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Abstract

We consider the classical problem of determining the stationary distribution of the
semimartingale reflected Brownian motion (SRBM) in a two-dimensional wedge. Under
standard assumptions on the parameters of the model (opening of the wedge, angles
of the reflections, drift), we study the algebraic and differential nature of the Laplace
transform of this stationary distribution. We derive necessary and sufficient conditions
for this Laplace transform to be rational, algebraic, differentially finite or more
generally differentially algebraic. These conditions are explicit linear dependencies
between the angles of the model.

A complicated integral expression for this Laplace transform has recently been
obtained by two authors of this paper. In the differentially algebraic case, we provide
a simple, explicit integral-free expression in terms of a hypergeometric function. It
specializes to earlier expressions in several classical cases: the skew-symmetric case,
the orthogonal reflections case and the sum-of-exponential densities case (correspond-
ing to the so-called Dieker-Moriarty conditions on the parameters). This paper thus
closes, in a sense, the quest of all “simple” cases.

To prove these results, we start from a functional equation that the Laplace trans-
form satisfies, to which we apply tools from diverse horizons. To establish differential
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algebraicity, a key ingredient is Tutte’s invariant approach, which originates in enu-
merative combinatorics. It allows us to express the Laplace transform (or its square)
as a rational function of a certain canonical invariant, a hypergeometric function in
our context. To establish differential transcendence, we turn the functional equation
into a difference equation and apply Galoisian results on the nature of the solutions to
such equations.

Keywords: reflected Brownian motion in a wedge; stationary distribution; Laplace transform;
differentially algebraic functions; q-difference equations; decoupling function; Tutte’s invariants;
conformal mapping.
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1 Introduction

We consider an obliquely reflected Brownian motion in a two-dimensional convex
wedge with opening angle β ∈ (0, π), defined by its drift µ̃, and two reflections angles δ
and ε in (0, π) (Figure 1). The covariance matrix is taken to be the identity, although we
will see that our results can easily be extended to any covariance matrix.

Figure 1: A trajectory of the reflected Brownian motion in a wedge, and the parameters
β, µ̃, θ, δ and ε.

Since the introduction of reflected Brownian motion in the eighties [29, 30, 50], the
mathematical community has shown a constant interest in this topic. Typical questions
deal with the recurrence of the process, the absorption at the corner of the wedge, the
existence of stationary distributions... We refer for more details to the introduction of
[23] and to Figure 2. The parameter α occurring there, also central in this paper, is:

α =
δ + ε− π

β
. (1.1)

We further introduce the following refinement of α:

α1 =
2ε+ θ − β − π

β
and α2 =

2δ − θ − π

β
, (1.2)

where θ = arg(−µ̃) ∈ (−π, π] as shown in Figure 1. Note that α1 + α2 = 2α − 1. These
two numbers also play a key role in this paper, and it seems to be the first time that their
importance is acknowledged.

It is known [52] that the process is a semimartingale (called semimartingale reflected
Brownian motion, SRBM for short) if and only if

δ + ε− π < β, or equivalently α < 1. (1.3)
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Figure 2: Properties of obliquely reflected Brownian motion in terms of α = δ+ε−π
β . Here

are some references: semimartingale property [52, 42, 47]; Skorokhod problem [30, 53];
submartingale problem [50]; amount of time spent at the corner, accessibility of the
corner and absorption [50]; Dirichlet process and extended Skorokhod problem [35, 33];
skew symmetry [29, 27]; sum-of-exponential stationary density [14].

We assume this to hold in this paper. We also assume that

0 < θ < β. (1.4)

The meaning of this condition will be clarified in Section 2.1; see (2.12). Under the
assumptions (1.3) and (1.4), a stationary distribution exists if and only if

β − ε < θ < δ, (1.5)

and it is then unique; see [14, §3] and [31]. We also assume this to hold.

Nature of the Laplace transform

The main object of study in this paper is the Laplace transform Φ(x, y) of this two-
dimensional stationary distribution. In a recent paper [23], two of the authors gave
a (complicated) closed form expression for it, which involves integrals and various
trigonometric and algebraic functions. However, it is known that when the parameter α
is a non-positive integer (with an additional non-degeneracy condition), the stationary
density is a finite sum of exponentials, of the form

∑
i cie

−aix−biy, which implies that
Φ(x, y) is a rational function in x and y [14]. This drastic simplification raises the
following natural question: for which values of the parameters β, µ̃, δ and ε does the
Laplace transform simplify? The case when it is rational being (mostly) elucidated
by [14], when is it an algebraic function of x and y (meaning that it satisfies a polynomial
equation with coefficients in the field R(x, y) of rational functions in x and y)? When
is it D-finite (DF)? By this, we mean that it satisfies two linear differential equations
with coefficients in R(x, y), one in x and one in y. More generally, when is it D-algebraic
(DA), that is, when does it satisfy a polynomial differential equation in x, and another
in y? In other words, we want to classify the parameters of the semimartingale reflected
Brownian motion depending on whether, and where, the associated Laplace transform
fits in the following natural hierarchy of functions:

rational ⊂ algebraic ⊂ D-finite ⊂ D-algebraic. (1.6)
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A function that does not fit in this hierarchy, that is, is not D-algebraic, is said to be
differentially transcendental (or D-transcendental for short).

Table 1: Nature of the Laplace transform in terms of α, α1 and α2. We denote N0 :=

{0, 1, 2, . . .} and N := N0 \ {0}. The condition α ∈ −N0 can be rewritten as α ∈ Z since
we assume α < 1.

D-algebraic D-finite Algebraic Rational

β/π /∈ Q α ∈ Z+ π
βZ, or α ∈ −N0 +

π
βZ, or α ∈ −N0, or α ∈ −N0

{α1, α2} ⊂ Z+ π
βZ {α1, α2} ⊂ Z ∪

(
−N+ π

βZ
)

{α1, α2} ⊂ Z

β/π ∈ Q always α ∈ Z+ π
βZ, or α ∈ Z+ π

βZ, or α ∈ −N0

{α1, α2} ⊂ Z+ π
βZ {α1, α2} ⊂ Z+ π

βZ

Main results

We answer the above questions completely. The necessary and sufficient conditions that
we establish are summarized in Table 1. Note that they are remarkably compact, and
geometric. Observe the key role played by the parameters α, α1 and α2 of (1.1), (1.2),
and in particular by the conditions

α ∈ Z+
π

β
Z, or equivalently δ + ε ∈ βZ+ πZ (1.7)

and

{α1, α2} ⊂ Z+
π

β
Z, or equivalently {2ε+ θ, 2δ − θ} ⊂ βZ+ πZ. (1.8)

We call them the simple angle condition and the double angle condition, respectively.
When one of them holds, we give for Φ(x, y) a new, integral-free expression in terms of
the classical hypergeometric function 2F 1, from which D-algebraicity follows via classical
closure properties of DA functions. Several explicit examples are given in Sections 7.3
and 8.3. In a sense, this article closes the quest of “simple” cases by finding and listing
them all, and providing for them unified and simple explicit expressions for the Laplace
transform.

The algebraic and differential properties of the Laplace transform are reflected in
various ways on the stationary distribution itself. Let us give two examples, focussing, for
simplicity, on the one-dimensional transform Φ(x, 0) and the corresponding distribution,
denoted by ν here.

• Moments. If Φ(x, 0) is DA, then the differential equation that it satisfies translates
into a recurrence relation for the moments Mn of ν. In general this relation has
infinite order and its coefficients are polynomials in n; it becomes linear, and
of finite order, as soon as Φ(x, 0) is DF. An explicit example is worked out in
Section 7.3.5.

• Density. If Φ(x, 0) is DF, then the density of ν is DF as well. If Φ(x, 0) is even
rational, the density is a linear combination of terms xke−ax, with k ∈ N0.

For the corresponding discrete problem, namely stationary distributions of discrete
random walks in a wedge, a number of cases where similar simplifications occur are
known: let us cite for instance the famous Jackson networks and their product form
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distributions [32], works of Latouche and Miyazawa [37] and Chen, Boucherie and Gosel-
ing [11], who obtain necessary and sufficient conditions for the stationary distribution of
random walks in the quadrant to be sums of geometric terms, and the results of Fayolle,
Iasnogorodski and Malyshev in [18, Chap. 4]. Nonetheless, it remains a challenge to find
uniform criteria analogous to those that we obtain in the continuous setting. The same
is true for the associated enumerative problem, namely when one tries to understand
the algebraic/differential nature of the generating function that counts discrete walks in
the quadrant [5, 6, 16].

Tools

Let us now describe the ingredients of our proofs. We find them to be surprisingly
diverse, and we believe that one merit of this paper is to enrich the classical study of
reflected Brownian motion with two important new tools, namely Tutte’s invariant theory
and difference Galois theory. Let us give a few details. Our starting point is a linear
functional equation, established in [12], that characterizes the function Φ(x, y). The proof
of D-algebraicity (when (1.7) or (1.8) holds) relies on Tutte’s invariant approach. Between
1973 and 1984, Tutte studied a functional equation that arises in the enumeration of
properly colored triangulations [48], and has similarities with the equation defining Φ. In
order to solve it (and prove that its solution is D-algebraic), Tutte developed an algebraic
approach based on the construction of certain invariants. This approach has recently
been fruitfully applied, first to other map enumeration problems [3, 4], and then in
other contexts, such as the enumeration of walks confined to the first quadrant [5, 6], or
avoiding a quadrant [10]. A first application to reflected Brownian motion is presented
in [22] in the case where β = δ = ε. This is clearly a special case of (1.7), corresponding
to orthogonal reflections on the boundaries once the wedge is deformed into a quadrant
(see Section 2.1). The present paper goes much further than [22] by finding the exact
applicability of the invariant method in the determination of the stationary distribution
of the reflected Brownian motion. This approach might be applicable to other related
problems, such as computation of the Green function and the Martin boundary in the
transient case.

The differential transcendence result, proving that Φ(x, y) is not D-algebraic if
β/π 6∈ Q and neither (1.7) nor (1.8) holds, also starts from the functional equation
defining Φ(x, y), but relies on a completely different tool, namely difference Galois
theory. Analogously to classical Galois theory, difference Galois theory builds a corre-
spondence between the algebraic relations satisfied by the solutions of a linear functional
equation and the algebraic dependencies between the coefficients of this equation. Using
this theory, one can reduce the question of the D-transcendence to the study of the
zeroes and poles of an explicit rational function. Difference Galois theory has recently
been applied to the enumeration of discrete walks in the quadrant [16, 17, 15]. To our
knowledge, this is the first time that it is applied to a continuous random process such
as SRBM.

Outline of the paper

In Section 2, we define precisely the process under study and its normalization to a
quadrant. We also give the functional equation that characterizes the Laplace transform
Φ(x, y) (or more precisely, the corresponding transform ϕ(x, y) on the quadrant). We
finally state our results in detail. In Section 3 we study a bivariate polynomial, called
the kernel, involved in the functional equation. In Section 4 we introduce the notion
of invariant, and relate it to a boundary value problem satisfied by ϕ. In Section 5 we
exhibit a simple invariant w, which is D-finite, explicit, and exists for all values of the
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parameters. Moreover, we prove that w is canonical in the sense that any invariant is a
rational function in w. In Section 6 we show how to construct an invariant involving ϕ,
provided a certain decoupling function exists. We then show that such a function exists
if and only if one of the angle conditions (1.7) or (1.8) holds. These two cases are then
detailed, respectively, in Sections 7 and 8. In particular, we obtain an expression of ϕ
(and Φ) in terms of w, from which D-algebraicity follows. The D-transcendence condition
is established in Section 9. Section 10 is devoted to the case β/π ∈ Q.

A Maple session, available on the first author’s webpage [7], supports most calcula-
tions of the paper.

2 Preliminaries and main results

Let us begin with some basic notation. Recall that we denote by N0 := {0, 1, 2, . . .}
the set of natural integers; and by N := N0 \ {0} the set of positive integers. We denote
by R+ (resp. R−) the set of positive (resp. negative) real numbers.

2.1 Semimartingale reflected Brownian motion (SRBM) in a wedge

A simple linear transformation maps the reflected Brownian motion discussed in the
introduction (with covariance matrix the identity) onto a reflected Brownian motion
in the first (non-negative) quadrant with non-trivial covariance matrix. This linear
transformation also allows us to easily extend our results to reflected Brownian motion
in a wedge of any covariance, see [23, Cor. 2] for more details. Most of the time we will
work in the quadrant, but it will sometimes be important to switch between these two
representations, as some quantities are more simply computed or understood in one or
the other of the two frameworks. To describe the quadrant normalization explicitly, we
first need to give a precise definition of SRBM in the quadrant.

We consider (Zt)t>0, an obliquely reflected Brownian motion in the first quadrant, of
covariance Σ, drift µ and reflection matrix R, where

Σ =

 σ11 σ12

σ12 σ22

 , µ =

 µ1

µ2

 , R = (R1, R2) =

 r11 r12

r21 r22

 ,

with r11 > 0 and r22 > 0. The columns R1 and R2 of the matrix R represent the directions
in which the Brownian motion is reflected on the boundaries; see Figure 3, left. The
so-called orthogonal reflections case corresponds to r12 = r21 = 0.

The process Zt exists as a semimartingale if and only if

detR > 0 or (r12 > 0 and r21 > 0). (2.1)

See [47, 42] for a proof of a multidimensional version of this statement, and [53] for a
general survey of the SRBM in an orthant. The reflected Brownian motion may then be
written as

Zt = Z0 +Bt + µ · t+R ·

 L1
t

L2
t

 , ∀t > 0,

where Z0 is an inner starting point, (Bt)t>0 is a Brownian motion with covariance Σ

starting from the origin, and (L1
t )t>0 (resp. (L2

t )t>0) is (up to a multiplicative constant)
the local time on the y-axis (resp. x-axis). The process (L1

t )t>0 is continuous and non-
decreasing, starts from 0, and increases only when the process Zt touches the vertical
boundary, which implies that for all t > 0,

∫ t

0
1{Z1

s 6=0}dL
1
s = 0. Of course, a similar

statement holds for L2
t .
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Figure 3: Transformation of the quadrant into a wedge of opening angle β. The new
parameters β, µ̃, δ and ε are given by (2.2), (2.6) and (2.11), respectively.

We now describe the linear transform that maps the Brownian motion in the quadrant
with covariance matrix Σ to a Brownian motion with covariance matrix the identity,
confined to a wedge of opening β (see Figure 3 and [23, App. A]). We take

β = arccos

(
− σ12√

σ11σ22

)
∈ (0, π), (2.2)

so that

sinβ =

√
detΣ

σ11σ22
. (2.3)

Then we define a linear transformation T , which depends only on Σ,

T =

 1

sinβ
cotβ

0 1




1
√
σ11

0

0
1

√
σ22

 =


√

σ22
detΣ

− σ12√
σ22 detΣ

0
1

√
σ22

 . (2.4)

This is easily inverted into

T−1 =

 √
σ11 0

0
√
σ22

 sinβ − cosβ

0 1

 =


√

detΣ

σ22

σ12√
σ22

0
√
σ22

 . (2.5)

Under the transformation T , the reflected Brownian motion Zt associated to (Σ, µ,R)

becomes a Brownian motion with covariance matrix the identity in a wedge of angle β
with parameters (Id, µ̃, δ, ε). More explicitly, we first have µ̃ = Tµ, that is:

µ̃1 =
µ1σ22 − µ2σ12√

σ22 detΣ
and µ̃2 =

µ2√
σ22

, (2.6)

so that, upon defining θ := arg(−µ̃) ∈ (−π, π] (here we assume that µ 6= (0, 0)),

tan θ =
µ̃2

µ̃1
=

µ2

√
detΣ

µ1σ22 − µ2σ12
=

sinβ
µ1

µ2

√
σ22

σ11
+ cosβ

. (2.7)

More precisely,

θ = − sgn(µ̃2) arccos

(
−µ̃1√
µ̃2
1 + µ̃2

2

)
= − sgn(µ2) arccos

(
µ2σ12 − µ1σ22√

σ22∆

)
, (2.8)

where
∆ := |µ̃|2 detΣ = µ2

1σ22 − 2µ1µ2σ12 + µ2
2σ11. (2.9)
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Observe that ∆ is left invariant under diagonal reflection of the quadrant model in the
first diagonal. From the values of the trigonometric functions of β and θ, we also derive

cos(β − θ) =
µ1σ12 − µ2σ11√

σ11∆
. (2.10)

Later we will assume that µ1 < 0 and µ2 < 0, so that by (2.8), θ ∈ [0, π], and more
precisely θ ∈ [0, β) by (2.7) (the function cotan is decreasing on [0, π]). In this case, we
see from (2.8) and (2.10) that θ and β− θ play symmetric roles, and are exchanged under
diagonal reflection (while β is unchanged).

The new reflection angles δ, ε ∈ (0, π) are given by:

tan δ =
sinβ

r12
r22

√
σ22

σ11
+ cosβ

and tan ε =
sinβ

r21
r11

√
σ11

σ22
+ cosβ

, (2.11)

and are exchanged under diagonal reflection; see [23, App. A]. Then one can prove that
the semimartingale conditions (2.1) for the quadrant translate into Conditions (1.3) for
the β-wedge; see Lemma A.1 i). The second result of Lemma A.1 states that Condi-
tion (1.4) is equivalent to the drift µ being negative:

µ1 < 0, µ2 < 0. (2.12)

This assumption is standard and appears for instance in [20, 19, 14, 21, 23]. We believe
that it is possible to achieve a similar classification when this assumption does not hold –
but of course this would increase the number of cases.

2.2 Invariant measures and Laplace transforms

Assuming that Condition (2.1) holds, the reflected Brownian motion in the quadrant
has a stationary distribution if and only if [31]:

detR > 0, r22µ1 − r12µ2 < 0, r11µ2 − r21µ1 < 0, (2.13)

which strengthens the first part of (2.1). Assuming (1.4), or equivalently (2.12), Con-
dition (2.13) can be seen to be equivalent to the β-wedge conditions (1.3) and (1.5)
combined; see Lemma A.1 iii). From now on, we assume that (2.13) is satisfied and we
denote by Π the stationary distribution, which is an invariant probability measure [26].
Then it has a density p0 relative to the Lebesgue measure on R2

+ [53, Lem. 3.1]. More-
over, there exist two finite boundary measures ν1 and ν2 on the coordinate axes, defined,
for i = 1, 2, by

νi(·) = EΠ

[∫ 1

0

1{Zt∈ ·}dL
i
t

]
.

These measures may be considered as invariant measures (or stationary distributions)
on the axes, see [26]. The measure ν1 (resp. ν2) has its support on the vertical (resp.
horizontal) axis, where z1 = 0 (resp. z2 = 0). It has a density p1 (resp. p2) relative to the
Lebesgue measure on R+ [53, Lem. 3.1]. Let ϕ denote the Laplace transform of Π:

ϕ(x, y) = EΠ[exp ((x, y) · Zt)] =

∫∫
R2

+

exz1+yz2 p0(z1, z2)dz1dz2,

and let ϕ1 and ϕ2 the Laplace transforms of ν1 and ν2:

ϕ1(y) =

∫
R+

eyz2p1(z2)dz2 and ϕ2(x) =

∫
R+

exz1p2(z1)dz1. (2.14)
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The measures ν1, ν2 are also bounded [26] and thus these three Laplace transforms exist
and are finite at least when x and y have non-positive real parts.

It is known that for all values of x, y for which ϕ(x, y) is finite, the transforms ϕ1(y)

and ϕ2(x) are finite as well, and that ϕ(x, y) is a linear combination of ϕ1(y) and ϕ2(x)

with rational coefficients [12, Lem. 4.1]:

−γ(x, y)ϕ(x, y) = γ1(x, y)ϕ1(y) + γ2(x, y)ϕ2(x), (2.15)

where
γ(x, y) =

1

2
((x, y)Σ) · (x, y) + (x, y) · µ =

1

2
(σ11x

2 + 2σ12xy + σ22y
2) + µ1x+ µ2y,

γ1(x, y) = (x, y)R1 = r11x+ r21y,

γ2(x, y) = (x, y)R2 = r12x+ r22y.

(2.16)
The polynomial γ(x, y) is called the kernel of Equation (2.15). By letting x and/or y tend
to zero and noticing that ϕ(0, 0) = 1, we can conversely express ϕ1 and ϕ2 in terms of ϕ:

ϕ1(0) =
µ1r22 − µ2r12
r12r21 − r11r22

, ϕ2(0) =
µ2r11 − µ1r21
r12r21 − r11r22

, (2.17)

and more generally,

r21ϕ1(y) = − (µ2 + σ22 y/2)ϕ(0, y)− r22
µ2r11 − µ1r21
r12r21 − r11r22

,

and symmetrically for ϕ2(x). Hence (2.15) can also be seen as a functional equation in ϕ
only.

We can also relate the densities p1(z2) and p2(z1) to p0(z1, z2) as follows. First, the
classical initial value formula gives

lim
x→−∞

xϕ(x, y) = −
∫
R+

eyz2p0(0, z2)dz2.

Then, by dividing (2.15) by x, we also obtain

σ11
2

lim
x→−∞

xϕ(x, y) = −r11ϕ1(y) = −r11
∫
R+

eyz2p1(z2)dz2.

By comparing the two limits, we find

r11p1(z2) =
σ11
2
p0(0, z2),

and analogously for p2(z1).
Finally, the Laplace transform ϕ(x, y) of Π and the Laplace transform Φ(x, y) of the

corresponding stationary distribution for the Brownian motion in the β-wedge T (R2
+)

(with T given by (2.4)) are related by a linear change of variables:

ϕ(x, y) = Φ((x, y)T−1). (2.18)

This is proved in [23, Cor. 2] when σ11 = σ22 = 1 and still holds in our more general
setting. From this, and the above relations between ϕ, ϕ1 and ϕ2, we see that determining
the differential and algebraic nature of ϕ and Φ boils down to studying the nature of ϕ1

and ϕ2.
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Proposition 2.1. The Laplace transform ϕ(x, y) is rational (resp. algebraic, D-finite,
D-algebraic) if and only if ϕ1 and ϕ2 are rational (resp. algebraic, D-finite, D-algebraic).
The same holds for the Laplace transform Φ(x, y).

This proposition relies on various properties of rational/algebraic/D-finite/D-algebraic
functions: they include rational functions, form a ring, are closed by specialization of
variables, by composition with an affine function... We refer to [38, 39, 46] for classical
articles on D-finite functions, and to [6, Sec. 6.1] for a reference on D-algebraic functions.

2.3 Main results

Recall that r11 > 0 and r22 > 0, and that we work under the following additional
assumptions:

• existence of a stationary distribution:

detR > 0, r22µ1 − r12µ2 < 0, r11µ2 − r21µ1 < 0,

• negative drift in the quadrant model:

µ1 < 0, µ2 < 0.

In terms of the β-wedge, the angles β, δ and ε are taken in (0, π), and the above combined
conditions translate into:

δ − π < β − ε < θ < δ, 0 < θ < β, (2.19)

see Lemma A.1 iii). It seems that these equivalences were never formerly established in
the SRBM literature.

We focus on ϕ1(y), since the study of ϕ2(x) is obviously symmetric. We distinguish
two cases, depending on whether the angle β is a rational multiple of π, or not.

