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Abstract

We address an optimal stopping problem over the set of Bermudan-type strategies
Θ (which we understand in a more general sense than the stopping strategies for
Bermudan options in finance) and with non-linear operators (non-linear evaluations)
assessing the rewards, under general assumptions on the non-linear operators ρ. We
provide a characterization of the value family V in terms of what we call the (Θ, ρ)-
Snell envelope of the pay-off family. We establish a Dynamic Programming Principle.
We provide an optimality criterion in terms of a (Θ, ρ)-martingale property of V on a
stochastic interval. We investigate the (Θ, ρ)-martingale structure and we show that
the “first time” when the value family coincides with the pay-off family is optimal. The
reasoning simplifies in the case where there is a finite number n of pre-described
stopping times, where n does not depend on the scenario ω. We provide examples of
non-linear operators entering our framework.
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1 Introduction

In the recent years, optimal stopping problems with non-linear evaluations have
gained an increasing interest in the financial mathematics literature and in the stochas-
tic control literature.
In the linear case, a classical reference are the notes by El Karoui (1981). A presentation
based on families of random variables indexed by stopping times can be found in Quenez
and Kobylanski (2012).
In discrete time, a non-linear optimal stopping with dynamic monetary utilities was stud-
ied in Krätschmer and Schoenmakers (2010), with worst-case-scenario risk measures in
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Riedel (2009), and with g-evaluations (induced by Backward SDEs with Lipschitz driver
g) – in Grigorova and Quenez (2016). In continuous time, a non-linear optimal stopping
with dynamic convex risk measures was studied in Bayraktar et al. (2010); with the
so-called F -expectations – in Bayraktar and Yao-Part I (2011) and Bayraktar and Yao-Part
II (2011); with g-evaluations (induced by Backward SDEs with Lipschitz driver g) – in
e.g., Quenez and Sulem (2014), Grigorova et al. (2015), Grigorova et al. (2020), Klimsiak
and Rzymowski (2021); with a focus on applications to American options in complete or
incomplete non-linear financial markets – in Kim et al. (2021), Grigorova et al. (2021);
with suprema of linear/affine operators over sets of measures- in, e.g. Ekren et al. (2014),
Nutz and Zhang (2015). In Belomestny and Krätschmer (2017), the authors investigate
optimal stopping with non-linear Choquet integrals with respect to a distorted probability
(also known as distortion risk measures); these non-linear operators lack the property of
time consistency, but have the property of sublinearity in the case where the distortion
function is concave (cf. also Xu and Zhou (2013) for an earlier work in this direction
under stronger assumptions on the Choquet integrals and on the pay-off processes).
The article Belomestny and Krätschmer (2016) (cf. also the addendum Belomestny and
Krätschmer (2016)) considers optimal stopping for dynamic convex risk measures, where
the penalty term ct(Q) in the dual representation has the particular form of a divergence,
that is ct(Q) = E(Φ(dQdP )|Ft), where Φ is lower-semicontinuous, non-negative, convex.
For this class of non-linear convex operators, the authors prove a judicious dual-type
representation (generalizing earlier works by Rogers (2002)) allowing them to then apply
more classical optimal stopping techniques.

In the present paper, we address an optimal stopping problem with Bermudan-type
strategies and with general non-linear operators (non-linear evaluations) assessing the
rewards.
Our purpose is two-fold:

1. We consider a modelling framework which is in-between the discrete-time and
the continuous-time framework, by focusing on what we call in this paper the
Bermudan-type stopping strategies 1.

– In the discrete-time framework with finite terminal horizon T > 0, the agent is
allowed to stop at a finite number only of pre-described deterministic times,
and gain/loss processes are indexed by these pre-described deterministic times.
If we denote by {0 = t0 ≤ t1 ≤ ... ≤ tn = T} the pre-defined finite deterministic
grid of n + 1 time points, the stopping strategies of the agent are of the form
τ =

∑n
k=0 tk1Ak , where (Ak)k∈{0,1,...n} is a partition, such that Ak is Ftk -measurable,

for each k ∈ {0, 1, . . . , n}. Thus, for almost each scenario ω, the agent is allowed to
stop only at a finite number of times (provided they do that in a non-anticipative
way), where both the number of time instants (here, n+ 1) and the time instants
themselves (here, the tk’s), are the same, whatever the scenario ω.

– In the continuous-time framework (with finite horizon T > 0), the agent is allowed
to stop continuously at any time instant t ∈ [0, T ], and the gain/loss processes are
indexed by t ∈ [0, T ]. The set of the agent’s stopping strategies is the set of all
stopping times valued in [0, T ]. Thus, for almost each scenario ω, the agent can
stop at any time instant (provided they do that in a non-anticipative way).

– In the intermediate modelling framework of the current paper (with finite terminal

1Note that this notion is more general than the typical notion of Bermudan strategy appearing in the context
of Bermudan options in mathematical finance, where the agent/buyer of the option is allowed to stop only at a
pre-described finite number of deterministic times {0 = t0 ≤ t1 ≤ · · · ≤ tn = T}, where n is a fixed finite
number (independent of the scenario ω).
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horizon T > 0), in (almost) every scenario ω, the agent is allowed to stop at a finite
number of times or infinite countable number of times (provided they do that in a
non-anticipative way), where both the number of time instants and the time instants
themselves are allowed to depend on the scenario ω. More specifically, we are given
a non-decreasing sequence of stopping times (θk)k∈N such that limk→∞ θk = T .
This countable stopping grid being given, the agent’s stopping strategies τ are
thus of the form τ =

∑+∞
k=0 θk1Ak + T1Ā, where {(Ak)k∈N, Ā} is a partition, such

that Ak is Fθk -measurable, for each k ∈ N, and Ā is FT -measurable. We call τ of
this form a Bermudan stopping strategy, and we denote by Θ the set of Bermudan
stopping strategies. The gain/losses are then “naturally” defined via families of
random variables indexed by the stopping times τ of this form.

This modelling framework is thus closer to the real-life situations where the number
of possible decision points depends on the scenario/state of nature, and so do the
decision times themselves, but where the agents do not necessarily act continuously
in time.

2. The second purpose of the paper is to allow for gains/losses being assessed by
general non-linear evaluations ρ = (ρS,τ [·]), while imposing minimal assumptions
on the non-linear operators, under which the results hold. The non-linear operators
that we consider have the time-consistency property, but might lack the concavity
or convexity (hence, we cannot rely on convex duality arguments) and might lack
cash-invariance (which is one of the properties of monetary risk measures and
their monetary utility counterparts). It is to be noted also that we work with doubly
indexed families ρ = (ρS,τ [·]), where the first index S corresponds to the time of
assessment (or evaluation), and the second index τ – to the time when the gain
(or pay-off) is revealed (examples of such non-linear operators from mathematical
finance and stochastic control are provided in Section 3).

We emphasize also that, in the above framework, working with families of random
variables φ = (φ(τ)) indexed by Bermudan stopping times τ , allows for an exposition in
which it is not necessary to invoke any results from the theory of stochastic processes.
After formulating the non-linear optimal stopping with Bermudan-style strategies, we
provide a characterization of the value family in terms of a suitably defined non-linear
Snell envelope. A dynamic programming principle is established under suitable assump-
tions on the non-linear evaluations. An optimality criterion is proven and existence of
optimal stopping times is investigated; it is shown in particular that the first “hitting
time” is optimal. Examples of non-linear operators, well-known in financial mathematics
and in stochastic control, entering our framework, are given, such as the non-linear
evaluations induced by Backward SDEs, or the dynamic concave utilities (from the risk
measurement literature). In the appendix, we consider the particular case of finite
number of pre-described stopping times 0 = θ0, θ1, ..., θn = T , where n does not depend
on the scenario ω, and provide an explicit construction of the non-linear Snell envelope
by backward induction, as well as a simpler proof of the optimality of the first hitting
time.

The remainder of the paper is organized as follows: In Subsection 2.1, we set the
framework and the notation. In Subsection 2.2, we formulate the optimisation problem.
In Subsection 2.3, we characterize the value family of the problem in terms of the
(Θ, ρ)-Snell envelope family of the pay-off family. In Subsection 2.4, we show a Dynamic
Programming Principle (DPP). In Subsection 2.5, we investigate the question of optimal
stopping times: we provide some technical lemmas regarding the (Θ, ρ)-martingale
property, we provide an optimality criterion, as well as some useful consequences of the

EJP 29 (2024), paper 102.
Page 3/29

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1164
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Optimal stopping: Bermudan strategies meet non-linear evaluations

DPP, and we show that, under suitable assumptions, “the first time” νk when the value
family hits the pay-off family is optimal. Section 3 is dedicated to examples of non-linear
operators from the literature, entering our framework. The Appendix is dedicated to
the particular case where in almost each scenario ω ∈ Ω, there are n+ 1 pre-described
opportunities for stopping, where n does not depend on ω ∈ Ω. In this case, we have an
explicit construction of the (Θ, ρ)-Snell envelope by backward induction and a simplified
proof of the optimality of νk (requiring “less continuity” on ρ).

2 Optimal stopping with non-linear evaluations and Bermudan
strategies

2.1 The framework

Let T > 0 be a fixed finite terminal horizon.
Let (Ω,F , P ) be a (complete) probability space equipped with a right-continuous complete
filtration F = {Ft : t ∈ [0, T ]}.
In the sequel, equalities and inequalities between random variables are to be understood
in the P -almost sure sense. Equalities between measurable sets are to be understood in
the P -almost sure sense.
Let N be the set of natural numbers, including 0. Let N∗ be the set of natural numbers,
excluding 0. Let (θk)k∈N be a sequence of stopping times satisfying the following
properties:

(a) The sequence (θk)k∈N is non-decreasing, i.e. for all k ∈ N, θk ≤ θk+1, a.s.

(b) limk→∞ ↑ θk = T a.s.

Moreover, we set θ0 = 0.
We note that the family of σ-algebras (Fθk)k∈N is non- decreasing (as the sequence (θk)

is non-decreasing). We denote by Θ the set of stopping times τ of the form

τ =

+∞∑
k=0

θk1Ak + T1Ā, (2.1)

where {(Ak)+∞
k=0, Ā} form a partition of Ω such that, for each k ∈ N, Ak ∈ Fθk , and

Ā ∈ FT .
The set Θ can also be described as the set of stopping times τ such that for almost all
ω ∈ Ω, either τ(ω) = T or τ(ω) = θk(ω), for some k = k(ω) ∈ N.
Note that the set Θ is closed under concatenation, that is, for each τ ∈ Θ and each
A ∈ Fτ , the stopping time τ1A + T1Ac ∈ Θ. More generally, for each τ ∈ Θ, τ ′ ∈ Θ and
each A ∈ Fτ∧τ ′ , the stopping time τ1A + τ ′1Ac is in Θ. The set Θ is also closed under
pairwise minimization (that is, for each τ ∈ Θ and τ ′ ∈ Θ, we have τ ∧ τ ′ ∈ Θ) and
under pairwise maximization (that is, for each τ ∈ Θ and τ ′ ∈ Θ, we have τ ∨ τ ′ ∈ Θ).
Moreover, for each non-decreasing (resp. non-increasing) sequence of stopping times
(τn)n∈N ∈ ΘN, we have limn→+∞ τn ∈ Θ.
We note also that all stopping times in Θ are bounded from above by T .

Remark 2.1. We have the following canonical writing of the sets in (2.1):

A0 = {τ = θ0};
An+1 = {τ = θn+1, θn+1 < T}\(An ∪ ... ∪A0); for all n ∈ N∗

Ā = (∪+∞
k=0Ak)c

From this writing, we have: if ω ∈ Ak+1 ∩ {θk < T}, then ω /∈ {τ = θk}.
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For each τ ∈ Θ, we denote by Θτ the set of stopping times ν ∈ Θ such that ν ≥ τ a.s.
The set Θτ satisfies the same properties as the set Θ. We will refer to the set Θ as the set
of Bermudan stopping strategies, and to the set Θτ as the set of Bermudan stopping
strategies, greater than or equal to τ (or the set of Bermudan stopping strategies from
time τ perspective).

