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Abstract: Multivariate Bayesian error-in-variable (EIV) linear regression
is considered to account for additional additive Gaussian error in the fea-
tures and response. A 3-variable deterministic scan Gibbs sampler is con-
structed for multivariate EIV regression models using classical and Berkson
errors with independent normal and inverse-Wishart priors. These Gibbs
samplers are proven to always be geometrically ergodic which ensures a
central limit theorem for many time averages from the Markov chains. We
demonstrate the strengths and limitations of the Gibbs sampler with simu-
lated data for large data problems, robustness to misspecification and also
analyze a real-data example in astrophysics.
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1. Introduction

Many problems in astrophysics (Feigelson and Babu, 1992; Hilbe, de Souza
and Ishida, 2017; Kelly, 2012; Stefanski, 2000) and epidemiology (Achic et al.,
2018; Buonaccorsi, 2010; Carroll et al., 2006; Clayton et al., 1992) among other
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areas of science (Groß, 2016; Pollice et al., 2019; Tang, Li and Tang, 2017)
involve error in variables (EIV) which classical linear regression does not take
into account. EIV can occur in many situations such as measurement error in
data collection (Hilbe, de Souza and Ishida, 2017; Kelly, 2012), discrepancies
between the data distribution and the model (Carroll et al., 2006; Buonaccorsi,
2010), or purposeful adversarial attacks against the data (Goodfellow, Shlens
and Szegedy, 2015; Szegedy et al., 2014). Not surprisingly, multiple critical issues
arise in parameter estimation and statistical inference when ignoring additional
errors in the data such as poor predictive performance (Goodfellow, Shlens
and Szegedy, 2015), statistical bias (Damgaard, 2020; Kröger, Hoffmann and
Pakpahan, 2016; Vidal and Iglesias, 2008), and estimators fail to be consistent
(Michalek and Tripathi, 1980).

Bayesian approaches develop a strategy for additional error in the variables
by constructing a new model incorporating additional error. We consider mul-
tivariate Bayesian EIV linear regression (Charisse Farr et al., 2020; Dellaportas
and Stephens, 1995; Fang et al., 2017; Huang, 2010; Mallick and Gelfand, 1996;
Muff et al., 2015; Richardson S, 1993; Rodrigues and Bolfarine, 2007; Torabi
et al., 2021; Vidal and Arellano-Valle, 2010) accounting for additive Gaussian
error in the features (covariates) and response. This model assumes the vari-
ability of the additive Gaussian error is known beforehand which has been suc-
cessful in astrophysics applications in the presence of known instrumentation
error (Hilbe, de Souza and Ishida, 2017; Kelly, 2012). Alternative approaches to
EIV models attempt to correct existing parameter estimation methods such as
least squares or method of moments with weighting and other techniques (Fuller,
1987; Stefanski and Carroll, 1985). Several other strategies for EIV modeling are
discussed in more comprehensive treatments on the topic (Buonaccorsi, 2010;
Carroll et al., 2006; Fuller, 1987).

We write x ∼ Nd(m,C) to mean the d-dimensional normal distribution with
mean m and symmetric, positive-definite (SPD) covariance matrix C. We also
write x ∼ W−1

d (ν, V ) to be the inverse-Wishart distribution with positive integer
degrees of freedom ν ≥ d and scale SPD matrix V ∈ R

d×d. Let vec(A) denote the
vectorization of a matrix A by stacking the columns. Let (Yi, Xi, Zi)ni=1 be inde-
pendent and identically distributed (i.i.d.) where the response Yi takes values in
R

m along with features Xi taking values in R
p and fixed, known features Zi ∈ R

q

where m,n, p, q are positive integers. Let θ = vec(Θ) ∈ R
qm, β = vec(B) ∈ R

pm,
and SPD matrix Σ ∈ R

m×m be unknown regression and covariance parameters
respectively. We introduce new parameters A = (A1, . . . ,An)T with Ai ∈ R

p to
model additional error in Xi using classical or Berkson errors (Berkson, 1950).
The classical error model specifies Xi|Ai and the Berkson error model (Berk-
son, 1950) assumes instead a data-dependent prior on Ai|Xi. When there is
additional error in Xi, the EIV linear regression model for i ∈ 1, . . . , n is i.i.d.
with

Yi|Ai, θ, β,Σ ∼ Nm(ΘTZi + BTAi,Σ) (1a)
Xi|Ai ∼ Np(Ai, Vi) (Classical) or Ai|Xi ∼ Np(Xi, Vi) (Berkson) (1b)



Geometric ergodicity of Gibbs samplers for Bayesian EIV regression 1497

where the SPD matrices Vi ∈ R
p×p are known. When there is also additional

error in the responses Yi, we assume an i.i.d. hierarchical regression model
with

Yi|Vi ∼ Nm(Vi, Ui) (2a)
Vi|Ai, θ, β,Σ ∼ Nm(ΘTZi + BTAi,Σ) (2b)
Xi|Ai ∼ Np(Ai, Vi) (Classical) or Ai|Xi ∼ Np(Xi, Vi) (Berkson) (2c)

where Ui ∈ R
m×m are known SPD matrices.