Theorem 2.2. Assume that β/π /∈ Q. Then ϕ1(y) is differentially algebraic over R(y) if
and only if one of the angle conditions (1.7) or (1.8) holds. The necessary and sufficient
conditions for ϕ1(y) to be D-finite, algebraic (over R(y)) or rational (over R) are those
stated in the first line of Table 1.

We now move to the case where β is a rational multiple of π.

Theorem 2.3. If β/π ∈ Q, then 1
ϕ1

dϕ1

dy , the logarithmic derivative of ϕ1, is D-finite over
R(y). In particular, ϕ1 is differentially algebraic. Moreover, ϕ1 is algebraic if and only
if (1.7) or (1.8) holds, and this is the only case where it is D-finite. Finally, ϕ1 is rational
if and only if α ∈ −N0.

When one of the angle conditions (1.7) or (1.8) holds, we obtain an explicit expression
of ϕ1.

Theorem 2.4. When (1.7) or (1.8) holds, there exist an integer m ∈ {1, 2}, and four
polynomials P (y), Q(y), R(z) and S(z) with real coefficients such that

ϕm
1 (y) =

Q(y)

P (y)

S(w(y))

R(w(y))
,

where w(y) is an explicit D-finite function, defined in Section 5 in terms of Gauss’
hypergeometric function 2F 1 (see (5.7)).

We refer to Theorems 7.3 and 8.5 for an explicit description of these four polynomials.

It follows from the above theorems that the Laplace transforms ϕ1 and ϕ2 are always
of the same nature, in the sense of the hierarchy (1.6) – and then of the same nature
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as ϕ(x, y) and Φ(x, y), by Proposition 2.1. Indeed, as already observed in Section 2.1,
applying an x/y-symmetry to the quadrant model exchanges ϕ1 and ϕ2, leaves the
angle β unchanged, and exchanges δ and ε, as well as θ and β − θ. This implies that
the parameter α defined by (1.1) is unchanged, while the parameters α1 and α2 defined
by (1.2) are exchanged. Since the angle conditions of Table 1 are expressed in terms of
α, α1 and α2 only, and are symmetric in α1 and α2, the transforms ϕ1 and ϕ2 will always
be of the same nature.

Our results apply in particular to three cases in which Condition (1.7) holds and
the Laplace transform is known to take a particularly simple form (see Figure 4 for an
illustration):

• The skew symmetric case δ + ε = π, or equivalently α = 0, studied for instance
in [29, §10], [27] or [13], and in [34] for a class of problems with state-dependent
drifts.

• The (more general) Dieker and Moriarty case α ∈ −N0 (see [14]).

• Orthogonal reflections in the quadrant model [22], corresponding to r12 = r21 = 0,
or equivalently to δ = ε = β (see (2.11)).

The transform ϕ1 is rational in the first two cases, and we will see that 1/ϕ1 is D-finite
in the third one (Theorem 7.3). We review these cases in Section 7.3, together with
an algebraic example where β = 2π/3, and finally a D-finite one, δ + ε + β = 2π, for
which we work out explicitly the recurrence relation satisfied by the moments of ν1. In
Section 8.3 we present additional interesting cases, this time where the double angle
condition holds, with an emphasis on models where ϕ1 is algebraic while the angle β is
not necessarily in πQ. This happens in particular when α1 = α2 = 0 (so that α = 1/2),
and in this case we prove that the density of the stationary distribution in the β-wedge,
expressed in polar coordinates (ρ, a), is

κ′
cos( θ−a

2 )
√
ρ

exp

(
−2|µ̃| ρ cos2

(
θ − a

2

))
,

where |µ̃| is given by (2.9), and κ′ is an explicit constant; see (8.29). A similar density
has already been established by Harrison [28, Sec. 9] in a limit case.

Figure 4: Three interesting cases where the Laplace transform ϕ1 is D-algebraic. From
left to right: skew symmetry, Dieker and Moriarty condition (for α = −1) and orthogonal
reflections.

2.4 Homogeneities and normal forms

The SRBM defined in the previous section involves nine real parameters (the σij , µj

and rij), but there are homogeneities between them that become visible when we move
to the variables of the β-wedge. For instance, β is unchanged if we multiply the σij by a
positive scalar. Moreover, most quantities can now be written in many different ways, by
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mixing parameters from the quadrant and from the β-wedge. It will be convenient to use
the β-parameters as much as possible, keeping the quadrant parameters as prefactors
only. We call normal forms such expressions. For instance, in the following identities,
derived from Section 2.1, the right-hand sides are in normal form. The first two identities
involve only Σ, the next three µ and Σ, and the final ones R and Σ:

− σ12√
σ11σ22

= cosβ,

√
detΣ

σ11σ22
= sinβ, (2.20)

µ1

√
detΣ

σ11∆
= − sin(β − θ), µ2

√
detΣ

σ22∆
= − sin(θ),

µ1

µ2

√
σ22
σ11

=
sin(β − θ)

sin θ
, (2.21)

r12
r22

√
σ22
σ11

=
sin(β − δ)

sin δ
,

r21
r11

√
σ11
σ22

=
sin(β − ε)

sin ε
. (2.22)

The masses (2.17) of the measures ν1 and ν2 can now be written as

ϕ1(0) =
1

r11

√
∆

σ22

sin(θ − δ) sin ε

sin(β − δ − ε) sinβ
, ϕ2(0) =

1

r22

√
∆

σ11

sin(β − θ − ε) sin δ

sin(β − δ − ε) sinβ
. (2.23)

This strategy, and the definition (2.16) of the kernel γ(x, y), lead us to introduce normal-
ized versions x and y of the variables x and y as well: we define them by

x =

√
∆σ22
detΣ

x, y =

√
∆σ11
detΣ

y. (2.24)

Then the kernel can be rewritten in normal form

γ(x, y) =
∆

2 sin2 β detΣ

(
x2 + y2 − 2xy cosβ − 2x sinβ sin(β − θ)− 2y sinβ sin θ

)
. (2.25)

This gives the following normal forms for the other two polynomials of (2.16):

γ1(x, y) = r11

√
∆σ22
detΣ

(
x+ y

sin(β − ε)

sin ε

)
, γ2(x, y) = r22

√
∆σ11
detΣ

(
x
sin(β − δ)

sin δ
+ y

)
.

(2.26)
All identities of this subsection are implemented in our Maple session.

3 The kernel

In this section we study the curve γ(x, y) = 0, where γ(x, y) is the quadratic polyno-
mial defined in (2.16).

3.1 The kernel and its roots

The roots of the kernel γ(x, y) (when solved for x, or for y) are algebraic functions
X±(y) and Y ±(x) defined by

γ(X±(y), y) = γ(x, Y ±(x)) = 0.

They can be expressed in closed form:
X±(y) =

−(σ12y + µ1)±
√
y2(σ2

12 − σ11σ22) + 2y(µ1σ12 − µ2σ11) + µ2
1

σ11
,

Y ±(x) =
−(σ12x+ µ2)±

√
x2(σ2

12 − σ11σ22) + 2x(µ2σ12 − µ1σ22) + µ2
2

σ22
,

(3.1)
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where we take the principal value of the square root on C \ (−∞, 0]. Each of the
discriminants (that is, the polynomials under the square roots) in (3.1) admits two roots,
which are the branch points of the functions X± and Y ±. They are respectively given by

y± =
(µ1σ12 − µ2σ11)±

√
σ11∆

detΣ
,

x± =
(µ2σ12 − µ1σ22)±

√
σ22∆

detΣ
,

(3.2)

with ∆ defined by (2.9). These expressions have more structure when we use the normal
forms and normal variables introduced in Section 2.4. If we write the roots of the kernel
as:

X±(y) =

√
∆σ22
detΣ

X±(y), Y ±(x) =

√
∆σ11
detΣ

Y±(x),

then we have

X±(y) = sinβ sin(β − θ)+y cosβ ± sinβ
√

(y − y−)(y+ − y), (3.3)

Y±(y) = sinβ sin θ +x cosβ ± sinβ
√

(x− x−)(x+ − x), (3.4)

with

x± =
detΣ√
∆σ22

x± = cos θ ± 1, y± =
detΣ√
∆σ11

y± = cos(β − θ)± 1. (3.5)

Clearly, y+ (and y+) is positive and y− (and y−) is negative. The branches X± are
thus analytic on C \ ((−∞, y−] ∪ [y+,∞)). Similarly, the branches Y ± are analytic on
C \ ((−∞, x−] ∪ [x+,∞)).

Remark 3.1. For x ∈ (−∞, x−] ∪ [x+,∞), the roots of γ(x, y) = 0, solved for y, are com-
plex conjugate. We still denote them Y ±(x), but they are only defined up to conjugacy.

3.2 Parametrization of the curve γ(x, y) = 0

It will be very convenient to work with a rational uniformization (or parametrization)
of the kernel, rather than with the variables x and y. Let us introduce the curve

S := {(x, y) ∈ (C ∪ {∞})2 : γ(x, y) = 0},

which is a Riemann surface of genus 0, see [21]. The following uniformization of S is
established in [21, Prop. 5]:

S = {(x(s), y(s)) : s ∈ C ∪ {∞}}, (3.6)

where 
x(s) =

x+ + x−

2
+
x+ − x−

4

(
s+

1

s

)
,

y(s) =
y+ + y−

2
+
y+ − y−

4

(
s

eiβ
+
eiβ

s

)
.

(3.7)

Recall that x± and y± are the branch points given by (3.2). In normal form,

x(s) =

√
∆σ22
detΣ

x(s), y(s) =

√
∆σ11
detΣ

y(s),

with x(s) = 1
2

(
s+ eiθ

) (
1 + e−iθ/s

)
= 1

2 (2 cos θ + s+ 1/s) ,

y(s) = 1
2

(
s+ eiθ

) (
e−iβ + ei(β−θ)/s

)
= 1

2

(
2 cos(β − θ) + e−iβs+ eiβ/s

)
.

(3.8)

We will use repeatedly, and without mention, the fact that x and x, or x(s) and x(s), and
so on, only differ by a positive multiplicative factor.
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Figure 5: The complex s-plane, from which the uniformization (3.7) of S is expressed.

Remark 3.2. Since β is real, the unit circle |s| = 1 corresponds via the parametriza-
tion (3.7) to the real points of S.

The points s = 0 and s = ∞ are sent to the unique point at infinity of the surface S.
We now introduce two transformations, defined by

ξ(s) =
1

s
, η(s) =

e2iβ

s
, so that ζ(s) := η(ξ(s)) = e2iβs. (3.9)

The transformations ξ and η induce automorphisms of the field C(s) via ξ(f)(s) = f(ξ(s))

and η(f)(s) = f(η(s)) for any f ∈ C(s). By construction, ξ (resp. η) leaves x(s) (resp.
y(s)) invariant. By analogy with discrete models [9], the group 〈ξ, η〉 generated by ξ
and η may be called the group of the model. It is finite if and only if ζ has finite order,
i.e., if and only if β/π ∈ Q.

Observe that for any s, we have the following equality of sets:{
Y +(x(s)), Y −(x(s))

}
=
{
y(s), y(1/s)

}
(3.10)

and analogously, {
X+(y(s)), X−(y(s))

}
=
{
x(s), x(e2iβ/s)

}
. (3.11)

Also, it follows easily from (3.7) that

x(1) = x+, x(−1) = x−, y(eiβ) = y+, y(−eiβ) = y−.

Having in mind that the index 1 (resp. 2) refers to x (resp. y), we will denote accordingly

s+1 = 1, s−1 = −1, s+2 = eiβ , s−2 = −eiβ . (3.12)

These special points are shown in Figure 5. The map s 7→ x(s) is 2-to-1 from (−∞, 0)

onto (−∞, x−], except at s = −1. It is 2-to-1 from (0,+∞) onto [x+,+∞), except at
s = 1. Similarly, the map s 7→ y(s) is 2-to-1 from eiβR− (resp. eiβR+) onto (−∞, y−] (resp.
[y+,+∞)), except at the point −eiβ (resp. eiβ).

We now establish a series of four basic lemmas that will be used later. The first one
follows directly from the normal forms (3.8).

Lemma 3.3. The pair of equations x(s0) = y(s0) = 0 has a unique solution, which is:

s0 = −eiθ,

where we recall that θ = arg(−µ̃) is given by (2.8).
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Consider now, for i ∈ {1, 2}, the following equation in s:

γi(x(s), y(s)) = 0, (3.13)

where γi(x, y) is the bilinear function given by (2.16). Since x(s) and y(s) have degree 2

in s, the above equation is quadratic in s and thus has two solutions. One of them has
to be s0 (because (x(s0), y(s0)) = (0, 0) obviously cancels γi(x, y)). We denote the other
solution by si.

Lemma 3.4. The solutions s1 and s2 of (3.13) (distinct from s0) satisfy:

s0s1 = e2i(β−ε) and s0s2 = e2iδ,

where the angles δ and ε are defined by (2.11). That is,

s1 = −ei(2β−2ε−θ) = eiβ(1−α1) and s2 = −ei(2δ−θ) = eiβα2 ,

where α1 and α2 are defined by (1.2). In particular,

s1
s2

= e2iβ(1−α).

Moreover, s2 6= −1, and s1 = −1 if and only if 2β − 2ε− θ = 0.

The points s0, s1 and s2 are shown in Figure 5.

Proof. When i = 1, Equation (3.13) reads, with the normal form (2.26),

x(s) + y(s)
sin(β − ε)

sin ε
= 0,

and the result follows using the expressions (3.8) of x(s) and y(s), and basic trigonometry
(see our Maple session). The expression of s2 is obtained similarly.

Then, s2 = −1 would mean that θ = 2δ modulo 2π, hence θ = 2δ because both angles θ
and δ are in (0, π). But this is not compatible with the condition δ > θ coming from (2.19).
Similarly, s1 = −1 means that 2β − 2ε− θ = 0 modulo 2π. Since the three angles are in
(0, π), and β > θ by (2.19), this means that 2β − 2ε− θ = 0.

We go on with a simple property of the values y(−1) and y+.

Lemma 3.5. The value Y ±(x−) = y(−1) lies in (0, y+).

Proof. Thanks to the normal forms (3.8) and (3.5), what we want to prove reads:

0 < y(−1) = cos(β − θ)− cosβ < y+ = cos(β − θ) + 1.

But this is obvious since 0 < θ < β < π.

We finish with the reformulation of a key condition occurring in [23, Thm. 1].

Lemma 3.6. We have γ1(x−, Y ±(x−)) > 0 (resp. = 0) if and only if 2β − 2ε− θ > 0 (resp.
= 0).

Proof. The condition reads γ1(x(−1), y(−1)) > 0, or, using the normal forms (2.26)
and (3.8),

(cos(θ)− 1) +
sin(β − ε)

sin ε
(cos(θ − β)− cosβ) > 0.

The left-hand sides rewrites as

2
sinβ

sin ε
sin

θ

2
sin

2β − 2ε− θ

2
,

and the result follows, because β, ε, θ ∈ (0, π) and 2β − 2ε − θ ∈ (−2π, 2π), as we have
already used in the proof of Lemma 3.4.
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3.3 An important curve

Let us consider the following curve in C:

R = {y ∈ C : γ(x, y) = 0 for some x ∈ (−∞, x−]}. (3.14)

By Remark 3.1, the curve R is symmetric with respect to the real axis (Figure 6).
Moreover, as shown in [2, Lem. 9], it is a branch of a hyperbola, which intersects the
real axis at the point Y −(x−) = Y +(x−) ∈ (0, y+) (see Lemma 3.5). We further introduce
the domain GR, which is the (open) domain of C containing 0 and bounded by R. Finally,
we denote by GR = GR ∪R the closure of GR.

Figure 6: The curve R, the domain GR and the possible pole p of ϕ1. The branch point y+

(resp. y−) lies outside (resp. inside) GR. On the left, β > π/2, while β < π/2 on the right.

The following lemma describes the links between the curve R and the parametriza-
tion (3.7).

Lemma 3.7. The curve R coincides with the set {y(s) : s ∈ R−}. For y = y(s) ∈ R, with
s ∈ R−, we have ȳ = y(1/s). Moreover, x(s) is the unique value x ∈ (−∞, x−] such that
{y, ȳ} = {Y +(x), Y −(x)}. Finally, x(s) = X−(y) = X−(ȳ).

Proof. By definition of R, the point y lies on R if and only if there exists x ∈ (−∞, x−]

such that γ(x, y) = 0, or equivalently such that {y, ȳ} = {Y +(x), Y −(x)}. As already
observed in Section 3.2, the map s 7→ x(s) sends R− surjectively to (−∞, x−]. Hence
it is equivalent to say that there exists s ∈ R− such that {y, ȳ} = {Y +(x(s)), Y −(x(s))},
or equivalently that {y, ȳ} = {y(s), ȳ(1/s)}, by (3.10). This proves the first point of the
lemma.

Let us now take y = y(s) ∈ R, with s ∈ R−. The above argument shows that
ȳ = y(1/s). Moreover, x(s) is one of the values x ∈ (−∞, x−] such that γ(x, y) = 0, or
equivalently {y, ȳ} = {Y +(x), Y −(x)}. It remains to prove that any such value x must be
X−(y). For any such x, we have γ(x, y) = 0, so that x = X−(y) or x = X+(y). That is to
say, by (3.11), x = x(s) or x = x(e2iβ/s). Since e2iβ 6∈ R+, the value x(e2iβ/s) cannot be
in (−∞, x−], hence x = x(s). We still need to decide whether x(s) is X−(y) or X+(y). As
already mentioned, {X−(y), X+(y)} = {x(s), x(e2iβ/s)}. Moreover, it follows from (3.1)
that X+(y) −X−(y) is a square root, and hence has a non-negative real part. It thus
suffices to show that x(e2iβ/s)− x(s) has a positive real part to conclude. By (3.7),

<
(
x(e2iβ/s)− x(s)

)
=
x+ − x−

4
(cos(2β)− 1)(s+ 1/s) > 0,
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which concludes the proof.

4 A boundary value problem – invariants

In this section we introduce the notion of invariant, which is motivated by a boundary
value problem satisfied by the function ϕ1, established in [23]. Recall the definitions of
the curve R and the domain GR in the previous subsection.

Proposition 4.1. The Laplace transform ϕ1 is meromorphic in an open domain contain-
ing GR. It satisfies the boundary condition

ϕ1(y) = G(y)ϕ1(y), ∀y ∈ R, (4.1)

with
G(y) =

γ1
γ2

(X−(y), y)
γ2
γ1

(X−(y), y), (4.2)

where γ1 and γ2 are the bivariate polynomials of (2.16).
The function ϕ1 has at most one pole in GR. This pole exists if and only if 2β−2ε−θ > 0.

It is then simple, and its value is

p = y(s1) =
2r11(µ1r21 − µ2r11)

r211σ22 − 2r11r21σ12 + r221σ11
.

The pole coincides with Y ±(x−) = y(−1) if and only if 2β − 2ε − θ = 0, or equivalently
s1 = −1.

There exists a constant κ 6= 0 such that, as y → ∞ in GR,

ϕ1(y) ∼
y→∞

κyα−1, (4.3)

where α = (δ + ε− π)/β is the key parameter introduced in (1.1).

Note that Condition (4.1) is consistent with G(y) = 1/G(y).

Proof. The Laplace transform ϕ1 is clearly holomorphic on the domain D1 := {y ∈ C :

<y < 0}, with continuous limits on the boundary iR. Moreover, it is proved in [23,
Lem. 5] that for y ∈ iR ∪

(
GR ∩ {y : <y > 0}

)
, one has <X−(y) < 0. Hence this is true as

well on a neighbourhood D2 of this set, which we choose to be simply connected. Note
that D1 and D2 intersect on some open set to the left of the line iR (see Figure 6). Now
on the simply connected domain D1 ∪D2, which contains GR by construction, one can
define ϕ1 meromorphically using

ϕ1(y) = −γ2(X
−(y), y)

γ1(X−(y), y)
ϕ2(X

−(y))

(see [23, Lem. 3]). This proves the first statement of the proposition1.
The boundary identity (4.1) is established in [23, Prop. 6]. In this proposition it is

also stated that ϕ1 has a pole in GR if and only if γ1(x−, Y ±(x−)) > 0, and that this pole
coincides with Y ±(x−) if and only if γ1(x−, Y ±(x−)) = 0. By Lemmas 3.6 and 3.4, this
gives the conditions stated in the proposition. The fact that the pole is simple comes
again from [23, Prop. 6], and its value is given by [23, Eqs. (18)–(19)]. Finally, the
asymptotic behaviour of ϕ1 comes from [23, Prop. 19].

A boundary value problem like the one of Proposition 4.1 is said to be homogeneous
if the function G occurring in (4.1) is simply 1. A solution is then called an invariant.

1We have reorganized slightly the arguments of [23] because the set defined in Lemma 3 of this reference is
not open if β < π/2.
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Definition 4.2. A function I from GR to C is called an invariant if it is meromorphic on
a domain containing GR and satisfies the boundary (or invariant) condition

I(y) = I(y), ∀y ∈ R.

There exists in the literature a stronger notion of invariant [6, Sec. 5], where one
requires that I(Y +(x)) = I(Y −(x)) for all x. This implies the above boundary condition
by taking x ∈ (−∞, x−].

In the following section we exhibit a simple, explicit and D-finite invariant w. In the
next one, we show how to construct another invariant, this time involving the Laplace
transform ϕ1, provided one of the angle conditions (1.7) or (1.8) holds.

5 A canonical invariant

In this section we introduce a key invariant, denoted w(y), and study its algebraic and
differential properties. It is expressed in terms of an explicit hypergeometric function Ta,
which generalizes the Chebyshev polynomial of the first kind, obtained for a ∈ N0.

Below, we use the words “rational”, “algebraic”, “D-finite” and “D-algebraic” without
specifying whether we request the coefficients of the corresponding algebraic/differential
equations to be real or complex. The reason is that a function which, like ϕ1(y), Ta(y)
or w(y), is analytic in the neighborhood of a real segment, and takes real values on this
segment, is, say, D-finite on R(y) if and only if it is D-finite on C(y) (analogous statements
hold for the other three classes of functions).

5.1 A generalization of Chebyshev polynomials

For x ∈ C \ (−∞,−1] and a ∈ R, let us define

Ta(x) = 2F 1

(
−a, a; 1

2
;
1− x

2

)
,

where 2F 1 is the classical Gauss hypergeometric function. In other words, Ta is the
analytic continuation to C\(−∞,−1] of the following series, that converges for |1−x| < 2:

Ta(x) =
∑
n>0

a

a+ n

(
a+ n

2n

)
2n(x− 1)n.

