
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 29 (2024), article no. 113, 1–28.
ISSN: 1083-6489 https://doi.org/10.1214/24-EJP1181

Scaling limit of an equilibrium surface under the
Random Average Process*

Luiz Renato Fontes† Mariela Pentón Machado‡

Leonel Zuaznábar§

Abstract

We consider the equilibrium surface of the Random Average Process started from
an inclined plane, as seen from the height of the origin, obtained in [8], where its
fluctuations were shown to be of order of the square root of the distance to the origin
in one dimension, and the square root of the log of that distance in two dimensions
(and constant in higher dimensions). Remarkably, even if not pointed out explicitly
in [8], the covariance structure of those fluctuations is given in terms of the Green’s
function of a certain random walk, and thus corresponds to those of Discrete Gaussian
Free Fields. In the present paper we obtain the scaling limit of those fluctuations
in one and two dimensions, in terms of Gaussian processes, in the sense of finite
dimensional distributions. In one dimension, the limit is given by Brownian Motion; in
two dimensions, we get a process with a discontinuous covariance function.
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1 Introduction

This paper may be seen as a followup to [8], even if after a long span. In the
latter paper, the Random Average Process (RAP) was introduced as a dynamical random
surface/field, whose heights, indexed by d-dimensional (discrete) space, evolve in discrete
time by taking averages of neighboring heights.1 The average weights are random, hence
the terminology. The initial condition is important for the behavior of the dynamics, and
in [8] the case of an inclined hyperplane was considered, and, among other results on the
time asymptotics of the RAP, a CLT for the height at the origin, as well as the existence
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Scaling limit of an equilibrium surface under the Random Average Process

of a limiting (in time) surface as seen from the height of the origin, were established. We
stress that this involves a time limit only; space is kept fixed (and discrete). This limiting
surface may be seen also as an invariant surface under the RAP dynamics.

Since that initial paper, considerable attention has been devoted to that model. We
mention [15, 17, 19, 9, 20, 1, 4, 3, 5, 11].

In the present paper, we consider the above mentioned limiting/invariant surface
obtained in [8], and obtain the (full) spatial scaling limit of its fluctuations in dimensions
one and two (where they are unbounded; they are bounded in higher dimensions). In [8],
the order of magnitude of those fluctuations were shown to be the square root of the
distance to the origin in one dimension, and the square root of the log of that distance in
dimension two. The (limiting) shape of the fluctuations was not addressed, and we seek
to complete the picture now.

A remarkable feature of the fluctuations of the above mentioned invariant surface
obtained in [8] is that its covariance structure is given by the Green’s function of a
certain random walk (whose jump distribution depends on the weights of the random
averages of the RAP). In this sense, there is a relation with Discrete Gaussian Free Fields
(by which we mean Gaussian fields indexed by Zd with the same covariance structure).2

As an aside, it is natural to wonder whether the invariant surface is itself Gaussian
or not. A positive answer would reduce the efforts in this paper to a straightforward
computation of scaled covariances. Analysis of a simpler case (in one dimension, and
where the above mentioned random walk is simple) suggests that this is not the case in
general, and probably never for weights of bounded range (which is the case we address
in this paper).

Be that as it may, upon taking spatial scaling limits of the invariant surfaces (in one
and two dimensions, as aforementioned), we get Gaussian fields (in continuous space).
In one dimension, it is Brownian motion, and in two dimensions it has a discontinuous
covariance function.

Our results are in the sense of finite dimensional distributions only, in both cases. In
the one dimensional case, it is conceivable that this may be strengthened to convergence
in the usual space of continuous trajectories, without much departure from methods
of the present paper and of [8] (although preliminary computations indicate quite a
laborious effort on an approach at verifying classic tightness criteria for that).

The two dimensional scaling limit cannot be continuous, so we would seem to be
limited in options for going beyond our present results, on the one hand. On the other
hand, the same issue of course comes up in the two dimensional Discrete Gaussian Free
Field with the same covariance, and an investigation of a possible connection with the
continuous two dimensional Gaussian Free Field suggests itself, even if that sounds to
the authors like an uncertain project at the moment (given their scant understanding of
the latter object currently; one mismatch can however be spotted at this point, to the
effect that our scaling of the two dimensional invariant surface leading to our scaling
limit result differs from the one of the DGFF leading to the continous GFF — this is a
point left to be understood).

Before closing this introductory discussion, and moving to the details of the RAP and
our results, it is perhaps worth mentioning that scaling limit results were obtained in [1],
for the RAP in one dimension, along a characteristic direction, with a possibly random
initial surface. We failed to find a connection to our results, even if merely in a broad or
conceptual sense, but that may be due to a lack of depth in our search.

A final point concerns previous attempts at proving our results. One reason for the
long delay since [8] may be traced to an unsuccessful previous approach, aiming at
verifying conditions in the literature for the CLT for processes with stationary increments,

2But this was not pointed out explicitly in [8].
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such as the object of this paper in the one dimensional case. Common such conditions
involve obtaining good estimates on decay of correlations, but these seem inadequate
to deal with our case, which is more amenable to second moment estimation. The only
set of conditions we found previously involving moments came from [12], a reference
used in [8] for a Martingale CLT. It so happens that these conditions all require control
over second moments of quantities involving certain conditional expectations, with some
liberty over which σ-algebra to condition over. With such a choice made, one has to
compute the limits of two different quantities, which have to come out equal. On and off
over the years, time was spent making such (quite laborious and intricate) computations,
with different choices of σ-algebra, and more recently we became convinced that this
approach would not work (whatever the choice of σ-algebra), so, after some further
investigation, we came up with the present, more direct approach (involving nonetheless
verifying the conditions of a CLT from [12], but a Martingale CLT, as in [8]). Curiously,
in the present approach we also need, at a point, to compute two limits which have to
come out equal, and, in this case, they do. It is also perhaps remarkable that the present
approach goes through a CLT in time for the process in order to obtain a CLT for the
spatial fluctuations of (one of) its invariant measure(s).

1.1 Notation

Let us denote by {un(i, i+ ·), n ≥ 1, i ∈ Zd} a collection of i.i.d. random probability

vectors distributed in [0, 1]Z
d

with finite range, and by Fn the σ-algebra generated by
{ui, 1 ≤ i ≤ n}. As in [8], we also assume that

E[u1(0, j)] > 0, for |j| ≤ 1.

By {Xn(i), i ∈ Zd, n ≥ 0}, we refer to the discrete-time version of the Random Average
Process (RAP) defined in (2.3) at [8] as follows

Xn(i) =
∑
j∈Zd

un(i, j)Xn−1(j), for n ≥ 1 and i ∈ Zd.

We denote the inner product between two vectors x = (x1, . . . , xd) ∈ Zd and λ =

(λ1, . . . , λd) ∈ Rd by xλ∗; i.e. xλ∗ =
∑d
i=1 xiλi.

Given λ ∈ Rd, let us denote by X̂∞ the weak limit of the RAP seen from the height at
the origin with the initial configuration being a hyper-plane, that is

(X̂∞(x))x∈Zd
d
= lim
n→∞

(Xn(x)−Xn(0))x∈Zd , where X0(x) = xλ∗. (1.1)

The existence of X̂∞ is proved in Corollary 5.2 in [8]. As pointed out in [8], we may
consider the random walk in a random environment Ỹ xk , with Ỹ x0 = x and conditional
probability transitions

P
(
Ỹ xk = j

∣∣Ỹ xk−1 = i,Fn
)

= uk(i, j), for 1 ≤ k ≤ n,

such that for every n ≥ 1(
Xn(x)

)
x∈Zd

d
=
(
E
[
X0(Ỹ xn )

∣∣Fn])
x∈Zd

. (1.2)

Through (1.2) we can get the following representation (see (2.21) and (2.22) in [8]), that
will be crucial in our way of dealing with X̂∞:

X̂∞(x)− xλ∗ d
=

∞∑
i=1

(
W x
i −W 0

i

)
λ∗, for x ∈ Zd, (1.3)
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where
W x
i = E[θi(Ỹ

x
i−1)|Fi], for i ≥ 1, x ∈ Zd,

and
θn(k) =

∑
j∈Zd

(j − k)un(k, j), for n ≥ 1, k ∈ Zd.

We assume that
σ2 := V(θ1(0)λ∗) ∈ (0,∞),

where V stands for variance.

1.2 Main results

We state now the main results of this work. In Theorem 1.1 below, we enunciate a
Central Limit Theorem for the process {X̂∞(x), x ∈ Zd} in dimensions d = 1, 2, and in
Theorem 1.4, its finite dimension convergence. Both theorems are obtained (directly or
through corollaries) from Proposition 1.2 and Proposition 1.3, also stated in this section.

Theorem 1.1. Let X̂∞ be the weak limit of the RAP seen from the height at the origin
and with the initial configuration being a hyper-plane as defined in (1.1). There exists a
positive constant c = c(d) such that

X̂∞(x)− xλ∗√
Px

d−→
|x|→∞

N (0, c),

where Px = |x| for d = 1, Px = log |x| for d = 2 and N (0, c) is a mean zero Gaussian r.v.
with variance c.

Propositions 1.2 and 1.3, stated next, allow us to split the infinite series in (1.3) in
two sums, such that, after normalization, one sum converges to a Gaussian law, and the
second moment of the other is close to zero in a certain way to be made precise, leading
to Theorem 1.1.