Definition 2.2. We say that a family φ = (φ(τ), τ ∈ Θ) is admissible if it satisfies the
following conditions

1. for all τ ∈ Θ, φ(τ) is a real valued random variable, which is Fτ -measurable.
2. for all τ, τ ′ ∈ Θ, φ(τ) = φ(τ ′) a.s. on {τ = τ ′}.
Moreover, for p ∈ [1,+∞] fixed, we say that an admissible family φ is p-integrable, if

for all τ ∈ Θ, φ(τ) is in Lp.

Let φ = (φ(τ), τ ∈ Θ) be an admissible family. For a stopping time τ of the form (2.1),
we have

φ(τ) =

+∞∑
k=0

φ(θk)1Ak + φ(T )1Ā a.s. (2.2)

Given two admissible families φ = (φ(τ), τ ∈ Θ) and φ′ = (φ′(τ), τ ∈ Θ), we say that φ is
equal to φ′ and write φ = φ′ if, for all τ ∈ Θ, φ(τ) = φ′(τ) a.s. We say that φ dominates φ′

and write φ ≥ φ′ if, for all τ ∈ Θ, φ(τ) ≥ φ′(τ) a.s.
The following remark is worth noting, as a consequence of the admissibility.

Remark 2.3. Let φ = (φ(τ), τ ∈ Θ) be an admissible family. Let τ ∈ Θ and let (τn) ∈ ΘN

be such that for (almost) each ω ∈ Ω, there exists n0 = n0(ω) (depending on ω) satisfying,
for all n ≥ n0(ω), τn(ω) = τ(ω). Then, for all n ≥ n0(ω), φ(τn)(ω) = φ(τ)(ω).
We show this by the following reasoning: for each fixed n ∈ N, let Cn := {τn = τ}. For
each fixed m ∈ N, let Am := ∩n≥mCn = ∩n≥m{τn = τ}. Note that the set Am might be
empty. We have ∪m∈NAm = Ω. Moreover, by the admissibility of φ, we have, for each
fixed n ∈ N, φ(τn) = φ(τ), on Cn = {τn = τ}. Hence, for each fixed m ∈ N,

for all n ≥ m,φ(τn) = φ(τ) on Am = ∩n≥mCn. (2.3)

Let ω ∈ Ω. By assumption, there exists n0 = n0(ω) such that ω ∈ An0
. By property (2.3)

(applied with m = n0), for all n ≥ n0, φ(τn)(ω) = φ(τ)(ω), which is the desired conclusion.

2.2 The optimisation problem

Let p ∈ [1,+∞] be fixed.
Let ξ = (ξ(τ), τ ∈ Θ) be a p-integrable admissible family modelling an agent’s
dynamic financial position.

Remark 2.4. For example, the family ξ can be defined via a given progressive process
(ξt)t∈[0,T ], corresponding to a given dynamic financial position process. For each τ ∈ Θ,
we set ξ(τ) := ξτ . The family of random variables ξ = (ξ(τ), τ ∈ Θ) can be shown to be
admissible. If for each k ∈ N, ξθk ∈ Lp, and ξT ∈ Lp, then the admissible family ξ is p-
integrable. The financial interpretation of this example is as follows: the agent can choose
his/her strategy only among the stopping times in Θ, that is, among the stopping times
which, for almost each ω, have values in the finite grid {0, θ1(ω), . . . , θn(ω)(ω) = T}, where
n(ω) depends on ω, or in the infinite countable grid {0, θ1(ω), . . . , θn(ω), θn+1(ω), . . . , T}.
In this example, the financial position which is actually taken into account in the problem
corresponds to the values of the process (ξt) only at times 0, θ1, ..., θn, θn+1, ..., T .

The minimal risk at time 0 over all Bermudan stopping strategies is defined by:

Ṽ (0) := inf
τ∈Θ

ρ̃0,τ (ξ(τ)) = −V (0), (2.4)
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where

V (0) := sup
τ∈Θ

ρ0,τ [ξ(τ)], (2.5)

and where ρ0,τ [·] = −ρ̃0,τ [·].

Let p ∈ [1,+∞]. We introduce the following properties on the non-linear operators ρS,τ [·],
which will appear in the sequel.

For S ∈ Θ, S′ ∈ Θ, τ ∈ Θ, for η, η1 and η2 in Lp(Fτ ), for ξ = (ξ(τ)) an admissible
p-integrable family:

(i) ρS,τ : Lp(Fτ ) −→ Lp(FS)

(ii) (admissibility) ρS,τ [η] = ρS′,τ [η] a.s. on {S = S′}.
(iii) (knowledge preservation) ρτ,S [η] = η, for all η ∈ Lp(FS), all τ ∈ ΘS .
(iv) (monotonicity) ρS,τ [η1] ≤ ρS,τ [η2] a.s., if η1 ≤ η2 a.s.
(v) (consistency) ρS,θ[ρθ,τ [η]] = ρS,τ [η], for all S, θ, τ in Θ such that S ≤ θ ≤ τ a.s.

(vi) (“generalized zero-one law”) IAρS,τ [ξ(τ)] = IAρS,τ ′ [ξ(τ
′)], for all A ∈ FS , τ ∈ ΘS ,

τ ′ ∈ ΘS such that τ = τ ′ on A.
(vii) (monotone Fatou property with respect to terminal condition)

ρS,τ [η] ≤ lim infn→+∞ ρS,τ [ηn], for (ηn), η such that (ηn) is non-decreasing, ηn ∈
Lp(Fτ ), supn ηn ∈ Lp, and limn→+∞ ↑ ηn = η a.s.

Fatou property is often assumed in the literature on risk measures (particularly in the
case where p = +∞).
Note also that if ρ satisfies the monotonicity (iv) and the monotone Fatou property with
respect to terminal condition (vii), then ρS,τ [η] = limn→+∞ ρS,τ [ηn], for (ηn), η such that
(ηn) is non-decreasing, ηn ∈ Lp(Fτ ), supn ηn ∈ Lp, and limn→+∞ ↑ ηn = η a.s. Indeed,
by monotonicity of ρS,τ [·], we have ρS,τ [ηn] ≤ ρS,τ [η]; hence, lim supn→+∞ ρS,τ [ηn] ≤
ρS,τ [η]. On the other hand, by (vii), ρS,τ [η] ≤ lim infn→+∞ ρS,τ [ηn]. Hence, ρS,τ [η] =

limn→+∞ ρS,τ [ηn]. Such type of property is also known in the literature (e.g. risk
measures) as continuity from below.
Let us emphasize that no assumptions of convexity (or concavity) or translation invariance
of the non-linear operators ρ are made.

2.3 (Θ, ρ)-Snell envelope family and optimal stopping

As is usual in optimal control, we embed the above optimization problem (2.5) in a
larger class of problems by considering for each ν ∈ Θ, the random variable V (ν), where

V (ν) := ess supτ∈Θνρν,τ [ξ(τ)]. (2.6)

We note that, if ρ satisfies the property of knowledge preservation (property (iii)), then
V (T ) = ρT,T [ξ(T )] = ξ(T ).

Lemma 2.5. (Admissibility of V ) Under the assumption of admissibility (ii) and “gen-
eralized zero-one law” (vi) on the non-linear operators, the family of random variables
V := (V (ν), ν ∈ Θ) defined in (2.6) is admissible in the sense of Definition 2.2.

The proof uses arguments similar to those of Lemma 8.1 in Grigorova et al. (2020),
combined with some properties of the non-linear operators ρ.

Proof. Property 1. of the definition of admissibility follows from the definition of the
essential supremum, the random variables of the family (ρν,τ [ξ(τ)], τ ∈ Θν) being Fν -
measurable.
Let us prove Property 2. Let ν and ν′ be two stopping times in Θ. We set A := {ν = ν′}
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and we show that V (ν) = V (ν′), P -a.s. on A. We have

IAV (ν) = IAess supτ∈Θνρν,τ [ξ(τ)] = ess supτ∈Θν IAρν,τ [ξ(τ)] = ess supτ∈Θν IAρν′,τ [ξ(τ)],

(2.7)
where we have used the admissibility property on ρ for the last equality.
Let τ ∈ Θν . We set τA := τIA + T IAc . We note that τA ∈ Θν′ and τA = τ p.s. on A. Using
this, the admissibility of the family ξ, and the generalized zero-one law property of ρ,
we get IAρν′,τ [ξ(τ)] = IAρν′,τA [ξ(τA)] ≤ IAV (ν′). As τ ∈ Θν is arbitrary, we conclude
that ess supτ∈Θν IAρν′,τ [ξ(τ)] ≤ IAV (ν′). Combining this inequality with (2.7) gives
IAV (ν) ≤ IAV (ν′). We obtain the converse inequality by interchanging the roles of ν
and ν′.

Under the assumptions of the above lemma, the following remark holds true.

Remark 2.6. As a consequence of the admissibility of the value family V , we have: for
each k ∈ N, it holds V (ν) = V (θk) a.s. on {ν = θk} and V (ν) = V (T ) a.s. on {ν = T}.
Hence, under the assumptions of Lemma 2.5, for ν ∈ Θ of the form ν =

∑+∞
k=0 θk1Ak+T1Ā,

we have V (ν) =
∑+∞
k=0 V (θk)1Ak + V (T )1Ā.

Remark 2.7. 1. Under the assumption of knowledge preservation (iii) on ρ, we have
V (θk) ≥ ξ(θk), for each k ∈ N.
Indeed, V (θk) = ess supτ∈Θθk

ρθk,τ [ξ(τ)] ≥ ρθk,θk [ξ(θk)], and by the property (iii) of the

non-linear operators, we have ρθk,θk [ξ(θk)] = ξ(θk). Hence, V (θk) ≥ ξ(θk).

2. If, moreover, ρ satisfies the properties of admissibility (ii) and “generalized” zero-one
law (vi), then, for each τ ∈ Θ, V (τ) ≥ ξ(τ).
This follows from the first statement of the remark, and from the admissibility of ξ and
that of V (cf. Lemma 2.5 and Remark 2.6).

Now, let us introduce the notion of (Θ, ρ)-(super)martingale family.

Definition 2.8. Let φ = (φ(τ), τ ∈ Θ) be a p-integrable admissible family. We say that φ
is a (Θ, ρ)-supermartingale (resp. (Θ, ρ)-martingale) family if for all σ, τ in Θ such that
σ ≤ τ a.s., we have

ρσ,τ [φ(τ)] ≤ φ(σ) (resp. = φ(σ)) a.s.

We introduce the following integrability assumption on V , which is assumed in the
sequel.

Assumption 2.1. For each ν ∈ Θ, the random variable V (ν) is in Lp.

Remark 2.9. Let ρ satisfy the assumptions of admissibility (ii), knowledge preservation
(iii), “generalized” zero-one law (vi), and monotonicity (iv). If the pay off family ξ =

(ξ(τ))τ∈Θ is p- integrable and dominated from above by a p-integrable (Θ, ρ)-martingale
M , then the value family V satisfies the integrability Assumption 2.1.
Indeed, let S ∈ Θ be given. By Remark 2.7, Statement 2, V (S) ≥ ξ(S).
On the other hand, by assumption on ξ, for each τ ∈ ΘS , ξ(τ) ≤ M(τ). Hence, by
monotonicity of ρ, we have ρS,τ [ξ(τ)] ≤ ρS,τ [M(τ)] = M(S), where we have used the
(Θ, ρ)-martingale property of M for the last equality.
So, V (S) = ess supτ∈ΘSρS,τ [ξ(τ)] ≤ M(S). Hence, we get ξ(S) ≤ V (S) ≤ M(S), which
proves that V (S) ∈ Lp. Therefore, Assumption 2.1 is satisfied.

We will see in Section 3, concrete examples for which this integrability assumption on V
is satisfied.

Theorem 2.10. 1. ((Θ, ρ)-supermartingale) Under the assumptions of admissibility (ii),
consistency (v), “generalized zero-one law” (vi) and monotone Fatou property with
respect to the terminal condition (vii) on the non-linear operators, the value family V is
a (Θ, ρ)-supermartingale family.
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2. ((Θ, ρ)-Snell envelope) If moreover the non-linear operators also satisfy the properties
of knowledge preservation (iii) and monotonicity (iv), the value family V is equal to the
(Θ, ρ)-Snell envelope of the family ξ, that is, the smallest (Θ, ρ)-supermartingale family
dominating the family ξ = (ξ(τ), τ ∈ Θ).

