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Abstract

We consider the strongly connected components (SCCs) of a uniform directed graph on
n vertices with i.i.d. in- and out-degree pairs distributed as (D−, D+), with E[D+] =

E[D−] = µ, conditioned on equal total in- and out-degree. A phase transition for
the emergence of a giant SCC is known to occur when E[D−D+] is at the critical
value µ. We study the model at this critical value and, additionally, require E[(D−)3],
E[(D+)3], E[D−(D+)3] and E[(D−)3D+] to be finite. Under these conditions, we
show that the SCCs ranked by decreasing number of edges with distances rescaled
by n−1/3 converge in distribution to a sequence of finite strongly connected directed
multigraphs with edge lengths, and that these are either 3-regular or loops. The limit
objects lie in a 3-parameter family, which contains the scaling limit of the SCCs in the
directed Erdős-Rényi model at criticality as found by Goldschmidt and Stephenson
(2019). This is the first universality result for the scaling limit of a critical directed
graph model and the first quantitative result on the directed configuration model at
criticality. As a direct consequence, the largest SCCs at criticality contain Θ(n1/3)

vertices and edges in probability, and the diameter of the directed graph at criticality
is Ω(n1/3) in probability. We use a metric on the space of weighted multigraphs in
which two multigraphs are close if there are compatible isomorphisms between their
vertex and edge sets which roughly preserve the edge lengths. The topology used is
the product topology on the sequence of multigraphs. Our method of proof involves
a depth-first exploration of the directed graph, resulting in a spanning forest with
additional identifications, of which we study the limit under rescaling.
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Universality for the directed configuration model

Figure 1: A directed graph on [17]. The strongly connected components have vertex sets
{1, 2, 5, 17}, {3, 6, 8, 9, 14, 16}, {7, 11}, {4}, {10}, {12}, {13}, and {15}. Edges that are not
part of an SCC are depicted as dashed arrows. Taken from [25] with permission of the
authors.

1 Introduction

1.1 Overview

Edges in real-world networks are often directed, such as links on the world wide web,
“follows” on Twitter, financial transactions or disease transmission in a social network.
When analysing networks, the first quantity that is often considered is the distribution of
the degrees of nodes in the network. In this paper we will consider sampling an i.i.d.
sequence of in- and out-degrees, conditional on the total in-degree being equal to the
total out-degree. We will then sample a uniform directed graph (digraph) with the given
degree sequence. Results on such graphs are a useful benchmark, exposing additional
underlying structure of a real-world network compared to a uniformly random graph
with its degree sequence.

When considering such models, previous work by Cooper and Frieze [15] (which we
will discuss in more detail in Section 1.6) shows that there exists a phase transition in
the strong directed connectivity of the graph. Two vertices are part of the same strongly
connected component (SCC) if and only if there exists a directed cycle that contains
both of them. Above some threshold, there will exist a unique giant SCC that occupies
a positive proportion of the vertices, whereas below the threshold no SCC will occupy
a positive proportion of the vertices. In Figure 1, a directed graph and its strongly
connected components are depicted. In this paper we will prove the first detailed results
about the critical case – specifically, that there exists a sequence of random weighted
directed multigraphs that can be understood as the scaling limit of the SCCs when
viewed in decreasing order of size.

1.2 Directed graphs

There are two notions of connectivity when working with a directed graph: weak
and strong connectivity. We will be working with the strong notion. We say a vertex
v leads to a vertex w, written v → w, if there exists a directed path from v to w in the
graph. We say v is strongly connected to w, written v ↔ w, if v leads to w and w leads to
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Universality for the directed configuration model

Figure 2: An edge (v, w) will be depicted as an arrow from v to w.

v. By convention, v leads to itself. A graph is strongly connected if all pairs of vertices
in the graph are strongly connected. The relation v ↔ w is an equivalence relation;
the digraphs induced by the equivalence classes of ↔ are referred to as the strongly
connected components (SCCs). For each vertex v in a directed graph ~G, we will use
the notation d−(v) for the in-degree of v and d+(v) for the out-degree of v. Moreover, a
directed edge (v, w) has tail v and head w (see Figure 2).

1.3 Description of the model

First consider a deterministic degree sequence d1, . . . ,dn where di = (d−i , d
+
i ) ∈

N×N for i = 1, . . . , n. We say a directed graph with vertex set [n], where [n] = {1, . . . , n},
has degree sequence d1, . . . ,dn if (d−(i), d+(i)) = (d−i , d

+
i ) for i = 1, . . . , n.

