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On the number of components of random polynomial
lemniscates
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Abstract

A lemniscate of a complex polynomial Qn of degree n is a sublevel set of its modulus,
i.e., of the form {z ∈ C : |Qn(z)| < t} for some t > 0. In general, the number of
connected components of a unit lemniscate (i.e. for t = 1) can vary anywhere between
1 and n. In this paper, we study the expected number of connected components
for two models of random lemniscates. First, we show that the expected number
of connected components of lemniscates whose defining polynomial has i.i.d. roots
chosen uniformly from D, is bounded above and below by a constant multiple

√
n.

On the other hand, if the i.i.d. roots are chosen uniformly from S1, we show that the
expected number of connected components, divided by n, converges to 1

2
.
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1 Introduction

Let Qn(z) be a monic polynomial of degree n in the complex plane such that all its
roots are contained within the closed unit disk D. That is,

Qn(z) :=

n∏
i=1

(z − zi), (1.1)

where |zj | ≤ 1, for 1 ≤ j ≤ n. We denote the unit lemniscate of Qn(z) by

Λ(Qn) := {z ∈ C : |Qn(z)| < 1}.

The quantity of interest is the number of connected components of Λ(Qn). The maximum
principle implies that each connected component of the lemniscate must contain a zero of
the polynomial; therefore, there are at most n components. In this paper, we investigate
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Components of random polynomial lemniscates

the number of components of a typical lemniscate. Numerical simulations for random
polynomials with roots chosen from the uniform probability measure on the unit disk
D, and on the circle S1 show a giant component alongside some tiny components (see
Figures- 1, 2). In this paper, we quantify this numerical observation.

1.1 Motivation and previous results

The study of the metric and topological properties of polynomial lemniscates serves
two main purposes. Firstly, it is the simplest curve with an algebraic boundary that is
relevant to many problems in mathematical physics [19, 5, 2]. Secondly, polynomial
lemniscates are used as a tool for approximating and analyzing complex geometric
objects due to implications of Hilbert’s lemniscate Theorem and its generalizations
[29, 25]. For a more detailed exposition, please refer to [20] and the corresponding
references therein. Taking all these into account, in 1958, Erdős, Herzog, and Piranian
in [9] studied the geometric and topological properties of polynomial lemniscates and
posed a long list of open problems. One of the key motivations behind the work related to
random polynomial lemniscates is to offer a probabilistic approach to the problems in [9].
Krishnapur, Lundberg, and Ramachandran recently showed that the inradius of a random
lemniscate whose defining polynomial has roots chosen from a measure µ depends on the
negative set of the logarithmic potential Uµ. Lundberg, Epstein, and Hanin conducted
a study on the lemniscate tree that encodes the nesting structure of the level sets of
a random polynomial in [8]. Lundberg and Ramachandran in [23] conducted a study
on the Kac ensemble and found that the expected number of connected components is
asymptotically n. Lerario and Lundberg [21] proved that for random rational lemniscates,
which are defined as the quotient of two spherical random polynomials, the average
number of connected components is O(n). Later, Kabluchko and Wigman [18] discovered
the exact asymptotics. Fyodorov, Lerario, and Lundberg studied the number of connected
components of random algebraic hypersurfaces in [10]. In this article, we examine
random polynomials with random roots, in contrast to random coefficients. Another
stream of research on random polynomials includes studying the roots and critical points
of random polynomials. In this work, we have made use of one such pairing result due
to Kabluchko and Seidel [17], which states that for random polynomials whose roots are
sampled from an appropriate probability measure ν supported within the unit disk, each
root is associated with a critical point in close proximity. For more background, details
and generalizations consult [13], [27], [16], [31], [28], [4], [24], [1], [14], [15], [26].
To find related research on meromorphic functions and Gaussian polynomials, please
refer to [12], [11]. We emphasize the fact that such pairing phenomena are exclusive
to random polynomials. A somewhat related result in the deterministic setting is the
Sendov’s conjecture [30], which was recently proven by Tao in [32] for all polynomials of
sufficiently large degree.

1.2 Main results

In all the theorems we have the following setting.
Setting and notations: Let {Xi}∞i=1 be a sequence of i.i.d. random variables with law µ,
supported in the closed unit disk. Consider the sequence of random polynomials defined
by

Pn(z) :=

n∏
i=1

(z −Xi), (1.2)

and its lemniscate

Λn := Λ(Pn) = {z ∈ C : |Pn(z)| < 1}.
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Components of random polynomial lemniscates

We denote by C(Λn) the number of connected components of the lemniscate Λn. Through-
out the paper, we denote by C a positive numerical constant whose value may vary from
line to line. For a set S ⊂ C, we denote by |S| the cardinality of the set S. The following
are the main theorems of this paper.

Figure 1: Lemniscates of degree n = 50, 100, 250 with zeros sampled uniformly from
the open unit disk.

Figure 2: Lemniscates of degree n = 50, 100, 250 with zeros sampled uniformly from
the unit circle. A unit circle is also plotted for reference in each case.

Theorem 1.1. Let µ be the probability measure distributed uniformly in the unit disk D.
Then there exist absolute constants C1, C2 > 0 such that for all large n we have

C1

√
n ≤ E[C(Λn)] ≤ C2

√
n.

Theorem 1.2. Let µ be the probability measure distributed uniformly in the unit circle
S1. Then

lim
n→∞

E[C(Λn)]

n
=

1

2
.

1.3 Remarks

What happens if we choose µ to be the uniform measure on rD or rS1? Let us
consider the uniform probability measure on rS1, say µr. Then it is easy to show that the
logarithmic potential is

Uµr (z) =

{
log |z| if |z| ≥ r,
log r if |z| < r.

(1.3)
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Components of random polynomial lemniscates

Figure 3: Lemniscates of degree n = 500 with zeros sampled uniformly from rS1, for
r = 0.9 and 1.1 respectively.

Figure 4: Lemniscates of degree n = 500 with zeros sampled uniformly from rD for
r = 0.95, 0.85

√
e, and 1.5

√
e respectively.

Case 1 (r < 1) In this case, the potential (1.3) is negative in the whole unit disk. There-
fore the set rD is enclosed within the lemniscate by Theorem 1.1 in [20], resulting
in a single connected component with overwhelming probability.

Case 2 (r > 1) In this case, the potential (1.3) is positive in the entire complex plane
therefore we get with overwhelming probability, n components for the lemniscate,
by the implications of Theorem 1.3 of [20].

So in some sense, r = 1 is the critical case in this model. A similar analysis for the
uniform probability measure on rD is done in [20], example-1.7. (where the interval
r > 1 may be split at the point r =

√
e for a more detailed description of the outcomes.

Nevertheless, we observe asymptotically linear behavior throughout the entire interval
r > 1). See Figure 3, 4. The above results and the results in this paper are summarized
schematically in Table 1.

1.4 Heuristics and ideas of proof

We will now provide an overview of the underlying heuristics behind our results. In
the first model, which involves random polynomials with uniformly chosen roots from
D, the potential Uµ(z) is negative throughout the unit disk. By writing log |Pn(z)| =

EJP 29 (2024), paper 86.
Page 4/24

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1147
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Components of random polynomial lemniscates

Table 1: Asymptotics of expected no. of components for different values of r.

