖xi − xj‖2),

for b > 0. The stochastic process {θx : x ∈ X} is defined as the solution to the
equations

sin(θx) = 2Φ(Zsin
x ) − 1,

and
cos(θx) = 2Φ(Zcos

x ) − 1,

using the usual equivalence relation between θ and θ + 2πk for k ∈ Z.
This DDP and its induced DDP mixture model satisfy the conditions for

several of our results. First, as the Gaussian random fields with kernels k1 and k2
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are separable and have a.s. continuous sample paths, it follows by Definition 3.4
that this DDP is a continuous parameter DDP. Hence, Theorem 4.1 holds and
it has a.s. weakly continuous sample paths. It is straightforward to verify that,
for this choice of kernels, for any x1, . . . ,xn ∈ X the law of the random vector

(θ1,x1 , . . . ,θ1,xn),

has full support on Θn, and the law of the random vector

(V1,x1 , . . . , V1,xn),

has full support on [0, 1]n. Hence, Theorem 4.5 holds in this case and this DDP

has full support on the product-weak topology. However, this conclusion can be
strengthened. First, the kernel k1(xi,xj) is universal [62], whence the comments
in Section 4.2 imply that the stochastic process {Vx : x ∈ X} satisfies the
condition given in expression (7). Second, as Θ is compact and Angle-GP has
full support, the condition given in expression (8) is satisfied. As a consequence,
the stronger Theorem 4.6 holds in this case. In fact, this can be further refined
as these results imply that Theorem 4.8 also holds in this case.

Regarding this DDP mixture, the compactness of S1 together with the con-
tinuity of ψ imply that ψ satisfies condition (10). Furthermore, since we may
choose νY as a scaling of the Haar measure on S1, it is locally finite. Hence,
Theorem 6.1 holds, and the DDP mixture is a.s. uniformly continuous. Finally,
these conditions imply that Theorem 6.3 and Theorem 6.4 hold, and the DDP

mixture has full support on the topologies induced by the Hellinger distance. As
in addition S

1 is compact, Theorem 6.5 and Theorem 6.6 hold, and the DDP

mixture has full support on the topologies induced by the L∞ distance, and,
as both S1 is compact and ψ is strictly positive, Theorem 6.7 and Theorem 6.8
hold, and the DDP mixture has full support on the topologies induced by the
KL-divergence.

To conclude this example, we briefly comment on regression models using
angular covariates, known as circular-circular regression [33]. It this case X =
[0, 2π) and our previous construction applies to this case as soon as we construct
a Gaussian random field on S

1 whose kernel is universal. In [62] it is shown that
if the kernel has the form

k1(xi,xj) = g(d(xi,xj)),

where d(xi,xj) is the geodesic distance on S
1, and

g(t) =
∑
k∈Z+

akPk(cos(t)),

for ak > 0 and where Pk is the Chebyshev polynomial of degree k, then the
kernel is universal. In this case, we may use GX ∼ θDDP(ΨV , G

0) for G0 ≡
vM(θ0,γ0), with θ0 ∈ [0, 2π) and γ0 > 0. This θDDP is constructed from a
Gaussian random field with kernel k1 that is separable and has a.s. continuous
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sample paths. Hence it is a continuous parameter θDDP whence Theorem 4.1
holds and this θDDP has a.s. weakly continuous sample paths. In fact, the
stronger Theorem 4.4 holds in this case, and its sample paths are a.s. uniformly
continuous. The choice of G0 has full support on Θ whereas for x1, . . . ,xn ∈ X
we have, as before, that the law of the random vector

(V1,x1 , . . . , V1,xn),

has full support on [0, 1]n. Hence, Theorem 4.5 holds in this case. Similarly
to our previous construction, the universality of the kernel k1(xi,xj) and the
full support of G0 imply that both Theorem 4.6 and Theorem 4.8 hold in this
case. Since this process is a θDDP, these conditions imply that the refinement
in Theorem 4.9 also holds. Finally, since the hypotheses of Theorem 4.5 hold
for this construction, the same results that held for the DDP mixture in the
previous example also hold in this case.

7.2. Landmark-based planar shape data

There are many applications in which the shape of an object contains the in-
formation of interest. Hence, comparing data reduces to comparing differences
between shapes. This kind of application arises frequently in computer vision,
in object recognition, and in medical imaging. As an example, several authors
have studied the changes in the shape of the corpus callosum under different
pathologies [9, 10, 8]. In this case, it is usually of interest to model the effect
that Euclidean covariates can have on its shape: the relationship between the
age and the shape of the corpus callosum has been studied in [35] and [83],
whereas he effect of age and sex on the shape of the corpus callosum in peo-
ple with and without autism has been studied in [40]. To analyze shape data,
some authors have proposed regression models that make parametric distribu-
tional assumptions which have limited interpretation [40]. Others have proposed
geodesic regression models for which the probability distribution of the errors is
not supported directly on the manifold [35]. Finally, some authors explore kernel-
based regression models, but these do not account for data uncertainty [74]. A
non-parametric Bayesian model, such as the dependent Dirichlet process, can
be used to overcome these challenges when the probability distribution for the
response variable is supported directly on the manifold.

Following Kendall [48], the shape of an object is the geometric information
that remains once the effects of rotation, translation and scale are removed. To
study planar shapes, usually a fixed number k ∈ N of landmarks are selected on
each shape, and the differences in shapes are assumed to be those in their re-
spective landmarks. Landmark-based planar shape data consists of k landmarks
representing a planar shape. The landmarks can be interpreted as k points in the
complex plane, and the shape this data represents can be modeled as a point
in Kendall’s shape space Σk

2 . To construct this space we proceed as follows.
Let z0 = (z0

1 , . . . , z
0
k)T ∈ C

k be the k landmarks in two dimensions. We define
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zH = (zH1 , . . . , zHk−1)T := Hz0, where H is the (k−1)×k Helmert sub-matrix de-
fined by taking the k×k Helmert matrix and removing the first row [27]. Notice
that z = (z1, . . . , zk−1)T := zH/‖zH‖ ∈ where CSk−2 := {z ∈ Ck−1 : z∗z = 1}
is the unit complex sphere and where z∗ denotes the complex conjugate of zT .
The space CS

k−2 is called the pre-shape space and corresponds to the space
of all possible landmark-based data after eliminating the effects of translation
and scaling. We endow this space with the following equivalence relation. For
z1,z2 ∈ CS

k−2 we say z1 ∼ z2 if and only if z1 = ei�z2 for some � ∈ [0, 2π)
where i2 = −1 is the imaginary unit. Thus, Kendall’s shape space is the quotient
Σk

2 := CS
k−2/ ∼. Consequently, the equivalence class for a pre-shape z ∈ CS

k−2

is given by
[z] := {ei�z : � ∈ [0, 2π)} ∈ Σk

2 .

The complexity of analyzing objects in space Σk
2 becomes apparent, as this

space inherits the non-Euclidean structure of the space CSk−2 and it is also a
quotient space. Furthermore, in practice k can be very large, requiring the use
of statistical approaches to high-dimensional data.

We now construct a DDP variant for analyzing data in Kendall’s shape space.
First, let ϕ(z, ζ,ϑ) be the probability density function of the complex Watson
distribution on the pre-shape sphere CS

k−2

ϕ(z, ζ,ϑ) = c1(ζ)−1 exp{ζ|z∗ϑ|2}, z,ϑ ∈ CS
k−2, ζ > 0,

where ζ is the concentration parameter, ϑ is the modal vector on the pre-shape
sphere, and the integrating constant c1(ζ) is

c1(ζ) = 2πk−1

(k − 2)!1F1(1; k − 1; ζ),

where 1F1 is the confluent hypergeometric function of the first kind. By setting
ζ = 2γ we can write [27, p. 227]

ϕ(z, ζ,ϑ) = c1(2γ)−1eγ exp{γ cos(2ρ([HTz], [HTϑ]))},

where ρ([HTz], [HTϑ]) is the Riemannian distance between the shapes [HTz]
and [HTϑ]. Let y = [z] and θ = [ϑ] be the shapes associated with z and ϑ
respectively. Then, a shape distribution with respect to the uniform measure
can be obtained by making a change of variables to Kent’s polar shape coordi-
nates [27, p. 232]

ψ(y,γ,θ) = c1(2γ)−12πeγ exp{γ cos(2ρ(y,θ))}, y,θ ∈ Σk
2 ,γ > 0.

Denote this probability distribution on Σk
2 for fixed θ and γ as D(θ,γ). Let X =

R
p be the covariate space, let Γ = {γ ∈ R : γ > 0} be a dispersion parameter,

let Θ = Σk
2 be the space of location parameters and let GX ∼ θDDP(ΨV , G

0) for
G0 = D(θ0,γ0) where θ0 ∈ Σk

2 and γ0 > 0 are known. For the construction of
the stochastic process associated with the weights, we proceed as in the previous
example. Let {Zx : x ∈ X} be a Gaussian random field with covariance

k(xi,xj) = exp(−a‖xi − xj‖2),
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with a > 0, and define
Vx = F−1

B,x(FZ,x(Zx)),

where FZ,x is the continuous cumulative distribution function of Zx and

F−1
B,x(u) = 1 − (1 − u)1/αx ,

with x → αx a continuous function.
As in the previous example, it can be shown that the resulting θDDP and

DDP mixture model satisfy the conditions of several of our results. This θDDP

is constructed from a Gaussian random field with kernel k1 on X that is sepa-
rable and has a.s. continuous sample paths. Hence, it is a continuous parameter
θDDP whence Theorem 4.1 holds and this θDDP has a.s. weakly continuous
sample paths. Similarly as in the last construction in the previous section, the
stronger Theorem 4.4 holds in this case, and the sample paths of the process
are a.s. uniformly continuous. The choice of G0 has full support on Θ whereas
for x1, . . . ,xn ∈ X we once again have that the law of the random vector

(V1,x1 , . . . , V1,xn),

has full support on [0, 1]n. Therefore, Theorem 4.5 holds in this case and this
process has full support on the product-weak topology. Finally, the universality
of the kernel k1(xi,xj) and the full support of G0 imply that both Theorem 4.6
and Theorem 4.8 hold, and, as this process is a θDDP, it follows that the
refinement in Theorem 4.9 also holds for this process.

Regarding the mixture, the conditions satisfied by ψ are analogous to those
shown in the first example in the previous section. The compactness of Σk

2 and
the continuity of ψ imply that condition (10) holds. Furthermore, as Σk

2 can
be identified with a subset of the unit complex sphere, may choose νY as the
measure induced by a scaling of the Haar measure on the complex unit sphere,
whence it is locally finite. Hence, Theorem 6.1 holds, and the DDP mixture
is a.s. uniformly continuous. Finally, these conditions imply that Theorem 6.3
and Theorem 6.4 hold, and the DDP mixture has full support on the topologies
induced by the Hellinger distance; as in addition Σk

2 is compact, Theorem 6.5
and Theorem 6.6 hold, and the DDP mixture has full support on the topologies
induced by the L∞ distance; and, as both Σk

2 is compact and ψ is strictly
positive, Theorem 6.7 and Theorem 6.8 hold, and the DDP mixture has full
support on the topologies induced by the KL-divergence.