In order to sample a uniformly random graph with a given degree sequence, we
first consider the directed configuration model introduced by Cooper and Frieze [15].
Take n vertices v1, . . . , vn such that vi has d−i in-half-edges and d+

i out-half-edges. Then
construct a multigraph by choosing a uniformly random pairing of the in-half-edges with
the out-half-edges. Cooper and Frieze [15, Sec. 2.1] proved that if we condition on the
resulting multigraph being simple, we obtain a uniformly chosen random digraph with
the given degree sequence.

In this paper we will consider the case where the degree sequence consists of n i.i.d.
random variables conditioned on the total in-degree being equal to the total out-degree.
Let ν be a distribution on N × N, and let D1, . . . ,Dn be a sequence of i.i.d. random
variables with distribution ν. We condition on the event{∑n

i=1D
−
i =

∑n
i=1D

+
i

}
,

observing that this is an asymptotically singular event as n → ∞. We also condition
on the existence of a digraph with the degree sequence. Let ~Gn(ν) be a digraph
chosen uniformly at random from all digraphs with degree sequence D1, . . . ,Dn. We are
interested in the limit under rescaling of the SCCs of ~Gn(ν) as n→∞.

Suppose (D−, D+) has law ν. We will require the following assumptions to hold:

1. E[(D−)3], E[(D+)3], E[D+(D−)3] and E[(D+)3D−] are all finite.

2. E[D−] = E[D+].

3. D− −D+ is strongly aperiodic. This means that for all p > 1, there does not exist
k ∈ Z such that

P(D− −D+ ∈ k + pZ) = 1.

4. E[D−D+] = E[D−] or E[D−D+] = E[D+], where both statements are equivalent
supposing the second condition holds.

The first condition is required to ensure that the steps of a random walk used in the
proof have finite variance, so that the random walk will convergence under rescaling
to a Brownian motion. It also ensures similar regularity of other random variables
that we use to encode the directed graph. (We discuss relaxing the moment conditions
in Section 6.)

The second and third conditions make sure the event {
∑n
i=1D

−
i =

∑n
i=1D

+
i } is well-

behaved. The second condition ensures that it is not a large deviation event. Using a
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Universality for the directed configuration model

result from Spitzer [38, Page 42, P1], the third condition ensures that the event has
positive probability for all sufficiently large n ≥ 1. This condition can be relaxed to
assuming that D− −D+ is non-constant by taking limits for n ∈ pN rather than n ∈ N
where p is the periodicity of D− −D+. However, for simplicity of presentation, we will
keep it as an assumption.

The fourth assumption is the criticality condition. To understand how this arises,
consider the directed configuration model and let (Vn,Wn) be a uniformly chosen edge.
For now, ignore the conditioning on the total in- and out-degrees being equal. We
consider the distribution of the in- and out-degree of Wn. Because the degree sequence
is an i.i.d. sequence, Wn is equally likely to be any vertex i. Further, as (Vn,Wn) is an
in-edge of Wn, Wn must have positive in-degree. Thus for any k = (k−, k+) with k− > 0,

P(d−(Wn) = k−, d+(Wn) = k+) = nP(Wn = 1,D1 = k)

= nE[P(Wn = 1 | D1 = k,D2, . . . ,Dn)]P(D1 = k)

Conditionally on the degree sequence, we have that Wn = i with probability proportional
to D−i since we used an uniform pairing of the in- and out-half-edges. Therefore

P(Wn = 1 | D1 = k,D2, . . . ,Dn) =
k−

k− +
∑n
i=2D

−
i

.

Thus

P(d−(Wn) = k−, d+(Wn) = k+) = E

[
k−

1
n

(
k− +

∑n
i=2D

−
i

)]P [D− = k−, D+ = k+
]
.

We claim that the above will converge to

k−

E[D−]
P
[
D− = k−, D+ = k+

]
. (1.1)

Indeed, the expression in the expectation converges in probability to k−/E[D−] by
the weak law of large numbers, and has uniformly bounded second moment. Then,
convergence in expectation follows.

Let (Z−, Z+) be such that P (Z− = k−, Z+ = k+) is given by (1.1). We say (Z−, Z+)

has the law of the degree distribution size-biased by in-degree. For large n, any fixed
out-edge of Wn is then also distributed approximately like a uniformly chosen edge (here
we are ignoring the fact that we have already sampled an edge) since we chose the
in- and out-edge pairing uniformly at random. Therefore the out-degree of the head
will have approximately the same distribution as Z+. Thus if we were to look at the
graph of all vertices leading from Wn, it would look approximately like a Bienaymé tree1

with offspring distribution Z+. It is well known that, at E[Z+] = 1, such trees exhibit
critical behaviour in whether or not the tree is finite. This is equivalent to assuming
E[D−D+] = E[D−].

