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Abstract: Existing works on variable selection and estimation for high-
dimensional nonparametric regression focus primarily on modelling a con-
ditional mean function, on which a restrictive additive structure is com-
monly imposed. We consider a more general framework which covers differ-
ent types of regression derived from a broad class of convex loss functions,
without assuming additivity of the nonparametric regression function to be
estimated. A novel penalised local linear regression procedure is proposed
for simultaneous variable selection and estimation under this framework. It
performs Bridge-penalised local linear regression and regularised bandwidth
estimation in a alternating optimisation scheme. The covariate dimension
may exceed any polynomial order, while the number of active variables is
allowed to grow slowly with sample size. The procedure is shown to be
consistent in variable selection and yield a regression function estimator
endowed with an oracle property. Simulation and real data examples are
presented to illustrate the performance of the proposed method in mean
regression, quantile regression and logistic regression problems.
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1. Introduction

Nonparametric regression is notoriously inefficient under high dimensions. Al-
though many methods have been proposed for variable selection or structure
simplification with the aim of improving convergence rates of nonparametric
regression estimators, they are mostly conceived under fixed or slowly growing
dimensions. Relatively little effort has been made in developing variable selec-
tion and regression methods under a general high-dimensional nonparametric
framework. To fill this gap, we propose a new procedure for high-dimensional
variable selection and regression under sparsity conditions and a general convex
loss function, based on Bridge-penalised local linear estimation and bandwidth
regularisation.

Methods for simultaneous variable selection and regression have been exten-
sively studied under high-dimensional linear models, among which the LASSO is
probably the most prominent. The need for variable selection is even more com-
pelling in high-dimensional nonparametric regression problems, where the mini-
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max convergence rate decreases exponentially with dimension. Two approaches,
based respectively on projection and local polynomial fitting, are commonly em-
ployed for nonparametric regression. The projection approach, which embeds the
regression function in a function space such as the reproducing kernel Hilbert
space (RKHS), has been applied for variable selection under an additive model
setting. Examples include different variants of the COSSO (Lin & Zhang, 2006;
Zhang & Lin, 2006; Storlie et al., 2011; Lin et al., 2013), which are shown to
work under fixed dimensions.

In the general case where additivity is not assumed, the existing variable
selection methods are mainly confined to settings of fixed or slowly growing
dimensions. For methods of the projection type, the RKHS remains a common
choice for modelling the function space and has been considered by, for example,
Ye & Xie (2012), Rosasco et al. (2013), Allen (2013), Yang et al. (2016) and
Chen et al. (2017). Methods of the local polynomial type, designed mainly for
selecting variables locally, include Bertin & Lecué (2008), Lafferty & Wasser-
man (2008), Miller & Hall (2010), Giordano & Parrella (2016) and White et
al. (2017). Theoretical justification, if any, of the above methods is given un-
der dimensions of at most a logarithmic order. An exception is Giordano et
al. (2020), who propose a GRID method to identify relevant linear and non-
linear variables in multiple steps, under dimensions of a polynomial order. The
method requires the regression function be dependent on interactions of a fixed
order and the strong assumption that the covariates are uniformly distributed
on the unit cube. Relatively few works have been devoted to explicit variable
selection and model fitting under high dimensional and non-additive model set-
tings. Aside from COSSO and Allen’s (2013) KNIFE procedure, studies of the
aforementioned methods are confined to a mean regression setting.

In the present paper, we propose a novel penalised local linear regression
procedure in a sparse model setting. It allows applications to problem settings
beyond mean regression and allows a sparsity level more general than previous
methods. Our procedure performs variable selection and estimation simulta-
neously using local linear regression, and is able to handle a high dimension
which may grow faster than any polynomial order of the sample size n. Variable
selection is facilitated by a alternating optimisation scheme which regularises
bandwidths coordinate-wise and regression coefficients in two separate steps.
The output bandwidths help differentiate between active and inactive variables,
as well as achieve an optimal rate of convergence in an oracle sense. Empirical
results suggest that our method has better prediction performance than existing
methods.

We state the problem in Section 2 and present our proposed procedure in
Section 3. A coordinate descent algorithm is developed in Section 4 for the al-
ternating optimisation scheme. We show that our method is selection consistent
under very general conditions in Section 5. The asymptotic distribution of the
regression function estimator is also derived there. Section 6 extends our method
to quantile regression. Section 8 presents empirical studies to compare our pro-
cedure with existing methods. In the concluding Section 9, we summarise our
results and discuss potential generalisations of our work.
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2. Problem setting

We first introduce notations. For any B ⊂ {1, . . . , D} and x = (x1, . . . , xD)� ∈
RD, denote by |B| the cardinality of B and by Bc the complement {1, . . . , D}\B,
define ‖x‖q =

(∑D
d=1 |xd|q

)1/q for any q > 0, ‖x‖∞ = max1≤d≤D |xd| and
xB ∈ R|B| to be the column subvector of x formed by the components {xd :
d ∈ B}. For any real-valued function g on an open neighbourhood of x, define
∇0g(x) = g(x), ∇dg(x) = ∂g(x)/∂xd and ∇d1,d2g(x) = ∂2g(x)/∂xd1∂xd2 ,
provided that the derivatives exist. For any x, y ∈ R, define x ∨ y = max{x, y}
and x ∧ y = min{x, y}. The indicator function is denoted by 1{·}.

Let (X, Y ) = (X(1), . . . , X(D), Y ) be a (D+ 1)-variate random vector drawn
from an unknown distribution, with Y ∈ Y and X following a smooth density
function f on RD. For x ∈ RD, let m(x) uniquely minimise E[L(Y, a)|X = x]
with respect to a ∈ R, for some loss function L(Y, a) convex in a. We assume
further that E[L(Y, a)|X = x] is strictly convex in a neighbourhood of a = m(x).
Our theory, established in Section 5, requires that partial derivatives of L be
Lipschitz continuous: see (A6). The above conditions are satisfied by a rich class
of nonparametric generalised linear models, under which L(Y, a) is the negative
loglikelihood derived from an exponential family of conditional log-densities

ξ(y|x) = ξ0(y) + ϕ−1{ym(x) − b(m(x))
}
, (2.1)

for some scale parameter ϕ > 0 and some function ξ0 independent of m(x).
Common examples include normal, logistic and Poisson regression models. Local
polynomial fitting for generalised linear models has been studied by Fan et al.
(1995). The important problem of nonparametric quantile regression, for which
(A6) fails to hold, is discussed separately in Section 6.

As to sparsity, we assume that there exists an index set A ⊂ {1, . . . , D} such
that m(x) = mA(xA), x ∈ RD, that is m(x) depends only on a set of active
variables xA. The sparsity level |A| is allowed to grow slowly with n, while D
may increase at a rate faster than any polynomial order.

Let Dn =
(
(X1, Y1), . . . , (Xn, Yn)

)
be n independent replicates of (X, Y ),

based on which the regression function m(x) is to be estimated globally over
x ∈ RD. It is well known that the optimal error rate of a local linear regression
estimator of m(x) depends on the covariate dimension D. It can be substantially
reduced to an oracle optimal rate if regression were done only on variables
in A under sparsity, which underlines the importance of variable selection for
high-dimensional regression problems. Our objective is to develop a local linear
procedure capable of identifying A and estimating m(x) at the oracle optimal
rate. The results enable us to derive the asymptotic distribution of the regression
function estimator, which suggests a straightforward procedure for inference
about m(x) at a fixed x ∈ RD.

3. Methodology

In classical local polynomial regression, kernel bandwidths are required to con-
verge to zero for consistent estimation of the regression function. Typically, the
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optimal convergence rates of the bandwidths decrease as the covariate dimen-
sion D increases, resulting in a slower convergence rate of the regression func-
tion estimator. Restricting attention to local constant regression, the MEKRO
method proposed by White et al. (2017) minimises the mean squared residuals
of a Nadaraya–Watson estimate, with bandwidths regularised by a constraint
on the sum of their reciprocals. The estimated bandwidths provide a selection
scheme whereby variables with large bandwidths are excluded and those with
small bandwidths are kept in the model for consistent estimation of the re-
gression function. We develop a local linear regression procedure, based on a
alternating optimisation scheme, for variable selection and prediction at ora-
cle optimal rates. Unlike theirs, our procedure applies to general convex loss
functions under weaker sparsity conditions.

Let K be a non-negative, symmetric, bounded, kernel function on R such
that K(0) = limx→0 K(x) > 0 and limu→∞ uK(u) = 0. Assume that, for r ≥ 1
and s ≥ 0, μr,s ≡

∫∞
−∞ usK(u)rdu exists and that μ1,0 = 1 in particular. Note

that symmetry of K implies μr,s = 0 for all positive odd integer s. Define,
for h = (h1, . . . , hD)� ∈ (0,∞]D and x = (x1, . . . , xD)� ∈ RD, Kh(x) =∏D

d=1 h
−1
d K(xd/hd). The above are standard assumptions made on the kernel

function used for local polynomial fitting.
Define, for h > 0,

Cn(h) = (nD)(α∨2)−1e−c/h and Λn(h) = λn

{
1 + log

(
1 + h4)}−1

,

where c > 0 and α ≥ 1 are fixed constants, and the positive sequence λn satisfies

λ−1
n ω2(nω2)−4/(4+|A|) + λn|A| = o(1),

for some constant ω ∈ [1, |A|2] to be specified in (A8). The sequence λn al-
ways exists provided that |A| satisfies the condition (B1) stated in Section 5.
Under the slightly stronger condition that |A| ≤ a0 logn/ log logn for some
a0 ∈ (0, 2/5), we may set λn = 1/ logn. Practical choices of the above tuning
parameters in real applications will be discussed in Section 7. For any x ∈ RD,
h ∈ (0,∞]D and S � {1, . . . , n}, define

(
β̂−S

0 (x;h), . . . , β̂−S
D (x;h)

)�
= argmin
(β0,β�)�∈RD

{∑
i �∈S Kh(Xi − x)L

(
Yi, β0 + β�(Xi − x)

)
∑

i �∈S Kh(Xi − x) +
D∑

d=1
Cn(hd)|βd|α

}
,

(3.1)

which estimates the local linear coefficients (β0,β
�) = (β0, β1, . . . , βD) from a

delete-S subsample based on a bandwidth-adaptive Bridge penalty. Let S1∪· · ·∪
SK = {1, . . . , n} be a partition of the index set with K ≥ 2 and |Sk|/n+n/|Sk| =
O(1) for all k = 1, . . . ,K. Without loss of generality we assume n0 = |S1| =
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· · · = |SK |. Define

ĥ = (ĥ1, . . . , ĥD)� = argmin
h∈(0,∞]D

{
n−1

K∑
k=1

∑
i∈Sk

L
(
Yi, β̂

−Sk
0 (Xi;h)

)
+

D∑
d=1

Λn(hd)
}

(3.2)
to be a vector of regularised bandwidths obtained by minimising a delete-n0
cross-validated loss, penalised by Λn and averaged over the given partition. Our
proposed procedure essentially calculates ĥ by recursively evaluating (3.1) and
(3.2) in a alternating optimisation algorithm. In (3.1), we associate to each
local coefficient βd a penalty Cn(hd) which decays exponentially fast with 1/hd,
thereby suppressing those βd’s corresponding to large bandwidths while leaving
free those corresponding to small bandwidths. Since consistent estimation of
m(·) is possible only when bandwidths of nonlinear active variables are small,
the cross-validated loss in (3.2) suppresses the growth of {hd, d ∈ A}, while
the penalty Λn(hd) pushes {hd, d ∈ Ac} towards infinity. We define Λn(hd)
strategically to amplify the bandwidths ĥAc of inactive variables, while retaining
optimality of the bandwidths ĥA estimated for active variables. It is preferable
to conventional penalties like Lp, for the latter lead to suboptimal bandwidths
in general. For empirical determination of active variables, we may define the
selected set Â to be {d : ĥd ≤ C0}, for some threshold C0 > 0 independent of
n. With h duly estimated by ĥ, we may estimate m(x) by m̂(x) = β̂−∅

0 (x; ĥ).
For a computationally more efficient alternative to β̂−∅

0 (x; ĥ), we may replace
ĥd by ĥd/1{ĥd ≤ C0} in the calculation of ĥ and omit the penalty term in the
calculation of (3.1), which amounts to non-penalised local linear regression on
variables indexed by {d : ĥd ≤ C0} using variable-specific bandwidths ĥd’s. We
comment briefly on the practical choice of C0 in Section 7.

Remark 1. The choice of the penalty function Λn(h) is a trade-off between
smoothness of the objective function and identifiability of the active set A. Our
theoretical results remain valid under the weaker assumption that Λn is strictly
decreasing and satisfies

Λn(h)/λn =
{

1 + O(h4), h → 0
o(1), h → ∞.

Remark 2. The strategy of pushing bandwidths to infinity for inactive variables
allows D to be high dimensional, thus facilitating the construction of an oracle
estimator. By contrast, if the bandwidths hd’s were non-adaptive to data, as
has been considered by Bertin & Lecué (2008), the number of “local points”
would have been inversely proportional to the usual “variance term”, of order
n−1 ∏D

d=1 h
−1
d . Consider for brevity the case where X(1), . . . , X(D) are i.i.d. with

supp(X(d)) = [−a, a] and that the kernel K is uniform on a bounded support
[−1, 1]. If the bandwidths hd’s are all non-shrinking with values exceeding a,
then the kernel weight

∏D
d=1 K(X(d)/hd) reduces to the constant 2−D, which

amounts to the classical case of linear regression. On the other hand, if hd → 0
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for each d, then we have a local linear fit prone to the curse of dimensionality,
where the number of local points could become extremely small or even zero for
a moderately large D. Even with a small D, setting hd → 0 for an inactive d /∈ A
incurs an undesirable efficiency loss by reducing the effective sample size by a
factor of hd. In order to achieve a level of optimality comparable to that of the
oracle, one must minimise the adverse effects the inactive variables may have
on the estimator (3.1), which in our procedure is accomplished by forcing the
inactive bandwidths to infinity with a judiciously specified penalty. The active
variables can be readily selected based on the magnitudes of the optimised
bandwidths, an approach fundamentally different from that of Bertin & Lecué
(2008), who resort to penalisation of linear coefficients for variable selection.
This is also the reason why the choice of the power α in (3.1) is immaterial as
long as the penalty is appropriately adjusted by Cn and (3.1) yields a consistent
estimator of the regression function with appropriate bandwidths.