When a = m ∈ N0, the above sum ranges from n = 0 to a, and Tm is the classical Cheby-
shev polynomial. The function Ta is D-finite for all values of a, as the hypergeometric
function itself. It satisfies the following differential equation:

(1− x2)T ′′
a (x)− xT ′

a(x) + a2Ta(x) = 0. (5.1)

Other useful expressions are

Ta(x) = cos (a arccosx) , (5.2)

(see [1, 15.1.17]) which is valid for x in C \ ((−∞,−1] ∪ [1,∞)), and

Ta(x) =
1

2

((
x+

√
x2 − 1

)a
+
(
x−

√
x2 − 1

)a)
, (5.3)

(see [1, 15.1.11]) which is valid for x in C \ (−∞,−1] (here we take
√
reit :=

√
reit/2 for

t ∈ (−π, π] and ua := exp(a log u) with the principal value of the logarithm on C \ R−).
The latter expression shows that Ta is algebraic when a ∈ Q. The Schwarz list [44]
implies that Ta is transcendental otherwise. This can be also proved by looking at the
growth of Ta(x) at infinity.
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We will also use the fact that both 1− Ta and 1 + Ta are squares of D-finite functions.
In fact, it follows from (5.2) and elementary trigonometry that√

1 + Ta =
√
2 Ta/2, (5.4)

with the same domain of definition as Ta. Analogously,
√
1− Ta(x) =

√
2 sin

(
a
2 arccosx

)
,

and this function satisfies the same differential equation as Ta/2. Moreover,

1

a

√
1− Ta(x)

1− x
= 2F 1

(−a+ 1

2
,
a+ 1

2
;
3

2
;
1− x

2

)
(5.5)

and this function is analytic on the same domain as Ta.

Our final property deals with rational functions in Ta.

Proposition 5.1. Let S/R be an irreducible fraction with coefficients in C. Then
(S/R)(Ta) is D-finite if and only if either a ∈ Q or R is constant.

Proof. If a ∈ Q, we have seen that Ta is algebraic, and then so is any fraction in Ta. If R
is a constant, then (S/R)(Ta) is D-finite because D-finite functions form a ring.

We now assume that (S/R)(Ta) is D-finite and want to prove that either a ∈ Q or R is
a constant.

Let us first suppose that S is a constant. In this case, both R(Ta) and 1/R(Ta) are
D-finite. By a result of Harris and Sibuya [25], the function (R(Ta))

′/R(Ta) is algebraic.
Assume that R is non-constant, and let us prove that a ∈ Q. Since R is non-constant,
there exist κ 6= 0, z1, . . . , zn ∈ C and positive integers n,m1, . . . ,mn such that

R(z) = κ

n∏
i=1

(z − zi)
mi .

With this notation, one has

(R(Ta(x)))
′

R(Ta(x))
= T ′

a(x)

n∑
i=1

mi

Ta(x)− zi
. (5.6)

In addition to the second order linear differential equation (5.1), the function Ta(x) =
cos(a arccosx) satisfies a first order non-linear differential equation:

T ′
a(x)

2 = a2
1− Ta(x)

2

1− x2
.

Since (5.6) is algebraic, we conclude that the function

(1− T 2
a )

(
n∑

i=1

mi

Ta − zi

)2

is also algebraic. This function is a non-trivial fraction in Ta (because of the multiple
poles in the denominator). This implies that Ta is algebraic, so that a ∈ Q.

Let us now consider the case of a non-constant polynomial S. The fraction (S/R)(z)

being irreducible in C(z), it comes from the classical Bézout theorem that there exist two
polynomials U and V such that US + V R = 1. Dividing by R, it follows that U S

R + V = 1
R .

This shows that if (S/R)(Ta) is D-finite, then 1/R(Ta) should also be D-finite. We have
just seen that this implies that a ∈ Q or R is a constant.
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5.2 The invariant w

We now define a function w, which is analytic on C \ [y+,∞), by:

w(y) := Tπ
β

(
−2y − (y+ + y−)

y+ − y−

)
. (5.7)

Using the normal variable y of (2.24) and the values y± in (3.5),

w(y) = Tπ
β
(−y + cos(β − θ)) .

Note that when y = y(s) is given by the parametrization (3.7), or equivalently y = y(s)
by (3.8), the argument simplifies into

−1

2

(
e−iβs+ eiβ/s

)
.

In particular, we derive from (5.3) that for s ∈ C \ eiβR+,

w(y(s)) =
1

2

((
− s

eiβ

)π/β
+
(
− s

eiβ

)−π/β
)
, (5.8)

if we define the a-th power on C \R− as before (with a = π/β). This can be rewritten as:

w(y(s)) = −1

2

(
(−s)π/β + (−s)−π/β

)
, (5.9)

provided we now take the principal value of the logarithm on C \ eiβR−. In particular,
w(y(s)) is real when |s| = 1.

The function w inherits the algebraic and differential properties of Tπ/β .

Proposition 5.2. If π
β ∈ Z, the function w is a polynomial. If π

β ∈ Q \Z, the function w is
algebraic but irrational. If π

β /∈ Q, the function w is D-finite but not algebraic.

The functions
√
1− w and

√
1 + w are D-finite.

Finally, a rational fraction in w, say (S/R)(w), is D-finite if and only if either β/π ∈ Q
or S/R is a polynomial.

We will express ϕ1 in terms of w, using the fact that w is, in a certain sense, a
canonical invariant. The following lemma proves that it is an invariant (in the sense of
Definition 4.2), and its canonical properties are described in Proposition 5.4.

Lemma 5.3. The function w is an invariant in the sense of Definition 4.2. More precisely,
it satisfies the following properties:

(1) it is analytic in an open domain containing GR, namely C \ [y+,∞),

(2) it goes to infinity at infinity, with

w(y) ∼
y→∞

κy
π
β

for some constant κ 6= 0,

(3) it is bijective from GR to C \ (−∞,−1],

(4) it satisfies the boundary condition

w(y) = w(y), ∀y ∈ R,

(5) it is 2-to-1 from R \ {Y ±(x−)} to (−∞,−1),
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(6) around the point Y ±(x−) = y(−1), we have

w
(
Y ±(x−)− y

)
= −1 +

2π2

β2(y+ − y−)2 sin2 β
y2 +O(y3)

as y → 0.

We will denote by w−1 the analytic function from C\ (−∞,−1] to GR that maps a complex
number to its unique preimage lying in GR.

Proof. The first two points follow from known properties of Gauss’ hypergeometric
function. The next two can be found in [22, Lem. 3.4].

The fifth point follows from (5.9). Indeed, assume that w(y1) = w(y2) with y1 and y2
in R. By Lemma 3.7, there exist t1 and t2 in R− such that yi = y(ti). By (5.9), and the
fact that (−ti) is a positive real number, we conclude that either t1 = t2, or t1 = 1/t2. In
the former case, y1 = y2. In the latter one, we have x := x(t1) = x(t2) ∈ (−∞, x−], hence
y1 and y2 are the two conjugate solutions of γ(x, y) = 0.

For the last point, we first recall that Y ±(x−) = y(−1), so that, by definition of the
parametrization (3.7),

−2Y ±(x−)− (y+ + y−)

y+ − y−
= cosβ.

In particular, w(Y ±(x−)) = Tπ/β(cosβ) = cos(π) = −1 by (5.2). More generally, by
differentiating (5.2) twice, we obtain:

T ′
π/β(cosβ) = 0, T ′′

π/β(cosβ) =
π2

β2 sin2 β
,

and the final property follows.

Let us now explain in what sense the invariant w is canonical.

Proposition 5.4. Assume that I is an invariant which has a finite number of poles in GR
and grows at most polynomially at infinity. Then there exist polynomials R and S in C[z]
such that

I =
S ◦ w
R ◦ w

.

Moreover, an invariant with no pole in GR and a finite limit at infinity is constant.

Proof. Let us consider the function I ◦ w−1, where w−1 is the analytic function of
Lemma 5.3. By composition, I ◦ w−1 is meromorphic on C \ (−∞,−1]. Let us now take
z ∈ (−∞,−1], and define I ◦ w−1(z) := I(y) = I(ȳ), where y and ȳ are the two values
of R such that w(y) = z. Hence I ◦ w−1 is now defined on C. By Morera’s theorem,
I ◦ w−1 is analytic at z ∈ (−∞,−1], unless y (and ȳ) is a pole of I. If y0 ∈ R is one
of the poles of I then z0 = w(y0) is an isolated singularity of I ◦ w−1. Let ` ∈ N be
such that (w(y) − w(y0))

`I(y) tends to 0 as y tends to y0 or ȳ0 in GR. Such an ` exists
since I is meromorphic and w analytic in neighborhoods of y0 and ȳ0. If a sequence (zn)n
tends to z0 in C \ (−∞,−1], then for n large enough, w−1(zn) is arbitrarily close to y0
or arbitrarily close to ȳ0 (since these are the only two pre-images of z0 by w). Hence
(zn − z0)

`(I ◦ w−1)(zn) tends to 0. This proves that z0 is a pole of I ◦ w−1.
The function I ◦w−1 is thus meromorphic on C. Each of its poles is the image by w of

a pole of I lying in GR. Hence I ◦w−1 has finitely many poles, and can be written as S/R,
where R is a polynomial and S is entire. Finally, since w−1 has polynomial growth at
infinity by Lemma 5.3, the same holds for S = R · (I ◦ w−1). This implies, by a standard
extension of Liouville’s theorem, that S is a polynomial.

Finally, assume that I has no poles in GR and a finite limit at infinity. The above
paragraph shows that we can take R to be a constant. By Lemma 5.3, I(y) = S(w(y))

grows as ydeg(S)π
β at infinity. Hence S has degree zero and is a constant.
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6 Decoupling functions, and a second invariant

Let us now return to the inhomogeneous problem of Proposition 4.1. A natural idea
to transform it into a homogeneous one is to observe that the function G in (4.2) may be
written as a ratio

G(y) =
F0(y)

F0(y)
, (6.1)

with F0(y) =
γ1

γ2
(X−(y), y). Then the boundary condition (4.1) rewrites as:

(F0 · ϕ1)(y) = (F0 · ϕ1)(y), ∀y ∈ R.

However, the function F0 inherits, in general, the cut of X− on the half-line (−∞, y−],
which is contained in GR. Hence the function F0ϕ1 is not an invariant in the sense of
Definition 4.2, as it is a priori not meromorphic in a neighbourhood of GR.

Solving the boundary value problem of Proposition 4.1 in full generality is the main
contribution of [23], where an explicit expression for ϕ1 is obtained in terms of contour
integrals. However, these integrals are complicated, and do not give a handle to
understand the exceptional parameters for which substantial simplifications may occur.
Our point of view in the present paper is different: we want to characterize the cases for
which the boundary condition (4.1) may be transformed into a homogeneous one, which
is then easy to solve in terms of the canonical invariant of Section 5. This transformation
relies on the notion of decoupling functions.

6.1 Decoupling functions

Definition 6.1. Let m be a positive integer. A quadrant model with parameters µ, Σ and
R is m-decoupled if there exist rational functions F and L such that(

γ1
γ2

)m
(x, y) =

F (y)

L(x)

whenever γ(x, y) = 0. By this, we mean that the following equivalent identities between
algebraic functions hold:(

γ1
γ2

)m
(x, Y +(x)) =

F (Y +(x))

L(x)
,

(
γ1
γ2

)m
(x, Y −(x)) =

F (Y −(x))

L(x)
. (6.2)

The functions F (y) and L(x) are then said to form a decoupling pair for the model, and
more precisely an m-decoupling pair.

Several remarks are in order:

• First, the two identities of (6.2) are equivalent because any rational relation be-
tween x and Y −(x) must hold as well with x and Y +(x), by irreducibility of the
quadratic polynomial γ(x, y) (recall that Y ±(x) are the two roots of this polynomial).

• As will be seen in Theorem 6.6, there may exist several decoupling pairs. This
happens in particular when β/π is rational.

• In the enumeration of discrete walks confined to the quadrant [5, 6], decoupling
pairs are defined as solving the equation xy = F (y) + L(x) on a certain curve. In
contrast, we have here a multiplicative version of this notion.

We now relate the decoupling property to factorizations of G(y) (or more generally
Gm(y)) of the form (6.1).

Lemma 6.2. A model is m-decoupled if and only if the following equivalent assertions
hold:
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• There exists a rational function F such that the following identity between algebraic
function holds: (

γ1

γ2

)m
(x, Y −(x))(

γ1

γ2

)m
(x, Y +(x))

=
F (Y −(x))

F (Y +(x))
. (6.3)

• There exists a rational function F such that for all y ∈ R,

Gm(y) =
F (y)

F (y)
. (6.4)

Moreover, any rational function F satisfying (6.3) satisfies (6.4), and vice-versa. We
call F an m-decoupling function, and define

L(x) =
F (Y −(x))(

γ1

γ2

)m
(x, Y −(x))

.

Then L is a rational function in x and (F,L) is an m-decoupling pair in the sense of
Definition 6.1.

Note that Condition (6.3) is left unchanged upon exchanging Y +(x) and Y −(x).

Proof. Let us first assume that the model is m-decoupled. We then obtain (6.3) by taking
the ratio of the two identities in (6.2).

Now assume that F satisfies (6.3). Let y ∈ R, and let x = X−(y) = X−(ȳ) be
the unique real number in (−∞, x−] such that {y, ȳ} = {Y +(x), Y −(x)} (Lemma 3.7).
Writing (6.3) for this pair (x, y) gives (6.4), by definition (4.2) of G(y).

Now assume that (6.4) holds. As we have just observed, this means that (6.3) holds
for x ∈ (−∞, x−]. Since Y ±(x) are the roots of a quadratic polynomial over R(x), there
exist rational functions L(x) andM(x) such that

F (Y ±(x))(
γ1

γ2

)m
(x, Y ±(x))

= L(x) +M(x)Y ±(x).

Specializing this to x ∈ (−∞, x−) (using (6.3)) shows thatM(x) = 0 on this half-line, and
thus everywhere sinceM is rational. Hence (6.2) holds, and the model is decoupled with
(F,L) as a decoupling pair.

The following simple observation underlines that decoupling functions yield invari-
ants.

Lemma 6.3. If F is an m-decoupling function, then the product function Fϕm
1 is an

invariant in the sense of Definition 4.2.

Proof. This follows directly from (6.4) and Proposition 4.1.

6.2 The rational function E(s)

In Section 6.3, we will prove that decoupling functions exist if and only if one of the
angle conditions (1.7) or (1.8) holds (Theorem 6.6). One important tool is the rational
parametrization (3.7) of the kernel. In this subsection, we study the function G(y(s)).

Let us return to the function G given by (4.2). By the definition of s1 and s2 given
above Lemma 3.4, there exist constants c1 and c2 such that

sγ1(x(s), y(s)) = c1(s− s1)(s− s0) and sγ2(x(s), y(s)) = c2(s− s2)(s− s0).
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Let us introduce the following rational function:

E(s) =
γ1
γ2

(x(s), y(s))
γ2
γ1

(x(1/s), y(1/s)) (6.5)

=
s2
s1

(s− s1)(s− 1
s2
)

(s− s2)(s− 1
s1
)
. (6.6)

Lemma 6.4. For s ∈ (−∞, 0), we have

G(y(s)) = E(s),

where E(s) is the above rational function.

Proof. We start from the definition (4.2) of G(y), with y = y(s), and apply Lemma 3.7, as
well as x(s) = x(1/s). We thus obtain the lemma, with the expression (6.5) of E(s).

For ease of notation, we denote by q the complex number

q = e2iβ .

Note that the condition β/π ∈ Q translates into the fact that q is a root of unity.
Now assume that the model is m-decoupled, and take s ∈ (−∞, 0). By Lemma 6.4,

y(s) and y(1/s) = y(s) lie in R. Hence by (6.4), there exists a rational function F such
that

Gm(y(s)) =
F (y(s))

F (y(1/s))
.

But by Lemma 6.4, this is also Em(s). Hence the rational fractions Em(s) and F (y(s))
F (y(1/s)) ,

which coincide on (−∞, 0) must be equal, which gives

Em(s) =
F (y(s))

F (y(1/s))
=

F (y(s))

F (y(qs))
, since y(1/s) = y(qs), y being invariant by η, (6.7)

=
H(s)

H(qs)
, with H(s) = F (y(s)).

It is thus natural to ask when the rational function Em can be written in the form H(s)
H(qs) .

This is answered by the following elementary lemma, which shows how Conditions (1.7)
and (1.8) naturally arise. Therein we denote C(s)∗ = C(s) \ {0}.
Lemma 6.5. Let E(s) be the rational function given by (6.6):

E(s) =
s2
s1

(s− s1)(s− 1
s2
)

(s− s2)(s− 1
s1
)
.

The following statements are equivalent:

i) there exist m ∈ N and H ∈ C(s)∗ such that Em(s) = H(s)
H(qs) ,

ii) the elliptic divisor of E relative to q (defined in Definition B.3) is zero,

iii) one of the conditions (1.7) and (1.8) holds; that is,

s1
s2

∈ qZ or
(
s21 ∈ qZ and s22 ∈ qZ

)
. (6.8)

Moreover, one can take m = 1 when (1.7) holds, and m = 2 when (1.8) holds.
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This lemma is proved in Appendix B.

Remarks
1. The two conditions of (6.8) are just a convenient reformulation of Conditions (1.7)
and (1.8), respectively. They directly follow from the values of s1 and s2 given in
Lemma 3.4.
2. The reader should not worry about the terminology elliptic divisor, as Condition iii) is
a straightforward translation of Condition ii).
3. In Theorem 6.6 below, we construct H(s) explicitly (in the form F (y(s))), assuming
that (1.7) or (1.8) holds; see for instance (6.16).

6.3 Explicit decoupling functions

We can now establish the equivalence between the simple and double angle conditions
and the existence of decoupling functions, and provide explicit decoupling functions.

For r ∈ Z and σ ∈ C, let us define a rational function Fr,σ by:

Fr,σ(y) =


Pr,σ(y) =

r−1∏
j=0

(y − y(σq−j)) if r > 0,

1

Qr,σ(y)
=

|r|∏
j=1

1

(y − y(σqj))
if r < 0,

(6.9)

where y(·) is the function introduced in (3.7). By convention, the empty product, obtained
in the first line when r = 0, is 1. We further define Pr,σ(y) = 1 when r < 0 and Qr,σ(y) = 1

when r > 0, so that we can write in full generality

Fr,σ =
Pr,σ

Qr,σ
.

Moreover, we note that for any r, we have Pr,σqr = Q−r,σ and Qr,σqr = P−r,σ, so that

Fr,σqr =
1

F−r,σ
. (6.10)

For e and ε in {0, 1}, let us define the polynomial fe,ε by

fe,ε(y) =

{
1 if e = 0,

y − y
(
(−1)ε

√
q
)

if e = 1,
(6.11)

with
√
q = eiβ. We hope that no confusion will arise between the integer ε ∈ {0, 1} and

the reflection angle ε. Equivalently, returning to the definition (3.7) of y(s):

fe,ε(y) =


1 if e = 0,

y − y+ if e = 1 and ε = 0,

y − y− if e = 1 and ε = 1.

When Condition (1.7) holds, or equivalently, s1/s2 ∈ qZ (see (6.8)), we choose r ∈ Z
such that

s1/s2 = qr. (6.12)

Analogously, when Condition (1.8) holds, we choose integers r1 and r2, and numbers
e1, e2, ε1, ε2 in {0, 1}, such that

s1 = (−1)ε1
√
q
e1qr1 and s2 = (−1)ε2

√
q
e2qr2 . (6.13)

The following theorem relates the decoupling property to the conditions satisfied by
E(s) in Lemma 6.5.
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Theorem 6.6. There exists an m-decoupling pair in the sense of Definition 6.1 if and
only if any of the following equivalent conditions holds:

(1) there exists a rational function F such that Em(s) = F (y(s))
F (y(1/s)) ,

(2) there exists a rational function H such that Em(s) = H(s)
H(qs) ,

(3) one of the angle conditions (1.7) or (1.8) holds.

If these conditions hold, the function F of Assertion (1) is an m-decoupling function in
the sense of Lemma 6.2.

Moreover, when (1.7) holds and r satisfies (6.12), we can take

m = 1 and F = Fr,s1 , (6.14)

where Fr,σ is defined by (6.9). When (1.8) holds and the ri, εi, and ei satisfy (6.13), we
can take

m = 2 and F =

(
Fr1,s1

Fr2,s2

)2

· fe1,ε1
fe2,ε2

. (6.15)

Notice that the roots and poles of these decoupling functions are real, since q, s1
and s2 have modulus 1 and s 7→ y(s) sends the unit circle on the real line (see Remark 3.2).
In particular, the only possible root or pole of these decoupling functions lying in R is
y(−1), the only point of R∩R.

Also, since all roots and poles of the function F (y) are of the form y(σ), for some
complex number σ, the function H(s) involved in Assertion (2), which coincides with
F (y(s)), has explicit roots and poles. For instance, when m = 1 and r > 0, we have, up
to a multiplicative factor,

H(s) =

r−1∏
j=0

(
qjs− s1

)(
s1 −

qj+1

s

)
. (6.16)

Proof of Theorem 6.6. We have already explained in the previous subsection that if the
model is m-decoupled in the sense of Definition 6.1, then Assertion (1) holds (see (6.7)).
Conversely, if this assertion holds, we can work out the same argument backwards to
conclude that (6.4) holds (because R = y((−∞, 0)) by Lemma 3.7), so that the model is
decoupled by the second point of Lemma 6.2.

We now focus on the assertions (1), (2), (3), and prove that (1) ⇒ (2) ⇒ (3) ⇒ (1).
Assume that (1) holds, and define H(s) = F (y(s)). Then (2) follows from y(1/s) =

y(qs).
Now assume that (2) holds. By Lemma 6.5, one of the angle conditions (1.7) or (1.8)

holds. This gives (3).
It remains to check that if one of the angle conditions holds, the functions F given

by (6.14) and (6.15) are indeedm-decoupling functions, form = 1 andm = 2 respectively.
We first observe that y(s) − y(σq−j) is a Laurent polynomial in s, of degree 1 and
valuation −1, that vanishes for s = σq−j and s = qj+1/σ (because y(s) = y(q/s)). Hence
there exists a constant κ (depending on σ and j) such that

y(s)− y(σq−j) = κ
(
sqj − σ

)(qj+1

s
− σ

)
.

It follows that, for any r > 0,

Fr,σ(y(s))

Fr,σ(y(sq))
=

r−1∏
j=0

(sqj − σ)
(

qj+1

s − σ
)

(sqj+1 − σ)
(

qj

s − σ
) =

1

qr
· s− σ

s− 1/σ
· s− qr/σ

s− σ/qr
. (6.17)
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A similar calculation, or more directly the identity (6.10), proves that this still holds for
r < 0. Given that

E(s) =
s2
s1

(s− s1)(s− 1
s2
)

(s− s2)(s− 1
s1
)
,

this already proves that (6.14) gives a 1-decoupling function when s1 = qrs2.
Furthermore, if σ = (−1)ε

√
q eqr, with r ∈ Z and e, ε ∈ {0, 1}, we derive from (6.17)

that
Fr,σ(y(s))

Fr,σ(y(sq))
=

1

σ
· s− σ

s− 1/σ
·
(−1)ε

√
q es− 1

s− (−1)ε
√
q e . (6.18)

The rightmost ratio reduces to (−1)ε if e = 0, and its square is thus 1. If e = 1, its square
is (

(−1)ε
√
qs− 1

s− (−1)ε
√
q

)2

=
qs+ 1

s − 2(−1)ε
√
q

s+ q
s − 2(−1)ε

√
q

=
y(qs)− y((−1)ε

√
q)

y(s)− y((−1)ε
√
q)

=
fe,ε(y(qs))

fe,ε(y(s))
,

where fe,ε is defined by (6.11). Hence, whether e = 0 or e = 1, we obtain, by squar-
ing (6.18): (

1

σ
· s− σ

s− 1/σ

)2

=

(
Fr,σ(y(s))

Fr,σ(y(sq))

)2
fe,ε(y(s))

fe,ε(y(qs))
.