To prove this theorem, we first state a useful lemma.

Lemma 2.11. (Maximizing sequence lemma) Under the assumption of “generalized
zero-one law” (vi) on the non-linear operators, there exists a maximizing sequence for
the value V (S) of problem (2.6).

The proof of this lemma is similar to that of Lemma 2.3 in Grigorova et al. (2020) and is
given for the convenience of the reader.

Proof. It is sufficient to show that the family (ρS,τ [ξ(τ)])τ∈ΘS is stable under pairwise
maximization. The result then follows by a well-known property of the essential supre-
mum. Let τ ∈ ΘS and τ ′ ∈ ΘS . Set A := {ρS,τ ′ [ξ(τ ′)] ≤ ρS,τ [ξ(τ)]} and ν := τIA + τ ′IAc .
Trivially, A ∈ FS . Moreover, ν ∈ ΘS (cf. properties of the set ΘS). Also, ν = τ on A,
ν = τ ′ on Ac. By the “generalized zero-one law” of the non-linear operators ρ, we get

ρS,ν [ξ(ν)] = ρS,ν [ξ(ν)]IA + ρS,ν [ξ(ν)]IAc = ρS,τ [ξ(τ)]IA + ρS,τ ′ [ξ(τ
′)]IAc

= max
(
ρS,τ [ξ(τ)], ρS,τ ′ [ξ(τ

′)]
)
.

(2.8)

This shows the stability under pairwise maximization of the value family (indexed by
ΘS).

Let us now show the theorem. The idea of the proof is similar to that of Theorem 8.2 in
Grigorova et al. (2020). The properties on ρ being weakened here, we give the proof for
clarity and completeness.

Proof of Theorem 2.10. By Lemma 2.5, the value family V is admissible. By Assump-
tion 2.1, the value family V is p-integrable.
Let now S ∈ Θ and τ ∈ ΘS . To show the (Θ, ρ)-supermartingale property of the value
family, it remains to show ρS,τ [V (τ)] ≤ V (S) a.s. By the maximizing sequence lemma
(Lemma 2.11), there exists a sequence (τp) ∈ (Θτ )N, such that V (τ) = limp→+∞ ↑
ρτ,τp [ξ(τp)]. Hence, we have

ρS,τ [V (τ)] = ρS,τ [ lim
p→+∞

↑ ρτ,τp [ξ(τp)]] ≤ lim inf
p→+∞

ρS,τ [ρτ,τp [ξ(τp)]],

where we have used the monotone Fatou property with respect to terminal condition
(vii) to obtain the inequality. By the consistency property, we have

lim inf
p→+∞

ρS,τ [ρτ,τp [ξ(τp)]] = lim inf
p→+∞

ρS,τp [ξ(τp)] ≤ V (S),

the last inequality being due to Θτ ⊂ ΘS . We conclude that ρS,τ [V (τ)] ≤ V (S). Hence,
the value family V is a (Θ, ρ)-supermartingale family. This proves Statement 1 of the
theorem.

Let us now show Statement 2. By Remark 2.7, Statement 2, we have V ≥ ξ. By
Statement 1, we have that V is a (Θ, ρ)-supermartingale. It remains to show that V is the
smallest. Let (V ′(τ)) be another (Θ, ρ)-supermartingale family, such that, for each τ ∈ Θ,
V ′(τ) ≥ ξ(τ) (a.s.). Let S ∈ Θ, τ ∈ ΘS . By the monotonicity of the non-linear operators ρ,
we have

ρS,τ [V ′(τ)] ≥ ρS,τ [ξ(τ)].
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On the other hand, as (V ′(τ)) is a (Θ, ρ)-supermartingale family, we have V ′(S) ≥
ρS,τ [V ′(τ)]. Hence, V ′(S) ≥ ρS,τ [V ′(τ)] ≥ ρS,τ [ξ(τ)]. By taking the essential supremum
over τ ∈ ΘS in this inequality, we get

V ′(S) ≥ ess supτ∈ΘSρS,τ [ξ(τ)] = V (S) (a.s.).

The proof is complete.

2.4 The strict value family and the Dynamic Programming Principle (DPP)

Definition 2.12 (Dynamic Programming Principle). We say that an admissible p-integrable
family satisfies the Dynamic Programming Principle (abridged DPP), if the following
property holds true:
For all k ∈ N,

φ(θk) = max
(
ξ(θk), ρθk,θk+1

[φ(θk+1)]
)
, (2.9)

and φ(T ) = ξ(T ).

The purpose of this sub-section is to investigate under which assumptions on ρ, the DPP
holds. To do this, we are first interested in “what happens on the right of V (θk)”, for
each k ∈ N.

Let k ∈ N be fixed. We define

Θθ+k
:= {τ ∈ Θθk : τ > θk on {θk < T} and τ = T on {θk = T}},

and we define the strict value V +(θk) at θk by:

V +(θk) := ess supτ∈Θ+
θk

ρθk,τ [ξ(τ)].

Remark 2.13. We have Θθ+k
= Θθk+1

.
Indeed, let τ ∈ Θθ+k

. Then τ can be written as:

τ =

+∞∑
i=k+1

θi1Ai∩{θk<T} + T × 1Ā∩{θk<T} + T × 1{θk=T},

where {(Ai)i≥k+1, Ā} is a partition of Ω such that for each i ≥ k + 1, Ai ∈ Fθi , and
Ā ∈ FT .
We set Bi := Ai ∩{θk < T}, for i ≥ k+ 1, B̄ := Ā∩{θk < T} and Bk := {θk = T}. We have
{(Bi)i≥k, B̄} form a partition of Ω; for each i ≥ k, Bi is Fθi -measurable, and B̄ is FT -
measurable. Moreover, τ ≥ θk+1 (indeed, τ ≥ θk+1 on {θk < T} and τ = T = θk = θk+1

on {θk = T}). Hence, τ ∈ Θθk+1
.

Conversely, let τ ∈ Θθk+1
; then, τ can be written as:

τ =

+∞∑
i=k+1

θi1Ai∩{θk<T} + T1Ā∩{θk<T} +

+∞∑
i=k+1

θi1Ai∩{θk=T} + T1Ā∩{θk=T}

=

+∞∑
i=k+1

θi1Ai∩{θk<T} + T1Ā∩{θk<T} +

+∞∑
i=k+1

T1Ai∩{θk=T} + T1Ā∩{θk=T}.

Hence, τ ∈ Θθk+
.

Due to this remark, we get

V +(θk) = ess supτ∈Θ+
θk

ρθk,τ [ξ(τ)] = ess supτ∈Θθk+1
ρθk,τ [ξ(τ)]. (2.10)
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Lemma 2.14. Under the assumption of “generalized zero-one law” (vi) on the non-linear
operators, there exists a maximizing sequence for V +(θk).

Proof. The proof of this lemma is similar to the proof of the existence of a maximizing
sequence for V (θk), and is left to the readers. (We also refer to the proof of Lemma 2.3
in Grigorova et al. (2020) for similar arguments).

The following proposition establishes that the strict value V +(θk) at θk is equal to the
non-linear evaluation from θk perspective of the value V (θk+1).

Proposition 2.15. Under the assumptions of monotonicity (iv), consistency (v), “gen-
eralized zero-one law” (vi) and monotone Fatou property with respect to the terminal
condition (vii) on the non-linear operators, we have

V +(θk) = ρθk,θk+1
[V (θk+1)].

Proof. First we show that V +(θk) ≤ ρθk,θk+1
[V (θk+1)].

By Lemma 2.14, there exists a maximizing sequence (τm) ∈ (Θθk+1
)N such that

V +(θk) = lim
m→+∞

↑ ρθk,τm [ξ(τm)].

Now, by using the consistency property of the non-linear evaluations, we get

V +(θk) = lim
m→+∞

↑ ρθk,τm [ξ(τm)] = lim
m→+∞

↑ ρθk,θk+1
[ρθk+1,τm [ξ(τm)]]. (2.11)

For each m ∈ N, we have

ρθk+1,τm [ξ(τm)] ≤ ess supτ∈Θθk+1
ρθk+1,τ [ξ(τ)] = V (θk+1).

Then, by the monotonicity property of ρθk,θk+1
[·], we get

ρθk,θk+1
[ρθk+1,τm [ξ(τm)]] ≤ ρθk,θk+1

[V (θk+1)].

Hence, we have

lim
m→+∞

↑ ρθk,θk+1
[ρθk+1,τm [ξ(τm)]] ≤ lim

m→+∞
↑ ρθk,θk+1

[V (θk+1)] = ρθk,θk+1
[V (θk+1)].

We conclude, combining this with (2.11), that

V +(θk) ≤ ρθk,θk+1
[V (θk+1)].

Now, let us show the converse inequality. By Lemma 2.11, there also exists a maximizing
sequence (τ ′m) ∈ (Θθk+1

)N such that

V (θk+1) = lim
m→+∞

↑ ρθk+1,τ ′m [ξ(τ ′m)].

Hence,
ρθk,θk+1

[V (θk+1)] = ρθk,θk+1
[ lim
m→+∞

↑ ρθk+1,τ ′m
[ξ(τ ′m)]].

We first use the monotone Fatou property with respect to the terminal condition of the
non-linear operator ρθk,θk+1

[·]; then, we apply the consistency property of the non-linear
operators to get:

ρθk,θk+1
[V (θk+1)] ≤ lim inf

m→+∞
ρθk,θk+1

[ρθk+1,τ ′m
[ξ(τ ′m)]]

= lim inf
m→+∞

ρθk,τ ′m [ξ(τ ′m)]

≤ ess supτ∈Θθk+1
ρθk,τ [ξ(τ)] = V +(θk),
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where we have used Eq. (2.10) to obtain the last equality. Hence,

ρθk,θk+1
[V (θk+1)] = V +(θk).

The proof is complete.

Proposition 2.16. Under the assumptions (iii) and “generalized zero-one law” (vi) on
the non-linear operators, we have

V (θk) = ξ(θk) ∨ V +(θk).

Proof. By Remark 2.7, first statement, which can be applied as ρ satisfies property (iii),
we have V (θk) ≥ ξ(θk). On the other hand, since Θθk+1

⊂ Θθk , we have V (θk) ≥ V +(θk).
By combining these two inequalities, we get V (θk) ≥ ξ(θk) ∨ V +(θk). It remains to show
the converse inequality. Let τ ∈ Θθk . We define τ̄ = τ1{τ>θk} + T1{τ≤θk}. As τ̄ ∈ Θ+

θk
, we

have
V +(θk) = ess supτ∈Θ+

θk

ρθk,τ [ξ(τ)] ≥ ρθk,τ̄ [ξ(τ̄)].

Hence, we have
1{τ>θk}ρθk,τ̄ [ξ(τ̄)] ≤ 1{τ>θk}V

+(θk). (2.12)

Moreover, on the set {τ > θk}, we have τ̄ = τ , so the “generalized zero-one law” gives

1{τ>θk}ρθk,τ̄ [ξ(τ̄)] = 1{τ>θk}ρθk,τ [ξ(τ)]. (2.13)

By combining (2.12) and (2.13), we get

1{τ>θk}ρθk,τ [ξ(τ)] ≤ 1{τ>θk}V
+(θk). (2.14)

On the other hand, as τ ∈ Θθk , we have

ρθk,τ [ξ(τ)] = 1{τ=θk}ρθk,τ [ξ(τ)] + 1{τ>θk}ρθk,τ [ξ(τ)].

By using the “generalized zero-one law” and property (iii) of the non-linear operator
ρθk,τ [·], we get

1{τ=θk}ρθk,τ [ξ(τ)] = 1{τ=θk}ρθk,θk [ξ(θk)] = 1{τ=θk}ξ(θk). (2.15)

From Eqs. (2.14) and (2.15), we get

ρθk,τ [ξ(τ)] = 1{τ=θk}ξ(θk) + 1{τ>θk}ρθk,τ [ξ(τ)]

≤ 1{τ=θk}ξ(θk) + 1{τ>θk}V
+(θk) = ξ(θk) ∨ V +(θk).