8. Concluding remarks

We have defined a DDP for general Polish spaces and introduced some parsimo-
nious variants that may be desirable on specific applications. Furthermore, we
provided sufficient conditions for different versions of DDP defined on general
Polish spaces to have appealing prior theoretical properties regarding the con-
tinuity of their sample paths under different topologies, and the continuity of
their autocovariance function and other, more general measures of association.
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These properties are of practical importance because they ensure that differ-
ent versions of the model can combine and borrow strength across sparse data
sources regarding the predictors and, therefore, avoid the need of replicates of
the responses for every value of the predictors to obtain adequate estimates of
the predictor-dependent probability distributions.

Furthermore, we studied mixture models arising from a DDP or any of its
variants. We provided sufficient conditions that ensure the resulting mixture has
a continuous density. This case is of practical interest in statistical applications.
In addition, we provided sufficient conditions under which DDP mixture models
have large full or large support, considering different topologies, and study the
behavior of the posterior distribution under i.i.d. joint sampling of responses and
predictors. The study of stronger consistency results and concentration rates is
the subject of ongoing research.

Finally, the results provided in this article can be easily extended to more
general dependent stick-breaking processes.

Proof of the main results

A.1. The continuity of the DDP and its variants

A.1.1. Proof of Theorem 4.1

By hypothesis, there is a set Ω0 ⊂ Ω of full measure such that for any ω ∈ Ω0
we have that: (i) πω

i ≥ 0; (ii)
∑

i∈N
πω
i ≡ 1; (iii) πω

i and θω
i are continuous on

X in the case of a DDP, θω
i is continuous on X in the case of a wDDP, and πω

i

is continuous on X in the case of a θDDP.
First, we prove the statement in the case of a DDP. Fix ω ∈ Ω0 and x0 ∈ X .

Let f ∈ Cb(Θ) and suppose, without loss, that ‖f‖C ≤ 1. Fix ε > 0 and let
Nε ∈ N be such that ∑

i>Nε

πω
i,x0

<
1
4ε.

Define the set Uε as

Uε :=
Nε⋂
i=1

{
x ∈ X : |πω

i,x − πω
i,x0

| < 1
4Nε

ε and |f(θω
i,x) − f(θω

i,x0
))| < 1

4Nε
ε

}
.

Since πω
i and f ◦ θω

i are continuous on Θ we conclude that Uε is an open
neighborhood of x0. Observe that for any x ∈ Uε we have that

∑
i>Nε

πω
i,x = 1 −

Nε∑
i=1

πω
i,x =

∑
i>Nε

πω
i,x0

−
Nε∑
i=1

(πω
i,x − πω

i,x0
) < 1

2ε.

Let x ∈ Uε and consider the decomposition∫
f(θ)dGω

x(θ) −
∫

f(θ)dGω
x0

(θ) =
(

Nε∑
i=1

+
∑
i>Nε

)
(πω

i,xf(θω
i,x) − πω

i,x0
f(θω

i,x0
)).
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The first sum on the right-hand side can be bounded as∣∣∣∣∣
Nε∑
i=1

(πω
i,xf(θω

i,x) − πω
i,x0

f(θω
i,x0

))

∣∣∣∣∣ ≤
Nε∑
i=1

|πω
i,x − πω

i,x0
| +

Nε∑
i=1

|f(θω
i,x) − f(θω

i,x0
)|,

<
1
2ε,

whereas the second sum can be bounded as∣∣∣∣∣
∑
i>Nε

(πω
i,xf(θω

i,x) − πω
i,x0

f(θω
i,x0

))

∣∣∣∣∣ ≤
∑
i>Nε

πω
i,x +

∑
i>Nε

πω
i,x0

<
1
2ε.

Consequently, ∣∣∣∣
∫

f(θ)dGω
x(θ) −

∫
f(θ)dGω

x0
(θ)

∣∣∣∣ < ε,

for any x ∈ Uε. Since Uε is open, the claim follows in the case of a DDP.
Remark that in the case of a wDDP or the case of a θDDP the previous

arguments can be adapted with minor modifications to prove the claim. We
omit the details for brevity.

A.1.2. Proof of Theorem 4.3

By hypothesis, there is a set Ω0 ⊂ Ω of full measure such that for any ω ∈ Ω0
we have that: (i) πω

i ≥ 0; (ii)
∑

i∈N
πω
i ≡ 1; (iii) πω

i and θω
i are continuous on

X in the case of a DDP, θω
i is continuous on X in the case of a wDDP, and πω

i

is continuous on X in the case of a θDDP.
First, we prove the statement in the case of a DDP. Fix ω ∈ Ω0 and let ε > 0.

Let Nε be such that ∑
i>Nε

πω
i,x0

<
1
8ε.

Define the measurable set

B := {θω
i,x0

: i ∈ [Nε]},

and let f = IB . Then
F (x) :=

∫
f(θ)dGω

x(θ),

is continuous at x0 by hypothesis. Hence, the set

Uε :=
{
x ∈ X : |F (x) − F (x0)| <

1
4ε

}
∩

Nε⋂
i=1

{
x ∈ X : |πω

i,x − πω
i,x0

| < 1
8Nε

ε

}
,

is open. For any x ∈ Uε we have that∑
i>Nε

πω
i,x <

1
4ε,
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and that∣∣∣∣∣
Nε∑
i=1

πω
i,x0

(δθω
i,x

(B) − 1)

∣∣∣∣∣ ≤
Nε∑
i=1

|πω
i,x − πω

i,x0
| +

∣∣∣∣∣
Nε∑
i=1

(πω
i,xδθω

i,x
(B) − πω

i,x0
δθω

i,x0
(B))

∣∣∣∣∣ ,
<

1
8ε +

∑
i>Nε

(πω
i,x0

+ πω
i,x) + |F (x) − F (x0)|,

< ε.

It is clear that at least one θω
i,x belongs to B. Note that B is a finite set. Hence,

by continuity, such θω
i,x must be constant on Uε. This proves the claim in the

case of a DDP. For the wDDP the previous arguments can be adapted with
minor modifications to prove the claim. We omit the details for brevity.

A.1.3. Proof of Theorem 4.4

In the case of a θDDP, for every ω ∈ Ω we have that

sup
B∈B(Θ)

|Gω
x(B) −Gω

x0
(B)| ≤

∞∑
i=1

|πω
i,x − πω

i,x0
|.

Let Ω0 ⊂ Ω be a set of full measure such that ω ∈ Ω0 implies V ω
i is continuous

for every i ∈ N. Fix ω ∈ Ω0. Then πω
i is continuous for every i ∈ N. We follow a

similar argument as in the proof of Theorem 4.1 in Appendix A.1.1. Let ε > 0
and let Nε ∈ N be such that ∑

i>Nε

πω
i,x0

<
1
4ε.

Define the open neighborhood Uε of x0 as

Uε :=
Nε⋂
i=1

{
x ∈ X : |πω

i,x − πω
i,x0

| < 1
4Nε

ε

}
.

For any x ∈ Uε we have that

∑
i>Nε

πω
i,x =

∑
i>Nε

πω
i,x0

−
Nε∑
i=1

(πω
i,x − πω

i,x0
) < 1

2ε,

whence
∞∑
i=1

|πω
i,x − πω

i,x0
| ≤

Nε∑
i=1

|πω
i,x − πω

i,x0
| +

∑
i>Nε

(πω
i,x + πω

i,x0
) < ε.

Consequently, for any x ∈ Uε we have that

sup
B∈B(Θ)

|Gω
x(B) −Gω

x0
(B)| < ε,

from where the theorem follows.
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A.2. The support of the DDP and its variants

We first prove the following auxiliary result.

Lemma A.1. Let P : X → P(Θ) and f1, . . . , fn ∈ L∞(Θ). Define

Fi(x) :=
∫

Θ
fi(θ) dPx(θ).

Let K ⊂ X be compact. If F1, . . . , Fn : K → R are continuous, then for any
ε > 0 there exists P̄ : K → P(Θ)X such that:

1. For any x ∈ K we have that∣∣∣∣
∫

Θ
fi(θ) dPx(θ) −

∫
Θ
fi(θ) dP̄x(θ)

∣∣∣∣ < ε.

2. For any B ∈ B(Θ) the map x �→ P̄x(B) is Lipschitz continuous on K.
3. The collection {P̄x : x ∈ K} is tight.

Proof of Lemma A.1. Let ε > 0. We begin by constructing a suitable partition
of unity in K. Since F1, . . . , Fn are uniformly continuous on K there exists δ > 0
such that

∀x,x′ ∈ K, i ∈ [n] : dX (x,x′) < δ ⇒ |Fi(x) − Fi(x′)| < ε.

Let r < δ/2. From the open cover {B(x, r)}x∈K we can extract the finite sub-
cover {B(xk, r)}NK

k=1. We construct a continuous partition of the unity on K
surrogate to this cover as follows. Define the continuous functions

ϕ̄k(x) = max
(

0, 1 − dX (x,xk)
r

)
,

for k ∈ [NK ]. Note that x /∈ B(xk, r) implies ϕ̄k(x) = 0. It can be verified that

NK∑
k=1

ϕ̄k(x) ≥ cmin > 0,

for any x ∈ K. Therefore, we define the continuous functions

ϕk(x) = ϕ̄k(x)∑NK

k=1 ϕ̄k(x)
,

which satisfy
∑NK

k=1 ϕk ≡ 1 over K. Define

F̄i(x) :=
NK∑
k=1

Fi(xk)ϕk(x) and P̄x :=
NK∑
k=1

ϕk(x)Pxk
.
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These functions satisfy

F̄i(x) :=
∫

Θ
fi(θ)

(
NK∑
k=1

ϕk(x)dPxk
(θ)

)
=

∫
Θ
fi(θ)dP̄x(θ).

To prove (a) note that F̄i satisfies

|F̄i(x) − Fi(x)| ≤
∑

k:x∈B(xk,r)

|Fi(xk) − Fi(x)|ϕk(x) < ε,

for any x ∈ K. To prove (b) note that for any B ∈ B(Θ) we have that

P̄x(B) =
NK∑
k=1

ϕi(x)P̄xk
(B),

which is continuous by construction. To prove it is Lipschitz, note that

|ϕi(x) − ϕi(x′)| ≤ |ϕ̄i(x) − ϕ̄i(x′)|∑NK

j=1 ϕ̄j(x)
+

ϕ̄j(x′)∑NK

j=1 ϕ̄j(x)
∑NK

k=1 ϕ̄k(x′)

NK∑

=1

|ϕ̄
(x) − ϕ̄
(x′)|,

≤ c−1
min(NKc−1

min + 1)dX (x,x′).

Finally, to prove (c) note that Θ is Polish. Hence, the collection Px1 , . . . , PxNK

is tight. For any ε > 0 there exists KΘ ⊂ Θ such that

Pxk
(KΘ) > 1 − ε.

However, since ϕi ≥ 0 we have that

P̄x(B) =
NK∑
k=1

ϕi(x)P̄xk
(B) > 1 − ε,

proving the claim.