Returning to the above expression of E(s), this implies that the function F given by (6.15)
is indeed a 2-decoupling function when the double angle condition (6.13) holds.

We can now prove some parts of Theorems 2.2 and 2.3.

Corollary 6.7. Assume that one of the angle conditions (1.7) or (1.8) holds. Then there
exist m ∈ {1, 2}, a rational function F and polynomials S and R such that

F (y)ϕm
1 (y) =

S

R
◦ w(y),

where w is the canonical invariant of Section 5. In particular, ϕ1 is D-algebraic, and
algebraic if β/π ∈ Q.

Proof. Let F be the decoupling function of Theorem 6.6. The function Fϕm
1 is an invariant

(Lemma 6.3). By Proposition 4.1, the function ϕ1 grows at most polynomially at infinity,
and the same thus holds for Fϕm

1 . Proposition 5.4 thus applies to Fϕm
1 , and gives the

expression of ϕm
1 . The algebraic/differential properties of ϕ1 come from those of w

(Proposition 5.2) and classical closure properties.

In the next two sections, we will make the expression of ϕm
1 completely explicit, by

describing the roots of S and R in terms of the parameters of the model. We will derive
from these expressions necessary and sufficient conditions for D-finiteness, algebraicity
and rationality of ϕ1. Since every pole or root of S/R comes from a pole or root of F or
ϕ1 lying in GR, we need to clarify how many roots or poles of the function Fr,σ defined
by (6.9) lie in GR. In the following lemma, we focus on those that lie in GR. Indeed, since
all roots and poles of Fr,σ are real, lying on the curve R simply means being equal to
y(−1). For σ ∈ C and a, b ∈ Z, it will be convenient to define the numbers m+(σ; a, b) and
m−(σ; a, b) by:

m±(σ; a, b) = ]
{
j : a 6 j 6 b and σq±j = −1

}
. (6.19)

Note that m±(σ; a, b) = 0 if b < a.

Lemma 6.8. Let σ = eiω be a complex number of modulus 1. For r > 0, the number of
roots of the polynomial Fr,σ(y) = Pr,σ(y) that lie in the open domain GR is⌊

ω

2π
− 1

2

⌋
−
⌊
ω

2π
− 1

2
− r

β

π

⌋
−m−(σ; 0, r − 1).
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For r 6 0, the function Fr,σ(y) = 1/Qr,σ(y) is the reciprocal of a polynomial, and the
number of poles of Fr,σ(y) that lie in the open domain GR is⌊

ω

2π
− 1

2
− r

β

π

⌋
−
⌊
ω

2π
− 1

2

⌋
−m+(σ; 1, |r|).

Proof. First, we note that, by definition of the parametrization (3.7),

y(s) ∈ R ⇐⇒ arg(s) ∈ {π, π + 2β} mod 2π (6.20)

y(s) ∈ GR ⇐⇒ arg(s) ∈ (π, π + 2β) mod 2π, (6.21)

where the second equation uses the fact that y(s) is a negative real when s ∈ ei(π+β)R+.
In other words, the preimage by y of R is R− ∪ e2iβR− and the preimage by y of GR is
the green/shaded area in Figure 5 (in particular, y(−eiβ) = y− ∈ GR).

Hence, when r > 0, the question is to determine how many of the points σq−j , for
0 6 j 6 r − 1, have their argument in (π, π + 2β) modulo 2π. This argument is ω − 2jβ.

This kind of counting problem is standard in the study of Sturmian or mecanical
sequences [40, Chap. 2]. Denoting by {x} := x− bxc the fractional part of x, we want to
determine

]

{
j : 0 6 j < r :

{
ω

2π
− 1

2
− j

β

π

}
∈ (0, β/π)

}
.

Let us begin by counting those values of j for which{
ω

2π
− 1

2
− j

β

π

}
∈ [0, β/π). (6.22)

Observing that the difference⌊
ω

2π
− 1

2
− j

β

π

⌋
−
⌊
ω

2π
− 1

2
− (j + 1)

β

π

⌋
takes values in {0, 1}, and equals 1 if and only if (6.22) holds, we conclude that

]

{
j : 0 6 j < r :

{
ω

2π
− 1

2
− j

β

π

}
∈ [0, β/π)

}
=

r−1∑
j=0

(⌊
ω

2π
− 1

2
− j

β

π

⌋
−
⌊
ω

2π
− 1

2
− (j + 1)

β

π

⌋)

=

⌊
ω

2π
− 1

2

⌋
−
⌊
ω

2π
− 1

2
− r

β

π

⌋
.

We need to subtract the number of j for which the fractional part shown in (6.22) takes
the value 0, which is equivalent to saying that σq−j = −1. This proves the lemma for
r > 0.

When r < 0, the result follows by observing that the poles of Fr,σ are the zeroes of
F−r,σq−r (see (6.10)) and applying the above result, together with m−(σq

−r, 0, r − 1) =

m+(σ, 1, |r|).

7 Expression of the Laplace transform when α ∈ Z+ πZ/β

In this section, we assume that the simple angle Condition (1.7) holds. We choose an
integer r such that s1 = qrs2, and denote by F the 1-decoupling function of Theorem 6.6.
By Corollary 6.7, the function Fϕ1 can be written (S/R) ◦ w for some relatively prime
polynomials S and R. In this section, we determine the degrees and roots of these
polynomials.
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Returning to Lemma 3.4 which gives the values of s1 and s2, we see that the choice
of r such that s1 = qrs2 defines an integer k such that

δ + ε = (1− r)β + (1 + k)π.

Equivalently, given the definition (1.1) of α,

δ + ε− π − β = β(α− 1) = kπ − rβ. (7.1)

If q is not a root of unity, that is, if β/π 6∈ Q, then the choice of r and k is unique.
Otherwise, write β = nπ/d, with n and d relatively prime and 0 < n < d. Then if (r, k)
is a solution, all other solutions are of the form (r + jd, k + jn), for j ∈ Z. In particular,
there always exist solutions such that |r| < d. What follows holds for any choice of r, but
if we impose that |r| < d when β = nπ/d, then all numbers m± that occur in the results
of this section will be 0 or 1.

7.1 Preliminaries

We begin with a simple lemma that describes the behaviour of Fϕ1 at infinity.

Lemma 7.1. There exists a constant κ 6= 0 such that

(ϕ1F )(y) ∼
y→∞

κyk
π
β .

Proof. Recall from (4.3) that ϕ1(y) grows like yα−1 at infinity. Since α − 1 = k π
β − r

(see (7.1)) and F (y) = Fr,s1(y) ∼
y→∞

yr (see (6.9)), the result follows.

We now apply Lemma 6.8 to the decoupling function F = Fr,s1 , to determine how
many poles and roots of F lie in GR. When r > 0 (resp. r < 0), we write F = P (resp.
F = 1/Q) to lighten the notation Pr,s1 (resp. 1/Qr,s1). Recall the notation m±(σ; a, b)

defined in (6.19).

Lemma 7.2. Let us write as before δ + ε = (1 − r)β + (1 + k)π. Then either r < 0 and
k < 0, or r > 0 and k > 0. The 1-decoupling function F given in (6.14) is rational with
real roots and poles.

1. If r > 0, so that F (y) = P (y), the number of roots of F (counted with multiplicity)
lying in the open region GR (or equivalently in (−∞, y(−1)) = (−∞, Y ±(x−))) is:

rF := k + 12β−2ε−θ>0 −m−(s1; 0, r − 1).

2. If r < 0, so that F (y) = 1/Q(y), the number of poles of F lying in GR is

pF := −k − 12β−2ε−θ>0 −m+(s1; 1, |r|).

If q is not a root of unity, the numbers m± that occur in this lemma are 0 or 1.
Otherwise, as discussed above, we can always choose |r| < d if β = nπ/d, and then this
property still holds.

Proof. Recall from (2.19) that 0 < δ+ ε− β < π. This implies that r cannot be 0, and that
r < 0 implies k < 0, while r > 0 implies k > 0.

Now recall that F = Fr,s1 , and let us apply Lemma 6.8 with σ = s1, or equivalently

ω = π + 2β − 2ε− θ = −π + 2δ − θ + 2rβ − 2kπ.
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From the first expression of ω, we derive⌊
ω

2π
− 1

2

⌋
=

⌊
2β − 2ε− θ

2π

⌋
= −12β−2ε−θ<0. (7.2)

Indeed, the first assumption in (2.19), together with the fact that δ > 0 and θ < π,
implies:

−1 <
δ − θ − 2π

2π
<

2δ − θ − 2π

2π
<

2(β − ε)− θ

2π
<

θ

2π
<

1

2
.

Moreover, the second expression of ω given above leads to⌊
ω

2π
− 1

2
− r

β

π

⌋
=

⌊
−k − 1 +

2δ − θ

2π

⌋
= −k − 1, (7.3)

since 2δ > θ by (2.19), and δ < π. Then Lemma 6.8 gives the announced expressions for
the number of roots of Q and P lying in GR.

7.2 Expression of ϕ1

We can now precisely describe the polynomials S and R such that Fϕ1 = S
R ◦w. Recall

that w is the canonical invariant defined in (5.7).

Theorem 7.3. Let us assume that Condition (1.7) holds, that is, α ∈ Z+ πZ/β, and let
k, r ∈ Z be chosen so that δ + ε = (1− r)β + (1 + k)π. Recall that r 6= 0. Let F = Fr,s1 be
the decoupling function of Theorem 6.6, defined by (6.9). Depending on the sign of r,
we have F = P (when r > 0) or F = 1/Q (when r < 0), where P and Q are (real-rooted)
polynomials of degree |r|.

The Laplace transform ϕ1 defined by (2.14) can be meromorphically continued to
C \ [y+,∞). Moreover,

(1) if r < 0, then k < 0 and

ϕ1(y) =
Q(y)

R(w(y))
,

where R is a polynomial of degree |k| whose roots (taken with multiplicity) are

• the w(y(s1qj)) for j = 1, . . . , |r| such that y(s1qj) ∈ GR,

• plus w(y(s1)) if 2β − 2ε− θ > 0,

• and finally w(y(−1)) = −1, with multiplicity m+(s1; 0, |r| − 1).

(2) if r > 0, then k > 0 and

ϕ1(y) =
S(w(y))

P (y)
,

where S is a polynomial of degree k whose roots (taken with multiplicity) are

• the w(y(s1q−j)), for j = 1, . . . , r − 1 such that y(s1q−j) ∈ GR,

• plus w(y(s1)) if y(s1) < y(−1) and 2β − 2ε− θ 6 0,

• and finally w(y(−1)) = −1, with multiplicity m−(s1; 1, r − 1).

In particular, ϕ1 is always D-algebraic. It is D-finite if and only if either β/π ∈ Q or
α ∈ −N0 +

π
βZ. It is algebraic if and only if β/π ∈ Q or α ∈ −N0. It is rational if and only

if α ∈ −N0. Finally, 1/ϕ1 is D-finite if and only if β/π ∈ Q or α ∈ −N0 ∪ (N+ π
βZ).
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Remarks
1. As discussed earlier, there is always a choice of r that gives the value 0 or 1 to the
multiplicities m±(s1; a, b) that occur in the theorem.
2. The above theorem characterizes the polynomials R and S up to multiplicative
constants that can be adjusted thanks to the value ϕ1(0) given in (2.17). Thus we can
compute ϕ1(y) explicitly, using the simple characterization of points s such that y(s) ∈ GR
given by (6.21). Several examples are worked out in Section 7.3.

Proof of Theorem 7.3. By Corollary 6.7, the function Fϕ1 is an invariant. We will con-
struct two polynomials R and S such that Fϕ1 × (R/S)(w), which is still an invariant,
has no pole in GR and has a finite limit at infinity. Proposition 5.4 will then allow us to
conclude that it is a constant.

An observation. We begin with a useful observation, which relies on the properties
of the map w listed in Lemma 5.3. Consider a rational function H(z), and the function
H(w(y)), which is well defined on GR. Then w induces a bijection between the roots
(resp. poles) of H ◦ w lying in GR and the roots (resp. poles) of H lying away from the
cut (−∞,−1]. This bijection preserves the multiplicity. Moreover, z0 = −1 is a root (resp.
pole) of H if and only if y0 := w−1(−1) = y(−1) is a root (resp. pole) of H ◦ w, and the
multiplicity of y0 in H ◦ w is twice the multiplicity of z0 in H. Finally, if H has no root
(resp. pole) in (−∞,−1), then H ◦ w has no root (resp. pole) on R \ {y(−1)}.
First case: r < 0. Then k < 0 and F = 1

Q . As explained above, we will list the poles

of Fϕ1 lying in GR to construct the polynomial R. Recall that all these poles are real.
We refer to (6.9) for the expression of F , and to Proposition 4.1 for the properties of ϕ1.
First, F has pF poles in GR, where pF is given by Lemma 7.2. Moreover, ϕ1 has a pole
in GR if and only if 2β − 2ε− θ > 0. This pole is then simple, and located at y(s1). Now,
the multiplicity of y(−1) = Y ±(x−) as a pole of F is

]
{
j : 1 6 j 6 |r|, s1qj ∈ {−1,−q}

}
= ]

{
j : 1 6 j 6 |r|, s1qj = −1

}
+ ]
{
j : 0 6 j < |r|, s1qj = −1

}
= 2]

{
j : 0 6 j < |r|, s1qj = −1

}
+ 1s1q−r=−1−1s1=−1

= 2m+(s1; 0, |r| − 1)− 1s1=−1,

as s1q|r| = s2 is never equal to −1 (see Lemma 3.4). This multiplicity is not always
even, but we should remember that ϕ1 has a (simple) pole at y(−1) if and only if
2β − 2ε− θ = 0, that is, if s1 = −1. Consequently, the multiplicity of y(−1) as a pole of
Fϕ1 is 2m+(s1; 0, |r| − 1).

These considerations lead us to introduce the polynomial R defined (up to a multi-
plicative constant) in the theorem. Its degree is

pF + 12β−2ε−θ>0 +m+(s1; 0, |r| − 1) = −k.

We have used again the fact that s1q|r| 6= −1 and that s1 = −1 ⇔ 2β − 2ε− θ = 0. Now
consider the invariant I := (Fϕ1)×R(w). By the above observation, it has no pole in GR.
Now recall that w(y) behaves like yπ/β at infinity, and Fϕ1(y) as ykπ/β (Lemma 7.1).
Given that R has degree −k, we conclude that I is bounded at infinity. By Proposition 5.4,
it is constant, and we can take S = 1 upon adjusting the multiplicative constant in R.

Second case: r > 0. Then k > 0 and F = P . This time we will construct a candidate
for S by examining the roots (rather than the poles) of Fϕ1 lying in GR ∪ {y(−1)}. The
decoupling function F has rF roots in GR, where rF is given by Lemma 7.2. Only one
of these roots, namely y(s1), is likely to be cancelled by a pole of ϕ1 in the product Fϕ1.
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This happens if and only if 2β− 2ε− θ > 0. Now, the multiplicity of y(−1) as a root of F is

]
{
j : 0 6 j < r, s1q

−j ∈ {−1,−q}
}

= ]
{
j : 0 6 j < r, s1q

−j = −1
}
+ ]
{
j : 1 6 j 6 r, s1q

−j = −1
}

= 2]
{
j : 1 6 j < r, s1q

−j = −1
}
+ 1s1=−1 + 1s1q−r=−1

= 2m−(s1; 1, r − 1) + 1s1=−1,

by the same arguments as in the case r < 0. This multiplicity is not always even, but we
should remember that ϕ1 has a (simple) pole at y(−1) if and only if s1 = −1. Consequently,
the multiplicity of y(−1) as a root of Fϕ1 is 2m−(s1; 1, r − 1). These considerations lead
us to introduce the polynomial S described in the theorem. Its degree is

rF − 12β−2ε−θ>0 +m−(s1; 1, r − 1) = k.

Now consider the invariant Fϕ1/S(w). By construction, it has no pole in GR. We can
argue as in the previous case to prove that it is bounded at infinity. Hence, it is constant
by Proposition 5.4.

Now that we have given expressions for ϕ1, its meromorphicity on C \ [y+,∞) follows
from the fact that the canonical invariant w is analytic on this domain. Moreover, ϕ1 is
D-algebraic because w is D-finite.

Let us now discuss the other differential/algebraic properties of ϕ1, starting from
rational cases. If k = 0, that is, α ∈ −N0, then ϕ1 is the reciprocal of a polynomial,
hence a rational function. Conversely, if ϕ1 is rational, then (4.3) implies that α is an
integer, and thus belongs to −N0 since we have assumed α < 1. This concludes the
characterization of rational cases, and we now assume that k 6= 0. It then follows from
the expressions of ϕ1 that if ϕ1 is algebraic then so is w, which forces β/π ∈ Q by
Proposition 5.2. Conversely, if β/π ∈ Q then w is algebraic and so is ϕ1. Finally, the
characterization of D-finite cases stems from Proposition 5.2. Indeed, ϕ1 is D-finite if
and only if (S/R)(w) is D-finite, and R is non-trivial as soon as r < 0. Hence ϕ1 is D-finite
if and only if either β/π ∈ Q or r > 0. The latter condition translates into α ∈ −N0 +

π
βZ.

A similar argument proves that 1/ϕ1 is D-finite if and only if β/π ∈ Q, or r < 0, or
k = 0, which translates into the conditions stated in the theorem.

7.3 Examples

We now give five applications of Theorem 7.3. We start with the three already known
cases mentioned in Section 2.3 and illustrated in Figure 4. Then we detail an algebraic
case, and finally a D-finite one. Recall that we choose integers r and k such that

δ + ε = (1− r)β + (1 + k)π.

7.3.1 The skew symmetric case

The model is said to be skew symmetric if δ + ε = π, that is, α = 0. It can be shown
thanks to (2.2) and (2.11) that this is equivalent to

2σ12 =
r21
r11

σ11 +
r12
r22

σ22.

One can take in this case r = 1 and k = 0. Then Theorem 6.6 gives the decoupling
function P (y) = y − y(s1). Theorem 7.3(2) implies that for some constant κ,

ϕ1(y) =
κ

P (y)
=
y(s1)ϕ1(0)

y(s1)− y
,
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where ϕ1(0) is given by (2.17) and y(s1) by Proposition 4.1.
If we invert the Laplace transform, we find that the density of the invariant measure ν1

is exponential. This result is very well known and can be found for instance in [29, 27, 13].
Note that [27] actually contains a higher dimensional version of this result.

7.3.2 The Dieker and Moriarty condition [14]

It reads α = δ+ε−π
β ∈ −N0 and generalizes the previous case. We can take r = 1− α > 0

and k = 0. The decoupling function F (y) = Fr,s1 is given by (6.9), and it is a polynomial
P (y). Theorem 7.3(2) implies that for some constant κ,

ϕ1(y) =
κ

P (y)
.

When all roots of P are simple, we obtain by inverting the Laplace transform that the
density of ν1 is a sum of exponentials. In fact, we can show using (6.9) and the expression
of s1 given in Lemma 3.4 that P has a multiple root if and only if 2ε+ θ + jβ = 0 mod π

for some j ∈ J0, 2r − 4K. Equivalently, since α = −r + 1, this is equivalent to saying that
θ − 2δ − jβ = 0 mod π for some j ∈ J2,−2αK. Note that Dieker and Moriarty prove that
the density of ν1 is a sum of exponentials under the (slightly stronger) assumption that
θ − 2δ − jβ 6= 0 mod π for all j ∈ J0,−2αK (this is equivalent to their condition “θ ∈ Θl”

occurring in [14, Thm. 1]).
A double pole occurs for instance when δ = π − ε− β (so that α = −1 and r = 2) and

θ = π − 2ε. Then s1 = q, y(s1) = y(q) = y(1) = y(s1q
−1), and

ϕ1(y) =
y(1)2ϕ1(0)

(y(1)− y)2
.

Hence the density of the invariant measure ν1 is, up to a multiplicative constant,
p1(z) = ze−y(1)z and ν1 is a Gamma/Erlang distribution. An example satisfying the
angle conditions (2.19) of the paper is (β, δ, ε, θ) = (5/16, 5/16, 3/8, 1/4)π.

7.3.3 The orthogonal case

In this case R is a diagonal matrix, or equivalently δ = ε = β. Thus we can take
r = −1 and k = −1. The decoupling function Fr,s1 = 1/Q of Theorem 6.6 reads
F = 1/(y − y(s1q)) = 1/(y − y(s2)). Since γ2(x, y) = r22y in the orthogonal case, we
have y(s2) = 0 by definition of s2. Hence Q(y) is simply y. Theorem 7.3(1) gives
R(w(y)) = κ(w(y)− w(y(s2))) = κ(w(y)− w(0)) for some constant κ. Using the identity
ϕ1(0) = −µ1/r11 derived from (2.17), we obtain

ϕ1(y) =
Q(y)

R(w(y))
= − µ1

r11

w′(0)y

w(y)− w(0)
,

which is the main result of [22]. Note that the term r11 does not appear in [22], because
the reflection matrix is taken to be the identity therein.

7.3.4 An algebraic case

As stated in Theorem 7.3, under the angle condition α ∈ Z + πZ/β, the function ϕ1 is
algebraic if and only if either α is an integer (this is the rational case, already discussed
above) or β/π is rational. So let us assume that β = nπ/d, with n and d coprime and
0 < n < d. In this case Tπ/β and w are algebraic of degree (at most) n. Observe that if
n = 1, the angle condition simply reads α ∈ Z, so that we are again in a rational case. So
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let us assume that n = 2 and d = 3, so that β = 2π/3. Then the angle condition requires
α to be a half-integer, say α = 1/2, that is, δ + ε = 4π/3. Then we can take k = r = −1,
and ϕ1(y) has the following form:

ϕ1(y) = κ
y − y(s1q)

w(y)− w(y(s1qe))
,

where e = 1 if 2β − 2ε− θ < 0 and e = 0 otherwise. It is a quadratic function of y, since
Tπ/β = T3/2 is itself quadratic:

T3/2(x) = (2x− 1)

√
1 + x

2
.

One particularly interesting case is θ = 2β − 2ε. Then s1 = −1 (see Lemma 3.4),

y(−1) = y(−q) and w(y(−1)) = −1. It is convenient to introduce u =
√

y+−y
y+−y− , which

yields

w(y) = T3/2(2u
2 − 1) = u(4u2 − 3) and w(y) + 1 = (1 + u)(1− 2u)2.

When y = y(−1), we have w(y) = −1, which gives 2u2 − 1 = −1/2. Hence the numerator
of ϕ1(y), namely y−y(−q) = y−y(−1), is 1−4u2 (up to a multiplicative constant). Finally,

ϕ1(y) = κ′
1− 4u2

(1 + u)(1− 2u)2
= κ′

1 + 2u

(1 + u)(1− 2u)
.

In Section 8.3, under the double angle condition, we will detail another case where
ϕ1 is quadratic while β/π 6∈ Q, with an even simpler expression of ϕ1 (see (8.24)). In
that case, we will give explicit expressions for the density of ν1 (and in fact of the whole
stationary distribution ν).

7.3.5 A D-finite example: recurrence for the moments

Suppose now that

δ + ε+ β = 2π, (7.4)

that is, α = π/β − 1. Then we can take r = 2 et k = 1. Applying Theorems 6.6 and 7.3,
we obtain

ϕ1(y) = κ
w(y)− w0

(y − y(s1))(y − y(s1/q))
,

where the constant κ can be derived from the normalisation (2.17), and

w0 =


w(y(s1/q)) if y(s1/q) ∈ GR,

w(y(s1)) if y(s1) < y(−1) and 2β − 2ε− θ 6 0,

w(y(−1)) = −1 if s1 = −q.