Now, by taking the essential supremum over τ ∈ Θθk , we get V (θk) ≤ ξ(θk) ∨ V +(θk).
Hence, the proof is complete.

For the liner version of the above result, we refer to Quenez and Kobylanski (2012).

By combining Proposition 2.15 and Proposition 2.16, we get:

Theorem 2.17 (DPP). Under the assumptions of knowledge preservation (iii), monotonic-
ity (iv), consistency (v), “generalized zero-one law” (vi) and monotone Fatou property
with respect to the terminal condition (vii) on the non-linear operators, the value family
V satisfies the DPP:

for each k ∈ N, V (θk) = ξ(θk) ∨ ρθk,θk+1
[V (θk+1)], and V (T ) = ξ(T ).
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2.5 Optimal stopping times

For each k, let us define the random variable νk

νk := ess inf Ak where Ak := { τ ∈ Θθk : V (τ) = ξ(τ) a.s. }. (2.16)

As T <∞, under property (iii) on ρ, the set Ak is clearly non-empty (as V (T ) = ξ(T ) in
this case). Moreover, it is clearly stable by pairwise minimization. Hence, by classical
properties of the essential infimum, there exists a non increasing sequence (τn) in Ak
such that limn→+∞ τn = νk a.s. In particular, νk is a stopping time and T ≥ νk ≥ θk a.s.,
and νk ∈ Θθk (by stability of Θθk when passing to a monotone limit).

In the following theorem, we show that, under suitable assumptions, the stopping time
νk defined in (2.16) is optimal for the optimization problem (2.6) at time ν = θk.
We introduce the following assumption on the value family V .

Assumption 2.2. We assume that the value family V is left-upper-semicontinuous
(LUSC) along the sequence (θn ∧ νk)n∈N, that is,

lim sup
n→+∞

V (θn ∧ νk) ≤ V (νk). (2.17)

Remark 2.18. Assumption 2.2 is trivially satisfied in the following particular case on
Θ: Besides the assumptions (a) and (b) on Θ, the additional assumption (c) is imposed,
namely:
(c)For almost all ω, there exits n0 = n0(ω) (depending on ω) such that θn(ω) = T , for all
n ≥ n0. In other words, for almost all ω, there exists at most a finite number of time
points θn(ω) such that θn(ω) < T .
In this case, for all n after a certain rank n̄ = n̄(ω), we have (θn ∧ νk)(ω) = νk(ω). Hence,
as V is admissible, we have, by Remark 2.3, for all n ≥ n̄(ω), V (θn ∧ νk)(ω) = V (νk)(ω).
Hence, Assumption 2.2 holds true.

We will see later on a further discussion on Assumption 2.2 in the case of the general
Θ, and conditions (on ρ and on the pay-off family ξ) under which this assumption is
satisfied.

Theorem 2.19 (Optimality of νk). Let k ∈ N and let νk be the stopping time defined
by (2.16). Let Assumption 2.2 on V be satisfied. Let ρ satisfy the properties of admissi-
bility (ii), knowledge preservation (iii), monotonicity (iv), consistency (v), “generalized
zero-one law” (vi), and monotone Fatou property with respect to the terminal condition
(vii). We assume additionally that ρ satisfies the following property:

• (left-upper-semicontinuity (LUSC) along Bermudan stopping times with respect to
the terminal condition and the terminal time at νk), that is,

lim sup
n→+∞

ρS,τn [φ(τn)] ≤ ρS,νk [lim sup
n→+∞

φ(τn)], (2.18)

for each non-decreasing sequence (τn) ∈ ΘNS such that limn→+∞ ↑ τn = νk a.s.,
and for each p-integrable admissible family φ such that supn∈N |φ(τn)| ∈ Lp.

Then:

V (θk) = ρθk,νk [ξ(νk)] = ess supν∈Θθk
ρθk,ν [ξ(ν)] a.s. (2.19)

Note that in the case where ρ = (ρS [·])S∈Θ does not depend on the second time index,
the above additional property reduces to the LUSC of ρS [·] (with respect to the terminal
condition) along Bermudan stopping sequences.
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2.5.1 The (Θ, ρ)-martingale property on a stochastic interval

Before proving the theorem, we give several useful technical lemmas.

The first two clarify the (Θ, ρ)-martingale structure on a stochastic interval in a more
“handy” way. The third one deals with an “if -condition” (optimality criterion) and an
“only if -condition” for optimality.

Lemma 2.20. Let ρ satisfy the consistency property (v). Let φ = (φ(ν)) be a given
square-integrable admissible family. Let S ∈ Θ and τ ∈ Θ be such that S ≤ τ a.s. We
assume that for any σ ∈ Θ such that S ≤ σ ≤ τ a.s., it holds

ρσ,τ [φ(τ)] = φ(σ) a.s. (2.20)

Then, φ is a (Θ, ρ)-martingale on the stochastic interval [S, τ ], that is, for any ν1 ∈ Θ,
ν2 ∈ Θ, such that S ≤ ν1 ≤ ν2 ≤ τ a.s.,

ρν1,ν2 [φ(ν2)] = φ(ν1) a.s. (2.21)

Proof. Let ν1 ∈ Θ, and ν2 ∈ Θ be such that S ≤ ν1 ≤ ν2 ≤ τ a.s.

Hence, by applying the equation (2.20) with σ = ν1 and by the consistency of the
non-linear operators ρ, we have

φ(ν1) = ρν1,τ [φ(τ)] = ρν1,ν2 [ρν2,τ [φ(τ)]] a.s.

Then, by applying again the equation (2.20) with σ = ν2, we have

ρν2,τ [φ(τ)] = φ(ν2).

Hence, φ(ν1) = ρν1,ν2 [ρν2,τ [φ(τ)]] = ρν1,ν2 [φ(ν2)] a.s.

Definition 2.21. (Strictly monotone operator) Let S ∈ Θ, τ ∈ ΘS . We say that ρS,τ is
strictly monotone if the following two conditions hold:

1. ρS,τ is monotone.

2. If η1 ≤ η2 and ρS,τ (η1) = ρS,τ (η2), then η1 = η2.

Lemma 2.22. We assume that the non-linear operators satisfy the properties of mono-
tonicity (iv) and consistency (v). Assume moreover that the non-linear operators ρ are
strictly monotone. Let φ = (φ(ν)) be a given p-integrable admissible family). Let S ∈ Θ

and τ ∈ Θ be such that S ≤ τ a.s. We assume that the two conditions hold:

1. φ is a (Θ, ρ)-supermartingale family on [S, τ ];

2. φ(S) = ρS,τ [φ(τ)] a.s.

Then, for any σ ∈ Θ such that S ≤ σ ≤ τ a.s., ρσ,τ [φ(τ)] = φ(σ) a.s.

Proof. Let σ ∈ Θ, such that S ≤ σ ≤ τ a.s.
By applying condition 2 of the lemma and the consistency of the non-linear operators ρ,
we have

φ(S) = ρS,τ [φ(τ)] = ρS,σ[ρσ,τ [φ(τ)]] a.s.

On the other hand, since φ is a (Θ, ρ)-supermartingale family on [S, τ ] (by condition 1),
and since the non-linear operator ρS,σ is monotone, we have

ρS,σ[ρσ,τ [φ(τ)]] ≤ ρS,σ[φ(σ)] ≤ φ(S) a.s.

EJP 29 (2024), paper 102.
Page 13/29

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1164
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Optimal stopping: Bermudan strategies meet non-linear evaluations

By combining the previous two equations, we get

φ(S) = ρS,σ[ρσ,τ [φ(τ)]] = ρS,σ[φ(σ)] a.s.

In particular,

ρS,σ[ρσ,τ [φ(τ)]] = ρS,σ[φ(σ)] a.s. (2.22)

Due to the additional assumption, the non-linear operators ρ are strictly monotone. From
this, together with equality (2.22) and the inequality ρσ,τ [φ(τ)] ≤ φ(σ) a.s. (which is due
to condition 1 of the lemma), we get φ(σ) = ρσ,τ [φ(τ)].

Lemma 2.23. Let ν∗k ∈ Θθk . We introduce the following two conditions:

i) ρθk,ν∗k [V (ν∗k)] = ρθk,ν∗k [ξ(ν∗k)] a.s.

ii) The family (V (ν ∧ ν∗k))ν∈Θθk
is a (Θ, ρ)-martingale family.

1. (Optimality criterion) If i) and ii) are satisfied, then ν∗k is optimal for problem (2.6).

2. If, moreover, the non-linear operator ρθk,ν∗k is assumed to be strictly monotone and
satisfies the assumptions of admissibility (ii), knowledge preservation (iii), consistency
(v), “generalized zero-one law” (vi) and monotone Fatou property (vii), then the converse
statement is also true.

Remark 2.24. We note that the property V (ν∗k) = ξ(ν∗k) a.s. implies that ρθk,ν∗k [V (ν∗k)] =

ρθk,ν∗k [ξ(ν∗k)] a.s. The converse implication is true under the additional assumption: ρθk,ν∗k
is strictly monotone.

Proof. First, let us show statement 1.

Let ν∗k ∈ Θθk be such that the two conditions i) and ii) introduced above are satisfied. By
condition ii) the family (V (ν ∧ ν∗k))ν∈Θθk

is a (Θ, ρ)-martingale family.

Hence, for any ν ∈ Θθk , we have

V (θk ∧ ν∗k) = ρθk,ν∧ν∗k [V (ν ∧ ν∗k)] a.s.,

which implies

V (θk) = ρθk,ν∧ν∗k [V (ν ∧ ν∗k)] a.s.

In particular, for ν = ν∗k , we get

V (θk) = ρθk,ν∗k∧ν∗k [V (ν∗k ∧ ν∗k)] = ρθk,ν∗k [V (ν∗k)] a.s.

From this, together with condition i), we have

V (θk) = ρθk,ν∗k [V (ν∗k)] = ρθk,ν∗k [ξ(ν∗k)] a.s.,

which implies that the stopping time ν∗k is an optimal stopping time for problem (2.6).
Now, let us show statement 2. Let ν∗k ∈ Θθk be an optimal stopping time for problem (2.6).
Hence, we have

V (θk) = ρθk,ν∗k [ξ(ν∗k)] a.s.

By the first part of Theorem 2.10 (which is applicable as ρ satisfies the assumptions), the
value family V is a (Θ, ρ)-supermartingale family. Thus, by the (Θ, ρ)-supermartingale
property of V , and as ν∗k ∈ Θθk , we have

V (θk) ≥ ρθk,ν∗k [V (ν∗k)] a.s.
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On the other hand, due to the fact that ξ ≤ V (cf. Remark 2.7, Statement 2) and to the
monotonicity of the non-linear operator ρθk,ν∗k , it holds

ρθk,ν∗k [ξ(ν∗k)] ≤ ρθk,ν∗k [V (ν∗k)] a.s.,

Thus, we get
V (θk) = ρθk,ν∗k [V (ν∗k)] = ρθk,ν∗k [ξ(ν∗k)] a.s.

Moreover, since V (θk) = ρθk,ν∗k [V (ν∗k)], by applying Lemmas 2.20 and 2.22 (the latter is
applicable as ρ is assumed to be strictly monotone) with S = θk, τ = ν∗k , we conclude
that V is a (Θ, ρ)-martingale on [θk, ν

∗
k ].

The proof is complete.

2.5.2 Two useful consequences of the DPP

The following two results hold, if a given admissible p-integrable family φ satisfies the
(DPP) from Eq. (2.9), and if ν̃k is defined by

ν̃k := ess inf Ãk where Ãk := { τ ∈ Θθk : φ(τ) = ξ(τ) a.s. }. (2.23)

The following lemma is a consequence of the definition of ν̃k and of the DPP.

Lemma 2.25. Assume that φ satisfies the DPP holds, and let ν̃k be defined by (2.23).
Then, for each l ∈ {k, k + 1, ...}, φ(θl) = ρθl,θl+1

[φ(θl+1)] on the set {ν̃k > θl}.

