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Abstract

We study the smoothness of the solution of the directed chain stochastic differential
equations, where each process is affected by its neighborhood process in an infinite
directed chain graph, introduced by Detering et al. (2020). Because of the auxiliary
process in the chain-like structure, classic methods of Malliavin derivatives are not
directly applicable. Namely, we cannot make a connection between the Malliavin
derivative and the first order derivative of the state process. It turns out that the
partial Malliavin derivatives can be used here to fix this problem.
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1 Introduction

The main objective of this paper is to study the existence and regularity of the densi-
ties of the directed chain stochastic differential equations: given a filtered probability
space (Ω,F , (Ft)t≥0,P), the directed chain McKean-Vlasov stochastic differential equa-
tion (or directed chain SDE for short) for a pair (Xθ

· , X̃·) of N -dimensional stochastic
processes considered here is of the form

Xθ
t = θ +

∫ t

0

V0(s,Xθ
s ,Law(Xθ

s ), X̃s) ds+

d∑
i=1

∫ t

0

Vi(s,X
θ
s ,Law(Xθ

s ), X̃s) dBis, (1.1)

for t ≥ 0 with the distributional constraint

[Xθ
t , t ≥ 0] := Law(Xθ

t , t ≥ 0) = Law(X̃t, t ≥ 0) =: [X̃t, t ≥ 0],
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Smoothness on directed chain SDEs

where Vi, i = 0, 1, . . . , d are some smooth coefficients, B· := (B1
· , . . . , B

d
· ) is a standard

d-dimensional Brownian motion independent of the initial state Xθ
0 = θ and of X̃·, and

Xθ
0 is independent of X̃0. Throughout the paper, [ξ] denotes the law of a generic random

element ξ. Here, each coefficient Vi in (1.1) depends on time s, the value Xθ
s , its law

Law(Xθ
s ) =: [Xθ

s ] and the other X̃s of the pair for s ≥ 0. The law [Xθ
· ] depends on the law

[X̃·] through (1.1) and they are the same marginal law. We show that the above directed
chain SDE has a unique weak solution in section 2.

This kind of directed chain structure was first proposed by [13] in a simpler form.
Schematically, this structure can be written as an infinite chain of stochastic equations
for (X1,·, X2,·, . . .),

dX1,t = b(t,X1,t, F1,t) dt+ dB1,t,

dX2,t = b(t,X2,t, F2,t) dt+ dB2,t

...

dXi,t = b(t,Xi,t, Fi,t) dt+ dBi,t,

...

(1.2)

where Fi,t := uδXi+1,t + (1 − u)µi,t is the mixture distribution term of the measure-
dependent drift coefficient b with the marginal law µi,t := Law(Xi,t) of Xi,t for t ≥ 0 ,
δXi+1,t is the Dirac measure at Xi+1,t, a fixed constant u ∈ [0, 1] measures the common
amount of dependency of Xi,· on its neighborhood value Xi+1,·, and B1,·, B2,·,... are
independent standard Brownian motions. We also assume that the initial value Xi,0 is
independent of Bi,·, and Xi+1,· and Bi,· are independent for i = 1, 2, . . .. In particular,

the drift b in [13] has the following form b(t, x, µ) :=
∫
R
b̃(t, x, y)µ(dy) with some Lipschitz

continuous function b̃. See also Figure 1 in section 4.
The stochastic processes on infinite graphs including the directed chain structure

have drawn much attention recently (e.g., see [28] for their application to the generative
adversarial network). Stochastic Differential Games on the directed chain have been
studied in [14] and on the extended version of random directed networks in [15] as
well as on the general random graph (e.g., [25]). [24] discuss the Markov random field
property over both finite and countably infinite graphs with local interactions through
the drift coefficients. Another related topic is the Graphon particle system. There are a
sequence of works on Graphon particle system and Graphon Mean Field Games, [1, 4, 5]
just to name a few. [2] introduced the uniform-in-time exponential concentration bounds
related to the graphon particle system and its finite particle approximations. Here, we
are interested in the existence and smoothness of the density of the directed chain
SDE (2.1)-(2.2). It should be emphasized here that in this problem, we need notions of
derivatives in the space of measures, which is used frequently in the theory of Mean
Field Games.

In most cases, Malliavin calculus is a foundation for analyzing the smoothness of
the density of stochastic differential equations. It has been widely used in investigating
the density of diffusions [20], [22], [23] and then applied into many different scenarios.
The authors in [8] use Malliavin calculus to derive smoothing properties of solution to
stochastic differential equations with jumps. The smoothing properties of McKean-Vlasov
SDEs have been studied in [10], which is closely related to our purpose. However, be-
cause of the appearance of the auxiliary process X̃, the crucial step making connections
between the Malliavin derivative and the first-order derivative of the state process fails,
please see Question 3.3 for the details. To our best knowledge, we did not find any
work studying the smoothness property of such weak solutions of stochastic differential
equations.
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Smoothness on directed chain SDEs

For the purpose of resolving this problem and using the Malliavin derivatives, we
should freeze the auxiliary process X̃. This inspired us to consider another closely
related and well-developed tool, the partial Malliavin calculus. Partial Malliavin calculus
is first introduced by [18] for the constant case, where the projections are taken on
a fixed Hilbert subspace, and applied to prove some regularity results in non-linear
filtering theory. Another work developing the partial Malliavin calculus is [16], by which
the authors were able to complete the proof of some results in [27] on the long-time
asymptotic of stochastic oscillatory integrals. We mainly adopt the framework from
a later work by Nualart and Zakai [30], where the projection is taken on a family of
subspaces which are defined as the orthogonal complement to the subspaces generated
by X̃ in (1.1). We remark that our method is potentially applied to analyze the smoothness
of the (conditional) law of weak solutions of stochastic differential equations in a similar
setting. For example, the study of nonlinear filtering problem and the corresponding
stochastic partial differential equations.

This paper is structured as follows. In section 2, we first introduce the differentiation
in the space of measures and multi-index notation in section 2.1, and then prove the ex-
istence, uniqueness and some regularity results on the solutions of generalized directed
chain SDEs in Propositions 2.2-2.3. In section 3, we prepare the notions of the partial
Malliavin calculus and give the Kusuoka-Stroock process for the proof of our smoothness
of densities, which will be stated in section 4. Our proofs follow the idea of [10], where
we first derive integration by parts formulae for the directed chain SDEs via the partial
Malliavin derivatives, instead of the Malliavin derivatives, as in [10]. The main result is
stated in Theorem 4.11 with some applications in section 4.

2 Preliminaries and directed chain SDEs

In this section, we first prepare some notations and the notion of differentiation in
P2(RN ), where P2(RN ) is the space of all measures on RN with finite second moments,
and then establish the weak solutions of the directed chain SDEs.

2.1 Notations and basic setup

Rather than the directed chain SDE of the type given in [13], we consider the SDE in a
more general setup, allowing the diffusion coefficients non-constant. Given a probability
space (Ω,F ,F = (Ft)t≥0,P), the directed chain McKean-Vlasov SDE (or directed chain
SDE for short) is of the form

Xθ
t = θ +

∫ t

0

V0(s,Xθ
s , [X

θ
s ], X̃s) ds+

d∑
i=1

∫ t

0

Vi(s,X
θ
s , [X

θ
s ], X̃s) dBis, (2.1)

with the constraint [Xθ
t , t ≥ 0] = [X̃t, t ≥ 0], (2.2)

where Bs := (B1
s , . . . , B

d
s ) is a standard d dimensional Brownian motion and X̃s ∈

L2(Ω× [0, T ],RN ) is an adapted random process independent of all the Brownian motions
Bi, i = 1, . . . , d and initial state θ.

Moreover, we assume that V0, Vi : [0, T ]×RN × P2(RN )×RN → RN , where P2(RN )

is the set of measures on RN with finite second moments. We equip P2(RN ) with the
2-Wasserstein metric, W2. For a general metric space (M,d), we define the 2-Wasserstein
metric on P2(M) by

W2(µ, ν) = inf
Π∈Pµ,ν

(∫
M×M

d(x, y)2Π( dx, dy)

)1/2

,

where Pµ,ν denotes the class of measures on M ×M with marginals µ and ν.
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We denote Lp norm on (Ω,F ,P) by ‖ · ‖p, p ≥ 1 and for every t ≥ 0, we also introduce
the space Spt of continuous F adapted process ϕ on [0, t], satisfying

‖ϕ‖Spt =
(
E sup
s∈[0,t]

|ϕs|p
)1/p

<∞.

Let us introduce more notations in accordance with [10]. We will write [θ] = δx if the
initial state of this SDE is a fixed real vector x ∈ RN . We use Ck,k,kb,Lip (R+×RN ×P2(RN )×
RN ;RN ) for the class of functions, with a precise definition given in Definition 2.1, where
the notion of derivatives with respect to measure is adopted from P.-L. Lions’ lecture
notes at the Collège de France, recorded in a set of notes [6], very well exposed in [7]
and also adopted by [10].

Differentiability in P2(RN ) Lion’s notion of differentiability with respect to measure
of functions U : P2(RN ) → R is to define a lifted function U ′ on the Hilbert space
L2(Ω′;RN ) over probability space (Ω′,F ′,P′), where Ω′ is a Polish space and P′ is an
atomless measure, such that U ′(X ′) = U([X ′]) for X ′ ∈ L2(Ω′;RN ) and [X ′] = [X].
Thus, we are able to express the derivative of U w.r.t. measure µ = [X] term as
the Fréchet derivative of U ′ w.r.t. X ′ whenever it exists, which can be written as an
element of L2(Ω′;RN ) by identifying L2(Ω′;RN ) and its dual. This gradient in a direction
γ′ ∈ L2(Ω′;RN ) is given by

DU ′(X ′)(γ′) = 〈DU ′(X ′), γ′〉 = E′
[
DU ′(X ′) · γ′

]
,

where E′ is the expectation under P′. By [6, Theorem 6.2], the distribution of this
gradient depends only on the measure µ, exists uniquely and can be written as

∂µU(µ,X ′) := DU ′(X ′) = ξ(X ′) ∈ L2(Ω′;RN ).

This definition of the derivative with respect to measure can be extended to higher
orders by thinking of ∂µU(µ, ·) : P2(RN ) ×RN → RN as a function, and the derivative
is well defined for each of its components as in the following. For each µ ∈ P2(RN ),
there exists a unique version of such function ∂µU(µ, ·) which is assumed to be a priori
continuous (see the discussion in [10]).