These three cases are those of Theorem 7.3. Using (6.21) and the expression of s1
in Lemma 3.4, as well as (7.4) and the basic conditions (2.19), they can be rewritten
respectively as

2ε+ θ < 2π, 2π < 2ε+ θ, and 2ε+ θ = 2π.

These three cases actually occur, for instance with the three following values of (β, δ, ε, θ):

(2/3, 5/6, /2, 1/4)π, (2/3, 4/9, 8/9, 1/4)π, (2/3, 7/12, 3/4, 1/2)π.
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Starting from the expression (5.7) of w in terms of Ta (with a = π/β), the differential
equation (5.1) satisfied by Ta leads to a (non-homogeneous) second order linear differen-
tial equation with polynomial coefficients in y satisfied by ϕ1(y). Upon expanding it in y,
it gives a linear recurrence relation between the moments

Mn =

∫
R+

tnν1(dt) = n![yn]ϕ1(y).

This recurrence is found to be of fourth order. Its coefficients are polynomials in n,
of degree 4. We refer to our Maple worksheet for details. We have used the Gfun
package [43] to derive the recurrence relation from the differential equation.

To give an explicit example, let us focus on the simplest case, that is, 2ε + θ = 2π,
where s1 = −q. Note that δ and ε are now completely determined in terms of the two
remaining angles, β and θ. Then

ϕ1(y) = κ
w(y) + 1

(y − y(−1))2
,

since y(−1) = y(−q) as y(s) = y(q/s). Equivalently, denoting z := 2y/(y+ − y−) and
using (3.7) and (5.7), we find

ϕ1(y) = κ′
Ta(c2 − z) + 1

(c2 − c1 − z)2
, (7.5)

with

a = π/β, c2 =
y+ + y−

y+ − y−
= cos(β − θ), c1 = cosβ.

The second expression of c2 follows from (3.5). Setting z = 0 gives

κ′ = ϕ1(0)
(c2 − c1)

2

Ta(c2) + 1
= ϕ1(0)

(c2 − c1)
2

1− cos(πθ/β)
,

where ϕ1(0) is given by (2.17). Then, writing

ϕ1(y) =
∑
n>0

Mn

n!
yn =

∑
n>0

M̃n

n!
zn,

that is,

Mn =
2n

(y+ − y−)n
M̃n,

we obtain the first two coefficients M̃n from (7.5):

M̃0 = ϕ1(0), M̃1 = ϕ1(0)

(
2

c2 − c1
− a sin(πθ/β)

sin(β − θ)(1− cos(πθ/β))

)
,

and then the sequence M̃n satisfies the following recurrence relation, valid for n > 0:

(
1−c22

)
(c1−c2)2 M̃n+2=a

2κ′1n=0+(c2−c1)
(
2
(
c1c2−2 c22+1

)
n+c1c2−5 c22+4

)
M̃n+1

+
((
c1

2−6 c1c2+6 c22 − 1
)
n2−3

(
2 c1c2−3 c22+1

)
n− (c1−c2)2 a2−2 c1c2+4 c22−2

)
M̃n

−n
(
2 (2 c2−c1)n2+3 c2n+2 (c1−c2) a2+c2

)
M̃n−1+n (n−1)

(
n2−a2

)
M̃n−2.
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8 Expression of the Laplace transform when α1, α2 ∈ Z+ πZ/β

We now assume that the double angle Condition (1.8) holds. Then by Theorem 6.6,
there exists a 2-decoupling function F , and by Corollary 6.7, the function Fϕ2

1 can be
written (S/R) ◦ w for some polynomials S and R. In this section we determine the
rational function S/R. The arguments are the same as in the previous section, but all
expressions are a bit heavier, as can be foreseen from the expression (6.15) of F . Recall
from (6.13) that we have chosen integers r1 and r2, and e1, e2, ε1, ε2 in {0, 1}, such that
si = (−1)εi

√
q eiqri for i = 1, 2, with

√
q = eiβ. Returning to Lemma 3.4, this defines two

integers k1 and k2 such that the arguments of s1 and s2 are respectively:

ω1 := π + 2β − 2ε− θ = (2r1 + e1)β − (2k1 + ε1)π, (8.1)

ω2 := −π + 2δ − θ = (2r2 + e2)β − (2k2 + ε2)π. (8.2)

Equivalently, given the definition (1.2) of α1 and α2,

1− α1 = ω1/β = 2r1 + e1 − (2k1 + ε1)
π

β
,

α2 = ω2/β = 2r2 + e2 − (2k2 + ε2)
π

β
.

(8.3)

Note that we now have

δ + ε =

(
1− r1 + r2 −

e1 − e2
2

)
β +

(
1 + k1 − k2 +

ε1 − ε2
2

)
π,

which should be compared to the condition δ + ε = (1− r)β + (1 + k)π of the previous
section.

As in the previous section, the numbers ri (and ei, and ki, and εi) are uniquely defined
when q is not a root of unity. Otherwise, if β = πn/d with 0 < n < d, we may always
choose each ri such that 2|ri| < d. Such a choice of ri will sometimes simplify certain
expressions, but what follows holds for any choice.

In the previous section, we had either (r < 0 and k < 0), or (r > 0 and k > 0). The
counterpart of these properties reads as follows.

Lemma 8.1. If r1 6 0 then 2k1 + ε1 6 0, and in particular k1 6 0. If r2 6 0 then k2 6 0.
If 2r1 + e1 > 0 (and in particular if r1 > 0), then k1 > 0. If r2 > 0 then k2 > 0.

Proof. We will give lower and upper bounds on the arguments ωi defined by (8.1)
and (8.2), using the angle assumptions (2.19) and the fact that the angles β, θ, δ and ε
lie in (0, π).

First, since θ < β,
ω1 = π + 2β − 2ε− θ > π + β − 2ε.

Moreover, since δ > θ > 0,

ω2 = −π + 2δ − θ > −π + δ > −π.

Let us denote r̄i = 2ri+ ei and k̄i = 2ki+ εi, for i = 1, 2. Then ω1 = r̄1β− k̄1π > π+β− 2ε

rewrites as (r̄1 − 1)β + 2ε > (k̄1 + 1)π. If r1 6 0, that is, r̄1 6 1, this implies that k̄1 6 0,
because ε < π. Analogously, ω2 = r̄2β − k̄2π > −π rewrites as r̄2β > (k̄2 − 1)π. If r2 6 0,
that is, r̄2 6 1, this implies that k̄2 6 1, that is, k2 6 0.

Now, given that θ > β − ε, we have

ω1 < π + β − ε < π + β,

which implies (r̄1 − 1)β < (k̄1 + 1)π. Hence if r̄1 > 0, then k̄1 > 0, that is k1 > 0. Finally,
we have ω2 < −π + 2δ < π, which gives r̄2β < (k̄2 + 1)π. Hence if r̄2 > 0, that is, r2 > 0,
then k̄2 > 0, that is, k2 > 0.
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8.1 Preliminaries

We begin with a simple lemma that describes the behaviour of Fϕ2
1 at infinity.

Lemma 8.2. There exists a constant κ 6= 0 such that

(Fϕ2
1)(y) ∼

y→∞
κ y(2k1−2k2+ε1−ε2)

π
β .

Proof. The arguments are the same as in the proof of Lemma 7.1. Ignoring multiplicative
factors, the behaviour at infinity of ϕ1(y) is yα−1, where now α = (δ + ε− π)/β satisfies

α− 1 =
1

2

(
2r2 − 2r1 + e2 − e1 + (2k1 − 2k2 + ε1 − ε2)

π

β

)
.

The behaviour at infinity of the decoupling function F (y) of (6.15) is y2r1−2r2+e1−e2 , and
the result follows.

Our next lemma will be used to prove that certain polynomials have no common roots,
under an additional assumption.

Lemma 8.3. Assume that the simple angle condition (1.7) does not hold, that is, s1/s2 6∈
qZ. Then there exist no integers i and j such that y(s1qi) = y(s2q

j).

Proof. Recall that y(s) = y(s′) if and only if s′ = s or s′ = q/s. Hence if y(s1qi) = y(s2q
j),

then either s1/s2 ∈ qZ, or s1s2 ∈ qZ. Since s22 ∈ qZ, in both cases we would have
s1/s2 ∈ qZ, which we have excluded.

Let us denote, for i = 1, 2:

Fi = Fri,si , Pi = Pri,si , Qi = Qri,si . (8.4)

We now apply Lemma 6.8 to determine how many poles and roots of Fi lie in GR, for
i = 1, 2. Recall the definition of the numbers m±(σ; a, b) in (6.19).

Lemma 8.4. Define the integers k1 and k2 by (8.1) and (8.2).

• When r1 > 0, the number of roots of F1 = P1 (counted with multiplicity) lying in
the open region GR is

rF1
:= k1 + 12β−2ε−θ>0 −m−(s1; 0, r1 − 1).

• When r1 6 0, the number of poles of F1 = 1/Q1 lying in GR is

pF1
:= −k1 − 12β−2ε−θ>0 −m+(s1; 1, |r1|).

• When r2 > 0, the number of poles of 1/F2 = 1/P2 lying in GR is

pF2 := k2 −m−(s2; 1, r2 − 1).

• When r2 6 0, the number of roots of 1/F2 = Q2 lying in GR is

rF2
:= −k2 −m+(s2; 1, |r2|).

If q is not a root of unity, then all the numbers m± occurring in this lemma equal 0
or 1. Otherwise, we may choose the ri’s so as to minimize |ri|, and then this property
still holds.
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Proof. We apply Lemma 6.8, with ω1 and ω2 given by (8.1) and (8.2). We use the following
four identities. The first two have already been justified in the proof of Lemma 7.2, and
the other two relie on the fact that eiβ

2π + 1−εi
2 ∈ (0, 1) for i = 1, 2 (because 0 < β < π and

{ei, εi} ⊂ {0, 1}):⌊
ω1

2π
− 1

2

⌋
=

⌊
2β − 2ε− θ

2π

⌋
= −12β−2ε−θ<0 as in (7.2),⌊

ω2

2π
− 1

2

⌋
=

⌊
2δ − θ

2π
− 1

⌋
= −1 as in (7.3),⌊

ω1

2π
− 1

2
− r1

β

π

⌋
=

⌊
−k1 − 1 +

e1β

2π
+

1− ε1
2

⌋
= −k1 − 1,⌊

ω2

2π
− 1

2
− r2

β

π

⌋
=

⌊
−k2 − 1 +

e2β

2π
+

1− ε2
2

⌋
= −k2 − 1.

This gives the announced formulas. We have used the fact that s2 6= −1 (see Lemma 3.4)
to replace m−(s2; 0, r2 − 1) by m−(s2; 1, r2 − 1) in the expression of pF2 .

8.2 Expression of ϕ1

We can now describe precisely the fraction S/R such that Fϕ2
1 = S

R ◦ w. In order to
avoid handling four different cases depending on the signs of r1 and r2, we will use a
compact form. In the case where α ∈ Z + π/βZ, we can indeed make the expression
of ϕ1 given in Theorem 7.3 more compact by writing

ϕ1(y) =
Q(y)

P (y)

S(w(y))

R(w(y))
,

where P = Pr,s1 , Q = Qr,s1 , and

either (P = 1 and S = 1) or (Q = 1 and R = 1) .

When α1, α2 ∈ Z + π/βZ, we will express ϕ1 in an analogous compact form. First, for
i = 1, 2 we use again the notation (8.4), as well as fi = fei,εi . We further denote

a− = e1ε1 − e2ε2 and a+ = e1(1− ε1)− e2(1− ε2), (8.5)

so that
f1(y)

f2(y)
= (y − y−)a

−
(y − y+)a

+

. (8.6)

Also, let
b = ε1(1− e1)− ε2(1− e2). (8.7)

Observe that a+, a− and b take their values in {−1, 0, 1}.
We finally introduce four polynomials denoted Ri and Si, for i = 1, 2, which we define

up to a constant factor by giving the list of their roots. The values of their degrees easily
follow from Lemma 8.4, as will be established in the proof of Theorem 8.5 below.

• If r1 6 0, we take R1 to be a polynomial of degree −k1 whose roots (taken with
multiplicity) are

– the w(y(s1qj)), for j = 1, . . . , |r1| such that y(s1qj) ∈ GR,

– plus w(y(s1)) if 2β − 2ε− θ > 0,

– plus w(y(−1)) = −1 with multiplicity m+(s1; 0, |r1|).

If r1 > 0, we take R1 to be constant.
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• If r1 > 0, we take S1 to be a polynomial of degree k1 whose roots are

– the w(y(s1q−j)), for j = 1, . . . , r1 − 1 such that y(s1q−j) ∈ GR,

– plus w(y(s1)) if y(s1) < y(−1) and 2β − 2ε− θ 6 0,

– plus w(y(−1)) = −1 with multiplicity m−(s1; 1, r1 − 1).

If r1 6 0, we take S1 to be constant.

• If r2 6 0, we take R2 to be a polynomial of degree −k2 whose roots are

– the w(y(s2qj)), for j = 1, . . . , |r2|, such that y(s2qj) ∈ GR,

– plus w(y(−1)) = −1 with multiplicity m+(s2; 1, |r2|).

If r2 > 0, we take R2 to be constant.

• If r2 > 0, we take S2 to be a polynomial of degree k2 whose roots are

– the w(y(s2q−j)) for j = 0, . . . , r2 − 1, such that y(s2q−j) ∈ GR,

– plus w(y(−1)) = −1 with multiplicity m−(s2; 1, r2 − 1).

If r2 6 0, we take S2 to be constant.

Theorem 8.5. Let us assume that Condition (1.8) holds, that is, α1, α2 ∈ Z+ πZ/β. Let
the integers ri, ki, ei, εi, for i = 1, 2, satisfy (8.1) and (8.2). The 2-decoupling function of
Theorem 6.6 reads:

F =

(
P1

Q1
· Q2

P2

)2

· f1
f2
,

and, if ϕ1 denotes the Laplace transform defined by (2.14), the function Fϕ2
1 is an

invariant.

The function ϕ1 can be meromorphically continued to C \ [y+,∞). Moreover, the
multiplicative constants in the polynomials Ri and Si defined above can be chosen so
that

ϕ1(y) =

(
Q1

P1
· P2

Q2

)
(y) ·

(
S1

R1
· R2

S2

)
(w(y)) ·

√
1− w(y)

y − y−

a−

·
√
1 + w(y)

b√
y+ − y

a+ , (8.8)

where a+, a− and b are defined by (8.5) and (8.7) and take their values in {−1, 0, 1}.
The function ϕ1 is always D-algebraic. It is D-finite if

β/π ∈ Q or {α1, α2} ⊂ Z ∪
(
−N+

π

β
Z

)
, (8.9)

algebraic if

β/π ∈ Q or {α1, α2} ⊂ Z, (8.10)

and rational if α ∈ −N0. Moreover, when {α1, α2} ⊂ Z, then ϕ2
1 is actually rational.

If the simple angle condition (1.7) does not hold, that is, s1/s2 6∈ qZ, Condition (8.9)
(resp. (8.10)) is also necessary for ϕ1 to be D-finite (resp. algebraic), and moreover ϕ1 is
never rational.

Several explicit examples are worked out in Section 8.3.
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Proof of Theorem 8.5. We consider each element of the decoupling function F separately,
starting with P2 and Q2. We remind the reader of the preliminary observation made at
the beginning of the proof of Theorem 7.3.

• When r2 > 0, the fraction 1/F2 = 1/P2 has pF2
poles in GR, where pF2

is given by
Lemma 8.4. Moreover, the multiplicity of y(−1) as a pole of 1/P2 is

]
{
j : 0 6 j < r2, s2q

−j ∈ {−1,−q}
}

= ]
{
j : 0 6 j < r2, s2q

−j = −1
}
+ ]
{
j : 1 6 j 6 r2, s2q

−j = −1
}

= 2]
{
j : 1 6 j < r2, s2q

−j = −1
}
+ 1s2q−r2=−1

= 2m−(s2, 1, r2 − 1) + 1s2q−r2=−1,

since s2 never equals −1 by Lemma 3.4. (Recall that m−(s2; a, b) = 0 if a > b.) This leads
us to introduce the polynomial S2 defined above.

pF2 +m−(s2; 1, r2 − 1) = k2.

By construction, S2(w(y))/P2(y) has at most one pole in GR, namely a simple pole at
y(−1) if s2q−r2 = (−1)ε2

√
q e2 = −1, or equivalently if ε2(1 − e2) = 1 (recall that q 6= 1).

Consequently, (
S2(w(y))

P2(y)

)2

(w(y) + 1)ε2(1−e2) (8.11)

has no pole in GR.
• When r2 6 0, the polynomial 1/F2 = Q2 has rF2

roots in GR, where rF2
is given by

Lemma 8.4. Moreover, the multiplicity of y(−1) as a root of Q2 is

]
{
j : 1 6 j 6 |r2|, s2qj ∈ {−1,−q}

}
= ]

{
j : 1 6 j 6 |r2|, s2qj = −1

}
+ ]
{
j : 0 6 j < |r2|, s2qj = −1

}
= 2]

{
j : 1 6 j 6 |r2|, s2qj = −1

}
− 1s2q−r2=−1

since s2 never equals −1 by Lemma 3.4. This leads us to introduce the polynomial R2

defined above. Its degree is

rF2 +m+(s2; 1, |r2|) = −k2.

By construction, Q2(y)/R2(w(y)) has at most one pole in GR, namely a simple pole at
y(−1) if s2q−r2 = −1, or equivalently if ε2(1− e2) = 1. Consequently,(

Q2(y)

R2(w(y))

)2

(w(y) + 1)ε2(1−e2) (8.12)

has no pole in GR.
• When r1 > 0, the polynomial F1 = P1 has rF1

roots in GR, where rF1
is given by

Lemma 8.4. If y(s1) < y(−1), one of them is y(s1), which cancels with the pole of ϕ1 at
this point when 2β − 2ε− θ > 0. Moreover, the multiplicity of y(−1) as a root of P1 is

]
{
j : 0 6 j < r1, s1q

−j ∈ {−1,−q}
}
=2]

{
j : 1 6 j < r1, s1q

−j = −1
}
+1s1=−1+1s1q−r1=−1.

Recall that ϕ1 has a (simple) pole at y(−1) if s1 = −1. This leads us to introduce the
polynomial S1 defined above. Its degree is

rF1
− 12β−2ε−θ>0 +m−(s1; 1, r1 − 1) = k1.
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By construction, P1(y)ϕ1(y)/S1(w(y)) has no pole in GR, but has a simple root at y(−1) if
s1q

−r1 = −1, or equivalently if ε1(1− e1) = 1. Consequently,(
P1(y)ϕ1(y)

S1(w(y))

)2
1

(w(y) + 1)ε1(1−e1)
(8.13)

has no pole in GR.
• When r1 6 0, the fraction F1 = 1/Q1 has pF1 poles in GR, where pF1 is given by

Lemma 8.4. Recall that ϕ1 also has a pole in GR, located at y(s1), if 2β − 2ε − θ > 0.
Moreover, the multiplicity of y(−1) as a pole of 1/Q1 is

]
{
j : 1 6 j 6 |r1|, s1qj ∈ {−1,−q}

}
= 2]

{
j : 0 6 j 6 |r1|, s1qj = −1

}
−1s1=−1−1s1q−r1=−1.

Recall that ϕ1 has a pole at y(−1) if s1 = −1. This leads us to introduce the polynomial
R1 defined above. Its degree is

pF1
+ 12β−2ε−θ>0 +m+(s1; 0, |r1|) = −k1.

By construction, ϕ1(y)R1(w(y))/Q1(y) has no pole in GR, but has a simple zero at y(−1)

if s1q−r1 = −1, or equivalently if ε1(1− e1) = 1. Consequently,(
ϕ1(y)R1(w(y))

Q1(y)

)2
1

(w(y) + 1)ε1(1−e1)
(8.14)

has no pole in GR.
We have now constructed polynomials Ri and Si from ϕ1, the Pi’s and the Qi’s. We

still need to investigate the term f1/f2, given by (8.6). Recall that y− lies in GR, but not
y+. Indeed, y(−1) 6 y+ by Lemma 3.5, and we cannot have y(−1) = y+ = y(

√
q) because

the only values s such that y(s) = y(−1) are −1 and −q, which are both distinct from
√
q.

Moreover, it follows from (5.8) that w(y−) = w(y(−eiβ)) = 1. This leads us to include a
factor (1− z)a

−
in S/R. By construction,

f1
f2

(y) · 1

(1− w(y))a− (8.15)

has no pole in GR.
So let us now define the rational function

S

R
(z) :=

(
S1

R1
(z)

R2

S2
(z)

)2

(1− z)a
−
(1 + z)b

where b = ε1(1− e1)− ε2(1− e2). It follows from the fact that the functions (8.11), (8.12),
(8.13), (8.14) and (8.15) have no pole in GR that Fϕ2

1 × (R/S)(w), which is an invariant,
has no pole in GR either. But the behaviour at infinity of (S/R)(z) is in zd, where

d = 2k1 − 2k2 + a− + b = 2k1 − 2k2 + ε1 − ε2.

Since w(y) behaves at infinity in yπ/β, Lemma 8.2 implies that Fϕ2
1 × (R/S)(w) has a

finite limit at infinity. It is thus constant by Proposition 5.4, and we have obtained an
explicit expression for ϕ2

1. Recall finally that both
√
1 + w(y) and

√
(1− w(y))/(y − y−)

are defined analytically on C \ [y+,∞) (see (5.4), (5.5) and the definition (5.7) of w in
terms of Tπ/β). The announced expression of ϕ1 follows, and ϕ1 is meromorphic on
C \ [y+,∞).

Let us now discuss the differential/algebraic nature of ϕ1. First, ϕ1 is D-algebraic, as
compositions of D-algebraic functions are D-algebraic.
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D-finiteness. Let us first assume that ϕ1 is D-finite. Then its square is D-finite as well,
or equivalently, (

S1

R1

R2

S2

)2

(w) · (1− w)
a−

(1 + w)
b (8.16)

is D-finite. By Proposition 5.2, either β/π ∈ Q (in which case ϕ1 is in fact algebraic), or
the rational function (

S1

R1

R2

S2

)2

(z) · (1− z)
a−

(1 + z)
b (8.17)

is a polynomial.
Let us now assume that s1/s2 6∈ qZ, and prove that the latter condition implies the

second part of (8.9). Recall that one of R1 and S1 (resp. R2 and S2) is always a constant,
and observe that all roots of R1 and S1 (resp. R2 and S2) are of the form w(y(s1q

j))

(resp. w(y(s2qj))) for some integer j such that y(s1qj) ∈ GR ∪ {y(−1)}. By Lemma 8.3,
y(s1q

i) 6= y(s2q
j) for all integers i, j, and since w is injective on GR∪{y(−1)} (Lemma 5.3),

we conclude that S1R2 and R1S2 have no common root. Since a− and b are at most 1,
while R1S2 is squared in (8.17), we conclude that if (8.17) is a polynomial, then

(i) R1 and S2 are constants,

(ii) if a− = −1 then 1 is a root of S1R2,

(iii) if b = −1 then −1 is a root of S1R2.