We conclude this section with a brief comparison between our procedure
and existing methods of the local polynomial type for variable selection and
regression. In RODEO (Lafferty & Wasserman, 2008), optimality of estimation
of regression coefficients is impeded by the absence of penalties, especially when
the number of inactive variables is large. Another disadvantage is its inability
to detect linear effects. Such disadvantage is also faced by Giordano & Parrella
(2016) and Giordano et al. (2020), who extend the RODEO idea to a high-
dimensional context. Both papers resort to a scheme of multiple steps to identify
all active variables, under very restrictive distributional assumptions on X. In
contrast, estimation of h and βd’s in our procedure is regularised by Cn and Λn

simultaneously, such that oracle optimality ensues without omission of active
linear effects, all accomplished by a unified optimisation scheme under only
mild conditions on the distribution of X. Specifically, our optimisation scheme
includes a penalty weighted by Cn(hd), which shrinks βd towards zero when hd

is sufficiently large, with a result akin to performing local constant regression on
the d-th dimension. It can be shown using standard asymptotic arguments that
if ∇df(X) does not vanish almost surely, then a local constant fit is consistent
only when the bandwidths associated with linear variables converge to zero.
Thus, under the assumption (A2) to be introduced in Section 5, our method
ensures consistent selection of both linear and nonlinear active variables by
thresholding the estimated bandwidths ĥ. Bertin & Lecué (2008) estimate local
linear coefficients subject to an L1 penalty, with bandwidths h fixed at some
pre-determined values. Their procedure succeeds in selecting variables that are
active locally at a test point x, under a modest dimension D = O(logn). Our
alternating optimisation scheme automatically adjusts h to yield a set of kernel
weights adaptive to the selected variables, resulting in a consistent estimate of
A, the set of globally active variables, under dimensions D much greater than n.
The MEKRO (White et al., 2017) subjects inverse bandwidths to a constraint
which not only depends on the unknown sparsity level |A| but also forces an
imbalance between bias and variance, leading to a suboptimal convergence rate.
Our procedure does not have such problems and, based as it is on a local linear
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fit, incurs smaller boundary bias than does MEKRO. The above advantages over
existing methods render our procedure especially attractive for global variable
selection and prediction under high dimensions.

4. Computational algorithm

The objective function in (3.1) is convex in (β0,β
�) and can be readily min-

imised by standard optimisation algorithms, the choice of which may be made
specific to the loss function L. The objective function in (3.2) is non-convex in
h and the solution β̂−Sk

0 (Xi;h) found using (3.1) has no closed form in general.
It is hard to apply standard optimisation methods to obtain (3.2). We pro-
pose a coordinate descent method associated with step size ς to find ĥ. In the
algorithm that follows, each bandwidth hd is replaced by a scaled bandwidth
g(h) = {1 + log(1 + h4)}−1, which decreases in h with g(h) = 0 when h = ∞.
Write g(h) =

(
g(h1), . . . , g(hD)

)� for the scaled bandwidth vector. In each it-
eration, we find the step direction in each dimension which reduces the value
of the objective function in (3.2) until a stopping criterion is reached. Based on
the output g(h), we consider the variable d active whenever g(hd) ≥ g(C0), for
some constant C0 > 0. We outline the algorithm below.

Step 1. Initialise step size ς, toleration limit ε, the minimum scaled bandwidth
gmin = 0, the maximum scaled bandwidth gmax to be smaller than but
close to 1, and h = h0. Calculate the initial scaled bandwidth vector
g(h0).

Step 2. Calculate the initial β̂−Sk
0 (Xi;h0)’s by solving (3.1) for each i = 1, 2, . . . ,

n0, k = 1, . . . ,K and hence the initial value f1 of the objective function
in (3.2).

Step 3. Set f2 = f1. Generate a random permutation (v1, . . . , vD) of (1, . . . , D).
For d = 1, . . . , D, repeat Steps 3.1–3.2 below.

Step 3.1. Set the lower and upper test values of g(hvd) to be g−vd = gmin ∨(
g(hvd)− ς

)
and g+

vd
= gmax ∧

(
g(hvd) + ς

)
, respectively. Let f−

2 and
f+
2 be the values of the objective function in (3.2), evaluated at h

with hvd replaced by g−1(g−vd) and g−1(g+
vd

), respectively.
Step 3.2. Update (hvd , f2) to

(
g−1(g−vd), f

−
2
)

if f−
2 < f2; otherwise update

(hvd , f2) to
(
g−1(g+

vd
), f+

2
)

if f+
2 < f2.

Step 4. If (f1 − f2)/f1 < ε, output the scaled bandwidth vector g(h) and f2;
otherwise set f1 = f2 and repeat Step 3.

Although the greedy algorithm is likely to be trapped by a local solution, the
output h provides a reasonably good approximation to ĥ. Empirical perfor-
mance of this algorithm is illustrated through a number of numerical studies
reported in Section 8. To reduce the chance of being trapped by suboptimal
local minima, the algorithm may be repeated with multiple initial guesses. We
do not pursue this in our empirical studies, as trial runs of the approach reveal
only limited gain in predictive accuracy.
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5. Theory

Define, for s ∈ Y , t ∈ R and x ∈ RD,

q1(s, t) = ∂L(s, t)/∂t, η(t|x) = E[q1(Y, t)|X = x],
q3(t|x) = ∂2η(t|x)/∂t2,

σ2(x) = Var
(
q1(Y,m(x))

∣∣X = x
)

and v(x) = ∂η(t|x)/∂t|t=m(x),

provided that the derivatives exist.
For x ∈ RD and c = (c1, . . . , cD)� ∈ [0,∞]D, define N (c) = {d : cd = 0} and

r(x; c) = argmin
β0∈R

E
[
E
[
L(Y, β0)

∣∣X = x + Ux,c
]∣∣∣Ux,c

N (c) = 0
]
, (5.1)

where Ux,c ∈ RD has the density function ∝ f(x + u)
∏

d�∈N (c) K(ud/cd), u ∈
RD. We shall show in Lemma 1 that r(x; c) is related to the asymptotic limit
of β̂−∅

0 (x;h) for a general choice of h which does not necessarily provide for
consistency of β̂−∅

0 (x;h). If cj = 0 for all j ∈ A, that is A ⊂ N (c), then
r(x; c) = argminβ0

E
[
L(Y, β0)

∣∣XA = xA
]

= mA(xA). In the special case where
L is the squared loss, r(x; c) reduces to the conditional expectation E

[
mA

(
xA+

Ux,c
A

)∣∣Ux,c
N (c) = 0

]
.

We make the following assumptions.

(A1) f(·) and σ(·) are twice continuously differentiable, m(·) is two times con-
tinuously differentiable, and

E
[
‖X‖3

2
{
v(X)|∇d1,d2m(X)| + σ(X)2

+ |q1(Y,m(X))|2+δ0 + 1
}]

< ∞,

for some 0 < δ0 ≤ 1 and for any d1, d2 ∈ A.
(A2) P(∇d,dm(X) = 0)P(∇df(X) = 0) < 1 for each d ∈ A.
(A3) q1(Y, t), q3(t|X) and η(t|X) exist almost surely, for any t ∈ R.
(A4) E

[{
L(Y,m(X) + t) − L(Y,m(X)) + tq1(Y,m(X))

}2
∣∣∣X]

= o(t2) almost
surely.

(A5) q3(·|X) is bounded on a neighbourhood containing m(X) almost surely.
(A6) q1(Y, ·) is Lipschitz continuous in the sense that there exists a sub-exponen-

tial L0(Y ) such that |q1(Y, t1)−q1(Y, t2)| ≤ L0(Y )|t1−t2| for all t1, t2 ∈ R.
(A7) L(Y, 0) and q1(Y, 0) are sub-exponential conditional on X, with the asso-

ciated Orlicz norm uniformly bounded almost surely.
(A8) mA satisfies ∑

d1,d2∈A
sup

u∈supp(XA)
|∇d1,d2mA(u)| ≤ ω,

for some constant ω ∈ [1, |A|2].
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Standard for local polynomial regression, (A1) imposes mild regularity condi-
tions on the distribution of (X, Y ) and smoothness conditions on m and L.
The (2 + δ0)-moment is required here for establishing asymptotic normality. As
discussed earlier, (A2) ensures that the optimal bandwidths converge to zero if
and only if they are associated with active variables, be they linear or nonlinear,
so that the estimated bandwidths ĥ help differentiate active from inactive vari-
ables. The assumption (A2) is very mild, for it rules out only a very special case
where ∇d,dm(X) = ∇df(X) = 0 almost surely for some d ∈ A, under which the
bias of local constant regression no longer increases with hd for some linear vari-
ables X(d). Existence of η(t|X) under (A3), required too by Fan et al. (1994),
allows for applications to robust regression. Existence of q3(t|X) follows from
twice-differentiability of η(·|X), which holds in particular for mean and logistic
regressions. For quantile regression, q3(t|X) exists if the conditional distribu-
tion of Y given X admits a differentiable density almost surely. The assumption
(A4) also appears in Fan et al. (1994) and is required for consistent estimation
of the regression function. It ensures smoothness of the expected loss function
conditional on X, and is satisfied if q1(Y, t) is uniformly continuous in t, as
is the case for the squared loss or a smooth negative loglikelihood. The check
loss also satisfies (A3) as q3 exists under (A2). The mild condition (A5) en-
sures that E[L(Y, t)|X] is well approximated by a quadratic Taylor expansion.
It holds for a continuous q3(·|X) or for quantile regression under a bounded
conditional density derivative in a neighbourhood of m(X). The assumption
(A6) implies that supt1,t2∈R, 1≤i≤n |q1(Yi, t1) − q1(Yi, t2)|/|t1 − t2| = Op(logn),
and is satisfied by most generalised linear models including normal and logis-
tic regressions but does not hold for quantile regression. The assumption (A7)
imposes on the conditional distribution of Y given X a tail condition specific
to the loss function. For example, a squared loss requires the conditional distri-
bution to be sub-exponential almost surely. The additional assumption (A8) on
the smoothness of the regression function is commonly made in the context of
nonparametric regression for deriving the minimax rate (Yang & Tokdar, 2015).
The upper bound ω is imposed to exclude highly fluctuating functions.

The following conditions delimit the sparsity level |A| and the covariate di-
mension D, both of which may increase with n.

(B1) |A|5/2n−1/(4+|A|) = o(1);
(B2) D = O

(
eζn

)
for some ζn = o

(
n1/(4+|A|)).

Under (B1), |A| can be as large as a0 logn/ log logn for any constant a0 ∈
(0, 2/5). The conditions (B1) and (B2) together allow a high dimension D with
logD = O

(
(logn)a1

)
for any constant a1 ∈ (0, 2/5), so that D may grow faster

than any polynomial rate. If |A| = O(1), then a1 can be relaxed to any constant
in (0,∞).

For results involving an explicit leading term of the bias of local linear re-
gression, we simplify our presentation by strengthening the condition (A2) to

(A2’) P(∇d,dm(X) = 0) < 1 for all d ∈ A.

If (A2) holds but (A2’) does not, then our procedure remains consistent in
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detecting A but the bias of local linear regression has a complicated leading term
depending on ∇d,d′m(x) for d, d′ ∈ A, which prohibits a simple formulation of
the optimal bandwidths.

Theorem 1 below establishes consistency of Â and the asymptotic order of
the estimated bandwidth vector ĥ defined in (3.2).

Theorem 1. Assume conditions (A1)–(A8) and (B1)–(B2). Then,

(i) P(Â = A) → 1.

Further, if (A2’) holds, then

(ii) there exist constants K0 > k0 > 0 such that

P
(
k0(nω2)−1/(4+|A|) ≤ min

d∈A
ĥd ≤ max

d∈A
ĥd

≤ K0(nω2)−1/(4+|A|)) → 1;

(iii) for a sufficiently small constant m0 > 0,

P
(

min
d∈Ac

{log ĥd} ≥ m0λnω
2(ω2n)4/(4+|A|)

)
→ 1.

Part (i) of Theorem 1 confirms variable selection consistency of our procedure.
As can be seen from the proof, such consistency follows essentially from the
fact that the estimated bandwidth ĥd = op(1) if and only if d ∈ A. If we
strengthen (A2) to (A2’), then parts (ii) and (iii) assert that with probability
converging to one, componentwise ĥA has the oracle optimal order, whereas all
the components of ĥAc explode to infinity at a fast rate.

We investigate next the asymptotic properties of the regression function es-
timator m̂(x) = β̂−∅

0 (x; ĥ) derived from (3.1) with h = ĥ.

Theorem 2. Under the conditions of Theorem 1, we have, for any x ∈ RD,

(i) m̂(x) = m(x) + Op

(
ω(nω2)−2/(4+|A|));

(ii) E
[
L(Y, m̂(x))

∣∣X = x, Dn

]
= E

[
L(Y,m(x))

∣∣X = x, Dn

]
+

Op

(
ω2(nω2)−4/(4+|A|)), for (X, Y ) independent of Dn;

(iii) if (A2) is strengthened to (A2’) and the kernel function K has a bounded
support, then

n1/2
( ∏

d∈A
ĥd

)1/2{
m̂(x) −m(x) − (μ1,2/2)

∑
d∈A

ĥ2
d∇d,dm(x)

}

converges in distribution to a normal random variable with mean 0 and
variance μ

|A|
2,0σ(x)2fA(xA)−1v(x)−2, where fA denotes the marginal den-

sity function of XA.

Parts (i) and (ii) of Theorem 2 show that the estimation and prediction errors
of m̂(x) achieve the minimax rates established by Yang & Tokdar (2015), respec-
tively. In particular, if ω is a fixed positive constant, the results give the classical
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rates found in Ruppert & Wand (1994). Part (iii) establishes asymptotic nor-
mality of the error m̂(x)−m(x), properly centred and scaled, under the stronger
assumption (A2’). It implies an oracle property for m̂(x), which enjoys a very low
extra bias and a minimax convergence rate, as a consequence of Theorem 1(ii)
and (iii) and use of a specially constructed penalty function defined in 3.1. In
particular, for generalised linear models (2.1), we have v(x) = b′′(m(x)) and
σ(x)2 = Var(Y |X = x).

Remark 3. The uniform lower bound on the orders of {log ĥd : d ∈ Ac} given in
Theorem 1(iii) holds for the particular penalty Λn(h) = λn

{
1 + log

(
1 + h4)}−1.

Other choices of Λn satisfying the general conditions described in Remark 1 may
lead to different forms of lower bounds on the orders of ĥd, d ∈ Ac.

Remark 4. We can show that Theorem 1(i) and (iii) still hold even if (A2) is
violated. Note that the leading term of the bias of local linear regression depends
on the second derivatives, {∇d,dm(X) : d ∈ A}, of the regression function. If
∇d,dm(X) vanishes, the order of the bias becomes smaller, dropping from h2

d to,
for example, O(h4

d) or o(n−1 ∏
d∈A h−1

d ), the precise expression of which depends
on the regression function m and the density function f . Such reduction in bias
results in bigger optimised bandwidths ĥd for d ∈ A, which still converge to
zero simultaneously with high probability in the sense of Theorem 1(ii), albeit
at a slower rate.