Cooper and Frieze [15] studied this phase transition for a deterministic degree
sequence d1, . . . ,dn. They defined the parameter

d =

∑n
i=1 d

+
i d
−
i∑n

i=1 d
−
i

which is a counterpart of E[Z+] for deterministic degree sequences. They then showed
that, under additional assumptions, there exists a phase transition for the existence of a

1For µ a probability distribution on N, a Bienaymé tree with offspring distribution µ is the family tree of a
branching process with offspring distribution µ. Bienaymé trees are often referred to as Galton–Watson trees,
but we decide to follow the name change suggested by Addario-Berry et al. [1].
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giant SCC depending on whether d is strictly greater than or less than 1. Our work in
this paper shows our corresponding condition, E[Z+] = 1, is also the correct criticality
condition to take for random degree sequences.

We define the following parameters that will determine the behaviour of the SCCs in
the limit.

1. µ := E[D−] = E[D+] = E[D−D+]

2. ν− := E[Z−]− 1 = E[(D−)2]−µ
µ > 0

3. σ2
− := Var(Z−) = µE[(D−)3]−E[(D−)2]2

µ2

4. σ2
+ := Var(Z+) = E[D−(D+)2]−µ

µ

5. σ−+ := Cov(Z−, Z+) = E[(D−)2D+]−E[(D−)2]
µ

1.4 Metric directed multigraphs and kernels

Figure 3: The largest SCCs from samples of a directed configuration model with inde-
pendent Poisson(1) in- and out-degrees.

Figure 3 shows the largest SCCs from samples of a directed configuration model.
As can be seen, while the lengths of paths in the SCCs are long, the actual structure
of the SCCs is often quite simple. Previous work by Goldschmidt and Stephenson
[25] that studies the directed Erdős-Rényi graph formalised this using metric directed
multigraphs (MDMs), and we follow the same approach. These are simply weighted
directed multigraphs, but in our context it is more appropriate to think of the weights
as lengths, which motivates the change in naming. Formally, a directed multigraph is a
triple (V,E, r) where

1. V is a set of vertices,

2. E is a set of edges, and

3. r : E → V × V is a function mapping each edge to its head and tail ; associated
with r are two functions r1 : E → V and r2 : E → V such that

r(e) = (r1(e), r2(e))

for all e ∈ E. r1(e) is the tail of the edge e and r2(e) is the head of the edge e.

Then a metric directed multigraph (MDM) is a tuple M = (V,E, r, l) where (V,E, r) is
a directed multigraph and l : E → [0,∞). Let L denote the MDM consisting of a single
vertex with a self-loop of length 0.
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An isomorphism between two MDMs M = (V,E, r, l) and M ′ = (V ′, E′, r′, l′) is a pair
of functions (iV , iE) where iV : V → V ′ and iE : E → E′ are bijections satisfying the
relation

r′(iE(e)) = (iV (r1(e)), iV (r2(e)))

for all e ∈ E. We say two MDMs are isomorphic if there exists an isomorphism between
them. In other words, isomorphic MDMs have the same graph structures for their
underlying directed multigraphs up to a relabelling of the edges and vertices. Write
Iso(M,M ′) for the set of all isomorphisms between M and M ′.

We now define a distance d~G between two MDMs M and M ′. Any isomorphism
between M and M ′ gives a correspondence between the edges of M and the edges of
M ′. We can then take an `∞ distance between the lengths of the edges and finally take
the isomorphism which minimizes this distance. If M and M ′ are not isomorphic, we set
the distance to be infinite. Formally,

d~G(M,M ′) =

{
inf(iV ,iE)∈Iso(M,M ′) supe∈E |l(e)− l′(iE(e))| if M and M ′ are isomorphic,

∞ otherwise.

Consider an MDM M and a vertex w ∈M with in-degree 1 and out-degree 1 which is not
a self-loop. Let u and v be the unique in-neighbour and out-neighbour of w respectively.
The MDM obtained by smoothing w is obtained by deleting the edges e1 and e2 such
that r(e1) = (u,w) and r(e2) = (w, v), then adding an edge e such that r(e) = (u, v) and
assigning it length l(e) = l(e1) + l(e2). This is illustrated in Figure 4.

(a) The graph before smoothing w. (b) The graph after smoothing w.

Figure 4: Smoothing a vertex w.