By definition of R1 and S2, the conditions (i) read respectively:

r1 > 0 or (r1 6 0 and k1 = 0) , (8.18)

and
r2 6 0 or (r2 > 0 and k2 = 0) . (8.19)

By Lemma 8.1, if r1 6 0 and k1 = 0 then ε1 = 0. Thus Condition (8.18) can be rewritten
as r1 > 0 or (r1 6 0 and k1 = ε1 = 0), or in simpler terms (r1 > 0 or k1 = ε1 = 0), which,
according to (8.3), translates into α1 ∈ −N+ π/βZ or α1 ∈ Z.

We will now combine (8.19) with the conditions (ii) and (iii) to prove that the same
holds for α2, which means that (r2 < 0 or k2 = ε2 = 0).

If a− = −1, so that ε2 = e2 = 1 or equivalently s2 = −qr2√q, we want one of the roots
of S1R2 to be 1 = w(y−) = w(y(−√

q)) = w(y(s2q
−r2)). By Lemma 8.3, and the injectivity

of w on GR, this value cannot be a root of S1. The description of R2 shows that it admits
1 as a root if and only if r2 < 0.

Similarly, if b = −1, so that ε2 = 1 and e2 = 0 or equivalently s2 = −qr2 , we want
−1 = w(y(−1)) = w(y(s2q

−r2)) to be a root of S1R2. Again, Lemma 8.3 and the injectivity
of w on GR ∪ {y(−1)} prevent −1 to be a root of S1. Moreover, −1 will be a root of R2 if
and only if r2 < 0.

Hence, it follows from Conditions (ii) and (iii) that if ε2 = 1, then r2 < 0. Thus we can
now complete (8.19) into

r2 < 0 or (r2 = 0 and ε2 = 0) or (r2 > 0 and k2 = ε2 = 0) .

By Lemma 8.1, if r2 = 0 then k2 = 0. Hence we can summarize the above conditions into
(r2 < 0 or k2 = ε2 = 0), that is, α2 ∈ −N+ π/βZ or α2 ∈ Z, as claimed in the theorem.

Conversely, assume that Condition (8.9) holds. If β/π ∈ Q, then ϕ1 is algebraic.
Otherwise,

(r1 > 0 or k1 = ε1 = 0) and (r2 < 0 or k2 = ε2 = 0) .

EJP 30 (2025), paper 1.
Page 42/68

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1257
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


On the stationary distribution of the SRBM: differential properties

Then we can check that the above conditions (i), (ii) and (iii) hold, so that (8.17) is a
polynomial. Moreover, all its roots have an even multiplicity, with the possible exceptions
of −1 and 1. But

√
1± w is D-finite (Proposition 5.2). Hence(

S1

R1

R2

S2

)
(w)

√
1− w

a−√
1 + w

b

is D-finite, and ϕ1 is D-finite as well.

Algebraicity. Let us first assume that ϕ1, or equivalently ϕ2
1, or Expression (8.16), is

algebraic. Then either w is algebraic, which means that β/π ∈ Q by Proposition 5.2, or
the fraction (8.17) is in fact a constant.

Let us now assume that s1/s2 6∈ qZ, and prove that the latter condition implies the
second part of (8.10). As already argued, S1R2 and R1S2 have no common root. This
forces the Ri’s and Si’s to be constants. That is, k1 = k2 = 0. Moreover, a− and b must
be zero. By definition of a− and b, this implies in particular that ε1 = ε2. If ε1 = ε2 = 1,
this forces moreover e1 = e2, but then s1/s2 = qr1−r2 ∈ qZ, a contradiction. Hence
ε1 = ε2 = k1 = k2 = 0, so that α1 and α2 are both in Z.

Conversely, assume that Condition (8.10) holds. If β/π ∈ Q, then w is algebraic and
so is ϕ1. If α1 and α2 are integers, that is, ε1 = ε2 = k1 = k2 = 0, then the Ri and Si are
constants and a− = b = 0. Hence (8.17) is a constant, ϕ2

1(y) is a rational function in y,
and ϕ1 is algebraic (of degree 2 at most).

Rationality. If ϕ1 is rational, then (4.3) implies that α is an integer. But then the simple
angle condition (1.7) holds. Conversely, we have already seen that if α is an integer
then ϕ1 is rational.

8.3 Examples

We now give three applications of Theorem 8.5, focussing on cases where ϕ1 is
algebraic, even if β is not a rational multiple of π. Indeed, we have seen that ϕ1 is
algebraic if α1 and α2 are both integers, that is, if we can choose ki = εi = 0 for i = 1, 2.
We focus here on this case, where, according to (8.3):

1− α1 = 2r1 + e1, α2 = 2r2 + e2. (8.20)

We assume that α1 and α2 are equal modulo 2, that is, e1 6= e2, otherwise α = (α1 + α2 +

1)/2 is an integer and we are in the rational case studied in Section 7. Hence α is here a
half-integer. The condition α < 1 translates into 2r2 + e2 < 2r1 + e1. As seen in the proof
of Theorem 8.5, the expression of ϕ1 does not involve w(y) and reduces to

ϕ1(y) =

(
Q1

P1
· P2

Q2

)
(y) ·

√
y+ − y

e2−e1
, (8.21)

because a− = b = 0 and a+ = e1 − e2. Recall that one of the polynomials P1 and Q1

(resp. P2 and Q2) is always a constant, and that the degree of Pi (resp. Qi) is max(0, ri)

(resp. max(0,−ri)). Observe that if ri < 0, then Qi contains a factor (y−y(siq−ri)), which
equals (y − y(

√
q)) = (y − y+) if ei = 1 (see (3.7)).

Let us be more explicit in four cases where the |αi| and |ri| are small, so that the
polynomials Pi and Qi have small degrees. We first study in detail the case α1 = α2 = 0,
for which we obtain an explicit expression of the density of the two-dimensional stationary
distribution of the SRBM in the quadrant. The other three cases are less detailed. By the
definition of α1 and α2, fixing these two values means prescribing two relations between
the four angles β, θ, δ and ε; see (1.2).

EJP 30 (2025), paper 1.
Page 43/68

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1257
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


On the stationary distribution of the SRBM: differential properties

8.3.1 The case α1 = α2 = 0

In this case α = 1/2, and the four angles are related by

θ = 2δ − π, β − θ = 2ε− π. (8.22)

Hence we can express all quantities either in terms of δ and ε, or in terms of θ and β.
Moreover, the assumptions {θ, β − θ} ⊂ (0, π) imply that

{δ, ε} ⊂ (π/2, π), with π < δ + ε < 3π/2. (8.23)

In terms of the original parameters Σ, R, and µ, we have

µ2
r12
r22

= µ1 +

√
∆

σ22
and µ1

r21
r11

= µ2 +

√
∆

σ11
.

Indeed, let us explain (for instance) why the first identity is equivalent to θ = 2δ − π.
Using (2.20), (2.21), and (2.22), this identity reads

− sin θ sin(β − δ) + sin δ sin(β − θ) = sinβ sin δ,

or equivalently,
sinβ (sin(δ − θ)− sin δ) = 0,

or finally sin(δ − θ) = sin δ = sin(π − δ). Given that 0 < θ < δ < π, this implies that either
δ − θ = π − δ (which is the desired identity), or that δ − θ = δ, which is impossible.

In light of (8.20), we have r1 = r2 = 0, e1 = 1 and e2 = 0. That is, s1 =
√
q and s2 = 1.

Then P1 = Q1 = P2 = Q2 = 1 (see (6.9)), and there exists a constant κ such that

ϕ1(y) =
κ√

y+ − y
=

ϕ1(0)√
1− y/y+

. (8.24)

It follows that the measure ν1/ϕ1(0) is a Gamma distribution of parameters 1/2 and 1/y+,
with density

p1(z2)

ϕ1(0)
=

√
y+

π
· e

−z2y
+

√
z2

for z2 > 0. Since an x/y-symmetry in the quadrant model exchanges α1 and α2, we also
have

ϕ2(x) =
κ′√

x+ − x
=

ϕ2(0)√
1− x/x+

. (8.25)

Using the functional equation (2.15), one can obtain the following algebraic expression
for the bivariate Laplace transform:

ϕ(x, y) =
κ0 (x̃+ ỹ)

x̃ỹ(x̃2 sin2 δ + ỹ2 sin2 ε− 2x̃ỹ sin δ sin ε cos(δ + ε)− sin2(δ + ε))
, (8.26)

where x̃ =
√
1− x/x+ and ỹ =

√
1− y/y+, and

κ0 = −2 sin δ sin ε cos(δ + ε) > 0.

This Laplace transform can be inverted explicitly to obtain the density p0(z1, z2) of the
stationary distribution. The form of ϕ(x, y), plus the use of normal variables, leads us to
consider

p̃0(z1, z2) := p0

(
detΣ√
∆σ22

z1,
detΣ√
∆σ11

z2

)
= p0

(
2 sin2δ

z1
x+

, 2 sin2ε
z2
y+

)
, (8.27)

where we recall that ∆ is defined by (2.9). We have used (3.5) and (8.22) to obtain the
second expression above.
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Proposition 8.6. When α1 = α2 = 0, the density of the stationary distribution of the
SRBM in the quadrant satisfies

p̃0(z1, z2) = κ
cos( θ−a

2 )√
|z|

exp

(
−2|z| cos2

(
θ − a

2

))
, (8.28)

where z = z1 + z2e
iβ and a = arg z ∈ (0, β). The integration constant is

κ =
2
√
2∆ sin δ sin ε√

π(detΣ)3/2 sin(β/2)
.

Equivalently, the stationary distribution of the SRBM in the corresponding β-wedge
has density q0(u, v), where, for ρ > 0 and a ∈ (0, β),

q0(ρ cos a, ρ sin a) = κ′
cos( θ−a

2 )
√
ρ

exp

(
−2|µ̃| ρ cos2

(
θ − a

2

))
, (8.29)

with |µ̃| given by (2.9) and

κ′ = κ∆−1/4(detΣ)3/4 =
|2µ̃|3/2 sin δ sin ε√

π sin (β/2)
.

In more explicit terms, the quantities occurring in (8.28) are

|z| =
√
z21 + z22 + 2z1z2 cosβ, and cos

(
θ − a

2

)
=

√
z1 cos θ + z2 cos(β − θ) + |z|

2|z|
.

The expression of q0 follows from the expression of p0 (and p̃0) via an elementary
calculation starting from (2.18), or equivalently,

q0(ρ cos a, ρ sin a) =
1

detT
p0
(
(ρ cos a, ρ sin a) t(T−1)

)
. (8.30)

In particular, in this calculation we evaluate p̃0 at a point (z1, z2) such that z := z1+e
iβz2 =√

∆
detΣ ρ e

ia.

In Appendix C, we prove the above proposition by checking that the Laplace transform
of density p0 is indeed ϕ. In a final appendix (Appendix E), only available on the arXiv
version of this paper [8], we perform the (much longer) inverse computation: that is, we
explain how to derive p0 from ϕ by inverse Laplace transformation. The same approach
might lead to explicit densities for the other algebraic cases that we briefly describe
below in Sections 8.3.2 to 8.3.4.

Remarks
1. The expression (8.28) of the density has already been established by Harrison [28,
Sec. 9] in the limit case where the covariance matrix is the identity (so that β = π/2),
µ2 = 0 (so that θ = 0), and the reflection angles are δ = π/2 and ε = 3π/4. Observe that
α1 = α2 = 0 indeed. Since we have assumed that µ2 < 0, this limit case is not covered
by our paper, but Harrison’s result shows that Proposition 8.6 still holds (there seems
however to be a typo in [28, Prop. 8], as the constant denoted K therein should probably
be divided by 2).

2. When (z1, z2) = (r cosω, r sinω), the above proposition gives

p0(z1, z2) =
c(ω)√
r

exp(−rb(ω)),
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for values b(ω) and c(ω) that depend on ω only. This exact expression matches the
asymptotic expression of p0(r cosω, r sinω) established, for ω fixed and r → ∞, in [21,
Thm. 4(1)]. For this reason, we may call the case α1 = α2 = 0 a pure asymptotic case.
In fact, we have originally guessed the value of p0 in this case by starting from its
asymptotic expression.

Let us now clarify the link between our expression of the function b(ω) and its
characterization given in [21, Thm. 4(1)]. It follows from the latter theorem that

rb(ω) = max
u∈R

(
(z1, z2) ·

(
x(eiu), y(eiu)

))
, (8.31)

where we recall that x(·) and y(·) are the coordinates of the uniformization of the kernel
curve, given by (3.7). On the other hand, if we return to our expression of p0(z1, z2),
written for (z1, z2) = (ρ cos a, ρ sin a) t(T−1) as in (8.30), we find

rb(ω) = 2|µ̃|ρ cos2
(
θ − a

2

)
= ρ

√
∆

detΣ
(1 + cos(θ − a)).

But, using the definition (3.7) of the parametrization of the kernel curve (written using
the normal form (3.8)), and the expression (2.3) of sinβ, we can rewrite the above
expression as

rb(ω) = x(eia)ρ
√
σ11 sin(β − a) + y(eia)ρ

√
σ22 sin a

= (z1, z2) ·
(
x(eia), y(eia)

)
,

because (z1, z2) = (ρ cos a, ρ sin a) t(T−1) reads (z1, z2) = ρ(
√
σ11 sin(β − a),

√
σ22 sin a).

This means that the maximum in (8.31) is reached at u = a. In [21, Sec. 4.2], the
maximizing point (x(eiu), y(eiu)) appears as a saddle point in the asymptotic estimates
of two integrals.

3. When µ→ (0, 0), that is, ∆ → 0, it follows from (8.29) that the density in the β-wedge
satisfies

q0(ρ cos a, ρ sin a) ∼ κ′
cos( θ−a

2 )
√
ρ

.

This is in adequation with a result of Williams [51, Sec. 6], which gives the density in the
case µ = 0, 0 6 α < 2 in the form ρ−α cos(θ1 − αa), up to a multiplicative constant, with
θ1 = δ − π/2. In our case, θ1 = θ/2 and α = 1/2. But the right-hand side of the above
estimate is also, for µ 6= 0, the behaviour of q0(ρ cos a, ρ sin a) as ρ→ 0. Heuristically, this
means that on small scales, the drift of the Brownian part of the process is negligible.

8.3.2 The case α1 = −2 and α2 = 0

In this case α = −1/2, r1 = e1 = 1 and r2 = e2 = 0. That is, s1 = q
√
q and s2 = 1. Then

P1(y) = (y − y(s1)) and Q1 = P2 = Q2 = 1. There exists a constant κ such that

ϕ1(y) =
κ

y − y(q
√
q)

· 1√
y+ − y

. (8.32)

The value ϕ2(x) can be obtained using Theorem 8.5, applied to the symmetric case
α1 = 0 and α2 = −2. One finds:

ϕ2(x) =
κ′

x− x(
√
q)

· 1√
x+ − x

. (8.33)

(Note that y(s) becomes x(s/
√
q) under a diagonal reflection; see (3.7).)
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The densities of ν1 and ν2 can be expressed in terms of the error function erf, since,
for b > 0 and y < a, ∫

R+

erf(
√
bz)e−azezydz =

√
b

(a− y)
√
a+ b− y

.

For instance, it follows from (8.32) that the density of ν1 is of the form

p1(z2) = κ erf(
√
bz2)e

−az2 (8.34)

with a = y(q
√
q) and b = y+ − y(q

√
q) = (y+ − y−) sin2 β.

8.3.3 The case α1 = −1 and α2 = 1

In this case, α = 1/2 again, r1 = 1, r2 = 0, e1 = 0 and e2 = 1. That is, s1 = q and s2 =
√
q.

Again P1(y) = (y − y(s1)) and Q1 = P2 = Q2 = 1. There exists a constant κ such that

ϕ1(y) = κ

√
y+ − y

y − y(q)
.

Theorem 8.5, applied to the symmetric case α1 = 1 and α2 = −1, gives

ϕ2(x) =
κ′√

x+ − x
.

As in the first case, the measure ν2/ϕ2(0) is a Gamma distribution of parameters 1/2 and
1/x+.

8.3.4 The case α1 = α2 = −1

We finish with an x/y-symmetric case where two of the polynomials P1, P2, Q1, Q2 are
not trivial – instead of one in the above examples. However, a simplification occurs
between Q2(y) and the term

√
y+ − y, and the Laplace transforms of ν1 and ν2 end up

being very close to those of Section 8.3.2.
With α1 = α2 = −1, we have α = −1/2, r1 = 1, r2 = −1, e1 = 0 and e2 = 1. That

is, s1 = q and s2 = 1/
√
q. Now P1(y) = (y − y(s1)), Q2(y) = (y − y(s2q)) = (y − y+) and

Q1 = P2 = 1. Given that e2 − e1 = 1, the general formula (8.21) specializes to

ϕ1(y) =
κ

y − y(q)
· 1√

y+ − y
.

By symmetry,

ϕ2(x) =
κ′

x− x(
√
q)

· 1√
x+ − x

.

Observe the analogy with (8.32) and (8.33). In particular, the densities of ν1 and ν2 are
of the form (8.34) again.

9 Differential transcendence

The aim of this section is to complete the proof of Theorem 2.2, which deals with the
case β/π 6∈ Q. Comparing its statement with the conclusions of Theorems 7.3 and 8.5,
we see that the only point that remains to be proven is the following:

if neither of the angle conditions (1.7) or (1.8) holds, the Laplace transform ϕ1

is not D-algebraic.
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To prove this, a key tool is difference Galois theory. This theory builds a dictionary
between the algebraic relations satisfied by the solutions of a linear difference equation
and the algebraic dependencies among the coefficients of the difference equation. We
refer to [49] for a complete introduction. This theory also has applications to the study
of the differential properties of the solutions, which is what we use here.

Our strategy will be first to transform the boundary value condition (4.1) into a finite
difference equation (Section 9.2; see (9.3)) and then to apply a Galoisian criterion for
differential transcendence (Section 9.3). This criterion is presented in Section 9.1.

9.1 Galoisian criteria for differential transcendence

The classical difference Galois theory studies algebraic relations between solutions
g0, . . . , gn of linear difference equations of the form

σ(gi) = gi + bi, (9.1)

for 0 6 i 6 n, where the coefficients bi lie in a field K endowed with an automorphism σ.
In particular, a theorem due to Ostrowski (in the context of differential equations
rather than difference equations [41]) gives a necessary and sufficient condition for the
algebraic independence of g0, . . . , gn over K in terms of algebraic relations satisfied by
the coefficients bi.

This setting allows one to study as well the differential algebraicity of a function g
satisfying σ(g) = g+b, provided that the derivation (denoted ∂) commutes with σ. Indeed,
the functions gi = ∂ig then satisfy a system of the form (9.1), with bi = ∂ib, and are
algebraically related if and only if g satisfies a differential equation of order at most n.
We then say that g is ∂-algebraic.

We will use as a black box the following theorem, proved in [15]. It relaxes some
assumptions of [24, Prop. 2.1 and 2.3] (in particular, it does not require that the
solution g of the linear difference equation belongs to a difference field).

Theorem 9.1 (Thm. C.8 in [15], case ∆ = 0). Let K be a field endowed with a field
automorphism σ and a derivation ∂ commuting with σ. We assume that the field Kσ =

{f ∈ K : σ(f) = f}, called the field of constants, is relatively algebraically closed in K;
that is, there is no proper algebraic extension of Kσ in K.

Let L be a ring extension of K endowed with an automorphism σL extending σ and
a derivation ∂L extending ∂. Let g ∈ L satisfy σL(g) = g + b for some b ∈ K. If g is
∂L-algebraic over K then there exist N ∈ N0, constants c0, . . . , cN ∈ Kσ, not all zero,
and finally h ∈ K such that

c0b+ c1∂b+ · · ·+ cN∂
N (b) = σ(h)− h.

The difference equation (9.3) that we will derive from the boundary condition (4.1) is
not additive as above, but multiplicative, of the form σ(f) = af . But a simple logarithmic
transformation yields an additive equation for g := ∂f

f :

σ(g) = σ

(
∂f

f

)
=
∂(af)

af
= g + b,

with b = ∂a/a. Moreover, g is ∂-algebraic if and only if f is ∂-algebraic.

Theorem 9.2. Under the same assumptions on K and L as in Theorem 9.1, let f be
invertible in L and satisfy σL(f) = af for some a ∈ K. If f is ∂L-algebraic over K then
there exist N ∈ N0, constants c0, . . . , cN ∈ Kσ, not all zero, and finally h ∈ K such that

c0
∂a

a
+ c1∂

(
∂a

a

)
+ · · ·+ cN∂

N

(
∂a

a

)
= σ(h)− h.
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9.2 A finite difference equation

Recall that q is defined to be e2iβ, and is thus a root of unity if and only if β/π ∈ Q.
The results of this subsection hold whether this is the case or not, and we will use them
in Section 10.2.

By Proposition 4.1, the function ϕ1 is meromorphic in a domain containing GR. As
observed in (6.20)–(6.21), the map s 7→ y(s) defined in (3.7) sends the closed wedge
arg(s) ∈ [π, π+2β] to GR. Hence we can define ϕ̃1(s) := ϕ1(y(s)), at least in a neighbour-
hood of this wedge.

Let us specialize the boundary value condition (4.1) to y = y(s) with s ∈ (−∞, 0). By
Lemmas 3.7 and 6.4, this gives

ϕ1(y(1/s)) = E(s)ϕ1(y(s)),

where E(s) is the simple rational function (6.6). Equivalently, since y(1/s) = y(qs) and
arg(qs) = π + 2β,

ϕ̃1(qs) = E(s)ϕ̃1(s). (9.2)

By analytic continuation, this holds in some neighbourhood of (−∞, 0). However, we
cannot apply directly Galois theory techniques to this q-difference equation, because we
would need ϕ̃1 to be defined in a domain closed under the rotation s 7→ qs. We prove
in Appendix D (Corollary D.6) that ϕ̃1 may be continued as a meromorphic function on
the slit plane C \ eiβ R+, but again, this is not enough. We will remedy this by a second
parametrization, this time of the s-plane, in terms of a new variable ω.

Let us write s = eiω with ω ∈ C. This transformation of ω into s sends the strip
[π, π + 2β] + iR to the wedge arg(s) ∈ [π, π + 2β]. Hence we can define, at least in a
neighbourhood of this strip,

ψ1(ω) = ϕ̃1(e
iω) = ϕ1(y(e

iω)).

Note that for ω ∈ π + iR, we have ψ1(ω + 2β) = ϕ̃1(qe
iω), so that the q-difference

equation (9.2) becomes a finite difference equation ψ1(ω+ 2β) = E(eiω)ψ1(ω). Moreover,
we show in Appendix D how to extend ψ1 meromorphically to the whole complex plane,
starting from the basic functional equation (2.15) (see Theorem D.5 and (D.16)). This
will put us in the correct setting to apply difference Galois theory.

Proposition 9.3. The function ψ1 can be continued as a meromorphic function on C that
satisfies

ψ1(ω + 2β) =M(ω)ψ1(ω), (9.3)

whereM(ω) = E(eiω), and E(s) is the rational function given by (6.6).

We now relate the differential properties of ϕ1, ϕ̃1 and ψ1. The proof of the following
lemma is analogous to the proof of [17, Prop. 2.3] and is therefore omitted.