A.2.1. Proof of Theorem 4.5

By possibly modifying the sequence ε1,1, . . . , εn,n we can assume, without loss,
that ‖fi,j‖C ≤ 1. Let Ω0 ⊂ Ω be a set of full measure such that for any ω ∈ Ω0
we have that: (i) πω

i ≥ 0; (ii)
∑

i∈N
πω
i ≡ 1; (iii) πω

i and θω
i are continuous on

X in the case of a DDP, θω
i are continuous on X in the case of a wDDP, or πω

i

are continuous on X in the case of a θDDP.
Let ε > 0 be such that ε < ε0 := min(ε1,1, . . . , εn,n) and define the event{

ω ∈ Ω :
∣∣∣∣
∫

Θ
fi,j(θ)dGω

xj
(θ) −

∫
Θ
fi,j(θ)dP 0

xj
(θ)

∣∣∣∣ < ε0, i, j ∈ [n]
}
.
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By inspection, the event is measurable. It suffices to show that this event has
positive probability. The first step of the proof is the same regardless of the
variant.

Since Θ is Polish, the collection P 0
x1
, . . . , P 0

xn
is tight. Let KΘ ⊂ Θ be a

compact set such that P 0
xj

(Θ \ KΘ) < ε for j ∈ [n]. Since f1,1, . . . , fn,n are
uniformly continuous on KΘ, there exists δ > 0 such that

∀ θ,θ′ ∈ KΘ, i, j ∈ [n] : dΘ(θ,θ′) < δ ⇒ |fi,j(θ) − fi,j(θ′)| < ε.

Let r < δ/2. Then {B(θ, r)}θ∈KΘ is an open cover of KΘ and we can extract a
finite subcover {B(θk, r)}NΘ

k=1. By possibly removing elements, we may assume
that no ball is covered by the union of the remanining ones. This subcover
induces the partition

A1 := KΘ ∩B(θk, r),

Ak := KΘ ∩
(
B(θk, r) \

k−1⋃

=1

B(θ
, r)
)
, k ∈ {2, . . . , NΘ}.

(11)

of KΘ. Remark that no Ak is empty and that Ak ⊂ B(θk, r). Therefore, no fi
varies by more than 2ε over any Ak. Note that∣∣∣∣∣

∫
Θ\KΘ

fi,j(θ)dP 0
xj

(θ)

∣∣∣∣∣ ≤ P 0
xj

(Θ \KΘ) < ε,

and ∣∣∣∣∣
∫
KΘ

fi,j(θ)dP 0
xi

(θ) −
NΘ∑
k=1

fi,j(θk)P 0
xj

(Ak)

∣∣∣∣∣ < 2ε
NΘ∑
k=1

Pxj
(Ak) ≤ 2ε.

Therefore,
∣∣∣∣
∫

Θ
fi,j(θ)dGω

xj
(θ) −

∫
Θ
fi,j(θ)dP 0

xj
(θ)

∣∣∣∣
< 3ε +

∣∣∣∣∣
∫

Θ
fi,j(θ)dGω

xj
(θ) −

NΘ∑
k=1

fi,j(θk)P 0
xj

(Ak)

∣∣∣∣∣ .
Since f1,1, . . . , fn,n are continuous, define the open subsets

Uk :=
n⋂

j=1

n⋂
i=1

{
θ ∈ Θ : |fi,j(θ) − fi,j(θk)| <

1
NΘ

ε

}
,

and the event

Ωπ :=
NΘ⋂
k=1

n⋂
j=1

{
ω ∈ Ω0 : |πω

k,xj
− P 0

xj
(Ak)| <

1
NΘ

ε

}
,
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which has positive measure by hypothesis. Note that for any ω ∈ Ωπ we have
that ∑

k>NΘ

πω
k,xj

= 1 −
NΘ∑
k=1

P 0
xj

(Ak) −
NΘ∑
k=1

(πω
k,xj

− P 0
xj

(Ak)) < 2ε,

for i ∈ [NΘ].
The second step of the proof changes slightly in the case of a DDP, a wDDP,

and the θDDP. We present it first in the case of a DDP. For ω ∈ Ωπ we have
that

∣∣∣∣∣
∫

Θ
fi,j(θ)dGω

xj
(θ) −

NΘ∑
k=1

fi,j(θk)P 0
xj

(Ak)

∣∣∣∣∣
≤

∑
k>NΘ

πω
k,xj

+

∣∣∣∣∣
NΘ∑
k=1

(πω
k,xj

fi,j(θω
k,xj

) − P 0
xj

(Ak)fi,j(θk))

∣∣∣∣∣
≤ 3ε +

NΘ∑
k=1

P 0
xj

(Ak)|fi(θω
k,xj

) − fi,j(θk)|.

Consider the event

Ωθ :=
NΘ⋂
k=1

n⋂
j=1

{ω ∈ Ω0 : θω
k,xj

∈ Uk},

which has positive measure by hypothesis as each Uk is open. Since the events
Ωπ and Ωθ are independent, the event Ωπ ∩Ωθ has positive measure. Hence, for
any ω ∈ Ωπ ∩ Ωθ we have that∣∣∣∣∣

∫
Θ
fi,j(θ)dGω

xj
(θ) −

NΘ∑
k=1

fi,j(θk)P 0
xj

(Ak)

∣∣∣∣∣ < 4ε,

whence ∣∣∣∣
∫

Θ
fi,j(θ)dGω

xj
(θ) −

∫
Θ
fi,j(θ)dP 0

xj
(θ)

∣∣∣∣ < 7ε,

for any i, j ∈ [n]. This proves the theorem in the case of a DDP.
To prove the theorem in the case of a θDDP, the key inequality is∣∣∣∣∣

∫
Θ
fi,j(θ)dGω

xj
(θ) −

NΘ∑
k=1

fi,j(θk)P 0
xj

(Ak)

∣∣∣∣∣ < 3ε+
NΘ∑
k=1

P 0
xj

(Ak)|fi(θω
k )−fi,j(θk)|.

Note that it suffices to consider the event

Ωθ :=
NΘ⋂
k=1

{ω ∈ Ω0 : θω
k ∈ Uk},
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which has positive measure as the Uk are open. The rest of the argument is
essentially the same as in the case of a DDP.

The proof in the case of a wDDP follows first the same step as in the other
cases. However, the remainder of the proof is different and slighly more involved.
Let M ∈ N be such that there are integers mj,k ∈ [M ] such that∣∣∣P 0

xj
(Ak) −

mj,k

M

∣∣∣ < ε

2NΘ
.

Note that for this choice, for any j ∈ [n],

NΘ∑
k=1

mj,k

M
<

NΘ∑
k=1

P 0
xj

(Ak) + 1
2ε ≤ 1 + 1

2ε,

and
NΘ∑
k=1

mj,k

M
≥

NΘ∑
k=1

P 0
xj

(Ak) −
ε

2 = P 0
xj

(KΘ) − ε

2 ≥ 1 − 3
2ε.

Define the event

Ωπ :=
M⋂
i=1

{
ω ∈ Ω0 : πω

i ∈
(

1 − ε/2NΘ

M
,

1
M

]}
,

which has positive measure by hypothesis. Note that for ω ∈ Ωπ we have that

(
1 − ε

2NΘ

)
M ′

M
<

M ′∑
i=1

πω
i ≤ M ′

M
,

for any M ′ ∈ [M ]. Hence, for every j we have that
∣∣∣∣∣∣P 0

xj
(Ak) −

∑
i∈Ij,k

πω
i

∣∣∣∣∣∣ ≤
∣∣∣P 0

xj
(Ak) −

mj,k

M

∣∣∣ +

∣∣∣∣∣∣
mj,k

M
−

∑
i∈Ij,k

πω
i

∣∣∣∣∣∣
<

ε

2NΘ
+ ε

2NΘ
= ε

NΘ
,

where Ij,k ⊂ [M ] is an arbitrary subset such that |Ij,k| = mj,k. Therefore, for
every j ∈ [n] we let {Ij,k}NΘ

k=1 be a collection of disjoint sets [M ] for which
|Ij,k| = mj,k and we let I0

j be the complement of their union. Note that

∑
i∈I0

j

πω
i =

M∑
i=1

πω
i −

NΘ∑
k=1

∑
i∈Ij,k

πω
i < 1 + 1

2ε− P 0
xj

(KΘ) < 3
2ε,

and ∑
i>M

πω
i = 1 −

M∑
i=1

πω
i <

1
2NΘ

ε <
1
2ε.
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Consequently, in the case of a wDDP we obtain the inequality
∣∣∣∣∣
∫

Θ
fi,j(θ)dGω

xj
(θ) −

NΘ∑
k=1

fi,j(θk)P 0
xj

(Ak)

∣∣∣∣∣
≤

∑

>M

πω

 +

∑

∈I0

j

πω

 +

NΘ∑
k=1

∣∣∣∣∣∣
∑


∈Ij,k

πω

 fi,j(θ

ω

,xj

) − P 0
xj

(Ak)fi,j(θk)

∣∣∣∣∣∣
< 2ε +

NΘ∑
k=1

∣∣∣∣∣∣
∑


∈Ij,k

πω

 (fi,j(θω


,xj
) − fi,j(θk))

∣∣∣∣∣∣
+

NΘ∑
k=1

|fi,j(θk)|

∣∣∣∣∣∣
∑


∈Ij,k

πω

 − P 0

xj
(Ak)

∣∣∣∣∣∣
< 3ε +

NΘ∑
k=1

∣∣∣∣∣∣
∑


∈Ij,k

πω

 (fi,j(θω


,xj
) − fi,j(θk))

∣∣∣∣∣∣ .
Hence, consider the event

Ωθ :=
NΘ⋂
k=1

n⋂
j=1

⋂
i∈Ij,k

{ω ∈ Ω0 : θω
i ∈ Uk},

which has positive measure by hypothesis. By independence, Ωπ∩Ωθ has positive
measure, and for ω ∈ Ωπ ∩ Ωθ we have that

NΘ∑
k=1

∣∣∣∣∣∣
∑


∈Ij,k

πω

 (fi,j(θω


,xj
) − fi,j(θk))

∣∣∣∣∣∣
<

ε

NΘ

NΘ∑
k=1

∑

∈Ij,k

πω

 <

ε

NΘ

(
ε +

NΘ∑
k=1

P 0
xj

(Ak)
)

< ε.

Therefore, ∣∣∣∣∣
∫

Θ
fi,j(θ)dGω

xj
(θ) −

NΘ∑
k=1

fi,j(θk)P 0
xj

(Ak)

∣∣∣∣∣ < 4ε,

proving the theorem in the case of a wDDP.

A.2.2. Proof of Theorem 4.6

By possibly modifying the sequence ε1, . . . , εn we can assume, without loss, that
‖fi‖C ≤ 1. Let Ω0 ⊂ Ω be a set of full measure such that for any ω ∈ Ω0 we
have that: (i) πω

i ≥ 0; (ii)
∑

i∈N
πω
i ≡ 1; (iii) πω

i and θω
i are continuous on X in

the case of a DDP, or πω
i are continuous on X in the case of a θDDP.
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For simplicity, we write for ω ∈ Ω

Fω
i (x) :=

∫
Θ
fi(θ) dGω

x(θ).