Proof. Let l ∈ {k, k + 1, ...}. By the definition of ν̃k, on the set {ν̃k > θl}, we have
φ(θl) > ξ(θl). From this and from the DPP, we conclude that on the set {ν̃k > θl},
φ(θl) = ρθl,θl+1

[φ(θl+1)].

Lemma 2.26. Assume that the (DPP) from Eq. (2.9) holds. Under the assumptions of
(iii) and “generalized zero-one law” (vi) on ρ, it holds:

1. For each l ∈ N, φ(θl ∧ ν̃k) = ρθl,θl+1∧ν̃k [φ(θl+1 ∧ ν̃k)].

2. For each l ∈ N, φ(θl ∧ ν̃k) = ρθl∧ν̃k,θl+1∧ν̃k [φ(θl+1 ∧ ν̃k)].

Proof. First, we show Statement 1 of the Lemma.

ρθl,θl+1∧ν̃k [φ(θl+1 ∧ ν̃k)] = 1{ν̃k≤θl}ρθl,θl+1∧ν̃k [φ(θl+1 ∧ ν̃k)]

+1{ν̃k>θl}ρθl,θl+1∧ν̃k [φ(θl+1 ∧ ν̃k)].
(2.24)

For the first summand in Eq. (2.24), we note that on the set {ν̃k ≤ θl}, θl+1∧ ν̃k = θl∧ ν̃k =

ν̃k. Hence, by the “generalized zero-one law”, we have

1{ν̃k≤θl}ρθl,θl+1∧ν̃k [φ(θl+1 ∧ ν̃k)] = 1{ν̃k≤θl}ρθl,θl∧ν̃k [φ(θl ∧ ν̃k)] = 1{ν̃k≤θl}φ(θl ∧ ν̃k), (2.25)

where we have used property (iii) to obtain the last equality (as θl ∧ ν̃k ≤ θl).
For the second summand in Eq. (2.24), we use the “generalized zero-one law” to write:

1{ν̃k>θl}ρθl,θl+1∧ν̃k [φ(θl+1 ∧ ν̃k)] = 1{ν̃k>θl}ρθl,θl+1
[φ(θl+1)] = 1{ν̃k>θl}φ(θl), (2.26)

where we have applied Lemma 2.25 to obtain the last equality.
Hence, by replacing Eqs (2.25) and (2.26) in Eq. (2.24), we get

ρθl,θl+1∧ν̃k [φ(θl+1 ∧ ν̃k)] = 1{ν̃k≤θl}φ(θl ∧ ν̃k) + 1{ν̃k>θl}φ(θl ∧ ν̃k) = φ(θl ∧ ν̃k).

We now prove Statement 2 of the Lemma.

ρθl∧ν̃k,θl+1∧ν̃k [φ(θl+1 ∧ ν̃k)] = 1{ν̃k≤θl}ρθl∧ν̃k,θl+1∧ν̃k [φ(θl+1 ∧ ν̃k)]

+1{ν̃k>θl}ρθl∧ν̃k,θl+1∧ν̃k [φ(θl+1 ∧ ν̃k)].
(2.27)
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For the second summand of Eq. (2.27), by Statement 1 of the Lemma, we get

1{ν̃k>θl}ρθl∧ν̃k,θl+1∧ν̃k [φ(θl+1 ∧ ν̃k)] = 1{ν̃k>θl}ρθl,θl+1∧ν̃k [φ(θl+1 ∧ ν̃k)]

= 1{ν̃k>θl}φ(θl ∧ ν̃k).

For the first summand of Equation (2.27), we apply the “generalized zero-one law” (as the
set {ν̃k ≤ θl} is Fθl∧ν̃k -measurable and on the set {ν̃k ≤ θl}, we have θl+1 ∧ ν̃k = θl ∧ ν̃k),
we have

1{ν̃k≤θl}ρθl∧ν̃k,θl+1∧ν̃k [φ(θl+1 ∧ ν̃k)] = 1{ν̃k≤θl}ρθl∧ν̃k,θl∧ν̃k [φ(θl ∧ ν̃k)]

= 1{ν̃k≤θl}φ(θl ∧ ν̃k),

where we have used property (iii) on ρ to obtain the last equality.
Finally, we get

ρθl∧ν̃k,θl+1∧ν̃k [φ(θl+1 ∧ ν̃k)] = 1{ν̃k≤θl}φ(θl ∧ ν̃k) + 1{ν̃k≥θl+1}φ(θl ∧ ν̃k)

= φ(θl ∧ ν̃k).

2.5.3 The proof of the optimality of νk

We are now ready to prove Theorem 2.19 on the optimality of the Bermudan stopping
time νk, defined by (2.16). We will need also the following remark:

Remark 2.27. Any admissible family (φ(τ), τ ∈ Θ) in our framework is right-continuous
along Bermudan stopping times, that is, for all τ ∈ Θ, and for all non-increasing se-
quences of Bermudan stopping times (τn) ∈ ΘN such that τn ↓ τ , it holds limn→+∞ φ(τn) =

φ(τ).

Indeed, let τ ∈ Θ, and let (τn) ∈ ΘN be such that τn ↓ τ . For each n, we have
τn =

∑+∞
l=0 θl1A(n)

l

+ T1Ā(n) and τ =
∑+∞
l=0 1Alθl + T1Ā (cf. the canonical writing from

Remark 2.1).
Let ω ∈ Ω. Recall that {(Al)l∈N, Ā} is a partition of Ω. If ω ∈ Ā, then τ(ω) = T = τn(ω)

(as τn ↓ τ ). Otherwise, there exists a unique l0 = l0(ω), such that ω ∈ Al0 , and
τ(ω) = θl0(ω) < T . Then, as τn(ω) ↓ τ(ω) and as θk(ω) ↑ T , after a certain rank
n0 = n0(ω), τn(ω) = τ(ω) = θl0(ω).
Hence, in both cases, there exists n0 = n0(ω) such that for all n ≥ n0, τn(ω) = τ(ω),
and, hence, by Remark 2.3, for all n ≥ n0, φ(τn)(ω) = φ(τ)(ω). We conclude that
limn→+∞ φ(τn)(ω) = φ(τ)(ω).

Proof of Theorem 2.19. By Lemma 2.23, in order to show that νk, defined in (2.16), is
optimal for problem (2.6), it is enough to show the following two conditions:

(i) ρθk,νk [V (νk)] = ρθk,νk [ξ(νk)] a.s.;

(ii) The family (V (ν)) is a (Θ, ρ)-martingale on [θk, νk].

We start our proof by showing the second condition first.
By Lemma 2.5, V is an admissible family, and it is also p-integrable by Assumption 2.1. By
Lemma 2.20 (on the (Θ, ρ)-martingale property), in order to show the second condition,
it is enough to show that: for each σ ∈ Θ, such that θk ≤ σ ≤ νk,

ρσ,νk [V (νk)] = V (σ). (2.28)

Let σ ∈ Θθk . Then σ is of the form σ =
∑
m≥k θm1Am + T1Ā, where {(Am)m∈N, Ā} form

a partition of Ω; Am is Fθm -measurable for each m, and Ā ∈ FT .
Hence, to prove Equation (2.28), it is enough to show that, for each m ≥ k,

1Amρθm,νk [V (νk)] = 1AmV (θm), (2.29)
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and

1ĀρT,νk [V (νk)] = 1ĀV (T ). (2.30)

As σ = νk = T on Ā, Eq. (2.30) holds true, by the “generalized” zero-one law (vi) and the
knowledge preserving property (iii).
Let m ≥ k be fixed. The proof of Eq. (2.29) passes through the following steps:

1st Step: As V satisfies the DPP (cf. Theorem 2.17), we use Lemma 2.26, Statement 2
and the consistency property on ρ, to show that, for each fixed n ∈ N,

ρθm∧νk,θm+n∧νk [V (θm+n ∧ νk)] = V (θm ∧ νk). (2.31)

Indeed, by applying successively (n − m − 1) times the consistency property on ρ (if
n−m ≥ 2), we get

ρθm∧νk,θm+n∧νk [V (θm+n ∧ νk)] = ρθm∧νk,θm+1∧νk [ρθm+1∧νk,θm+2∧νk [...

[ρθn+m−1∧νk,θm+n∧νk [V (θm+n ∧ νk)]]]].

By applying Lemma 2.26, Statement 2, again successively (n−m) times, we get

ρθm∧νk,θm+n∧νk [V (θm+n ∧ νk)] = V (θm ∧ νk),

which proves Equation (2.31).

Hence, the sequence of random variables (ρθm∧νk,θm+n∧νk [V (θm+n ∧ νk)])n∈N does not
depend on n and is constantly equal to the random variable V (θm ∧ νk).

2nd Step: As V is left-upper-semicontinuous (LUSC) along the sequence (θm+n ∧ νk)n∈N
by Assumption 2.2, and as ρ is LUSC along Bermudan stopping strategies with respect
to terminal condition and terminal time at (νk), we have

lim sup
n→+∞

ρθm∧νk,θm+n∧νk [V (θm+n ∧ νk)] ≤ ρθm∧νk,νk [lim sup
n→+∞

V (θm+n ∧ νk)]

≤ ρθm∧νk,νk [V (νk)],

where we have used the monotonicity of ρ and Assumption 2.2 on V to obtain the last
inequality. Hence,

V (θm ∧ νk) ≤ ρθm∧νk,νk [V (νk)].

The opposite inequality holds true due to the (Θ, ρ)-supermartingale property of V (cf.
Theorem 2.10, Statement 1). Hence, we have the equality, that is,

V (θm ∧ νk) = ρθm∧νk,νk [V (νk)],

and Eq. (2.29) is established.
3rd Step: From the above Eqs (2.30) and (2.29), it follows:

ρσ∧νk,νk [V (νk)] = V (σ ∧ νk),

(as σ =
∑
m≥k θm1Am + T1Ā), which proves Eq. (2.28).

We conclude, by Lemma 2.20, that V is a (Θ, ρ)-martingale on the stochastic interval
[θk, νk]. This shows condition (ii) in the optimality criterion of Lemma 2.23.

It remains for us to show condition (i) in the optimality criterion. Let us recall that
νk = ess inf Ak, where Ak = {τ ∈ Θθk : V (τ) = ξ(τ) a.s.}. Let (τn) be a non-increasing
sequence in Ak, such that limn→+∞ ↓ τn = νk. As τn is in Ak, we have V (τn) = ξ(τn). By
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passing to the limit in this equality and by using that both families V and ξ are right-
continuous along the sequence of Bermudan stopping strategies (τn) (cf. Remark 2.27),
we obtain

V (νk) = ξ(νk), (2.32)

which proves condition (i).
This concludes the proof of the optimality of νk.

2.5.4 Assumption 2.2 on V : Discussion

Let us now check under which conditions Assumption 2.2 on V holds true.

Under the assumptions (a), (b) on Θ, the set {ω ∈ Ω : νk(ω) = T, θl(ω) < T, for all l ∈ N}
might be non-empty. We will show the following lemma.

Lemma 2.28. Let ρ satisfy the properties of knowledge preservation (iii), monotonicity
(iv), and consistency (v), and the following property

lim sup
n→+∞

ρθn,T [η] ≤ ρT,T [η], for all η ∈ Lp(FT ). (2.33)

Then,
lim sup
n→+∞

V (θn) ≤ lim sup
n→+∞

ξ(θn) ∨ ξ(T ). (2.34)

Proof. For each m ∈ N, for each τ ∈ Θθm , ξ(τ) ≤ supp≥m ξ(θp) ∨ ξ(T ).

Indeed, for each τ ∈ Θθm , we have

ξ(τ) =
∑
l≥m

ξ(θl)1Al + ξ(T )1Ā ≤ η1Āc + ξ(T )1Ā ≤ η ∨ ξ(T ),

where we have set η := supp≥m ξ(θp). Let us define η̄ := η ∨ ξ(T ) = supp≥m ξ(θp) ∨ ξ(T ).