6. Quantile regression

Nonparametric quantile regression constitutes an important subclass of prob-
lems to which we can apply our proposed procedure. For a fixed τ ∈ (0, 1), τth-
quantile regression amounts to setting the loss function L(Y, a) = Lτ (Y − a),
where Lτ (z) � τz1{z ≥ 0}− (1− τ)z1{z < 0} is known commonly as the check
function. The regression function m(X) then corresponds to the conditional
τth-quantile of Y given X. High dimensional L1-penalised quantile regression
for linear models has been studied in van de Geer (2008) and Belloni & Cher-
nozhukov (2011), where both the number of regressors and the size of active
set are allowed to grow with sample size n. Lin et al. (2013) extend COSSO
(Lin & Zhang, 2006) to additive quantile regression for variable selection under
a fixed dimension. The loss functions covered by Allen’s (2013) KNIFE proce-
dure include the check loss as a special case. In a related context, Fan et al.
(1994) discuss the use of local linear fitting in univariate robust regression. To
the best of our knowledge, the problem of variable selection and estimation for
high-dimensional nonparametric quantile regression remains unexplored.

Since the check function does not satisfy (A6), which is used for establishing
(S.16) in the proof of Lemma 2, the results of Theorems 1 and 2 do not apply
immediately to quantile regression. The problem can nevertheless be resolved
by either replacing (B1) and (S.17) with the stronger condition |A| = O(1) and
(S.18), respectively, or by using a local constant fit instead of a local linear fit
in (3.1). In either case, we can apply standard empirical process techniques to
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establish Lemmas 1 and 2 and, following which, Theorems 1 and 2. The orders
of the estimated bandwidths remain unchanged and, in the case where m̂(x)
is obtained by a local constant fit, the bias term (μ1,2/2)

∑
d∈A ĥ2

d∇d,dm(x) in
Theorem 2(iii) should be changed to

∑
d∈A ĥ2

d

{
∇d(fAv)(x)∇dm(x)/(fAv)(x)+

(μ1,2/2)∇d,dm(x)
}
. Indeed, the proof for the case of a local constant fit largely

repeats what has been presented in the Appendix and can be derived in the same
manner. Note that for τth-quantile regression, v(x) reduces to the conditional
density of Y at m(x), given X = x, and σ(x)2 reduces to the constant τ(1−τ).

7. Choice of tuning parameters

Our proposed method depends on several parameters, which include c in the
penalty weight Cn(hd), λn in the bandwidth penalty Λn(·), as well as the non-
linear variable selection threshold C0.

Recall that Cn(hd) penalises the local linear coefficient βd with a weight
which grows with the corresponding bandwidth hd at a rate controlled by the
parameter c. To balance the smoothness of the objective function in (3.1) against
the growing rate of Cn(hd), c is fixed to be 10 in our empirical studies.

We have established in Theorem 1 that hd → 0 for d ∈ A and hd → ∞
for d �∈ A with high probability, suggesting that C0 can be any fixed positive
constant. Our numerical results show that Â remains stable over a wide range
of C0. We fix C0 to be 1 in our empirical studies.

Compared to c and C0, choice of λn makes a relatively large impact on
selection and prediction outcomes. We suggest fixing λn by cross validation,
which is found to work satisfactorily in practice.

We present in Section 8 some numerical evidence in support of the above
recommendations under the setting of Example M1.

As our theoretical results hold for any α ≥ 1, the choice of α is made out of
concern for computational efficiency of the procedure. It is often computationally
more efficient to solve (3.1) based on the choice α = 2, particularly for the case
of mean regression where a solution exists in closed form. However, one may
also consider other choices to achieve specific goals; for example, setting α = 1
helps yield sparse coefficients. In our numerical studies we set α = 2.

8. Empirical studies

We conduct empirical studies to illustrate our proposed penalised local lin-
ear regression procedure, abbreviated henceforth as PLLR, for mean, quantile
and logistic regressions using both simulated and real data. Its performance
is measured by variable selection accuracy and predictive power. Cross vali-
dation is performed to choose the best step size and λn over a grid of trial
values. We include in the studies a local constant variant on the procedure,
with β1 = · · · = βD = 0 and abbreviated as PLCR, whereby (3.1) reduces
to β̂−S

0 (x;h) = argminβ0∈R

∑
i �∈S Kh(Xi − x)L

(
Yi, β0

)
. Three loss functions
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are considered, corresponding respectively to mean, quantile and logistic regres-
sions, for which (3.1) is solved by the R packages glmnet and rqPen. We fix
c = 10 for the penalty weight Cn(h) and α = 1 in (3.1). The selected set Â is
set to be {d : ĥd ≤ 1}.

For the other methods we set the regularising parameters by either cross
validation or AICc available in their corresponding codes or packages. Here
AICc is a modified version of AIC designed for small samples and is defined
to be log(r) + {n + tr(S )}/{n − tr(S ) + 2}, where r and S denote the mean
squared residuals and the Nadaraya–Watson linear smoother, respectively.

Throughout the studies, all covariates have been standardised prior to the
fitting of each model. The high-dimensional setting D > n is considered in some
of the simulation and real data examples.

8.1. Mean regression

We consider three simulation examples and one real data example, in which
PLLR and PLCR are compared with MEKRO (White et al., 2017), LASSO,
KNIFE (Allen, 2013), COSSO (Lin & Zhang, 2006), ACOSSO (Storlie et al.,
2011) and GRID (Giordano et al., 2020). Among the eight methods, PLLR,
PLCR, GRID and MEKRO are of the local polynomial type, LASSO is tailored
for linear models, while KNIFE, COSSO and ACOSSO model the regression
function by RKHS. An additive structure is further assumed by COSSO and
ACOSSO. All simulation results are obtained from 100 Monte Carlo replications.

Example M1. Consider a homoscedastic model where

X(d) = (Ud + tU)/(1 + t), d = 1, . . . , 200,

Y is conditionally Gaussian with mean 20(X(20) − 0.5) cos(0.7X(1) +1−π) and
variance 0.25 given X, and U,U1, . . . , U100 are independently and uniformly
distributed over (0, 1). The parameter t is fixed at either 0 or 0.5, so that the
pairwise correlations (ρ) between covariates are 0 or 0.2, respectively. The sam-
ple size n is set to be 150.

The numbers of cases of correct selection (Â = A), false positives only (Â �

A), false negatives only (Â � A) and both false positives and negatives are
shown in Table 1. Results for the COSSO and adaptive COSSO are unavailable
as their R codes fail to run in the present high-dimensional setting. As seen
from Table 1, PLLR is most accurate in variable selection among all methods
and never experiences false negatives. Its close relative PLCR is slightly worse
when ρ = 0 and much worse when ρ = 0.2. The other methods perform poorly
in variable selection.

We also calculate the average prediction error, defined to be
n−1

1
∑n1

i=1
∣∣m̂(Zi)−m(Zi)

∣∣j , of each method, over n1 =100 test points Z1, . . . ,
Zn1 generated independently from the same distribution as X. Table 1 reports
the mean squared error (MSE) and the mean absolute error (MAE), obtained
by setting j = 2 and 1, respectively. Serving as a benchmark, the oracle method
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Table 1

Example M1 (mean regression) — numbers of cases of correct selection (CS), false positives
only (FP), false negatives only (FN), both false positives and negatives (FPN), mean

squared prediction error (MSE) and mean absolute prediction error (MAE).

variable selection prediction
ρ Method CS FP FN FPN MSE MAE

0

PLCR 67 33 0 0 1.56 0.875
PLLR 88 12 0 0 0.441 0.485

MEKRO 2 14 66 18 1.82 0.969
GRID 0 44 7 49 1.99 0.985
KNIFE 0 58 10 32 1.54 0.837
LASSO 0 0 85 5 1.61 0.928
Oracle – – – – 0.342 0.402

0.2

PLCR 0 78 12 10 0.698 0.584
PLLR 85 15 0 0 0.242 0.348

MEKRO 5 0 60 35 0.712 0.635
GRID 0 25 12 63 0.624 0.599
KNIFE 0 44 0 56 0.581 0.498
LASSO 0 0 81 19 0.533 0.500
Oracle – – – – 0.218 0.315

Table 2

Example M1 (mean regression, ρ = 0) — effects of varying C0 and c on prediction and
variable selection, measured by absolute percentage change (abs. pct. diff) in m̂

(
Zi

)
and

rate of correct selection with Â = A, averaged over 100 replications.
C0 0.5 0.75 1 2 5
avg. pct. diff. 10% 0% 0% 2% 14%
Rate of correct selections 78% 90% 88% 87% 80%
c 1 5 10 20 50
avg. pct. diff. 26% 2% 0% 1% 2%
Rate of correct selections 70% 90% 90% 90% 88%

estimates m(x) by β̂−∅
0 (x; ĥ), which is derived from (3.1) under the oracle con-

straint ‖βAc‖1 = 0, with ĥ set by cross validation. Being closest to the oracle,
PLLR outperforms the other four methods in both MSE and MAE. In general,
the prediction errors for ρ = 0.2 are smaller than those for ρ = 0, since inactive
variables help explain the response partially.

We have conducted an additional simulation exercise to examine the effects
of varying the bandwidth threshold C0 and the parameter c on our method
under the setting of this example. Two indicators are reported: (1) absolute
percentage change in m̂

(
Zi

)
, calculated by averaging over 100 test points, and

(2) rate of correct selection with Â = A, both averaged over 100 replications.
Table 2 shows that the selection and prediction performances of our method
remain quite stable when C0 or c deviates moderately from the values C0 = 1
or c = 10 recommended in Section 7, while the other tuning parameters remain
fixed at their recommended values. We also plot in Figure 1 the solution paths
of the optimised bandwidths against λn. The paths show a large discrepancy
in magnitude between bandwidths of the selected and unselected variables near
the cross-validated value of λn, thus confirming effectiveness of cross validation
in fixing λn.
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Fig 1. Example M1 (mean regression, ρ = 0) — plot of ĥd against λn, for d = 1, . . . , 11 and
20. The horizontal and vertical dashed lines are drawn at the recommended value of C0 and
the cross-validated value of λn, respectively.

Example M2. Consider the same model as in Example M1, with (D,n) changed
to (500, 300). The results shown in Table 3 suggest that the overall selection and
estimation performances deteriorate for all methods. However, our proposed
method remains the best among all methods and has a satisfactory selection
accuracy.

Example M3. Consider a heteroscedastic model with X distributed as in
Example M1 and Y normally distributed with mean 20(X(20)−0.5) cos(0.7X(1)+
1 − π) and variance 5 sin2(2X(9)) sin2(2X(5)) conditional on X. We set n =
400 and D = 30. The results, shown in Table 4, suggest that MEKRO and
PLLR have the highest selection accuracy for the case ρ = 0, whereas PLLR
is considerably more accurate than the other methods when ρ = 0.2. As the
model is neither linear nor additive, LASSO, COSSO and ACOSSO all fail to
yield satisfactory selections. Among methods which do not require specific model
structures, KNIFE is relatively poor in selection accuracy.

Prediction errors reported in Table 4 show that PLLR has the smallest error,
followed closely by MEKRO. The other methods are notably less accurate.

Example M4. Consider an additive heteroscedastic model, where Y is nor-
mally distributed with mean 4 sin(3X(10))− 4 cos(5X(5) − 1.5) + 5(X(14))2 and
variance 2.5| cos(3X(9) − 1.5)| conditional on X, and X follows the same dis-
tribution as in Example M1. We set n = 300 and D = 30. Results on selection
accuracy and prediction error are given in Table 5. In terms of selection ac-
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Table 3

Example M2 (mean regression) — numbers of cases of correct selection (CS), false positives
only (FP), false negatives only (FN), both false positives and negatives (FPN), mean

squared prediction error (MSE) and mean absolute prediction error (MAE).

variable selection prediction
ρ Method CS FP FN FPN MSE MAE

0

PLCR 65 35 0 0 1.41 0.761
PLLR 81 19 0 0 0.402 0.450

MEKRO 5 18 60 17 1.77 1.13
GRID 0 40 8 52 2.08 1.12
KNIFE 0 42 17 41 1.61 0.908
LASSO 0 0 91 9 1.51 0.988
Oracle – – – – 0.301 0.314

0.2

PLCR 12 78 5 5 0.678 0.588
PLLR 79 21 0 0 0.248 0.351

MEKRO 10 6 51 23 0.892 0.687
GRID 0 28 15 57 0.694 0.608
KNIFE 0 25 0 75 0.591 0.497
LASSO 0 0 77 23 0.510 0.518
Oracle – – – – 0.187 0.282

Table 4

Example M3 (mean regression) — numbers of cases of correct selection (CS), false positives
only (FP), false negatives only (FN), both false positives and negatives (FPN), mean

squared prediction error (MSE) and mean absolute prediction error (MAE).

variable selection prediction
ρ Method CS FP FN FPN MSE MAE

0

PLCR 49 51 0 0 1.58 0.912
PLLR 67 33 0 0 0.416 0.453

MEKRO 70 30 0 0 0.610 0.583
GRID 44 33 3 20 0.824 0.617
KNIFE 11 16 16 57 1.18 0.847
COSSO 0 2 70 28 1.39 0.898

ACOSSO 0 11 29 60 1.44 0.919
LASSO 0 0 91 9 2.13 1.06
Oracle – – – – 0.222 0.336

0.2

PLCR 5 63 16 16 0.572 0.582
PLLR 38 35 17 10 0.402 0.458

MEKRO 5 2 80 13 0.432 0.484
GRID 0 12 35 53 0.467 0.465
KNIFE 1 5 15 19 0.734 0.622
COSSO 1 1 75 23 0.445 0.550

ACOSSO 0 11 26 63 0.484 0.520
LASSO 0 0 48 52 1.13 0.770
Oracle – – – – 0.05 0.329

curacy, PLLR is comparable with COSSO and ACOSSO, methods tailored for
additive models. Results of KNIFE, GRID, MEKRO and LASSO are notable for
their large numbers of cases plagued by false negatives. For prediction, although
inferior to COSSO and ACOSSO, PLLR is on a par with the oracle and more
accurate than MEKRO and KNIFE.
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Table 5

Example M4 (mean regression) — numbers of cases of correct selection (CS), false positives
only (FP), false negatives only (FN), both false positives and negatives (FPN), mean

squared prediction error (MSE) and mean absolute prediction error (MAE).

variable selection prediction
ρ Method CS FP FN FPN MSE MAE

0

PLCR 20 73 4 3 4.05 1.21
PLLR 62 38 0 0 2.41 1.25

MEKRO 0 0 100 0 2.89 1.38
GRID 2 33 11 54 2.99 1.40
KNIFE 0 0 71 29 3.26 1.45
COSSO 70 29 1 0 0.560 0.594

ACOSSO 68 21 11 0 0.351 0.431
LASSO 3 2 90 5 4.63 1.77
Oracle – – – – 1.96 1.18

0.2

PLCR 0 93 0 7 4.59 1.98
PLLR 38 55 3 4 1.48 0.928

MEKRO 2 1 95 2 2.54 1.28
GRID 0 7 46 47 2.60 1.31
KNIFE 0 3 29 8 2.14 1.13
COSSO 26 46 22 16 0.837 0.677

ACOSSO 27 43 17 13 0.549 0.542
LASSO 1 2 89 8 2.75 1.34
Oracle – – – – 1.04 0.805

Example M5. (Real data). The ozone data, available in the R library, have
been studied by Lin & Zhang (2006) and Allen (2013). It consists of 330 observa-
tions of daily ozone concentration in Los Angeles with 8 predictors. For evalua-
tion of selection performance, we generate 10 artificial predictors independently
from the uniform (0, 1) distribution, thus increasing the covariate dimension to
D = 18. The dataset is partitioned randomly into a training set of 250 observa-
tions and a test set

{
(Xπi , Yπi) : i = 1, . . . , n1

}
of n1 = 80 observations. Predic-

tion error is evaluated by the mean squared error n−1
1

∑n1
i=1

{
Yπi − m̂(Xπi)

}2.
The results, reported in Table 6, are obtained by averaging over 100 random
partitions. The method NPLLR refers to conventional, non-penalised, local lin-
ear regression on the entire set of 8 genuine covariates without selection. Among
the eight methods under study PLLR gives the smallest prediction error. All
methods except PLCR are effective in screening out artificial variables.