µ r < 1 r = 1
√

e ≥ r > 1 r >
√

e

E[C(Λn)] Uniform probability on rD 1 Θ(
√
n) Crn n

E[C(Λn)] Uniform probability in rS1 1 n
2 n n

∑n
i=1 log |z − Xi| as the sum of independent random variables with mean Uµ(z), we

employ various concentration estimates to analyze the behavior of |Pn(z)|. Since the
sum of i.i.d. random variables concentrate near its mean which is negative, most of the
region within the disk, away from the boundary, lies inside the lemniscate. It is only near
the boundary, where the potential approaches zero, isolated components are formed due
to the fluctuations governed by the Central Limit Theorem, resulting in Θ(

√
n) many

components. In the other model, i.e., random polynomial with roots chosen uniformly
on the circle, the potential is zero in the whole disk. The probability of any point on S1

being inside the lemniscate is close to 1
2 . Therefore, if we start with Pn and introduce a

new root Xn+1 to build Pn+1, Xn+1 will land outside Λn with probability approximately
1
2 , forming an isolated component. Therefore, on average, we get approximately n

2

components. In both models, we establish the lower bound by estimating the number
of isolated components. To determine the upper bound for the disk case, we utilize
an analytical characterization for the number of components (see Lemma 2.8), which
asserts that the number of components is one more than the number of critical points
whose critical value is larger or equal to 1. To determine the number of such critical
points, we employ a pairing result from [17] to associate critical points with roots with
some desired properties. The number of such roots yields the desired upper bound.
However, in the other case, the pairing phenomena do not occur. There we establish
the upper bound by showing that the number of components possessing fewer than nε

roots, when divided by n, tends towards 1
2 , for sufficiently small ε. This is established

by estimating from below the probability of a moderately small disk (which shrinks
appropriately with n) being contained inside the lemniscate.

2 Preliminary lemmas

Before delving into the proofs of the main theorems, we gather preliminary theorems
and lemmas that are utilized repeatedly in both theorems.

Theorem 2.1. (Berry-Esseen) Let X1, X2, · · · be i.i.d. random variables with EXi =

0,EX2
i = σ2, and E|Xi|3 = ρ <∞. If Fn(x) is the distribution function of (X1+···+Xn)

σ
√
n

and

Φ(x) is the standard normal distribution, then

|Fn(x)− Φ(x)| ≤ 3ρ

σ3
√
n
, (2.1)

for all x ∈ R and every natural number n.

The proof of Theorem 2.1 can be found in [7] Theorem 3.4.17.

Theorem 2.2. [Bennett’s inequality] Let Y1, Y2, ..., Yn be independent random vari-
ables with finite variances such that ∀ i ≤ n, Yi ≤ b, for some b > 0 almost surely.
Let

S =

n∑
i=1

(Yi − E[Yi]) ,
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and ν =
∑n
i=1E[Yi

2]. Then for any t > 0, we have

P(S > t) ≤ exp

(
− ν
b2
h
(bt
ν

))
,

where h(u) = (1 + u) log(1 + u)− u, for u > 0.

For the proof of this concentration inequality and other similar results see [3].

Lemma 2.3. Let X be a random variable taking values in D with law µ. Assume that
there exist constants ε,M1,M2 ∈ (0,∞), such that

M1r
ε ≤ µ(B(z, r)) ≤M2r

ε, (2.2)

hold uniformly for all z ∈ supp(µ), and all 0 < r ≤ 2. Fix p, and define the function
Fp(z) := E [|log |z −X||p] : supp(µ)→ R. Then, there exist positive real constants C1, C2

depending only on p, ε,M1,M2, such that

C1 ≤ inf
z∈supp(µ)

Fp(z) ≤ sup
z∈supp(µ)

Fp(z) ≤ C2. (2.3)

Proof of Lemma 2.3. We will utilize the layer cake representation (c.f. [22], Theorem
1.13) and write

E
[∣∣ log |z −X|

∣∣p] = p

∫ ∞
0

tp−1P
(∣∣ log |z −X|

∣∣ > t
)
dt

= p

∫ 2

0

tp−1P
(∣∣ log |z −X|

∣∣ > t
)
dt+ p

∫ ∞
2

tp−1P
(∣∣ log |z −X|

∣∣ > t
)
dt.

In the second integral, notice that (log |z −X|)+ < 2, therefore, probability is non zero
when log |z −X| is negative. Taking this into account and using the upper bound in (2.2)

E
[∣∣ log |z −X|

∣∣p] ≤ p ∫ 2

0

tp−1dt+ pM2

∫ ∞
2

tp−1e−tεdt

≤ p2p+1 (1 + C (ε)M2) .

The lower bound follows similarly using the left inequality in (2.2) along with the layer
cake representation.

Lemma 2.4. Let X be a uniform random variable on the open unit disk D. For p < 2,
and z ∈ D there exists a constant Cp independent of z, such that

E

[
1

|z −X|p

]
≤ Cp. (2.4)

Proof of Lemma 2.4. This proof is again based on the layer cake representation(c.f.
[22], Theorem 1.13).

E

[
1

|z −X|p

]
=

∫ ∞
0

P

(
1

|z −X|p
> t

)
dt

=

∫ ∞
0

P

(
|z −X| < 1

t1/p

)
dt

=

∫ 2

0

P

(
|z −X| < 1

t1/p

)
dt+

∫ ∞
2

P

(
|z −X| < 1

t1/p

)
dt

≤
∫ 2

0

dt+

∫ ∞
2

t−2/pdt

≤
(

2 +
p

2− p
2
p−2
p

)
.
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Lemma 2.5. (Distance between the roots) Let {Xi}∞i=1 be a sequence of i.i.d. random
variables with law µ, supported in the closed unit disk. Suppose that there exists a
real-valued function f such that

P (|z −Xj | > t) ≥ 1− f(t), (2.5)

for all z ∈ D and t > 0 small. Then for any set B ⊂ D, with µ(B) > 0 we have

P

(
min

2≤j≤n
|X1 −Xj | > t

∣∣∣X1 ∈ B
)
≥ (1− f(t))

n
. (2.6)

Proof of Lemma 2.5. We condition on random variable X1 to write

P

(
min

2≤j≤n
|X1 −Xj | > t

∣∣∣X1 ∈ B
)

=
1

P(X1 ∈ B)

∫
D

P

(
min

2≤j≤n
|X1 −Xj | > t,X1 ∈ B

∣∣∣X1 = z

)
dµ(z)

=
1

P(X1 ∈ B)

∫
B

P

(
min

2≤j≤n
|z −Xj | > t

)
dµ(z).

Notice that, the event {min2≤j≤n |z − Xj | > t} can be viewed as {|z − X2| > t} ∩
{|z −X3| > t} ∩ · · · ∩ {|z −Xn| > t}. Now Independence of the random variables along
with (2.5) gives,

P

(
min

2≤j≤n
|X1 −Xj | > t

∣∣∣X1 ∈ B
)

=
1

P(X1 ∈ B)

∫
B

P (|z −Xj | > t)
(n−1)

dµ(z)

≥ 1

P(X1 ∈ B)

∫
B

(1− f(t))
(n−1)

dµ(z)

≥ (1− f(t))
(n−1)

.