By the monotonicity of ρ and the knowledge preserving property on ρ, we have, for all
τ ∈ Θθm ,

ξ(τ) = ρτ,T [ξ(τ)] ≤ ρτ,T [η ∨ ξ(T )] = ρτ,T [η̄]. (2.35)

Hence, for each n ≥ m (as Θn ⊂ Θm),

V (θn) = ess supτ∈Θθn
ρθn,τ [ξ(τ)] ≤ ess supτ∈Θθn

ρθn,τ [ρτ,T [η̄]]

where we have used the monotonicity of ρ and (2.35) for the inequality. By the consistency
property on ρ, we get ρθn,τ [ρτ,T [η̄]] = ρθn,T [η̄].
Finally, V (θn) ≤ ess supτ∈Θθn

ρθn,T [η̄] = ρθn,T [η̄].
Hence, lim supn→+∞ V (θn) ≤ lim supn→+∞ ρθn,T [η̄].
As, by assumption on ρ, lim supn→+∞ ρθn,T [η̄] ≤ ρT,T [η̄], we obtain

lim sup
n→+∞

V (θn) ≤ ρT,T [η̄] = η̄ = sup
p≥m

ξ(θp) ∨ ξ(T ).

Hence, by passing to the limit when m→ +∞, we get

lim sup
n→+∞

V (θn) ≤ lim sup
m→+∞

ξ(θm) ∨ ξ(T ),

which finishes the proof of the lemma.

Assumption 2.3. We assume that the pay-off family ξ is LUSC along the sequence (θn)

at T , that is, ξ is such that
lim sup
n→+∞

ξ(θn) ≤ ξ(T ).

EJP 29 (2024), paper 102.
Page 18/29

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1164
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Optimal stopping: Bermudan strategies meet non-linear evaluations

Proposition 2.29. If the pay-off family ξ satisfies Assumption 2.3 (LUSC along the
sequence (θn) at T ), and if ρ satisfies the properties of admissibility (ii), knowledge
preservation (iii), monotonicity (iv), consistency (v), “generalized” zero-one law (vi), and
LUSC along the sequence (θn) at T (property (2.33)), then the value family V satisfies
Assumption 2.2.

Proof. On the set {νk < T}, we have, for all n after a certain rank n̄(ω) (depending on
ω), (θn ∧ νk)(ω) = νk(ω) ((due to lim ↑ θn = T ). Hence, by Remark 2.3), for all n ≥ n0(ω),
V (θn ∧ νk)(ω) = V (νk)(ω) Hence,

1{νk<T} lim sup
n→+∞

V (θn ∧ νk) = 1{νk<T} lim
n→+∞

V (θn ∧ νk) = 1{νk<T}V (νk).

On the other hand, under the Assumption 2.3 on ξ, we have, by Lemma 2.28,

lim sup
n→+∞

V (θn) ≤ lim sup
n→+∞

ξ(θn) ∨ ξ(T ) ≤ ξ(T ) = V (T ).

Hence, using the admissibility of V ,

1{νk=T} lim sup
n→+∞

V (θn ∧ νk) = 1{νk=T} lim sup
n→+∞

V (θn) ≤ 1{νk=T}V (T ) = 1{νk=T}V (νk)

So, the desired LUSC property at νk on V (Assumption 2.2) holds true.

3 Examples

In this section we provide some examples of non-linear operators ρ, known from the
stochastic control and mathematical finance literature, which enter into our framework.

3.1 Non-linear operators induced by BSDEs

Peng (2004) and El Karoui and Quenez (1997) introduced a type of non-linear eval-
uation, now known as g-evaluation, via a non-linear backward stochastic differential
equation (BSDE) with a Lipschitz driver g.
In this example, p = 2. We place ourselves in the Brownian framework (for simplicity).
Let (Ω,F ,P) be a complete probability space, endowed with a d-dimensional Brownian
motion (Wt)t∈[0,T ], and let (Ft)t∈[0,T ] be the (augmented) natural filtration of the Brown-
ian motion.

Let g = g(ω, t, y, z) : Ω × [0, T ] ×R ×Rd → R be a Lipschitz driver, that is, a function
satisfying the following conditions:

À For each y ∈ R, z ∈ Rd, g(·, ·, y, z) ∈ L2(Ω× [0, T ]) and g is progressively measurable;

Á There exists C > 0 such that for each y1, y2 ∈ R, and for each z1, z2 ∈ Rd, |g(ω, t, y1, z1)−
g(ω, t, y2, z2)| ≤ C(|y1 − y2|+ ‖z1 − z2‖), uniformly for a.e. (ω.t), where ‖ · ‖ denotes the
Euclidean norm on Rd.

Let us consider the following BSDE with terminal time t such that 0 ≤ t ≤ T and terminal
condition η ∈ L2(Ft):

ys = η +

∫ t

s

g(r, yr, zr)dr −
∫ t

s

zrdBr, s ∈ [0, t].

Definition 3.1. (g-evaluation) For each 0 ≤ s ≤ t ≤ T and η ∈ L2(Ft), we define

Egs,t[η] := ys.

The family of operators Egs,t[·] : L2(Ft)→ L2(Fs), 0 ≤ s ≤ t ≤ T is called g-evaluation.
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We recall (cf. El Karoui et al. (1997)) that if the terminal time is given by a stopping
time τ valued in [0, T ] and if η is Fτ -measurable, the solution of the BSDE with terminal
time τ , terminal condition η and Lipschitz driver g is defined as the solution of the BSDE
with (deterministic) terminal time T , terminal condition η and Lipschitz driver gτ defined
by gτ (t, y, z) := g(t, y, z)1{t≤τ}. The first component of this solution at time t is equal to

Eg
τ

t,T (η), also denoted by Egt,τ (η). We have Egt,τ (η) = η a.s. on the set {t ≥ τ}.
The following result summarizes some of the well-known properties of the g-evaluations.

Proposition 3.2. Let g satisfy À and Á. Let S, τ, θ be stopping times. Then the g-
evaluation satisfies the following properties:

(A1) (Monotonicity) EgS,τ [η] ≤ EgS,τ [η′], if η ≤ η′;

(A2) (Knowledge preserving) Egτ,S [η] = η, for all S, τ , such that S ≤ τ , for all η ∈ L2(FS).

(A3) (Time consistency) EgS,θ[E
g
θ,τ [η]] = EgS,τ [η], for all S ≤ θ ≤ τ , for all η ∈ L2(Fτ );

(A4) (“Generalized” zero-one law) IAρS,τ [ξ(τ)] = IAρS,τ ′ [ξ(τ
′)], for all A ∈ FS , τ ∈ ΘS ,

τ ′ ∈ ΘS such that τ = τ ′ on A.

(A5) (Continuity with respect to terminal time and terminal condition)
Let (τn)n∈N be a sequence of stopping times in TS,τ , such that limn→∞ τn = τ a.s. Let
(ηn)n∈N be a sequence of random variables, such that ηn ∈ L2(Fτn), supn ηn ∈ L2 and
limn→∞ ηn = η a.s. Then, we have limn→∞ EgS,τn [ηn] = EgS,τ [η] a.s.

Remark 3.3. For Property (A4) we refer, e.g., to Grigorova and Quenez (2016). Property
(A5) was proven in Quenez and Sulem (2013) (in more general case with jumps).

Moreover, the g-evaluation Eg satisfies the property (2.18) in Theorem 2.19. Indeed,
we have lim supn→+∞ E

g
S,τn

[φ(τn)] ≤ EgS,τ? [lim supn→+∞ φ(τn)], for each non-decreasing
sequence τn such that limn→+∞ τn = τ?, and for each square-integrable admissible
family φ, such that supn |φ(τn)| ∈ L2. For a proof of this property, based on property (A5)
of the g-evaluations, we refer to Lemma A.5 in Dumitrescu et al. (2016).

Moreover, in the Brownian framework, the first component (yt) of the solution of the
BSDE with Lipschitz driver g, terminal time T , and terminal condition η ∈ L2(FT ), has
continuous trajectories (in t). Hence, for any non-decreasing sequence (τn), such that
limn→+∞ τn = T ,

lim
n→+∞

Egτn,T (η) = lim
n→+∞

yτn = yT = EgT,T (η) = η.

Thus, property (2.33) from Lemma 2.28 and Proposition 2.29 is satisfied.
Hence, the g-evaluation satisfies all the properties of the non-linear operators ρ used in
our results.
It remains for us to argue that the integrability Assumption 2.1 (with p = 2) on the value
family V is satisfied, under some suitable assumptions on ξ. The following remark is an
application of Remark 2.9 to the framework of a complete financial market model with
imperfections encoded in the driver g of the dynamics of self-financing portfolios.

Remark 3.4. Let us place ourselves in a complete financial market model with possible
imperfections (such as e.g. trading constraints, different interest rates for borrowing and
lending, different repo rates, etc.). Let g be the driver from the dynamics of self-financing
portfolios in this market. If the family ξ = (ξ(τ))τ∈Θ is assumed to be square-integrable
and super-replicable by a self-financing portfolio with wealth X(τ) at time τ , then, the
family (X(τ))τ∈Θ is a (Θ, Eg)-martingale. By Remark 2.9 the value V = (V (τ))τ∈Θ is
square-integrable (that is, satisfies Assumption 2.1 with p = 2).

Remark 3.5. (Peng’s g-expectation) Peng’s g-expectation is a particular case of the
previous example, introduced in Peng (1997). In this case, the driver g is assumed to
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satisfy the conditions À, Á, and condition Â (g(·, y, 0) ≡ 0, for all y ∈ R). In this particular
case, the non-linear operators do not depend on the second index, but on the first index
only. More precisely, let g satisfy conditions À, Á and Â. The g-expectation operators
Eg[·] and Eg[·|FS ] are defined by Eg[·] := Eg0,τ [·], Eg[·|FS ] := EgS,τ [·].

The g-expectation (Eg[·|FS ]) satisfies all the properties of the g-evaluation and addi-
tionally the following property:
(usual zero-one law) For stopping times S, τ such that S ≤ τ , for A ∈ FS , Eg[1Aη|FS ] =

1AEg[η|FS ].

3.2 Dynamic concave utilities

The dynamic concave utilities are among the examples of non-linear operators de-
pending on two time indices. In this example the space is L∞ (that is p = +∞).
We place ourselves again in the Brownian framework. A representation result, with
an explicit form for the penalty term, for dynamic concave utilities was established in
Delbaen et al. (2010). The optimal stopping problem with dynamic concave utilities was
studied by Bayraktar, Karatzas and Yao in Bayraktar et al. (2010), where the authors rely
on the representation result from Delbaen et al. (2010).2

We recall the following definition from Delbaen et al. (2010).

Definition 3.6. (Dynamic concave utility) For S, τ ∈ T0,T , such that S ≤ τ , let

{uS,τ (·) : L∞(Fτ )→ L∞(FS)}

be a family of operators. This family is called a dynamic concave utility, if it satisfies the
following properties:

(D1) (Monotonicity) uS,τ (η) ≤ uS,τ (η′), if η ≤ η′;

(D2) (Translation invariance) uS,τ (η+X) = uS,τ (η) +X, if η ∈ L∞(Fτ ) and X ∈ L∞(FS);

(D3) (Concavity) uS,τ (λη + (1 − λ)η′) ≥ λuS,τ (η) + (1 − λ)uS,τ (η′), for any λ ∈ [0, 1] and
η, η′ ∈ L∞(Fτ );

(D4) (Normalisation) uS,τ (0) = 0.

Moreover, in Delbaen et al. (2010) and Bayraktar et al. (2010) the following properties
on the dynamic concave utilities are assumed:

(D5) (Time consistency) for any stopping time σ ∈ TS,τ , we have uS,σ(uσ,τ (η)) = uS,τ (η);

(D6) (Continuity from above) for any non-increasing sequence (ηn) ⊂ L∞(Fτ ) with
η = limn→∞ ↓ ηn ∈ L∞(Fτ ), we have limn→∞ ↓ uS,τ (ηn) = uS,τ (η)

(D7) (Local property) uS,τ (η1A + ξ1Ac) = uS,τ (η)1A + uS,τ (ξ)1Ac , for any A ∈ FS and for
any η, ξ ∈ L∞(Fτ );

(D8) EP [η|Ft] ≥ 0 for any η ∈ L∞(FT ), such that ut,T (η) ≥ 0.