Example M6. (Real data). The tecator dataset, available at https://lib.
stat.cmu.edu/datasets/, has been studied by Lin & Zhang (2006) and Storlie
et al. (2011). It consists of 240 observations of fat contents with 100 channel
spectrum of absorbances. The absorbance is minus the common logarithm of the
transmittance measured by the spectrometer. Again, we generate 100 artificial
predictors independently from the uniform (0, 1) distribution, thus increasing
the covariate dimension to D = 200. The traning and testing datasets contain
n = 180 and 60 samples respectively. The results, reported in Table 7, show
that PLLR gives the lowest prediction error among all methods.

https://lib.stat.cmu.edu/datasets/
https://lib.stat.cmu.edu/datasets/
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Table 6

Example M5 (ozone data, mean regression) — numbers of selected artificial variables and
selected variables, and prediction squared error, averaged over 100 random partitions of

dataset.

Number of selected Prediction
Method artificial variables variables error
PLCR 2.14 9.80 22.7
PLLR 0.89 7.15 17.1

MEKRO 0 3.07 20.9
GRID 0.88 3.79 18.9
KNIFE 1.18 4.55 19.0
COSSO 0.08 4.17 19.3

ACOSSO 0.15 3.88 19.2
LASSO 0 4.44 22.4
NPLLR 0 8 26.2

Table 7

Example M6 (tecator data, mean regression) — numbers of selected artificial variables and
selected variables, and prediction squared error, averaged over 100 random partitions of

dataset.

Number of selected Prediction
Method artificial variables variables error
PLCR 2.55 8.73 14.0
PLLR 0.77 6.45 10.1

MEKRO 1.21 4.05 12.1
GRID 0.99 6.43 11.9
KNIFE 2.76 8.12 12.5
LASSO 0.42 21.1 12.7
NPLLR 0 200 40.3

8.2. Quantile regression

We compare the same methods as those studied in Section 8.1. Extension of
COSSO and ACOSSO to quantile regression is discussed by Lin et al. (2013).
The LASSO is taken to be Li & Zhu’s (2008) L1-norm quantile regression. The
squared loss is replaced by the check loss in these methods. We perform quantile
regression at orders τ = 0.2 and 0.5 in the empirical studies.

Example Q1. Consider the same model and parameter settings as in Exam-
ple M1. The results are shown in Table 8. Under all the four combinations of
(ρ, τ), PLLR outperforms the other three methods (PLCR, KNIFE, LASSO)
significantly in both variable selection and prediction.

Example Q2. Consider the same model and parameter settings as in Exam-
ple M2. The results are shown in Table 9. The selection performances for all
methods deteriotiate as compared to Example M1 but PLLR still outperforms
the other methods.

Example Q3. Consider the same model and parameter settings as in Exam-
ple M3. Here heteroscedasticity leads to different active sets A for different quan-
tile orders τ . In particular, we have A = {1, 5, 9, 20} and {1, 20} for τ = 0.2 and
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Table 8

Example Q1 (τ th-quantile regression) — numbers of cases of correct selection (CS), false
positives only (FP), false negatives only (FN), both false positives and negatives (FPN),

mean squared prediction error (MSE) and mean absolute prediction error (MAE).

variable selection prediction
ρ τ Method CS FP FN FPN MSE MAE

0

0.2

PLCR 42 44 9 5 1.71 0.942
PLLR 82 4 2 12 0.481 0.447
KNIFE 22 29 0 49 1.05 0.752
LASSO 0 24 12 64 1.87 1.01
Oracle – – – – 0.057 0.171

0.5

PLCR 33 62 5 0 1.16 0.723
PLLR 87 0 0 13 0.444 0.389
KNIFE 42 40 0 18 0.612 0.584
LASSO 0 18 19 63 1.42 0.908
Oracle – – – – 0.098 0.463

0.2

0.2

PLCR 11 44 18 27 0.95 0.687
PLLR 51 14 11 24 0.312 0.351
KNIFE 18 7 61 14 0.632 0.564
LASSO 0 16 7 77 0.609 0.538
Oracle – – – – 0.061 0.162

0.5

PLCR 4 37 19 40 0.977 0.681
PLLR 63 10 9 18 0.243 0.355
KNIFE 22 11 24 43 0.382 0.491
LASSO 2 15 9 74 0.532 0.513
Oracle – – – – 0.050 0.157

Table 9

Example Q2 (τ th-quantile regression) — numbers of cases of correct selection (CS), false
positives only (FP), false negatives only (FN), both false positives and negatives (FPN),

mean squared prediction error (MSE) and mean absolute prediction error (MAE).

variable selection prediction
ρ τ Method CS FP FN FPN MSE MAE

0

0.2

PLCR 28 48 12 12 1.84 0.958
PLLR 72 17 6 5 0.499 0.480
KNIFE 11 48 0 41 1.33 0.992
LASSO 0 48 12 40 1.88 1.12
Oracle – – – – 0.051 0.151

0.5

PLCR 28 71 1 0 1.36 0.842
PLLR 85 0 0 15 0.429 0.391
KNIFE 28 57 0 15 0.642 0.535
LASSO 0 17 14 69 1.53 0.958
Oracle – – – – 0.091 0.433

0.2

0.2

PLCR 5 62 23 10 1.21 0.727
PLLR 44 16 17 23 0.487 0.430
KNIFE 10 8 55 37 0.752 0.590
LASSO 0 10 10 80 0.801 0.659
Oracle – – – – 0.048 0.132

0.5

PLCR 0 42 25 33 1.38 0.776
PLLR 61 21 12 6 0.263 0.380
KNIFE 12 25 5 58 0.477 0.502
LASSO 0 11 9 80 0.610 0.548
Oracle – – – – 0.042 0.133
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Table 10

Example Q3 (τ th-quantile regression) — numbers of cases of correct selection (CS),
false positives only (FP), false negatives only (FN), both false positives and negatives

(FPN), mean squared prediction error (MSE) and mean absolute prediction error
(MAE).
variable selection prediction

ρ τ Method CS FP FN FPN MSE MAE

0

0.2

PLCR 34 41 22 3 2.32 1.21
PLLR 61 27 8 4 1.07 0.674
KNIFE 63 10 19 8 1.01 0.771
COSSO 18 27 44 11 2.53 1.23

ACOSSO 1 36 24 39 2.50 1.24
LASSO 1 33 2 64 2.60 1.30
Oracle – – – – 0.774 0.549

0.5

PLCR 78 22 0 0 1.03 0.732
PLLR 84 14 1 1 0.156 0.263
KNIFE 70 14 10 6 0.377 0.441
COSSO 2 37 7 54 1.57 0.955

ACOSSO 0 23 1 76 1.42 0.904
LASSO 1 10 11 78 1.38 0.888
Oracle – – – – 0.0233 0.103

0.2

0.2

PLCR 0 1 33 66 1.63 0.984
PLLR 25 44 25 6 0.853 0.705
KNIFE 30 28 35 7 0.812 0.671
COSSO 2 9 56 33 0.913 0.743

ACOSSO 3 22 21 54 0.908 0.747
LASSO 0 30 4 66 0.995 0.786
Oracle – – – – 0.523 0.487

0.5

PLCR 20 6 59 15 0.346 0.316
PLLR 78 21 1 0 0.132 0.250
KNIFE 43 29 18 10 0.267 0.363
COSSO 8 47 3 42 0.506 0.538

ACOSSO 2 40 0 58 0.442 0.496
LASSO 1 31 9 59 0.450 0.492
Oracle – – – – 0.0585 0.161

0.5, respectively. Table 10 summarises the results. In general PLLR and KNIFE
stand out as the two best performers, with PLLR noticeably better than KNIFE
when τ = 0.5 but slightly inferior to KNIFE when τ = 0.2.

Example Q4. The model and parameter settings follow those in Example M4.
The results are shown in Table 11. As expected of methods tailored for addi-
tive models, both COSSO and ACOSSO perform well in variable selection and
prediction. Among methods which do not assume additivity, PLLR appears the
best, followed next by KNIFE.

Example Q5. (Real data). The same ozone dataset and partitions as consid-
ered in Example M5 are used again here. The prediction error is measured by
the mean quantile loss (MQL) n−1

1
∑n1

i=1 Lτ

(
Yπi − m̂(Xπi)

)
. For the median

case τ = 0.5, MSE is also calculated as an alternative. Table 12 summarises the
results, which show that PLLR selects the fewest variables on average and is the
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Table 11

Example Q4 (τ th-quantile regression) — numbers of cases of correct selection (CS), false
positives only (FP), false negatives only (FN), both false positives and negatives (FPN),

mean squared prediction error (MSE) and mean absolute prediction error (MAE).

variable selection prediction
ρ τ Method CS FP FN FPN MSE MAE

0

0.2

PLCR 0 5 49 46 7.57 2.27
PLLR 11 19 51 19 2.59 1.27
KNIFE 3 0 81 16 4.15 1.61
COSSO 38 32 27 3 0.486 0.542

ACOSSO 15 54 19 12 0.579 0.597
LASSO 1 20 2 77 5.48 1.84
Oracle – – – – 1.35 0.901

0.5

PLCR 14 44 27 15 4.35 1.70
PLLR 60 36 3 1 2.19 1.16
KNIFE 50 5 40 5 2.71 1.31
COSSO 89 11 0 0 0.143 0.291

ACOSSO 54 46 0 0 0.189 0.332
LASSO 0 40 7 53 4.31 1.68
Oracle – – – – 0.923 0.767

0.2

0.2

PLCR 0 6 27 67 3.63 1.50
PLLR 3 20 27 50 1.88 1.02
KNIFE 1 2 77 20 2.49 1.22
COSSO 8 24 35 33 0.909 0.723

ACOSSO 2 25 19 54 1.13 0.808
LASSO 0 12 1 87 2.79 1.28
Oracle – – – – 1.08 0.776

0.5

PLCR 0 61 6 15 2.89 1.32
PLLR 31 46 16 7 1.28 0.840
KNIFE 41 0 53 6 1.97 1.09
COSSO 76 22 2 0 0.330 0.423

ACOSSO 31 65 3 1 0.479 0.516
LASSO 1 35 3 62 2.35 1.18
Oracle – – – – 0.767 0.665

most effective in screening out artificial variables. All methods except NPLLR
are comparable in terms of predictive accuracy.

Example Q6. (Real data). The same tecator dataset and partitions as con-
sidered in Example M6 are used again here. Table 13 summarises the results,
which show that PLLR has the lowest prediction error.

8.3. Logistic regression

For logistic regression we compare the methods PLLR, KNIFE, SKDA and
LASSO. For moderately large D ≈ 30, the R code for COSSO produces error
messages reporting singular designs so the results are omitted. The LASSO is
taken to be L1-penalised linear logistic regression (Park & Hastie, 2007). In-
troduced by Stefanski et al. (2014), SKDA can be viewed as the classification
version of MEKRO. It maximises the likelihood function under constraints on
bandwidths, allowing for a prior on the two classes when estimating the con-
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Table 12

Example Q5 (ozone data, τ th-quantile regression) — numbers of selected artificial variables
and selected variables, mean quantile loss (MQL) and mean squared error (MSE), averaged

over 100 random partitions of dataset.

Number of selected Prediction error
τ Method artificial variables variables MQL MSE

0.2

PLCR 2 9.14 2.31 –
PLLR 0.56 3.88 2.22 –
KNIFE 2.53 7.28 2.18 –
COSSO 1.14 4.77 2.27 –

ACOSSO 1.76 5.44 2.21 –
LASSO 4.35 8.63 2.28 –
NPLLR 0 8 5.68 –

0.5

PLCR 1.89 8.74 3.94 21.3
PLLR 0.34 4 3.43 19.3
KNIFE 0.783 5.41 3.36 19.0
COSSO 0.415 5.55 3.36 19.2

ACOSSO 0.915 5.2 3.41 19.6
LASSO 2.81 7.19 3.65 22.7
NPLLR 0 8 6.13 55.6

Table 13

Example Q6 (tecator data, τ th-quantile regression) — numbers of selected artificial
variables and selected variables, mean quantile loss (MQL) and mean squared error (MSE),

averaged over 100 random partitions of dataset.

Number of selected Prediction error
τ Method artificial variables variables MQL MSE

0.2

PLCR 1.74 9.14 2.02 –
PLLR 0.87 4.11 1.84 –
KNIFE 2.01 7.28 1.95 –
LASSO 9.71 18.6 1.87 –

0.5

PLCR 2.02 6.43 3.05 16.3
PLLR 0.91 4.82 2.17 12.5
KNIFE 0.58 6.43 2.44 14.6
LASSO 6.80 14.25 2.54 14.7

ditional probability. Use of a uniform prior leads to maximum likelihood esti-
mation, abbreviated hereafter as SKDA-mle. Alternatively, one may consider
using the Bayes classifier based on data-driven prior weights, leading to the
SKDA-bayes approach.