Lemma 2.6. (Lower bound on first derivative) Let {Xi}∞i=1 be a sequence of i.i.d.
random variables with law µ, supported in the closed unit disk. Assume that for every
1 ≤ p ≤ 3, there exists positive constants C1(p), C2(p), depending only on p such that

C1(p) < E [|log |z −X1||p] < C2(p),

uniformly for all z ∈ supp(µ). Let Un ⊂ D be such that for some M ≥ 0 and ∀z ∈ Un,
we have E [| log |z −X1|] ≥ − M√

n
. Then for n large, there exists a constant Ĉ(M) > 0,

depending on M such that,

P
(∣∣P ′n(X1)

∣∣ ≥ e√n∣∣∣X1 ∈ Un
)
≥ Ĉ(M). (2.7)
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Proof of Lemma 2.6. We start by taking the logarithm to write

P
(∣∣P ′n(X1)

∣∣ ≥ e√n∣∣∣X1 ∈ Un
)

= P

 n∏
j=2

|X1 −Xj | ≥ e
√
n
∣∣∣X1 ∈ Un


= P

 n∑
j=2

log |X1 −Xj | ≥
√
n
∣∣∣X1 ∈ Un


=
P
(∑n

j=2 log |X1 −Xj | ≥
√
n,X1 ∈ Un

)
P (X1 ∈ Un)

=
1

P(X1 ∈ Un)

∫
Un

P

 n∑
j=2

log |z −Xj | ≥
√
n

 dµ(z).

(2.8)

We estimate the probability inside the integral in (2.8) using Berry–Esseen theorem (2.1)
to arrive at∫

Un

P

 n∑
j=2

(log |z −Xj | − E[log |z −Xj |]) ≥
√
n− (n− 1)E[log |z −Xj |]

 dµ(z)

µ(Un)

≥ 1

P(X1 ∈ Un)

∫
Un

P

 1√
n

n∑
j=2

(log |z −Xj | − E[log |z −Xj |]) ≥ (M + 1)

 dµ(z)

≥ 1

P(X1 ∈ Un)

∫
Un

(
Φ

(
M + 1

σ(z)

)
− Cρ(z)

σ3(z)
√
n

)
dµ(z), (2.9)

where σ2(z) = E
[
(log |z −Xj |)2

]
, ρ(z) = E

[
|log |z −Xj ||3

]
and Φ is the distribution

function of standard normal. From the hypothesis, we have uniform upper and lower
bounds on σ2(z) and ρ(z) using which we can bound the integrand in (2.9) as

Φ

(
(M + 1)

σ(z)

)
− Cρ(z)

σ3(z)
√
n
≥
(
C1(M)− C2√

n

)
. (2.10)

Putting the bound (2.10) in the estimate (2.9) we get the required probability (2.7) for
some absolute constant Ĉ.

P
(
|P
′

n(X1)| ≥ e
√
n|X1 ∈ Un

)
=

1

P(X1 ∈ Un)

∫
Un

(
C1(M)− C2√

n

)
dµ(z) ≥ Ĉ(M).

Lemma 2.7. (Bound on higher derivatives) Let {Xi}∞i=1 be a sequence of i.i.d. ran-
dom variables with law µ, supported on the closed unit disk and absolutely continuous
with respect to 2- dimensional Lebesgue measure. If there exists a constant C > 0, such

that E
[

1
|z−X1|

]
< C for all z ∈ D, then for any K ⊂ D with µ(K) > 0

E

[
1

k!

∣∣∣∣∣P (k)
n (X1)

P ′n(X1)

∣∣∣∣∣ ∣∣X1 ∈ K

]
≤
(
n− 1

k − 1

)
Ck−1, for k = 2, · · · , n. (2.11)
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Proof of Lemma 2.7. We write Pn(z) as Pn(z) = (z−X1)Qn(z), where Qn(z) :=
∏n

2 (z−
Xj), then differentiation yields,

P (k)
n (z) = kQ(k−1)

n (z) + (z −X1)Q(k)
n (z).

Putting z = X1 in the above equation, we get P (k)
n (X1)
P ′n(X1)

=
kQ(k−1)

n (X1)
Qn(X1)

. Since µ cannot have

atoms X1 is not a root of Qn(z) almost surely, therefore Q(k−1)
n (X1)
Qn(X1)

will have (n− 1)(n−

2)...
(
n − (k − 1)

)
many summands of the form

[
1

(X1−X2)...(X1−Xk)

]
. Here, we only care

about the number of summands because after conditioning on X1, all of them will have
the same expected value.

E

[
1

k!

∣∣∣∣∣P (k)
n (X1)

P ′n(X1)

∣∣∣∣∣ ∣∣X1 ∈ K

]

≤

∫
K

1

k!
E

(∣∣∣∣∣P (k)
n (X1)

P ′n(X1)

∣∣∣∣∣ ∣∣∣X1 = z

)
dµ(z)

µ(K)

≤

∫
K

k(n− 1)(n− 2)...(n− k + 1)

k!
E

(∣∣∣∣ 1

(z −X2)...(z −Xk)

∣∣∣∣) dµ(z)

µ(K)

≤
(
n− 1

k − 1

)∫
K

(
E

∣∣∣∣ 1

(z −X2)

∣∣∣∣)k−1 dµ(z)

µ(K)

≤
(
n− 1

k − 1

)
Ck−1,

where we got the last estimate using the hypothesis of the lemma.

We will need one last lemma from complex analysis which relates the number of
components of a polynomial lemniscate with the number of critical points with critical
value bigger or equal to 1.

Lemma 2.8. Let Qn(z), Λ(Qn) be as in (1.1), and {βj}n−1j=1 be the set of critical points of
Qn. Then,

C(Λ(Q)) = 1 + |{j : |Q(βj)| ≥ 1}| .

Proof of Lemma 2.8. Let us assume that C(Λ) = m, i.e. there are m many components
of the lemniscate. Let n1, ..., nm be the number of zeroes in each of the components.
We know that for a simple closed level curve of f(z), say C if f(z) is analytic up to the
boundary of C and has n zeroes inside C, then f ′(z) has (n− 1) zeros inside it. The proof
of this result can be found in [33], Proposition 3.55. Then the component containing ni
many zeroes will have (ni − 1) many critical points inside the component. Since all these
critical points are inside the lemniscate, all the critical values are strictly less than 1.
Therefore, the following algebraic manipulations yield the required equality.

|{j : |Q(βj)| ≥ 1}| = (n− 1)− |{j : |Q(βj)| < 1}|

= (n− 1)−
m∑
i=1

(ni − 1) = (m− 1).

3 Proof of Theorem 1.1

Lower bound: The proof of the lower bound in both theorems relies on estimating the
number of a specific type of isolated component called lonely component. We start by
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defining what we mean by a lonely component of a polynomial lemniscate. Let Qn(z) be
defined as in (1.1), then we say that a root zj forms a lonely component if there exists a
ball B containing zj such that,

zk /∈ B, ∀k 6= j

|Qn(z)| ≥ 1, ∀z ∈ ∂B.
(3.1)

The key observation here is that bounds on the derivatives at the root provide a sufficient
condition for a lonely component. Suppose for the root z1 there exists some r > 0, such
that the following holds,

|Q′n(z1) r2 | ≥ 1,∣∣∣Q(k)
n (z1)

rk

k!

Q′n(z1)
r
1!

∣∣∣ < 1
2n2 , for k = 2, ..., n

min
2≤j≤n

|z1 − zj | > r.

(3.2)

Then using Taylor series expansion of Qn(z) for z ∈ ∂B(z1, r) we get,

|Qn(z)| ≥
∣∣∣Q′n(z1)r

∣∣∣− n∑
k=2

∣∣∣∣Q(k)
n (z1)

rk

k!