Multi-index To get a more general result, we extend the derivatives to higher order.
For a function f : P2(RN )→ RN , we can apply the above discussion straightforwardly
to each component f = (f1, . . . , fN ). Then the derivatives ∂µf i, 1 ≤ i ≤ N takes values
in RN , and we denote (∂µf

i)j : P2(RN )×RN → R for j = 1, . . . , N . For a fixed v ∈ RN ,
we are able to differentiate P2 3 µ 7→ (∂µf

i)j(µ, v) ∈ R again to get the second order
derivative. If the derivative of this mapping exists and there is a continuous version of

P2(RN )×RN ×RN 3 (µ, v1, v2) 7→ ∂µ(∂µf
i)j(µ, v1, v2) ∈ RN ,

then it is unique. It is natural to have a multi-index notation ∂(j,k)
µ f i := (∂µ(∂µf

i)j)k to
ease the notation. Similarly, for higher derivatives, if for each (i0, . . . , in) ∈ {1, . . . , N}n+1,

∂µ(∂µ . . . (∂µ︸ ︷︷ ︸
n times

f i0)i1 . . . )in

exists, we denote this ∂αµf
i0 with α = (i1, . . . , in) and |α| = n. Each derivative in µ is a

function of an extra variable with ∂αµf
i0 : P2(RN )× (RN )n → R. We always denote these

variables, by v1, . . . , vn, i.e.,

P2(RN )× (RN )n 3 (µ, v1, . . . , vn) 7→ ∂αµf
i0(µ, v1, . . . , vn) ∈ R.
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When there is no confusion, we will abbreviate (v1, . . . , vn) to v ∈ (RN )n, so that

∂αµf
i0(µ,v) = ∂αµf

i0(µ, v1, . . . , vn),

and use notation
|v| := |v1|+ · · ·+ |vn|,

with | · | the Euclidean norm on RN . Then it makes sense to discuss the derivatives of
the function ∂αµf

i0 with respect to the variables v1, . . . , vn.
If, for some j ∈ {1, . . . , N} and all (µ, v1, . . . , vj−1, vj+1, . . . , vn) ∈ P2(RN )× (RN )n−1,

RN 3 vj 7→ ∂αµf
i0(µ, v1, . . . , vn) ∈ R

is l-times continuously differentiable, we denote the derivatives ∂
βj
vj ∂

α
µf

i0 , for βj a multi-
index on {1, . . . , N} with |βj | ≤ l. Similar to the above, we will denote by β the n-tuple of
multi-indices (β1, . . . , βn). We also associate a length to β by

|β| := |β1|+ · · ·+ |βn|,

and denote #β := n. Then we denote by Bn the collection of all such β with #β = n,
and B := ∪n≥1Bn. Again, to lighten the notation, we use

∂βv ∂
α
µf

i(µ,v) := ∂βnvn · · · ∂
β1
v1 ∂

α
µf

i(µ, v1, . . . , vn).

The coefficients V0, . . . , Vd : [0, T ] × RN × P2(RN ) × RN → RN depend on a time
variable, two Euclidean variables as well as the measure variable. So whether the order
of taking derivatives matters is a question. Fortunately, a result from [3, Lemma 4.1]
tells us that derivatives commute when the mixed derivatives are Lipschitz continuous.
However, it should be emphasized that we could not interchange the order of ∂µ and ∂v,
since the coefficients would not depend on the extra variable v before taking derivatives
with respect to measure.

Definition 2.1 (Ck,k,kb,Lip ). We have the following definitions:

(a) We use ∂x, ∂̃ to denote the derivative with respect to the second and fourth Eu-
clidean variables in V0, Vi’s, respectively.

(b) Let V : R+ ×RN ×P2(RN )×RN → RN with components V 1, . . . , V N : R+ ×RN ×
P2(RN )×RN → R. We say V ∈ C1,1,1

b,Lip([0, T ]×RN×P2(RN )×RN ;RN ) if the following

is true: for each i = 1, . . . , N , ∂µV i, ∂xV i and ∂̃V i exist. Moreover, assume the
boundedness of the derivatives for all (t, x, µ, y, v) ∈ [0, T ]×RN×P2(RN )×RN×RN ,

|∂xV i(t, x, µ, y)|+ |∂̃V i(t, x, µ, y)|+ |∂µV i(t, x, µ, y, v)| ≤ C.

In addition, suppose that ∂µV i, ∂xV i and ∂̃V i are all Lipschitz in the sense that for
all (t, x, µ, y, v), (t, x′, µ′, y′, v′) ∈ [0, T ]×RN × P2(RN )×RN ×RN ,∣∣∂µV i(t, x, µ, y, v)− ∂µV i(t, x′, µ′, y′, v′)

∣∣ ≤ C(|x− x′|+ |y − y′|+ |v − v′|
+W2(µ, µ′)),∣∣∂xV i(t, x, µ, y)− ∂xV i(t, x′, µ′, y′)

∣∣ ≤ C(|x− x′|+ |y − y′|+W2(µ, µ′)),∣∣∂̃V i(t, x, µ, y)− ∂̃V i(t, x′, µ′, y′)
∣∣ ≤ C(|x− x′|+ |y − y′|+W2(µ, µ′)).

(c) We write V ∈ Ck,k,kb,Lip ([0, T ] × RN × P2(RN ) × RN ;RN ), if the following holds true:
for each i = 1, . . . , N , and all multi-indices α, γ̃ and γ on {1, . . . , N} and all β ∈ B
satisfying |α|+ |β|+ |γ|+ |γ̃| ≤ k, the derivative

∂γx ∂̃
γ̃∂βv ∂

α
µV

i(t, x, µ, y,v)

exists and is bounded, Lipschitz continuous with respect to x, µ, y and ν uniformly
in t ∈ [0, T ].
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(d) We write h ∈ Ck,kb,Lip([0, T ]×RN ×RN ;RN ), if the mapping h does not depend on a
measure variable and all the other conditions are satisfied in (c).

2.2 Solutions of directed chain SDEs

The existence and uniqueness of weak solutions of directed chain SDEs are given
in Proposition 2.2. The constraint (2.2) plays an essential role here in governing the
uniqueness.

Proposition 2.2. Suppose that Vi, i = 0, 1, . . . , d are Lipschitz in the sense that for every
T > 0, there exists a constant CT such that

sup
i
|Vi(t, x1, µ1, y1)−Vi(t, x2, µ2, y2)| ≤ CT (|x1− x2|+ |y1− y2|+W2(µ1, µ2)), 0 ≤ t ≤ T.

(2.3)
With the same constant CT , let us also assume that Vi’s have at most linear growth, i.e.

sup
0≤t≤T

|Vi(t, x, µ, y)| ≤ CT (1 + |x|+ |y|+W2(µ, µ0)) (2.4)

where µ0 ∈ P2(RN ) is fixed. Then there exists a unique weak solution to the stochastic
differential equation of the directed chain (2.1)-(2.2).

The proof is similar to the proof for [13, Proposition 2.1] with a small generalization.
Due to the appearance of the neighborhood process, we cannot expect a strong solution
of the directed chain SDEs (2.1) (cf. Proposition 2.1 of [13]).

Proof. We shall evaluate the Wasserstein distance between two probability measures
µ1, µ2 on the space C([0, T ],RN ) of continuous functions, namely

Dt(µ1, µ2) := inf

{∫
( sup
0≤s≤t

|Xs(ω1)−Xs(ω2)|2 ∧ 1) dµ(ω1, ω2)

}1/2

(2.5)

for 0 ≤ t ≤ T , where the infimum is taken over all the joint measure µ on C([0, T ],RN )×
C([0, T ],RN ) such that their marginals are µ1, µ2, and the initial joint distribution is
the product measure θ ⊗ θ, the initial marginals are θ. Here, Xs(ω) = ω(s), 0 ≤ s ≤
T is the coordinate map of ω ∈ C([0, T ],RN ). DT (·, ·) defines a complete metric on
M(C([0, T ],RN )), which gives the weak topology to it.

Given the distribution m = Law(X̃) ∈M(C([0, T ],RN )) of X̃ that is independent of B
and X0, it is well known that the following stochastic differential equation

dXm
t = V0(t,Xm

t ,mt, X̃t) dt+

d∑
i=1

Vi(t,X
m
t ,mt, X̃t) dBit (2.6)

has a unique solution, based on the Lipschitz and linear growth condition on coefficients,
thanks to the iteration scheme for the stochastic equation with random coefficients
Vi(t, ·,mt, X̃t), i = 0, . . . , d, 0 ≤ t ≤ T . Note that since X̃ is independent of Brownian
motion B, we can only expect the solution to exist in the weak sense.

Define a map Φ : M(C([0, T ],RN )) → M(C([0, T ],RN )) by Φ(m) := Law(Xm
· ). We

shall find a fixed point m∗ for the map Φ such that Φ(m∗) = m∗ to show the uniqueness
of the solution in the weak sense.

Assume m1 = Law(X̃1) and m2 = Law(X̃2), then by rewriting (2.6) we have

Xmi
t = θ +

∫ t

0

V0(t,Xmi
t ,mi,t, X̃

i
t) ds+

d∑
i=1

∫ t

0

Vi(t,X
mi
t ,mi,t, X̃

i
t) dBis, i = 1, 2.
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Note that here we fix the initial state to be the same θ for both Xm1 and Xm2 . Let m
be a joint distribution of m1,m2 and Em be the expectation under m. Then

Em
[

sup
0≤s≤t

(Xm1
s −Xm2

s )2
]

≤ 2Em
[

sup
0≤s≤t

∫ s

0

(
V0(v,Xm1

v ,m1,v, X̃
1
v )− V0(v,Xm2

v ,m2,v, X̃
2
v )
)2

dv

]

+ 2d
d∑
i=1

Em
[

sup
0≤s≤t

∫ s

0

(
Vi(v,X

m1
v ,m1,v, X̃

1
v )− Vi(v,Xm2

v ,m2,v, X̃
2
v )
)2

dv

]
≤ 2d+3(d+ 1)C2

TE
m

[
sup

0≤s≤t

∫ s

0

(
(Xm1

v −Xm2
v )2 +W2(m1,v,m2,v)

2 + (X̃1
v − X̃2

v )2
)
∧ 1 dv

]
≤ C · Em

[ ∫ t

0

sup
0≤v≤s

(Xm1
v −Xm2

v )2 ∧ 1 ds

]
+ C

∫ t

0

W2(m1,s,m2,s)
2 ∧ 1 ds

+ C · Em
[ ∫ t

0

sup
0≤v≤s

(X̃1
v − X̃2

v )2 ∧ 1 ds

]
= C

∫ t

0

Em
[

sup
0≤v≤s

(Xm1
v −Xm2

v )2 ∧ 1
]

ds+ C

∫ t

0

W2(m1,s,m2,s)
2 ∧ 1 ds

+ C

∫ t

0

Em
[

sup
0≤v≤s

(X̃1
v − X̃2

v )2 ∧ 1
]

ds (2.7)

where we replace 2d+3(d+ 1)CT by C. Note that by construction,

W2(m1,s,m2,s)
2 ∧ 1 ≤ Ds(m1,m2)2.

By taking infimum over all m such that its marginals are m1,m2, the third term
in (2.7) is bounded by

C

∫ t

0

Ds(m1,m2)2 ds.

Hence we get

Dt(Φ(m1),Φ(m2))2 ≤ C
∫ t

0

Ds(Φ(m1),Φ(m2))2 ds+ 2C

∫ t

0

Ds(m1,m2)2 ds.