By Theorem 4.1, Fω
i is continuous on X for almost every ω ∈ Ω. By possibly

removing from Ω0 a null set, we may assume that Fω
i is continuous for every

ω ∈ Ω0 and every i ∈ [n]. Furthermore, we write

Fi(x) :=
∫

Θ
fi(θ)dPx(θ),

which, by hypothesis, is a continuous function on X . Since ‖fi‖C ≤ 1 we have
that |Fω

i | ≤ 1 and |Fi| ≤ 1.
Let ε0 < min(ε1, . . . , εn) and define the event

ΩK,ε0 :=
N⋂
i=1

{
ω ∈ Ω0 : sup

x∈K
|Fω

i (x) − Fi(x)| < ε0

}
.

Since Θ is separable, a compact K ⊂ Θ is also separable. By hypothesis Fi is
continuous and by construction Fω

i is continuous for every ω ∈ Ω0. Hence, the
event is measurable, and the theorem follows if we show that this event has
positive measure. Let ε > 0 with ε < ε0. Since K is compact, by Lemma A.1
there is a function P̄ : K → P(Θ) such that for

F̄i(x) :=
∫

Θ
fi(θ)dP̄x(θ),

we have that
sup
x∈K

|Fi(x) − F̄i(x)| < ε.

Hence,
|Fω

i (x) − Fi(x)| < |Fω
i (x) − F̄i(x)| + ε,

for any i ∈ [n] and x ∈ K. Since {P̄x : x ∈ K} is tight by Lemma A.1, there
exists KΘ ⊂ Θ compact such that P̄x(Θ \KΘ) < ε for any x ∈ K. Hence,∣∣∣∣F̄i(x) −

∫
KΘ

fi(θ)P̄x(θ)
∣∣∣∣ ≤ P̄x(Θ \KΘ) < ε

and

|Fω
i (x) − Fi(x)| ≤ |Fω

i (x) − F̄i(x)| + ε ≤
∣∣∣∣Fω

i (x) −
∫
KΘ

fi(θ)dP̄x(θ)
∣∣∣∣ + 2ε,

on K. Finally, since f1, . . . , fn are continuous, we can use the same construction
as that in the proof of Theorem 4.5 in Appendix A.2.1 to obtain a partition
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{Ak}NΘ
k=1 of KΘ as in (11) where each Ak is measurable, non-empty, and every

fi varies at most by 2ε over any Ak. Then∣∣∣∣∣
∫
KΘ

fi(θ)dP̄x(θ) −
NΘ∑
k=1

fi(θk)P̄x(Ak)

∣∣∣∣∣ ≤
NΘ∑
k=1

∫
Ak

|fi(θ) − fi(θk)| dP̄x(θ) < ε,

whence

|Fω
i (x) − Fi(x)| <

∣∣∣∣∣Fω
i (x) −

NΘ∑
k=1

fi(θk)P̄x(Ak)

∣∣∣∣∣ + 3ε.

Since x → P̄x(Ak) is continuous by Lemma A.1, with values on [0, 1], and

1 − ε <

NΘ∑
k=1

P̄x(Ak) ≤ 1,

the event

Ωπ :=
NΘ⋂
k=1

{
ω ∈ Ω0 : sup

x∈K
|πω

k,x − P̄x(Ak)| <
1
NΘ

ε

}
,

is measurable, as x �→ πω
k,x is continuous for ω ∈ Ω0 and x �→ P̄x(Ak) is

continuous by Lemma A.2, and has positive measure by hypothesis. The proof
now proceeds exactly the same as the proof of Theorem 4.5 in Appendix A.2.1
for the DDP and θDDP. We omit the details for brevity.

A.2.3. Proof of Theorem 4.8

Let Ω0 ⊂ Ω be a set of full measure such that for any ω ∈ Ω0 we have that: (i)
πω
i ≥ 0; (ii)

∑
i∈N

πω
i ≡ 1; (iii) πω

i and θω
i are continuous on X for the DDP, θω

i

are continuous on X in the case of a wDDP, or πω
i is continuous on X in the

case of a θDDP.
We prove in detail the statement in the case of a DDP. If P 0 ∈ P(Θ)X |GX

then we consider the event{
ω ∈ Ω :

∣∣∣∣
∫

Θ
fi,j(θ)dGω

xj
(θ) −

∫
Θ
fi,j(θ)dP 0

xj
(θ)

∣∣∣∣ < εi,j , i, j ∈ [n]
}
,

which is measurable by inspection. A standard argument shows that, by possibly
reducing ε1,1, . . . , εn,n, we can assume that fi,j are simple functions, and that
there exists a partition {Ak}Nf

k=1 of Θ of measurable sets such that

fi,j =
Nf∑
k=1

ci,j,kIAk
,

where IA is the indicator function of the set A and |ci,j,k| ≤ 1 for any i, j ∈ [n]
and k ∈ [Nf ].
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Let ε0 > 0 be such that ε0 < min(ε1,1, . . . , εn,n). Note that

∫
Θ
fi,j(θ)dGω

xj
(θ) −

∫
Θ
fi,j(θ)dP 0

xj
(θ) =

Nf∑
k=1

ci,j,k(Gω
xj

(Ak) − P 0
xj

(Ak)).

Consider the event

Ωπ :=
Nf⋂
k=1

n⋂
j=1

{
ω ∈ Ω0 : |πω

k,xj
− P 0

xj
(Ak)| <

1
N2

f

ε

}
,

which has positive measure by hypothesis. Remark that, in this case, for any
j ∈ [n] we have that

∑
i>Nf

πω
i,xj

= 1 −
Nf∑
i=1

πω
i,xj

=
Nf∑
i=1

(P 0
xj

(Ak) − πω
i,xj

) < 1
Nf

ε,

where we used the fact that {Ak}Nf

k=1 is a partition. Hence,∣∣∣∣∣∣
Nf∑
k=1

ci,j,k(Gω
xj

(Ak) − P 0
xj

(Ak))

∣∣∣∣∣∣ ≤ Nf

∑
i>Nf

πω
i,xj

+
Nf∑
k=1

∣∣∣∣∣∣
Nf∑
i=1

πω
i,xj

δθω
i,xj

(Ak) − P 0
xj

(Ak)

∣∣∣∣∣∣
< ε +

Nf∑
k=1

∣∣∣∣∣∣
Nf∑
i=1

πω
i,xj

δθω
i,xj

(Ak) − P 0
xj

(Ak)

∣∣∣∣∣∣ .
Now we use the fact that P 0 ∈ P(Θ)X |GX . In this case, G0

xj
(Ak) = 0 implies

P 0
xj

(Ak) = 0 and no such terms contribute to the sum. We can define the event

Ωθ := {ω ∈ Ω0 : θω
k,xj

∈ Ak and G0
xj

(Ak) > 0, j ∈ [n], k ∈ [Nf ]},

which has positive measure. By independence, Ωπ ∩ Ωθ has positive measure.
Hence, for ω ∈ Ωπ ∩ Ωθ we have that∣∣∣∣∣∣

Nf∑
i=1

πω
i,xj

δθω
i,xj

(Ak) − P 0
xj

(Ak)

∣∣∣∣∣∣ = |πω
k,xj

− P 0
xj

(Ak)| <
1
N2

f

ε,

if G0
xj

(Ak) > 0. If G0
xj

(Ak) = 0 then P 0
xj

(Ak) = 0 and∣∣∣∣∣∣
Nf∑
i=1

πω
i,xj

δθω
i,xj

(Ak) − P 0
xj

(Ak)

∣∣∣∣∣∣ ≤
∑

k:G0
xj

(Ak)=0

πω
i,xj

<
1
Nf

ε.
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Therefore, ∣∣∣∣
∫

Θ
fi,j(θ)dGω

xj
(θ) −

∫
Θ
fi,j(θ)dP 0

xj
(θ)

∣∣∣∣ < 2ε,

proving the theorem in the case of a DDP.
To prove the theorem in the case of a θDDP, the argument is the same up to

the inequality∣∣∣∣∣∣
Nf∑
k=1

ci,j,k(Gω
xj

(Ak) − P 0
xj

(Ak))

∣∣∣∣∣∣ < ε +
Nf∑
k=1

∣∣∣∣∣∣
Nf∑
i=1

πω
i,xj

δθω
i
(Ak) − P 0

xj
(Ak)

∣∣∣∣∣∣ .
In this case, we define the event

Ωθ := {ω ∈ Ω0 : θω
k ∈ Ak and G0(Ak) > 0, k ∈ [Nf ]}.

Since P 0 ∈ P(Θ)X |GX this event has positive measure. The proof then follows
the same steps as those in the case of a DDP.

Finally, in the case of a wDDP we follow a similar argument as that on the
proof of Theorem 4.5 in Appendix A.2.1. By choosing a suitable M such that
there are integers mj,k ∈ [M ] such that∣∣∣P 0

xj
(Ak) −

mj,k

M

∣∣∣ < ε

2Nf
,

we can define the event

Ωπ :=
M⋂
i=1

{
ω ∈ Ω0 : πω

i ∈
(

1 − ε/2Nf

M
,

1
M

]}
,

which has positive measure by hypothesis, and for every j ∈ [n] we can define
a collection {Ij,k}Nf

k=1 of disjoint sets [M ] for which |Ij,k| = mj,k. We let I0
j be

the complement of their union. Note that for ω ∈ Ωπ we have that
∑
i∈I0

j

πω
i <

3
2ε and

∑
i>M

πω
i <

1
2ε.

Hence, we obtain the inequality

|Gω
xj

(Ak) − P 0
xj

(Ak)| ≤
∑

>M

πω

 +

∣∣∣∣∣
M∑

=1

πω

 δθω

�,xj
(Ak) − P 0

xj
(Ak)

∣∣∣∣∣
<

3
2Nf

ε +
∑

∈I0

j

+

∣∣∣∣∣∣
Nf∑
k=1

∑

∈Ij,k

πω

 δθω

�,xj
(Ak) − P 0

xj
(Ak)

∣∣∣∣∣∣
<

2
Nf

ε +

∣∣∣∣∣∣
Nf∑
k=1

∑

∈Ij,k

πω

 δθω

�,xj
(Ak) − P 0

xj
(Ak)

∣∣∣∣∣∣ .
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Since G0
xj

(Aj) = 0 implies P 0
xj

(Ak) = 0 it suffices to consider the event

Ωθ := {ω ∈ Ω0 : θω
i,xj

∈ Ak and G0
xj

(Ak), k ∈ [Nf ], j ∈ [n], i ∈ Ij,k}.

By hypothesis, this has positive measure and, by independence, so does Ωπ∩Ωθ.
The proof then follows the same arguments as those in the proof of Theorem 4.5
in Appendix A.2.1 in the case of a wDDP. We omit the details for brevity.

A.2.4. Proof of Theorem 4.9

The proof is similar to the proof of Theorem 4.6 in Appendix A.2.2 with minor
modifications. Let Ω0 ⊂ Ω be a set of full measure such that for any ω ∈ Ω0
we have that: (i) πω

i ≥ 0; (ii)
∑

i∈N
πω
i ≡ 1; (iii) πω

i and θω
i are continuous

on X in the case of a DDP, or πω
i is continuous on X in the case of a θDDP.