∣∣∣∣
≥
∣∣∣Q′n(z1)r

∣∣∣(1−
n∑
k=2

|Q(k)
n (z1) r

k

k! |
|Q′n(z1) r1! |

)

≥
∣∣∣Q′n(z1)r

∣∣∣(1−
n∑
k=2

1

2n2

)
,

where we have used the second condition of (3.2) in the last step. Now using the fact(
1−

∑n
k=2

1
2n2

)
≥ 1

2 , along with the first condition of (3.2) we get

|Qn(z)| ≥
∣∣∣Q′n(z1)

r

2

∣∣∣ ≥ 1, (3.3)

which ensures that there is a connected component of the lemniscate inside the disk
B(z1, r).

We now define for each 1 ≤ i ≤ n, the event Li = {Xi forms a lonely component}.
Then it immediately follows that

E [C(Λn)] ≥ E

[
n∑
i=1

1Li

]
≥ nE [1Li ] ≥ nP (L1) .

Since the lonely roots are near the unit circle with high probability we only consider

roots lying in An :=
{
z : 1− 1√

n
< |z| < 1

}
.

E[C(Λn)] ≥ nP (L1|X1 ∈ An)P(X1 ∈ An) ≥
√
nP (L1|X1 ∈ An) . (3.4)

We now define the following events with rn = 1
n6 ,

G1 :=
{
|P ′n(X1)| ≥ e

√
n
}

Gk :=

{∣∣∣∣P (k)
n (X1)

rkn
k!

P ′n(X1)
rn
1!

∣∣∣∣ < 1
2n2

∣∣∣} , for k = 2, ..., n.

Gn+1 :=

{
min

2≤j≤n
|X1 −Xj | > 1

n6

}
.

(3.5)
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In the setting of (3.2), occurrence of the events (3.5) implies that X1 forms a lonely
component. Hence,

P (L1|X1 ∈ An) ≥ P
(
∩n+1
j=1Gj

∣∣X1 ∈ An
)
. (3.6)

Now we will estimate the conditional probabilities of G1, G2, ..., Gn+1 one by one. The
uniform probability measure on the unit disk satisfies the conditions (2.2) with M1 = 1

8 ,
M2 = 1, and ε = 2. Therefore, using Lemma 2.3 along with Lemma 2.6, we have

P (G1|X1 ∈ An) ≥ C1. (3.7)

Applying Lemma 2.7 with K = An, and the uniform moment bound from Lemma 2.4, we
get for k = 2, ..., n

E

(∣∣∣∣∣P
(k)
n (X1)

rkn
k!

P ′n(X1) rn1!

∣∣∣∣∣ ∣∣∣X1 ∈ An

)
≤ Ck−1

n4(k−1)
. (3.8)

With (3.8), using conditional Markov inequality we get,

P (Gck|X1 ∈ An) = P

(∣∣∣∣∣P
(k)
n (X1)

rkn
k!

P ′n(X1) rn1!

∣∣∣∣∣ ≥ 1

2n2

∣∣∣X1 ∈ An

)
≤ 1

n2(k−1)
. (3.9)

Lastly, Lemma 2.5 with t = 1
n6 , f(x) = x2, and C = 1 gives,

P (Gn+1|X1 ∈ An) ≥
(

1− 1

n12

)n−1
≥ 1− 1

n10
. (3.10)

Combining the estimates (3.7), (3.9), (3.10), we arrive at

P
(
∩n+1
j=1 Gj |X1 ∈ An

)
≥ P(G1|X1 ∈ An)− P

(
G1 ∩

(
∩n+1
k=2 Gk

)c|X1 ∈ An
)

≥ C1 − P
(
∪n+1
k=2

(
G1 ∩Gkc|X1 ∈ An

))
≥ C1 −

n+1∑
k=2

P
(
Gk

c|X1 ∈ An
)

≥ C1 −
1

n
, (3.11)

where we have used P(A ∩B) = P(A)− P(A ∩Bc) in the first step and the union bound
in the third step. Finally, putting (3.11) in (3.4) the required bound is obtained.

E[C(Λn)] ≥
√
nP (L1|X1 ∈ An) ≥

√
nP
(
∩n+1
j=1 Gj |X1 ∈ An

)
≥ C
√
n,

for some constant C > 0.
Upper bound: The proof of the upper bound uses Lemma 2.8 to relate the number

of components to certain critical points. We will take an indirect route to estimate the
number of such critical points via the roots. We say a root z1 of the polynomial Qn(z) is
good, if there exists r > 0 such that,

B (z1, r) ⊂ Λn,

min
2≤j≤n

|z1 − zj | > 3r,

∃ a unique critical point ξ ∈ B (z1, r) .

(3.12)
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Resembling the proof of lower bound, we first give a sufficient condition for the ball of
radius rn := 1

n3/4 around z1 to be inside the lemniscate. Assume the following holds,
0 < |Q′n(z1)| < e−

√
n,∣∣∣∣Q(k)

n (z1)
rkn
k!

Q′n(z1)
rn
1!

∣∣∣∣ < n2
(
n−1
k−1
) (

C
n3/4

)k−1
, 2 ≤ k ≤ n.

(3.13)

Then for z ∈ ∂B (z1, rn) and n large enough, using (3.13) we have,

|Qn(z)| ≤
∣∣∣Q′n(z1)

rn
1!

∣∣∣+

∣∣∣∣Q′′n(z1)
r2n
2!

∣∣∣∣+ ...+

∣∣∣∣Q(k)
n (z1)

rkn
k!

∣∣∣∣+ ...+

∣∣∣∣Q(n)
n (z1)

rnn
n!

∣∣∣∣
≤
∣∣∣Q′n(z1)rn

∣∣∣(1 +

n∑
k=2

|Q(k)
n (z1)

rkn
k! |

|Q′n(z1) rn1! |

)

≤
∣∣∣Q′n(z1)rn

∣∣∣(1 +

n∑
k=2

n2
(
n− 1

k − 1

)(
C

n3/4

)k−1)

≤ n2e−
√
n

(
1 +

C

n3/4

)n−1
≤ n2e−

√
neCn

1/4

< 1.

The maximum principle then ensures that the disk B(z1, r) is inside the lemniscate. Let us

now go back to the random setting and define the events Ti:=
{
Xi is a good root with r =

1
n3/4

}
. The conditions in (3.12) immediately imply that the number of good roots is less

than or equal to the number of critical points with a critical value less than 1, therefore,

E[C(Λn)] = n− E [{Number of critical points with critical value less than 1}] + 1

≤ n− E

[
n∑
1

1Ti

]
+ 1 ≤ n (1− P(T1)) + 1.

By concentration estimates, we expect that most of the good roots are within the region
{|z| < 1− 1√

n
}. Near the origin the Cauchy transform vanishes so pairing phenomena is

not strong enough (see [17]) so excluding a small ball around the origin we consider the
annulus Dn := {z : 3

n1/4 < |z| ≤ 1− 1√
n
} as the location of good roots. So we estimate

E[C(Λn)] ≤ n (1− P (T1|X1 ∈ Dn)P(X1 ∈ Dn)) + 1. (3.14)

Now let us define the events H1, ...,Hn+1 with rn := 1
n3/4 .

H1 :=
{∣∣∣P ′n(X1)

∣∣∣ < e−
√
n
2

}
,

Hk :=

{∣∣∣∣P (k)
n (X1)

rkn
k!

P ′n(X1)
rn
1!