We will be interested in the posterior for both models (1) and (2) using inde-
pendent normal and inverse-Wishart priors on the parameters (A, θ, β,Σ). The
independent prior choice is a popular choice in Bayesian regression models with
and without measurement error (Carroll et al., 2006; Dellaportas and Stephens,
1995; Ekvall and Jones, 2021; Rajaratnam and Sparks, 2015). For example, in
the special case of a univariate response, this classical Bayesian EIV model has
been used in astrophysics to study supermassive black hole mass (Harris, Poole
and Harris, 2014; Hilbe, de Souza and Ishida, 2017). However, the general mul-
tivariate Bayesian EIV regression models (1) and (2) with these priors have not
been previously introduced to the best of our knowledge. For the EIV regression
models (1) and (2), the independent priors are chosen

Σ ∼ W−1
m (a0, B0) (3a)

(θ, β)T ∼ Nm(q+p)(j0, J0) (3b)

where a0 ≥ m is a positive integer, B0 ∈ R
m×m is a SPD matrix, j0 ∈ R

m(q+p)

and SPD matrix J0 ∈ R
m(q+p)×m(q+p). The classical and Berkson error models

assume either

Ai ∼ Np(ki,Ki) (Classical) or Ai flat prior (Berkson) (4)

where ki ∈ R
p and Ki ∈ R

p×p are SPD matrices. For example, an exposure model
(Gustafson, 2003) utilized often in epidemiology would assume classical errors
with a data-dependent prior on each Ai depending on Zi. In the Berkson error
model, each Ai|Xi is already specified and it is natural to assume an improper
flat prior on each Ai.

Previous work has proposed Gibbs sampling (Geman and Geman, 1984)
to draw samples from the posterior, denoted by Πn, in Bayesian EIV regres-
sion models (Bhadra and Carroll, 2016; Carroll et al., 2006; Dellaportas and
Stephens, 1995; Richardson S, 1993). However, trustworthy estimation from
a Gibbs sampler requires the Markov chain to converge to the posterior dis-
tribution at a sufficiently fast rate. Consider a vector-valued function f with∫
‖f‖2+δ

dΠn < ∞ for some δ ∈ (0,∞) and denote f̄m as the time average of
m samples from the Gibbs sampler. In order to be confident in the estimator
f̄m in applications an estimate of the Monte Carlo simulation error is essential
for constructing standard errors and confidence intervals for each coordinate.
A Gibbs sampler is geometrically ergodic if initialized at points, its marginal
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distribution is converging to Πn at an exponential rate in total variation. Ge-
ometrically ergodic Gibbs samplers provide rich theoretical guarantees which
are of practical relevance in applications. These Gibbs samplers satisfy a central
limit theorem (Chan and Geyer, 1994; Jones, 2004), that is,

√
m

(
f̄m −

∫
fdΠn

)
is asymptotically normally distributed and under suitable assumptions, the co-
variance in this normal distribution can be consistently estimated (Vats, Flegal
and Jones, 2019a). Further pertinent tools to ensuring reliable estimation such
as estimates of the effective sample size, consistent confidence ellipsoids, and
consistent confidence intervals for quantile estimation are also available (Doss
et al., 2014; Vats, Flegal and Jones, 2019a).

To the best of our knowledge, the rate of convergence for Gibbs sampling
in EIV regression models has not been previously investigated. Related ap-
proaches have instead proposed variational Bayesian methods (Bresson et al.,
2021; Pham, Ormerod and Wand, 2013) and the integrated nested Laplace ap-
proximation (INLA) (Håvard Rue, 2009; Muff et al., 2015). We construct a
general density which in special cases, is the posterior for the 4 Bayesian EIV
regression models (1) and (2) using the independent normal and inverse-Wishart
prior choice on the parameters (3) and (4). Our main contribution constructs
a 3-variable deterministic scan Gibbs sampler for this general density, and we
show it is always geometrically ergodic using a drift and minorization condition
(Hairer and Mattingly, 2011; Meyn and Tweedie, 2009). Since we develop the
3-variable Gibbs sampler generally, the sampler may have applications beyond
the Bayesian EIV models introduced here. The 3-variable Gibbs sampler we con-
struct can be simulated efficiently on a computer without the need for complex
Metropolis-Hastings or rejection sampling steps at each iteration. In particular,
this analysis provides the first geometrically converging Gibbs sampler applica-
ble to existing Bayesian EIV models used in astrophysics.

The organization of this paper is as follows. In Section 2, we construct a
general EIV regression density and construct a 3-variable Gibbs sampler for
this density. We show the Gibbs sampler is always geometrically ergodic and
apply this to the 4 multivariate Bayesian EIV regression models presented in this
introduction. Section 3 studies the algorithm empirically where we demonstrate
limitations of the Gibbs sampler with simulated data for large data problems and
also the behavior of the Gibbs sampler under model misspecification. Section 4
studies a real-data example in astrophysics to study supermassive black hole
mass (Harris, Poole and Harris, 2014; Hilbe, de Souza and Ishida, 2017). Finally
in Section 5, we discuss our results and future research directions.

2. General Gibbs Sampler for EIV regression

For positive integers p, define p-norms by ‖·‖p and the Frobenius norm by ‖·‖F .
Let ⊗ denote the Kronecker product. The posteriors for the Bayesian EIV re-
gression models (1) and (2) using independent prior choices (3) and (4) for both
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classical and Berkson errors share a common general form which we study in this
section. The posterior densities for these Bayesian EIV regression models are
special cases of the density (5) but will differ depending on the EIV modeling
choice illustrated in the subsequent sections. For i ∈ 1, . . . , n, define hyper-
parameters a0 ∈ (0,∞), SPD matrix B0 ∈ R

m×m, c0 ∈ R
m(p+q), SPD matrices

C0 ∈ R
m(p+q)×m(p+q), Di ∈ R

p×p, and di ∈ R
p, R = (R1, . . . , Rn)T ∈ R

n×m,
and M ∈ R

n×q. For A ∈ R
n×p, θ = vec(Θ) ∈ R

mq, β = vec(B) ∈ R
mp, SPD

matrix Σ ∈ R
m×m, define the density

πn(A, θ, β,Σ) (5a)

∝
(

1
det(Σ)

)(n+a0+1+m)/2

exp
[
−1

2tr(Σ−1B0)
]

(5b)

× exp
[
−1

2

n∑
i=1

(Ri − ΘTMi − BTAi)TΣ−1(Ri − ΘTMi − BTAi)
]

(5c)

× exp
(
−1

2

n∑
i=1

(Ai − di)TD−1
i (Ai − di)

)
(5d)

× exp
(
−1

2((θ, β)T − c0)TC−1
0 ((θ, β)T − c0)

)
. (5e)

Observe that since (5c) is upper bounded by 1, then this probability density
is properly defined. When properly normalized, the distribution corresponding
to the densities (5d), (5e), and (5b) have moments of all orders. Since these
upper bound πn, this implies Πn also has moments of all orders. In particular if
we are able to construct a geometrically ergodic Gibbs sampler which has Πn as
its invariant distribution, then the Gibbs sampler will satisfy the Markov chain
central limit theorem for a large class of practically relevant functions used in
applications.