Furthermore, by possibly reducing Ω0 by a null set, we may assume that

x �→
∫

fi(θ)dGω
x(θ),

is continuous for every ω ∈ Ω0 and i ∈ [n].
We prove the theorem in detail in the case of a DDP. Suppose that

CS(X ,P(Θ))∩P(Θ)X |GX is non-empty, as otherwise there is nothing to prove.
Our goal is to show that for P 0 ∈ CS(X ,P(Θ)) ∩ P(Θ)X |GX the event

{
ω ∈ Ω : sup

x∈K

∣∣∣∣
∫

Θ
fi(θ)dGω

x(θ) −
∫

Θ
fi(θ)dP 0

x(θ)
∣∣∣∣ < εi, i ∈ [n]

}
,

has positive probability. As argued in the proof of Theorem 4.6 in Appendix A.2.2,
we can assume that there exists a partition {Ak}Nf

k=1 of Θ of measurable sets
such that

fi =
Nf∑
k=1

ci,kIAk
,

where |ci,k| ≤ 1 for any i ∈ [n] and k ∈ [Nf ]. Let ε0 > 0 be such that ε0 <
min(ε1, . . . , εn). Note that

∫
Θ
fi(θ)dGω

x(θ) −
∫

Θ
fi(θ)dP 0

x(θ) =
Nf∑
k=1

ci,j,k(Gω
x(Ak) − P 0

x(Ak)).

By hypothesis, if G0(Ak) = 0 then P 0
x(Ak) = 0 for any x ∈ K. Hence, without

loss, we can assume that G0(Ak) > 0. Note that in this case, we have that

Nf∑
k=1

P 0
x(Ak) = 1.
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Consider the event

Ωπ :=
Nf⋂
k=1

n⋂
j=1

{
ω ∈ Ω0 : sup

x∈K
|πω

k,x − P 0
x(Ak)| <

1
N2

f

ε

}
.

Since P 0 ∈ CS(X ,P(Θ)) we see that x �→ P 0
x(Ak) is continuous whence Ωπ has

positive measure by hypothesis. Remark that, in this case, for any j ∈ [n] we
have that

∑
i>Nf

πω
i,x = 1 −

Nf∑
i=1

πω
i,x =

Nf∑
i=1

(P 0
x(Ak) − πω

i,xj
) < 1

Nf
ε,

where we used the fact that {Ak}Nf

k=1 is a partition. Hence,∣∣∣∣∣∣
Nf∑
k=1

ci,j,k(dGω
xj

(Ak) − P 0
xj

(Ak))

∣∣∣∣∣∣ < ε +
Nf∑
k=1

∣∣∣∣∣∣
Nf∑
i=1

πω
i,xj

δθω
i,xj

(Ak) − P 0
xj

(Ak)

∣∣∣∣∣∣ .
Since P 0 ∈ P(Θ)X |GX , the event

Ωθ := {ω ∈ Ω0 : θω
k,x ∈ Ak and G0

x(Ak) > 0, x ∈ K, k ∈ [Nf ]},

has positive measure. The proof then proceeds exactly as the proof of The-
orem 4.6 in Appendix A.2.2. We omit the proof in the case of a θDDP for
brevity.

A.3. Association structure of the DDP and its variants

A.3.1. Proof of Theorem 4.10

We prove the theorem in the case of a DDP as the arguments are the same in
the case of a wDDP. To prove the theorem we proceed as follows. We first show
that for any d ∈ N

(x1, . . . ,xd) �→ E

(
d∏

k=1

Gxk
(B)

)
,

is continuous. Then, by leveraging Stone-Weierstrass’s theorem [75], we can
approximate any continuous f uniformly over the hypercube by a polynomial.
Since the expectation of this polynomial is continuous by our first claim, the
theorem follows.

Define the sequence of functions hn : X d × Ω → R as

hn(x1, . . . ,xd, ω) =
d∏

k=1

n∑
ik=1

πω
ik,xk

δθω
ik,xk

(B) =
n∑

i1,...,id=1

d∏
k=1

πω
ik,xk

δθω
ik,xk

(B).
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Since the summands are a.e. non-negative, hn ≤ hn+1. Furthermore, hn ∈ [0, 1]
for any n ∈ N, and

lim
n→∞

hn(x1, . . . ,xd, ω) =
d∏

k=1

Gω
xk

(B),

for a.e. ω ∈ Ω and x1, . . . ,xd ∈ X .
We first control the expectation for fixed x1, . . . ,xd ∈ X . Write hx

n(ω) =
hn(x1, . . . ,xd, ω) for simplicity, and define the function gn : X d → R as

gn(x1, . . . ,xd) = E(hx
n)

=
n∑

i1,...,im=1
E

(
m∏

k=1

πik,xk

)
P ({ω ∈ Ω : θi1,x1 ∈ B, . . . ,θid,xd

∈ B}) , (12)

where in the last equality we used the hypothesis of independence. Since the se-
quence {hx

n} is monotone non-decreasing, by the monotone convergence theorem
we have that

lim
n→∞

gn(x1, . . . ,xd) = g∞(x1, . . . ,xd) := E

(
d∏

k=1
Gxk

(B)
)
.

Hence, the sequence {gn} converges pointwise to g∞ over X d. To conclude g∞
is continuous, we will show that {gn} is a sequence of continuous functions, to
then use a uniform approximation argument to show the continuity of g∞ near
any (x1, . . . ,xd) ∈ X d.

To show gn is continuous, note that for a.e. ω the functions x → πω
i,x are

continuous for any i ∈ N. Therefore, for any i1, . . . , id ∈ N the function

(x1, . . . ,xd) → E

(
d∏

k=1
πik,xk

)
,

is continuous on X d. Similarly,

(x1, . . . ,xd) → P ({ω ∈ Ω : θi1,x1 ∈ B, . . . ,θid,xd
∈ B}) ,

is continuous by hypothesis.
We now show continuity of g∞ near any (x1, . . . ,xd) ∈ X d using a uniform

approximation. Fix (x1, . . . ,xd) ∈ X d and let ε > 0. Remark that for n > m
we have the bound

|hn(x′
1, . . . ,x

′
d, ω) − hm(x′

1, . . . ,x
′
d, ω)| ≤

d∑
k=1

n∑
ik=m+1

πω
ik,x′

k
,

whence

|gn(x′
1, . . . ,x

′
d) − gm(x′

1, . . . ,x
′
d)| ≤

d∑
k=1

n∑
ik=m+1

E(πik,x′
k
).
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Hence, we can control the differences on the left-hand side by controlling the
expectations on the right-hand side. By similar arguments as those used in the
proof of Theorem 4.1 in Appendix A.1.1, for any δ < ε/3 we can find Nδ ∈ N

such that ∑
ik>Nδ

E(πik,xk
) < 1

2dδ,

for every k ∈ [d]. We define the open neighborhood

Uδ :=
d⋂

k=1

Nε⋂
ik=1

{
(x′

1, . . . ,x
′
d) ∈ X d : |E(πik,x′

k
) − E(πik,xk

)| < 1
2dNδ

δ

}
,

of (x1, . . . ,xd). For (x′
1, . . . ,x

′
d) ∈ Uδ we have that

∑
ik>Nδ

E(πik,x′
k
) =

∑
ik>Nδ

E(πik,xk
) −

Nδ∑
ik=1

(E(πik,xk
) − E(πik,x′

k
)) < 1

d
δ.

Therefore, for n > m > Nδ we have that

sup
(x′

1,...,x
′
d)∈Uδ

|gn(x′
1, . . . ,x

′
d) − gm(x′

1, . . . ,x
′
d)|

≤ sup
(x′

1,...,x
′
d)∈Uδ

d∑
k=1

∑
ik>Nδ

E(πik,x′
k
) < δ.

In particular, this implies

sup
(x′

1,...,x
′
d)∈Uε

|gn(x′
1, . . . ,x

′
d) − g∞(x′

1, . . . ,x
′
d)| < δ,

for any n > Nδ. Hence, it suffices to choose n > Nε to define the open neigh-
borhood

Wε :=
{

(x′
1, . . . ,x

′
d) ∈ Uδ : |gn(x′

1, . . . ,x
′
d) − gn(x1, . . . ,xd)| <

1
3ε

}
,

of (x1, . . . ,xd). Then, for any (x′
1, . . . ,x

′
d) ∈ Wε we have that

|g∞(x′
1, . . . ,x

′
d) − g∞(x1, . . . ,xd)| < 2δ + 1

3ε < ε,

whence g∞ is continuous.
Now, let f : [0, 1]d → R be a continuous function. Since [0, 1]d is compact, f

is bounded, and the function

F (x1, . . . ,xd) = E(f(Gx1(B), . . . , Gxd
(B))),

is well-defined. We now show it is continuous. Let (x1, . . . ,xd) ∈ X d and fix
ε > 0. Since [0, 1]d is compact, f can be approximated uniformly by a polynomial
p : [0, 1]d → R. If

p(z1, . . . , zd) =
N∑

|γ|=0

cγz
γ and sup

z∈[0,1]d
|f(z) − p(z)| < 1

3ε,
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then

P (x1, . . . ,xd) := E(p(Gx1(B), . . . , Gxd
(B))) =

N∑
|γ|=0

cγE

(
d∏

k=1

γk∏
ik=1

Gxk
(B)

)
,

is a continuous function by our previous result. Furthermore, if we define the
open neighborhood

Uε =
{

(x′
1, . . . ,x

′
d) : |P (x′

1, . . . ,x
′
d) − P (x1, . . . ,xd)| <

1
3ε

}
,

of (x1, . . . ,xd), then for any (x′
1, . . . ,x

′
d) ∈ Uε we have that

|F (x′
1, . . . ,x

′
d) − F (x1, . . . ,xd)|
≤ E(|f(Gx′

1
(B), . . . , Gx′

d
(B)) − f(Gx1(B), . . . , Gxd

(B))|) < ε,

proving the claim.

A.4. The regularity of the probability density function of DDP
mixture models

A.4.1. Proof of Lemma 5.1

We assume that P is fixed and we drop the superscript on ρP . Let (y0,γ0,x0) ∈
Y×Γ×X and ε > 0. By hypothesis, there exists an open neighborhood Uy0×Uγ0

of (y0,γ0) and a compact set Kθ0 ⊂ Θ such that

(y,γ,θ) ∈ Uy0 × Uγ0 ×Kc
θ0

: ψ(y,γ,θ) < 1
4ε.

Furthermore, since Θ is Polish and Px0 is finite, there exists Kx0 ⊂ Θ compact
such that

Px0(Θ \Kx0) < ε.

Define the compact set KΘ := Kθ0 ∪Kx0 . For θ ∈ KΘ let δθ > 0 be such that

max{dY(y′,y0), dΓ(γ′,γ0), dΘ(θ′,θ)} < δθ

⇒ |ψ(y′,γ′,θ′) − ψ(y0,γ0,θ)| < 1
8ε.