∣∣∣∣ < n2
(
n−1
k−1
) (

C
n3/4

)k−1}
, for k = 2, ..., n.

Hn+1 :=

{
min

2≤j≤n
|X1 −Xj | > 3rn

}
,

Hn+2 :=
{
∃ a unique critical point ξ ∈ B (X1, rn)

}
.

(3.15)
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Notice that on the events (3.15), we have a good root. Therefore

P (T1|X1 ∈ Dn) ≥ P
(
∩n+2
j=1Hj |X1 ∈ Dn

)
. (3.16)

Next, we estimate the conditional probabilities of each of the events H1, ...,Hn+2. To
estimate the probability of the event H1 we require the following lemma.

Lemma 3.1. (Upper bound on the first derivative) Let {Xi}∞i=1 be a sequence of i.i.d.

uniform random variables in the open unit disk. Let Dn :=
{
z : 3

n1/4 < |z| ≤ 1− 1√
n

}
.

Then there exists a constant C > 0 such that,

P
(
|P
′

n(X1)| ≤ e−
√
n
2

∣∣X1 ∈ Dn

)
≥ 1− C√

n
. (3.17)

Proof of Lemma 3.1. This proof adopts a methodology similar to Lemma 2.6, but with
a slight variation. Instead of using a uniform bound for the integrand, we actually
perform the integration to achieve the desired inequality. We have

P
(∣∣P ′n(X1)

∣∣∣ ≥ e−√n2 ∣∣X1 ∈ Dn

)
= P

 n∏
j=2

|X1 −Xj | ≥ e−
√
n
2

∣∣∣X1 ∈ Dn


= P

 n∑
j=2

log |X1 −Xj | ≥ −
√
n

2

∣∣∣X1 ∈ Dn


=

1

P(X1 ∈ Dn)

∫
Dn

P

 n∑
j=2

log |z −Xj | ≥ −
√
n

2

 dµ(z).

(3.18)

Notice that, for z ∈ D the random variables {log |z −Xj |}n2 are i.i.d. with mean E[log |z −
Xj |] = 1−|z|2

2 , which is nothing but the logarithmic potential of µ at z. We use Bennett’s
inequality (2.2) after subtracting the mean in (3.18), with the uniform upper and lower
bounds of E

[
log |z −Xj |2

]
from Lemma 2.3 to obtain,

1

P(X1 ∈ Dn)

∫
Dn

P

 n∑
j=2

(log |z −Xj | − E [log |z −Xj |]) ≥
(n− 1)(1− |z|2)

2
−
√
n

2

 dµ(z)

≤ 1

P(X1 ∈ Dn)

∫
Dn

exp

(
−C1nh

(
(n− 1)(1− |z|2)−

√
n

2C2(n− 1)

))
dµ(z)

≤ 1

πP(X1 ∈ Dn)

∫
2π

0

∫
1− 1√

n

3

n1/4

exp

(
−C1nh

(
(n− 1)(1− r2)−

√
n

2C2(n− 1)

))
rdrdθ

≤ 2

P(X1 ∈ Dn)

∫
1− 1√

n

3

n1/4

exp

(
−C1nh

(
(n− 1)(1− r2)−

√
n

2C2(n− 1)

))
rdr. (3.19)

To estimate the integral we do a change of variables of (1− r2) = s in (3.19) and use the
fact that C3u

2 ≤ h(u) ≤ C4u
2, for all u ∈ [0, 1], for some constants C3, C4 > 0. Then (3.19)
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becomes

2

P(X1 ∈ Dn)

∫
1− 9√

n

2√
n
− 1
n

exp

(
−C1nh

(
(n− 1)s−

√
n

2C2(n− 1)

))
ds

≤ 2

P(X1 ∈ Dn)

∫
1

0

exp

(
−C1n

(
s− 1

2
√
n

)2
)
ds

≤ 2

P(X1 ∈ Dn)

∫ ∞

0

exp
(
−x2

) dx

C1
√
n

≤ C√
n
.

We finish the proof by taking the probability of the complementary event.

Using Lemma 3.1 above we deduce that,

P
(
H1

∣∣X1 ∈ Dn

)
= P

(∣∣∣P ′n(X1)
∣∣∣ < e−

√
n
2

∣∣∣X1 ∈ Dn

)
≥ 1− C1√

n
. (3.20)

Now we estimate P
(
Hk

∣∣X1 ∈ Dn

)
for 2 ≤ k ≤ n. By taking K = Dn in Lemma 2.7

and the uniform bound from Lemma 2.4, we arrive at

E

[∣∣∣∣∣P
(k)
n (X1)

rkn
k!

P ′n(X1) rn1!

∣∣∣∣∣
∣∣∣∣∣X1 ∈ Dn

]
≤
(
n− 1

k − 1

)(
C

n3/4

)k−1
. (3.21)

Now conditional Markov inequality along with (3.21) gives,

P
(
Hk

∣∣X1 ∈ Dn

)
= P

(∣∣∣∣∣P
(k)
n (X1)

rkn
k!

P ′n(X1) rn1!

∣∣∣∣∣ ≥ n2
(
n− 1

k − 1

)(
C

n3/4

)k−1 ∣∣∣X1 ∈ Dn

)
≤ 1

n2
. (3.22)

Using Lemma 2.5 with t = 1
n3/4 and f(x) = x2 we obtain,

P
(
Hn+1

∣∣X1 ∈ Dn

)
= P

(
min

2≤j≤n
|X1 −Xj | >

3

n3/4

∣∣∣X1 ∈ Dn

)

≥
(

1− 1

n3/2

)n−1
≥ 1− 2√

n
. (3.23)

Lastly, the probability bound for the event Hn+2 follows from the following lemma.

Lemma 3.2. (Distance between roots and critical points) Let {Xi}∞i=1 be a se-
quence of i.i.d. uniform random variables in the open unit disk. We define the random
polynomial Pn as in (1.2). Let Dn := {z : 3

n1/4 < |z| < 1− 1
n1/2 }, and rn = 1

n3/4 . Then

P
({
∃ a unique critical point ξ ∈ B (X1, rn)

}∣∣X1 ∈ Dn

)
≥ 1− C√

n
. (3.24)

Proof of Lemma 3.2. The proof can essentially be deduced from ideas in [17]. We first
condition on the location of X1 and rewrite the probability as

P
({
∃ a unique critical point ξ ∈ B (X1, rn)

}∣∣X1 ∈ Dn

)
=

∫
Dn

P
({
∃ a unique critical point ξ ∈ B (X1, rn)

}∣∣X1 = u
)
dµ(u). (3.25)
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Fixing u ∈ Dn we define the event

En(u) :=

{
sup

z∈∂B(u,rn)

∣∣∣∣∣ 1n P
′

n(z)

Pn(z)
− f(u)

∣∣∣∣∣ < |f(u)|

}
, (3.26)

where rn = 1
n3/4 and f(z) := E

[
1

z−X2

]
= z̄ is the Cauchy transform of the uniform

probability measure on D. On the event En(u), by Rouche’s theorem (c.f. [6], pp.125-

126) the difference between the number of zeros and critical points of P
′
n(z)
Pn(z)

on B(u, rn)

is same as the difference between the number of zeros and poles of the constant
function z 7→ f(u), which is zero. Now we define another event Fn(u) := {|X2 − u| >
3rn, ..., |Xn− u| > 3rn} which guarantees that there is only one root of Pn inside B(u, rn),
hence only one critical point inside B(u, rn). Following the idea of proof of Lemma 2.5
one can show that P(Fn(u)) ≥ 1− C√

n
, therefore,

P
({
∃ a unique critical point ξ ∈ B (u, rn)

})
≥ P (En(u) ∩ Fn(u)) ≥ P (En(u))− C√

n
.