Then the kernel of a digraph ~G is obtained by doing the following:

1. Assign length 1 to each edge.
2. Iteratively smooth vertices with in-degree 1 and out-degree 1 that are not self-loops

until there are none remaining.
3. Replace all singletons by L.

An example is shown in Figure 5. We expect the graph structure of kernels of SCCs in
the critical window to remain finite, whereas the lengths assigned to edges will tend to
infinity.

1.5 Our results

For M an MDM and c ∈ (0,∞), let cM be equal to M with all lengths multiplied by
c. Let Ci(n) for i ≥ 1 be the kernels of the SCCs of ~Gn(ν), listed in decreasing order of
number of edges, breaking ties arbitrarily. Complete the list with an infinite repeat of L.
Then, our main theorem is as follows.

Theorem 1.1. There exists a random sequence C = (Ci, i ∈ N) of strongly connected
MDMs such that (

n−1/3Ci(n), i ∈ N
)

(d)−−→ (Ci, i ∈ N)

as n→∞, with respect to the product d~G-topology. The law of C = (Ci, i ∈ N) depends
only on the parameters µ, σ+, and (σ−+ + ν−)/µ. Further, for each i ≥ 1, Ci is either
3-regular or a loop.
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(a) ~G. (b) Kernel of ~G.

Figure 5: An example of a digraph ~G and its kernel. The numbers indicate the edge
lengths.

We will describe the limit object and some of its further properties in Subsection 2.2.
The law of the limit of the critical Erdős–Rényi model as studied by Goldschmidt and

Stephenson [25] is a special case of these limit objects (though [25] explores the entire
critical window which is not a special case). This is the content of the following corollary.
The directed Erdős–Rényi model on n vertices with parameter p, denoted by ~G(n, p), is a
random digraph with vertex set [n] in which each of the n(n− 1) possible directed edges
is included with probability p independently. The cases p = (1 + λn−1/3)/n for λ ∈ R are
referred to as the critical window, and the case p = 1/n is called criticality.

Note however that their result holds in a stronger topology: they use an `1-like
topology on the space of sequences of MDMs, whereas we show our result in the product
topology. Due to this, it is important in their paper to consider singletons as loops
of length zero. For any fixed k, the kth largest SCC will not be a singleton with high
probability as n→∞. Therefore, no component of the limiting object will be a singleton
and thus they need to pad their SCCs by L and consider the kernel of singletons to be L,
to prevent the `1-distance, as defined by d~G, between

(
n−1/3Ci(n), i ∈ N

)
and (Ci, i ∈ N)

being infinite. We follow the same convention.

Theorem 1.2. Consider ~Gn(ν), with ν such that

µ = σ+ = σ−+ + ν− = 1.

Let (Cνi (n), i ≥ 1) be the kernels of the SCCs of ~Gn(ν). Furthermore, let (CERi (n), i ≥ 1)

be the kernels of the SCCs of ~G(n, 1/n). Then(
n−1/3Cνi (n), i ∈ N

)
and

(
n−1/3CERi (n), i ∈ N

)
have the same limit in distribution in the product-d~G-topology as n→∞.

Note that the condition in Theorem 1.2 is satisfied by ν(k−, k+) = ν1(k−)ν2(k+), with
ν1 and ν2 the law of a Poisson(1) random variable.

Moreover, Theorem 1.1 has the following immediate corollaries, which were previ-
ously unknown.

Corollary 1.3. Let Ein and V in be the number of edges and vertices in Ci(n) respectively,
both appended with infinite repeats of 0. Then there exists a random sequence (Ei, i ∈
N) ∈ RN+, such that (

n−1/3Eni , n
−1/3V ni , i ∈ N

)
(d)−−→ (Ei, Ei, i ∈ N)
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as n→∞ in the product topology on (R2)N.

In particular, note that, in the above corollary, the number of vertices and number of
edges have the exact same scaling limit.

Corollary 1.4. For v, w ∈ ~Gn(ν) such that v → w, let d(v, w) denote the length of the
shortest directed path from v to w, and let

Diam
(
~Gn(ν)

)
= max
v,w∈V

{d(v, w) : v → w}

be the diameter of ~Gn(ν). Then, for any ε > 0, there is a δ > 0 such that

P
(
n−1/3 Diam

(
~Gn(ν)

)
> δ
)
> 1− ε

for all n large enough. Equivalently, Diam
(
~Gn(ν)

)
= Ωp(n

1/3).

1.6 Previous work

The configuration model was introduced by Bollobás [7] to sample a uniformly random
undirected graph with a given degree sequence. (For a discussion of the configuration
model and proofs of standard results, we refer the reader to [39, Chapter 7].)