We will construct a 3-variable deterministic scan Gibbs sampler using a spe-
cific update order for the density (5). We also derive the conditional densities
for the Gibbs sampler which can be sampled directly. Initialize (θ0, β0,Σ0) and
A0 = (A1,0, . . . ,An,0) from an initial distribution. For t ∈ 1, . . ., first generate

Σt|At−1, θt−1, βt−1

∼ W−1
m

(
n + a0, (R−MΘt−1 −At−1Bt−1)T (R−MΘt−1 −At−1Bt−1) + B0

)
Next, generate (θt, βt)T |At−1,Σt ∼ Nm(p+q)(cn(At−1,Σt), Cn(At−1,Σt)) where

Cn(At−1,Σt) =
(
Σ−1

t ⊗
(
M At−1

)T (
M At−1

)
+ C−1

0

)−1

cn(At−1,Σt) = Cn(At−1,Σt)
([

Σ−1
t ⊗

(
M At−1

)T ] vec(R) + C−1
0 c0

)
.

Finally, generate independently

Ai,t|θt, βt,Σt ∼ Np(dn,i(θt, βt,Σt), Dn,i(θt, βt,Σt))
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where

Dn,i(βt,Σt) =
(
BtΣ−1

t BT
t + D−1

i

)−1

dn,i(θt, βt,Σt) = Dn,i(βt,Σt)
[
D−1

i di + BtΣ−1
t

(
Ri − ΘT

t Mi

)]
to obtain At = (A1,t, . . . ,An,t)T .

For points (A, θ, β,Σ) and (A′, θ′, β′,Σ′), the Gibbs sampler has Markov tran-
sition density

p ((A, θ, β,Σ), (A′, θ′, β′,Σ′)) = πn(A′|θ′, β′,Σ′)πn(θ′, β′|A,Σ′)πn(Σ′|A, θ, β)

and Markov transition kernel defined for suitable sets B by

P ((A, θ, β,Σ), B) =
∫ ∫ ∫

B

p ((A, θ, β,Σ), (A′, θ′, β′,Σ′)) dA′dθ′dβ′dΣ′.

The Markov kernel at larger iteration times t ≥ 2 is defined recursively with
P 1 ≡ P by

P t ((A, θ, β,Σ), B) =
∫

P t−1 (·, B) dP ((A, θ, β,Σ), ·) .

We will use the following drift function defined by

V (A, θ, β) = 1
2

n∑
i=1

(Ai − di)TD−1
i (Ai − di) + 1

2(θ, β)C−1
0 (θ, β)T

combined with a minorization condition to show there is a ρ ∈ (0, 1) and M0 ∈
(0,∞) so that for any initialization A, θ, β,Σ,

sup
|ϕ|≤1+M0V

∣∣∣∣
∫

ϕdP t ((A, θ, β,Σ), ·) −
∫

ϕdΠn

∣∣∣∣ ≤ M(A, θ, β)ρt (6)

where M(A, θ, β) = 2 + M0V (A, θ, β) + M0
∫
V dΠn (Hairer and Mattingly,

2011). The condition (6) implies the Gibbs sampler is geometrically ergodic. We
now state our main result.

Theorem 2.1. The 3-variable deterministic scan Gibbs sampler (At, θt, βt,Σt)∞t=0
for the general density (5) is geometrically ergodic.

Proof. Using a special property of the Gibbs sampler, it will be sufficient to
develop a drift and minorization condition based only on the marginal chain
(At, θt, βt)t (Roberts and Rosenthal, 2001, Example 3.6). In particular, we will
use the special property of this Gibbs Markov kernel P that for suitable sets B,
P (·, B) is a function of only the parameters (A, θ, β) and does not depend on
Σ. We first show a minorization condition. For 	 ∈ (0,∞), define the function
g� by

g�(A′, θ′, β′,Σ′) = inf
V (A,θ,β)≤�

πn(A′|θ′, β′,Σ′)πn(θ′, β′|A,Σ′)πn(Σ′|A, θ, β)
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and the constant Zg� =
∫
g�(A′, θ′, β′,Σ′)dA′dθ′dβ′dΣ′. The drift function V is

a continuous, strongly convex function on a closed, convex domain so its sublevel
sets are closed and bounded (Nesterov, 2018, Corollary 3.2.2). For fixed θ′, β′,Σ′,
the function

(A, θ, β) �→ πn(θ′, β′|A,Σ′)πn(Σ′|A, θ, β)

is continuous and achieves its minimum over compact sets. Thus, Zg� is not 0
and we can define the probability measure for suitable sets B by

ν�(B) = Z−1
g�

∫
B

g�(A′, θ′, β′,Σ′)dA′dθ′dβ′dΣ′.

For any 	 ∈ (0,∞) and any suitable set B,

inf
Σ∈R

m×m,
V (A,θ,β)≤�

P ((A, θ, β,Σ), B)

= inf
V (A,θ,β)≤�

∫
B

πn(A′|θ′, β′,Σ′)πn(θ′, β′|A,Σ′)πn(Σ′|A, θ, β)dA′dθ′dβ′dΣ′

≥
∫
B

g�(A′, θ′, β′,Σ′)dA′dθ′dβ′dΣ′

= Zg�ν�(B).