Then by applying Gronwall’s lemma, we get

Dt(Φ(m1),Φ(m2))2 ≤ 2CeCT
∫ t

0

Ds(m1,m2)2 ds. (2.8)

For every m ∈M(C([0, T ],RN )), let m1 = m, m2 = Φ(m), we get by iterating (2.8),

DT (Φ(k+1)(m),Φ(k)(m)) ≤
√

(2CTeCT )k

k!
DT (Φ(m),m), ∀k ∈ N. (2.9)

This implies that {Φ(k)(m), k ∈ N} forms a Cauchy sequence converging to a fixed
point m∗. This m∗ is the weak solution to directed chain SDE (2.1)-(2.2).

Proposition 2.3 (Regularity). If θ ∈ L2(Ω), the solution of directed chain SDE (2.1)-(2.2)
satisfies

‖Xθ‖S2
T
≤ C(1 + ‖θ‖2),

where C = C(T ), under the assumption of Proposition 2.2.

Proof. The proof follows from a similar procedures as [13, Proposition 2.2].

EJP 29 (2024), paper 127.
Page 7/28

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1192
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Smoothness on directed chain SDEs

2.3 Flow property

In the last part of this section, we discuss the flow property of directed SDEs infor-
mally. After establishing the weak solution to the exact directed chain SDE (2.1), we also
consider the auxiliary process Xx,[θ]

· that satisfies

X
x,[θ]
· = x+

∫ ·
0

V0(s,Xx,[θ]
s , [Xθ

s ], X̃s) ds+

d∑
i=1

∫ ·
0

Vi(s,X
x,[θ]
s , [Xθ

s ], X̃s) dBis, (2.10)

where x ∈ RN is a fixed initial point and X̃· is the neighborhood process satisfying the
constraints (2.2), i.e., Law(X̃·) = Law(Xθ

· ) = [Xθ
· ]. Note that Xx,[θ]

· in (2.10), driven by
the same Brownian motion B, is solvable with pathwise uniqueness, given the (fixed)
unique, weak solution (Xθ

· , X̃·, B·) in Proposition 2.2, for each x ∈ RN . Thus we consider

the weak solution (X
x,[θ]
· , Xθ

· , X̃·, B·) for the system (2.1) and (2.10).

Proposition 2.4 (Regularity). Under the assumption in Proposition 2.2, for every θ ∈
L2(Ω), T > 0 and p ≥ 2, there exists a constant C = C(T, p) such that the solution
of (2.10) satisfies

‖Xx,[θ]‖SpT ≤ C(1 + ‖θ‖2 + |x|).

Proof. The proof follows from the Burkholder-Davis-Gundy inequality and Proposition 2.3,
which is also satisfied by X̃.

For the explanation purpose, we will add a superscript θ̃ such that Xx,[θ],θ̃
t := X

x,[θ]
t

and X̃ θ̃
t := X̃t to emphasize the neighborhood process start at θ̃, independent of θ. This

notation is only used in this subsection. Thus, with the notation B0
t ≡ t, t ≥ 0, (2.10) is

read as

X
x,[θ],θ̃
t = x+

d∑
i=0

∫ t

0

Vi(s,X
x,[θ],θ̃
s , [Xθ

s ], X̃ θ̃
s ) dBis, t ≥ 0. (2.11)

For different initial points x, x′ and the corresponding solutions Xx,[θ],θ̃
· and Xx′,[θ],θ̃

· ,
we have the following estimate: there exists a constant C > 0 such that

E
[

sup
t≤s≤T

∣∣Xx,[θ],θ̃
s −Xx′,[θ],θ̃

s

∣∣2] ≤ C|x− x′|2
again by the Lipschitz continuity and the Burkholder-Davis-Gundy inequality. By the
pathwise uniqueness of Xx,[θ],θ

· , given the pair (Xθ
· , X̃

θ̃
· ), it follows

Xx,[θ],θ̃
s

∣∣∣∣
x=θ

= Xθ
s , 0 ≤ s ≤ T. (2.12)

Now, with some abuse of notations, we denote by Xt,x,[θ],θ̃
· the solution to (2.11) with

X
t,x,[θ],θ̃
t = x, denote by (Xt,θ

· , X̃t,θ̃
· ) the solution to (2.1) with (Xt,θ

t , X̃t,θ̃
t ) = (θ, θ̃). It

follows from (2.12) that by the strong Markov property, for 0 ≤ t ≤ s ≤ r ≤ T , we have
the flow property

(X
s,Xt,x,[θ],θ̃s ,[Xt,θs ],X̃t,θ̃s
r , X

s,Xt,θs
r , X̃

s,X̃t,θ̃s
r ) = (Xt,x,[θ],θ̃

r , Xt,θ
r , X̃t,θ̃

r ). (2.13)

We close section 2 at this point. After the introduction of the partial Malliavin
derivatives, we will revisit the directed chain SDE and study the regularities of its
derivatives.
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3 Partial Malliavin calculus

In this section, we will briefly review the Malliavin calculus, following [29], and
introduce the partial Malliavin derivatives for our problem.

Malliavin Calculus Let H := L2([0, T ],Rd) be the Hilbert space, where we define
Gaussian process, and S be the set of smooth functionals of the form

F (ω) = f

(∫ T

0

h1(t) · dBt(ω), . . . ,

∫ T

0

hn(t) · dBt(ω)

)
,

where f ∈ C∞p (Rn;R), h1, . . . , hn ∈ H and
∫ T

0
hi(t) · dBt =

∑d
j=1

∫ T
0
hji (t) dBjt .

Then the Malliavin derivative of F , denoted by DF ∈ L2(Ω;H) is given by:

DF =

n∑
i=1

∂if

(∫ T

0

h1(t) · dBt(ω), . . . ,

∫ T

0

hn(t) · dBt(ω)

)
hi. (3.1)

As stated in [29], because of the isometry L2(Ω× [0, T ];Rd) ' L2(Ω;H), we are able
to identify DF with a process (DrF )r∈[0,T ] taking values in Rd. Moreover, the set of
smooth functionals, denoted by S, is dense in Lp(Ω) for any p ≥ 1 and D is closable as
an operator from Lp(Ω) to Lp(Ω;H). We define D1,p as the closure of the set S within
Lp(Ω;Rd) with respect to the norm

‖F‖D1,p =
(
E|F |p + E‖DF‖pH

) 1
p .

The higher order Malliavin derivatives are defined similarly, denoted by D(k)F , which
is a random variable with values in H⊗k defined as

D(k)F :=

n∑
i1,...,ik=1

∂(i1,...,ik)f

(∫ T

0

h1(t) · dBt(ω), . . . ,

∫ T

0

hn(t) · dBt(ω)

)
hi1 ⊗ · · · ⊗ hik .

We define Dk,p to be the closure of the set of smooth functions S with respect to the
norm:

‖F‖Dk,p =
(
E|F |p +

k∑
j=1

E‖D(j)F‖pH
) 1
p .

The Malliavin derivative is also well defined for the general E-valued random vari-
ables, where E is some separable Hilbert space, and we write D1,p(E) as the clo-
sure of S under some appropriate metric with respect to E. We will use the notation
D1,∞ = ∩p≥1D

1,p. The adjoint operator of D is introduced as follows.

Definition 3.1 (Definition 1.3.1, [29]). We denote by δ the adjoint of the operator D.
That is, δ is an unbounded operator on L2(Ω;H) with values in L2(Ω) such that

1. The domain of δ, denoted by Dom δ, is the set of H-valued square integrable random
variables u ∈ L2(Ω;H) such that∣∣E[〈DF, u〉H ]

∣∣ ≤ c‖F‖2
for all F ∈ D1,2, where c is a constant depending on u.

2. If u belongs to Dom δ, then δ(u) is the element of L2(Ω) characterized by

E[Fδ(u)] = E[〈DF, u〉H ]

for any F ∈ D1,2.
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3.1 Partial Malliavin calculus

The following remark motivates us to use the partial Malliavin calculus.

Remark 3.2. Because of the appearance of a neighborhood process X̃·, we propose the
following problem. We note that almost everything satisfied by the McKean-Vlasov SDE
in [10] is also satisfied by our directed chain SDE. However, we cannot directly apply
their approach to argue the existence, continuity and differentiability of the density
function of Xx,[θ]

t . The reason is that a key step connecting the Malliavin derivative and

∂xX
x,[θ]
t , which is defined in (2.10), may not hold in our case, that is, in general, the

identity:
∂xX

x,[θ]
t = DrX

x,[θ]
t σ>

(
σσ>

)−1
(r,Xx,[θ]

r , [Xθ
r ], X̃r)∂xX

x,[θ]
r (3.2)

does not hold for any r ≤ t. Thus, we cannot directly make use of the integration by
parts formulae in [10], and hence, we cannot argue the smoothness of Xx,[θ]

t .

Question 3.3. How can we make connections between the first order derivative ∂xX
x,[θ]
t

and the Malliavin derivatives similar to (3.2), which would render us to apply integration
by parts formula?

To address Question 3.3, we consider the partial Malliavin derivative in [30]. Let
G := σ({X̃ti ,∀ti ∈ QT }) be the sigma algebra generated by the neighborhood process at
all rational times, where QT = Q ∩ [0, T ] denotes the collection of all rational numbers in
[0, T ]. Due to the continuity of X̃, considering all rational time stamps is equivalent to
considering the whole time interval [0, T ], that is, G = σ(X̃s, 0 ≤ s ≤ T ). We associate
with G the family of subspaces defined by the orthogonal complement to the subspace
generated by {DX̃ti(ω), ti ∈ QT }, i.e.,

K(ω) = 〈DX̃ti(ω), ti ∈ QT 〉⊥.

Since G is generated by countably many random variables, we say it is countably
smoothly generated. Then the family H := {K(ω), ω ∈ Ω} has a measurable projection
by this countably smoothness of G. We define the partial Malliavin derivative operator as
DH.

Definition 3.4 (Definition 2.1, [30]). We define the partial derivative operator DH :

D1,2 → L2(Ω,H) as the projection of D on H, that is, for any F ∈ D1,2,

DHF = ProjH(DF ) = ProjK(ω)(DF )(ω).

This operator, similar to D, admits an identification with a process (DHr )r∈[0,T ].
Moreover, we define the norm associated with DH by

‖F‖Dk,pH =
(
E|F |p +

k∑
j=1

E‖DH,(j)F‖pH
) 1
p ,

where DH,(j) is defined as

DH,(j)F = ProjH(D(j)F ) = ProjK(ω)(D
(j)F )(ω).

Now we have the important fact that DHX̃t = 0. This is because X̃t is G measurable
and hence equivalently

DX̃t ∈ 〈DX̃ti , ti ∈ QT ∪ {t}〉; t ∈ [0, T ]. (3.3)

Then the projection of DX̃t onto the orthogonal of 〈DX̃ti , ti ∈ QT ∪{t}〉 must be zero.
Similar to the common Malliavin calculus, we have an adjoint operator of DH, which
is denoted by δH, as well as the integration by parts formula for the partial Malliavin
calculus.
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Definition 3.5 (Definition 2.3, [30]). Set Dom δH = {u ∈ L2(Ω;H) : ProjHu ∈ Dom δ}.
For any u ∈ Dom δH, set δH(u) = δ(ProjHu).