(3.27)

Next, writing P
′
n(z)
Pn(z)

as sum of i.i.d random variables with mean f(z) in (3.26) we get,

P (En(u)) = P

{
sup

z∈∂B(u,rn)

∣∣∣∣∣ 1

n(z − u)
+

1

n

n∑
2

1

z −Xj
− f(u)

∣∣∣∣∣ < |f(u)|

}
.

Let z̃n be a sequence of complex numbers in B(u, rn) converging to u. Now adding and
subtracting 1

n

∑n
2

1
z̃n−Xj and f(z̃n) we bound the probability from below as

P (En(u)) ≥ P

(
sup

z∈∂B(u,rn)

∣∣∣∣ 1

n(z − u)

∣∣∣∣+ sup
z,z̃n∈B(u,rn)

∣∣∣∣∣ 1n
n∑
2

(
1

z −Xj
− 1

z̃n −Xj

)∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
2

1

z̃n −Xj
− f(z̃n)

∣∣∣∣∣+ |z̃n − u| < |f(u)|

)
. (3.28)

Notice that, max
{

supz∈∂B(u,rn)

∣∣∣ 1
n(z−u)

∣∣∣ , |z̃n − u|} ≤ 1
n1/4 i.e. the maximum of the first

and last term in (3.28) can be controlled by |f(u)|, where |f(u)| ≥ 3
n1/4 . Therefore by

triangle inequality, we get

|f(u)| − sup
z∈∂B(u,rn)

∣∣∣∣ 1

n(z − u)

∣∣∣∣− |z̃n − u| ≥ |f(u)|
3

. (3.29)

Plugging the estimate (3.29) in (3.28) we arrive at,

P (En(u)) ≥

P

(
sup

z,z̃n∈B(u,rn)

∣∣∣∣∣ 1n
n∑
2

(
1

z −Xj
− 1

z̃n −Xj

)∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
2

1

z̃n −Xj
− f(z̃n)

∣∣∣∣∣ < |f(u)|
3

)
.

(3.30)

Now taking complimentary events and using the fact that P(a+b > 2) ≤ P(a > 1)+P(b >
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1) we obtain,

P (En(u)) ≥ 1− P

(
sup

z,z̃n∈B(u,rn)

∣∣∣∣∣ 1n
n∑
2

(
1

z −Xj
− 1

z̃n −Xj

)∣∣∣∣∣ ≥ |f(u)|
6

)
︸ ︷︷ ︸

(I)

− P

(∣∣∣∣∣ 1n
n∑
2

1

z̃n −Xj
− f(z̃n)

∣∣∣∣∣ ≥ |f(u)|
6

)
︸ ︷︷ ︸

(II)

. (3.31)

To estimate (I), we first simplify it using the following change of variables z′ = z−u, z′′n =

z̃n − u,X
′

j = Xj − u to get

(I) = P

(
sup

z′,z′′n∈B(0,rn)

∣∣∣∣∣ 1n
n∑
2

(
(z′ − z′′n)

(z′ −X ′j)(z
′′
n −X

′
j)

)∣∣∣∣∣ ≥ |f(u)|
6

)

≤ P

(
sup

z′,z′′n∈B(0,rn)

2rn
n

∣∣∣∣∣
n∑
2

(
1

(z′ −X ′j)(z
′′
n −X

′
j)

)∣∣∣∣∣ ≥ |f(u)|
6

)
. (3.32)

Now using Markov inequality in (3.32) along with the estimates from the proof of
Lemma 5.9 in [17], (see in particular equation 5.29 and the paragraph above it), with
rn = sn = 1

n3/4 and an = 2rn
n , we get

(I) ≤ 6

|f(u)|
[
4nan (−2πC1 log(2sn)) + C24nan + 4nπs2nC3

]
≤ C

|f(u)|
√
n
. (3.33)

We next use the bound (5.40) in Lemma 5.11 from [17] with p = 1.5, ε = |f(u)|
6 and uniform

bounds on the moments from Lemma (2.4) to estimate (II).

(II) ≤ C

|f(u)|3/2
√
n

(
E

∣∣∣∣ 1

z̃n −X1

∣∣∣∣1.5 + |f(z̃n)|1.5
)
≤ C

|f(u)|3/2
√
n
. (3.34)

Now inserting (3.33), and (3.34), in (3.27) we obtain,

P
({
∃ a unique critical point ξ ∈ B (X1, rn)

}∣∣X1 ∈ Dn

)
≥
∫
Dn

(
1− C

|f(u)|3/2
√
n
− C

|f(u)|
√
n
− C√

n

)
dµ(u)

≥ 1− C√
n
− C1

∫ 1− 1√
n

1

n3/4

(
C

r3/2
√
n
− C

r
√
n

)
rdr

≥ 1− C√
n
.

Applying the union bound along with the estimates (3.20), (3.22), (3.23), and (3.25)
leads to

P (T1|X1 ∈ Dn) ≥ P
(
∩n+2
k=1Hk

∣∣X1 ∈ Dn

)
≥ 1−

n+2∑
k=1

P
(
Hk

c
∣∣X1 ∈ Dn

)
≥ 1− C√

n
. (3.35)

Feeding (3.35) into (3.14) the required upper bound is obtained.

E[C(Λn)] ≤ n (1− P (T1|X1 ∈ Dn)P(X1 ∈ Dn)) + 1

≤ n
(

1−
(

1− C√
n

)(
1− 2√

n

))
+ 1

≤ C2

√
n.
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4 Proof of Theorem 1.2

In a recent paper [20], Krishnapur, Lundberg, and Ramachandran have shown that
the polynomial lemniscate for roots chosen uniformly from the unit circle is a genuinely
random quantity in the sense that it converges in distribution to a sub-level set of a
certain Gaussian function. In contrast, the lemniscates associated to some other models
approaches a deterministic limit. For instance, lemniscates for polynomials with roots
chosen uniformly from the unit disk approaches the unit disk in Hausdorff distance.

Lower limit: The proof of the lower bound in this case follows the same strategy as
in the previous theorem. The definition of a lonely component remains unchanged,
and our focus lies on determining the number of such components. However, we

cannot follow the proof verbatim because in this case, E
[

1
|z−Xj |

]
= ∞. Therefore

we condition on the following event to bypass this problem. Let us define the event

A :=

{
min

2≤j≤n
|X1 −Xj | > 1

n3

}
, then by Lemma 2.5 with t = 1

n3 and f(x) = 2x, the

probability of the event A is

P(A) = P

(
min

2≤j≤n
|X1 −Xj | >

1

n3

)
≥ 1− 2

n2
. (4.1)

For 1 ≤ i ≤ n, let us define the events Si := {Xi forms a lonely component }. Then it
immediately follows that

E [C(Λn)] ≥ E

[
n∑
i=1

1Si

]
≥ nE [1Si ] ≥ nP (S1) ≥ nP (S1 ∩A) ≥ nP (S1|A)− 2

n
. (4.2)

Next, we define events F1, ...Fn+1 as follows.

F1 :=
{∣∣P ′n(X1)

∣∣ ≥ en1/2−ε
}
,

Fk :=

{∣∣∣P (k)
n (X1)

rkn
k!