Let rθ > 0 be such that 2rθ < δθ. Then {B(θ, rθ)}θ∈KΘ is an open cover of
KΘ. Hence, we can extract a finite subcover {B(θk, rθk

)}Nk=1. Let r0 > 0 be
such that

r0 < min{rθk
}Nk=1 and B(y0, r0) ×B(γ0, r0) ⊂ Uy0 × Uγ0 ,

and define

UΘ :=
N⋃

k=1
B(θk, rθk

).
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Then there exists a continuous function h : Θ → [0, 1] such that h ≡ 1 on KΘ
and h ≡ 0 on U c

Θ. Let

ψ0(y,γ,x) = h(θ)ψ(y,γ,θ) and ψR(y,γ,x) = (1 − h(θ))ψ(y,γ,θ),

and define ρ0 and ρR similarly. Then, for any

(y,γ,θ) ∈ B(y0, r0) ×B(γ0, r0) × UΘ,

there exists θk ∈ KΘ such that

|ψ0(y,γ,θ) − ψ0(y0,γ0,θ)|

< |ψ(y,γ,θ) − ψ(y0,γ0,θk)| + |ψ(y0,γ0,θk) − ψ(y0,γ0,θ)| < 1
4ε.

For (y,γ) ∈ B(y0, r0) ×B(γ0, r0) we have that

|ρ(y,γ,x) − ρ(y0,γ0,x0)|
< |ρ(y,γ,x) − ρ(y0,γ0,x)| + |ρ(y0,γ0,x) − ρ(y0,γ0,x0)|.

The second term can be controlled using the weak continuity of P . In fact, it
suffices to consider the open set

Ux0 :=
{
x ∈ X : |ρ(y0,γ0,x) − ρ(y0,γ0,x0)| <

1
4ε

}
.

For the first term, consider first

|ρ0(y,γ,x) − ρ0(y0,γ0,x)| <
∫
UΘ

(ψ0(y,γ,θ) − ψ0(y0,γ0,θ))dPx(θ) < 1
4ε.

For the second, note that

ρR(y,γ,x) =
∫

ψR(y,γ,θ)dPx(θ) ≤
∫
Kc

Θ

ψ(y,γ,θ)dPx(θ) < 1
8ε.

Consequently, for (y,γ,x) ∈ B(y0, r0) ×B(γ0, r0) × Ux0 we have that

|ρ(y,γ,x) − ρ(y0,γ0,x0)| < ρR(y,γ,x) + ρR(y0,γ0,x) + 1
4ε + 1

4ε < ε,

proving the claim.

A.4.2. Proof of Lemma 5.2

Consider the sequence of functions {ρn}n∈N for ρn : Y ×Γ×X ×Ω → R+ given
by

ρωn,x(y) =
n∑

i=1
πω
i,xψ(y,γ,θω

i,x).
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Let Ω0 ⊂ Ω be a set of full measure such that: (i) πω
i ≥ 0; (ii)

∑
i∈N

πω
i ≡ 1;

and (iii) both πω
i and θω

i are continuous on X for any i ∈ N. If we restrict the
functions to Y×Γ×X ×Ω0 then ρn ≥ 0 and {ρn} is a monotone non-decreasing
sequence. Hence,

ρω∞,x(y) := lim
n→∞

ρωn,x(y),

is well-defined for a.e. ω. By the monotone convergence theorem∫
ρω∞,x(y)dνY(y) ≡ 1.

To prove continuity for a.e. ω, fix ω ∈ Ω0. Let y0 ∈ Y, x0 ∈ X and γ0 ∈ Γ.
By hypothesis, there exists an open neighborhood Uy0 of y0 and Uγ0 of γ0 such
that

∀ (y,γ,θ) ∈ Uy0 × Uγ0 × Θ : ψ(y,γ,θ) ≤ cf < ∞,

for some cf > 0. Let ε > 0 and let Nε ∈ N be such that∑
i>Nε

πω
i,x0

<
1

8cf
ε.

Define the open set Uπ ⊂ X

Uπ :=
Nε⋂
i=1

{
x ∈ X : |πω

i,x − πω
i,x0

| < 1
8cfNε

ε

}
.

For x ∈ Uπ we have that
∑
i>Nε

πω
i,x = 1 −

Nε∑
i=1

πω
i,x0

+
Nε∑
i=1

(πω
i,x − πω

i,x0
) < 1

8cf
ε + 1

8cf
ε <

1
4cf

ε.

Now, let the open set Uf,x ⊂ Y × Γ ×X be

Uf,x

:=
Nε⋂
i=1

{
(y,γ,x) ∈ Uy0 × Uγ0 ×X : |ψ(y,γ,θω

i,x) − ψ(y0,γ0,θ
ω
i,x0

)| < 1
4cfNε

}
.

This set is open by continuity of θω
i . Then, for any (y,γ,x) ∈ Uf,x∑

i>Nε

πω
i,xψ(y,γ,θω

i,x) < cf
∑
i>Nε

πω
i,x <

1
4ε.

Therefore,

|ρω∞,x,γ(y) − ρω∞,x0,γ0
(y0)|

≤ 1
2ε+

Nε∑
i=1

|πω
i,x−πω

i,x0
||ψ(y,γ,θω

i,x)|+
Nε∑
i=1

πω
i,x0

|ψ(y,γ,θω
i,x)−ψ(y0,γ0,θ

ω
i,x0

)|

<
1
2ε + 1

4ε + 1
4ε = ε,

proving the lemma.
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A.5. The continuity of DDP mixture models

A.5.1. Proof of Theorem 6.1

Fix P ∈ CW (X ,P(Θ)). To simplify notation, we drop the superscript on MP

and ρP . Let ε > 0. We will prove that there exist a neighborhood of (γ0,x0)
such that

|Mγ,x(B) −Mγ0,x0(B)| < ε,

uniformly on B. The strategy is to find suitable compact subsets of Y and
Θ where the measures M and Px0 are concentrated near (γ0,x0). Then, we
leverage the continuity of ψ and the weak continuity of P .

First, since Y is Polish there exists KY ⊂ Y compact such that

Mγ0,x0(Y \KY) < 1
16ε.

Since νY is locally finite, there exists cY > 0 such that

max{1, νY(KY)} < cY < ∞.

Second, since Θ is Polish, there exists KΘ ⊂ Θ compact such that

Px0(Θ \KΘ) < 1
16ε.

We now construct a suitable cover for KY ×{γ0}×KΘ. Let δy,θ > 0 be such
that

max{dY(y′,y), dΓ(γ′,γ0), dΘ(θ′,θ)} < δy,θ

⇒ |ψ(y′,γ′,θ′) − ψ(y,γ0,θ)| < 1
64cY

ε.

Similarly, let ry,θ > 0 be 2ry,θ < δy,θ. Then, for every y ∈ KY the collection

{B(y, ry,θ) ×B(γ0, ry,θ) ×B(θ, ry,θ)}θ∈KΘ ,

is an open cover of the compact set {y}×{γ0}×KΘ. Hence, there exists a finite
subcover

{B(y, ry,θ�
) ×B(γ0, ry,θ�

) ×B(θ
, ry,θ�
)}Ny


=1.

Let ry > 0 be such that

ry < min{ry,θ1 , . . . , ry,θNy
}.

Define the open neighborhood of KΘ

K
ry
Θ := {θ ∈ Θ : dΘ(θ,KΘ) < ry},

and the open set
Wy := B(y, ry) ×B(γ0, ry) ×K

ry
Θ .



2118 A. Iturriaga et al.

Note that
{y} × {γ0} ×KΘ ⊂ Wy.

Furthermore, for any (y′,γ′,θ′) ∈ Wy there exists, by construction, θ′′ ∈ KΘ
such that

dΘ(θ′,θ′′) < ry.

Hence, for some � ∈ [Ny] we have that

dΘ(θ′,θ
) ≤ dΘ(θ′,θ′′) + dΘ(θ′′,θ
) < ry + ry,θ�
< δy,θ�

.

Furthermore, for the same choice of θ
 we also have that dY(y′,y) < δy,θ�
and

dΓ(γ′,γ0) < ry,θ�
. Hence, we deduce that

|ψ(y′,γ′,θ′) − ψ(y,γ0,θ
′)|

≤ |ψ(y′,γ′,θ′) − ψ(y,γ0,θ
)| + |ψ(y,γ0,θ
) − ψ(y,γ0,θ
′)| < 1

32cY
ε.

The collection {Wy}y∈KY is an open cover of the compact set KY×{γ0}×KΘ.
Hence, we can extract a subcover {Wyk

}NY
k=1. By possibly removing elements, we

may assume that no ball is covered by the union of the remanining ones. Note
that {B(yk, ryk

)}NY
k=1 is a cover for KY with the same property. We partition

KY into the sets

A1 := KY ∩B(yk, ryk
),

Ak := KY ∩
(
B(yk, ryk

) \
k−1⋃

=1

B(y
, ry�
)
)
, k ∈ {2, . . . , NY}.

Additionally, we let

Uγ0 :=
NY⋂
k=1

B(γ0, ryk
).

Finally, consider the open set

UΘ := {θ ∈ Θ : dΘ(θ,KΘ) < min{ry1 , . . . , ryNY
}} ⊂

NY⋂
k=1

K
ryk

Θ .

Then, there exists a continuous function h : Θ → [0, 1] such that h|KΘ ≡ 1 and
h|Uc

Θ
≡ 0. From KΘ and UΘ we obtain the decomposition,

ψR(y,γ,θ) := (1 − h(θ))ψ(y,γ,θ) and ψ0(y,γ,θ) = h(θ)ψ(y,γ,θ).

We define ρR, ρ0,MR and M0 similarly. By construction ψ0 is supported on UΘ
and

Px0(KΘ \ UΘ) ≤ Px0(KΘ \KΘ) < 1
16ε.
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Furthermore, for (y,γ,θ) ∈ B(yk, ryk
) × Uγ0 ×K

ryk

Θ

|ψ0(y,γ,θ) − ψ0(yk,γ0,θ)| ≤ h(θ)|ψ(y,γ,θ) − ψ(yk,γ0,θ)| < 1
32cY

ε.

We now show that

M0
γ,x(KY ∩B) :=

∫
KY

∫
ψ0(y,γ,θ)dPx(θ)dνY(y),

can be approximated by a continuous function near (γ0,x0). Consider the de-
composition

M0
γ,x(B) =

NY∑
k=1

νY(Ak ∩B)
∫

ψ0(yk,γ0,θ)dPx(θ)

−
NY∑
k=1

∫
Ak∩B

∫
UΘ

(ψ0(y,γ,θ) − ψ0(yk,γ0,θ))dPx(θ)dνY(y).

Since∣∣∣∣
∫
Ak∩B

∫
UΘ

(ψ0(y,γ,θ) − ψ0(yk,γ0,θ))dPx(θ)dνY(y)
∣∣∣∣ < 1

32cY
ενY(Ak ∩B),

whence∣∣∣∣∣M0
γ,x(KY ∩B) −

NY∑
k=1

νY(Ak ∩B)
∫

ψ0(yk,γ0,θ)dPx(θ)

∣∣∣∣∣ < 1
32ε.

Therefore

|M0
γ,x(KY ∩B) −M0

γ0,x0
(KY ∩B)|

<
1
16ε +

NY∑
k=1

νY(Ak ∩B)|ρ0(yk,γ0,x) − ρ0(yk,γ0,x0)|.