Lemma 9.4. The following statements are equivalent:

• ϕ1 is
d
dy -algebraic over C(y),

• ϕ̃1 is ∂-algebraic over C(s) with ∂ = is d
ds ,

• ψ1 is
d
dω -algebraic over C(e

iω).

Remarks
1. Of course, since y is d

dy -algebraic over C, we could replace in the first statement
the field C(y) by C, or even R. A similar remark applies to the other two statements.
However, we choose to keep this formulation to emphasize the fact that (9.2) and (9.3)
have coefficients in the base fields C(s) and C(eiω), respectively.
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2. The choice of the derivation ∂ might seem peculiar since d
ds would do as well. But it

will be crucial to have ∂ commute with the multiplication of s by q. That is, if we define
the automorphism ζ, acting on C(s), by ζ(f)(s) = f(qs), we have

∂ζ = ζ∂. (9.4)

Note also that for any analytic function f(s), we have

d

dω
(f(eiω)) = (∂f)(eiω). (9.5)

9.3 Differential transcendence of the Laplace transform

We now again assume that β/π is irrational, that is, that q is not a root of unity. As
discussed at the beginning of the section, we now prove the “only if” part in the first
statement of Theorem 2.2.

Proposition 9.5. Assume that q is not a root of unity, and that ϕ1(y) is
d
dy -algebraic.

Then one of Conditions (1.7) or (1.8) holds.

Proof. Assume that ϕ1(y) is
d
dy -algebraic. Then Lemma 9.4 implies that ψ1 is

d
dω -algebraic.

Recall from Proposition 9.3 that ψ1 satisfies the difference equation ψ1(ω + 2β) =

M(ω)ψ1(ω) with M(ω) = E(eiω). We now apply Theorem 9.2 to this equation, with
f = ψ1, a =M(ω) and the following algebraic setting:

– the field K is C(eiω), endowed with the automorphism σ(h)(ω) = h(ω + 2β), and
the derivation d

dω ,

– the ring L is C(eiω)[1/ψ1, ψ1,
d
dω (ψ1), . . . ,

dj

dωj (ψ1), . . .] (derivatives of ψ1 of any order
exist since ψ1 is meromorphic), with the same automorphism and derivation (we
prove stability of L by σ below).

Let us check that the assumptions of Theorem 9.2 (or Theorem 9.1) hold. We begin
with the assumptions on K. First, σ clearly commutes with the derivation d/dω. Then,
since q is not a root of unity, it is well known, and easy to see, that Kσ = C. This field is
algebraically closed, hence relatively algebraically closed in K. Regarding L, we first
note that this ring is closed by the derivation d

dω . Moreover, since d
dω and σ commute,

the following formula holds for all j ∈ N0:

σ

(
dj

dωj
ψ1

)
=

dj

dωj
(σ(ψ1)) =

dj

dωj
(M(ω)ψ1)

by Proposition 9.3. It follows that L is fixed by σ. Finally, ψ1 is invertible in L by definition
of L.

The functional equation of Proposition 9.3 now reads σ(f) = af with f = ψ1 and
a = M(ω) = E(eiω) ∈ K. Since we have assumed that ψ1 is D-algebraic, Theorem 9.2
implies that there exist N ∈ N0, constants c0, . . . , cN ∈ C, not all zero, and finally
h ∈ C(eiω), such that

c0
M ′

M
(ω) + c1

d

dω

(
M ′

M

)
(ω) + · · ·+ cN

dN

dωN

(
M ′

M

)
(ω) = h(eiω+2iβ)− h(eiω),

where M ′ = dM
dω . Upon replacing eiω by s, and recalling that d

dω (f(e
iω)) = (∂f)(eiω)

(see (9.5)), we conclude that

c0
∂E

E
+ c1∂

(
∂E

E

)
+ · · ·+ cN∂

N

(
∂E

E

)
= ζ(h)− h,
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where we recall that ζ(h)(s) = h(qs).
We now apply to this equation Lemma 3.8 of [24] (with n = 1), and conclude that the

elliptic divisor of E must be zero2. By Lemma 6.5, this means that one of Conditions (1.7)
or (1.8) holds. This completes the proof of Proposition 9.5, and of Theorem 2.2.

10 When β ∈ πQ

We now assume that q = e2iβ is a root of unity, that is, that β/π ∈ Q, and prove
Theorem 2.3 in two steps. In Section 10.1 we prove that the log-derivative of ϕ1 is
D-finite. The criteria for D-finiteness, algebraicity or rationality of ϕ1 are established in
Section 10.2.

10.1 D-finiteness of the log-derivative

The first part of Theorem 2.3 will follow from an explicit integral expression of ϕ1

given in [23, Thm. 1]. This theorem states that there exists a constant c in C∗ such that

ϕ1(y) = c

(
w(0)− w(p)

w(y)− w(p)

)k

exp

(
1

2iπ

∫
R−

logG(t)

[
w′(t)

w(t)− w(y)
− w′(t)

w(t)− w(0)

]
dt

)
,

where w is the canonical invariant (5.7), p is the pole of ϕ1 lying in GR, if any (see
Proposition 4.1), k is 1 if this pole exists, and 0 otherwise, R− = R∩ {y ∈ C : =y 6 0} is
the bottom part of the branch of hyperbola R defined by (3.14), and G is the algebraic
function (4.2). In particular, logG is D-finite. Since β/π ∈ Q, the function w is algebraic
(Proposition 5.2). Then the above expression rewrites as

ϕ1(y) = g(y) exp(h(y)),

where g is algebraic and h is D-finite: indeed, the integral of a D-finite function along a
curve remains D-finite [54, Prop. 3.5]. Hence

ϕ′
1

ϕ1
=
g′

g
+ h′

is clearly D-finite.

10.2 D-finite/algebraic/rational cases

Assume now that ϕ1 is D-finite, and let us prove that it is in fact algebraic, and that
one of the angle conditions (1.7) or (1.8) holds. We have just shown that ϕ′

1/ϕ1 is also
D-finite. This implies that ϕ′

1/ϕ1 is in fact algebraic over C(y): this follows from the
final statement of [45], which says that if g(y) and exp(

∫
g(y)) are D-finite, then g(y) is

algebraic (we apply this to g = ϕ′
1/ϕ1).

Since ϕ′
1/ϕ1 is algebraic over C(y), the function f := ∂ϕ̃1

ϕ̃1
is algebraic over C(s),

where we define ∂ = is d
ds and ϕ̃1(s) = ϕ1(y(s)) in a neighbourhood of the wedge

arg(s) ∈ [π, π + 2β], as in Section 9.2. Recall that for s in a neighbourhood of (−∞, 0),
the following equation holds (see (9.2)):

ζϕ̃1(s) := ϕ̃1(qs) = E(s)ϕ̃1(s),

where E(s) is the rational function (6.6). Since ∂ commutes with ζ (see (9.4)), the above
defined function f satisfies

ζ(f) = ζ

(
∂ϕ̃1

ϕ̃1

)
=
∂ζϕ̃1

ζϕ̃1
=
∂(Eϕ̃1)

Eϕ̃1
= f +

∂E

E
.

2This lemma is only proved in [24] when |q| 6= 1, but the proof works verbatim as long as q is not a root of
unity, which we have assumed here.
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Write the minimal polynomial equation satisfied by f over C(s) as

c0 + c1f + · · ·+ cd−1f
d−1 + fd = 0,

and apply to this identity the operator ζ. This gives, for s in a neighbourhood of (−∞, 0),

ζ(c0) + ζ(c1)

(
f +

∂E

E

)
+ · · ·+ ζ(cd−1)

(
f +

∂E

E

)d−1

+

(
f +

∂E

E

)d

= 0.

Comparing with the minimal equation of f gives, for j = 0, . . . , d− 1:

cj =

d∑
i=j

ζ(ci)

(
i

j

)(
∂E

E

)i−j

with cd = 1. In particular,

cd−1 = ζ(cd−1) + d
∂E

E
.

Hence we can write ∂E
E = ζ(h) − h where h = −cd−1/d ∈ C(s). Let n > 0 be minimal

such that qn = 1. Applying ζj with j = 0, . . . , n− 1 to the latter equation, we obtain

ζj
(
∂E

E

)
= ζj+1(h)− ζj(h).

Summing these n identities and noting that ζn is the identity on C(s), we find

0 =

n−1∑
j=0

ζj
(
∂E

E

)
=
∂(
∏n−1

j=0 ζ
j(E))∏n−1

j=0 ζ
j(E)

.

The latter identity uses again the fact that ∂ and ζ commute (see (9.4)). By definition of ζ
and of the derivation ∂, this implies that

∏n−1
j=0 E(sqj) = c for some c ∈ C∗. By setting s

to 0, we find that c = E(0)n = (s1/s2)
n. If instead we let s tend to infinity, we find that

c = (s2/s1)
n. Hence (s2/s1)

n = ±1. Now consider the cyclic field extension C(sn) ⊂ C(s).
Its Galois group is generated by ζ : h(s) 7→ h(qs). Thus, the norm of (s2/s1)E with respect
to is

n−1∏
j=0

(
s2
s1
E(qjs)

)
=

(
s2
s1

)n

c = 1.

By Hilbert’s Theorem 90 [36, Thm. 6.1], there exists H ∈ C(s) such that (s2/s1)E(s) =
H(s)
H(qs) . Since (s2/s1)

2n = 1, it follows that E(s)2n can be written as H̃(s)

H̃(qs)
. We con-

clude, using Lemma 6.5, that one of the angle conditions (1.7) or (1.8) holds. But then
Theorem 7.3 or Theorem 8.5 applies, and tells us that ϕ1 is in fact algebraic (since
β/π ∈ Q).

We have thus proved that ϕ1 is D-finite if and only if it is algebraic, and that in this
case one of Conditions (1.7) or (1.8) holds. To conclude the proof of Theorem 2.3, we
now investigate the rational case.

If α ∈ −N0, then Condition (1.7) holds, and ϕ1 is rational by Theorem 7.3. Conversely,
if ϕ1 is rational, then α ∈ −N0 by (4.3).

The proof of Theorem 2.3 is now complete.
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A Basic conditions: from the quadrant to the β-wedge

In this appendix, we prove the equivalence between various conditions on the param-
eters of the model, considered in a quadrant or in the β-wedge. Surprisingly, we could
not find these proofs in the literature.

Let us recall the angle conditions met in Sections 1 and 2 of the paper. The first four
are relevant to the β-wedge:

(1.3) : δ + ε− π < β, or equivalently α < 1,
(1.4) : 0 < θ < β,
(1.5) : β − ε < θ < δ,
(1.3)+ (1.4)+ (1.5) = (2.19) : δ − π < β − ε < θ < δ, 0 < θ < β,

while the next three are relevant to the quadrant:
(2.1) : detR > 0 or (r12 > 0 and r21 > 0),
(2.12) : µ1 < 0, µ2 < 0,
(2.13) : detR > 0, r22µ1 − r12µ2 < 0, r11µ2 − r21µ1 < 0.

Throughout the paper, we have β ∈ (0, π), and the following natural reflection conditions
hold:

• in the β-wedge, the reflection angles δ and ε lie in (0, π),

• in the quadrant, the reflection matrix R satisfies r11 > 0 and r22 > 0.

Lemma A.1. We have the following equivalences:

i) The semimartingale condition (1.3) for the β-wedge is equivalent to the semimartin-
gale condition (2.1) for the quadrant.

ii) Condition (1.4) is equivalent to the drift condition (2.12).

iii) Condition (2.19) = (1.3)+ (1.4)+ (1.5) is equivalent to (2.12)+ (2.13).

Proof. Recall from (2.11) and (2.7) that:

tan δ =
sinβ

r12
r22

√
σ22

σ11
+ cosβ

, tan ε =
sinβ

r21
r11

√
σ11

σ22
+ cosβ

, tan θ =
sinβ

µ1

µ2

√
σ22

σ11
+ cosβ

. (A.1)

This implies that

tan(β − ε) =
sinβ

r11
r21

√
σ22

σ11
+ cosβ

, tan(β − θ) =
sinβ

µ2

µ1

√
σ11

σ22
+ cosβ

. (A.2)

We will repeatedly use the fact that the cotangent function is π-periodic, and decreasing
in (0, π). For instance, since by (A.1),

cot ε− cotβ =
1

tan ε
− 1

tanβ
=
r21
r11

√
σ11
σ22

1

sinβ
,

while ε, β ∈ (0, π), we have
ε 6 β ⇔ r21 > 0. (A.3)

We now begin with the proof of i). We have the following sequence of equivalences,
starting from Condition (1.3):

δ + ε− π < β ⇔ (0 < δ < β − ε+ π < π) or (β − ε > 0) as δ ∈ (0, π)

⇔
(

1

tan(β − ε)
<

1

tan δ
and r21 < 0

)
or r21 > 0 by (A.3)

⇔
(
r11
r21

<
r12
r22

and r21 < 0

)
or r21 > 0 by (A.1) and (A.2)

⇔ (r11r22 − r12r21 > 0 and r21 < 0) or r21 > 0.
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A case analysis reveals that this is equivalent to Condition (2.1), namely detR > 0 or
(r21 > 0 and r12 > 0).

We go on with the proof of ii). First, it follows from (2.8) and (2.6) that θ > 0 is
equivalent to µ2 < 0. Hence we will now assume that θ > 0 and µ2 < 0, and prove, under
these assumptions, that θ < β is equivalent to µ1 < 0. Given that θ, β ∈ (0, π), we have
the following sequence of equivalences:

θ < β ⇔ 1

tanβ
<

1

tan θ

⇔ µ1

µ2
> 0 by (A.1)

⇔ µ1 < 0 since µ2 < 0.

Let us now prove iii). We have already seen that Conditions (1.4) and (2.12) are
equivalent. We thus assume that they hold, that is, that 0 < θ < β and µ1, µ2 < 0, and
prove the equivalence of (1.3)+ (1.5) and (2.13) under this assumption. We begin with
the first part of (1.5). We have the following sequence of equivalences:

β − ε < θ ⇔ β − θ < ε⇔ 1

tan ε
<

1

tan(β − θ)
as ε, β − θ ∈ (0, π)

⇔ r21
r11

<
µ2

µ1
by (A.1) and (A.2)

⇔ r11µ2 < r21µ1 as µ1 < 0 and r11 > 0.

We recognize the third part of (2.13). In a similar fashion, we show that the second part
of (1.5) is equivalent to the second part of (2.13):

θ < δ ⇔ 1

tan δ
<

1

tan θ
as θ, δ ∈ (0, π)

⇔ r12
r22

<
µ1

µ2
by (A.1)

⇔ r22µ1 < r12µ2 as µ2 < 0 and r22 > 0.

Assume now that (2.13) holds. The above two calculations show that (1.5) holds as well.
Moreover, the first part of (2.13) implies (2.1), which implies (1.3) by item i).

Conversely, assume that Conditions (1.3) and (1.5) hold. The above two calculations
show that the second and third parts of (2.13) hold as well:

r22µ1 < r12µ2 and r11µ2 < r21µ1. (A.4)

Moreover, by item i) we have detR > 0 or (r12 > 0 and r21 > 0). If detR > 0 we are done,
since this is the first part of (2.13). If (r12 > 0 and r21 > 0), it follows from (A.4) and the
fact that µ1 < 0 and µ2 < 0 that

r22/r12 > µ2/µ1 and r11/r21 > µ1/µ2.

This implies that r22r11/(r21r12) > 1, so that detR > 0 again. This concludes the proof.

B Proof of Lemma 6.5

Several of the results that we prove here were already proved in [24], under the
assumption |q| 6= 1. In this article however, q = e2iβ, so we always have |q| = 1.
Nonetheless, the proofs of [24] apply verbatim as long as q is not a root of unity. For
that reason we often separately consider the case where q is a root of unity, that is, when
β/π ∈ Q.
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We choose an arbitrary system S ⊂ C∗ of representatives of C∗/qZ. In other words, S
is a subset of C∗ such that for any z ∈ C∗, there exists a unique z′ ∈ S such that z = q`z′

for some ` ∈ Z. We denote by [z] the equivalence class of z for the relation defined by
z ∼ z′ if z/z′ ∈ qZ.

Definition B.1. Let a ∈ C(s)∗. We say that a is standard if for any z ∈ C∗, at most one
element of [z] is a zero or a pole of a, possibly of multiple order.

Lemma B.2. Let a ∈ C(s)∗. There exist f ∈ C(s)∗ and a ∈ C(s) standard such that
a = a f(qs)

f(s) .

Proof. We refer to [24, Lem. 3.3] for a proof that holds when q is not a root of unity. If q
is a root of unity of order n, let us write

a = κs`
∏
z∈S

n−1∏
k=0

(qks− z)mk,z , (B.1)

where κ ∈ C, ` ∈ Z, and only finitely many of the integers mk,z are non-zero. Define

a = κs`
∏
z∈S

(s− z)
∑n−1

k=0 mk,z .

Then a is clearly standard and one easily checks that a = a f(qs)
f(s) , with

f(s) =
∏
z∈S

n−1∏
k=0

k−1∏
j=0

(qjs− z)mk,z .

Definition B.3. Let a ∈ C(s)∗. If q is a root of unity of order n, let us write a as in (B.1).
The elliptic divisor of a is defined as the formal sum

divq(a) =
∑
z∈S

(
n−1∑
k=0

mk,z

)
[z].

If q is not a root of unity, let us write

a = κs`
∏
z∈S

∏
k∈Z

(qks− z)mk,z ,

where ` ∈ Z, κ ∈ C and finitely many of the mk,z ∈ Z are non-zero. We define the elliptic
divisor of a as the formal sum

divq(a) =
∑
z∈S

(∑
k∈Z

mk,z

)
[z].

Let us observe that:

• for a and b in C(s)∗, we have divq(ab) = divq(a) + divq(b),

• for f ∈ C(s)∗, we have divq
( f(qs)

f(s)

)
= 0.

Lemma B.4. Let a ∈ C(s)∗. The following statements are equivalent:

• there exist κ ∈ C, ` ∈ Z and f ∈ C(s) such that a = κs` f(qs)f(s) ,

• the elliptic divisor divq(a) =
∑

z∈S nz[z] is zero, that is, nz = 0 for all z ∈ S.
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Proof. It is clear from the above two observations that the first condition implies the
second, as divq(s

`) = 0. We now assume that divq(a) = 0, and prove that the first
condition holds. As before, we refer to [24, Lem. 3.5] when q is not a root of unity, and
assume that q is a root of unity of order n. Let us write a = af(sq)/f(s) as in Lemma B.2,
with a standard. Using again the observations above, and the assumption divq(a) = 0,
we find that divq(a) = 0. Let us write a = κs`

∏
z∈S(q

kzs − z)mz where kz ∈ Z and only
finitely many of the mz ∈ Z are non-zero. Then

0 = divq(a) =
∑
z∈S

mz[z],

which implies that all exponents mz are zero, so that a = κs`. This concludes the
proof.

We are now ready to prove Lemma 6.5.

Proof of Lemma 6.5. Assume that there exists m ∈ N and H ∈ C(s) such that Em(s) =
H(s)
H(qs) . By Lemma B.4, one has 0 = divq(E

m) = m divq(E), so that divq(E) = 0. Hence i)
⇒ ii).

Now let us prove the equivalence between ii) and iii). Since divq(E) = [s1] + [ 1
s2
]−

[s2] − [ 1
s1
], Condition ii) means that either [s1] = [s2] (in which case [ 1

s1
] = [ 1

s2
]) or that

[si] = [ 1si ] for i = 1, 2. The first case can be restated by saying that s1/s2 ∈ qZ, and the

second by saying that s21 and s
2
2 belong to qZ.

Finally, if ii) holds, then Lemma B.4 implies that E(s) = κs`f(qs)/f(s) for some κ ∈ C,
` ∈ Z and f(s) ∈ Q(s). If f(s) grows like se for some e ∈ Z, the function f̃(s) := s−ef(s)

also satisfies E(s) = κ̃s`f̃(qs)/f̃(s) for another constant κ̃. Hence we can assume without
loss of generality that f(s) tends to a non-zero finite limit as s tends to infinity. By
letting s tend to infinity in E(s) = κs`f(qs)/f(s), where E(s) is given by (6.6), we see
that ` = 0 and s2/s1 = κ. By setting s = 0 instead, we see that s1/s2 = κ. Hence
κ = 1/κ = ±1, and E2(s) = f2(qs)/f2(s).

C The case α1 = α2 = 0

In this section we prove Proposition 8.6, which gives the expression of the density of
the stationary distribution of the SRBM under the assumption α1 = α2 = 0. We proceed
as follows: we denote by p̂0(z1, z2) the density described in Proposition 8.6, by ϕ̂ its
Laplace transform:

ϕ̂(x, y) =

∫∫
R2

+

exz1+yz2 p̂0(z1, z2)dz1dz2,

and we prove that ϕ̂(x, y) is indeed given by (2.15):

−γ(x, y)ϕ̂(x, y) = γ1(x, y)ϕ1(y) + γ2(x, y)ϕ2(x), (C.1)

where the densities ϕ1(y) and ϕ2(x) are those of (8.24) and (8.25). We work with the
normal variables x and y defined by (2.24). We first perform the change of variables

(z1, z2) 7→
(

detΣ√
∆σ22

z1,
detΣ√
∆σ11

z2

)
, which yields

ϕ̂(x, y) =
det2 Σ

∆
√
σ11σ22

∫∫
R2

+

exz1+yz2 p̃0(z1, z2)dz1dz2,

with p̃0(z1, z2) given by (8.28). Then we introduce the variables ρ := |z| and a involved
in (8.28). That is, z1 = ρ sin(β − a)/ sinβ and z2 = ρ sin a/ sinβ. The Jacobian is found to
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be ρ/ sinβ, and sinβ is given by (2.3). Hence:

ϕ̂(x, y)=κ1

∫ β

0

∫
R+

√
ρ cos

(
θ−a
2

)
exp

(
−ρ
(
2 cos2

(
θ−a
2

)
−x

sin (β−a)
sinβ

−y
sin a

sinβ

))
dρda,

with κ1 = 2
√
2 sin δ sin ε√
π sin β/2

. The integration in ρ is easily performed:

ϕ̂(x, y) =
κ1

√
π

2

∫ β

0

cos

(
θ − a

2

)
da(

2 cos2
(
θ−a
2

)
− x sin (β−a)

sin β − y sin a
sin β

)3/2 .
The integration in a looks more impressive, but can be performed as well. We write
a = θ − 2s, with s ranging from −(β − θ)/2 to θ/2, and then introduce t = tan s. The
integral becomes

ϕ̂(x, y) = κ1
√
π

∫ θ
2

− β−θ
2

cos sds(
2 cos2 s− x sin (β−θ+2s)

sin β − y sin(θ−2s)
sin β

)3/2
= κ1

√
π

∫ tan θ
2

− tan β−θ
2

(sinβ)3/2 dt

(2 sinβ − (1− t2)A− 2tB)
3/2

with A = (x sin(β − θ) + y sin θ) and B = (x cos(β − θ)− y cos θ). Now the integral in t can
be done explicitly:

ϕ̂(x, y) =
κ1

√
π(sinβ)3/2

A2 +B2 − 2A sinβ

[
B − tA

(2 sinβ − (1− t2)A− 2tB)
1/2

]tan θ
2

− tan β−θ
2

. (C.2)

The rest of the calculation is tedious but straightforward. One finds

A2 +B2 − 2A sinβ = x2 + y2 − 2xy cosβ − 2x sinβ sin(β − θ)− 2y sinβ sin θ

=
2 sin2 β detΣ

∆
γ(x, y), by (2.25). (C.3)

The function between square brackets in (C.2), denoted I(t), can be written back in
trigonometric terms using the variable s such that t = tan s:

I(t) =
x cos(β − θ + s)− y cos(θ − s)

(2 cos2 s sinβ − x sin (β − θ + 2s)− y sin(θ − 2s))
1/2

.