This completes the minorization condition.
It remains to show a drift condition. Fix A0, θ0, β0, and fix i ∈ 1, . . . , n. Since

Di is SPD, let Di = D
1/2
i D

1/2
i , D−1

i = D
−1/2
i D

−1/2
i where D

1/2
i , D

−1/2
i are

SPD. Using the identity

dn,i(θ, β,Σ) = di +
(
BΣ−1BT + D−1

i

)−1 BΣ−1 (Ri − ΘTMi − BT di
)

and taking the expectation with respect to Ai|A0, θ0, β0, θ, β,Σ

E

[
1
2

∥∥∥D−1/2
i (Ai − di)

∥∥∥2

2

∣∣A0, θ0, β0, θ, β,Σ
]

(7a)

= 1
2

∥∥∥D−1/2
i

(
BΣ−1BT + D−1

i

)−1 BΣ−1 (Ri − ΘTMi − BT di
)∥∥∥2

2
(7b)

+ 1
2tr

[
D

−1/2
i

(
BΣ−1BT + D−1

i

)−1
D

−1/2
i

]
. (7c)

Using singular value decomposition from (Horn and Johnson, 2012, Theorem
2.6.3), choose matrices Ui ∈ R

p×p, Vi ∈ R
m×m with UT

i Ui = UiU
T
i = Ip and

V T
i Vi = ViV

T
i = Im and a rectangular diagonal matrix Σi ∈ R

p×m with diagonal
nonnegative singular values (σi,k)k so that D

1/2
i BΣ−1/2 = UiΣiV

T
i . Then

(
BΣ−1BT + D−1

i

)−1 = D
1/2
i

[
(D1/2

i BΣ−1/2)(D1/2
i BΣ−1/2)T + Ip

]−1
D

1/2
i

= D
1/2
i Ui[ΣiΣT

i + Ip]−1UT
i D

1/2
i . (8)
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Using (8) and properties of the trace

1
2tr

[
D

−1/2
i

(
BΣ−1BT + D−1

i

)−1
D

−1/2
i

]
= 1

2tr
[(

ΣiΣT
i + Ip

)−1
UT
i Ui

]
≤ p

2 .

For x ∈ [0,∞) and a ∈ (0,∞), we have the inequality

x

x2 + a
≤ 1

2
√
a
. (9)

Using inequalities (8) and (9), the matrix norm is sub-multiplicative, and
‖Ui‖2 = 1, we have

∥∥∥D−1/2
i

(
BΣ−1BT + D−1

i

)−1 BΣ−1/2Σ−1/2
∥∥∥2

2

=
∥∥∥Ui(ΣiΣT

i + Ip)−1UT
i D

1/2
i BΣ−1/2Σ−1/2

∥∥∥2

2

≤
∥∥∥(ΣiΣT

i + Ip)−1ΣiΣ−1/2
∥∥∥2

2

≤
[

σi

σ2
i + 1

]2 ∥∥∥Σ−1/2
∥∥∥2

2

≤
∥∥Σ−1

∥∥
2

4 .

Define the matrix X̃ = (d1, . . . , dn)T . Applying these upper bounds to (7)
and combining for each i ∈ 1, . . . , n,

E

[
1
2

n∑
i=1

∥∥∥D−1/2
i (Ai − di)

∥∥∥2

2

∣∣A0, θ0, β0, θ, β,Σ
]

≤
∥∥Σ−1

∥∥
2

8
∥∥R−MΘ − X̃B

∥∥2
F

+ pn

2 .

By convexity, for every x, y, ‖x− y‖2
2 ≤ 2 ‖x‖2

2 + 2 ‖y‖2
2. Since C0 is SPD, let

C0 = C
1/2
0 C

1/2
0 , C−1

0 = C
−1/2
0 C

−1/2
0 where C

1/2
0 , C

−1/2
0 are SPD. Using convex-

ity, and the matrix norm is sub-multiplicative, we have

1
2
∥∥R−MΘ − X̃B

∥∥2
F
≤ ‖R‖2

F +
∥∥∥(M X̃

)
C

1/2
0

∥∥∥2

2

∥∥∥C−1/2
0 (θ, β)T

∥∥∥2

2
.

Therefore,

E

[
1
2

n∑
i=1

∥∥∥D−1/2
i (Ai − di)

∥∥∥2

2

∣∣A0, θ0, β0, θ, β,Σ
]

(10a)

≤
∥∥Σ−1

∥∥
2

8
∥∥R−MΘ − X̃B

∥∥2
F

+ pn

2 (10b)
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≤
∥∥Σ−1∥∥

2
‖R‖2

F

4 +
∥∥Σ−1∥∥

2

∥∥∥(M X̃
)
C

1/2
0

∥∥∥2

2
4

∥∥∥C−1/2
0 (θ, β)T

∥∥∥2

2
+ pn

2 . (10c)

Now taking the expectation with respect to θ, β|A0, θ0, β0,Σ

E

[
1
2

∥∥∥C−1/2
0 (θ, β)T

∥∥∥2

2

∣∣Σ,A0, θ0, β0

]

= 1
2

∥∥∥C−1/2
0 cn(A0,Σ)

∥∥∥2

2
+ 1

2tr(C−1/2
0 Cn(A0,Σ)C−1/2

0 ).

Using singular value decomposition (Horn and Johnson, 2012, Theorem 2.6.3),
choose matrices U ∈ R

mn×mn, V ∈ R
m(p+q)×m(p+q) with UTU = UUT =

Imn and V TV = V V T = Im(p+q) and a rectangular diagonal matrix ΣA0 ∈
R

mn×m(p+q) with diagonal nonnegative singular values (σA0,k)k so that Σ−1/2⊗(
M A0

)
C

1/2
0 = UΣA0V

T . We then have

Cn(A0,Σ) =
(
Σ−1 ⊗

(
M A0

)T (
M A0

)
+ C−1

0

)−1

= C
1/2
0 V

(
ΣT

A0
ΣA0 + Im(p+q)

)−1
V TC

1/2
0 . (11)

Using (11) and properties of the trace

1
2tr(C−1/2

0 Cn(A0,Σ)C−1/2
0 ) ≤ 1

2 max
k

[(
σ2
A0,k + 1

)−1
]
tr(V TV )

≤ m(p + q)
2 .