Most results on the configuration model are proved for models with a deterministic
degree sequence. The phase transition for the undirected setting was shown in [32, 33,
27]. The law of component sizes at criticality and in the critical window were obtained
by Riordan [35] under the assumption that the degrees are bounded. Dhara, van der
Hofstad, van Leeuwaarden and Sen showed convergence of the size and surplus edges
in the critical window with a finite third moment [18] and in the heavy-tailed regime
[19]. Bhamidi, Dhara, van der Hofstad and Sen obtained metric space convergence in
the critical window in [5], a result that the authors later improved to a stronger topology
in [4].

Configuration models with a random degree sequence are considered in [28], [14],
and [20]. Joseph [28] showed convergence of the component sizes and surpluses of the
large components under rescaling at criticality, both for degree distributions with finite
third moments and for the heavy-tailed regime. Conchon–Kerjan and Goldschmidt [14]
show Gromov-Hausdorff-Prokhorov convergence of the rescaled components ordered by
decreasing size at criticality in these two regimes. The results in [14] in the heavy-tailed
regime are extended to the critical window by the first author in [20]. Our techniques
are closely related to the techniques introduced in [14].

Some results have been obtained for other directed graph models. Cao and Olvera-
Cravioto [12] consider a class of inhomogeneous directed random graphs. Their results
include a phase transition for the existence of a giant SCC. This is a generalisation of
work by Bloznelis, Götze and Jaworski in [6], in which a smaller class of inhomogeneous
directed graphs is considered. Samorodnitsky, Resnick, Towsley, Davis, Willis and Wan
[36] studied the tails of the degree distribution in the directed preferential attachment
model. As previously mentioned, Goldschmidt and Stephenson [25] have studied the
directed Erdős–Rényi model in the critical window, and were the first to obtain met-
ric space convergence of the SCCs of a directed graph. Our methods build on their
techniques.

The directed configuration model was first considered by Cooper and Frieze [15].
They consider a deterministic degree sequence under a number of conditions. As
discussed previously in Section 1.3, a phase transition for the SCCs occurs when a
parameter d is equal to 1. They show that for d < 1, with high probability, all SCCs
contain O(∆ log(n)) vertices, for ∆ the maximal degree. On the other hand, for d > 1,
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there is a unique SCC that contains a positive proportion of the vertices and edges.
Their conditions are restrictive, and include finite second moments for both the in- and
out-degree of a uniformly chosen vertex, and a bound of size n1/12/ log(n) on the largest
degree. Their proofs are based on an algorithm to explore the directed graph. The
condition on the largest degree was later relaxed to O(n1/4) by Graf [26]. These results
are in contrast with the critical case, with Corollary 1.3, which says that in our set-up the
number of vertices and edges in the largest strongly connected components are Θ(n1/3)

in probability.

Recently, Cai and Perarnau have obtained a number of results on the directed
configuration model with deterministic degrees. In [9], they show, under first and second
moment conditions of the degree of a uniformly picked vertex, for d 6= 1 (i.e. not at
criticality), that the diameter of the model on n vertices, rescaled by log(n) converges to
a constant that they identify. This is in contrast with Corollary 1.4, which says that in our
set-up the diameter is Ω(n1/3) in probability at criticality. Then, in [10], they show a law
of large numbers for the number of vertices and edges in the largest SCC, under slightly
stronger moment conditions, and again away from the critical point. In [11], they study
the behaviour of a random walk on a directed configuration model.

A necessary and sufficient condition for the existence of a giant weakly connected
component for the directed configuration model with a deterministic degree sequence is
discussed in the physics literature by Kryven [29]. He also studies the distribution of the
in- and out-components in [30].

The directed configuration model with random in- and out-degrees is also considered
by Chen and Olvera-Cravioto [13] although, importantly, they do not allow for the in-
and out-degree of a vertex to be dependent. The authors consider a model in which the
in- and out-degrees are two independent sequences of i.i.d. random variables drawn
from different probability distributions. They propose an algorithm to sample degree
sequences that correspond to a simple graph and show the limiting distribution of the
degrees generated by this algorithm.

1.7 Proof outline

Our techniques use height processes and Łukasiewicz paths, which are standard
objects used to encode trees and forests (see for instance [21, Chapter 0]). We will
introduce these here. Let T = (V,E, ρ) be a rooted finite plane tree with vertex set V ,
edge set E and root vertex ρ; say |V | = n. A vertex w is a child of v (equivalently v is the
parent of w) if v and w are adjacent and v is closer to the root ρ than w in terms of graph
distance. A vertex w is a descendant of v (equivalently v is an ancestor of w) if there
is a sequence of vertices u0, . . . , uk such that u0 = v, uk = w and vi is a child of vi−1 for
i = 1, . . . , k.