At t = tan θ
2 , this takes the value

I

(
tan

θ

2

)
=

x cos(β − θ/2)− y cos(θ/2)

(2 sinβ cos2(θ/2)− x sinβ)1/2
= − x sin(β − δ) + y sin δ

√
2 sinβ sin δ

√
1− x/x+

,

=
detΣ

√
sinβ sin(δ + ε)√

2∆ sin δ sin ε
γ2(x, y)ϕ2(x). (C.4)

In the first line, we have used the relations (8.22) between the angles β, θ, δ and ε, and
the expression (3.5) of x+. In the second line, we have also used the expressions of γ2,
ϕ2(x) and ϕ2(0); see (2.26), (8.25), and (2.23). In an analogous fashion, we determine

I

(
− tan

β − θ

2

)
= −detΣ

√
sinβ sin(δ + ε)√

2∆ sin δ sin ε
γ1(x, y)ϕ1(y). (C.5)

We now get back to (C.2), and inject (C.3), (C.4), (C.5), and the value of κ1. Using finally
sin(β/2) = − sin(δ + ε), this gives the desired expression of ϕ̂(x, y), namely (C.1).
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D Lifting of ϕ1 and ϕ2 to the universal covering of S \ {0,∞}
In this section, we explain how the function

ψ1(ω) := ϕ1(y(e
iω))

that has been used in Section 9, originally defined analytically in a neighbourhood of the
line <ω = π + β where <y(eiω) 6 0, can be extended to a meromorphic function on C,
together with its counterpart ψ2 defined by ψ2(ω) := ϕ2(x(e

iω)). The key idea is to use
the relation

γ1(x(s), y(s))ϕ1(y(s)) + γ2(x(s), y(s))ϕ2(x(s)) = 0,

derived from the basic functional equation (2.15), to construct ψ1 and ψ2 on larger and
larger domains. Since ϕ(x, y) is, a priori, defined when <x 6 0 and <y 6 0, the above
identity holds at least when <x(s) 6 0 and <y(s) 6 0.

Observe that we have already used in this paper a continuation of ϕ1(y) beyond
the half-plane {y : <y 6 0}, constructed in [23, Lem. 3] to include the domain GR; see
Proposition 4.1. Moreover, a continuation of the function ϕ̃1(s) := ϕ1(y(s)) beyond the
set {s : <y(s) 6 0} is also constructed in [21, Sec. 3]. However, we need to go one step
higher and work with the variable ω ∈ C to apply Galois theoretic tools, as explained in
Section 9.2. We work from scratch and do not use the earlier continuations.

Before we embark on the details of our construction, let us mention that in the
discrete setting, where one considers reflected random lattice walks in the positive
quadrant and their stationary distributions, a similar meromorphic continuation of the
stationary probability generating function is constructed in [18, Chap. 3]. The details
of the construction are however quite different, mostly because the counterpart of the
curve {(x, y) ∈ (C ∪ {∞})2 : γ(x, y) = 0} has genus 1 in the discrete setting (requiring
the use of elliptic functions), instead of 0 in the present paper.

D.1 Universal covering of the doubly punctured sphere

The uniformization (3.7) allows us to constructively and explicitly identify S, the
Riemann surface of genus 0 defined in (3.6) by the cancellation of the kernel, with
C ∪ {∞}. Let us consider C∗ ≡ S \ {0,∞}, which is mapped by (3.7) to the finite points
of the surface. This surface is then homeomorphic to a doubly punctured sphere, or
equivalently a cylinder, and may be considered as an infinite vertical strip whose opposite
edges are identified (Figure 7, left). Informally, the universal covering Ŝ of S \ {0,∞}
consists of infinitely many such strips glued together and covering the complex plane
(Figure 7, right).

Figure 7: Left: Three representations of S \ {0,∞}. Right: The universal covering Ŝ of
S \ {0,∞} is the complex plane.
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More precisely, let us define the map λ by

λ : Ŝ ≡ C −→ C∗ ≡ S \ {0,∞}

ω 7−→ λ(ω) := eiω.

This is a 2π-periodic, non-branching covering map from C to S \ {0,∞}. Every segment
of the form [a + ib, a + 2π + ib], with a and b real, is projected onto a closed curve of
S \ {0,∞} homologous to a curve going around the cylinder.

Given s ∈ S \ {0,∞} and S ⊂ S \ {0,∞}, we will use the notation ŝ and Ŝ for their
preimages by λ in some prescribed vertical strip of width 2π (which is often taken to
be {0 6 <ω < 2π}, but not always). In particular, given that λ(π + θ) = s0 = −eiθ,
λ(π) = s−1 = −1, λ(π + β) = s−2 = −eiβ (see Lemma 3.3 and (3.12)), we will write:

ŝ0 = π + θ, ŝ−1 = π, ŝ−2 = π + β.

Every conformal automorphism χ of S \ {0,∞} may be lifted to a conformal automor-
phism χ̂ = λ−1χλ of the universal covering C. The function λ−1 being multivalued, this
continuation is uniquely defined if we fix the image by χ̂ of a given point ω0 ∈ C.

Recall the definitions (3.9) of the maps ξ, η and ζ. Recall in particular that ξ fixes 1
and −1, while η fixes ±eiβ. Let us define ξ̂ (resp. η̂) by choosing its fixed point to be
ŝ−1 = π (resp. ŝ−2 = π + β). Using (3.9) we have

ξ̂(ω) = −ω + 2π and η̂(ω) = −ω + 2(π + β). (D.1)

These are central symmetries of respective centers ŝ−1 and ŝ−2 . It follows that η̂ ξ̂ and ξ̂ η̂
are just translations by 2β and −2β:

η̂ ξ̂(ω) = ω + 2β and ξ̂ η̂(ω) = ω − 2β. (D.2)

D.2 Where is <x(eiω) negative?

The initial domain of definition of the Laplace transform ϕ2(x) is {x ∈ C : <x 6 0}.
Returning to the uniformization (3.7) of the curve γ(x, y) = 0 by the variable s, we define
∆1 := {s ∈ S \ {0,∞} : <x(s) 6 0} and we introduce its lifting

∆̂1 := {ω ∈ C : 0 6 <ω < 2π and <x(λω) 6 0}. (D.3)

The goal of this subsection is to study this lifted convergence domain. We denote by Îx
the curve where the value x(eiω) is purely imaginary:

Îx := {ω ∈ C : 0 6 <ω < 2π and <x(λω) = 0}.

The following lemma is illustrated in Figure 8, which we have completed by more
examples in Figure 9.

Lemma D.1. The curve Îx consists of two connected branches, with vertical asymptotes
at <ω ∈ {π/2, 3π/2}. Denoting ω = u+ iv, with u and v real, these branches lie in two
disjoint vertical strips and are defined by the equation:

cosh v = − cos θ

cosu
, for

{
u ∈ (π/2, π − θ] ∪ [π + θ, 3π/2) if θ < π/2,

u ∈ [π − θ, π/2) ∪ (3π/2, π + θ] if θ > π/2.
(D.4)

The case θ = π/2 is degenerate, with Îx consisting of two vertical lines at abscissas π/2
and 3π/2.
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We denote by Î−
x the rightmost branch, which goes through ŝ0 = π + θ, and by Î+

x

the leftmost one, which goes through ŝ′0 := ξ̂(ŝ0) = π − θ. The automorphism ξ̂ defined
in (D.1) exchanges the branches Î+

x and Î−
x . The notation Î±

x comes from the fact that
<y(λω) is positive (resp. non-positive) on Î+

x (resp. Î−
x ). Finally, the domain ∆̂1 lies

between the two branches of Îx.

Proof. We work with the normal form (3.8) of the parametrization. It follows from the
expression of x(s) that, for ω = u+ iv,

< x(λω) = cos θ + cosu cosh v. (D.5)

An elementary study then establishes the description (D.4).
Since x(ξs) = x(s), the curve Îx is fixed by the automorphism ξ̂. Since ξ̂ swaps the

two vertical strips that contain the branches of Îx, we conclude that it exchanges these
two branches.

Let us now justify the notation Î±
x . First, we derive for y(λω) the following counterpart

of (D.5):
< y(λω) = cos(β − θ) + cos(u− β) cosh v.

By combining this equation with (D.4), we see that on the curve Îx, the value <y(λω) has
the sign of

cos(β − θ)− cos(u− β)
cos θ

cosu
= sinβ

sin(θ − u)

cosu
,

that is, the sign of sin(θ − u)/ cosu. The result follows by considering separately the two
vertical strips of (D.4) and the three cases θ < π/2, θ > π/2 and θ = π/2.

The point ω = π always lies between the two branches of Îx. Given that x(λπ) =

x(−1) = x− < 0, we conclude that the domain ∆̂1 is the area lying between the two
branches of Îx.

Figure 8: In red (left), the domain ∆̂1, and its boundary Îx shown with its asymptotes. In
blue (right), ∆̂2 and its boundary. In this example, θ < π/2 and β − θ < π/2. The cases
(θ > π/2, β − θ < π/2) and (θ < π/2, β − θ > π/2) are shown in Figure 9. Given that
β < π, it is not possible to have θ > π/2 and β − θ > π/2.
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Figure 9: Some examples of the domains ∆̂1 (red) and ∆̂2 (blue), for various values of θ
and β: left, θ > π/2 and β − θ < π/2; right, θ < π/2 and β − θ > π/2.

We now want to determine where <y(eiω) 6 0. We first define ∆2 = {s ∈ S \ {0,∞} :

<y(s) 6 0}. Given that y(λω) is obtained from x(λ(ω − β)) by replacing θ by β − θ

(see (3.8)), it makes sense to consider the following lifting of ∆2:

∆̂2 := {ω ∈ C : β 6 <ω < β + 2π and <y(λω) 6 0}. (D.6)

We define Îy as Îx, but again in the translated strip:

Îy := {ω ∈ C : β 6 <ω < β + 2π and <y(λω) = 0}.

The counterpart of Lemma D.1 reads as follows; see again Figures 8 and 9 for various
illustrations.

Lemma D.2. The curve Îy consists of two branches, with vertical asymptotes at <ω ∈
{β + π/2, β + 3π/2}. Denoting ω = u + iv, with u and v real, these two branches lie in
two disjoint vertical strips and are defined by:

cosh v=− cos(β−θ)
cos(u−β)

, for

{
u ∈ (β+π/2, π + θ] ∪ [π+2β−θ, β+3π/2) if β−θ<π/2,
u ∈ [π+θ, β+π/2) ∪ (β+3π/2, π+2β−θ] if β−θ>π/2.

The case β − θ = π/2 is degenerate, with Îy consisting of two vertical lines at abscissas

β + π/2 and β + 3π/2. The curve Îy is fixed by the automorphism η̂, which swaps its two

branches. We denote by Î−
y the leftmost branch, which goes through ŝ0 = π + θ, and by

Î+
y the rightmost one, which goes through ŝ′′0 := η̂(ŝ0) = π + 2β − θ. The value of <x(λω)

is positive on Î+
y and non-positive on Î−

y . The domain ∆̂2 lies between Î−
y and Î+

y .

The proof is a straightforward adaptation of the one of Lemma D.1. Finally, the
following lemma is illustrated in Figure 8, and can be checked further on the examples
of Figure 9.

Lemma D.3. The domain ∆̂2 contains the branch Î−
x , while the domain ∆̂1 contains the

branch Î−
y . In particular, the set ∆̂1 ∩ ∆̂2, which is bounded on the left by Î−

y and on the

right by Î−
x , has a non-empty interior.

Proof. By Lemma D.1, the value of <y(λω) is non-positive in Î−
x : hence this branch is

included in ∆̂2 by definition (D.6) of this domain. The second property follows similarly
from Lemma D.2.
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D.3 Lifting and meromorphic continuation of ϕ1 and ϕ2 to the universal cover-
ing

As the Laplace transform x 7→ ϕ2(x) is analytic in the interior of {x ∈ C : <x 6 0} and
continuous on its boundary, we can lift it to the set ∆̂1 defined by (D.3) by setting:

ψ2(ω) := ϕ2(x(e
iω)), ∀ω ∈ ∆̂1.

Analogously, we define the lifting of ϕ1 by

ψ1(ω) := ϕ1(y(e
iω)), ∀ω ∈ ∆̂2. (D.7)

These maps are analytic in the interiors of their domains ∆̂1 and ∆̂2, and continuous on
the boundaries of these domains. For ω in ∆̂1 ∩ ∆̂2 (which is non-empty by Lemma D.3),
the main functional equation (2.15) yields

γ1(x(λω), y(λω))ψ1(ω) + γ2(x(λω), y(λω))ψ2(ω) = 0, (D.8)

where we recall that λω stands for eiω.
We can now extend meromorphically ψ1 and ψ2 to the interior of ∆̂ := ∆̂1 ∪ ∆̂2 by

means of the formulas

ψ1(ω) = −γ2
γ1

(x(λω), y(λω))ψ2(ω) if ω ∈ ∆̂1, (D.9)

ψ2(ω) = −γ1
γ2

(x(λω), y(λω))ψ1(ω) if ω ∈ ∆̂2, (D.10)

see [23, Lem. 3] or [21, Lem. 6]. Note that (D.8) guarantees that the values of ψ1 given
by (D.7) and (D.9) actually coincide on ∆̂1 ∩ ∆̂2. A similar statement holds for ψ2. We
finally extend ψ1 and ψ2 to the boundary of ∆̂ by continuity. The fact that this extension
is only meromorphic, rather than analytic, comes from the divisions by γ1 and γ2, which
may create poles. The functional equation (D.8) now holds on the whole interior of ∆̂,
and also on its boundary by continuity.

In order to extend ψ1 and ψ2 to C ≡ Ŝ, we will need the following lemma, which states
in particular that the complex plane is completely covered by translates of the set ∆̂ by
shifts of 2β. We recall that a translation by 2β is precisely the effect of η̂ ξ̂ (see (D.2)).

Lemma D.4. Recall that ∆̂ = ∆̂1 ∪ ∆̂2, where ∆̂1 and ∆̂2 are defined by (D.3) and (D.6)
respectively. The set ∆̂ is bounded by Î+

x (on the left) and Î+
y (on the right). Moreover,

Î+
x + 2β ⊂ ∆̂2 and Î+

y − 2β ⊂ ∆̂1. This implies that

C =
⋃
n∈Z

(∆̂ + 2nβ) =
⋃
n∈Z

(η̂ ξ̂)n∆̂.

Moreover, ∆̂ ∩ η̂∆̂ = ∆̂2, and ∆̂ ∩ ξ̂∆̂ = ∆̂1.

Proof. The first statement follows from the discussion in Section D.2, see Figures 8 and 9.
Now

Î+
x + 2β = η̂ξ̂Î+

x

= η̂Î−
x since ξ̂ exchanges the two branches of Îx (Lemma D.1)

⊂ η̂∆̂2 since Î−
x ⊂ ∆̂2 (Lemma D.3)

⊂ ∆̂2 since ∆̂2 is left invariant by η̂ (Lemma D.2).

A similar argument proves that ξ̂ η̂Î+
y = Î+

y − 2β ⊂ ∆̂1. These two properties are

illustrated in Figures 10 and 11. They imply that C can be covered by translates of ∆̂ by
multiples of 2β.
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Let us now prove that ∆̂ ∩ η̂∆̂ = ∆̂2. Since η̂∆̂2 = ∆̂2, we have ∆̂2 ⊂ ∆̂ ∩ η̂∆̂. Now
take ω ∈ ∆̂1 \ ∆̂2. This point thus lies on the left of the curve Î−

y . Then η̂ω lies on the

right of η̂Î−
y = Î+

y , and thus cannot be in ∆̂. Equivalently, ω cannot be in η̂∆̂, and thus

∆̂ ∩ η̂∆̂ is reduced to ∆̂2. The final statement of the lemma is proved similarly.

Figure 10: The set ∆̂, in grey/green, and its translates by ±2β (dashed areas). Here
θ < π/2 and β − θ < π/2, as in Figure 8. The other two cases are illustrated in Figure 11.

Figure 11: The set ∆̂ and, in dotted lines, the translates of the branches Î+
x (red) and

Î+
y (blue) by 2β and −2β, respectively. In all cases, these translated branches fit in the

domain ∆̂. On the left, θ > π/2 and β − θ < π/2; on the right, θ < π/2 and β − θ > π/2.

To lighten notation in the functional equation (D.8), we will denote

γ̂1(ω) := γ1(x(λω), y(λω)) and γ̂2(ω) := γ2(x(λω), y(λω)).

Theorem D.5. The functions ψ1 and ψ2, which are so far defined on the interior of ∆̂,
can be continued meromorphically to the whole of C. For all ω ∈ C, these functions
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satisfy

γ̂1(ω)ψ1(ω) + γ̂2(ω)ψ2(ω) = 0, (functional equation) (D.11)

ψ1(η̂ω) = ψ1(2π + 2β − ω) = ψ1(ω), (invariance of ψ1 by η̂) (D.12)

ψ2(ξ̂ω) = ψ2(2π − ω) = ψ2(ω), (invariance of ψ2 by ξ̂) (D.13)

ψ1(η̂ξ̂ω) = ψ1(ω + 2β) =
γ̂2
γ̂1

(ξ̂ω)
γ̂1
γ̂2

(ω)ψ1(ω), (shift of 2β) (D.14)

ψ2(ξ̂η̂ω) = ψ2(ω − 2β) =
γ̂1
γ̂2

(η̂ω)
γ̂2
γ̂1

(ω)ψ2(ω), (shift of −2β). (D.15)

Note that (D.14) can be rewritten as

ψ1(ω + 2β) =
γ2(x(e

−iω), y(e−iω))

γ1(x(e−iω), y(e−iω))

γ1(x(e
iω), y(eiω))

γ2(x(eiω), y(eiω))
ψ1(ω),

= E(eiω)ψ1(ω), (D.16)

where E(s) is defined by (6.5). This is the formula announced in Proposition 9.3.

Proof of Theorem D.5. We have constructed ψ1 and ψ2 meromorphically inside ∆̂. Our
first task will be to prove the identities (D.11)–(D.15) where they are well defined. We
have already seen that the functional equation (D.11) holds in ∆̂, by construction of ψ1

and ψ2 (see (D.9) and (D.10)).

Let us now prove that the invariance formula (D.12) holds where it is well defined,
that is, for ω ∈ ∆̂ ∩ η̂∆̂ = ∆̂2 (Lemma D.4). For ω ∈ ∆̂2, the value ψ1(ω) only depends on
y(λω) (see (D.7)), and y ◦ λ is invariant by η̂. Hence (D.12) holds. In the same way, we
prove that (D.13) holds for ω ∈ ∆̂ ∩ ξ̂∆̂ = ∆̂1.

Let us now establish the translation formula (D.14) where it is well defined, that
is, for ω ∈ ∆̂ ∩ ξ̂η̂∆̂ = ∆̂ ∩ (∆̂ − 2β). This is the area located between the branches
Î+
x and Î+

y − 2β (see Figures 10 and 11). In particular, ω ∈ ∆̂1 (Lemma D.4), hence

ξ̂ω ∈ ξ̂∆̂1 = ∆̂1 as well. We have:

ψ1(η̂ξ̂ω) = ψ1(ξ̂ω) by (D.12), given that η̂ξ̂ω ∈ ∆̂ and ξ̂ω ∈ ∆̂,

= − γ̂2(ξ̂ω)
γ̂1(ξ̂ω)

ψ2(ξ̂ω) by (D.11), given that ξ̂ω ∈ ∆̂,

= − γ̂2(ξ̂ω)
γ̂1(ξ̂ω)

ψ2(ω) by (D.13), given that ξ̂ω ∈ ∆̂ and ω ∈ ∆,

=
γ̂2(ξ̂ω)

γ̂1(ξ̂ω)

γ̂1(ω)

γ̂2(ω)
ψ1(ω) by (D.11), given that ω ∈ ∆̂.

This completes the proof of (D.14). We prove (D.15) in a similar fashion for ω ∈ ∆̂ ∩ η̂ξ̂∆̂.

We will now continue ψ1 meromorphically on successive translates of ∆̂ by multiples
of ±2β, using the translation formulas (D.14) and (D.15). Let us first define ψ1 on
η̂ξ̂∆̂ = ∆̂ + 2β. For ω ∈ ∆̂ we set

ψ1(ω + 2β) = ψ1(η̂ξ̂ω) :=
γ̂2(ξ̂ω)

γ̂1(ξ̂ω)

γ̂1(ω)

γ̂2(ω)
ψ1(ω).

Since (D.14) holds on ∆̂∩ ξ̂η̂∆̂, this is consistent with the already defined values of ψ1. We
thus obtained a meromorphic extension of ψ1 on ∆̂∪η̂ξ̂∆̂ (recall that ∆̂∩η̂ξ̂∆̂ = ∆̂∩(∆̂+2β)
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has a non-empty interior). Let us now define ψ1 on ξ̂η̂∆̂ = ∆̂− 2β. For ω ∈ ∆̂− 2β, we
set:

ψ1(ω) :=
γ̂1(ξ̂ω)

γ̂2(ξ̂ω)

γ̂2(ω)

γ̂1(ω)
ψ1(η̂ξ̂ω).

Again, the fact that (D.14) holds on ∆̂∩ ξ̂η̂∆̂ guarantees that we have indeed an extension
of ψ1.

With the same translation procedure we now propagate the construction of ψ1 to

(ξ̂η̂)n∆̂ ∪ · · · ∪ ξ̂η̂∆̂ ∪ ∆̂ ∪ η̂ξ̂∆̂ ∪ · · · ∪ (η̂ξ̂)n∆̂ =
⋃

k∈J−n,nK

(∆̂ + 2kβ)

for all n ∈ N. Lemma D.4 guarantees that we finally cover the whole of C.
We continue ψ2 meromorphically to C using a similar procedure, based now on (D.15).

The principle of analytic/meromorphic continuation implies that the equations (D.11)–
(D.13) are satisfied on the whole of C.

In Section 9.2, we defined a lifting of ϕ1 to the s-plane by ϕ̃1(s) := ϕ1(y(s)).

Corollary D.6. The function ϕ̃1 may be continued meromorphically on the slit plane
C \ eiβR+.

Proof. Let us observe from (D.7) that ϕ̃1(e
iω) = ψ1(ω) for ω ∈ ∆̂2. The domain ∆̂2

contains in particular a neighbourhood of π+ β + iR. Let log be the determination of the
complex logarithm in the slit plane C\eiβ R+ that satisfies log(eiω) = iω when <ω = π+β.
In a neighbourhood of arg s = π + β, we now have

ϕ̃1(s) = ψ1(−i log s).

But Theorem D.5 states that ψ1 can be continued meromorphically to C. Then the above
formula allows us to continue ϕ̃1 meromorphically to C \ eiβ R+.
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