Using convexity,

1
2

∥∥∥C−1/2
0 cn(A0,Σ)

∥∥∥2

2

= 1
2

∥∥∥C−1/2
0 Cn(A0,Σ)

[[
Σ−1 ⊗

(
M A0

)T ] vec(R) + C−1
0 c0

]∥∥∥2

2

≤
∥∥∥C−1/2

0 Cn(A0,Σ)
[
Σ−1/2 ⊗

(
M A0

)T ] [Σ−1/2 ⊗ Imn

]∥∥∥2

2
‖R‖2

F

+
∥∥∥C−1/2

0 Cn(A0,Σ)C−1
0 c0

∥∥∥2

2
.

Using the inequality (9) and the identity (11),
∥∥∥∥C−1/2

0 Cn(A0,Σ)
[
Σ−1/2 ⊗

(
M A0

)]T [
Σ−1/2 ⊗ Imn

]∥∥∥∥
2

2

=
∥∥∥∥V (

ΣT
A0

ΣA0 + Im(p+q)
)−1

V T
[
Σ−1/2 ⊗

(
M A0

)
C

1/2
0

]T [
Σ−1/2 ⊗ Imn

]∥∥∥∥
2

2

=
∥∥∥V (

ΣT
A0

ΣA0 + Im(p+q)
)−1 ΣT

A0
UT

∥∥∥2

2

∥∥Σ−1∥∥
2
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≤ ‖V ‖2
2

∥∥∥(ΣT
A0

ΣA0 + Im(p+q)
)−1 ΣT

A0

∥∥∥2

2

∥∥UT
∥∥2

2

∥∥Σ−1∥∥
2

≤ max
k

(
σA0,k

σ2
A0,k

+ 1

)2 ∥∥Σ−1∥∥
2

≤
∥∥Σ−1

∥∥
2

4 .

Using (11),∥∥∥C−1/2
0 Cn(A0,Σ)C−1

0 c0

∥∥∥2

2
=

∥∥∥V (
ΣT

A0
ΣA0 + Im(p+q)

)−1
V TC

−1/2
0 c0

∥∥∥2

2

≤ ‖V ‖2
2

∥∥∥(ΣT
A0

ΣA0 + Im(p+q)
)−1

∥∥∥2

2

∥∥V T
∥∥2

2 c
T
0 C

−1
0 c0

≤ cT0 C
−1
0 c0.

Combining the upper bounds

E

[
1
2

∥∥∥C−1/2
0 (θ, β)T

∥∥∥2

2

∣∣Σ,A0, θ0, β0

]
≤ ‖R‖2

F

4
∥∥Σ−1∥∥

2 + cT0 C
−1
0 c0 + m(p + q)

2 .

(12)

Now using (10) and (12) and taking the iterated expectation with respect to
θ, β|A0, θ0, β0,Σ,

E

[
1
2

n∑
i=1

∥∥∥D−1/2
i (Ai − di)

∥∥∥2

2

∣∣Σ,A0, θ0, β0

]
(13a)

≤
∥∥Σ−1∥∥

2 (13b)

×

⎡
⎢⎣‖R‖2

F

4 +

∥∥∥(M X̃
)
C

1/2
0

∥∥∥2

2
m(p + q)

4 +

∥∥∥(M X̃
)
C

1/2
0

∥∥∥2

2
2 cT0 C

−1
0 c0

⎤
⎥⎦

(13c)

+
∥∥Σ−1∥∥2

2

∥∥∥(M X̃
)
C

1/2
0

∥∥∥2

2
‖R‖2

F

8 + pn

2 . (13d)

Since Σ−1 has a Wishart distribution and using properties of the trace,

E
∥∥Σ−1∥∥

2 ≤ tr
[
E
(
Σ−1)]

= (n + a0)tr
[(

(R−MΘ0 −A0B0)T (R−MΘ0 −A0B0) + B0
)−1]

≤ (n + a0)tr[B−1
0 ].

Similarly, we use the second moment formula of the Wishart (Letac and Massam,
2004) to get the upper bound,

E
∥∥Σ−1∥∥2

2 ≤ tr
[
E
(
Σ−2)]
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= (n + a0)tr
[(

(R−MΘ0 −A0B0)(R−MΘ0 −A0B0)T + B0
)−1]2

+ (n + a0)(n + a0 + 1)

× tr
[(

(R−MΘ0 −A0B0)(R−MΘ0 −A0B0)T + B0
)−2]

≤ (n + a0)(n + a0 + 1)tr[B−1
0 ]2.

Taking the iterated expectation with respect to Σ|A0, θ0, β0 in (12) and (13),
there is a constant L ∈ (0,∞) so that the drift condition is satisfied with

E [V (A, θ, β)|A0, θ0, β0] ≤ L.

2.1. Bayesian EIV regression with errors in the features

Using Theorem 2.1, we develop geometrically ergodic Gibbs samplers for
Bayesian EIV regression with additive Gaussian error in the features. For the
remainder, we write the observed data as Y = (y1, . . . , yn)T ∈ R

n×m, X =
(x1, . . . , xn)T ∈ R

n×p, and Z = (Z1, . . . , Zn)T ∈ R
n×q. Consider the Bayesian

EIV regression (1) with Berkson errors and priors (3) and (4). We will write the
posterior density πn for this Bayesian model as

πn(A, θ, β,Σ)

∝
(

1
det(Σ)

)(n+a0+m+1)/2

exp
[
−1

2tr[Σ−1B0]
]

× exp
[
−1

2

n∑
i=1

(yi − ΘTZi − BTAi)TΣ−1(yi − ΘTZi − BTAi)
]

× exp
(
−1

2

n∑
i=1

(Ai − xi)TV −1
i (Ai − xi)

)

× exp
(
−1

2((θ, β)T − j0)TJ−1
0 ((θ, β)T − j0)

)
.