P ′n(X1)
rn
1!

∣∣∣ < 1
2n2

}
, for k = 2, ..., n,

Fn+1 :=

{
min

2≤j≤n
|X1 −Xj | > 1

n6

}
.

(4.3)

From the calculations of (3.2) and (3.3) it follows that on the events (4.3), we have a
lonely component. Hence

P (S1|A) ≥ P
(
∩n+1
j=1Fj |A

)
. (4.4)

As before we will calculate the conditional probability of the events Fj . Taking logarithms
and using Theorem 2.1 (Berry-Esseen) as done in Lemma 2.6, along with uniform bounds
on the moments from Lemma 2.3 one can show

P (F1) = P
(
|P
′

n(X1)| ≥ en
1/2−ε

)
≥ 1

2
− Ĉ

nε
. (4.5)

Now using (4.1) and (4.5) with the fact that P(A ∩B) ≥ P(A)− P(Bc) we get

P
(
F1

∣∣A) =
P (F1 ∩A)

P(A)
≥ P (F1 ∩A) ≥ P

(
|P
′

n(X1)| ≥ en
1/2−ε

)
− 1

n2
≥ 1

2
− Ĉ

nε
.
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Notice that, for 2 ≤ k ≤ n, on the event A, we have∣∣∣∣∣P
(k)
n (X1)

rkn
k!

P ′n(X1) rn1!

∣∣∣∣∣ ≤ 1

n6(k−1)k!

∑
i1,...,ik−1

1

|X1 −Xi1 |...|X1 −Xk−1|

≤ 1

n6(k−1)k!

∑
i1,...,ik−1

n3(k−1)

≤ k(n− 1)(n− 2)...(n− k + 1)n3(k−1)

n6(k−1)k!

≤ 1

2n2
.

Therefore, P(Fk ∩A) = P(A) and as a result for 2 ≤ k ≤ n, we have P(Fk|A) = 1. Since
A ⊂ Fn+1, we get the conditional probability P(Fn+1|A) = 1. Now using these bounds
in (4.2) we obtain,

E [C(Λn)] ≥ nP (S1|A)− 2

n
≥ n

2
− Cn1−ε

=⇒ lim inf
n→∞

E [C(Λn)]

n
≥ 1

2
.

Upper limit: The pairing of zeros and critical points does not occur in general if the
law of the random variable does not have a density. Therefore when µ is the uniform
probability measure on S1, we can not proceed by exploiting the pairing result. We
prove the upper limit by showing the number of components having less than nε roots
is approximately n

2 . Let Ck(Λn) denote the number of components containing exactly k
roots. Then it immediately follows that

n∑
1

Ck(Λn) = C(Λn), (4.6)

n∑
1

kCk(Λn) = n. (4.7)

For i = 1, ..., n, fix an ε > 0 small and define the events Di :=
{

There are at least nε/2

many roots inside the component containing the root Xi

}
. Now we claim that,

C(Λn) ≤ n−
n∑
1

1Di +
∑

k≥nε/2
Ck(Λn). (4.8)

Substituting (4.6) and (4.7) in (4.8), we see that to establish the claim it suffices to show
the following

n∑
1

1Di ≤
∑

k<nε/2

(k − 1)Ck(Λn) +
∑

k≥nε/2
kCk(Λn) (4.9)

Since the first sum on the R.H.S. of (4.9) is non-negative, the claim would be proved if
we show

n∑
1

1Di ≤
∑

k≥nε/2
kCk(Λn). (4.10)

Now a moment’s thought convinces us that (4.10) follows simply from the definitions of
Di and Ck(Λn).
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Since the total number of roots is n, we can obtain a bound on the rightmost term of
(4.8) in the following way.

n =
∑

k<nε/2

kCk(Λn) +
∑

k≥nε/2
kCk(Λn) ≥

∑
k≥nε/2

kCk(Λn)

=⇒ n1−ε/2 ≥
∑

k≥nε/2
Ck(Λn). (4.11)

After putting the estimate (4.10) and taking expectation in both sides of (4.8) we arrive
at,

E[C(Λn)] ≤ n− nP(D1) + n1−ε/2. (4.12)

To calculate the probability of the event D1, let us first calculate the probability of having
at least nε/2 roots in the ball B(rX1, r̃), where r := 1 − 1

n1−ε , r̃ := 2
n1−ε . For i = 2, ..., n,

define the events Ti := {Xi ∈ B(rX1, r̃)}, then by the Paley-Zygmund inequality,

P

(
n∑
2

1Ti ≥ nε/2
)
≥
(

1− nε/2

E [
∑n

2 1Ti ]

)2
E [
∑n

2 1Ti ]
2

E [|
∑n

2 1Ti |2]
. (4.13)

Using the rotation invariance of the measure we get,

P (Xi ∈ B (rX1, r̃)) =

∫ 2π

0

P
(
Xi ∈ B(rX1, r̃)

∣∣X1 = eiφ
) dφ

2π
= P (Xi ∈ B(r, r̃)) .

Let us assume that B(r, r̃) intersects the unit circle at points W1,W2 and the angle
subtended at the origin divided by 2π is θ. That is, 1

2π∠OW1W2 = θ, where O is the
origin. Then it is easy to see that P(Xj ∈ B(rX1, r̃)) = θ and P(Xj , Xk ∈ B(rX1, r̃)) = θ2,
for all j, k 6= 1. Then

E

[
n∑
2

1Ti

]
= (n− 1)θ, (4.14)

E

( n∑
2

1Ti

)2
 = (n− 1)θ + (n− 2)(n− 1)θ2. (4.15)

Equation (4.14) and (4.15) along with Bernoulli’s inequality yields,

E [
∑n

2 1Ti ]
2

E [|
∑n

2 1Ti |2]
=

(n− 1)2θ2

(n− 1)θ + (n− 2)(n− 1)θ2
≥ 1− 1

θ(n− 1)
≥ 1− C

nε
, (4.16)

where we got the last inequality using elementary geometry in the following way. For n
large, sin

(
θ
4

)
≥ C

n1−ε , utilizing this, we bound (n− 1)θ as

(n− 1)θ ≥ 4(n− 1) sin

(
θ

4

)
≥ Cnε.

Plugging the bound (4.16) in (4.13) we have,

P

(
n∑
2

1Ti ≥ nε/2
)
≥
(

1− nε/2

E [
∑n

2 1Ti ]

)2(
1− C

nε

)
≥
(

1− C

nε/2

)
. (4.17)

If the ball B(rX1, r̃) is inside the lemniscate and there are at least nε/2 roots inside the
ball B(rX1, r̃), then the connected component containing X1 must have at least nε/2

roots inside it. Now all we need is to estimate the probability that the ball B(rX1, r̃) is
inside the lemniscate, which follows from the next lemma.
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Lemma 4.1. Let {Xi}∞i=1 be a sequence of i.i.d. random variables which are uniformly
distributed on the unit circle. Fix ε ∈ (0, 14 ) and define r := 1 − 1

n1−ε , r̃ := 2
n1−ε . Then

there exists a constant C > 0, such that,

P (B(rX1, r̃) ⊂ Λn) ≥ 1

2
− C

nε
(4.18)

Proof of Lemma 4.1. Define Q̃n(z) := Qn(z)
(z−z1) and assume that for some r1, r̃1 the fol-

lowing is satisfied.