Following Definition 3.4 and 3.5, we have the integration by parts formula for DH

and δH
E[〈h,DHF 〉] = E[〈ProjHh,DF 〉] = E[FδH(h)]. (3.4)

Kusuoka-Stroock Processes In order to derive the differentiability of the density
function, we mimic the procedure in [10] and need to develop the integration-by-parts
formulae introduced in the works of [21] and [19].

Definition 3.6 (Definition 2.8 in [10]). Let E be a separable Hilbert space and let r ∈ R,
q,M ∈ N. We denote by Kq

r(E,M) the set of processes Ψ : [0, T ] × RN × P2(RN ) →
DM,∞
H (E) satisfying the following:

1. For any multi-indices α,β, γ satisfying |α|+ |β|+ |γ| ≤M , the function

[0, T ]×RN × P2(RN ) 3 (t, x, [θ]) 7→ ∂γx∂
β
v ∂

α
µΨ(t, x, [θ], v) ∈ Lp(Ω)

exists and is continuous for all p ≥ 1.

2. For any p ≥ 1 and m ∈ N with |α|+ |β|+ |γ|+m ≤M , we have

sup
v∈(RN )#β

sup
t∈(0,T ]

t−r/2
∥∥∥∥∂γx∂βv ∂αµΨ(t, x, [θ], v)

∥∥∥∥
Dm,pH (E)

≤ C (1 + |x|+ ‖θ‖2)q.

In our discussion, we do not consider the differentiability of the process X with
respect to the initial state of its neighborhood X̃. This above definition of Kq

r(E) is
almost the same as the definition in [10, Definition 2.8], except for the norm. The reason
is that we only care about the existence and smoothing properties of the density function
of Xx,[θ] and have to use the partial Malliavin calculus. We note that although the norms
are different, all the regularity results under the norm ‖ · ‖Dk,p also hold under our norm
‖ · ‖Dk,pH because of the Hölder’s inequality. We also define Dk,∞

H := ∩p≥1D
k,p
H . To obtain

the smoothness of density functions of a process starting from a fixed initial point, we use
Kqr(R,M) as the class of Kusuoka-Stroock processes which do not depend on a measure
term. By [10, Lemma 2.11], if Ψ ∈ Kq

r(E,M), then Φ(t, x, y) := Ψ(t, x, δx, y) ∈ Kqr(E,M).

4 Smoothness of densities

4.1 Regularities of solutions of directed chain SDEs

For the purpose of establishing the integration by parts formulae for the directed
chain SDEs and applying the results in [10, Theorem 6.1], we only need to check all the
regularities conditions with respect to the parameters (θ, x) contained in [10, Section 3].

Proposition 4.1 (First-order derivatives). Suppose that V0, . . . , Vd ∈ C1,1,1
b,Lip(R

+ × RN ×
P2(RN )×RN ;RN ). Then the following statements hold:

1. There exists a modification of Xx,[θ] such that for all t ∈ [0, T ], the map x 7→ X
x,[θ]
t

is P-a.s. differentiable. We denote the derivative by ∂xXx,[θ] and note that it solves
the following SDE

∂xX
x,[θ]
t = IdN +

d∑
i=0

∫ t

0

{
∂Vi(s,X

x,[θ]
s , [Xθ

s ], X̃s)∂xX
x,[θ]
s

}
dBis (4.1)

for every t ∈ [0, T ].
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2. For all t ∈ [0, T ], the maps θ 7→ Xθ
t and θ 7→ X

x,[θ]
t are Fréchet differentiable in

L2(Ω), i.e. there exists a linear continuous map DXθ
t : L2(Ω)→ L2(Ω) such that for

all γ ∈ L2(Ω),

‖Xθ+γ
t −Xθ

t −DXθ
t (γ)‖2 = o(‖γ‖2) as ‖γ‖2 → 0,

and similarly for Xx,[θ]
t . These processes satisfy the following stochastic differential

equations

DXx,[θ]
t (γ) =

d∑
i=0

∫ t

0

[
∂Vi(s,X

x,[θ]
s , [Xθ

s ], X̃s)DXx,[θ]
s (γ)

+ ∂̃Vi(s,X
x,[θ]
s , [Xθ

s ], X̃s)DX̃s(γ) +DV ′i (s,Xx,[θ]
s , Xθ

s , X̃s)(DXθ
s (γ))

]
dBis,

(4.2)

DXθ
t (γ) = γ +

d∑
i=0

∫ t

0

[
∂Vi(s,X

θ
s , [X

θ
s ], X̃s)DXθ

s (γ) + ∂̃Vi(s,X
θ
s , [X

θ
s ], X̃s)DX̃s(γ)

+DV ′i (s,Xθ
s , X

θ
s , X̃s)(DXθ

s (γ))

]
dBis (4.3)

where V ′i is the lifting of Vi. Moreover, for each x ∈ RN , t ∈ [0, T ], the map

P2 3 [θ] 7→ X
x,[θ]
t ∈ L2(Ω) is differentiable. So, ∂µX

x,[θ]
t (v) exists and it satisfies the

following equation

∂µX
x,[θ]
t (v) =

d∑
i=0

∫ t

0

{
∂Vi
(
s,Xx,[θ]

s , [Xθ
s ], X̃s

)
∂µX

x,[θ]
s (v)

+ ∂̃Vi
(
s,Xx,[θ]

s , [Xθ
s ], X̃s

)
∂µX̃s(v)

+ E′
[
∂µVi

(
s,Xx,[θ]

s , [Xθ
s ], X̃s, (X

v,[θ]
s )′

)
∂x(Xv,[θ]

s )′
]

+ E′
[
∂µVi

(
s,Xx,[θ]

s , [Xθ
s ], X̃s, (X

θ′

s )′
)
∂µ(Xθ′,[θ]

s )′(v)

]}
dBis, (4.4)

where (Xθ′

s )′ is a copy of Xθ
s on the probability space (Ω′,F ′,P′). Similarly,

∂x(X
v,[θ]
s )′ is a copy of ∂xX

v,[θ]
s and ∂µ(X

θ′,[θ]
s )′ = ∂µ(X

x,[θ]
s )′

∣∣
x=θ′

. Finally, the
following representation holds for all γ ∈ L2(Ω):

DXx,[θ]
t (γ) = E′[∂µX

x,[θ]
t (θ′)γ′]. (4.5)

3. For all t ∈ [0, T ], Xx,[θ]
t , Xθ

t ∈ D1,∞. Moreover, DHr X
x,[θ] =

(
DH,jr (Xx,[θ])i

)
1≤j≤N
1≤i≤d

satisfies, for 0 ≤ r ≤ t

DHr X
x,[θ]
t = σ

(
r,Xx,[θ]

r , [Xθ
r ], X̃r

)
+

d∑
i=0

∫ t

r

(
∂Vi(s,X

x,[θ]
s , [Xθ

s ], X̃s)D
H
r X

x,[θ]
s

)
dBis,

(4.6)

where σ
(
r,X

x,[θ]
r , [Xθ

r ], X̃r

)
is the N × d matrix with columns V1, . . . , Vd.

Proof. 1. The SDE of Xx,[θ] satisfies a classical SDE with adapted coefficients, by
[17, Theorem 7.6.5] there exists a modification of Xx,[θ]

t which is continuously
differentiable in x, and the first derivative satisfies (4.1).
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2. The maps θ 7→ Xθ
t and θ 7→ X

x,[θ]
t are Fréchet differentiable in a similar fashion

of [10, Proposition 3.1], where we can construct the proof through an iterative
scheme as in [9, Lemma 4.17]. Then (4.2) and (4.3) follow from direct computation.

Let us first rewrite the equation for DXθ
t (γ) in terms of the lifting V ′,

DXθ
t (γ) = γ +

d∑
i=0

∫ t

0

[
∂Vi(s,X

θ
s , [X

θ
s ], X̃s)DXθ

s (γ) + ∂̃Vi(s,X
θ
s , [X

θ
s ], X̃s)DX̃s(γ)

+ E′
[
∂µV

′
i (s,Xθ

s , [X
θ
s ], X̃s, (X

θ′

s )′)(D(Xθ′

s )′(γ′))
]]

dBis. (4.7)

We then consider the equation that we are going to prove for ∂µX
θ′,[θ]
s (v), evaluated

at v = θ′′ and multiplied by γ′′ with both random variables defined on a probability
space (Ω′′,F ′′,P′′). Then taking expectation with respect to P′′, we get

E′′
[
∂µX

θ′,[θ]
t (θ′′)γ′′

]
=

d∑
i=0

∫ t

0

{
∂Vi(s,X

θ
s , [X

θ
s ], X̃s)E

′′[∂µX
θ′,[θ]
s (θ′′)γ′′]

+ ∂̃Vi(s,X
θ
s , [X

θ
s ], X̃s)E

′′[∂µX̃sγ
′′]

+ E′′E′
[
∂µVi(s,X

θ
s , [X

θ
s ], X̃s, (X

θ′′,[θ]
s )′)∂x(Xθ′′,[θ]

s )′γ′′
]

+ E′
[
∂µVi(s,X

θ
s , [X

θ
s ], X̃s, (X

θ′

s )′)E′′[∂x(Xθ′,[θ]
s )′(θ′′)γ′′]

]}
dBis.

(4.8)

Note that since (γ′′, θ′′) are defined on a separate probability space, we have
E′′[∂µX̃sγ

′′] = DX̃s(γ) and

E′′E′
[
∂µVi(s,X

θ
s , [X

θ
s ], X̃s, (X

θ′′,[θ]
s )′)∂x(Xθ′′,[θ]

s )′γ′′
]

=

E′[∂µVi(s,X
θ
s , [X

θ
s ], X̃s, (X

θ′

s )′)∂x(Xθ′,[θ]
s )′γ′].

Then the dynamic of E′′[∂µX
θ′,[θ]
t (θ′′)γ′′] reduces to

E′′
[
∂µX

θ′,[θ]
t (θ′′)γ′′

]
=

d∑
i=0

∫ t

0

{
∂Vi(s,X

θ
s , [X

θ
s ], X̃s)E

′′[∂µX
θ′,[θ]
s (θ′′)γ′′]

+ ∂̃Vi(s,X
θ
s , [X

θ
s ], X̃s)DX̃s(γ)

+ E′
[
∂µVi(s,X

θ
s , [X

θ
s ], X̃s, (X

θ′

s )′)
[
∂x(Xθ′,[θ]

s )′γ′ + E′′[∂x(Xθ′′,[θ]
s )′(θ′′)γ′′]

]}
dBis.

(4.9)

By (4.1), we can evaluate the equation at x = θ, multiply by x, and derive a dynamic

of ∂xX
θ,[θ]
t γ. It can be seen that ∂xX

θ,[θ]
t γ + E′′[∂µX

θ′,[θ]
t (θ′′)γ′′] is equal to

γ +

d∑
i=0

∫ t

0

{
∂Vi(s,X

θ
s , [X

θ
s ], X̃s)E

′′[∂µX
θ′,[θ]
s (θ′′)γ′′] + ∂̃Vi(s,X

θ
s , [X

θ
s ], X̃s)DX̃s(γ)

+ E′
[
∂µVi(s,X

θ
s , [X

θ
s ], X̃s, (X

θ′

s )′)
[
∂x(Xθ′,[θ]

s )′γ′ + E′′[∂x(Xθ′′,[θ]
s )′(θ′′)γ′′]

]}
dBis.