Example L1. Consider a logistic model where, conditional on X, Y follows a
Bernoulli

(
p(X)

)
distribution with p(X) given by

log
{

p(X)
1 − p(X)

}
= m(X)

= 100(X(20) − 0.5) cos(0.7X(9) + 1 − π) + 30(X(14) − 0.5).

We set n = 150, D = 50 and generate X(1), . . . , X(D) independently from the
uniform (0, 1) distribution. Writing p̂(x) = em̂(x)/

(
1 + em̂(x)) for the predicted

value of P(Y = 1|X = x), we evaluate the prediction error by four measures,
namely the MSE n−1

1
∑n1

i=1
∣∣p̂(Zi)−p(Zi)

∣∣2, the MAE n−1
1

∑n1
i=1

∣∣p̂(Zi)−p(Zi)
∣∣,

the misclassification rate (MR) n−1
1

∑n1
i=1

∣∣1{p̂(Zi) > 0.5} − Ỹi

∣∣ and the com-
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Table 14

Example L1 (logistic regression) — numbers of cases of correct selection (CS), false
positives only (FP), false negatives only (FN), both false positives and negatives (FPN),

mean squared prediction error (MSE), mean absolute prediction error (MAE),
misclassification rate (MR) and comparative Kullback-Leibler distance (CKL).

variable selection prediction
ρ Method CS FP FN FPN MSE MAE MR CKL

0

PLCR 31 2 58 9 0.0692 0.182 0.111 0.345
PLLR 86 13 1 0 0.0377 0.106 0.0919 0.222
KNIFE 46 0 32 22 0.0561 0.172 0.103 0.292

SKDA-bayes 34 0 65 1 0.0683 0.180 0.134 0.314
SKDA-mle 34 0 65 1 0.0661 0.180 0.129 0.307

LASSO 2 3 48 47 0.0845 0.236 0.115 0.372
Oracle – – – – 0.0405 0.109 0.0960 0.224

0.2

PLCR 1 0 97 2 0.0772 0.223 0.164 0.385
PLLR 62 22 13 3 0.0381 0.105 0.112 0.273
KNIFE 7 0 72 21 0.0522 0.169 0.119 0.349

SKDA-bayes 0 0 88 12 0.0738 0.214 0.160 0.383
SKDA-mle 0 0 87 13 0.0720 0.206 0.153 0.365

LASSO 1 5 40 54 0.0655 0.206 0.139 0.365
Oracle – – – – 0.0349 0.103 0.104 0.212

parative Kullback-Leibler (CKL) distance n−1
1

∑n1
i=1

{
− p(Zi) log p̂(Zi) − (1 −

p(Zi)) log(1 − p̂(Zi))
}
, where Ỹi is Bernoulli

(
p(Zi)

)
distributed conditional

on Zi, i = 1, . . . , n1. Results are reported in Table 14. We see that PLLR
considerably outperforms the other methods in variable selection. In particular,
PLLR succeeds in detecting the active variable X(9), exclusion of which has con-
tributed to false negatives in the other methods. In terms of prediction, PLLR
again outperforms the other methods by all four measures, and is comparable
to the oracle.

Example L2. Consider the same model as in Example L1 except that we
set (n,D) = (300, 500). The results reported in Table 15 show that PLLR again
outperforms the other methods in terms of selection and prediction performance.

Example L3. (Real data). We consider the following three experimental set-
tings, based on datasets available at the UCI Machine Learning Repository
http://archive.ics.uci.edu/ml/:

(i) Wisconsin diagnostic breast cancer data —
The dataset contains n = 569 observations, among which 212 are ma-
lignant and 357 are benign. The orignal 30 predictors and 20 artificial
uniform (0, 1) variables together make up a covariate dimension D = 50.
Results are averaged over 100 random partitions of observations into 300
training and 269 test points.

(ii) Sonar data —
The dataset consists of n = 208 observations and 60 predictors ranging
from 0 to 1, indicating the energy within a frequency band over time.
Inclusion of 30 artificial uniform (0, 1) variables yields a covariate dimen-
sion D = 90. Each observation is classified as ‘mineral’ (111 in total) or
‘rock’ (97 in total). Results are averaged over 100 random partitions of

http://archive.ics.uci.edu/ml/
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Table 15

Example L2 (logistic regression) — numbers of cases of correct selection (CS), false
positives only (FP), false negatives only (FN), both false positives and negatives (FPN),

mean squared prediction error (MSE), mean absolute prediction error (MAE),
misclassification rate (MR) and comparative Kullback-Leibler distance (CKL).

variable selection prediction
ρ Method CS FP FN FPN MSE MAE MR CKL

0

PLCR 25 17 55 3 0.0790 0.231 0.141 0.478
PLLR 81 8 5 6 0.0428 0.131 0.129 0.251
KNIFE 41 0 41 12 0.0587 0.200 0.141 0.305

SKDA-bayes 31 0 68 1 0.0713 0.195 0.148 0.328
SKDA-mle 31 0 68 1 0.0720 0.199 0.157 0.325

LASSO 0 0 60 40 0.0977 0.258 0.141 0.407
Oracle – – – – 0.0355 0.089 0.083 0.210

0.2

PLCR 11 0 87 2 0.0881 0.238 0.174 0.391
PLLR 54 28 10 8 0.0450 0.126 0.135 0.291
KNIFE 0 0 75 25 0.0624 0.187 0.135 0.370

SKDA-bayes 0 0 84 16 0.0787 0.280 0.174 0.392
SKDA-mle 0 0 85 15 0.0790 0.269 0.161 0.381

LASSO 0 10 41 49 0.0710 0.251 0.142 0.410
Oracle – – – – 0.0312 0.094 0.091 0.187

observations into 150 training and 58 test points.
(iii) Ionosphere data —

The dataset contains n = 351 observations on 35 covariates plus 20 arti-
ficial uniform (0, 1) variables. The instances are classified into ‘good’ (225
in total) or ‘bad’ (126 in total). We remove the first two covariates due to
lack of heterogeneity. Results are averaged over 100 random partitions of
observations into 200 training and 151 test points.

(iv) Musk data —
The dataset contains n = 476 observations on 176 covariates plus 150 arti-
ficial uniform (0, 1) variables, resulting in a covariate dimension D = 326.
The instances are classified into ‘musk’ (207 in total) or ‘non-musk’ (269
in total). Results are averaged over 100 random partitions of observations
into n = 250 training and 226 test points.

Table 16 reports the average counts of selected variables and the average mis-
classification rates for all four datasets. In general, the SKDA methods tend
to select too few variables. For dataset (i), LASSO and KNIFE include signif-
icantly more artificial variables than PLCR and PLLR. The LASSO performs
exceptionally well in classification, suggesting linearity of m(x). The misclas-
sification rate of PLLR is close to that of LASSO, while the other methods
are significantly worse. For datasets (ii), (iii) and (iv), PLLR has the lowest
misclassification rates among all the methods. It is quite effective in screening
out artificial variables, despite the relatively large number of variables it has
selected for modelling m(x). For all four datasets, NPLLR has notably higher
misclassification rates than the other methods, thus confirming the importance
of variable selection for classification problems.
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Table 16

Example L3 (logistic regression) — number of selected artificial variables (|Âa|), number of
selected variables (|Â|) and misclassification rate (MR), averaged over 100 random

partitions of dataset.

(i) Wisconsin data (ii) sonar data (iii) ionosphere data (iv) musk data
Method |Âa| |Â| MR |Âa| |Â| MR |Âa| |Â| MR |Âa| |Â| MR
PLCR 0 9.66 0.122 0.13 6.39 0.273 0.02 5.99 0.19 1.21 6.23 0.120
PLLR 0.12 3.71 0.0482 1.84 18.0 0.247 0.21 9.56 0.103 0.81 8.80 0.093
KNIFE 2.02 10.5 0.0734 2.82 7.36 0.308 0 2.35 0.199 4.33 3.88 0.182

SKDA-bayes 0 1.81 0.0766 0 2.03 0.291 0 2 0.128 0 4.06 0.110
SKDA-mle 0 1.97 0.0700 0 1.98 0.277 0 2 0.111 0 7.23 0.105

LASSO 1.88 9.5 0.0345 0.95 9.48 0.261 1.14 9.99 0.169 8.23 36 0.112
NPLLR 0 30 0.0939 0 60 0.417 0 35 0.478 0 226 0.435

8.4. Quantile estimation of fitted regression function

Inference about m(x) often entails estimation of quantiles of the sampling dis-
tribution of m̂(x) − m(x). The asymptotic normality result derived in Theo-
rem 2(iii) suggests a plug-in estimator of the γth-quantile Qγ(x) of m̂(x)−m(x),
in which the unknown quantities are replaced by consistent estimators. Specifi-
cally, we estimate A by Â and ∇d,dm by local cubic polynomial fitting with a
Gaussian kernel and a bandwidth fixed by cross validation. In the case of mean
regression, σ(x)2 is estimated by a normalised weighted residual sum of squares
(Fan & Gijbels, 1996), and fA(xA) by a kernel density estimator f̂Â(xÂ) based
on a Gaussian kernel and a bandwidth fixed by Silverman’s rule. In the case
of quantile regression, the conditional density of Y at m(x), given X = x, is
estimated by a similar kernel density estimator of the joint density of (XÂ, Y )
at

(
xÂ, m̂(x)

)
, divided by the marginal density estimator f̂Â(xÂ). Denote by

Q̂γ(x) a generic plug-in estimator of Qγ(x) constructed using the above proce-
dure. We consider three choices of Q̂γ(x), with Â determined respectively by
PLLR, KNIFE and LASSO. As a benchmark we include also an oracle plug-in
estimator Ôγ(x), constructed using the correct active set A. For the PLLR esti-
mate, m̂(x) is calculated using the bandwidths output by the PLLR algorithm.
The other three estimators calculate m̂(x) by local linear regression on XÂ,
or XA in the oracle case, with bandwidths determined by cross validation. In
each simulation, 100 randomly generated test points Z1, . . . ,Z100 are sorted
such that m(Z(1)) ≤ · · · ≤ m(Z(100)). For better insight into the peformance of
the quantile estimators, the mean squared error of each Q̂γ , MSE(Q̂γ), is esti-
mated on four different regions by averaging over 100 independent replicates of
25−1 ∑25j

i=25(j−1)+1
{
Q̂γ(Z(i)) − Qγ(Z(i))

}2, j = 1, 2, 3, 4. Thus, the jth region
contains the 25 test points associated with the jth smallest quarter of the m(Zi)
values. The true quantile Qγ(·) is approximated by Monte Carlo simulation.

Figure 2 displays the mean squared errors MSE(Ôγ) and MSE(Q̂γ), for γ =
0.05, 0.25, 0.50, 0.75, 0.95 and for the ρ = 0 cases of Examples M1 (mean
regression), Q4 (median regression) and L1 (logistic regression). For the case of
logistic regression, extreme values of the estimated probabilities p̂(Zi) may lead
to exponentially large variance estimates, in which case the estimated variance
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Fig 2. Mean squared errors of oracle estimator Ôγ (dotted) and estimators Q̂γ of γth-quantile
Qγ , for γ = 0.05, 0.25, 0.50, 0.75, 0.95, with Q̂γ constructed using variables selected by PLLR
(solid), KNIFE (dashed) and LASSO (dot-dashed). Results for region j are averaged over
test points corresponding to jth smallest quarter of regression function values.

is truncated within the interval [−100, 100]. It is unsurprising that the more
accurate is the estimated active set Â, the better is the normal approximation to
the distribution of m̂(x)−m(x), hence the more accurate is Q̂γ(x). This explains
the superiority of the PLLR quantile estimator over the other estimators and its
close resemblance to the oracle. The mean squared errors over the two extreme
regions 1 and 4 are much larger than those over the middle two regions. In
most cases the error is smallest at γ = 0.5 and increases gradually as γ deviates
from 0.5 on either side. It may be of interest to note that the errors for logistic
regression in regions 1 and 4 are skewed. Inspection of the distributions of m̂(x)−
m(x) indicates that heavy tails appear on the left for x in region 1 and on
the right for x in region 4, rendering normal approximation relatively poor for
γ = 0.05 and 0.95, respectively.
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9. Conclusion

We have proposed a new simultaneous variable selection and estimation method
for nonparametric regression under a general convex loss function, and presented
a coordinate descent algorithm for its implementation. The method is proved,
under ultra-high dimensions, to yield selection consistency and estimate the
true regression function at an oracle convergence rate. Our numerical examples
evince that the new method is superior to existing methods in most cases ex-
cept under additive models which may favour methods that explicitly exploit
the additive structure. We have also derived the asymptotic distribution of the
regression estimator and investigated empirically the accuracy of quantile esti-
mators constructed by asymptotic approximation.

We may consider replacing the linear polynomial in (3.1) by a polynomial of
a higher degree when formulating the objective function in (3.1). Extension of
our proofs to this setting suggests a faster convergence rate for the estimator
m̂(x), which, however, entails prohibitive computational expenses even when D
is only moderately large.

Appendix A: Proof of Theorems 1 and 2

A.1. Preliminary lemmas

In what follows we denote by K0 a sufficiently large positive constant, by k0 a
sufficiently small positive constant, and by {εn} a sequence of positive constants
converging to zero at a sufficiently slow rate. The actual values of K0, k0 and
{εn} may vary from occasion to occasion. For any sequences of random variables
{Wn} and {W ′

n}, write W ′
n = Ωp(Wn) if Wn = Op(W ′

n) and W ′
n = Op(Wn). The

notation Ω(·) is defined analogously for sequences of non-random constants.
Let B ⊂ {1, . . . , D} be an arbitrary index set, possibly depending on n, such

that |B| ≤ bn � a0 logn/ log logn, for some constant a0 ∈ (0, 2/5). Let an =
k0n

4/(4+bn) and h̄ � ‖hB‖∞. Consider a bandwidth vector h = (h1, . . . , hD)� ∈
Hn,B, where

Hn,B =
{
h ∈ (0,∞]D : h̄ ≤ εnb

−3/2
n ∨ εn/ω

2, n
∏
d∈B

hd ≥ an,

(
min
d∈Bc

hd

)−1 ≤ K0

}
.

Define, for S � {1, . . . , n}, d, d′ ∈ {0} ∪ B and x ∈ RD,

κ−S
d,d′(x) = (nhdhd′)−1

( ∏
j∈Bc

hj

)∑
i �∈S

v(Xi)V (d)
i (x)V (d′)

i (x)Kh(Xi − x),

where h0 � 1 and
(
V

(0)
i (x), V (1)

i (x), . . . , V (D)
i (x)

)
�

(
1, (Xi − x)�

)
. Write

κd,d′ = κ−∅
d,d′ for brevity. Denote by

[
κ̆d,d′(x)

]
d,d′∈{0}∪B the inverse of the ma-

trix
[
κd,d′(x)

]
d,d′∈{0}∪B so that

∑
j∈{0}∪B κ̆d,j(x)κd′,j(x) = 1{d = d′}, for any
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d, d′ ∈ {0} ∪ B. Define, for any function g on RD,

Kr
B(x; g) =

∫
g(xB,xBc + uBc)

∏
d∈Bc

K(ud/hd)rduBc .