This posterior density is a special case of the general density (5) choosing M ≡
Z, R ≡ Y , c0, C0 ≡ j0, J0, and di, Di ≡ xi, Vi.

We can define a 3-variable deterministic scan Gibbs sampler which generates
a Markov chain (At, θt, βt,Σt)∞t=0 for this posterior density as a special case of
the Gibbs sampler constructed in Section 2. Initialize (A0, θ0, β0,Σ0) and for
t ∈ 1, . . .,

1. Generate Σt|At−1, θt−1, βt−1 ∼ W−1
m (n + a0, Bn,t) where

Bn,t = (Y − ZΘt−1 −At−1Bt−1)T (Y − ZΘt−1 −At−1Bt−1) + B0
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2. Generate (θt, βt)T |At−1,Σt ∼ Nm(p+q)(jn,t, Jn,t) where

Jn,t =
(
Σ−1

t ⊗
(
Z At−1

)T (
Z At−1

)
+ J−1

0

)−1

jn,t = Jn,t

[[
Σ−1

t ⊗
(
Z At−1

)T ] vec(Y ) + J−1
0 j0

]
3. Generate Ai,t|θt, βt,Σt ∼ Np(kn,i,t,Kn,i,t), i ∈ 1, . . . , n where

Kn,i,t =
(
BtΣ−1

t BT
t + V −1

i

)−1

kn,i,t = Kn,i,t

[
V −1
i xi + BtΣ−1

t

(
yi − ΘT

t Zi

)]
.

Applying Theorem 2.1, we have the following result.
Corollary 2.2. The 3-variable Gibbs sampler (At, θt, βt,Σt)∞t=0 for the poste-
rior in Bayesian EIV regression (1) with Berkson errors and priors (3) and (4)
is geometrically ergodic.

Now consider Bayesian EIV regression (1) with additive Gaussian error in Xi

using classical errors and priors (3) and (4). The posterior has density

πn(A, θ, β,Σ)

∝
(

1
det(Σ)

)(n+a0+m+1)/2

exp
[
−1

2tr[Σ−1B0]
]

× exp
[
−1

2

n∑
i=1

(yi − ΘTZi − BTAi)TΣ−1(yi − ΘTZi − BTAi)
]

× exp
(
−1

2

n∑
i=1

(Ai − k′i)T (V −1
i + K−1

i )(Ai − k′i)
)

× exp
(
−1

2((θ, β)T − j0)TJ−1
0 ((θ, β)T − j0)

)

where k′i = (V −1
i + K−1

i )−1 [V −1
i xi + K−1

i ki
]
. The posterior density is also a

special case of the general density (5) when Z ≡ M , R ≡ Y , and c0, C0 ≡ j0, J0,
and di, Di ≡ k′i, (V

−1
i + K−1

i )−1.
We define a 3-variable deterministic scan Gibbs sampler similarly. Initialize

(A0, θ0, β0,Σ0) and for t ∈ 1, . . .,
1. Generate Σt|At−1, θt−1, βt−1 ∼ W−1

m (n + a0, Bn,t)
2. Generate (θt, βt)T |At−1,Σt ∼ Nm(p+q)(jn,t, Jn,t)
3. Generate Ai,t|θt, βt,Σt ∼ Np(k′n,i,t,K ′

n,i,t), i ∈ 1, . . . , n where

K ′
n,i,t =

(
BtΣ−1

t BT
t + V −1

i + K−1
i

)−1

k′n,i,t = K ′
n,i,t

[
V −1
i xi + K−1

i ki + BtΣ−1
t

(
yi − ΘT

t Zi

)]
.

We also have the following as a direct result of Theorem 2.1.
Corollary 2.3. The 3-variable Gibbs sampler (At, θt, βt,Σt)∞t=0 for the poste-
rior in Bayesian EIV regression (1) with classical errors and priors (3) and (4)
is geometrically ergodic.
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2.2. Bayesian EIV regression with errors in the response and
features

Similar to the previous section, we develop geometrically ergodic Gibbs sam-
plers for Bayesian EIV regression with additional additive Gaussian error in the
features and response. Consider the Bayesian EIV regression (2) with Berkson
errors in Xi and additional error in Yi along with priors (3) and (4). Let V =
(V1, . . . ,Vn)T ∈ R

n×m and ν = vec(V), and let U0 = blockdiag(Ui) ∈ R
mn×mn.

The Bayesian posterior Πn has density

πn(A, ν, θ, β,Σ)

∝
(

1
det(Σ)

)(n+a0+m+1)/2

exp
[
−1

2tr[Σ−1B0]
]

× exp
[
−1

2

n∑
i=1

(Vi − ΘTZi − BTAi)TΣ−1(Vi − ΘTZi − BTAi)
]

× exp
(
−1

2

n∑
i=1

(Vi − yi)TU−1
i (Vi − yi)

)

× exp
(
−1

2

n∑
i=1

(Ai − xi)TV −1
i (Ai − xi)

)

× exp
(
−1

2((θ, β)T − j0)TJ−1
0 ((θ, β)T − j0)

)
.