4r̃1 < 1,

|Q̃n(r1z1)| ≤ exp
(
−n 1

2−ε
)
,∣∣∣ Q̃(k)

n (r1z1)r̃1
k

Q̃n(r1z1)

∣∣∣ ≤ n√(n− 1)...(n− k)
(

4
n1−ε

)k/2
, k ≥ 1.

(4.19)

Then for z ∈ ∂B(r1z1, r̃) and n large, we have,

|Qn(z)| = |z − z1||Q̃n(z)|

≤ 2r̃

(
|Q̃n(r1z1)|+

∣∣∣∣Q̃′n(r1z1)
r̃1
1!

∣∣∣∣+ . . .

∣∣∣∣∣ Q̃(k)
n (r1z1)r̃1

k

k!

∣∣∣∣∣ · · ·+
∣∣∣∣∣ Q̃(n−1)

n (r1z1)r̃1
(n−1)

(n− 1)!

∣∣∣∣∣
)

≤ |Q̃n(r1z1)|

(
1 +

n−1∑
k=1

∣∣∣∣∣ Q̃kn(r1z1)

Q̃n(r1z1)

r̃k

k!

∣∣∣∣∣
)

≤ exp
(
−n 1

2−ε
)(

1 +

n−1∑
k=1

n
√

(n− 1)...(n− k)

k!

(
4

n1−ε

)k/2)
,

where we got the last line using (4.19). Now taking n common in the parentheses above
and using the Cauchy–Schwarz inequality one has,

≤ n exp
(
−n 1

2−ε
)(

1 +

n−1∑
k=1

(
n− 1

k

)(
1

n1/2+ε/2

)k)1/2(
1 +

n−1∑
k=1

1

k!

(
4

n1/2−3/2ε

)k)1/2

≤ n exp
(
−n 1

2−ε
)(

1 +

n−1∑
k=1

(
n− 1

k

)(
1

n1/2+ε/2

)k)1/2(
1 +

∞∑
k=1

1

k!

(
4

n1/2−3/2ε

)k)1/2

≤ n exp
(
−n 1

2−ε
)(

1 +

(
1

n1/2+ε/2

)) (n−1)
2

exp
(

2n−1/2+3/2ε
)

≤ n exp
(
−n 1

2−ε
)

exp
(
n

1
2−ε/2

)
exp

(
2n−1/2+3/2ε

)
< 1.

This ensures that the disk B(z1, r) is inside the lemniscate. Now with r := 1 − 1
n1−ε ,

r̃ := 2
n1−ε and defining P̃n similarly to Q̃n, we define the following events,
G1 := |P̃n(rX1)| ≤ exp

(
−n 1

2−ε
)

Gk :=
∣∣∣ P̃ (k)

n (rX1)r̃
k

P̃n(rX1)

∣∣∣ ≤ n√(n− 1)...(n− k)
(

4
n1−ε

)k/2
, for k = 2, ..., n.

(4.20)
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By the conditions in (4.19) it immediately follows that,

P (B(rX1, r̃) ⊂ Λn) ≥ P (∩n1Gk) . (4.21)

Let us calculate the probabilities of the events G1, ...,Gn individually. To estimate P (G1),
we take logarithm, use the fact that the mean of this random variable is 0, and apply the
Berry-Esseen Theorem (2.1) as done in Lemma 2.6 (note that, one can not use Lemma 2.3
directly in this case. However, using similar ideas one can show uniform upper and lower
bounds on log moments). Then it follows that for some constant C1,

P (G1) ≥ 1

2
− C1

nε
. (4.22)

For the events Gk, we use Chebyshev’s inequality to obtain,

P

(∣∣∣∣∣ P̃ (k)
n (rX1)r̃k

P̃n(rX1)

∣∣∣∣∣ ≥ n√(n− 1)...(n− k)

(
4

n1−ε

)k/2)

≤ 1

n2(n− 1)...(n− k)

(
n1−ε

4

)k
r̃2kE

∣∣∣∣∣ P̃ (k)
n (rX1)

P̃n(rX1)

∣∣∣∣∣
2
 .
(4.23)

We estimate E

[∣∣∣ P̃ (k)
n (rX1)

P̃n(rX1)

∣∣∣2] using the following facts

E

[
1

z −X1

]
= 0, ∀z ∈ D, (4.24)

E

[
1

|r −X1|2

]
=

1

1− r2
. (4.25)

The identity (4.24) follows from the Cauchy integral formula, and (4.25) follows using
standard integration techniques.

E

∣∣∣∣∣ P̃ (k)
n (rX1)

P̃n(rX1)

∣∣∣∣∣
2
 = E


∣∣∣∣∣∣

∑
2≤i1<i2<...<ik≤n

1

(rX1 −Xi1)...(rX1 −Xik)

∣∣∣∣∣∣
2


=E

 ∑
2≤i1<...<ik≤n

1

(rX1 −Xi1)...(rX1 −Xik)

∑
2≤j1<...<jk≤n

1

(rX1 −Xj1)...(rX1 −Xjk)


=

1

2π

∫
2π

0

E

 ∑
2≤i1<...<ik≤n

1

(reiθ −Xi1)...(reiθ −Xik)

×
∑

2≤j1<...<jk≤n

1

(reiθ −Xj1)...(reiθ −Xjk)

 dθ
=E

 ∑
2≤i1<...<ik≤n

1

(r −Xi1)...(r −Xik)

∑
2≤j1<...<jk≤n

1

(r −Xj1)...(r −Xjk)


Notice that by the independence of the random variables, and identity (4.24), the cross
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terms will vanish. We estimate the remaining terms using (4.25) in the following way.

E

∣∣∣∣∣ P̃ (k)
n (rX1)

P̃n(rX1)

∣∣∣∣∣
2
 =E

 ∑
2≤i1<...<ik≤n

1

|r −Xi1 |2...|r −Xik |2


=(n− 1)...(n− k)E

[
1

|r −X1|2

]k
≤(n− 1)...(n− k)(1− r2)−k ≤ (n− 1)...(n− k)nk(1−ε), (4.26)

where we got the last line using the fact that 1 − r2 ≥ 1
n1−ε , by our choice of r. Now

plugging the bound (4.26) in (4.23) and taking the complementary events we get,

P

(∣∣∣∣∣ P̃ (k)
n (rX1)r̃k

P̃n(rX1)

∣∣∣∣∣ ≤ n√(n− 1)...(n− k)

(
4

n1−ε

)k/2)
≥ 1− 1

n2
. (4.27)

Making use of (4.27) and (4.22) in (4.21) we arrive at the required probability.

P (B(rX1, r̃) ⊂ Λn) ≥ P (G1)− P (G1 ∩ (∩n2Gk)
c
)

≥ 1

2
− C1

nε
−

n∑
2

1

n2

≥ 1

2
− C

nε
.

Then using the bound (4.18) in Lemma 4.1 and (4.17) we get the required probability.

P(D1) ≥ P

({
n∑
2

1Ti ≥ nε/2
}⋂{

B(rX1, r̃) ⊂ Λn

})

≥ 1

2
− C

nε
− 2C

nε/2
≥ 1

2
− C

nε/2
. (4.28)

Now setting (4.28) in (4.12) and taking the limsup we get the asymptotic upper bound,
i.e,

lim sup
n→∞

E[C(Λn)]

n
≤ lim sup

n→∞

1

n

[
n− n

(
1

2
− C

nε/2

)
+ n1−ε/2

]
≤ 1

2
.
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