Remark 3.7. Note that the assumptions in (D6) imply that, for each n ∈ N, η0 ≤ ηn ≤ η,
where η0 ∈ L∞ and η ∈ L∞. Hence, supn ηn ∈ L∞ in (D6).

By the results of Delbaen et al. (2010), any functional ρ satisfying properties (D1)–(D8),
has the following representation:

uS,τ (η) = ess inf
Q:Q∼P,Q=P on FS

{
EQ[η|FS ] + cS,τ (Q)

}
= ess inf

Q∈QS
EQ[η +

∫ τ

S

f(u, ψQu )du|FS ],
(3.1)

2In Bayraktar et al. (2010) the authors choose a different sign convention on ρ, and hence, study a
minimization optimal stopping problem with dynamic convex risk measures.
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where the function f is such that f(·, ·, x) is predictable for any x; f is a proper, convex
function in the space variable x, and valued in [0,+∞], and the process (ψQt ) is the
process from the Doleans-Dade exponential representation for the density process (ZQt ),
where ZQt = dQ

dP |Ft , and

QS = {Q : Q ∼ P,ψQt (ω) = 0, dt⊗ dP a.e. on [[0, S[[, EQ[

∫ T

S

f(s, ψQs )ds] < +∞}.

Remark 3.8. A close inspection of the proof of the duality result in (Bion-Nadal (2009)
and Delbaen et al. (2010)) reveals that the dynamic concave utilities depend on the
second index only via their penalty term.

It has been noted in Delbaen et al. (2010) that property (D8) is equivalent to

ct,T (P ) = 0, for all t ∈ [0, T ]. (3.2)

The dynamic concave utilities uS,τ do not enter directly into the framework of the present
paper, as they are defined only for S, τ such that S ≤ τ a.s. (cf. Delbaen et al. (2010) and
Bayraktar et al. (2010)). There is, however, a “natural” extension of uS,τ in view of the
representation property (3.1). This extension is as follows:

For S and τ stopping times, and η ∈ L∞(Fτ ), we define

1{S>τ}uS,τ (η) = 1{S>τ} × η. (3.3)

Remark 3.9. By properties (D4) and (D7) of the dynamic concave utilities, we get that
the “generalized zero-one law” is satisfied. Indeed, let A ∈ FS , and let τ, τ ′ ∈ ΘS

be such that τ = τ ′ on A. Let η ∈ L∞(Fτ ). By applying property (D7) with ξ = 0,
we get uS,τ (1Aη) = 1AuS,τ (η) + 1AcuS,τ (0). As uS,τ (0) = 0 due to the normalisation
property (D4), we obtain uS,τ (1Aη) = 1AuS,τ (η). Hence, the “generalized zero-one law”
is satisfied.

Remark 3.10. Property translation invariance (D2) and property normalisation (D4)
imply that uS,τ (·) satisfies the knowledge preserving property (iii) of ρ. Indeed, for any
FS-measurable η, we have, by (D2) and (D4), uS,τ (η) = uS,τ (0) + η = 0 + η = η, which
shows property (iii).

Remark 3.11. The dynamic concave utilities satisfy property (2.18) in Theorem 2.19.
Indeed, let (τn) be a non-decreasing sequence of stopping times such that τn ↑ τ , and
let φ be an L∞-integrable admissible family such that supn |φ(τn)| ∈ L∞. Then, for each
n ∈ N,

φ(τn) +

∫ τn

S

f(u, ψQu )du ≤ sup
p≥n

φ(τp) +

∫ τ

S

f(u, ψQu )du =: ηn, (3.4)

where, for the inequality, we have used that f is valued in [0,+∞], and τn ≤ τ . As
ess infQ∈QS EQ[·|FS ] is non-decreasing, we get: for each n ∈ N,

ess inf
Q∈QS

EQ[φ(τn) +

∫ τn

S

f(u, ψQu )du|FS ] ≤ ess inf
Q∈QS

EQ[ηn|FS ]. (3.5)

We have ηn ↓ η, where η := lim supn→+∞ φ(τn) +
∫ τ
S
f(u, ψQu )du.

As ess infQ∈QS EQ[·|FS ] is continuous from above, we deduce

lim
n→+∞

ess inf
Q∈QS

EQ[ηn|FS ] = ess inf
Q∈QS

EQ[η|FS ]. (3.6)

Hence, from Eqs. (3.5) and (3.6), we get

lim sup
n→+∞

ess inf
Q∈QS

EQ[φ(τn)+

∫ τn

S

f(u, ψQu )du|FS ] ≤ lim
n→+∞

ess inf
Q∈QS

EQ[ηn|FS ] = ess inf
Q∈QS

EQ[η|FS ],
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which, by the representation result (3.1), gives

lim sup
n→+∞

uS,τn(φ(τn)) ≤ uS,τn(lim sup
n→+∞

φ(τn)).

This is the desired property (2.18).

Remark 3.12. The dynamic concave utilities satisfy property (2.33) from Lemma 2.28
and Proposition 2.29. Indeed, for τn ↑ T ,

uτn,T (η) = ess inf
Q:Q∼P,Q=P on Fτn

{
EQ[η|Fτn ] + cτn,T (Q)

}
≤ EP [η|Fτn ] + cτn,T (P )

= EP [η|Fτn ],
(3.7)

where we have used that for each n ∈ N, cτn,T (P ) = 0 by Eq. (3.2). Hence, uτn,T (η) ≤
EP [η|Fτn ]. The sequence (EP [η|Fτn ]) being a uniformly integrable P -martingale, with
terminal value EP [η|FT ] = η, we get

lim sup
n→∞

uτn,T (η) ≤ lim
n→∞

EP [η|Fτn ] = η,

which is the desired property.

To finish, the pay-off process (ξt) in Bayraktar et al. (2010) is assumed to be bounded.
Hence, by the monotonicity and the knowledge preservation of u, if we consider the
Bermudan-style version of the problem studied in Bayraktar et al. (2010), then the value
V satisfies the integrability Assumption 2.1 (that is, for each S ∈ Θ, V (S) ∈ L∞).

4 Appendix: The case of a finite number of pre-described stop-
ping times

In this appendix, we treat the particular case where (θk)k∈N0
is constant from a

certain term, independent of ω, onwards. More precisely, we place ourselves in the
situation where there exists n ∈ N∗ (independent of ω) such that for each m ≥ n, θm = T

Theorem 4.1. Let φ = (φ(τ), τ ∈ Θ) be a p-integrable admissible family. Under the
assumptions of knowledge preservation (iii) and “generalized zero-one law” (vi) on the
non-linear operators, if φ satisfies

ρθk,θk+1
[φ(θk+1)] ≤ φ(θk)(resp. = φ(θk)), for all k, (4.1)

then, for all τ ∈ Θ, we have

ρθk,θk+1∧τ [φ(θk+1 ∧ τ)] ≤ φ(θk ∧ τ)(resp. = φ(θk ∧ τ)). (4.2)

Proof. Let k ∈ N0. We have

ρθk,θk+1∧τ [φ(θk+1 ∧ τ)] = I{τ≤θk}ρθk,θk+1∧τ [φ(θk+1 ∧ τ)] + I{τ>θk}ρθk,θk+1∧τ [φ(θk+1 ∧ τ)].

(4.3)
We note that on the set {τ ≤ θk}, θk+1 ∧ τ = θk ∧ τ . Hence, by the “generalized zero-one
law”, we have

I{τ≤θk}ρθk,θk+1∧τ [φ(θk+1 ∧ τ)] = I{τ≤θk}ρθk,θk∧τ [φ(θk ∧ τ)].

As θk ∧ τ ≤ θk, by property (iii) of the non-linear evaluation ρ, we get

ρθk,θk∧τ [φ(θk ∧ τ)] = φ(θk ∧ τ).

Hence, we have

I{τ≤θk}ρθk,θk+1∧τ [φ(θk+1 ∧ τ)] = I{τ≤θk}φ(θk ∧ τ). (4.4)
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For the second term on the right-hand side of Equation (4.3), we note that τ ∧θk+1 = θk+1

on {τ > θk}. Hence, by the “generalized zero-one law” of the non-linear evaluation ρ, we
have

I{τ>θk}ρθk,θk+1∧τ [φ(θk+1 ∧ τ)] = I{τ>θk}ρθk,θk+1
[φ(θk+1)].

This, together with Equation (4.1) on φ and the admissibility of φ, gives

I{τ>θk}ρθk,θk+1
[φ(θk+1)] ≤ I{τ>θk}φ(θk) = I{τ>θk}φ(θk ∧ τ). (4.5)

By plugging in (4.4) and (4.5) in Equation (4.3), we get

ρθk,θk+1∧τ [φ(θk+1 ∧ τ)] ≤ I{τ≤θk}φ(θk ∧ τ) + I{τ>θk}φ(θk ∧ τ) = φ(θk ∧ τ).

This ends the proof.

We establish a characterization of (Θ, ρ)-supermartingale (resp. (Θ, ρ)-martingale)
families in the particular case where the sequence (θk)k∈N0 is constant from a certain
term, independent of ω, onwards.

Proposition 4.2. Assume that there exists n ∈ N0 such that θk = θn = T a.s., for all
k ≥ n. Let φ = (φ(τ), τ ∈ Θ) be a p-integrable admissible family. Under the assumptions
of admissibility (ii), knowledge preservation (iii), monotonicity (iv), consistency (v)
and “generalized” zero-one law (vi) on the non-linear operators, if ρθk,θk+1

[φ(θk+1)] ≤
φ(θk)(resp. = φ(θk)), for all k, then, φ is a (Θ, g)-supermartingale (resp. (Θ, g)-martingale)
family.

Proof. We prove the result for the case of a (Θ, ρ)-supermartingale family; the case of
a (Θ, ρ)-martingale family can be treated similarly. Let σ, τ in Θ be such that σ ≤ τ a.s.
As σ ∈ Θ, we have σ =

∑n
k=0 θk1Ak , where (Ak)k∈{0,...,n} is a partition of Ω such that

Ak ∈ Fθk . We notice that in order to prove ρσ,τ [φτ ] ≤ φσ, it is sufficient to prove the
following property:

ρθk∧τ,τ [φ(τ)] ≤ φ(θk ∧ τ), for all k ∈ {0, 1, . . . , n}. (4.6)

Indeed, this property proven, we will have

ρσ,τ [φ(τ)] = ρσ∧τ,τ [φ(τ)] =

n∑
k=0

IAkρθk∧τ,τ [φ(τ)] ≤
n∑
k=0

IAkφ(θk ∧ τ) = φ(σ ∧ τ) = φ(σ),

where we have used the admissibility of ρ to show the second equality. This will conclude
the proof. Let us now prove property (4.6). We proceed by backward induction. For
k = n, we have (recall that θn = T )

ρθn∧τ,τ [φ(τ)] = ρT∧τ,τ [φ(τ)] = ρτ,τ [φ(τ)] = φ(τ) = φ(T ∧ τ),

where we have used property (iii) to obtain the last but one equality.

We suppose that the property (4.6) holds true for k + 1. Then, by using this induction
hypothesis, the time-consistency and the monotonicity of the non-linear operators, we
get

ρθk∧τ,τ [φ(τ)] = ρθk∧τ,θk+1∧τ [ρθk+1∧τ,τ [φ(τ)]] ≤ ρθk∧τ,θk+1∧τ [φ(θk+1 ∧ τ)].

In order to conclude, it remains to prove

ρθk∧τ,θk+1∧τ [φ(θk+1 ∧ τ)] ≤ φ(θk ∧ τ). (4.7)

By Theorem 4.1, we have

I{τ≥θk}ρθk∧τ,θk+1∧τ [φ(θk+1∧ τ)] = I{τ≥θk}ρθk,θk+1∧τ [φ(θk+1∧ τ)] ≤ I{τ≥θk}φ(θk ∧ τ). (4.8)
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On the other hand, by the “generalized zero-one law”, (applied with A = {τ < θk} on
which set, we have θk+1 ∧ τ = τ ) we have

I{τ<θk}ρθk∧τ,θk+1∧τ [φ(θk+1 ∧ τ)] = I{τ<θk}ρτ,τ [φ(θk+1 ∧ τ)] = φ(τ)I{τ<θk}, (4.9)

where we have used property (iii) on ρ for the last equality.