It suffices to choose

Ux0 :=
NY⋂
k=1

{
x ∈ X :

∣∣∣∣
∫

ψ0(yk,γ0,θ)dPx(θ)−
∫

ψ0(yk,γ0,θ)dPx0(θ)
∣∣∣∣ < 1

16ε
}
,

as an open neighborhood for x0. Hence, we obtain the bound

|M0
γ,x(KY ∩B) −M0

γ0,x0
(KY ∩B)| < 1

8ε,

which is uniform over B for (γ,x) ∈ Uγ0 × Ux0 .
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We now show that the remaining terms do not concentrate too much mass.
By construction,

Mγ0,x0(KY) = M0
γ0,x0

(KY) + MR
γ0,x0

(KY) ≥ 1 − 1
16ε.

Furthermore, by Fubini’s theorem,

|Mγ0,x0(KY) −M0
γ0,x0

(KY)| <
∫
KY

∫
Θ\KΘ

ψR(y,γ0,θ)dPx0(θ)dνY(y),

≤
∫

Θ\KΘ

∫
KY

ψR(y,γ0,θ)dνY(y)dPx0(θ),

≤ Px0(Θ \KΘ),

<
1
16ε,

where we used the fact that 1 − h is supported on Θ \KΘ. It follows that

M0
γ0,x0

(KY) > 1 − 1
8ε ⇒ MR

γ0,x0
(KY) ≤ 1

8ε.

Note then that

M0
γ,x(KY) > M0

γ0,x0
(KY) − 1

8ε > 1 − 1
4ε,

whence
1 −M0

γ,x(KY) = MR
γ,x(KY) + Mγ,x(Y \KY) < 1

4ε.

Finally, from the decomposition

Mγ,x(B) = Mγ,x(KY ∩B) + Mγ,x(B \KY)
= M0

γ,x(KY ∩B) + MR
γ,x(KY ∩B) + Mγ,x(B \KY),

we deduce that

|Mγ,x(B) −Mγ0,x0(B)| ≤ |M0
γ,x(KY ∩B) −M0

γ0,x0
(KY ∩B)|

+ MR
γ,x(KY ∩B) + Mγ,x(B \KY) + MR

γ0,x0
(KY ∩B) + Mγ0,x0(B \KY)

<
1
8ε + 1

4ε + 1
4ε < ε,

for (γ,x) ∈ Uγ0 × Ux0 uniformly in B. This proves the theorem.

A.6. The support of DDP mixture models

To characterize the support of mixtures in different topologies, we will use re-
peatedly the following lemma. It provides uniform control on the behavior of
mixtures uniformly over weakly continuous P : X → P(Θ).
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Lemma A.2. Suppose that ψ is continuous and that for every y0 ∈ Y, γ0 ∈ Γ
and ε > 0 there exists K0 ⊂ Θ compact such that

(y,γ,θ) ∈ Uy0 × Uγ0 ×Kc
0 ⇒ ψ(y,γ,θ) < ε.

The following assertions are true.

1. Let KY×Γ ⊂ Y×Γ be compact. Then, for every ε > 0 there exists UKY×Γ ⊃
KY×Γ open, and δ > 0 such that for any (y,γ), (y′,γ′) ∈ UKY×Γ we have
that

dY×Γ((y,γ), (y′,γ′)) < δ

⇒ sup
x∈X

∣∣∣∣
∫

Θ
ψ(y′,γ′,θ)dPx(θ) −

∫
Θ
ψ(y,γ,θ)dPx(θ)

∣∣∣∣ < ε,

uniformly over P : X → P(Θ) weakly continuous.
2. Let KΓ×X ⊂ Γ × X be compact, and let P : X → P(Θ) be weakly

continuous. Then, for every ε > 0 there exists KY ⊂ Y compact and
UKΓ×X ⊃ KΓ×X open such that

∀ (γ,x) ∈ UKΓ×X : QP
γ,x(Y \KY) < ε.

Proof of Lemma A.2. Proof of 1. Let ε′ ∈ (0, ε). We first prove the result for
KY×Γ = {(y0,γ0)}. By hypothesis, there exists neighborhoods Uy0 and Uγ0 of
y0 and γ0 respectively, and KΘ ⊂ Θ compact such that

(y′,γ′,θ′) ∈ Uy0 × Uγ0 ×Kc
Θ : ψ(y′,γ′,θ′) < 1

8ε
′.

For θ0 ∈ KΘ let δθ0 > 0 be such that

dY×Γ×Θ((y,γ,θ), (y0,γ0,θ0)) < δθ0 ⇒ |ψ(y,γ,θ) − ψ(y0,γ0,θ0)| <
1
8ε

′.

Let 2rθ0 < δθ0 . Then {B(θ, rθ)}θ∈KΘ is an open cover of KΘ from which we
can extract a finite subcover {B(θk, rθk

)}Nk=1. Define the neighborhoods

U ′
y0

:= Uy0 ∩
N⋃

k=1

B(y0, r0),

U ′
γ0

:= Uγ0 ∩
N⋃

k=1

B(γ0, rθk
),

UKΘ :=
N⋃

k=1

B(θk, rθk
),

of y0,γ0 and KΘ respectively, and let h : Θ → [0, 1] be a continuous map such
that h ≡ 1 on KΘ and h ≡ 0 on U c

KΘ
. Then, for any y ∈ U ′

y0
and γ ∈ U ′

γ0
we

have that∫
Θ

(1 − h(θ))ψ(y,γ,θ) dPx(θ) ≤
∫
Kc

Θ

ψ(y,γ,θ) dPx(θ) < 1
8εPx(Kc

Θ) < 1
8ε

′,
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for any weakly continuous P : X → P(Θ) and x ∈ X . Hence, define

ψKΘ(y,γ,θ) := h(θ)ψ(y,γ,θ).

Then, for any (y,γ,θ) ∈ U ′
y0

× U ′
γ0

× UKΘ there exists θk such that

|ψKΘ(y,γ,θ) − ψKΘ(y0,γ0,θ)|

< |ψ(y,γ,θ) − ψ(y0,γ0,θk)| + |ψ(y0,γ0,θk) − ψ(y0,γ0,θ)| < 1
4ε

′.

It follows that for any (y,γ) ∈ U ′
y0

× U ′
γ0

we have that

∣∣∣∣
∫

Θ
ψ(y,γ,θ)dPx(θ) −

∫
Θ
ψ(y0,γ0,θ)dPx(θ)

∣∣∣∣
<

1
4ε

′ +
∫
UKΘ

|ψKΘ(y,γ,θ) − ψKΘ(y0,γ0,θ)|dPx(θ) < 1
2ε

′,

for any weakly continuous P : X → P(Θ) and x ∈ X . From now on, we let
r(y0,γ0) > 0 be such that

B((y0,γ0), r(y0,γ0)) ⊂ U ′
y0

× U ′
γ0
.

We now consider the case for an arbitrary compact set KY×Γ. From the
open cover {B((y,γ), r(y,γ)/2)}(y,γ)∈KY×Γ , we can extract a finite subcover
{B((yk,γk), r(yk,γk)/2)}Nk=1. Remark the radius of the cover is half of that ob-
tained in the previous step. Define

UKY×Γ :=
N⋃

k=1

B((yk,γk), r(yk,γk)/2),

and
δ := 1

4 min{r(yk,γk) : k ∈ [N ]}.

Let (y′,γ′), (y,γ) ∈ UKY×Γ be such that

dY×Γ((y′,γ′), (y,γ)) < δ.

Then, there exists (yk,γk) ∈ KY×Γ such that

dY×Γ((y,γ), (yk,γk)) <
1
2r(yk,γk).

This implies that

dY×Γ((y′,γ′), (yk,γk)) < dY×Γ((y′,γ′), (y,γ)) + 1
2r(yk,γk) < r(yk,γk),

from where it follows that (y′,γ′), (y,γ) ∈ B((yk,γk), ryk,γk
). In particular,
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∫

Θ
ψ(y′,γ′,θ)dPx(θ) −

∫
Θ
ψ(y,γ,θ)dPx(θ)

∣∣∣∣
≤

∣∣∣∣
∫

Θ
ψ(y′,γ′,θ)dPx(θ) −

∫
Θ
ψ(yk,γk,θ)dPx(θ)

∣∣∣∣
+

∣∣∣∣
∫

Θ
ψ(y,γ,θ)dPx(θ) −

∫
Θ
ψ(yk,γk,θ)dPx(θ)

∣∣∣∣ < 1
2ε

′ + 1
2ε

′ = ε′,

for any P : X → P(Θ) and x ∈ X . Since the supremum over X can be at most
ε′ with ε′ < ε, this proves the lemma.
Proof of 2. The hypothesis allows us to conclude from Theorem 6.1 that for any
weakly continuous P : X → P(Θ) the map MP : Γ × X → P(Y) is strongly
continuous. Hence, for every (γ,x) ∈ KΓ×X let Kγ,x ⊂ Y be a compact set
such that

MP
γ,x(Y \Kγ,x) < 1

2ε.

Then, let Uγ,x ⊂ Γ ×X be an open neighborhood of (γ,x) such that

∀ (γ′,x′) ∈ Uγ,x : |MP
γ′,x′(Y \Kγ,x) −MP

γ.x(Y \Kγ,x)| < 1
2ε.

Hence, {Uγ,x}(γ,x)∈KΓ×KX is an open cover of KΓ×X from which we can extract
a finite subcover {Uγk,xk

}Nk=1. Let

UKΓ×X :=
N⋃

k=1

Uγk,xk
.

Then that for every (γ,x) ∈ UKΓ×X there exists (γk,xk) such that

MP
γ,x(Y \Kγk,xk

) ≤ 1
2ε + |MP

γ,x(Y \Kγk,xk
) −MP

γk,xk
(Y \Kγk,xk

)| < ε.

Hence, we can choose the compact set

KY :=
N⋃

k=1
Kγk,xk

,

proving the claim.

As a consequence of the lemma, if the hypotheses of Theorem 4.1 hold, then
for every ω on a set of full measure we have that∣∣∣∣

∫
Θ
ψ(y′,γ′,θ)dGω

x(θ) −
∫

Θ
ψ(y,γ,θ)dGω

x(θ)
∣∣∣∣ < ε,

for any x ∈ X .
The lemma allows us to use essentially the same argument to characterize

the support both in the product and compact-open topologies as follows. The
statements in the case of the compact-open topology involve the supremum



2124 A. Iturriaga et al.

over a compact set KΓ ×KX ⊂ Γ × X and P 0 : X → P(Θ) weakly continuous.
The statements in the case of the product topology can be reduced to this as
follows. First, in the case of the product topology we need to consider a finite
set {(γi,xi) : i ∈ [n]}. We will see this is equivalent to bounding a supremum
over the compact set

KΓ×X := {(γi,xi) : i ∈ [n]},

or by considering first the compact sets

KΓ := {γi : i ∈ [n]} and KX := {xi : i ∈ [n]},

and defining KΓ×X := KΓ × KX . Second, in the case of the product topology
we make no assumptions about the continuity of P 0 : X → P(Θ). However,
since only its values on the finite set {xi : i ∈ [n]} are relevant, we can leverage
Lemma A.1 to replace P 0 by its weakly continuous interpolant P 0. Once we have
performed this reduction, Lemma A.2 will allow us to prove the desired results
using analogous arguments for the product and compact-open topologies.