Proposition 1.2. Let us consider Px as defined in Theorem 1.1. The following limits
exist

h(A) := lim
|x|→∞

1

Px
E
(A|x|2∑

i=1

(W x
i −W 0

i )λ∗
)2
, for any A ≥ 1,

c(d) := lim
A→∞

h(A).

Proposition 1.3. Let us consider Px as in Theorem 1.1 and h as in Proposition 1.2. Then

A|x|2∑
i=1

(
W x
i −W 0

i

)
λ∗

√
Px

d−→
|x|→∞

N (0, h(A)), for any A ≥ 1.

In Section 3 and Section 5, we obtain corollaries from Proposition 1.2 and Propo-
sition 1.3, respectively. These results lead us to Theorem 1.4 as Proposition 1.2 and
Proposition 1.3 do for Theorem 1.1. For the sake of simplicity, we decide not to include
the statement of these corollaries in this section.

Theorem 1.4. Let us consider the following rescaled process.

(i) For d = 1 define

Xn(t) :=
X̂∞(bntc)− bntcλ√

cPn
, for t ≥ 0 and n ≥ 1,
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where Pn and c are taken as in Theorem 1.1. Let {B(t), t ≥ 0} be a Standard
Brownian motion. Then for 0 < t1 < · · · < tk we have

(Xn(t1), . . . , Xn(tk))
d−→

n→∞
(B(t1), . . . , B(tk)) . (1.4)

(ii) In case d = 2, given z ∈ Z2 \ (0, 0), let us define

x̃n(z) := (bn|z(1)|c, bn|z(2)|c) for n ≥ 1, z ∈ Z2, (1.5)

and

Xn(z) :=
X̂∞(x̃n(z))− x̃n(z)λ∗√

cPn
, for z ∈ Z2 and n ≥ 1.

Then for z1, . . . , zk in Z2 we have

(Xn(z1), Xn(z2), . . . , Xn(zk))
d−→

n→∞
(Z1, . . . , Zk), (1.6)

where (Z1, . . . , Zk) is a Gaussian vector with covariance matrix (Cj,l)1≤j,l≤k, defined
as follows

Cj,l :=

{
max{|zj(1)|, |zj(2)|}, for j = l,
1
2 min{max{|zl(1)|, |zl(2)|},max{|zj(1)|, |zj(2)|}}, for j 6= l.

To conclude this introduction, we establish that the structure of the article. In
Section 2, we prove Proposition 1.2. In Section 3, we state and prove a corollary of
Proposition 1.2: Corollary 3.1. In Section 4, we prove Proposition 1.3. In Section 5, we
enunciate and prove a corollary of Proposition 1.3: Corollary 5.1. From Proposition 1.2
and Proposition 1.3, in Section 6, we obtain Theorem 1.1. From Corollary 3.1 and
Corollary 5.1, in Section 7, we obtain Theorem 1.4. Finally, in Appendix A we present
some technical calculations needed for the proof of Proposition 1.3. These calculations
are inspired by and are very similar to ones that appear in the proof of Theorem 4.1 in
[8]. We include them for the sake of completeness.

2 Proof of Proposition 1.2

We split the proof of Proposition 1.2 into two cases, d = 1 and d = 2. Each case will
be dealt with in separate subsections, 2.1 and 2.2, respectively. Later in Section 3, we
prove a corollary of Proposition 1.2 (Corollary 3.1) that is used to obtain Theorem 1.4 in
the same way that Proposition 1.2 is used to get Theorem 1.1.

As in [8] let us denote by D = {Dn, n ≥ 0} and H = {Hn, n ≥ 0} two Markov chains
in Zd with the following transition probabilities,

P (Dn+1 = k|Dn = l) =
∑
j∈Zd

E [u1(0, j)u1(l, j + k)] ,

and
P (Hn+1 = k|Hn = l) =

∑
j∈Zd

E [u1(0, j)]E [u1(l, j + k)] .

Also let us consider the following stopping time

τ = inf{k ≥ 0 : Dk = 0}. (2.1)
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It follows from a standard argument using the Markov property (see (5.9) in [8]) that for
x ∈ Zd we get

n∑
k=0

{P0(Dk = 0)− Px(Dk = 0)} =

n∑
k=0

P0(Dn−k = 0)Px(τ > k). (2.2)

The following results are also used to prove Proposition 1.2.

Lemma 2.1. Let us consider

a(x) = lim
n→∞

n∑
k=0

{P0 (Hk = 0)− Px(Hk = 0)} for x ∈ Zd,

the potential kernel of the Markov chain H, and set A = E0

[
a(D1)

]
. Consider also the

following quadratic form:

Q(θ) = E0

[
(H1 · θ)2

]
= θ ·Q · θt, θ ∈ Zd, (2.3)

when d = 1, Q = E0

[
H2

1

]
=: σ2

H , and when d = 2, Q is the convariance matrix of H1 with
the chain starting from the origin. Then, in the case d = 1 we have that

P0(Dn = 0) ∼ 1

A

1√
2π σH

1√
n

as n→∞, (2.4)

and when d = 2
n∑
k=0

P0(Dk = 0) ∼ 1

A

1

2π
√
det(Q)

ln(n) as n→∞. (2.5)

Proof. By P7.9 (pag. 75) in [18] we have that

lim
n→∞

(2πn)d/2P0(Hn = 0) =
1√

det(Q)
. (2.6)

This implies that

n∑
k=0

P0(Hk = 0)
3

∼

{
2√

2π σH

√
n, when d = 1,

1

2π
√
det(Q)

lnn, when d = 2. (2.7)

Let
f(s) =

∑
n≥0

P (Dn = 0|D0 = 0) sn and g(s) =
∑
n≥0

P (Hn = 0|H0 = 0) sn

be the power series of P(Dn = 0|D0 = 0) and P(Hn = 0|H0 = 0), respectively. By
Theorem 5 in [7] (page 447) and (2.7), we obtain

g(s)
4

∼


1√
2σH

1√
1−s , when d = 1,

1

2π
√
det(Q)

ln
(

1
1−s

)
, when d = 2

as s→ 1−. (2.8)

In Lemma 3.2 of [8] it is proved that

lim
s→1

f(s)

g(s)
=

1

A
.5 (2.9)

3Let rn and sn be two sequences of real numbers, we write rn ∼ sn when limn→∞
rn
sn

= 1.
4Let h1(s) and h2(s) be two real functions, we write h1 ∼ h2 as s→ s0 when lims→s0

h1(s)
h2(s)

= 1.
5(2.9) corresponds to Equation 3.14 in [8], except that there are (minor) mistakes in the argument in [8]

leading to the latter equation, causing the appearance of the extraneous factor of 1 − γ′ in (3.14) of [8],
which should not be there, and also causing the expression (1− γ)

∑
x a(x)px, which we presently write as

A = E0(a(D1)), to appear in the numerator (so to say), rather than in the denominator.
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Therefore,

f(s) ∼


1
A

1√
2σH

1√
1−s , when d = 1,

1
A

1

2π
√
det(Q)

ln
(

1
1−s

)
, when d = 2

as s→ 1−. (2.10)

Again by Theorem 5 in [7] we get (2.5). In Lemma 3.1 of [8] is proved that P0(Dn = 0) is
non-increasing in n. Therefore, we can use the second part of Theorem 5 in [7] for the
case d = 1, and we obtain (2.4).

One last comment before the proof Proposition 1.2 is that by equation (5.8) in [8] we
have that

E
(A|x|2∑

i=1

(
W x
i −W 0

i

)
λ∗
)2

= 2σ2

A|x|2∑
i=1

{P(Di = 0|D0 = 0)− P(Di = 0|D0 = x)} . (2.11)

Hence, to get Proposition 1.2, it is enough to show that

(i) when d = 1,

2σ2

|x|

Ax2∑
k=1

{P(Dk = 0|D0 = 0)− P(Dk = 0|D0 = x)} −→
|n|→∞

h(A) −→
A→∞

c, (2.12)

(ii) when d = 2,

2σ2

log |x|

A|x|2∑
k=1

{P(Dk = 0|D0 = 0)− P(Dk = 0|D0 = x)} −→
|x|→∞

c, for all A ≥ 1. (2.13)

2.1 Proof of Proposition 1.2 when d = 1

Since the chains D and H are symmetric (see Lemma 2.5 in [8]), we may con-
sider (2.12) with x = n > 0. By (2.2) and Lemma 2.1, the left hand side of (2.12)
becomes

c′

n

An2∑
k=1

1√
An2 − k

Pn(τ > k), where c′ =
2σ2

A
√

2πσH
. (2.14)

The left hand side of (2.14) then equals

c′
An2∑
k=1

1√
A− k

n2

P0

(
τn
n2

>
k

n2

)
1

n2
, (2.15)

where τn is the hitting time of n by H.
It follows from standard properties of Brownian motion that τn/n2 converges in

distribution to T1/σH , where for each fixed a ∈ R, Ta is the passage time of a by a
standard one-dimensional Brownian motion (Bs)s≥0. We spell this out at the end of this
proof. Since the latter random variable has a continuous distribution, we have that

P0

( τn
n2

> t
)
−→
n→∞

P(T1/σH > t), (2.16)

uniformly (the latter claim is a standard exercise; see, e.g., Exercise 3.2.9 in [6]). It
follows that (2.15) is asymptotically equivalent to

c′
An2∑
k=1

1√
A− k

n2

P

(
T1/σH >

k

n2

)
1

n2
. (2.17)
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We now observe that

lim
n→∞

c′
An2∑
k=1

1√
A− k

n2

P

(
T1/σH >

k

n2

)
1

n2
= c′

∫ A

0

1√
A− y

P(T1/σH > y)dy

= c′
∫ 1

0

√
AP(T1/σH > Ay)
√

1− y
dy, (2.18)

which proves the first part of Proposition 1.2, namely

lim
|x|→∞

1

Px
E

A|x|2∑
i=1

(W x
i −W 0

i )λ∗

2

= c′
∫ 1

0

√
AP(T1/σH > Ay)
√

1− y
dy =: h(A). (2.19)

Hence, to conclude the proof, we verify the following claim.