This posterior density is a special case of the density (5) when redefining θ̃ ≡
(ν, θ)T , M ≡

(
−I Z

)
, r ≡ 0, c0 = (Y, j0)T ,

C0 ≡
(
U0 0
0 J0

)
,

and di, Di ≡ xi, Vi.
We define a 3-variable deterministic scan Gibbs sampler which generates a

Markov chain (At, νt, θt, βt,Σt)∞t=0 for this posterior density. Initialize A0, ν0,
θ0, β0, Σ0 and for t ∈ 1, . . .,

1. Generate Σt|At−1, νt−1, θt−1, βt−1 ∼ W−1
m

(
n + a0, B

′
n,t

)
where

B′
n,t = (Vt−1 − ZΘt−1 −At−1Bt−1)T (Vt−1 − ZΘt−1 −At−1Bt−1) + B0

2. Generate (νt, θt, βt)T |At−1,Σt ∼ Np+q(j′n,t, J ′
n,t) where

J ′
n,t =

(
Σ−1

t ⊗
(
−I Z At−1

)T (
−I Z At−1

)
+

(
U−1

0 0
0 J−1

0

))−1

j′n,t = J ′
n,t

(
U−1

0 0
0 J−1

0

)
(vec(Y ), j0)T
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3. Generate Ai,t|νt, θt, βt,Σt ∼ Np(k′′n,i,t,K ′′
n,i,t), i ∈ 1, . . . , n where

K ′′
n,i,t =

(
BtΣ−1

t BT
t + V −1

i

)−1

k′′n,i,t = K ′′
n,i,t

[
V −1
i xi + BtΣ−1

t

(
Vi,t − ΘT

t Zi

)]
.

Using Theorem 2.1, we have the following result.

Corollary 2.4. The 3-variable Gibbs sampler (At, νt, θt, βt,Σt)∞t=0 for Bayesian
EIV regression (2) with Berkson errors and priors (3) and (4) is geometrically
ergodic.

Now consider the Bayesian EIV regression (2) with classical errors in Xi and
additional error in Yi with priors (3) and (4). The posterior Πn for this Bayesian
model has density

πn(A, ν, θ, β,Σ)

∝
(

1
det(Σ)

)(n+a0+m+1)/2
exp

[
−1

2tr[Σ−1B0]
]

× exp
[
−1

2

n∑
i=1

(Vi − ΘTZi − BTAi)TΣ−1(Vi − ΘTZi − BTAi)
]

× exp
(
−1

2

n∑
i=1

(Vi − yi)TU−1
i (Vi − yi)

)

× exp
(
−1

2

n∑
i=1

(Ai − k′i)T (V −1
i + K−1

i )(Ai − k′i)
)

× exp
(
−1

2((θ, β)T − j0)TJ−1
0 ((θ, β)T − j0)

)
.

This posterior density is also a special case of the density (5) when redefining
θ̃ ≡ (ν, θ)T , M ≡

(
−I Z

)
, R ≡ 0, c0 = (y, j0)T ,

C0 ≡
(
U0 0
0 J0

)
,

and di, Di ≡ k′i, (V
−1
i + K−1

i )−1.
We define a 3-variable deterministic scan Gibbs sampler similarly. Initialize

(A0, ν0, θ0, β0,Σ0) and for t ∈ 1, . . .,

1. Generate Σt|At−1, νt−1, θt−1, βt−1 ∼ W−1
m

(
n + a0, B

′
n,t

)
2. Generate (νt, θt, βt)T |At−1,Σt ∼ Np+q(j′n,t, J ′

n,t)
3. Generate Ai,t|νt, θt, βt,Σt ∼ Np(k′′′n,i,t,K ′′′

n,i,t), i ∈ 1, . . . , n where

K ′′′
n,i,t =

(
BtΣtBT

t + V −1
i + K−1

i

)−1

k′′′n,i,t = K ′′′
n,i,t

[
V −1
i xi + K−1

i ki + BtΣ−1
t

(
Vi,t − ΘT

t Zi

)]
.
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Using Theorem 2.1, we have the following result.

Corollary 2.5. The 3-variable Gibbs sampler (At, νt, θt, βt,Σt)∞t=0 for Bayesian
EIV regression (2) with classical errors and priors (3) and (4) is geometrically
ergodic.

3. Simulations

3.1. Limitations of the Gibbs sampler in large problem sizes

Theoretically, we developed a qualitative convergence result for the Gibbs sam-
pler in Bayesian multivariate EIV regression. It is important in practice to un-
derstand the relationship between scaling of the problem size and the estima-
tion reliability from the Gibbs sampler. We look at artificially generated data
to empirically demonstrate the dependence of the Gibbs sampler when the the
dimension of the response m and the dimension of the features p are increasing
in configurations (m, p) = (1, 1), (3, 7) in the Bayesian posterior. Artificial data
is generated according to the multivariate EIV Berkson linear regression model
for i = 1, . . . , 50 with

Σ ∼ W−1
m (m, 10−3I)

(θ, β)T ∼ Nm+mp(0, 103I)
Xi|Ai ∼ Np(Ai, .2I)
Yi|Ai,Θ,B,Σ ∼ Nm(ΘT 1 + BTAi,Σ)

We simulate T = 105 MCMC realizations from the Gibbs sampler in each
configuration using 104 realizations for burn-in and analyze diagnostics for βt

taking values in R
mp. We independently replicate the simulation 100 times to

reduce variability and plot the median in a solid line along with the .25, and .75
quantiles in a lighter opacity over these independent simulations. As discussed
in Section 2, geometric ergodicity guarantees the properly scaled and summed
samples from the Gibbs sampler

1√
T

T∑
t=1

[
βt −

∫
βΠn(dβ)

]
→ N(0,Σ∗)

as T → ∞ in distribution where Σ∗ is a SPD covariance matrix. Figure 1a
and Figure 1b plot the largest and smallest eigenvalues of a multivariate batch
means estimate to the multivariate standard error matrix Σ∗

1/2 in the central
limit theorem. The batch means estimate divides the simulation samples into
non-overlapping batches of size B = T 1/3, computes the average over each batch
denoted by β̄B , and then takes the sample covariance of

√
Bβ̄B . This simulation

shows an increase in the largest eigenvalue in larger size problems which can lead
to suggesting more iterations are needed for appropriate estimation in practice.
Figure 1c plots the multivariate effective sample size (Vats, Flegal and Jones,
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Fig 1. (a), (b) Largest and smallest eigenvalues of the MCMC standard error matrix targeting
the average of β for iterations of the Gibbs sampler and (c) the multivariate effective sample
size for iterations of the Gibbs sampler.