(4.10)

EJP 29 (2024), paper 127.
Page 13/28

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1192
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Smoothness on directed chain SDEs

We observe that this dynamic is identical to the dynamic for DXθ
t (γ) in (4.7)

and hence they are identical by uniqueness. Similarly, by using this result for
DXθ

t (γ) and the same procedures, we are able to derive that E′′[∂µX
x,[θ]
t (θ′′)γ′′] is

equal to DXx,[θ]
t (γ). So (4.5) is proved. Moreover, ∂µX

x,[θ]
t (v) exists and satisfies

equation (4.4) by its definition.

3. We first deduce the Malliavin derivative for Xθ. Consider the Picard iteration given
by

Xθ,0
t = θ,

Xθ,k+1
t = θ +

d∑
i=0

∫ t

0

Vi(s,X
θ,k
s , [X̃k

s ], X̃k
s ) dBis,

where X̃k is a copy of Xθ,k independent of the Brownian motion and θ. We have
shown that such an iteration induces a Cauchy sequence {Φ(k)(Law(Xθ,0)), k ∈ N}
in Proposition 2.2 and a weak solution of the directed chain SDE. Since V0, Vi are
bounded and continuously differentiable, we have

DH,lr [V ji (s,Xθ,k
s , [X̃k

s ], X̃k
s )] = ∂V ji D

H,l
r Xθ,k

s ,

where we omit the arguments in Vi’s for notation simplicity. Note that |∂V ji | ≤ K
for some constant K > 0. We can then deduce V ji (s,Xθ,k

s , [X̃k
s ], X̃k

s ) ∈ D1,∞ by [29,
Proposition 1.5.5]. Moreover, the Ito integral∫ t

0

V ji (s,Xθ,k
s , [X̃k

s ], X̃k
s ) dBis, i = 1, . . . , d

belongs to D1,2 and for r ≤ t, we have

DH,lr

[ ∫ t

0

V ji (s,Xθ,k
s , [X̃k

s ], X̃k
s ) dBis

]
= V jl (r,Xθ,k

r , [X̃k
r ], X̃k

r )

+

∫ t

r

DH,lr [V ji (s,Xθ,k
s , [X̃k

s ], X̃k
s )] dBis.

On the other hand, the Lebesgue integral
∫ t

0
V j0 (s,Xθ,k

s , [X̃k
s ], X̃k

s ) ds is also in the
space D1,2 and have the dynamics

DH,lr

[ ∫ t

0

V j0 (s,Xθ,k
s , [X̃k

s ], X̃k
s ) ds

]
=

∫ t

0

DH,lr [V j0 (s,Xθ,k
s , [X̃k

s ], X̃k
s )] ds.

Therefore, the dynamic of DH,lr [Xθ,k+1
t ] has exactly the form of (4.6) by the

chain rule of the Malliavin derivative. Due to the reason that X̃k and Xθ,k has the
same distribution, by Doob’s maximal inequality and Burkholder’s inequality,

E[ sup
0≤s≤t

|DH,lr Xθ,k
s |p] ≤ c1,

where c1 is a constant that depends only on K, d, p for p ≥ 2. Moreover, we define a
metric similar to (2.5) but raise the power to general p ≥ 1,

Dt,p(µ1, µ2) := inf

{∫
( sup
0≤s≤t

|Xs(ω1)−Xs(ω2)|p ∧ 1) dµ(ω1, ω2)

}1/p

.

We then have the following,

Dt,p(m
k+1,mk)2 ≤ c1

∫ t

0

Ds,p(Law(Xθ,k),Law(Xθ,k−1)) ds+c2

∫ t

0

Ds(m
k,mk−1)2 ds,
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Smoothness on directed chain SDEs

by a similar approach as in the proof of Proposition 2.2, where c1, c2 are positive
constants depending on K, d, p and mk = Law(DH,lr Xθ,k). By iteration, we find that
{mk, k ∈ N} forms a Cauchy sequence in spaceM(C([0, T ],RN×d)) and has a limit.
We have now proved that

DHr X
θ
t = σ

(
r,Xθ

r , [X
θ
r ], X̃r

)
+

d∑
i=0

∫ t

r

(
∂Vi(s,X

θ
s , [X

θ
s ], X̃s)D

H
r X

θ
s

)
dBis, (4.11)

and the solution of DHr X
θ
t exists uniquely in the weak sense. In the iteration, it

can easily be proved by induction that Xθ,k ∈ D1,∞ and the sequence DHr X
θ,k
t is

uniformly bounded in Lp(Ω;H) for p ≥ 2. Therefore, we have Xθ
t ∈ D

1,∞
H . The proof

for Xx,[θ]
t is similar, we can set Xx,[θ],0

t = θ add another equation for Xx,[θ],k
t into

the above Picard iteration

X
x,[θ],k+1
t = x+

d∑
i=0

∫ t

0

Vi(s,X
x,[θ],k
s , [X̃k

s ], X̃x,k
s ) dBis.

Then the procedures are the same as the deduction for DHr X
θ.

For the purpose of more general applications, we want to make sure that the density
for directed chain SDE is at least second order differentiable in (x, [θ]), hence we need
to extend the above first order regularities to higher orders. Following [10], we provide
a result for the general case, which characterizes Xx,[θ]

t as a Kusuoka-Stroock process.

Theorem 4.2. Suppose V0, . . . , Vd ∈ Ck,k,kb,Lip ([0, T ]×RN×P2(RN )×RN ;RN ), then it follows

(t, x, [θ]) 7→ X
x,[θ]
t ∈ K1

0(RN , k). If, in addition, V0, . . . , Vd are uniformly bounded, then

(t, x, [θ]) 7→ X
x,[θ]
t ∈ K0

0(RN , k).

Note that [10, Proposition 6.7 and 6.8] can be extended to our directed chain case,
since the coefficients Vi : [0, T ]×RN×P2(RN )×RN → RN in the directed chain SDEs can
be written as a map of the form Ω× [0, T ]×RN×P2(RN ) 3 (ω, t, x, µ) 7→ a(ω, t, x, µ) ∈ RN .
This is because the auxiliary dependence on the neighborhood in the coefficients can be
thought of as the dependence on an initial state x, initial distribution µ and independent
Brownian motions, which are implied in the term ω. Moreover, we are able to take care
of the extra term with DX̃s due to the differentiability and regularity of Vi.

Similarly to Proposition 4.1, each type of derivative (w.r.t. x, µ or v) of Xx,[θ]
t satisfies

a linear equation. We will introduce a general linear equation, derive some a priori Lp

estimates on the solution, and then show that this linear equation is again differentiable
under some conditions in the next lemma. Whenever we say ak, k = 1, 2, 3, we also mean
ã1.

Lemma 4.3. Let vr be one element of the tuple v = (v1, . . . , v#v) and Y x,[θ](v) solve the
following SDE

Y
x,[θ]
t (v) = a0 +

d∑
i=0

∫ t

0

{
ai1(s, x, [θ])Y x,[θ]s (v) + ãi1(s, x, [θ])Ỹs(v) + ai2(s, x, [θ],v)

+ E′
[
ai3(s, x, [θ], θ′)(Y θ

′,[θ]
s )′(v) +

#v∑
r=1

ai3(s, x, [θ], θ′)(Y vr,[θ]s )′(v)
]}

dBis,

(4.12)
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where, for all i = 1, . . . , d, the coefficients (t, x, [θ],v) 7→ ak(t, x, [θ],v) are continuously in
Lp(Ω) ∀p ≥ 1, k = 1, 2, 3 and

a0 ∈ RN ,
a1, ã1 : Ω× [0, T ]×RN × P2(RN )→ RN×N

a2 : Ω× [0, T ]×RN × P2(RN )× (RN )#v → RN

ai3 : Ω′ × Ω× [0, T ]×RN × P2(RN )×RN → RN×N .

In (4.12), (Y θ
′,[θ])′ is a copy of Y θ on the probability space (Ω′,F ′,P′) where the initial

state is θ′. Similarly, (Y vr,[θ])′ is a copy of Y x,[θ] on the probability space (Ω′,F ′,P′)
where the initial state is vr. Ỹ is the neighborhood process, which has the same law as
Y θ and is independent of Brownian motion B and θ. We make the following boundedness
assumptions

1. supx∈RN ,[θ]∈P2(RN ),v∈(RN )#v ‖a2(·, x, [θ],v)‖SpT <∞,

2. a1, ã1 and a3 are uniformly bounded,

3. supx∈RN ,[θ]∈P2(RN ),v∈(RN )#v ‖a2(·, x, [θ],v)‖S2
T
<∞

and then we have the following estimate for C = C(p, T, a1, a3)

‖Y x,[θ](v)‖SpT ≤ C(|a0|+ ‖a2(·, x, [θ],v)‖SpT + ‖a2(·, x, [θ],v)‖S2
T

).

Moreover, we also get that the mapping

[0, T ]×RN × P2(RN )× (RN )#v 3 (t, x, [θ],v) 7→ Y
x,[θ]
t (v) ∈ Lp(Ω)

is continuous.

Proof. Note that ‖Ỹ (v)‖SpT = ‖(Y θ
′,[θ]

s )′(v)‖SpT since they have the same distribution.
The rest proof is identical to [10, Lemma 6.7] by using Gronwall’s lemma and the
Burkholder-Davis-Gundy inequality a couple times.

We now consider the differentiability of the generic process satisfying the linear
equation in Lemma 4.3. To ease the burden on notation, we omit the (t, x, [θ]) in ak, and
write ak

∣∣
v=θ′

to denote ak(s, x, [θ], θ′), for example.

Proposition 4.4. Suppose that the process Y x,[θ](v) is as in Lemma 4.3. In addition to
the assumptions of Lemma 4.3, we introduce the following differentiability assumptions:

(a) For k = 1, 2, 3, all (s, [θ],v) ∈ [0, T ]× P2(RN )× (RN )#v and each p ≥ 1, RN 3 x 7→
ak(s, x, [θ],v) ∈ Lp(Ω) is differentiable.

(b) For k = 1, 2, 3, all (s, [θ], x) ∈ [0, T ]× P2(RN )×RN and each p ≥ 1, (RN )#v 3 v 7→
ak(s, x, [θ],v) ∈ Lp(Ω) are differentiable.

(c) For all (s, x,v) ∈ [0, T ] × RN × (RN )#v the mapping L2(Ω) 3 θ 7→ a2(s, x, [θ],v) ∈
L2(Ω) is Fréchet differentiable.

(d) ak(s, x, [θ],v) ∈ D1,∞
H for k = 1, 2, 3 and all (s, x, [θ],v) ∈ [0, T ]× P2(RN )× (RN )#v.

Moreover, we assume the following estimates on the Malliavin derivatives hold.

sup
r∈[0,T ]

E

[
sup

s∈[0,T ]

|DHr ak(s, x, [θ],v)|p
]
<∞, k = 0, 1, 2, 3.