Claim 2.2.

lim
A→∞

∫ 1

0

√
AP(T1/σH > Ax)
√

1− x
dx =

√
2π

σH
. (2.20)

Proof of Claim 2.2. From a well-known formula,6 we have

P(T1/σH ≤ t) =
2√
2π

∫ ∞
1

σH
√
t

e−
x2

2 dx. (2.21)

Applying L’Hôpital’s rule, we find that

lim
t→∞

1− 2√
2π

∫∞
1

σH
√
t

e−
x2

2 dx

1/
√
t

= lim
t→∞

2√
2πσH

e
− 1

2σ2
H
t =

2√
2πσH

;

it then follows that, for every x ∈ (0, 1)

lim
A→∞

√
AP(T1 ≥ Ax) =

2√
2πσH

√
x
. (2.22)

It also follows from (2.21) that

P(T1/σH > t) ≤ 1

σH
√
t
, (2.23)

for all t > 0. We prove this by computing the derivative of

1

σH
√
t
− 1 +

2√
2π

∫ ∞
1

σH
√
t

e−
x2

2 dx, (2.24)

and checking that it is negative for all t > 0, which implies that the expression in (2.24)

is non-increasing in (0,∞). Since
∫∞
0
e−

x2

2 dx =
√

2π/2, (2.24) vanishes as t→∞. Hence,
the equation (2.24) is greater or equal to zero for all t > 0, and (2.23) follows. Now (2.22)
and (2.23) allow us to use the Dominated Convergence Theorem to get∫ 1

0

√
AP(T1/σH > Ax)
√

1− x
dx −→

A→∞

2√
2πσH

∫ 1

0

1√
x(1− x)

dx =
2√

2πσH
π =

√
2π

σH
.

Therefore, by (2.19) and Claim 2.2 we obtain

lim
A→∞

lim
|x|→∞

1

Px
E

A|x|2∑
i=1

[W x
i −W 0

i ]λ∗

2

= c′
√

2π

σH
=

2σ2

Aσ2
H

=: c(1).

and the proof of Proposition 1.2 is concluded for d = 1.
6See, e.g., Remark 2.8.3 in page 92 of [13].
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Scaling limit of an equilibrium surface under the Random Average Process

Argument for (2.16) for a fixed t > 0 Let us write τn as τ+n + τ ′n, where τ+n is the
hitting time of {n, n+ 1, . . .} by H, namely,

τ+n = inf{k ≥ 0 : Hk ≥ n},

and τ ′n is the time elapsed since then to reach n, namely,

τ ′n = inf{k ≥ τ+n : Hk = n} − τ+n .

From our assumptions on the jumps of H, we have that τ ′n is a tight sequence, and thus
it is enough to show (2.16) with τn replaced by τ+n , namely

P0

(
τ+n
n2

> t

)
−→
n→∞

P(T1/σH > t). (2.25)

In order to do that, we first note that the event on the left hand side of (2.25) equals
{M` < n}, where ` = bn2tc and Ms = max0≤i≤sHi. Using this, and rewriting the event,
we find that the left hand side of (2.25) equals P0(M (`) < un/

√
t), where M (s) = Ms/

√
s

and un = n
√
t/
√
bn2tc. Donsker’s Theorem and a straightforward continuity argument

now tells us that the limit as n→∞ of the latter probability equals P0(σHM1 < 1/
√
t) =

P0(Mt < σ−1H ), whereMs = max0≤r≤sBr; Brownian scaling justifies the equality of the
two latter probabilities, the latter of which is readily seen to equal the right hand side
of (2.25) — again, the events are the same.

2.2 Proof of Proposition 1.2 when d = 2

Rewriting the sum in the left hand side of (2.13) we obtain

A|x|2∑
k=1

{P(Dk = 0|D0 = 0)− P(Dk = 0|D0 = x)} = E0

A|x|2∑
k=1

1{Dk=0} − Ex
A|x|2∑
k=1

1{Dk=0}.

(2.26)
Let us work first with the second expected value in the right hand side of (2.26). Consider
τ as defined in (2.1). Then by the Markov property we get that

Ex

(A|x|2∑
k=1

1{Dk=0}

)
= Ex

(A|x|2∑
k=τ

1{Dk=0}; τ < A|x|2
)

=

A|x|2∑
j=1

E0

(A|x|2−j∑
k=0

1{Dk=0}

)
Px(τ = j).

(2.27)
Substituting (2.27) into (2.26), we find that

A|x|2∑
k=1

{P(Dk = 0|D0 = 0)− P(Dk = 0|D0 = x)}

= E0

(A|x|2∑
k=1

1{Dk=0}

)
−
A|x|2∑
j=1

E0

(A|x|2−j∑
k=0

1{Dk=0}

)
Px(τ = j)

= Px
(
τ > A|x|2

)
E0

(A|x|2∑
k=1

1{Dk=0}

)

+

A|x|2∑
j=1

{
E0

(A|x|2∑
k=1

1{Dk=0}

)
− E0

(A|x|2−j∑
k=0

1{Dk=0}

)}
Px(τ = j)

= Px
(
τ > A|x|2

)
E0

(A|x|2∑
k=1

1{Dk=0}

)
+

A|x|2∑
j=1

E0

( A|x|2∑
k=A|x|2−j+1

1{Dk=0}

)
Px(τ = j). (2.28)
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Scaling limit of an equilibrium surface under the Random Average Process

Then, by equation (2.11) and (2.28), we have that

1

log |x|
E
(A|x|2∑

i=1

[
W x
i −W 0

i

]
λ∗
)2

=
2σ2

log |x|

[
Px(τ > A|x|2)E0

(A|x|2∑
k=1

1{Dk=0}

)
+

A|x|2∑
j=1

E0

( A|x|2∑
k=A|x|2−j+1

1{Dk=0}

)
Px(τ = j)

]

≥ 2σ2

log |x|
Px(τ > A|x|2)

A|x|2∑
k=1

P0(Dk = 0). (2.29)

By (2.25) in [8], we have that

E (W x
i λ
∗|Fi−1) = E[θ1(0)λ∗] =: µ, for i ≥ 1 and x ∈ Zd. (2.30)

From this and time independence, it follows that

E
[(
W y
i λ
∗ −W 0

i λ
∗) (W z

j λ
∗ −W 0

j λ
∗)] = 0 for i 6= j and y, z ∈ Zd. (2.31)

By (1.3) and (2.31) we have

E
(
X̂∞(x)− xλ∗

)2
Px

=
1

Px
E
(A|x|2∑

i=1

(W x
i −W 0

i )λ∗
)2

+
1

Px
E
( ∞∑
i=A|x|2+1

(W x
i −W 0

i )λ∗
)2

≥ 1

log |x|
E
(A|x|2∑

i=1

(W x
i −W 0

i )λ∗
)2
. (2.32)

Then, by (2.29) and (2.32), we obtain

2σ2Px(τ > A|x|2)
∑A|x|2
k=1 P0(Dk = 0)

log |x|
≤
E
(∑A|x|2

i=1 (W x
i −W 0

i )λ∗
)2

log |x|
≤
E
(
X̂∞(x)− xλ∗

)2
log |x|

.

(2.33)
By (5.14) in [8] and Theorem 1 in [10], when d = 2 we have

lim
|x|→∞

E
(
X̂∞(x)− xλ∗

)2
log |x|

=
2σ2

Aπ
√
det(Q)

, (2.34)

with Q as defined in the paragraph of (2.3).
We now want to prove that the limit as |x| → ∞ of the left hand side in (2.33) is

also equal to the right hand side of (2.34). In order to do that, we use Lemma 2.1, that
implies that

A|x|2∑
k=1

P0(Dk = 0) ∼ 1

A2π
√
det(Q)

log(A|x|2) as |x| → ∞,

and by the corollary of Theorem 1 in [16],

Px(τ > A|x|2) =
[1 + o(1)]2 log(|x|)

log(A|x|2)
for all x 6= 0 and A ≥ 1.

Therefore,

lim
|x|→∞

2σ2

log |x|
Px(τ > A|x|2)

A|x|2∑
k=1

P0(Dk = 0) =
2σ2

Aπ
√
det(Q)

. (2.35)
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Scaling limit of an equilibrium surface under the Random Average Process

Then by (2.33), (2.34) and (2.35) we conclude that

lim
|x|→∞

1

log |x|
E

A|x|2∑
i=1

(W x
i −W 0

i )λ∗

2

=
2σ2

Aπ
√
det(Q)

:= c(2), for all A ≥ 1, (2.36)

thus completing the proof of Proposition 1.2 for d = 2.

Remark 2.3. It will be useful later to mention that for d = 2 the equality in (2.32), (2.34)
and (2.36) imply that the rest of the infinite sum∑∞

i=|x|2+1(W x
i −W 0

i )λ∗
√
Px

,

converges to zero in L2 as |x| goes to infinity.

3 Corollary of Proposition 1.2

By the Cramér-Wold theorem, convergence in distribution of a sequence of random
vectors is equivalent to that of arbitrary linear combinations of its coordinates. So,
in order to obtain Theorem 1.4, it suffices that we state and prove in this section the
following result.