2019b). We can also see a relatively sharp decrease in the estimation of the ef-
fective sample size as the problem size increases suggesting the algorithm should
be run for many iterations even in moderately sized problems. This simulation
demonstrates that even though the algorithm is always geometrically ergodic
and can scale reasonably well to larger problem sizes, the Gibbs sampler gen-
erally requires many more iterations for reliable estimation even in moderately
sized problems. Simulation code is available using Python (Van Rossum and
Drake Jr, 1995) and (Harris et al., 2020) for matrix calculations at https://
github.com/austindavidbrown/BayesEIV.

3.2. Robustness to model misspecification

Although the multivariate Bayesian model for EIV accounts for additional error
in the features, this error can be misspecified. In particular, the error Xi|Ai from
the model in Section 3.1 may be a multivariate t distribution with heavier tails
in practical problems. We are interested to empirically study the robustness
of the convergence of the Gibbs sampler to misspecification in this modeling
error. Denote td(v,m, V ) as a multivariate t distribution in dimension d with v
degrees of freedom, location vector m, and scale matrix V . With df denoting
the degrees of freedom, artificial data is generated according to the misspecified
multivariate EIV Berkson linear regression model for i = 1, . . . , 50 with

Σ ∼ W−1
3 (3, 10−3I)

(θ, β)T ∼ N3+9(0, 103I)
Xi|Ai ∼ t3(df,Ai, .2I)
Yi|Ai,Θ,B,Σ ∼ N3(ΘT 1 + BTAi,Σ).

We look to compare more dispersed tail behavior with df = 2 and less dis-
persed tail behavior with df = 10 to the data from the correctly prescribed
model. We replicate the simulation 100 times in the same way as Section 3.1
and analyze diagnostics for βt. Figure 2a and Figure 2b plot the largest and

https://github.com/austindavidbrown/BayesEIV
https://github.com/austindavidbrown/BayesEIV
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Fig 2. (a), (b) Largest and smallest eigenvalues of the MCMC standard error matrix (c) the
multivariate effective sample size for iterations of the Gibbs sampler.

smallest eigenvalues of a batch means estimate to the multivariate standard
error matrix and Figure 2c plots the multivariate effective sample size (Vats,
Flegal and Jones, 2019b). Although we see some discrepancy in the maximum
eigenvalues in Figure 2a, we can see similar behavior in the estimation from the
Gibbs sampler based on the both smaller and larger degrees of freedom to the
correctly simulated data in the multivaraite effective sample size. The simula-
tion results suggest the Gibbs sampler is reasonably robust to misspecification
of the tails in the error distribution of the features for Xi|Ai.

4. Real-data example: measurement error in astrophysics

We look at Bayesian EIV linear regression proposed and analyzed in (Harris,
Poole and Harris, 2014; Hilbe, de Souza and Ishida, 2017). The dataset consists
of the central galaxy supermassive black hole mass and the stellar bulge velocity
dispersion from n = 46 different galaxies (Harris, Poole and Harris, 2014). The
response Yi is the logarithm of the observed central black hole mass and the
predictor variable Xi is the logarithm of the observed velocity dispersion. The
measurement errors are known beforehand and denoted by εYi and εXi for both
the response and predictor variables. The EIV linear regression model studied
in (Hilbe, de Souza and Ishida, 2017) follows

σ2 ∼ Inverse-gamma(10−3, 10−3)
α ∼ N1(0, 103), β ∼ N1(0, 103)
Ai ∼ N1(0, 103), Xi|Ai ∼ N1(Ai, ε

2
Xi

)
Vi|Ai, θ, β, σ

2 ∼ N1(θ + Aiβ, σ
2), Yi|Vi ∼ N1(Vi, ε

2
yi

).

We generate 105 MCMC realizations from the Gibbs sampler. Figure 3 plots
the autocorrelation, estimates to the standard errors in the central limit the-
orem, and effective sample sizes from these realizations. The autocorrelations
are computed up to lag 20. Overall, we see the Gibbs sampler performs well.
However, the standard error and effective sample size plots suggest that even
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Fig 3. (a) Autocorrelation for each regression parameter (b) MCMC standard errors for the
regression parameters (c) MCMC effective sample size plots for each regression parameter.

though the Gibbs sampler is geometrically ergodic, many iterations are still rec-
ommended even in low dimensions. These figures suggest empirical diagnostics
for the regression parameter β and σ2 are reasonable choices as opposed to the
other parameters α to determine the reliability of the algorithm in practice.

5. Conclusion and future directions

We showed using a 3-variable deterministic scan Gibbs sampler to sample the
posterior in 4 different multivariate Bayesian EIV regression models with ad-
ditive Gaussian errors and independent priors is always geometrically ergodic.
This is of pragmatic importance to practitioners as trustworthy estimation from
a Gibbs sampler is dependent on the speed of convergence of the Markov chain.
More specifically, time averages from the Markov chains have many practically
relevant theoretical guarantees such as a central limit theorem. Secondly, these
Gibbs samplers can be simulated efficiently without the need for complex, inter-
mediate Metropolis-Hastings or rejection sampling steps. One drawback, how-
ever, is our convergence analysis is qualitative as we do not construct an explicit
convergence rate.

There are many future research directions in studying the convergence of
Gibbs samplers in EIV models. It appears reasonable that some Gibbs samplers
for generalized linear models such as the Pólya-Gamma sampler will also be
geometrically ergodic (Choi and Hobert, 2013; Polson, Scott and Windle, 2013;
Wang and Roy, 2018). It seems also interesting to look at alternative errors in
the variables such as non-Gaussian or non-additive errors.
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