Then, for all t ∈ [0, T ] the following hold:

EJP 29 (2024), paper 127.
Page 16/28

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1192
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Smoothness on directed chain SDEs

1. Under assumption (a), x 7→ Y
x,[θ]
t (v) is differentiable in Lp(Ω) for all p ≥ 1 and

∂xY
x,[θ]
t (v) :

Lp
= lim

h→0

1

|h|

(
Y
x+h,[θ]
t (v)− Y x,[θ]t (v)

)
,

where the limit is taken in Lp sense, satisfies

∂xY
x,[θ]
t (v) =

d∑
i=0

∫ t

0

{
∂xa

i
1Y

x,[θ]
s (v) + ai1∂xY

x,[θ]
s (v) + ∂xa

i
2

+ E′
[
∂xa

i
3

∣∣
v=θ′

(Y θ
′,[θ]

s )′(v) +

#v∑
r=1

∂xa
i
3

∣∣
v=vr

(Y θ
′,[θ]

s )′(v)

]}
dBis

2. Under assumption (b), v 7→ Y
x,[θ]
t (v) is differentiable in Lp(Ω) for all p ≥ 1 and

∂vY
x,[θ]
t (v) :

Lp
= lim

h→0

1

|h|

(
Y
x,[θ]
t (v + h)− Y x,[θ]t (v)

)
satisfies

∂vjY
x,[θ]
t (v) =

d∑
i=0

∫ t

0

{
ai1∂vjY

x,[θ]
s (v) + ãi1∂vj Ỹs(v) + ∂vja

i
2

+ E′
[
∂va

i
3

∣∣
v=vj

(Y vj ,[θ]s )′(v)

]
+ E′

[
ai3
∣∣
v=vj

∂x(Y vj ,[θ]s )′(v)

+ ai3
∣∣
v=θ′

∂vj (Y
θ′,[θ]
s )′(v) +

#v∑
r=1

ai3
∣∣
v=vr

∂vj (Y
vr,[θ]
s )′(v)

]}
dBis.

3. Under assumption (a), (b) and (c), the maps θ 7→ Y
θ,[θ]
t (v) and θ 7→ Y

x,[θ]
t (v) are

Fréchet differentiable for all (x,v) ∈ RN × (RN )#v, so ∂µY
x,[θ]
t (v) exists and it

satisfies

∂µY
x,[θ]
t (v, v̂) =

d∑
i=0

∫ t

0

{
∂µa

i
1Y

x,[θ]
s (v) + ai1∂µY

x,[θ]
s (v, v̂) + ∂µã

i
1Ỹs(v) + ai1∂µỸs(v, v̂)

+ ∂µa
i
2 + E′

[
∂µa

i
3(Y θ

′,[θ]
s )′(v) + ∂va

i
3(Y v̂,[θ]s )′(v) + ai3

∣∣
v=θ′

∂µ(Y θ
′,[θ]

s )′(v, v̂)

]
+ E′

[
ai3
∣∣
v=v̂

∂x(Y v̂,[θ]s )′(v) +

#v∑
r=1

ai3
∣∣
v=vr

∂µ(Y vr,[θ]s )′(v, v̂)

]}
dBis.

Moreover, we have the representation, for all γ ∈ L2(Ω),

D
(
Y
θ,[θ]
t (v)

)
(γ) =

(
∂xY

x,[θ]
t (v)γ + E′′

[
∂µY

x,[θ]
t (v, θ′′)γ′′

])∣∣∣∣
x=θ

.

4. Under assumption (d), Y x,[θ]t ∈ D1,∞ and DHr Y
x,[θ]
t satisfies

DHr Y
x,[θ]
t (v) =

(
aj1Y

x,[θ]
r + ãj1Ỹr + aj2 + E′

[
aj3(Y x,[θ]s )′(v)

])
j=1,...,d

+

d∑
i=0

∫ t

0

{
DHr a

i
1Y

x,[θ]
s (v) +DHr ã

i
1Ỹs + ai1D

H
r Y

x,[θ]
s (v) + ãi1D

H
r Ỹs

+DHr a
i
2 + E′

[
DHr a

i
3

∣∣
v=θ′

(Y x,[θ]s )′(v)
]}

dBis.
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Moreover, the following bound holds:

sup
r≤t

E

[
|DHr Y

x,[θ]
t (v)|p

]
≤ C sup

r≤t
E

[
sup
r≤t≤T

(
|DHr a1|p + |DHr ã1|p

)]
(4.13)

The limits in the above are taken in the Lp sense. When we say k = 1, 2, 3 for the
assumptions, we also mean ã1.

Proof. See Propositions 4.1 and [10, Proposition 6.8] for the proof.

We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. The proof follows identically the proof of [10, Theorem 3.2], where
we apply Lemma 4.3 and Proposition 4.4.

4.2 Integration by parts formulae

Now we introduce some operators acting on the Kusuoka-Stroock processes. These
operators will be used later in the integration by parts formulae. We first make the
following common assumption on uniform ellipticity.

Assumption 4.5 (Uniform Ellipticity). Let σ : [0, T ] × RN × P2(RN ) × RN → RN×d be
given by

σ(t, z, µ, z̃) := [V1(t, z, µ, z̃), . . . , Vd(t, z, µ, z̃)].

We assume that there exists ε > 0 such that, for all ξ ∈ RN , z ∈ RN and µ ∈ P2(RN ),

ξ>σ(t, z, µ, z̃)σ(t, z, µ, z̃)>ξ ≥ ε|ξ|2.

For a function Ψ : [0, T ] × RN × P2(RN ) → Dn,∞, the following operators acting
on Kusuoka-Stroock processes in Kq

r(R, n) with multi-index α = (i) and (t, x, [θ]) ∈
[0, T ]×RN × P2(RN ) are given by

I1
(i)(Ψ)(t, x, [θ]) :=

1√
t
δH

(
r 7→ Ψ(t, x, [θ])

(
σ>
(
σσ>

)−1
(r,Xx,[θ]

r , [Xθ
r ], X̃r)∂xX

x,[θ]
r

)
i

)
I2
(i)(Ψ)(t, x, [θ]) :=

N∑
j=1

I1
(j)

((
∂xX

x,[θ]
t

)−1

j,i
Ψ(t, x, [θ])

)
,

I3
(i)(Ψ)(t, x, [θ]) := I1

(i)(Ψ)(t, x, [θ]) +
√
t∂iΨ(t, x, [θ]),

I1
(i)(Ψ)(t, x, [θ], v1) :=

1√
t
δH

(
r 7→

(
σ>
(
σσ>

)−1
(r,Xx,[θ]

r , [Xθ
r ], X̃r)

∂xX
x,[θ]
r (∂xX

x,[θ]
t )−1∂µX

x,[θ]
t (v1)

)
i
Ψ(t, x, [θ])

)
,

I3
(i)(Ψ)(t, x, [θ], v1) := I1

(i)(Ψ)(t, x, [θ], v1) +
√
t(∂µΨ)i(t, x, [θ], v1).

For a general multi-index α = (α1, . . . , αn), we inductively define

I1
α := I1

αn ◦ I
1
αn−1

◦ · · · ◦ I1
α1
,

the definition of the other operators are analogue to I1
α. The following proposition follows

directly from our previous discussion and the definition of the Kusuoka-Stroock process.
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Proposition 4.6. If V0, . . . , Vd ∈ Ck,k,kb,Lip ([0, T ]×RN ×P2(RN )×RN ;RN ), Assumption 4.5
holds and Ψ ∈ Kq

r(R, n), then I1
α(Ψ) and I3

α(Ψ), are all well-defined for |α| ≤ (k ∧ n).
I2
α(Ψ), I1

α(Ψ) and I3
α(Ψ) are well defined for |α| ≤ n ∧ (k − 2). Moreover,

I1
α(Ψ), I3

α(Ψ) ∈ Kq+2|α|
r (R, (k ∧ n)− |α|),

I2
α(Ψ) ∈ Kq+3|α|

r (R, [n ∧ (k − 2)]− |α|),

I1
α(Ψ), I3

α(Ψ) ∈ Kq+4|α|
r (R, [n ∧ (k − 2)]− |α|).

If Ψ ∈ K0
r(R, n) and V0, . . . , Vd are uniformly bounded, then

I1
α(Ψ), I3

α(Ψ) ∈ K0
r(R, (k ∧ n)− |α|),

I2
α(Ψ) ∈ K0

r(R, [n ∧ (k − 2)]− |α|),
I1
α(Ψ), I3

α(Ψ) ∈ K0
r(R, [n ∧ (k − 2)]− |α|).

From now on, the Integration by Parts Formulae (IBPF) follow in the same way as [10,
Sec 4.] by replacing D, δ by DH, δH and using integral by parts for this partial Malliavin
derivative.

Integration by parts formulae in the space variable are established in the following
Proposition.

Proposition 4.7 (Proposition 4.1, [10]). Let f ∈ C∞b (RN ,R) and Ψ ∈ Kq
r(R, n), then

1. If |α| ≤ n ∧ k, then

E
[
∂αx
(
f
(
X
x,[θ]
t

))
Ψ(t, x, [θ])

]
= t−|α|/2E

[
f
(
X
x,[θ]
t

)
I1
α(Ψ)(t, x, [θ])

]
.

2. If |α| ≤ n ∧ (k − 2), then

E
[
(∂αf)

(
X
x,[θ]
t

)
Ψ(t, x, [θ])

]
= t−|α|/2E

[
f
(
X
x,[θ]
t

)
I2
α(Ψ)(t, x, [θ])

]
.

3. If |α| ≤ n ∧ k, then

∂αxE
[
f
(
X
x,[θ]
t

)
Ψ(t, x, [θ])

]
= t−|α|/2E

[
f
(
X
x,[θ]
t

)
I3
α(Ψ)(t, x, [θ])

]
.

4. If |α|+ |β| ≤ n ∧ (k − 2), then

∂αxE
[
(∂βf)

(
X
x,[θ]
t

)
Ψ(t, x, [θ])

]
= t−(|α|+|β|)/2E

[
f
(
X
x,[θ]
t

)
I3
α

(
I2
( βΨ)

)
(t, x, [θ])

]
.

Proof. 1. First, we note that Equation (4.1) satisfied by ∂xX
x,[θ]
t and Equation (4.6)

satisfied by DHr X
x,[θ]
t are the same except their initial condition. It therefore

follows from our discussion of partial Malliavin derivative that

∂xX
x,[θ]
t = DHr X

x,[θ]
t σ>

(
σσ>

)−1
(r,Xx,[θ]

r , [Xθ
r ], X̃r)∂xX

x,[θ]
r . (4.14)
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We are then allowed to compute the followings for f ∈ C∞b (RN ,R),

E
[
∂x
(
f
(
X
x,[θ]
t

))
Ψ(t, x, [θ])

]
= E

[
∂f
(
X
x,[θ]
t

)
∂xX

x,[θ]
t Ψ(t, x, [θ])

]
=

1

t
E

[ ∫ t

0

∂f
(
X
x,[θ]
t

)
∂xX

x,[θ]
t Ψ(t, x, [θ]) dr

]
=

1

t
E

[ ∫ t

0

∂f
(
X
x,[θ]
t

)
DHr X

x,[θ]
t σ>

(
σσ>

)−1
(r,Xx,[θ]

r , [Xθ
r ], X̃r)

× ∂xXx,[θ]
r Ψ(t, x, [θ]) dr

]
=

1

t
E

[ ∫ t

0

DHr f
(
X
x,[θ]
t

)
σ>
(
σσ>

)−1
(r,Xx,[θ]

r , [Xθ
r ], X̃r)

× ∂xXx,[θ]
r Ψ(t, x, [θ]) dr

]
=

1

t
E

[
f
(
X
x,[θ]
t

)
δH

(
r 7→ Ψ(t, x, [θ])

×
(
σ>
(
σσ>

)−1
(r,Xx,[θ]

r , [Xθ
r ], X̃r)∂xX

x,[θ]
r

))]
,

where we have applied partial Malliavin calculus integration by parts from Equa-
tion (3.4) in the last equality. This proves the result for |α| = 1. By Proposition 4.6,
I1
α(Ψ) ∈ Kq+2

r (R, (k∧n)−1) when |α| = 1. We can then repeat the above procedures
iteratively to get to desired result.