Corollary 3.1. Given k ≥ 1, let ᾱ = (α1, . . . , αk) ∈ Rk. Let us also consider c and Pn as
in Propostion 1.2.

(i) In case d = 1, for t̄ = (t1, . . . , tk) ∈ Rk with 0 < t1, · · · < tk, the following limit exits

g(A, t̄, ᾱ) := lim
n→∞

1

cPn
E

( k∑
j=1

αj

An2∑
i=1

[
W
bntjc
i −W 0

i

]
λ
)2 , for A ≥ 1,

and

lim
A→∞

g(A, t̄, ᾱ) =

k∑
j=1

α2
j tj + 2

∑
1≤j<l≤k

αjαltj .

(ii) In case d = 2, for z̄ = (z1, . . . , zk) ∈ (Z2)k and x̃n as defined in (1.5) we have

g(z̄, ᾱ) := lim
n→∞

1

cPn
E

( k∑
j=1

αj

Mk,n∑
i=1

[
W

x̃n(zj)
i −W 0

i

]
λ∗
)2

=
( k∑
j=1

α2
j max{|zj(1)|, |zj(2)|}

+
∑

1≤j<l≤k

αjαl min{max{|zl(1)|, |zl(2)|},max{|zj(1)|, |zj(2)|}}
)
,

where Mk,n = max
1≤j≤k

|x̃n(zj)|2.

The proof of Corollary 3.1 contains two parts, one for each dimension, but before
starting, let us point out something useful for both dimensions. For x, y ∈ Zd and µ as
in (2.30) we have(
W x
i λ
∗ −W 0

i λ
∗) (W y

i λ
∗ −W 0

i λ
∗) = (W x

i λ
∗ − µ) (W y

i λ
∗ − µ)− (W x

i λ
∗ − µ)

(
W 0
i λ
∗ − µ

)
−
(
W 0
i λ
∗ − µ

)
(W y

i λ
∗ − µ) +

(
W 0
i λ
∗ − µ

)2
. (3.1)
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Scaling limit of an equilibrium surface under the Random Average Process

By the translation invariance of the model, and reasoning as in [8] to get (5.7), we obtain

E [(W x
i λ
∗ − µ) (W y

i λ
∗ − µ)] = E

[(
W x−y
i λ∗ − µ

) (
W 0
i − µ

)]
= σ2P (Di−1 = 0|D0 = x− y) .

(3.2)
Using now (3.1) and (3.2) we get

E
[(
W x
i λ
∗ −W 0

i λ
∗) (W y

i λ
∗ −W 0

i λ
∗)]=σ2 {P (Di−1=0|D0=x− y)− P (Di−1=0|D0=x)}
− σ2 {P (Di−1 = 0|D0 = y)− P (Di−1 = 0|D0 = 0)} .

(3.3)

3.1 Proof of Corollary 3.1 in d = 1.

Notice that

E
[( k∑

j=1

αj

An2∑
i=1

[
W
bntjc
i −W 0

i

]
λ
)2]

=

k∑
j=1

α2
jE
[(An2∑

i=1

[
W
bntjc
i −W 0

i

]
λ
)2]

+ 2
∑

1≤j<l≤k

αjαl

An2∑
i=1

An2∑
m=1

E
[([

W
bntjc
i −W 0

i

]
λ
)([

W bntlcm −W 0
m

]
λ
])
. (3.4)

By (2.31) we have that

E
[(An2∑

i=1

[
W
bntjc
i −W 0

i

]
λ
)2]

=

An2∑
i=1

E
[([

W
bntjc
i −W 0

i

]
λ
)2]

(3.5)

and

An2∑
i=1

An2∑
m=1

E
[([

W
bntjc
i −W 0

i

]
λ
)([

W bntlcm −W 0
m

]
λ
])

=

An2∑
i=1

E
[([

W
bntjc
i −W 0

i

]
λ
)([

W
bntlc
i −W 0

i

]
λ
])
. (3.6)

By Proposition 1.2 and (3.5), we have that

lim
n→∞

1

cPn

k∑
j=1

α2
jE
[(An2∑

i=1

[
W
bntjc
i −W 0

i

]
λ
)2]

= lim
n→∞

1

cPn

k∑
j=1

α2
j

An2∑
i=1

E
[([

W
bntjc
i −W 0

i

]
λ
)2]

=
1

c

k∑
j=1

α2
j tjh(A/t2j )

→
k∑
j=1

α2
j tj , as A→∞. (3.7)

Hence, by (3.4), (3.6) and (3.7), to finish the proof of the corollary for dimension 1, it is
enough to compute

lim
n→∞

1

Pn

An2∑
i=1

E
[([

W
bntjc
i −W 0

i

]
λ
)([

W
bntlc
i −W 0

i

]
λ
])

for 1 ≤ j < l ≤ k. (3.8)
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Scaling limit of an equilibrium surface under the Random Average Process

and its limit as A→∞. By (3.3) we obtain

An2∑
i=1

E
[(
W
bntjc
i λ−W 0

i λ
)(

W
bntlc
i λ−W 0

i λ
)]

= σ2
An2∑
i=1

{P (Di−1 = 0|D0 = bntlc − bntjc)− P (Di−1 = 0|D0 = bntjc)}

+ σ2
An2∑
i=1

{−P (Di−1 = 0|D0 = bntlc) + P (Di−1 = 0|D0 = 0)}

= −σ2
An2∑
i=1

{P (Di−1 = 0|D0 = 0)− P (Di−1 = 0|D0 = bntlc − bntjc)}

+ σ2
An2∑
i=1

{P (Di−1 = 0|D0 = 0)− P (Di−1 = 0|D0 = bntjc)}

+ σ2
An2∑
i=1

{P (Di−1 = 0|D0 = 0)− P (Di−1 = 0|D0 = bntlcc)} , (3.9)

and, from (2.11), (2.12) and (3.9), we find that

lim
n→∞

1

cPN

An2∑
i=1

E
[(
W
bntjc
i λ−W 0

i λ
)(

W
bntlc
i λ−W 0

i λ
)]

= −(tl − tj)
h(A/(tl − tj)2)

2c
+ tj

h(A/(tl − tj)2)

2c
+ tl

h(A/(tl − tj)2)

2c

→ tj as A→∞,

thus concluding the proof of Corollary 3.1 in d = 1.

3.2 Proof of Corollary 3.1 in d = 2

By (3.4), (3.5) and (3.6), we get that

1

cPn
E
[( k∑

j=1

αj

Mk,n∑
i=1

[
W

x̃n(zj)
i −W 0

i

]
λ∗
)2]

=
1

cPn

k∑
j=1

α2
j

Mk,n∑
i=1

E
(

[W
x̃n(zj)
i −W 0

i ]λ∗
)2

+
2

cPn

∑
1≤j<l≤k

αjαl

Mk,n∑
i=1

E
(
W

x̃n(zj)
i λ∗ −W 0

i λ
∗
)(
W

x̃n(zl)
i λ∗ −W 0

i λ
∗
)
. (3.10)

Let us start with the first term in the right hand side of (3.10). For each fixed j, we have
that

|x̃n(zj)|2∑
i=1

E
(
W

x̃n(zj)
i λ∗ −W 0

i λ
∗
)2
≤
Mk,n∑
i=1

E
(
W

x̃n(zj)
i λ∗ −W 0

i λ
∗
)2

≤
∞∑
i=1

E
(
W

x̃n(zj)
i λ∗ −W 0

i λ
∗
)2
. (3.11)
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Using equations (2.34), (2.36) and (3.11), we have that

lim
n→∞

1

c log(|x̃n(zj)|)

Mk,n∑
i=1

E
(
W

x̃n(zj)
i λ∗ −W 0

i λ
∗
)2

= 1.

Hence, for every fixed j, we have that

lim
n→∞

1

cPn

Mk,n∑
i=1

E
(
W

x̃n(zj)
i λ∗ −W 0

i λ
∗
)2

= lim
n→∞

log(|x̃n(zj)|)
Pn

= lim
n→∞

log(nmax{|zj(1)|,|zj(2)|}(1 + o(1)))

Pn
= max{|zj(1)|, |zj(2)|}. (3.12)

Therefore

lim
n→∞

1

cPn

k∑
j=1

α2
j

Mk,n∑
i=1

E
(

[W
x̃n(zj)
i −W 0

i ]λ∗
)2

=

k∑
j=1

α2
j max{|zj(1)|, |zj(2)|}.