Then we have

Eκd,d′(x) =
{
K1

B(x; fv)μ1,2 1{d>0}
{
1 + O(h̄)

}
, d = d′,

O(h̄), d �= d′.

Using Bernstein’s inequality and boundedness of v(·), we have, for any t ∈ (0, k0)
and any d, d′ ∈ {0} ∪ B,

P
(
|κd,d′(x) − Eκd,d′(x)| ≥ K0

√
t
)
≤ 2e−nt

∏
j∈B hj . (S.1)

Define the event

Ẽ1 =
⋂

B:|B|≤bn

⋂
d,d′∈{0}∪B

{
sup

h∈Hn,B

|κd,d′(x) − Eκd,d′(x)| ≤ εn/(|B| log |B|)
}
.

It then follows by (S.1) that

P(Ẽc
1) ≤ 2b2nDbne−k0anε

2
n/(bn log bn)2 . (S.2)

Note that Ẽ1 implies that κ̆d,d′(x)≤K0 if d = d′ and κ̆d,d′(x)≤K0εn/(|B| log |B|)
if d �= d′.

Write for brevity β̂d(x;h) = β̂−∅
d (x;h), which solves the system of equations

(nhd)−1
( ∏

j∈Bc

hj

) n∑
i=1

V
(d)
i (x)Kh(Xi − x)q1

(
Yi, β0 + (Xi − x)�β

)

= −Cn(hd)|βd|α−1e(βd)(nhd)−1
( ∏

j∈Bc

hj

) n∑
i=1

Kh(Xi − x),

d = 0, . . . , D, (S.3)

for (β0,β
�), where e(a) = 1{a > 0} − 1{a < 0} for a �= 0 and |e(0)| ≤ 1.

For ease of proof, we henceforth consider, without loss of generality, a bounded
solution space for (β0,β

�) with |β0| ∨ ‖β‖∞ ≤ K0.
Define the events E0 = {max1≤i≤n L0(Yi) ≤ K0 logn},

Ẽ2 =
⋂

B:|B|<bn

⋂
d∈Bc

{
sup

h∈Hn,B

|β̂d(x;h)| ≤ K0n
−1D−1},

Ẽ3 =
⋂

B:|B|<bn

{
sup

h∈Hn,B

|rB(x;h) − β̂0(x;h)| ≤ εn
}
,
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where

rB(x;h) = argmin
β0∈R

∫
f(xB,xBc + uBc)E

[
L(Y, β0)

∣∣X
= (xB,xBc + uBc)

] ∏
d∈Bc

K(ud/hd) duBc .

Note that rB(x;h) = m(x) for B ⊃ A. If we set B = N (c) and hN (c)c = cN (c)c ,
then rB(x;h) reduces to r(x; c) as defined in (5.1). Note also that there exists
by (A6) a sufficiently large K0 > 0 such that P(E0) → 1.

Denote, for brevity, by θ, θ̂, V(x) and Vi(x) the (|B| + 1)-dimensional sub-
vectors

(
βd : d ∈ {0} ∪ B

)
,
(
β̂d(x;h) : d ∈ {0} ∪ B

)
,
(
X(d) − xd : d ∈ {0} ∪ B

)
and

(
V

(d)
i (x) : d ∈ {0} ∪ B

)
, respectively.

The proof of Theorem 1 is lengthy so we give below a short navigation.
Lemma 1 constructs a uniform probability bound on each component of the
estimator (3.1), which holds for all |B| < bn and, in particular, for B = A or Â.
The results enable us to study the cross validation error of β̂−S

0 (x;h) for a
general class of bandwidths h, and show that Â ⊃ A with large probability by
contrasting the error incurred under B ⊃ A with that incurred under B �⊃ A,
the latter being significantly bigger. Lemma 2 scrutinises the remainder terms
of the estimation error, β̂0(x;h) − mA(xA), under the assumption B ⊃ A. A
precise expansion for the cross validation error is then established in Lemma 3.
The above results are finally combined to prove Theorem 1.

Lemma 1. Assume the conditions of Theorem 1. Then we have

P(E0 ∩ Ẽc
2) ≤ 2D2+bne−k0n

∏
d∈B hd ≤ 2D2+bne−k0an , (S.4)

P(E0 ∩ Ẽ2 ∩ Ẽc
3) ≤ 2Dbne−k0anε

2
n/ logn. (S.5)

The first result (S.4) asserts that
{
|β̂d(x;h)| : d ∈ Bc

}
are uniformly bounded

by a negligibly small sequence with large probability, so that unselected vari-
ables make only negligibly small contributions to the local linear expansion. The
second result (S.5) states that β̂0(x;h) has a leading term rB(x;h) with large
probability under an arbitrary choice of (B,h).

Proof of Lemma 1. Let Mβ(x) = max
{
|β̂d(x;h)| : d ∈ Bc, |B| < bn

}
, so that

Ẽ2 =
{
Mβ(x) ≤ K0n

−1D−1}. Note that

P
(
n−1

∏
j∈Bc

hj

∣∣∣ n∑
i=1

Kh(Xi−x)L
(
Yi, 0

)
−E

n∑
i=1

Kh(Xi−x)L
(
Yi, 0

)∣∣∣ ≥ K0
√
t
)

≤ 2e−nt
∏

j∈B hj .

The objective value of (3.1) at (β0,β
�) = 0� exceeds K0 with probability

bounded by e−k0n
∏

j∈B hj ≤ e−k0an . It follows by minimality of
{
β̂d(x;h) :



832 K. Y. Cheung and S. M. Lee

d = 0, . . . , D
}

that the penalty
∑D

d=1 Cn(hd)|β̂d(x;h)|α ≤
∑n

i=1 Kh(Xi −
x)L(Yi, 0). It then follows that Mβ(x)α ≤K0n

−α∨2+1D−α∨2+1. In particular,
(S.4) holds for α = 1. For α > 1, we have, on E0, that for any fixed d ∈ Bc,

∣∣∣(nhd)−1
( ∏

j∈Bc

hj

) n∑
i=1

V
(d)
i (x)Kh(Xi − x)q1

(
Yi,

D∑
d′=0

V
(d′)
i (x)β̂d′(x;h)

)∣∣∣
≤ K0(logn)

D∑
d′=0

|β̂d′(x;h)|T1,d,d′ + |T2,d|,

where

T1,d,d′ = n−1
( ∏

j∈Bc

hj

) n∑
i=1

∣∣V (d)
i (x)V (d′)

i (x)
∣∣Kh(Xi − x),

T2,d = n−1
( ∏

j∈Bc

hj

) n∑
i=1

V
(d)
i (x)Kh(Xi − x)q1(Yi, 0).

Using Bernstein’s inequality, we have

P
(
|T2,d − ET2,d| ≥K0

√
t
)
∨ P

(
|T1,d,d′ − ET1,d,d′ | ≥K0

√
t
)
≤ 2e−nt

∏
j∈B hj ,

with ET1,d,d′ = O(1) and ET2,d = O(1). It follows that max
{
T1,d,d′ ∨ |T2,d| :

0 ≤ d′ ≤ D, d ∈ Bc
}
≤ K0 with probability greater than 1 − 2D2e−k0n

∏
j∈B hj .

Assuming max
{
T1,d,d′ ∨|T2,d| : 0 ≤ d′ ≤ D, d ∈ Bc

}
≤ K0, it follows from (S.3)

that

Mβ(x)α−1 ≤ K0
{
n−(α∨2−1)D−(α∨2−1) + n−(α∨2−1)D−(α∨2−2)(logn)Mβ(x)

}
.

(S.6)

For α ∈ (1, 2], (S.6) reduces to Mβ(x)α−1 ≤ K0
{
n−1D−1 + n−1(logn)Mβ(x)

}
,

so that Mβ(x) ≤ K0n
−1D−1. For α > 2, we have by (S.6) either Mβ(x) ≤

(2K0)1/(α−1)n−1D−1 or Mβ(x) ≤ (2K0)1/(α−2)n−(α−1)/(α−2)D−1 logn. It fol-
lows that (S.4) also holds for any α > 1.

Let T3(β0,β) = n−1(∏
j∈Bc hj

)∑n
i=1 Kh(Xi − x)L

(
Yi,

∑D
d=0 V

(d)
i (x)βd

)
.

Then we have, for (β0,β) satisfying ‖βBc‖∞ ≤ K0n
−1D−1,∣∣T3(β0,β) − T3,1(β0) − T3,2(θ)

∣∣ ≤ K0n
−1

∏
j∈B

h−1
j , (S.7)

where

T3,1(β0) = n−1
( ∏

j∈Bc

hj

) n∑
i=1

Kh(Xi − x)L
(
Yi, β0

)
,

T3,2(θ) = n−1
( ∏

j∈Bc

hj

) n∑
i=1

Kh(Xi −x)
{
L
(
Yi,Vi(x)�θ

)
−L

(
Yi, β0

)}
.
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By the Talagrand’s concentration inequality (Talagrand, 1996), we have

P
(

sup
|β0|≤K0

|T3,1(β0) − ET3,1(β0)| ≥ K0
√
t
)
≤ K0e

−nt
∏

j∈B hj/ logn, (S.8)

with

ET3,1(β0) = M1

∫
f(xB, (x + u)Bc)E

[
L(Y, β0)

∣∣X = (xB, (x + u)Bc)
]

×
∏
d∈Bc

K(ud/hd) duBc + O
(∑

d∈B
hd + n−1

)
(S.9)

for some constant M1 > 0 not depending on β0. We have also∣∣T3,2(θ)
∣∣

≤ n−1
( ∏

j∈Bc

hj

) n∑
i=1

Kh(Xi − x)
∣∣q1(Yi, 0)

∣∣∑
d∈B

|V (d)
i (x)βd|

+ K0n
−1 logn

( ∏
j∈Bc

hj

) n∑
i=1

Kh(Xi − x)
∑

d∈{0}∪B

∣∣V (d)
i (x)βd

∣∣ ∑
d′∈B

|V (d′)
i (x)βd′ |

≤ K0n
−1

( ∏
j∈Bc

hj

) n∑
i=1

Kh(Xi − x)
∑
d∈B

|V (d)
i (x)|

{
|q1(Yi, 0)| + ‖Vi(x)‖1 logn

}
,

so that

P
(

sup
‖θ‖∞≤K0

|T3,2(θ)| > K0|B|(h̄ logn +
√
t)
)
≤ 3|B|2e−nt

∏
j∈B hj . (S.10)

It follows from (S.7)–(S.10) that P
(
|rB(x;h)−β̂0(x;h)|≥εn

)
≤K0e

−k0anε
2
n/ logn,

and hence (S.5) follows.

Next we examine in detail the remainder terms in the expansion for the esti-
mator β̂0(x;h), under the case B ⊃ A where β̂0(x;h) is consistent for mA(xA).

Define, for i = 1, . . . , n,

Pi(x,θ) =
∫ 1

0
(1 − u)q3

(
m
(
Xi) − u{m(Xi) − θ�Vi(x)}

)
du

and wi = −q1
(
Yi,m(Xi)

)
. Define

qn =
√

2 log(2|B|)/n +
( ∏

j∈B
hj

)−1/2
log(2|B|)/n,

Ξ = n−1 + nα∨2D(α∨2)−1
∑
d∈B

e−c/hd

and
β∗ =

(
β∗
d : d ∈ {0} ∪ B

)
=

(
∇dm(x) : d ∈ {0} ∪ B

)
.
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Define, for d ∈ {0} ∪ B,

νd,i(x)=(nhd)−1
( ∏

j∈Bc

hj

) ∑
d′∈{0}∪B

h−1
d′ κ̆d,d′(x)V (d′)

i (x)Kh(Xi − x), i = 1, . . . , n,

R∗
d(x)=h−1

d

∑
d1,d2∈B

hd1hd2

∑
d′∈{0}∪B

κ̆d,d′(x)T4,d′,d1,d2 ,

where, for d1, d2 ∈ B and d′ ∈ {0} ∪ B,

T4,d′,d1,d2 = (nhd1hd2hd′)−1
( ∏

j∈Bc

hj

)

×
n∑

i=1
v(Xi)V (d′)

i (x)V (d1)
i (x)V (d2)

i (x)Kh(Xi − x)Rd1,d2,x(Xi),

Rd1,d2,x(y) =
∫ 1

0
(1 − t)∇d1,d2mA ((1 − t)xA + tyA) dt, y ∈ RD.

For d ∈ {0} ∪ B, define

Q1,d(x,θ) =
n∑


=1

νd,
(x)
{
−q1

(
Y
,θ

�V
(x)
)

+ q1
(
Y
,β

∗�V
(x)
)

+ η
(
θ�V
(x)

∣∣X


)
− η

(
β∗�V
(x)

∣∣X


)}
,

Q2,d(x) =
n∑


=1
νd,
(x)

{
q1
(
Y
,m(X
)

)
− q1

(
Y
,β

∗�V
(x)
)
− η

(
m(X
)

∣∣X


)
+ η

(
β∗�V
(x)

∣∣X


)}
,

Q3,d(x,θ) = −
n∑


=1
νd,
(x)P
(x,θ)

{
m(X
) − θ�V
(x)

}2
.

Define also Q(x) = Q1,0(x, θ̂) + Q2,0(x) + Q3,0(x, θ̂).

Lemma 2. Assume the conditions of Theorem 1, A ⊂ B and that E0∩Ẽ1∩Ẽ2∩Ẽ3
holds. Then β̂0(x;h) admits an expansion satisfying

∣∣∣β̂0(x;h) −mA(xA) −
n∑

i=1
ν0,i(x)wi −R∗

0(x) −Q(x)
∣∣∣ ≤ K0Ξ.

Moreover, up to an additive error bounded by K0
{
P(Ec

0) +
∑3

j=1 P(Ẽc
j )
}

= o(1),
we have ER∗

0(x) = O
(
ωh̄2), which can be sharpened to Ω

(
ωh̄2) under the

stronger condition (A2’), and, for t > 0,

P
(
|R∗

0(x) − ER∗
0(x)| ≥ ωh̄2K0

√
t
)
≤ 3|B|e−nt

∏
j∈B hj ,

P
(∣∣∣ n∑

i=1
ν0,i(x)wi

∣∣∣ ≥ K0
√
t
)
≤ 3e−nt

∏
j∈B hj ,
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P
(
|Q1,0(x, θ̂)| ≥ K0|B|

(
ωh̄2 +

√
t
){

K0qn(logn)
∏
j∈B

h
−1/2
j +

√
t
})

≤ K0|B|e−nt
∏

j∈B hj ,

P
(
|Q2,0(x)| ≥ ωh̄2K0

√
t
)
≤ 3e−nt

∏
j∈B hj ,

P
(
|Q3,0(x, θ̂)| ≥ |B|2(K0ωh̄

2 +
√
t)2

)
≤ K0|B|e−nt

∏
j∈B hj .