Combining Equations (4.8) and (4.9), we deduce (4.7). The proposition is thus proved.

4.1 Dynamic programming principle in the case of a finite number of pre-de-
scribed stopping times

We first introduce an explicit construction, by backward induction, of what will turn
out to be the (Θ, ρ)-Snell envelope of the pay-off family ξ, in this particular case of finite
number of pre-described stopping times. Let ξ be, as before, a p-integrable admissible
family.

Let us define the sequence of random variables (U(θk))k∈{0,1,...,n} by backward induction
as follows:{

U(θn) := ξ(θn), k = n;

U(θk) := max(ξ(θk); ρθk,θk+1
[U(θk+1)]), for k ∈ {0, 1, ..., n− 1}. (4.10)

From (4.10) we see, by backward induction, that for each k ∈ {0, 1, ..., n}, U(θk) is a
well-defined real-valued random variable, which is Fθk -measurable and p-integrable.
From (4.10), we also have U(θk) ≥ ξ(θk), for all k ∈ {0, 1, ..., n}.
Moreover, it can be shown that, for each k ∈ {0, 1, ..., n − 1}, U(θk) = U(θk+1) a.s. on
{θk = θk+1}. Indeed, due to the second property (admissibility) and to the third property
(knowledge preservation) of the non-linear operators ρ, we have

U(θk)1{θk=θk+1} = max(ξ(θk)1{θk=θk+1}; ρθk,θk+1
[U(θk+1)]1{θk=θk+1})

= max(ξ(θk+1)1{θk=θk+1}; ρθk+1,θk+1
[U(θk+1)]1{θk=θk+1})

= max(ξ(θk+1)1{θk=θk+1};U(θk+1)1{θk=θk+1}) = U(θk+1)1{θk=θk+1},

where, for the last equality, we have used that U(θk+1) ≥ ξ(θk+1).

Hence, U(θk) = U(θk+1) a.s. on {θk = θk+1}. We can thus “extend” U to the whole set
Θ as follows. Let τ ∈ Θ. There exists a partition (Ak)k∈{0,1,...,n} such that, for each k,
Ak ∈ Fθk , and such that τ =

∑n
k=0 θk1Ak . We set

U(τ) :=

n∑
k=0

U(θk)1Ak . (4.11)

We show the following result:

Theorem 4.3. Under the assumptions of admissibility (ii), knowledge preservation (iii),
monotonicity (iv), consistency (v) and “generalized zero-one law” (vi) on the non-linear
operators, the family U := (U(τ), τ ∈ Θ) defined by (4.10) and (4.11) coincides with the
(Θ, ρ)-Snell envelope family of ξ.

For this, we first show an easy lemma, based on Proposition 4.2 and on the definition
of the family U .

Lemma 4.4. Under the assumptions of admissibility (ii), knowledge preservation (iii),
monotonicity (iv), consistency (v) and “generalized zero-one law” (vi) on the non-linear
operators, the family U defined by (4.10) and (4.11) is a (Θ, ρ)-supermartingale family,
dominating the family ξ.
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Proof. We already noticed, following the definition of U(θk), that, for each k, U(θk) ≥
ξ(θk). Hence, for each τ ∈ Θ, U(τ) ≥ ξ(τ) a.s. (by definition of U(τ), cf. (4.11)). The
(Θ, ρ)-supermartingale property of U follows from the definition of (U(θk))k∈{0,...,n} and
from Proposition 4.2.

The following proof of Theorem 4.3 is a combination of Lemma 4.4 and of a proof of
the minimality property of U .

Proof of Theorem 4.3. By Lemma 4.4, U is a (Θ, ρ)-supermartingale family, dominating
the family ξ. It remains to show that it is the minimal one.
Let Û be (another) (Θ, ρ)-supermartingale family, such that Û(θk) ≥ ξ(θk), for each
k ∈ {0, 1, ..., n}.
At the terminal time θn, we have Û(θn) ≥ ξ(θn) = U(θn).
Let k ∈ {1, ..., n}. Suppose, by backward induction, that Û(θk) ≥ U(θk). We need to show
that Û(θk−1) ≥ U(θk−1).
By the backward induction hypothesis and by the monotonicity of the non-linear operators
ρθk−1,θk , we have ρθk−1,θk [Û(θk)] ≥ ρθk−1,θk [U(θk)]. This, together with the definition of
U(θk−1), gives

U(θk−1) = max(ξ(θk−1); ρθk−1,θk [U(θk)]) ≤ max(ξ(θk−1); ρθk−1,θk [Û(θk)]).

Since Û is a (Θ, ρ)-supermartingale family, we have Û(θk−1) ≥ ρθk−1,θk [Û(θk)]. Hence,

U(θk−1) ≤ max(ξ(θk−1); ρθk−1,θk [Û(θk)]) ≤ max(ξ(θk−1); Û(θk−1)) = Û(θk−1).

The reasoning by backward induction is thus finished and the minimality property of U
shown. We conclude that the family U is equal to the smallest (Θ, ρ)-supermartingale
family dominating the family ξ, that is, to the (Θ, ρ)-Snell envelope of the family ξ.

4.2 Optimal stopping times in the case of a finite number of pre-described
stopping times

We define ν̄k by:

ν̄k := ess inf Āk, where Āk := {τ ∈ Θθk : U(τ) = ξ(τ) a.s.}.

In the case of a finite number of pre-described stopping times, we have:

ν̄k = inf{θl ∈ {θk, ..., θn} : U(θl) = ξ(θl)} = min{θl ∈ {θk, ..., θn} : U(θl) = ξ(θl)}. (4.12)

Indeed, as the set {θl ∈ {θk, ..., θn} : U(θl) = ξ(θl)} is a subset of Āk, we have:

ν̄k = ess inf{τ ∈ Θθk : U(τ) = ξ(τ) a.s.} ≤ ess inf{θl ∈ {θk, ..., θn} : U(θl) = ξ(θl)}
= inf{θl ∈ {θk, ..., θn} : U(θl) = ξ(θl)}.

Let us now show the converse inequality: ν̄k ≥ inf{θl ∈ {θk, ..., θn} : U(θl) = ξ(θl) a.s.}.
As the set Āk is stable by pairwise minimization, there exists a sequence (τ (m))m∈N,
such that: (τ (m)) is non-decreasing; for each m, τ (m) ∈ Āk; and limm→+∞ τ (m) = ν̄k.
Let ω ∈ Ω be given. For each m ∈ N, τ (m)(ω) ∈ {θk(ω), θk+1(ω), ..., θn(ω)}, and moreover,
U(τ (m))(ω) = ξ(τ (m))(ω).
As all the elements of the sequence (τ (m)(ω))m∈N are valued in {θk(ω), θk+1(ω), ..., θn(ω)},
we have, limm→+∞ τ (m)(ω) ∈ {θk(ω), θk+1(ω), ..., θn(ω)}, which implies that from a certain
rank onwards, the sequence is constant.
Moreover, we have U(limm→+∞ τ (m))(ω) = ξ(limm→+∞ τ (m))(ω). Thus, we have

ν̄k(ω) = lim
m→+∞

τ (m)(ω) ∈ {θk(ω), θk+1(ω), ..., θn(ω)}, and U(ν̄k)(ω) = ξ(ν̄k)(ω).
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Hence, ν̄k ≥ ess inf{θl ∈ {θk, ..., θn} : U(θl) = ξ(θl) a.s.}. As both inequalities hold true,
we conclude

ν̄k = inf{θl ∈ {θk, ..., θn} : U(θl) = ξ(θl) a.s.}. (4.13)

Lemma 4.5. Under the assumptions of knowledge preservation (iii), consistency (v)
and “generalized zero-one law” (vi) on ρ, the family U = (U(τ)) is a (Θ, ρ)-martingale on
[θk, ν̄k].

Proof. As U satisfies the DPP (which it does by definition of U ), we have, by Lemma 2.26,
for each l ∈ N,

U(θl ∧ ν̄k) = ρθl∧ν̄k,θl+1∧ν̄k [U(θl+1 ∧ ν̄k)]. (4.14)

By Lemma 2.20, to show that U is a (Θ, ρ)-martingale on [θk, ν̄k], it is sufficient to show
that for any σ, such that θk ≤ σ ≤ ν̄k, it holds U(σ) = ρσ,ν̄k [U(ν̄k)]. Let σ ∈ Θθk , such
that σ ≤ ν̄k. Then, σ =

∑n
i=k θi1Ai and σ ≤ ν̄k. Thus, it is sufficient to show that for

i ∈ {k, ..., n}, such that θi ≤ ν̄k, it holds 1Aiρθi,ν̄k [U(ν̄k)] = 1AiU(θi), which is the same
as, for each i ∈ {k, ..., n}, such that θi ≤ ν̄k,

1Aiρθi∧ν̄k,ν̄k [U(ν̄k)] = 1AiU(θi ∧ ν̄k).

We proceed by backward induction. At rank n, we have

ρθn∧ν̄k,ν̄k [U(ν̄k)] = ρν̄k,ν̄k [U(ν̄k)] = U(ν̄k) = U(θn ∧ ν̄k),

where we have used that ν̄k ≤ θn = T , and the knowledge preserving property of ρ.
We suppose, by backward induction, that the property holds true at rank i+ 1. We show
it at rank i. By the consistency property and the backward induction hypothesis, we have

ρθi∧ν̄k,ν̄k [U(ν̄k)] = ρθi∧ν̄k,θi+1∧ν̄k [ρθi+1∧ν̄k,ν̄k [U(ν̄k)]] = ρθi∧ν̄k,θi+1∧ν̄k [U(θi+1 ∧ ν̄k)].

By Eq. (4.14), ρθi∧ν̄k,θi+1∧ν̄k [U(θi+1∧ν̄k)] = U(θi∧ν̄k). Hence, ρθi∧ν̄k,ν̄k [U(ν̄k)] = U(θi∧ν̄k),
which completes the reasoning by backward induction.
We conclude that the family U is a (Θ, ρ)-martingale on [θk, ν̄k].

We will now show that U coincides with V , that ν̄k is optimal for the optimal stopping
problem from time θk-perspective, and that ν̄k = νk, where

νk := ess inf Ak, where Ak := {τ ∈ Θθk : V (τ) = ξ(τ) a.s.}.

For this, we do not need any type of (Fatou)continuity assumption on ρ.

Theorem 4.6. Under the assumptions of admissibility (ii), knowledge preservation (iii),
monotonicity (iv), consistency (v), and “generalized zero-one law” (vi) on the non-linear
operators, we have

1. U(θk) = ρθk,ν̄k [ξ(ν̄k)] = V (θk).

2. U = V and ν̄k = νk.

Proof. As U ≥ ξ, and as U is a (Θ, ρ)-supermartingale (cf. Lemma 4.4), we have for any
τ ∈ Θθk , U(θk) ≥ ρθk,τ [U(τ)] ≥ ρθk,τ [ξ(τ)], where we have used the monotonicity of ρθk,τ
for the second inequality.
Hence,

U(θk) ≥ ess supτ∈Θθk
ρθk,τ [ξ(τ)] = V (θk). (4.15)

On the other hand, by Lemma 4.5, U is a (Θ, ρ)-martingale on [θk, ν̄k]. Moreover, by
Eq. (4.13), we have U(ν̄k) = ξ(ν̄k). Hence,

U(θk) = ρθk,ν̄k [U(ν̄k)] = ρθk,ν̄k [ξ(ν̄k)] ≤ ess supτ∈Θθk
ρθk,τ [ξ(τ)] = V (θk).
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We have thus showed: U(θk) = V (θk) = ρθk,ν̄k [ξ(ν̄k)], which proves statement 1 of the
lemma.
Now, let us show statement 2. By admissibility of U and V , it follows from statement
1, that, for any τ ∈ Θ, U(τ) = V (τ). Hence, ν̄k = νk (from the definitions of ν̄k and νk),
which proves statement 2 of the lemma.
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