To deal with the second term on the right member of (3.10) observe that, for 1 ≤ j < l ≤ k,
by (3.3) we have

Mk,n∑
i=1

E
[
(W

x̃n(zj)
i λ∗ −W 0

i λ
∗)(W

x̃n(zl)
i λ∗ −W 0

i λ
∗)
]

=

Mk,n∑
i=1

σ2P(Di−1 = 0|D0 = x̃n(zl)− x̃n(zj))−
Mk,n∑
i=1

σ2P(Di−1 = 0|D0 = x̃n(zj)))

−
Mk,n∑
i=1

σ2P(Di−1 = 0|D0 = x̃n(zl)) +

Mk,n∑
i=1

σ2P(Di−1 = 0|D0 = 0)). (3.13)

Notice that, for any M(x) ≥ |x|2, we may obtain

lim
|x|→∞

1

log |x|

M(x)∑
i=1

σ2 {P(Di−1 = 0|D0 = 0)− P(Di−1 = 0|D0 = x)} = c

in the same way as in the proof of (2.13). Hence

lim
n→∞

1

cPn

Mk,n∑
i=1

σ2 {P(Di−1 = 0|D0 = 0)− P(Di−1 = 0|D0 = x̃n(zl)− x̃n(zj))}

= lim
n→∞

log(|x̃n(zl)− x̃n(zj)|)
2 log n

= lim
n→∞

log[nmax{|zj(1)|,|zj(2)|,|zl(1)|,|zl(2)|}(1 + o(1))]

2 log n

=
max{|zj(1)|, |zj(2)|, |zl(1)|, |zl(2)|}

2
. (3.14)

EJP 29 (2024), paper 113.
Page 14/28

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1181
https://imstat.org/journals-and-publications/electronic-journal-of-probability/
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Then, subtracting
∑Mk,n

i=1 σ2P(Di−1 = 0|D0 = 0) from the right hand side of (3.13), and
using (3.14), we find that

lim
n→∞

1

cPn

Mk,n∑
i=1

E
[
(W

x̃n(tj)
i λ∗ −W 0

i λ
∗)(W

x̃n(tl)
i λ∗ −W 0

i λ
∗)
]

= −max{|zj(1)|, |zj(2)|, |zl(1)|, |zl(2)|}
2

+
max{|zl(1)|, |zl(2)|}

2
+

max{|zj(1)|, |zj(2)|}
2

=
min{max{|zl(1)|, |zl(2)|},max{|zj(1)|, |zj(2)|}}

2
.

Therefore,

lim
n→∞

2

cPn

∑
1≤j<l≤k

αjαl

Mk,n∑
i=1

E
(
W

x̃n(tj)
i λ∗ −W 0

i λ
∗
)(

W
x̃n(tl)
i λ∗ −W 0

i λ
∗
)

=

k∑
1≤j<l≤k

αlαj min{max{|zl(1)|, |zl(2)|},max{|zj(1)|, |zj(2)|}}, (3.15)

and the proof of Corollary 3.1 for d = 2 is finished.

4 Proof of Proposition 1.3

In this section, we prove Proposition 1.3. We follow the strategy adopted in the proof
of Theorem 4.1 in [8]. The main difference in our case is in the following Lemma 4.1,
which is analogous to Lemma 4.3 in [8], on the one hand, but the proof of the latter
result does not apply in our more general, not necessarily nearest neighbor case.

Lemma 4.1. Let us consider d = 1, 2. Given any positive integer K, we have that

n∑
i=j

[P(Di = 0|Dj = l)− P(Di = 0|Dj = l′)] ,

is uniformly bounded in n, j, l and l′ such that |l − l′| ≤ K.

Proof. To avoid the trivial case, let us assume l 6= l′. Also, let us consider τ as defined
in (2.1). By the Strong Markov property, we have that

P (Di = 0|D0 = x) =

i∑
k=0

P0 (Di−k = 0)Px(τ = k),

Hence,

n∑
i=0

P(Di = 0|D0 = x) =

n∑
i=0

i∑
k=0

P0 (Di−k = 0)Px(τ = k)

=

n∑
k=0

( n−k∑
i=0

P0(Di = 0)
)
Px(τ = k),

for all x ∈ Zd. Then

n∑
i=0

P(Di = 0|D0 = l)−
n∑
i=0

P(Di = 0|D0 = l′)

=

n∑
i=0

( n−i∑
k=0

P0(Dk = 0)
)

[Pl(τ = i)− Pl′(τ = i)] . (4.1)
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Using (2.4), (2.5), and (2.7) in (4.1), and the fact that τ has the same distribution for the
chain D and H, we obtain that∣∣∣∣∣

n∑
i=0

[P(Di = 0|D0 = l + (1, 0))− P(Di = 0|D0 = l)]

∣∣∣∣∣
≤ C

∣∣∣∣∣
n∑
i=0

[P(Hi = 0|H0 = l + (1, 0))− P(Hi = 0|H0 = l)]

∣∣∣∣∣
for some positive constant C. Therefore, we will prove the lemma for the homogeneous
chain H. Let us take L = l− l′. Then, by the spatial homogeneity of the Markov chain H,
we have that

n∑
k=0

P0(Hk = l′) = E0

(
n∑
k=0

1{Hk=l′}

)

= EL

(
n∑
k=0

1{Hk=l}

)

= EL

(
n∧τ−1∑
k=0

1{Hk=l}

)
+ EL

(
n∑

k=n∧τ

1{Hk=l}

)
. (4.2)

Observe that

EL

( n∑
k=n∧τ

1{Hk=l}

)
=
∑
i≥0

n∑
k=n∧i

P0(Hk−i = l)PL(τ = i) =
∑
i≥0

PL(τ = i)

n−n∧i∑
k=0

P0(Hk = l).

(4.3)
Using (4.3) in (4.2), we obtain

n∑
k=0

{P0(Hk = l)−P0(Hk = l′)} =
∑
i≥1

PL(τ = i)

n∑
k=n−n∧i+1

P0(Hk = l)−EL
n∧τ−1∑
k=0

1{Hk=l}.

(4.4)
For the first term in the right hand side of (4.4), observe that∑

i≥1

PL(τ = i)

n∑
k=n−n∧i+1

P0(Hk = l)

=

n∑
i=1

PL(τ = i)

n∑
k=n−i+1

P0(Hk = l) + PL(τ > n)

n∑
k=1

P0(Hk = l)

=

n∑
k=1

P0(Hk = l)

n∑
i=n−k+1

PL(τ = i) + PL(τ > n)

n∑
k=1

P0(Hk = l)

=

n∑
k=1

P0(Hk = l)PL(n− k + 1 ≤ τ ≤ n) + PL(τ > n)

n∑
k=1

P0(Hk = l)

=

n∑
k=1

P0(Hk = l)PL(τ ≥ n− k + 1)

=

n−1∑
k=0

P0(Hn−k = l)PL(τ ≥ k + 1). (4.5)

Using (4.5) in (4.4), we find that

n∑
k=0

{P0(Hk = l)− P0(Hk = l′)} =

n−1∑
k=0

P0(Hn−k = l)PL(τ ≥ k + 1)− EL
( n∧τ−1∑

k=0

1{Hk=l}

)
.

(4.6)
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In the rest of the proof, we deal separately with the two terms in the right hand side
of (4.6). For the first term, observe that by (2.6), P4 in [18] (page 382) and the corollary
of Theorem 1 in [16] imply that

n−1∑
k=0

P0(Hn−k = l)PL(τ ≥ k + 1) ≤

{
C1

∑n−1
k=1

1√
n−k

a(L)√
k
, in d = 1,

C2

∑n−1
k=1

1
n−k

log |L|
log k , in d = 2.

(4.7)

Notice that
n−1∑
i=1

1√
n− i

1√
i
−→
n→∞

∫ 1

0

1√
(1− y)y

dy.

Since this integral is finite and |L| ≤ K, there exists a uniform upper bound for the left
hand side expression in (4.7) when d = 1.

For the bound in d = 2, notice that

n−1∑
i=1

1

n− i
1

log i
≤

(1−ε)n∑
i=1

1

n− i
1

log i
+

n−1∑
i=(1−ε)n

1

n− i
1

log i

≤ (1− ε)n
n

+
1

log((1− ε)n)

n−1∑
i=(1−ε)n

1

n− i

≤ (1− ε)n
n

+
1

log((1− ε)n)

∫ n−1

(1−ε)n

1

n− x
dx.

= (1− ε) +
log(εn)

log((1− ε)n)

≤ C2,

for some positive constant C2 and for all n ≥ 1, and we have that the left hand side
of (4.7) is bounded for d = 2 also.

Back to the second term in (4.6), we observe that it is bounded above by

g̃{0}(L, l) := EL

(
τ∑
k=0

1{Hk=l}

)
. (4.8)

It is proved in [14] that
lim
l→∞

g̃{0}(L, l) <∞, when d = 2 (4.9)

and

lim
l→∞

1

2
(g̃{0}(L, l) + g̃{0}(L,−l)) <∞, when d = 1. (4.10)

(4.9) and (4.10) correspond to (1.16) and (1.17) in [14], respectively. By (4.9) and (4.10)
we have that the second term in the right hand side of (4.8) is uniformly bounded for
|L| ≤ K.

Proof of Proposition 1.3: To prove Proposition 1.3 we will apply Corollary 3.1 in [12] for
the variables

Xx,i =
W x
i λ
∗ −W 0

i λ
∗

√
Px

, 1 ≤ i ≤ A|x|2.