Lemma 2 expresses the estimation error β̂0(x;h) − mA(xA) as a sum of
three terms, up to an additive error of a small order. The first two terms,∑n

i=1 ν0,i(x)wi and R∗
0(x), account for the variance and bias of local linear

regression, respectively. The third term Q(x) has a smaller order than the above
two. The lemma also establishes probability bounds for these three terms, which
are useful for proving the next lemma and Theorem 2.

Proof of Lemma 2. Note that, for i = 1, . . . , n,

η
(
θ̂
�Vi(x)

∣∣Xi

)
= η

(
m(Xi)

∣∣Xi

)
+ v(Xi)

{
θ̂
�Vi(x) −m(Xi)

}
+ Pi(x, θ̂)

{
θ̂
�Vi(x) −m(Xi)

}2
. (S.11)

It follows from (S.3), (S.4) and (S.11) that
∑

d′∈{0}∪B hd′κd,d′(x)β̂d′(x;h) ad-
mits an expansion

(nhd)−1
( ∏

j∈Bc

hj

) n∑
i=1

V
(d)
i (x)Kh(Xi − x)

×
[
v(Xi)m(Xi) − q1(Yi,m(Xi)) −

{
q1
(
Yi, θ̂

�Vi(x)
)
− q1

(
Yi,m(Xi)

)}
+

{
η
(
θ̂
�Vi(x)

∣∣Xi

)
− η

(
m(Xi)|Xi

)}
− Pi(x, θ̂)

{
m(Xi) − θ̂

�Vi(x)
}2

]
(S.12)

up to an error bounded by K0h
−1
d Ξ. By substituting

m(X) − θ̂
�V(x) =

∑
d1,d2∈B

(X(d1) − xd1)(X(d2) − xd2)Rd1,d2,x(X)

+
∑

d∈{0}∪B

{
∇dmA(xA) − β̂d(x;h)

}
(X(d) − xd)

and inverting (S.12), we have, for d ∈ {0} ∪ B, that
∣∣∣β̂d(x;h) −∇dmA(xA) −

n∑
i=1

νd,i(x)wi −R∗
d(x)

−Q1,d(x, θ̂) −Q2(x) −Q3,d(x, θ̂)
∣∣∣ ≤ K0h

−1
d Ξ. (S.13)

The expansion for β̂0(x;h) then follows by setting d = 0 in (S.13).
In what follows we omit from all probability bounds an additive error

K0
{
P(Ec

0)+
∑3

j=1 P(Ẽc
j )
}

= o(1) for simplicity. It can be deduced, for d ∈ {0}∪B,
that
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P
(
(nhd)−1

( ∏
j∈Bc

hj

)∣∣∣ n∑
i=1

V
(d)
i (x)Kh(Xi − x)wi

∣∣∣≥K0
√
t
)
≤ 2e−nt

∏
j∈B hj .

so that

P
(
hd

∣∣∣ n∑
i=1

νd,i(x)wi

∣∣∣ ≥ K0
√
t
)
≤ 3e−nt

∏
j∈B hj . (S.14)

Similarly, we have, for d ∈ {0} ∪ B, that

P
(
|Q2,d(x)| ≥ K0ωh̄

2√t
)
≤ 3e−nt

∏
j∈B hj . (S.15)

Define, for θ ∈ R|B|+1, δ(θ) =
∑

d′∈{0}∪B hd′ |βd′ − β∗
d′ |. Following the notations

of van de Geer (2008), define FM � {θ : δ(θ) ≤ M} and

ιθ,d(X, Y ) = h−1
d

( ∏
j∈Bc

hj

)( ∏
d′∈{0}∪B

h
1/2
d′

)

× (X(d) − xd)Kh(X − x)q1
(
Y,θ�V(x)

)
.

We provide next a probability bound for supθ∈FM
|Q1,d(x,θ)|. A symmetrisation

theorem (van der Vaart & Wellner, 1996) can be used to bound the mean of

Zd(M)

� sup
θ∈FM

∣∣∣n−1
n∑

i=1

{
ιθ,d(Xi, Yi) − ιβ∗,d(Xi, Yi)

}
− E

[
ιθ,d(X, Y ) − ιβ∗,d(X, Y )

]∣∣∣
by 2E sup

θ∈FM

∣∣n−1 ∑n
i=1{ιθ,d(Xi, Yi) − ιβ∗,d(Xi, Yi)}Ei

∣∣, for a Rademacher se-

quence {Ei} independent of Dn, for all d ∈ {0} ∪ B. Applying the contraction
theorem (Ledoux & Talagrand, 1991), we have

EZd(M) ≤ K0n
−1(logn)h−1

d

( ∏
j∈Bc

hj

)( ∏
j∈B

h
1/2
j

)

× E sup
θ∈FM

n∑
i=1

EiKh(Xi − x)
∑

d′∈{0}∪B

∣∣V (d)
i (x)V (d′)

i (x)(βd′ − β∗
d′)

∣∣
(S.16)

≤ K0Mn−1(logn)h−1
d

( ∏
j∈Bc

hj

)( ∏
j∈B

h
1/2
j

)

× E
[

max
d′∈{0}∪B

h−1
d′

n∑
i=1

Kh(Xi − x)
∣∣V (d)

i (x)V (d′)
i (x)

∣∣]
≤ K0Mqn logn.

The last inequality above follows from Lemma A.1 of van de Geer (2008). Ap-
plying the Bousquet inequality (Bousquet, 2002), we have

P
(
Zd(M) ≥ K0Mqn(K0 logn + z

√
1 + ηnqn logn + 2z2qnηn/3)

)
≤ e−nq2

nz
2
,
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where ηn = K0
∏

j∈B h
−1/2
j ≥ sup1≤i≤n,d∈B,θ∈FK0

∣∣ιθ,d(Xi, Yi)
∣∣. It follows that

P
(

sup
θ∈FM

|Q1,d(x,θ)| ≥ K0M
{
K0qn(logn)

∏
j∈B

h
−1/2
j +

√
t
})

≤ 3|B|e−nt
∏

j∈B hj .

(S.17)

For quantile regression and |A| = O(1), it follows from Central Limit Theorem
that

P
(

sup
θ∈FM

|Q1,d(x,θ)| ≥ K0M
√
t
)
≤ 2e−nt

∏
j∈B hj . (S.18)

Similar arguments show that

P
(

sup
θ∈FM

|Q3,d(x,θ) − EQ3,d(x,θ)| ≥K0
{
M2 + ω2h̄4}√t

)
≤ 3e−nt

∏
j∈B hj ,

(S.19)
with EQ3,d(x,θ) = O

(
M2 + ω2h̄4) for any θ ∈ FM . Note that, for any d′ ∈

{0} ∪ B and d1, d2 ∈ B, P
(
|T4,d′,d1,d2 − ET4,d′,d1,d2 | ≥ K0

√
t
)
≤ 2e−nt

∏
j∈B hj ,

with ET4,d′,d1,d2 = (1/2)∇d1,d2mA(xA)K1
B(x; fv)μ1,2 1{d1 = d2, d

′ = 0}+O(h̄).
It follows that, for d ∈ {0} ∪ B,

P
(
|R∗

d(x) − ER∗
d(x)| ≥ ωh̄2K0

√
t
)
≤ 3|B|e−nt

∏
j∈B hj . (S.20)

Combining (S.13), (S.14), (S.15), (S.17), (S.19) and (S.20), we have

P
(
|δ(θ̂)| ≥ K0|B|

(
ωh̄2 +

√
t
)

+ K0Ξ
)
≤ K0|B|e−nt

∏
j∈B hj . (S.21)

The probability bounds in the lemma then follow by substituting (S.21) into
(S.17) and (S.19), and by setting d = 0 in (S.20), (S.14), (S.17), (S.15) and
(S.19), respectively.

Define, for d ∈ {0}∪B, R∗−Sk

d , ν−Sk

d,i (i /∈ Sk) and Q−Sk to be the counterparts
of R∗

d, νd,i and Q, respectively, evaluated on the delete-Sk sample. Define, for i ∈
Sk, a−Sk

i (h) = β̂−Sk
0 (Xi;h)−m(Xi) and α−Sk

i (h) = L
(
Yi,m(Xi)+a−Sk

i (h)
)
−

L
(
Yi,m(Xi)

)
− q1

(
Yi,m(Xi)

)
a−Sk
i (h). Define

G1(h) = (2n0)−1
∑
i∈S1

v(Xi)
{
R∗−S1

0 (Xi) + (1 − n0/n)−1
∑
j /∈S1

ν−S1
0,j (Xi)wj

+ Q−S1(Xi)
}2

,

G2(h) = n−1
0

∑
i∈S1

wia
−S1
i (h) + n−1

0

∑
i∈S1

{
α−S1
i (h) − E

[
α−S1
i (h)

∣∣Xi

]}

+ a−S1
i (h)3n−1

0

∑
i∈S1

∫ 1

0
(1 − u)q3

(
m(Xi) + ua−S1

i (h)
)
du,
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which appear in an expansion for the cross validation error. Let

E1

=
⋂

B:|B|≤bn

⋂
1≤k≤K

⋂
i∈Sk

⋂
d,d′∈{0}∪B

{
sup

h∈Hn,B

|κ−Sk

d,d′ (Xi)−Eκ−Sk

d,d′ (Xi)|≤εn/(|B| log |B|)
}
,

E2 =
⋂

B:|B|<bn

⋂
1≤k≤K

⋂
i∈Sk

⋂
d∈Bc

{
sup

h∈Hn,B

|β̂−Sk

d (Xi;h)| ≤ K0n
−1D−1},

E3 =
⋂

B:|B|<bn

⋂
1≤k≤K

⋂
i∈Sk

{
sup

h∈Hn,B

|rB(Xi;h) − β̂−Sk
0 (Xi;h)| ≤ εn

}
,

which revise the events Ẽj , j = 1, 2, 3, to accommodate simultaneous prediction
targets at x = X1, . . . ,Xn. This helps to construct probability bounds for the
cross validation error averaged over the K folds. The same techniques used for
proving Lemmas 1 and 2 can be applied to construct the following probability
bounds:

P(Ec
1) ≤ 2b2nDbne−k0anε

2
n/(bn log bn)2 , P(E0 ∩ Ec

2) ≤ 2nD2+bne−k0an ,

P(E0 ∩ E2 ∩ Ec
3) ≤ 2nDbne−k0anε

2
n/ logn.

Lemma 3. Suppose that
⋂

0≤j≤3 Ej holds. Then, for B ⊃ A,

∣∣∣(Kn0)−1
K∑

k=1

∑
i∈Sk

L
(
Yi, β̂

−Sk
0 (Xi;h)

)
−n−1

n∑
i=1

L
(
Yi,m(Xi)

)
−G1(h) −G2(h)

∣∣∣
≤ K0Ξ.

Moreover, G1(h) and G2(h) satisfy, up to an additive error K0
∑3

j=0 P(Ec
j ) =

o(1),

P
(
|G1(h) − g1(h)| ≥ K0a0(t,h)

)
≤ K0n|B|e−nt

∏
j∈B hj , (S.22)

P
(
|G2(h)| ≥ K0

( ∏
j∈B

h
1/2
j

)(
ωh̄2√t + t

))
≤ K0n|B|e−nt

∏
j∈B hj ,

where g1(h) is a non-random positive function of h with g1(h) = O
(
ω2h̄4 +

n−1 ∏
j∈B h−1

j

)
, which can be sharpened to Ω

(
ω2h̄4 + n−1 ∏

j∈B h−1
j

)
if the as-

sumption (A2) is strengthened to (A2’), and

a0(t,h) = K0|B|4ω2h̄4qn(logn)
∏
j∈B

h
−1/2
j + |B|2ω4h̄6

+
√
t
{
K0ωh̄

2qn(logn)
∏
j∈B

h
−1/2
j + |B|2ω2h̄4

}

+ t
{
|B|2ωh̄2 + K0|B|qn(logn)

∏
j∈B

h
−1/2
j

}
+ t3/2|B|2.
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Lemma 3 expands the cross validation error as a sum of three terms, and
provides probability bounds for the last two, G1(h) and G2(h). Note that G1(h)
is stochastically bigger than G2(h) with large probability.

Proof of Lemma 3. Assume without loss of generality that S1 = {1, . . . , n0}.
Note, by Lemma 2, that∣∣∣n−1

0

n0∑
i=1

L
(
Yi, β̂

−S1
0 (Xi;h)

)
− n−1

0

n0∑
i=1

L
(
Yi,m(Xi)

)
−G1(h) −G2(h)

∣∣∣ ≤ K0Ξ,

which proves the first assertion of the lemma.
Write G1(h) = 1

2
∑4

j=1 G1,j(h), where

G1,1(h) = n−1
0

n0∑
i=1

v(Xi)R∗−S1
0 (Xi)2,

G1,2(h) = n−1
0 (1 − n0/n)−2

n0∑
i=1

v(Xi)
{ ∑

j /∈S1

ν−S1
0,j (Xi)wj

}2
,

G1,3(h) = 2n−1
0

n0∑
i=1

v(Xi)R∗−S1
0 (Xi)(1 − n0/n)−1

∑
j /∈S1

ν−S1
0,j (Xi)wj ,

G1,4(h) = n−1
0

n0∑
i=1

v(Xi)Q−S1(Xi)
{
Q−S1(Xi)

+ 2R∗−S1
0 (Xi) + 2(1 − n0/n)−1

∑
j /∈S1

ν−S1
0,j (Xi)wj

}
.