2. By the chain rule,

E
[
(∂if)

(
X
x,[θ]
t

)
Ψ(t, x, [θ])

]
=

N∑
j=1

E

[
∂xi
(
f
(
X
x,[θ]
t

))((
X
x,[θ]
t

)−1
)j,i

Ψ(t, x, [θ])

]

= t−1/2
N∑
j=1

E

[
f
(
X
x,[θ]
t

)
I1
(j)

(((
X
x,[θ]
t

)−1
)j,i

Ψ(t, x, [θ])

)]
= t1/2E

[
f
(
X
x,[θ]
t

)
I2
(i)(Ψ)(t, x, [θ])

]
,

where we apply the result in part 1 to the second equality. From Proposition 4.6,
I2
(i)(Ψ) ∈ Kq+3

r (R, (n ∧ (k − 2)) − 1), so since |α| ≤ (n ∧ (k − 2)), the proof follows
from applying the same arguments for another |α| − 1 times.

3. By part 1 and direct computation,

∂ixE
[
f
(
X
x,[θ]
t

)
Ψ(t, x, [θ])

]
= E

[
∂ixf

(
X
x,[θ]
t

)
Ψ(t, x, [θ]) + f

(
X
x,[θ]
t

)
∂ixΨ(t, x, [θ])

]
= t−1/2E

[
f
(
X
x,[θ]
t

){
I1
i (Ψ)(t, x, [θ]) +

√
t∂ixΨ(t, x, [θ])

}]
,

which proves the result for |α| = 1. Again, we have I3
α(Ψ) ∈ Kq+2

r (R, (k ∧ n) − 1)

when |α| = 1. Then the proof follows from iterative implementation of the above
procedure.

4. This part follows from parts 2 and 3 directly.

Similarly to integration by parts in the space variable, we can also derive integration
by parts in the measure variable as follows.

Proposition 4.8 (Proposition 4.2, [10]). Let f ∈ C∞b (RN ,R) and Ψ ∈ Kq
r(R, n), then
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1. If |β| ≤ n ∧ (k − 2), then

E
[
∂βµ
(
f
(
X
x,[θ]
t

))
(v)Ψ(t, x, [θ])

]
= t−|β|/2E

[
f
(
X
x,[θ]
t

)
I1
β(Ψ)(t, x, [θ],v)

]
.

2. If |β| ≤ n ∧ (k − 2), then

∂βµE
[
f
(
X
x,[θ]
t

)
Ψ(t, x, [θ])

]
(v) = t−|β|/2E

[
f
(
X
x,[θ]
t

)
I3
β(Ψ)(t, x, [θ],v)

]
.

3. If |α|+ |β| ≤ n ∧ (k − 2), then

∂βµE
[
(∂αf)

(
X
x,[θ]
t

)
Ψ(t, x, [θ])

]
(v) = t−(|α|+|β|)/2E

[
f
(
X
x,[θ]
t

)
I3
β

(
I2
α(Ψ)

)
(t, x, [θ],v)

]
.

Proof. The proofs use the same idea as Proposition 4.7 and Equation (4.14).

We now consider the integration by parts formulae for the derivatives of the mapping:

x 7→ E[f(Xx,δx
t )].

Let us introduce the following operator acting on Kqr(R,M), the set of the Kusuoka-
Stroock processes that do not depend on measure µ. For α = (i),

J(i)(Φ)(t, x) := I3
(i)(Φ)(t, x, δx) + I3

(i)(Φ)(t, x, δx)

and for α = (α1, . . . , αn), Jα(Φ) := Jαn ◦ · · · ◦ Jα1
(Φ).

Theorem 4.9. Let f ∈ C∞b (RN ;R). For all multi-indices α on {1, . . . , N} with |α| ≤ k − 2,

∂αxE
[
f
(
Xx,δx
t

)]
= t−|α|/2E

[
f
(
Xx,δx
t

)
Jα(1)(t, x)

]
.

In particular, we get the following bound,∣∣∂αxE[f(Xx,δx
t

)]∣∣ ≤ C‖f‖∞t−|α|/2(1 + |x|)4|α|

Proof. Since δx depends on x, we have

∂ixE
[
f
(
Xx,δx
t

)]
= ∂izE

[
f
(
Xz,δx
t

)]∣∣
z=x

+ ∂iµE
[
f
(
X
x,[θ]
t

)]
(v)
∣∣
[θ]=δx,v=x

,

then for |α| = 1 the result yields by Proposition 4.7 and 4.8. The proof is completed by
repeating this procedure for another |α| − 1 times.

The following corollary is useful for the smoothness of densities of directed-chain
SDEs.

Corollary 4.10. Let f ∈ C∞b (RN ;R), α and β be multiindices on {1, . . . , N} with |α| +
|β| ≤ k − 2. Then,

∂αxE
[
(∂βf)

(
Xx,δx
t

)]
= t−

|α|+|β|
2 E

[
f
(
Xx,δx
t

)
I2
β(Jα(1))(t, x)

]
and I2

β(Jα(1)) ∈ K4|α|+3|β|
0 (R, k − 2− |α| − |β|).

Proof. The proof is derived from Theorem 4.9 and Proposition 4.7.
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4.3 Smooth densities

We are now ready to prove the main theorem of this section.

Theorem 4.11. We assume that Assumption 4.5 holds and V0, . . . , Vd ∈ Ck,k,kb,Lip ([0, T ] ×
RN×P2(RN )×RN ;RN ). Let α, β be multiindices in {1, . . . , N} and let k ≥ |α|+|β|+N+2.

1. Assume also the initial state for directed chain SDE is θ ≡ x, i.e. [θ] = δx. Then
the directed chain SDE (2.1) coincides with the alternative SDE (2.10). For all
t ∈ [0, T ], Xx,δx

t has a density p(t, x, ·) such that (x, z) 7→ ∂αx ∂
β
z p(t, x, z) exists and

is continuous. Moreover, there exists a constant C which depends on T,N and
bounds on the coefficients, such that for all t ∈ (0, T ]

|∂αx ∂βz p(t, x, z)| ≤ C(1 + |x|)4|α|+3|β|+3N t−
1
2 (N+|α|+|β|), x ∈ RN , z ∈ RN . (4.15)

If V0, . . . , Vd are bounded, then the following estimate holds, for all t ∈ (0, T ]

|∂αx ∂βz p(t, x, z)| ≤ Ct−
1
2 (N+|α|+|β|) exp

(
− C |z − x|

2

t

)
, x ∈ RN , z ∈ RN .

2. The alternative SDE (2.10) has a density pθ(t, x, ·) such that (x, z) 7→ ∂αx ∂
β
z pθ(t, x, z)

exists and is continuous. Moreover, there exists a constant C which depends on
T,N and bounds on the coefficients, such that for all t ∈ (0, T ]

|∂αx ∂βz pθ(t, x, z)| ≤ C(1 + |x|)2|α|+3|β|+3N t−
1
2 (N+|α|+|β|), x ∈ RN , z ∈ RN . (4.16)

If V0, . . . , Vd are bounded, then the following estimate holds, for all t ∈ (0, T ]

|∂αx ∂βz pθ(t, x, z)| ≤ Ct−
1
2 (N+|α|+|β|) exp

(
− C |z − x|

2

t

)
, x ∈ RN , z ∈ RN .

Proof. 1. The proof is verbatim to Theorem 6.1 of [10] by applying our integration by
parts formulae established in Corollary 4.10 and Lemma 3.1 in [31].

2. The inequality (4.16) is similar to the inequality (4.15) but with a different exponent.
The procedures to derive this exponent is briefly discussed and the rest procedures
are the same as Theorem 6.1 of [10].

Let η = (1, 2, 3, . . . , N) and 1{z<z0} :=
∏N
i=1 1{zi<zi0}. For any g ∈ C∞0 (RN ,R) define

the function f as

f(z0) :=

∫
RN

g(z)1{z<z0} dz

is in C∞p (RN ,R) and we have ∂ηf = g. Therefore,

∂αxE
[
(∂βg)

(
X
x,[θ]
t

)]
= ∂αxE

[
(∂β∗ηf)

(
X
x,[θ]
t

)]
= t−

|α|+|β|+N
2 E

[
f
(
X
x,[θ]
t

)
I3
α

(
I2
β∗η(1)

)
(t, x, [θ])

]
= t−

|α|+|β|+N
2 E

[(∫
RN

g(z)1{z<Xx,[θ]t } dz

)
I3
α

(
I2
β∗η(1)

)
(t, x, [θ])

]
= t−

|α|+|β|+N
2

∫
RN

g(z)E
[
1{z<Xx,[θ]t }I

3
α

(
I2
β∗η(1)

)
(t, x, [θ])

]
dz,

(4.17)

where we have used ∂ηf = g, Proposition 4.7, and Fubini’s theorem. The exponent
2|α|+3|β|+3N comes from Proposition 4.6 and I3

α

(
I2
β∗η(1)

)
(t, x, [θ]) being a Kusuoka-

Stroock process.
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Theorem 4.11 presents the smoothness result for Xx,δx
t and it can be generalized to

Xθ
t with a general initial distribution [θ].

Corollary 4.12. Suppose Assumption 4.5 holds and V0, . . . , Vd ∈ Ck,k,kb,Lip ([0, T ] × RN ×
P2(RN )×RN ;RN ). Let θ be a random variable in RN with finite moments of all orders.
For any multi-index β on {1, . . . , N} such that k ≥ |β|+N + 2, we see that for all t ∈ [0, T ],
Xθ
t has a density pθ(t, ·) such that z 7→ ∂βz pθ(t, z) exists and is continuous.

Proof. If θ is degenerate and θ ≡ x, then the results follow directly from Theorem 4.11
part 1. If θ is non-degenerate, we use the relation

pθ(t, z) =

∫
pθ(t, x, z)[θ]( dx),

and hence, the existence and regularities of pθ(t, x, z) is given in Theorem 4.11 part 2.
The proof is done by taking the expectation on both sides of the inequality (4.16) with
respect to the initial distribution θ and applying the dominated convergence theorem,
where we use the assumption that θ has finite moments.