In Lemma 2.2 in [8] is proved that{ n∑
i=1

W x
i λ
∗ − nµλ∗

}
n≥1

,
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is a martingale with respect to the filtration Fn defined in Section 1.1. Observe that a
linear combination of martingales is also a martingale. Therefore, Xx,i is the increment
of a nested mean zero and square-integrable martingale with respect to the nested
filtration Fx,i = Fi. Hence, by Corollary 3.1 in [12], if we check

max
1≤i≤A|x|2

|Xx,i|
p−→ 0, (4.11)

E

(
max

1≤i≤A|x|2
Xx,i

)
is bounded in x, (4.12)

and

A|x|2∑
i=1

E
(
X2
x,i|Fx,i−1

) p−→ h(A) as |x| → ∞, (4.13)

we obtain
A|x|2∑
i=1

Xx,i
d−→ Z as |x| → ∞, (4.14)

where Z is a mean zero Gaussian r.v. with variance h(A).
Notice that conditions (4.11) and (4.12) follow straightforwardly from the fact that

un(i, i+ ·) have bounded support. It remains to prove (4.13). To do this, observe that by
the definition of h(A) and (2.31), we have that

h(A) = lim
|x|→∞

1

Px
E

A|x|2∑
i=1

(
[W x

i −W 0
i ]λ∗

)2
, for all A > 0. (4.15)

Given (4.15), to obtain (4.13), it is enough to prove that

1

Px

{A|x|2∑
i=1

E
(
[W x

i λ
∗ −W 0

i λ
∗]2|Fi−1

)
− E

(
W x
i λ
∗ −W 0

i λ
∗)2 } p−→ 0, as |x| → ∞. (4.16)

Let us denote the range of un(i, i+ ·) by R.
We consider D̃x

n = Ỹ xn − Ŷ 0
n , with Ŷ 0

n a copy of Ỹ 0
n independent of Ỹ xn given Fn. With

the same ideas used to get (2.33) in [8], we obtain

E
(

(W x
i λ
∗ − µλ∗)(W 0

i λ
∗ − µ)

∣∣∣Fi−1)
=
∑
k,l

E ((θi(k)λ∗ − µ)(θi(l)λ
∗ − µ))P

(
Ỹ xi−1 = k|Fi−1

)
P
(
Ỹ 0
i−1 = l|Fi−1

)
= σ2

∑
k

P
(
Ỹ xi−1 = k|Fi−1

)
P
(
Ỹ 0
i−1 = k|Fi−1

)
= σ2P

(
D̃x
i−1 = 0

∣∣Fi−1) ,
(4.17)

The first equality in (4.17) is a consequence of the independence of θ′is with Fi−1. The
second equality use the fact that θi(k) and θi(l) are independent when k 6= l. Hence,
equation (4.17) implies

E[(W x
i −W 0

i )2|Fi−1]− E(W x
i −W 0

i )2

= 2σ2
[
P(D̃0

i−1 = 0|Fi−1)− P(D̃0
i−1 = 0)

]
− 2σ2

[
P(D̃x

i−1 = 0|Fi−1)− P(D̃x
i−1 = 0)

]
.
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Therefore, it is sufficient to prove

1

Px

A|x|2∑
i=1

(
P(D̃x

i−1 = 0|Fi−1)− P(D̃x
i−1 = 0)

)
p−→ 0, as |x| → ∞, (4.18)

and

1

Px

A|x|2∑
i=1

(
P(D̃0

i−1 = 0|Fi−1)− P(D̃0
i−1 = 0)

)
p−→ 0, as |x| → ∞. (4.19)

The computations to obtain (4.18) and (4.19) are very similar to the ones in the proof of
Theorem 4.1 in [8]. To avoid repetition and for the sake of completeness, we give them
in Appendix A. To conclude for now, let us point out that Lemma 4.1 is used in the proof
of (4.18) and (4.19).

5 Corollary of Proposition 1.3

As mentioned in Section 3, Cramér-Wold theorem allows us to deduce the convergence
of a sequence of vectors through the study of linear combinations of its components.
Hence, to obtain Theorem 1.4, we state and prove the following result in this section.

Corollary 5.1. Given k ≥ 1, let ᾱ = (α1, . . . , αk) ∈ Rk. Let us also consider c and Pn as
in Proposition 1.2.

(i) In case d = 1, let t̄ = (t1, . . . , tk) ∈ Rk with 0 = t0 < t1, · · · < tk. Then we have

1√
cPn

k∑
j=1

An2∑
i=1

αj

(
W
bntjc
i −W 0

i

)
λ

d−→
n→∞

N (0, g(A, t̄, ᾱ)),

where the function g is as in Corollary 3.1 for dimension one.

(ii) In case d = 2, let z̄ = (z1, . . . , zk) ∈ Z2k. Then we have

1√
cPn

k∑
j=1

Mk,n∑
i=1

αj

(
W

x̃n(zj)
i −W 0

i

)
λ∗

d−→
n→∞

N (0, g(z̄, ᾱ)),

where Mk,n and g are as in Corollary 3.1 for dimension two.

Proof. To avoid being repetitive, we only write the proof for dimension one, but the
reader can check that the same ideas apply to dimension 2.

As in the proof of Proposition 1.3 we will apply Corollary 3.1 in [12] but now for the
variables

Xk
n,i =

1√
cPn

k∑
j=1

αj

(
W
bntjc
i −W 0

i

)
λ, 1 ≤ i ≤ An2.

Again conditions (4.11) and (4.12) follow readily from the fact that we are assuming
finite support for un(i, i+ ·).

It remains to argue (4.13). In order to that, let us first notice that equation (2.31)
implies (after straightforward computations) that

An2∑
i=1

E
[( k∑

j=1

αj
[
W
bntjc
i −W 0

i

]
λ
)2]

= E
[( k∑

j=1

αj

An2∑
i=1

[
W
bntjc
i −W 0

i

]
λ
)2]

. (5.1)

Hence, by Corollary 3.1 we have

lim
n→∞

An2∑
i=1

E
[(
Xk
n,i

)2]
= g(A, t̄, ᾱ). (5.2)

EJP 29 (2024), paper 113.
Page 19/28

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1181
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Scaling limit of an equilibrium surface under the Random Average Process

Since

(Xk
n,i)

2 =
1

cPn

k∑
j=1

(
W
bntjc
i λ−W 0

i λ
)2

+ 2
∑

1≤j<l≤k

αjαl

(
W
bntjc
i λ−W 0

i λ
)(

W
bntlc
i λ−W 0

i λ
)
,

and, from (4.18),

k∑
j=1

1

cPn

An2∑
i=1

{
E
([
W
bntjc
i λ−W 0

i λ
]2∣∣∣Fi−1)− E([W bntjci λn−W 0

i λ
]2)} p−→ 0 as n→∞,

in order to obtain Condition (4.13) (and conclude the proof), it is enough to show that

1

cPn

An2∑
i=1

{
E
(

(W
bntjc
i λ−W 0

i λ)(W
bntlc
i λ−W 0

i λ)
∣∣Fi−1)−E(W

bntjc
i λ−W 0

i λ)(W
bntlc
i λ−W 0

i λ)
}

(5.3)
converges in probability to zero as n→∞, for any 1 ≤ j < l ≤ k.
Set

Sy,zn :=
σ2

cPn

An2∑
i=1

{
E
(

(W z
i λ− µλ)(W y

i λ− µλ)
∣∣∣Fi−1)− E ((W z

i λ− µλ)(W y
i λ− µλ))

}
.

Then we can write (5.3) as

Sbntjc,bntlcn − Sbntjc,0cn − Sbntlc,0n + S0,0
n . (5.4)

Using the invariance translation property of the model and (4.17) we obtain

Sy,zn
d
=

σ2

cPn

An2∑
i=1

{
P
(
D̃z−y
i−1 = 0

∣∣Fi−1)− P(D̃z−y
i−1 = 0

)}
. (5.5)

Now, by (5.5), (4.18) and (4.19), we have that each term in equation (5.4) goes to zero in
probability as n goes to infinity, and this establishes (4.13).

6 Proof of Theorem 1.1

Now we have all the ingredients to prove Theorem 1.1.

Proof of Theorem 1.1. By (1.3) we have that

X̂x − xλ∗√
Px

d
=

1√
Px

A|x|2∑
i=0

(
W x
i −W 0

i

)
λ∗ +

1√
Px

∞∑
i=A|x|2+1

(
W x
i −W 0

i

)
λ∗ , for any A ≥ 1.

(6.1)
By equation (5.14) in [8] and P28.47 (page 345) in [18], for d = 1 and equation (2.34) for
d = 2, we have that

lim
|x|→∞

E
(
X̂∞(x)− xλ∗

)2
Px

= c. (6.2)

7To apply 28.4 is necessary to note that the function a is even because the chain H is symmetric.
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By (1.3) and (2.31) we obtain

E
(
X̂∞(x)− xλ∗

)2
Px

=
1

Px
E
(A|x|2∑

i=1

(W x
i −W 0

i )λ∗
)2

+
1

Px
E
( ∞∑
i=A|x|2+1

(W x
i −W 0

i )λ∗
)2
. (6.3)

Hence by (6.2), (6.3), and Proposition 1.2 we obtain

lim
A→∞

lim
|x|→∞

E
[( 1√

Px

∞∑
i=A|x|2+1

(
W x
i −W 0

i

)
λ∗
)2]

= 0. (6.4)

Only in the following calculations and to simplify notations we denote the left member
in (6.1) by Xx, and the first and second term by Y Ax and ZAx , respectively.

Take f a uniformly continuous and bounded function and we denote by Mf the bound
of f . Also, for a fixed ε > 0 we take δ such that |f(z)− f(z + y)| ≤ ε/6 for all z and all y
such that |y| ≤ δ. In addition, we take A large enough such that∣∣∣∣∫ f(Y A)dP−

∫
f(Y )dP

∣∣∣∣ ≤ ε

3
, (6.5)

where Y A and Y are distributed N (0, h(A)) and N (0, c), respectively. Now, for this A we
take |x| large enough such that

P(|ZAx | > δ) ≤ ε

12Mf
and

∣∣∣∣∫ f(Y Ax )dP−
∫
f(Y A)dP

∣∣∣∣ ≤ ε

3
. (6.6)

The first part of (6.6) is a consequence of (6.4) and the second is the result in Proposi-
tion 1.3. Observe that∣∣∣∣∫ f(Xx)dP−

∫
f(Y )dP

∣∣∣∣ ≤ ∣∣∣∣∫ f(Xx)dP−
∫
f(Y Ax )dP

∣∣∣∣+

∣∣∣∣∫ f(Y Ax )dP−
∫
f(Y A)dP

∣∣∣∣
+

∣∣∣∣∫ f(Y A)dP−
∫
f(Y )dP

∣∣∣∣ . (6.7)

By (6.6) and (6.5) the second and third term in the right member of (6.7) are both less
than ε/3. For the first term, using (6.6) and our choice of δ we have that∣∣∣∣∫ f(Xx)dP−

∫
f(Y Ax )dP

∣∣∣∣ ≤ 2ε

12Mf
+

∣∣∣∣∣
∫
|ZAx |<δ

(f(Xx)− f(Y Ax ))dP

∣∣∣∣∣ ≤ ε

3
.