Note that G1,1(h), G1,2(h), G1,3(h) can be expressed as linear combinations of

n−1
0 (n− n0)−2

n0∑
i=1

v(Xi)(hd1hd2hd′
1
hd′

2
)−2

( ∏
j′∈Bc

h2
j′

)

×
{∑
j /∈S1

v(Xj)V (d1)
j (Xi)V (d2)

j (Xi)V
(d′

1)
j (Xi)V

(d′
2)

j (Xi)Kh(Xi−Xj)Rd1,d2,Xj (Xi)
}2

,

n−1
0 (n− n0)−2

n0∑
i=1

v(Xi)(hd′
1
hd′

2
)−2

( ∏
j′∈Bc

h2
j′

)

×
{ ∑

j /∈S1

V
(d′

1)
j (Xi)V

(d′
2)

j (Xi)Kh(Xi −Xj)wj

}2
,

n−1
0 (n− n0)−2

n0∑
i=1

v(Xi)(hd1hd2hd′
1
hd′

2
)−1

( ∏
j′∈Bc

h2
j′

)

×
{ ∑

j /∈S1

V
(d′

1)
j (Xi)Kh(Xi −Xj)wj

}

×
∑

/∈S1

v(X
)V (d1)

 (Xi)V (d2)


 (Xi)V
(d′

2)

 (Xi)Kh(Xi −X
)Rd1,d2,X�

(Xi),
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respectively, over d′1, d
′
2 ∈ {0} ∪ B and d1, d2 ∈ B. It follows by Bernstein’s

inequalities for U-statistics that

P
(
|G1,1(h) − EG1,1(h)| ≥ ω2h̄4K0

√
t
)
≤ K0|B|e−nt

∏
j∈B hj ,

P
(
|G1,2(h) − EG1,2(h)| ≥ n−1

( ∏
j∈B

h−1
j

)
K0

√
t
)
≤ K0e

−nt
∏

j∈B hj ,

P
(
|G1,3(h)| ≥ K0

√
t
)
≤ K0|B|e−nt.

Note also that P
(
|G1,4(h)| ≥ K0a0(t,h)

)
≤ K0n|B|e−nt

∏
j∈B hj by Lemma 2,

and that

P
(
|G2(h)| ≥ K0

( ∏
j∈B

h
1/2
j

)(
ωh̄2√t + t

))
≤ K0n|B|e−nt

∏
j∈B hj .

Lemma 3 follows by combining the above results, with g1(h) =∑3
j=1 E

[
G1,j(h)

]
> 0.

A.2. Proof of Theorem 1

Let a = (a1, . . . , aD)� satisfy ad = ∞ for d ∈ Ac and ad = (nω2)−1/(4+|A|) for
d ∈ A. Define events

E4,1 =
{
G1(a) + G2(a) ≤ K0ω

2(nω2)−4/(4+|A|) + λnεn
}
,

E4,2 =
⋂

B:|B|<bn

{
sup

h∈Hn,B

(G1(h) + G2(h)) ≤ −K0λnεn
}
,

E5,1 =
{
|G1(a) + G2(a)| ≤ K0ω

2(nω2)−4/(4+|A|)},
E5,2 =

{∣∣G1(ĥ) + G2(ĥ) − g1(ĥ)
∣∣ ≤ K0

(
ω‖ĥÂ‖2

∞ + n−1/2
∏
j∈Â

ĥ
−1/2
j

)2}
.

The four events defined above provide upper bounds for the cross validation
errors. Specifically, E4,1 and E5,1 consider different bounds under the special
case h = a, E4,2 provides a uniform upper bound over h ∈ ∪|B|<bnHn,B, and
E5,2 bounds the deviance of the cross validation error from g1(h) when h = ĥ.
It follows by Lemma 2 that, up to an additive error K0

∑3
j=0 P(Ec

j ) = o(1),

P(Ec
4,1) ≤ K0n|A| exp

(
− k0ω

2(ω2n)4/(4+|A|)

×
{ λnω(ω2n)2/(4+|A|)εn

|A|3 + K0(logn)|A|
√

log(2|A|)
∧ (λnεn)2/3

|A|4/3
})

→ 0,
(S.23)

P(Ec
4,2) ≤ K0nbnD

bn exp
(
− k0

{ nλ2
nε

2
n

b2n(logn)4 ∧
(
λnεn

√
nan

)})
→ 0, (S.24)

P(Ec
5,1) ≤ K0n|A|e−k0ω

2(ω2n)4/3(4+|A|) → 0, (S.25)

P(Ec
5,2) ≤ K0n|Â|e−k0(ω2n)1/(4+|Â|) → 0. (S.26)
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Define

E6 =
⋂

B:|B|≤bn

{
sup

h∈Hn,B

∣∣∣n−1
n∑

i=1
L
(
Yi, rB(Xi;h)

)
− E

[
L
(
Y, rB(X;h)

)]∣∣∣ ≤ εn

}
.

Then it follows by Bernstein’s inequality and the definition of rB that

P(Ec
6) ≤ K0D

bne−k0nε
2
n . (S.27)

To see that the additive error Ξ has an insignificant order O(n−1) when h is
sufficiently small, note that for any h = o

(
ζ−1
n ∧ 1/ logn

)
, we have

log
{
n(α∨2)+1e−c/h+c[(α∨2)−1]ζn

}
= −ch−1{1 − [(α ∨ 2) − 1]hζn − [(α ∨ 2) + 1](h/c) logn

}
→ −∞,

so that

nα∨2D(α∨2)−1e−c/h = O
(
nα∨2e−c/h+c[(α∨2)−1]ζn

)
= o(n−1).

Assume that E0, E2, E3 and E6 hold. By comparing the objective functions (3.2)
with h substituted respectively by ĥ and a, we have

0 ≥ n−1
n∑

i=1
L
(
Yi, rB(Xi; ĥ)

)
− n−1

n∑
i=1

L
(
Yi,m(Xi)

)
+ o(1)

= E
[
L(Y, rB(X; ĥ))

∣∣Dn

]
− E

[
L(Y,m(X))

]
+ o(1). (S.28)

By convexity of L and the fact m(X) = argmina∈R
E
[
L(Y, a)

∣∣X]
, the above

inequality implies ∫ {
m(x) − rB(x; ĥ)

}2
f(x) dx = o(1),

which holds only if Â ⊃ A. It then follows by Lemma 1 and (S.27) that

P(A ⊂ Â) ≥ 1 −K0
{
P(Ec

2) + P(Ec
3) + P(Ec

6) + P(Ec
0)
}
→ 1.

Thus, we have shown that our local linear estimator is consistent if and only if
ĥA = op(1). Assume in addition that E1 holds. Setting B = Â and h = ĥ in
Lemma 3, and noting (S.28), we have

0 ≥ −G1(a) −G2(a) + O
(
λnω

2(nω2)−4/(4+|A|))
+λn

[
|Â|−|A|−

∑
d∈Â

ĥ4
d

{
1+o(1)

}]
+K0Ξ+G2(ĥ)+λn

∑
d∈Âc

{
1+log(1+ĥ4

d)
}−1

.

(S.29)

The events E4,1 and E4,2 imply that G1(a)+G2(a) = o(λn) and G2(ĥ) = o(λn),
respectively. Thus, noting that |Â| ≥ |A| and ω2(nω2)−4/(4+|A|) = o (λn), (S.29)
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implies that |Â| = |A| on E4,1 ∩ E4,2. It then follows by Lemma 1, (S.2), (S.23),
(S.24) and (S.27) that

P(A = Â) ≥ 1 −K0

{ 3∑
j=0

P(Ec
j ) + P(Ec

4,1) + P(Ec
4,2) + P(Ec

6)
}
→ 1,

which proves part (i) of Theorem 1.
Next we prove that the empirical bandwidth ĥd has the asymptotic order

stated in parts (ii) or (iii) of Theorem 1, according as d ∈ A or d �∈ A. Assuming
(A2’) and using (S.22) and (S.29), we have

o
(
ω2(nω2)−4/(4+|A|)) + G1(a) + G2(a) ≥ G1(ĥ) + G2(ĥ) > 0,

so that, on the event E5,1 ∩ E5,2,

O
(
ω2(nω2)−4/(4+|A|)) ≥ Ω

(
ω2‖ĥA‖4

∞ + n−1
∏
d∈A

ĥ−1
d

)
> 0.

It then follows by minimality of the order ω2(nω2)−4/(4+|A|), Lemma 1, (S.2)
and (S.23)–(S.27) that

P
(
k0(ω2n)−1/(4+|A|) ≤ min

d∈A
ĥd ≤ max

d∈A
ĥd ≤ K0(ω2n)−1/(4+|A|))

≥ 1 −K0

{ 3∑
j=0

P(Ec
j ) +

5∑
i=4

2∑
j=1

P(Ec
i,j) + P(Ec

6)
}
→ 1, (S.30)

which proves part (ii) of Theorem 1.
For d ∈ Ac, we have, by (S.29), that with probability larger than 1 −

K0
{∑3

j=0 P(Ec
j ) +

∑5
i=4

∑2
j=1 P(Ec

i,j) + P(Ec
6)
}
,

K0ω
2(ω2n)−4/(4+|A|) ≥

∑
d∈Ac

λn

{
1+log(1+ĥ4

d)
}−1 ≥ λn

{
1+log(1+min

d∈Ac
ĥ4
d)
}−1

,

so that log
(
mind∈Ac ĥ4

d

)
≥ k0λnω

−2(nω2)4/(4+|A|), which proves part (iii) of
Theorem 1 by the same arguments as those used for establishing (S.30).

A.3. Proof of Theorem 2

Part (i) follows from Theorem 1 and Lemma 2, while part (ii) follows from
Theorem 1 and Lemma 3.

Note that(
n
∏
d∈A

ĥd

)1/2{
m̂(x) −m(x) − (μ1,2/2)

∑
d∈A

ĥ2
d∇d,dm(x)

}

=
(
n
∏
d∈A

ĥd

)1/2 n∑
i=1

ν0,i(x)wi + op(1).
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To prove part (iii), it suffices to check asymptotic normality of

(
n
∏
d∈A

hd

)1/2 n∑
i=1

ν0,i(x)wi (S.31)

at h = ĥ. Let φd,d′(x) = E[κd,d′(x)] for d, d′ ∈ {0} ∪ A, and
[
φ̆d,d′(x)

]
be the

inverse of the (|A| + 1)-dimensional square matrix
[
φd,d′(x)

]
. Thus, κ̆d,d′(x) =

φ̆d,d′(x) + op(1). Using Theorem 1(iii), we assume without loss of generality
that all inactive variables have been removed from the model and redefine,
with slight abuse of notation, h = hA to be an |A|-dimensional vector. Define
h∗ = (h∗

d : d ∈ A) = argminh g1(h) and, for any k > 0, Hk =
{
h ∈ (0,K0]|A| :

maxd∈A |hd/h
∗
d − 1| ≤ k

}
. We first treat (S.31) as a random process {Pn(h) :

h ∈ HK0} and prove its asymptotic Gaussianity. To show finite-dimensional
convergence of Pn, consider T arbitrary bandwidth vectors, h(1), . . . ,h(T ), in
HK0 . Denote by ν

(t)
0,i the counterpart of ν0,i with h replaced by h(t). Let Si,t =

(n
∏

d∈A h
(t)
d )1/2ν(t)

0,i (x)wi and Si = (Si,1 . . . Si,T )�. Note that K1
A(x; f) = fA.

Using Theorem 1(ii), it can be shown that Var(
√
nSi) = Σ + o(1), for some

nonsingular dispersion matrix Σ. We next check the Lyapunov condition. Let
s2
n,1 =

∑n
i=1 Var(Si,1), so that s2+δ0

n,1 = Ω(1), where δ0 is specified in (A1). Note
that for d ∈ A,

E
∣∣∣(h(1)

d )−1V
(d)
1 (x)Kh(1)(X1 − x)w1

∣∣∣2+δ0

= (h(1)
d )−(2+δ0)E

[∣∣V (d)
1 (x)Kh(1)(X1 − x)

∣∣2+δ0
E
[
|w1|2+δ0

∣∣X1
]]

= O
( ∏

d∈A
(h(1)

d )−(1+δ0)
)
.

It follows that

s
−(2+δ0)
n,1

n∑
i=1

E|Si,1|2+δ0 = ns
−(2+δ0)
n,1 E

∣∣ν(1)
0,1(x)w1

∣∣2+δ0

= O
{
n
(
n−1

∏
d∈A

h
(1)
d

)(2+δ0)/2( ∏
d∈A

h
(1)
d

)−(1+δ0)
}

= O
{(

n
∏
d∈A

h
(1)
d

)−δ0/2
}

= o(1),

so that
∑n

i=1 Si is asymptotically Gaussian with mean 0 and dispersion matrix
Σ by the central limit theorem. For asymptotic Gaussianity of the process Pn,
it remains to verify the equicontinuity condition. Note that

Pn(h) =
(
n−1

∏
d∈A

hd

)1/2
φ̆0,0(x)

n∑
i=1

Kh(Xi − x)wi + op(1).
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Define, for h,h′ ∈ HK0 ,

F(h,h′) = n−1/2
n∑

i=1

{( ∏
d∈A

hd

)1/2
Kh(Xi−x)−

( ∏
d∈A

h′
d

)1/2
Kh′(Xi−x)

}
wi

and, for δ > 0, Z(δ) = sup
{
|F(h,h′)| : h,h′ ∈ HK0 , maxd∈A h∗−1

d |hd − h′
d| ≤

δ
}
. The equicontinuity condition holds when Z(δ) is sufficiently small with high

probability. Assume that the kernel K is supported within [−K0,K0]. Then we
have, for a Rademacher sequence {Ei} independent of Dn and setting ho =
(ωn)−1/(4+|A|), that

EZ(δ)

≤2E sup
{∣∣∣n−1/2

∑
i:‖Xi−x‖∞≤K0ho

wiEi

{
(
∏
d∈A

hd)1/2Kh(Xi−x)−(
∏
d∈A

h′
d)1/2Kh′(Xi−x)

}∣∣∣ :

h,h′ ∈ HK0 , max
d∈A

h∗−1
d |hd − h′

d| ≤ δ
}

≤2n−1/2h−|A|/2
o δK0E sup

{∣∣ ∑
i:‖Xi−x‖∞≤K0ho

wiEi

∣∣ : h,h′ ∈ HK0 , max
d∈A

h∗−1
d |hd − h′

d|≤δ
}

≤δK0.

Applying the concentration theorem (Bousquet, 2002), we have, for z > 0,

P
(
Z(δ) ≥ δK0+zK0

(
1+δnh|A|

o logn
)1/2+z2K0(nh|A|

o )1/2 logn
)
≤ exp(−nz2),

which proves the equicontinuity condition. This, together with its finite-dimen-
sional asymptotic Gaussianity, implies that Pn converges weakly to a zero-mean
Gaussian processG. That G(h) has a constant variance μ|A|

2,0σ(x)2fA(xA)−1v(x)−2

follows from the fact that for any h ∈ HK0 ,

Var
(
(n−1

∏
d∈A

hd)1/2φ̆0,0(x)
n∑

i=1
Kh(Xi − x)wi

)

= μ
|A|
2,0σ(x)2fA(xA)−1v(x)−2 + o(1).

Part (iii) then follows by Slutsky’s theorem and in-probability convergence of
ĥd/h

∗
d to a deterministic limit for each d ∈ A.
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