Let v0, . . . , vn−1 denote the vertices of the tree visited in depth-first order, so that
v0 = ρ. We can view T as a metric space by regarding all edges as line segments of
length 1 that are connected via the vertices. The distance dT between points a1 and
a2 on line segments l1 and l2 respectively is then defined as the length of the unique
non-self-intersecting path between a1 and a2 that traverses the line segments of the tree.
Denote (T, dT ) by T.

We will define the height process and Łukasiewicz path of T. Both of these functions
uniquely characterize T. The height process of T, referred to as h, is defined as

h(i) = dT (vi, v0),

i.e. for all i, h(i) equals the distance from vi to the root. Moreover, for all i = 1, . . . , n, let
yi be the number of children of vi−1, and set y0 = 1. Then, the Łukasiewicz path of T is
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Universality for the directed configuration model

defined by
s(i) =

∑
j≤i

(yj − 1)

for i = 0, . . . , n. Then, s(i) is the total number of younger siblings of vi and its ancestors.
For a sequence of ordered rooted finite trees, we define its height process by concatenat-
ing the height processes of the trees in the sequence. The Łukasiewicz path is defined
analogously.

We will study the law of the SCCs of a uniform directed graph with degree sequence
(D1, . . . ,Dn), conditional on

∑n
i=1D

−
i =

∑n
i=1D

+
i by exploring the configuration model

in a depth-first manner. This sampling naturally gives rise to a directed subforest of the
resulting multigraph, which we call the out-forest. The sampling procedure is described
in Algorithm 1, and is also illustrated in Figure 6a. The definition of the out-forest is
illustrated in Figure 6b.

The sampling procedure uses a queue of unpaired out-edges (represented by the label
of their corresponding vertex). When the queue is empty, we are at the start of a new
out-component and pick a new vertex w with probability proportional to its in-degree if
there are vertices with positive in-degree remaining. Otherwise, we pick a new vertex
uniformly at random. If the queue is not empty, we pair the first out-edge in the queue
to a uniform unpaired in-edge and call the corresponding vertex w. In both cases, if w is
not yet in the list of discovered vertices, we add the out-edges from this vertex to the
front of the queue of edges (this choice is what makes the exploration depth-first) and
add w to the list of discovered vertices. The order in which vertices are added to the list
of discovered vertices is referred to as their order of discovery.

This procedure will discover vertices with in-degree 0 last. This is fine since such
vertices form singleton SCCs, so we discover the non-trivial SCCs before we get to the
vertices with in-degree 0.

At each step we also track two natural numbers ŝ−(k) and ŝ+(k). The first one, ŝ−(k)

keeps track of the number of unpaired in-edges of discovered vertices at time k. The
second one, ŝ+(k) is akin to a Łukasiewiscz path. At any given step it is equal to the size
of the queue after subtracting the number of fully explored out-components.

We also construct a directed forest for which ŝ+(k) will be the true Łukasiewicz path.
At each step of the process we will examine a vertex w. If w has not been discovered
yet then either we are at the start of a new out-component, in which case we make w
the root of the next out-component, or we added an edge (v, w) to the multigraph with v
already discovered, in which case we add the edge (v, w) to the out-forest as well. If w
has already been explored we cannot add (v, w) to the out-forest without creating cycles
or connecting two different components. We instead add a dummy leaf to the out-forest
and an edge from v to the dummy leaf. We call any vertex that is not a dummy leaf a
true vertex. This is illustrated in Figure 6b. These are a sequence of plane trees with the
planar ordering given by the order in which the vertices are discovered in the algorithm.

Consider an edge (v, w) in the directed multigraph. If (v, w) is not in the out-forest
we refer to the edge as surplus. Such an edge will instead correspond to an edge (v, d)

in the out-forest where d is a dummy leaf.
An important motivation for studying the out-forest is the fact that the vertex set of

any SCC is contained in one of the components of the out-forest. This is a straightforward
property which we will prove below as part of Theorem 2.2. Moreover, we defined the
out-forest in such a way that every time step in the exploration corresponds to one vertex
in the out-forest.

Our technique relies on dismissing surplus edges that cannot be part of a strongly
connected component (for example, surplus edges between two different out-components
cannot form a directed cycle and are never part of a strongly connected component). We
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(a) The gray arrows represent unpaired out-half-edges of vertices that have been discovered. One
by one, in depth first order, these are paired to a uniform unpaired in-half-edge.