Therefore, for every ε > 0 and |x| large enough, we have concluded that∣∣∣∣∫ f(Xx)dP−
∫
f(Y )dP

∣∣∣∣ ≤ ε,
obtaining the desired converge in distribution.

7 Proof of Theorem 1.4

Although the proof of Theorem 1.4 is very similar for dimension one and two, it has
some specific calculations that are different for each case. Therefore, we start with the
proof in dimension one, and after that, we prove the core different part for dimension
two.
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Proof for d = 1. By Cramér-Wold theorem, the convergence in (1.4) is equivalent to

k∑
j=1

αjXn(tj)
d−→

n→∞

k∑
j=1

αjB(tj), for any (α1, . . . , αk) ∈ Rk. (7.1)

Hence, we will prove (7.1). To do this, first notice that
∑k
j=1 αjB(tj) is a Gaussian

random variable with mean zero and variance
∑k
j=1 α

2
j tj + 2

∑
1≤j<l≤k αjαltj . As in the

proof of Theorem 1.1, we use that

k∑
j=1

αjXn(tj)
d
=

1√
cPn

k∑
j=1

∞∑
i=1

αj

(
W
bntjc
i −W 0

i

)
λ

=
1√
cPn

k∑
j=1

An2∑
i=1

αj

(
W
bntjc
i −W 0

i

)
λ+

1√
cPn

k∑
j=1

∑
i>An2

αj

(
W
bntjc
i −W 0

i

)
λ.

(7.2)

To deal with the first sum in the right hand side of (7.2), we use Corollary 3.1 and
Corollary 5.1. It will remain to compute the limit as n→∞ of the second moment of the
left hand side of (7.2). If this limit is equal to the one in Corollary 3.1, then the second
sum in right hand side of (7.2) will be small in probability when A is large, and this
allows us to follow the proof of Theorem 1.1 in a straightforward fashion to obtain (7.1).
Summing up, it is enough to show that

lim
n→∞

1

cPn
E
[( k∑

j=1

αj

∞∑
i=1

[
W
bntjc
i −W 0

i

]
λ
)2]

=

k∑
j=1

α2
j tj + 2

∑
1≤j<l<≤k

αjαltj . (7.3)

Expanding the square inside the mean in the left member of (7.3) we have that

1

cPn
E
[( k∑

j=1

αj

∞∑
i=1

[
W
bntjc
i −W 0

i

]
λ
)2 ]

=

k∑
j=1

α2
j

1

cPn
E
[( ∞∑

i=1

[
W
bntjc
i −W 0

i

]
λ
)2]

+ 2
∑

1≤j<l≤k

1

cPn
αjαlE

[( ∞∑
i=1

[
W
bntjc
i −W 0

i

]
λ
)( ∞∑

m=1

[
W bntlcm −W 0

m

]
λ
)]
.

(7.4)

Now, we deal with the first sum in the right hand side of (7.4). Expanding the square
inside the mean, and using (2.31), we find that

k∑
j=1

α2
j

1

cPn
E
[( ∞∑

i=1

[
W
bntjc
i −W 0

i

]
λ
)2]

=

k∑
j=1

α2
j

1

cPn

∞∑
i=1

E
[(
W
bntjc
i −W 0

i

)
λ
]2
. (7.5)

Equation 5.14 in [8] implies that the limit of the sum in the right hand side of (7.5)
equals

∑k
j=1 α

2
j tj . Therefore, to get the convergence in (7.3), it is enough to prove that

lim
n→∞

1

cPn
E
[( ∞∑

i=1

[
W
bntjc
i −W 0

i

]
λ
)( ∞∑

m=1

[
W bntlcm −W 0

m

]
λ
)]

= tj , for any 1 ≤ j < l ≤ k.

(7.6)
Again, multiplying the sums inside the mean in (7.6) and using (2.31) we find that

E
[( ∞∑

i=1

[
W
bntjc
i −W 0

i

]
λ
)( ∞∑

m=1

[
W bntlcm −W 0

m

]
λ
)]

=

∞∑
i=1

E
[(
W
bntjc
i λ−W 0

i λ
)(
W
bntlc
i λ−W 0

i λ
)]
.
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Hence, what we need to prove is

lim
n→∞

1

cPn

∞∑
i=1

E
[(
W
bntjc
i λ−W 0

i λ
)(

W
bntlc
i λ−W 0

i λ
)]

= tj , for any 1 ≤ j < l ≤ k.

(7.7)
By (3.3) we have

E
[(
W
bntjc
i λ−W 0

i λ
)(

W
bntlc
i λ−W 0

i λ
)]

= −σ2 {P (Di−1 = 0|D0 = 0)− P (Di−1 = 0|D0 = bntlc − bntjc)}
+ σ2 {P (Di−1 = 0|D0 = 0)− P (Di−1 = 0|D0 = bntjc)}
+ σ2 {P (Di−1 = 0|D0 = 0)− P (Di−1 = 0|D0 = bntlc)} .

By (5.14) in [8] the following sum

∞∑
i=1

{P (Di−1 = 0|D0 = 0)− P (Di−1 = 0|D0 = k)}

is finite for any k ∈ Z. Then

1

cPn

∞∑
i=1

E
[(
W
bntjc
i λ−W 0

i λ
)(

W
bntlc
i λ−W 0

i λ
)]

= − σ2

cPn

∞∑
i=1

{P (Di−1 = 0|D0 = 0)− P (Di−1 = 0|D0 = bntlc − bntjc)}

+
σ2

cPn

∞∑
i=1

{P (Di−1 = 0|D0 = 0)− P (Di−1 = 0|D0 = bntjc)}

+
σ2

cPn

∞∑
i=1

{P (Di−1 = 0|D0 = 0)− P (Di−1 = 0|D0 = bntlc)} . (7.8)

By (5.14) in [8] and P28.4 (page 345) in [18], for s < t we have that

lim
n→∞

2σ2

Pn

∞∑
i=1

{P (Di−1 = 0|D0 = 0)− P (Di−1 = 0|D0 = bntc − bnsc)} = (t− s)c. (7.9)

Then

lim
n→∞

1

cPn

∞∑
i=1

E
[(
W
bntjc
i λ−W 0

i λ
)(

W
bntlc
i λ−W 0

i λ
)]

= −1

2
(tl − tj) +

1

2
tj +

1

2
tl = tj ,

and the proofs of (7.7) and of Theorem 1.4 for d = 1 is concluded.

Proof for d = 2. As in dimension one, by Cramér-Wold theorem, the convergence in (1.6)
is equivalent to

k∑
j=1

αjXn(zj)
d−→

n→∞

k∑
j=1

αjZj , for any (α1, . . . , αk) ∈ Rk. (7.10)

Again, we split the infinite sum as we did for dimension one, but this time we do not split
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at n2, but at Mk,n. More precisely,

k∑
j=1

αjXn(zj)

d
=

1√
cPn

k∑
j=1

Mk,n∑
i=1

αj

(
W

x̃n(zj)
i −W 0

i

)
λ∗ +

1√
cPn

k∑
j=1

∑
i>Mk,n

αj

(
W

x̃n(zj)
i −W 0

i

)
λ∗.

(7.11)

By Remark 2.3 the second term in the right member of (7.11) converges to zero in L2.
Also, in Corollary 5.1 we have the limit in distribution of the first term in the right
member of (7.11). Therefore, the limit in distribution of the left member in (7.11) is the
same of the finite sum in the right member.

A Finishing the proof of Proposition 1.3

Since the arguments for (4.18) and (4.19) are entirely similar, we give only the proof
of (4.18).

Proof of (4.18). Recycling the arguments given in the equations (4.3), (4.4) and (4.5) in
[8], we could write the variance of the sum at (4.18) as

A|x|2∑
j=1

E
(A|x|2−1∑

i=j

{
P(D̃x

i = 0|Fj)− P(D̃x
i = 0|Fj−1)

})2
. (A.1)

Conditioning in D̃x
j we have that

P(D̃x
i =0|Fj)−P(D̃x

i = 0|Fj−1) =
∑
k

P(D̃x
i = 0|D̃x

j = k)
[
P(D̃x

j = k|Fj)−P(D̃x
j = k|Fj−1)

]
.

(A.2)
Now, conditioning on Ỹ xj−1 and Ŷ 0

j−1 we have that P(D̃x
j = k|Fj) − P(D̃x

j = k|Fj−1) is
equal to∑

l,l′

[
P(D̃x

j = k|Ỹ xj−1 = l′ + l, Ŷ 0
j−1 = l′,Fj)− P(D̃x

j = k|Ỹ xj−1 = l′ + l, Ŷ 0
j−1 = l′)

]
× P(Ỹ xj−1 = l′ + l, Ŷ 0

j−1 = l′|Fj−1). (A.3)

In the rest of the proof, we consider d = 2 and the proof for d = 1 is similar. Back to
equation (A.3), observe that we have the following relation between k and l

k = l + (Ỹ xj − Ỹ xj−1)− (Ŷ 0
j − Ŷ 0

j−1).