A.6.1. Proof of Theorems 6.3 and 6.4

In the case of the product-Hellinger topology, we define the compact sets KΓ :=
{γi : i ∈ [n]} and KX := {xi : i ∈ [n]}. Furthermore, we let KΓ×X = KΓ ×KX
and we let ε0 < min{ε1, . . . , εn}. As indicated before, over the finite set KX
we can assume without loss that P 0 is weakly continuous. For the compact-
Hellinger topology, we define KΓ×X = KΓ ×KX and let ε0 < ε.

This reduction allows us to consider the event{
ω ∈ Ω : sup

(γ,x)∈KΓ×X

dH(ρG
ω

γ,x, ρ
P 0

γ,x) < ε0

}
.

Both Theorem 6.3 and 6.4 follow if we show the above event has positive prob-
ability.

Note that

dH(ρG
ω

γ,x, ρ
P 0

γ,x) < ε0 ⇔ 1 −
∫
Y
ρG

ω

(y,γ,x)1/2ρP
0
(y,γ,x)1/2dνY(y) < 2ε2

0.

Let ε ∈ (0, 1) be such that ε < 2ε2
0. From Lemma A.2 there exists a compact

set KY ⊂ Y such that

sup
(γ,x)∈KΓ×KX

MP
γ,x(Y \KY) < 1

4ε.

Since νY is locally finite, we can assume without loss that νY(KY) < ∞. Define
the compact set KY×Γ = KY ×KΓ. By Lemma 5.1 there exists δ > 0 such that
for any (y′,γ′), (y,γ) ∈ KY×Γ we have that
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dY×Γ((y′,γ′), (y,γ)) < δ

⇒
∣∣∣∣
∫

Θ
ψ(y′,γ′,θ)dPx(θ) −

∫
Θ
ψ(y,γ,θ)dPx(θ)

∣∣∣∣ < 1
16νY(KY)ε

2,

uniformly over weakly continuous P : X → P(Θ) and x ∈ X . In particular,∣∣∣∣∣
(∫

Θ
ψ(y′,γ′,θ)dPx(θ)

)1/2
−

(∫
Θ
ψ(y,γ,θ)dPx(θ)

)1/2
∣∣∣∣∣ < 1

4νY(KY)1/2
ε.

Let 2r < δ. We construct a finite open cover for KY×Γ as follows. First, from
the open cover {B(y, r)}y∈KY we can extract a finite subcover {B(yk, r)}Nk=1.
Without loss, we can assume that it is minimal, and we can partition KY in
terms of the measurable sets of positive measure

A1 := KY ∩B(yk, r),

Ak := KY ∩
(
B(yk, r) \

k−1⋃

=1

B(y
, r)
)
, k ∈ {2, . . . , N}.

Second, from the open cover {B(γ, r)}γ∈KΓ we can extract a finite subcover
{B(γ
, r)}M
=1. Note that {B(yk, r) × B(γ
, r) : k ∈ [N ], � ∈ [M ]} is an open
cover for KY×Γ. Hence, for any (γ,x) ∈ KΓ×X we can write

1 − 1
4ε ≤

∫
KY

ρP
0
(y,γ,x) dνY(y),

=
N∑

k=1

∫
Ak

(ρP
0
(y,γ,x)1/2 − ρP

0
(yk,γ
,x)1/2)ρP

0
(y,γ,x)1/2dνY(y),

+
N∑

k=1

∫
Ak

(ρP
0
(yk,γ
,x)1/2 − ρG

ω

(yk,γ
,x)1/2)ρP
0
(y,γ,x)1/2dνY(y),

+
N∑

k=1

∫
Ak

(ρG
ω

(yk,γ
,x)1/2 − ρG
ω

(y,γ,x)1/2)ρP
0
(y,γ,x)1/2dνY(y),

+
∫
KY

ρG
ω

(y,γ,x)1/2ρP
0
(y,γ,x)1/2dνY(y),

where γ ∈ B(γ
, r). The first sum can be bounded as
∫
Ak

(ρP
0
(y,γ,x)1/2 − ρP

0
(yk,γ
,x)1/2)ρP

0
(y,γ,x)1/2dνY(y),

≤ 1
4νY(KY)1/2

ε

∫
KY

ρP
0
(y,γ,x)1/2dνY(y),

≤ 1
4νY(KY)1/2

ενY(KY)1/2QP (KY)1/2 ≤ 1
4ε.
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The third sum is a.s. bounded by the same arguments. Hence,

1 −
∫
Y
ρG

ω

(y,γ,x)1/2ρP
0
(y,γ,x)1/2dνY(y)

<
3
4ε +

N∑
k=1

∫
Ak

(ρP (yk,γ
,x)1/2 − ρG
ω

(yk,γ
,x)1/2)ρP
0
(y,γ,x)1/2dνY(y).

To prove the theorems, it remains to bound the integral in the right-hand side.
The hypotheses of Theorem 6.3 allow us to apply Theorem 4.5 to show that

the event{
ω ∈ Ω :

∣∣∣∣
∫

Θ
ψ(yk,γ
,θ)dGω

xi
(θ) −

∫
Θ
ψ(yk,γi,θ)dP 0

xi
(θ)

∣∣∣∣ < ε

4νY(KY)1/2
,

k ∈ [N ], � ∈ [M ], i ∈ [n]
}
,

has positive probability. This proves Theorem 6.3.
The hypotheses of Theorem 6.4 allow us to apply Theorem 4.8 to show that

the event{
ω ∈ Ω: sup

x∈KX

∣∣∣∣
∫

Θ
ψ(yk,γ
,θ)dGω

x(θ)−
∫

Θ
ψ(yk,γ
,θ)dP 0

x(θ)
∣∣∣∣ < ε

8νY(KY)1/2
,

k ∈ [N ], � ∈ [M ]
}
,

has positive probability. This proves Theorem 6.3.

A.6.2. Proof of Theorems 6.5 and 6.6

In the case of the product-L∞ topology we can define the compact set KΓ×X ⊂
KΓ×KX as in Appendix A.6.1 and let ε0 < min{ε1, . . . , εn}. As indicated before,
over this finite set we can assume without loss that P 0 is weakly continuous.
For the compact-L∞ topology, we define KΓ×X = KΓ ×KX and let ε0 < ε.

This reduction allows us to consider the event{
ω ∈ Ω : sup

(γ,x)∈KΓ×X

‖ρGω

γ,x − ρP
0

γ,x‖L∞ < ε0

}
.

Both Theorem 6.5 and 6.6 and follow is we show the above event has positive
probability. Let ε ∈ [0, 1) be such that ε < ε0.

Let KY×Γ = Y × KΓ which, by hypothesis, is compact. From Lemma A.2
there exists δ > 0 such that for any (y′,γ′), (y,γ) ∈ KY×Γ we have that

dY×Γ((y′,y), (γ′,γ)) < δ

⇒
∣∣∣∣
∫

Θ
ψ(y′,γ′,θ)dPx(θ) −

∫
Θ
ψ(y,γ,θ)dPx(θ)

∣∣∣∣ < 1
4ε,
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uniformly over weakly continuous P : X → P(Θ) and x ∈ X . Let r > 0 be
such that 2r < δ. From the open cover {B((y,γ), r)}(y,γ)∈KY×Γ we can extract
a finite subcover {B((yk,γk), r)}Nk=1. Hence, for any (y,γ) ∈ KY×Γ there exists
k ∈ [N ] such that∣∣∣∣

∫
Θ
ψ(y,γ,θ)dPx(θ)

∣∣∣∣ < 1
4ε +

∣∣∣∣
∫

Θ
ψ(yk,γk,θ)dPx(θ)

∣∣∣∣ ,
uniformly over P : X → P(Θ) weakly continuous and x ∈ X . In particular,

∣∣∣∣
∫

Θ
ψ(y,γ,θ)dGω

x(θ) −
∫

Θ
ψ(y,γ,θ)dPx(θ)

∣∣∣∣
≤ 1

2ε +
∣∣∣∣
∫

Θ
ψ(yk,γk,θ)dGω

x(θ) −
∫

Θ
ψ(yk,γk,θ)dPx(θ)

∣∣∣∣ .
The hypotheses of Theorem 6.5 and the fact that γk ∈ {γ1, . . . ,γn} allow us

to apply Theorem 4.5 to show that the event{
ω ∈ Ω:

∣∣∣∣
∫

Θ
ψ(yk,γi,θ)dGω

xi
(θ)−

∫
Θ
ψ(yk,γi,θ)dP 0

xi
(θ)

∣∣∣∣<1
2ε, i ∈ [n], k ∈ [N ]

}
,

has positive probability. This proves Theorem 6.5. The hypotheses of Theo-
rem 6.6 allow us to apply Theorem 4.8 to show that the event{

ω ∈ Ω : sup
x∈KX

∣∣∣∣
∫

Θ
ψ(yk,γk,θ)dGω

x(θ) −
∫

Θ
ψ(yk,γk,θ)dP 0

x(θ)
∣∣∣∣

<
1
2ε, k ∈ [N ]

}
,

has positive probability. This proves Theorem 6.6.

A.6.3. Proof of Theorems 6.7 and 6.8

In the case of the product-KL topology we proceed as for the product-L∞ topol-
ogy. We define the compact sets KΓ := {γi : i ∈ [n]} and KX := {xi : i ∈ [n]}.
Furthermore, we let KΓ×X = KΓ ×KX and we let ε0 < min{ε1, . . . , εn}. As in-
dicated before, over this finite set we can assume without loss that P 0 is weakly
continuous. For the compact-KL topology, we define KΓ×X = KΓ ×KX and let
ε0 < ε.

The hypothesis ψ > 0 implies that ρP 0
> 0. Furthermore, since Y×KΓ×KX

is compact, there exists cmax > 0 such that ρP 0 ≤ cmax. Let ε′ > 0 be such that
ε′ < ε0/(1 + ε0) and consider the event{

ω ∈ Ω : sup
(y,γ,x)∈KY×KΓ×KX

|ρGω

(y,γ,x) − ρP
0
(y,γ,x)| < ε′cmax

}
.



2128 A. Iturriaga et al.

The hypotheses allow us to apply Theorem 6.5 or Theorem 6.6 respectively to
prove this event has positive probability. Furthermore, on this event we have
that ∣∣∣∣ρG

ω (y,γ,x)
ρP 0(y,γ,x)

− 1
∣∣∣∣ < ε′.

Since for t > −1 we have that
t

1 + t
≤ log(1 + t) ≤ t,

we deduce that ∣∣∣∣∣log
(
ρP

0(y,γ,x)
ρGω (y,γ,x)

)∣∣∣∣∣ < ε′

1 − ε′
< ε0.

In particular,

KL(qP
0‖ ρGω

) =
∫
Y
ρP

0
(y,γ,x) log

(
ρP

0(y,γ,x)
ρGω (y,γ,x)

)
dνY(y) < ε0.

Consequently, the event{
ω ∈ Ω : sup

(γ,x)∈KΓ×KX

KL(ρP
0

γ,x‖ ρG
ω

γ,x) < ε0

}
,

has positive probability, proving the theorem.
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