(b) The out-forest is defined based on the exploration of the digraph. For each surplus edge, we
add a dummy leaf. The labels of the vertices correspond to the time step in the exploration at
which the vertex is added. The gray edges lead to vertices of which we do not know whether it is a
dummy vertex, and if not, what its degree is.

Figure 6: Partial constructions of the configuration model and out-forest.
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Data: A set of vertices V = {v1, . . . , vn} with degree pairs
(d−(v1), d+(v1)), . . . , (d−(vn), d+(vn)) satisfying

∑
d−(vi) =

∑
d+(vi)

1 V ← an empty ordered list of vertices // the list of discovered vertices;
2 Q ← an empty ordered list of vertices // the queue;
3 (d−unpaired(v1), . . . , d−unpaired(vn))← (d−(v1), . . . , d−(vn)) // the number of

unpaired in-edges per vertex;
4 k ← 0 // the index of the current step ;
5 ŝ− ← 0 // the number of unpaired in-edges of discovered vertices;
6 ŝ+ ← 1 // the queue size minus the number of explored out-components

;
7 F ← a directed forest with vertices V and no edges // current out-forest;
8 M ← a directed multigraph with vertices V and no edges // current

di-multigraph;
9 while there exist undiscovered vertices OR Q is non-empty do

10 if Q is empty then // we start a new out-component
11 if there exist undiscovered vertices with positive in-degree then
12 w ← a random vertex not in V chosen with prob. proportional to d−(w) ;
13 else
14 w ← a uniformly random vertex not in V
15 end
16 ŝ+ ← ŝ+ − 1 // we have explored a component;

17 else
18 v ← first entry in Q // we will pair an unpaired out-edge of v;
19 remove first entry from Q ;
20 ŝ+ ← ŝ+ − 1 // the queue size decreases by 1;
21 w ← a random vertex chosen with prob. proportional to d−unpaired(w) ;

22 add (v, w) to M // we pair the out-edge of v with a uniform
unpaired in-edge;

23 d−unpaired(w)← d−unpaired(w)− 1;

24 ŝ− ← ŝ− − 1 // we have paired an in-edge;
25 if w ∈ V then // we sampled a surplus edge
26 add a dummy leaf to F and an edge from v to the leaf;
27 else
28 add (v, w) to F ;
29 end

30 end
31 if w 6∈ V then
32 append w to the end of V // vertex w is now discovered;
33 append d+(w) repeats of w to the start of Q;
34 ŝ+ ← ŝ+ + d+(w) // the queue size has increased;
35 ŝ− ← ŝ− + d−(w) // the number of unpaired in-edges of discovered

vertices has increased;

36 end
37 k ← k + 1;
38 ŝ+

k ← ŝ+;
39 ŝ−k ← ŝ− ;

40 end
Algorithm 1: The edge depth-first configuration model.
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define a necessary condition for a surplus edge to be part of an SCC (see Definition 2.3
and Theorem 2.4), and we call dummy leaves that correspond to surplus edges with this
property candidates. Then, we define a procedure to sample only the out-forest and the
edges corresponding to candidates, which allows us to find the SCCs.

We note the following key facts. Firstly, the order in which the true vertices are
discovered can be sampled without sampling the positions of the dummy leaves. Secondly,
the positions of the dummy leaves can be sampled without sampling the position of the
heads of the surplus edges. Finally, which dummy leaves are candidates can be sampled
without sampling the precise position of the heads of the surplus edges. This allows us
to define the following step-by-step sampling procedure.

1. We sample the order of discovery of the true vertices.

2. We sample at which time steps we add a dummy leaf instead of a true vertex.

3. For each dummy leaf we sample whether it is a candidate.

4. For each candidate we sample the position of the head of the corresponding surplus
edge.

For an exact description of the sampling procedure, see Subsection 2.1. The analogous
sampling procedure for the limit object is described in Subsection 2.2.2. Then, our
approach to show convergence is as follows.

1. We find the limit under rescaling of the Łukasiewicz path and height process of the
out-forest up to timemn = Θ(n2/3) conditional on the event

{∑n
i=1D

−
i =

∑n
i=1D

+
i

}
.

This is the content of Theorem 4.1. Note that we condition on an asymptotically
singular event, which causes significant difficulties. Our method relies on a mea-
sure change between the sequence of degrees in order of discovery under this
conditioning and a sequence of i.i.d. random variables in N×N. In Section 3, we
show the convergence of the measure change under rescaling.