Hence, we could write k = l+ b1 − b2 for b1, b2 ∈ Z2 with max{|b1|, |b2|} ≤ K, where K is
the range of the measure u0. The finite support assumption is only required when we
use Lemma 4.1. We denote by V a K-neighborhood of zero. Also, we use the following
notation

F (k, l′, l) := P(D̃x
j = k|Ỹ xj−1 = l′ + l, Ŷ 0

j−1 = l′,Fj)− P(D̃x
j = k|Ỹ xj−1 = l′ + l, Ŷ 0

j−1 = l′)

uj,l,l′,b = uj(l
′ + l, l′ + l + b) and uj,l′,b = uj(l

′, l′ + b)
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where b is in V . With these new notations and (A.3), we rearrange the sum in (A.2) as
follows∑

l,l′

∑
k

P(D̃x
i = 0|D̃x

j = k)F (k, l′, l)P(Ỹ xj−1 = l′ + l, Ŷ 0
j−1 = l′|Fj−1)

=
∑
l,l′

P(Ỹ xj−1 = l′ + l, Ŷ 0
j−1 = l′|Fj−1)

×
[∑
k 6=l

F (k, l′, l)P(D̃x
i = 0|D̃x

j = k) + F (l, l′, l)P(D̃x
i = 0|D̃x

j = l)
]
.

(A.4)

Notice that for k 6= l, we have that

F (k, l′, l) =
∑

b1,b2∈V ;b1 6=b2;b1−b2=k−l

{
uj(l

′ + l, l′ + l + b1)uj(l
′, l′ + b2)

− E [uj(l
′ + l, l′ + l + b1)uj(l

′, l′ + b2)]
}

=
∑

b1,b2∈V ;b1 6=b2;b1−b2=k−l

uj,l′,l,b1uj,l′,b2 − E [uj,l′,l,b1uj,l′,b2 ] .

(A.5)

Also, observe that

F (l, l′, l) =
∑
b1∈V

{uj(l′ + l, l′ + l + b1)uj(l
′, l′ + b1)− E [uj(l

′ + l, l′ + l + b1)uj(l
′, l′ + b1)]}

=
∑
b1∈V

{uj,l′,l,b1uj,l′,b1 − E [uj,l′,l,b1uj,l′,b1 ]} , (A.6)

substituting uj(l′, l′ + b1) by 1−
∑
b2∈V ;b2 6=b1 uj(l

′, l′ + b2) into (A.6) we obtain

F (l, l′, l)

= −
∑

b1,b2∈V ;b1 6=b2

(
uj(l

′ + l, l′ + l + b1)uj(l
′, l′ + b2)− E [uj(l

′ + l, l′ + l + b1)uj(l
′, l′ + b2)]

)
= −

∑
b1,b2∈V ;b1 6=b2

(
uj,l′,l,b1uj,l′,b2 − E [uj,l′,l,b1uj,l′,b2 ]

)
. (A.7)

Substituting (A.7) and (A.5) into (A.4) we obtain that the sum in (A.2) is equal to∑
l,l′

P(Ỹ xj−1 = l′ + l, Ŷ 0
j−1 = l′|Fj−1)×

( ∑
b1,b2∈V ;b1 6=b2

{P(D̃x
i = 0|D̃x

j = l + b1 − b2)− P(D̃x
i = 0|D̃x

j = l)}

× {uj,l′,l,b1uj,l′,b2 − E [uj,l′,l,b1uj,l′,b2 ]}
)

=
∑

b1,b2∈V ;b1 6=b2

∑
l′,l

{P(D̃x
i = 0|D̃x

j = l + b1 − b2)− P(D̃x
i = 0|D̃x

j = l)}

× {uj,l′,l,b1uj,l′,b2 − E [uj,l′,l,b1uj,l′,b2 ]} × P(Ỹ xj−1=l′ + l, Ŷ 0
j−1=l′|Fj−1).

Hence, there is some positive constant C2 = C2(K), such that

A|x|2∑
j=1

E
(A|x|2−1∑

i=j

{
P(D̃x

i = 0|Fj)− P(D̃x
i = 0|Fj−1)

})2
≤ C2

∑
b1,b2∈V ;b1 6=b2

G(b1, b2),
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where

G(b1, b2) :=

A|x|2∑
j=1

E
(A|x|2−1∑

i=j

∑
l′,l

{P(D̃x
i = 0|D̃x

j = l + b1 − b2)− P(D̃x
i = 0|D̃x

j = l)}

× {uj(l′ + l, l′ + l + b1)uj(l
′, l′ + b2)

− E [uj(l
′ + l, l′ + l + b1)uj(l

′, l′ + b2)]}

× P(Ỹ xj−1 = l′ + l, Ŷ 0
j−1 = l′|Fj−1)

)2
.

We only analyze G((1, 0), (0, 0)), and the same arguments used for this term work for the
other terms G(b1, b2) with b1, b2 ∈ V, b1 6= b2. Also, to make the notation more compact,
we define

Axj,l =

A|x|2−1∑
i=j

[
P(D̃x

i = 0|D̃x
j = l + (1, 0))− P(D̃x

i = 0|D̃x
j = l)

]
uj,l,l′ = uj(l

′ + l, l′ + l + (1, 0))uj(l
′, l′ + (0, 0))− E (uj(l

′ + l, l′ + l + (1, 0))uj(l
′, l′ + (0, 0)))

pxj (l) = P(Ỹ xj−1 = l|Fj−1), p0j (l) = P(Ŷ 0
j−1 = l|Fj−1).

Then

G((1, 0), (0, 0)) =

A|x|2−1∑
j=1

E

∑
l′,l

Axj,luj,l,l′p
x
j (l′ + l)p0j (l

′)

2

. (A.8)

In Lemma 4.1, we proved that the terms |Axj,l| are bounded uniformly in l, j, and x, and
therefore (A.8) is bounded by

C2

A|x|2−1∑
j=1

E
∑
l′,l

∑
k,k′

E(uj,l,l′ uj,k,k′)p
x
j (l′ + l)p0j (l

′)pxj (k′ + k)p0j (k
′). (A.9)

In (A.9), we have used the independence of the u′js with Fj−1. Now, if {l + l′, l′} ∩ {k +

k′, k′} = ∅, then uj,l,l′ and uj,k,k′ are independent and the expectation of both terms is
zero. When l + l′ = k + k′ and k′ = l′, (A.9) becomes

A|x|2−1∑
j=1

E
∑
l′,l

E(uj,l,l′
2)(pxj (l′ + l))2(p0j (l

′))2 ≤
A|x|2−1∑
j=1

E
∑
l′,l

pxj (l′ + l)(p0j (l
′))2

=

A|x|2−1∑
j=1

E
∑
l′

(p0j (l
′))2

=

A|x|2−1∑
j=1

P(D̃0
j = 0). (A.10)

When l′ = k + k′ and l + l′ = k′, we have that

A|x|2−1∑
j=1

E
∑
l′,l

E(uj,l,l′ uj,−l,l+l′)p
x
j (l′ + l)p0j (l

′)pxj (l′)p0j (l + l′)

≤
A|x|2−1∑
j=1

E
∑
l′,l

p0j (l
′)pxj (l′)p0j (l + l′)
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=

A|x|2−1∑
j=1

E
∑
l′

p0j (l
′)pxj (l′)

=

A|x|2−1∑
j=1

P(D̃x
j = 0). (A.11)

For the case l′ + l = k′ + k and k′ 6= l′ we obtain

A|x|2−1∑
j=1

E
∑
l′,l

∑
k′

E(uj,l,l′ uj,l′+l−k′,k′)p
x
j (l′ + l)2p0j (l

′)p0j (k
′) ≤

A|x|2−1∑
j=1

E
∑
l′,l

pxj (l′)2p0j (l
′ + l)

=

A|x|2−1∑
j=1

E
∑
l′

pxj (l′)2

=

A|x|2−1∑
j=1

P(D̃0
j = 0). (A.12)

Finally, when l′ + l = k′ and k′ + k 6= l′

A|x|2−1∑
j=1

E
∑
l′,l

∑
k

E(uj,l,l′ uj,k,l+l′)p
x
j (l + l′)p0j (l + l′)p0j (l

′)pxj (l + l′ + k)

≤
A|x|2−1∑
j=1

E
∑
l,l′

pxj (l + l′)p0j (l + l′)p0j (l
′)

=

A|x|2−1∑
j=1

E
∑
l,l′

pxj (l)p0j (l)p
0
j (l − l′)

=

A|x|2−1∑
j=1

E
∑
l

pxj (l)p0j (l)

=

A|x|2−1∑
j=1

P(D̃x
j = 0). (A.13)

Reasoning as in the proof of Proposition 2.3 in [8] we have that

P (Dn = 0|D0 = x) = P(D̃n = x), for n ≥ 0 and x ∈ Zd.

Hence, equation (2.5) implies that (A.10) and (A.12) are both O(ln(A|x|2)). Using (2.13),
we conclude that (A.11) and (A.13) are also O(ln(A|x|2)). Summing up, the variance of
the sum at the left hand side of (4.18) is bounded by an O(ln(A|x|2)). Therefore, the
variance of the whole term in (4.18) is bounded by an o(1), and we have proved the
result.
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