The above existence and smoothness results on the marginal density of a single
object can be extended to the joint distribution for any number of adjacent particles.
Namely, for a fixed integer m ≥ 1, we may construct the system of stochastic processes
(X̃0
· , X̃

1
· , X̃

2
· , . . . , X̃

m
· ) such that (X̃m−1

· , X̃m
· ) ≡ (Xθ

· , X̃·) in (1.1), and X̃i
· depends on the

adjacent process X̃i+1
· and Brownian motion B̃i· , independent of X̃i+1, in the same

fashion as (Xθ
· , X̃·) in (1.1) for i = 0, . . . ,m− 1.

Corollary 4.13. Suppose that Assumption 4.5 holds and V0, . . . , Vd ∈ Ck,k,kb,Lip ([0, T ]×RN ×
P2(RN ) × RN ;RN ) and θ has finite moments. Then the joint density of the process
(Xθ
· , X̃

1
· , X̃

2
· , . . . , X̃

m
· ) exists and is continuous at any t ∈ [0, T ], where X̃1

· ≡ X̃· and X̃i
·

depend on X̃i+1
· in the same way as (Xθ

· , X̃·) in (1.1).

Proof. We consider the process evolving in space R(m+1)N defined by

Y· := (X̃0
· , X̃

1
· , X̃

2
· , . . . , X̃

m
· )

and the neighborhood process Ỹ· := (X̃m+1
· , X̃m+2

· , . . . , X̃2m+1
· ). Now (Y·, Ỹ·) satisfies

the directed chain structure and it can be proved that this new directed chain SDE
structure Y· also satisfies Assumption 4.5. Hence, the existence and continuity follow
from Theorem 4.11 and Corollary 4.12. In particular, if m = 1, the coupled process Y· is
defined by

Yt = Y0 +

2d∑
i=1

∫ T

0

V yi (s, Ys,Law(Ys), Ỹs) dBy,is ,

where the diffusion coefficients V yi , i = 1, . . . , 2d are given by

V yi :=

{ (
Vi(s,Xs,Law(Xs), X̃

1
s ),0

)T ∈ R2N , i = 1, . . . d,(
0, Vi−d(s, X̃

1
s ,Law(X̃1

s ), X̃2
s )
)T ∈ R2N , i = d+ 1, . . . 2d,

By is independent standard Brownian motions in R2d and 0 ∈ RN is a zero vector.

4.4 Markov random fields

The existence of density in Theorem 4.11 is closely related to the local Markov
property (or Markov random fields) of the directed chain structure. Here, we shall briefly
elaborate the relation. A similar topic has been studied by [24] on the undirected graph
with locally interactions only on the drift terms. Their approach is to apply a change of
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measure under which the diffusion coefficients at one vertex of the undirected graph do
not depend on the diffusions at the other vertexes of the graph, to get the factorization
of the probability measure. Usually, this Markov property is only discussed for the
undirected graph or directed acyclic graph. The finite particle system that approximates
the directed chain structure discussed in [13] admits a loop structure in the finite graph.
More precisely, the finite system of n particles (X

(n)
1,· , . . . , X

(n)
n,· ) is constructed in a loop

of size n so that X(n)
1,· depends on X

(n)
2,· , X(n)

2,· depends on X
(n)
3,· , . . . , X(n)

n−1,· depends on

X
(n)
n,· and X

(n)
n,· depends on X

(n)
1,· . However, when the size n of this loop is forced to be

infinity, that is, n → ∞, we can then treat the dependence of the system on any finite
subgraph as the system on an acyclic graph [13, Section 3], as (1.2) in our paper. An
illustration is given in Figure 1.

Figure 1: This figure shows a finite cut of the infinite directed chain, i.e., Xk is affected
by Xk+1.

Proposition 4.14. The directed chain SDEs described in (1.2) form first-order Markov
random fields, or we say it has the local Markov property.

We follow the notation and terminology in [26]. Given a directed graph G = (V,E)

with vertices V and edges E, for a vertex ν ∈ V , let Xν denote the generic space
of vertex ν and pa(ν) ∈ V denote all its parents. In the infinite directed chain case,
pa(Xk,·) = Xk+1,·.

Definition 4.15 (Recursive Factorization). Given a directed graph G = (V,E), we say
the probability distribution PG admits a recursive factorization according to G, if there
exists non-negative functions, henceforth referred to as kernels, kν(·, ·), ν ∈ V defined
on Xν ×Xpa(ν), such that ∫

kν(yν , xpa(ν))µν( dyν) = 1

and PG has density fG with respect to a product measure µ, which is defined on the
product space

∏
ν∈V Xν by µν a measure defined on each Xν , where

fG(x) =
∏
ν∈V

kν(xν , xpa(ν)).

Proof of Proposition 4.14. Thanks to the special structure of the chain, it can be shown
that the distribution of the chain satisfies the recursive factorization property, where
the existence and continuity of the kernel functions are given by Theorem 4.11 and
Corollary 4.12. For it, on a filtered probability space, let us consider a system of
directed chain diffusion Xi,t, i ∈ N, t ≥ 0 on the infinitely graph with vertices N =

{1, 2, . . .}. Firstly, coupled diffusion (X1,·, X2,·) ≡ (Xθ
· , X̃·) satisfies the directed chain

stochastic equation and has a continuous density according to Corollary 4.13 and we
denote this joint density by g(·, ·) : RN × RN → R. We then construct the chain
recursively according to the following rule: Given Xk,·, initial state Xk+1,0 and Brownian
motion Bk+1,· independent of (X1,·, . . . , Xk,·, Xk+1,0), we construct Xk+1,· according to

the distribution of (Xθ
· , X̃·).

Defining the kernel functions in the following way

kν(xν , xpa(ν)) :=

{
g(xν , xpa(ν)), if ν = X1,

(g(xν))−1g(xν , xpa(ν)), if ν = Xk, k ≥ 2,
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i.e., the conditional density of Xk+1,t given Xk,t for k ≥ 2, proves the recursive factoriza-
tion property of the chain on any finite cut (X1,t, X2,t, . . . , Xm,t), ∀m ∈ N of the infinite
chain for any t ∈ [0, T ], as well as the local Markov property following from [26, Theorem
3.27], which is also called the first order Markov random field in the context of [24].
This result can also be verified by a filtering problem built upon this directed chains
structure, which we omit due to the page limitation.

4.5 Relation to PDE

We have constructed the integration by parts formulae to argue that the den-
sity of directed chain SDEs is smooth in section 4.2, which is also the tool for con-
structing solutions to a related PDE problem. To simplify notation, we will omit
the time dependency in coefficients of SDEs through this section, i.e. we will write
V (X

x,[θ]
t , [Xθ

t ], X̃t) := V (t,X
x,[θ]
t , [Xθ

t ], X̃t). In particular, we are interested in the function

U(t, x, [θ]) = E[g(X
x,[θ]
t , [Xθ

t ])],

t ∈ [0, T ], x ∈ RN for some sufficiently smooth function g. Here Xθ
· is the solution of (2.1)-

(2.2) with random initial θ and Xx,[θ]
t is the solution to (2.10) with deterministic initial x.

They depend on a neighborhood process X̃· with an initial independent random vector θ̃.
Recall the flow property (2.13) in section 2.3. It follows that for every 0 ≤ t ≤ t+ h ≤ T ,
x ∈ Rd,

U(t+ h, x, [θ]) = E[g(X
x,[θ]
t+h , [X

θ
t+h])] = E

[
U(t,X

x,[θ]
h , [Xθ

h])
]
.

Hence

U(t+ h, x, [θ])− U(t, x, [θ])

= U(t, x, [Xθ
h])− U(t, x, [θ]) + E

[
U(t,X

x,[θ]
h , [Xθ

h])− U(t, x, [Xθ
h])
]

= I − E[J ], (4.18)

where we define I = U(t, x, [Xθ
h]) − U(t, x, [θ]) and J = U(t,X

x,[θ]
h , [Xθ

h]) − U(t, x, [Xθ
h]).

Applying the chain rule introduced in [9] to I and Ito’s formula to J , we have

I =

∫ h

0

E

[ N∑
i=1

V i0 (Xθ
r , [X

θ
r ], X̃r)∂µU(t, x, [Xθ

r ], Xθ
r )i

+
1

2

N∑
i,j=1

[σσ>(Xθ
r , [X

θ
r ], X̃r)]i,j∂vj∂µU(t, x, [Xθ

r ], Xθ
r )i

]
dr,

J =

∫ h

0

N∑
i=1

V i0 (Xx,[θ]
r , [Xθ

r ], X̃r)∂xiU(t,Xx,[θ]
r , [Xθ

h]) dr

+
1

2

∫ h

0

N∑
i,j=1

[σσ>(Xx,[θ]
r , [Xθ

r ], X̃r)]i,j∂xi∂xjU(t,Xx,[θ]
r , [Xθ

h]) dr

+

∫ h

0

d∑
j=1

N∑
i=1

V ij (Xx,[θ]
r , [Xθ

r ], X̃r)∂xiU(t,Xx,[θ]
r , [Xθ

h]) dBjr .

For the meaning of the differential operator with respect to the measure ∂µ appearing
in I, we refer to Section 2.1. Then let us plug I, J into (4.18) and take expectation, divide
by h on both sides, and send h to 0, we will end up with a PDE of the form given below

(∂t − L)U(t, x, [θ]) = 0 for (t, x, [θ]) ∈ (0, T ]×RN × P2(RN ),

U(0, x, [θ]) = g(x, [θ]) for (x, [θ]) ∈ RN × P2(RN ),
(4.19)
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where g : RN × P2(RN ) → R and the operator L acts on smooth enough functions
F : RN × P2(RN )→ RN defined by

LF (x, [θ]) =E

[ N∑
i=1

V i0 (x, [θ], θ̃)∂xiF (x, [θ]) +
1

2

N∑
i,j=1

[σσ>(x, [θ], θ̃)]i,j∂xi∂xjF (x, [θ])

]

+ E

[ N∑
i=1

V i0 (θ, [θ], θ̃)∂µF (x, [θ], θ)i +
1

2

N∑
i,j=1

[σσ>(θ, [θ], θ̃)]i,j∂vj∂µF (x, [θ], θ)i

]
. (4.20)

The expectation in the first line of (4.20) is taken with respect to the random variable
θ̃ due to the appearance of the neighborhood process in the difference J , while the
expectation in the second line is taken with respect to the joint distribution of θ, θ̃, as an
application of the chain rule introduced in [9] to the difference I.

Evidently, a proper condition for the initial g is needed to establish the existence of
the solution to PDE (4.19). Such a directed chain type SDE has not been considered
before, the closest works are related to the existence of solutions to Kolmogorov PDE on
the Wasserstein space; see [32, 11, 12]. In [3], g is assumed to have bounded second-
order derivatives. The smoothness on g is relaxed in [10]. In particular, they assume
g belongs to a class of functions that can be approximated by a sequence of functions
with polynomial growth, and also satisfy certain growth conditions on its derivatives.
Hence, they claim that g is not necessarily differentiable. We emphasize that a detailed
discussion on the choice of assumptions in g is beyond the scope of this paper, but we
conjecture that some similar results should also hold for our case and will include this in
our future research.
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