2. We establish that the positions of the tails of the surplus edges corresponding to
the candidates converge. This is the content of Proposition 5.2, Lemma 5.5, and
Proposition 5.6.

3. We show that the positions of the heads of the surplus edges corresponding to the
candidates converge, which is the content of Proposition 5.7.

4. We identify the tails and heads of the surplus edges corresponding to the candidates,
and recover the SCCs from the resulting digraph via a cutting procedure. We use a
result from [25] to show that the cutting procedure converges. This summarised in
Corollary 5.11.

5. We show that conditioning on the resulting multigraph being simple does not
affect the sampling procedure on the time scale O(n2/3). This is the content of
Proposition 4.17.

6. We prove that for any δ > 0, with high probability, all SCCs with more than δn1/3

edges are contained in the exploration up to time O(n2/3). Therefore, we can
choose mn such that, with high probability, we do not miss any large SCCs by
not considering the exploration beyond time mn, which finishes the proof of the
convergence in the product topology. This is the content of Lemma 5.12.

An overview of the most important notation used can be found in Appendix A.
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2 Sampling the MDM in the discrete and the continuous set-up

If we forget about the directions of the edges in ~Gn(ν), the resulting undirected graph
is supercritical, and, with high probability, the graph contains a unique giant component
with surplus going to infinity as n→∞ (see e.g. [32, 33, 27] for a discussion of the phase
transition in the undirected configuration model). This suggests that if we do not dismiss
a large amount of edges, we will not be able to study the digraph in enough detail to
find a metric space scaling limit of the SCCs. Therefore, we will not try to sample the
entire digraph, but focus on the information that we need to find the SCCs. We start by
studying the discrete digraph model, with the goal of identifying which edges can be
part of an SCC, and how to sample them. In Subsection 2.1.1, we establish necessary
conditions for an edge to be part of an SCC. These conditions imply that we only need
to study the out-forest, and the surplus edges corresponding to a small subset of the
dummy leaves that we call candidates. In Subsections 2.1.2 and 2.1.3 we study the law
of the out-forest and the surplus edges corresponding to the candidates respectively,
and we define a procedure to sample them both. This yields a sequence of directed
multigraphs with edge lengths in which the SCCs are embedded. In Subsection 2.2, we
define the continuous counterpart of the sampling procedure. The resulting object will
be the limit under rescaling of the sequence of directed multigraphs with edge lengths
in which the SCCs are embedded that was constructed in Subsections 2.1.2 and 2.1.3.

2.1 The discrete case

We will discuss the different type of edges that we can encounter in the exploration.
Recall from Subsection 1.7 that by slight abuse of terminology, we call the dummy leaf
that corresponds to a surplus edge its tail.

Remark 2.1. Since we are only interested in the metric structure of the strongly con-
nected components, we do not care about the vertex labels, other than for constructing
the directed graph with Algorithm 1. The order of discovery, denoted by V in Algorithm 1,
is much more important for studying the structure of the graph. Therefore, we will abuse
notation and refer to the kth vertex in order of discovery as ‘vertex k’. When we are
dealing with the out-forest, we will also refer to the kth vertex in depth-first order as
‘vertex k’, no matter whether this is a dummy leaf or a true vertex.

2.1.1 Necessary conditions for an edge to be part of an SCC

Amongst the surplus edges, ancestral surplus edges, which are surplus edges that point
from a vertex to one of its ancestors, play a special role. All other surplus edges are
called non-ancestral. This is illustrated in Figure 7a. In Figure 7b we show how surplus
edges affect the structure of the SCCs. This is the content of the next lemma.

Lemma 2.2. The following facts hold for SCCs.

1. The vertices of an SCC are contained in precisely one of the components of the
out-forest.

2. Ancestral surplus edges are always part of an SCC.

3. A non-ancestral surplus edge is part of an SCC only if its head is an ancestor of the
tail of a surplus edge that is part of an SCC.

4. An edge in the out-forest is part of an SCC only if its head is an ancestor of the tail
of a surplus edge that is part of an SCC.

5. For any non-trivial SCC, the first surplus edge of the SCC that is explored is an
ancestral surplus edge, and a component of the out-forest contains an SCC if and
only if it contains an ancestral surplus edge.
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(a) This figure illustrates an example of a depth-first exploration of two out-
components with the different type of surplus edges highlighted. The ancestral
surplus edges point from a vertex v to one of its ancestors. They are always
part of an SCC.

(b) The edges that are part of an SCC are depicted in black. Two vertices are
in the same SCC if and only if they are connected by black edges.

Figure 7: We illustrate the different types of surplus edges and how they affect the
structure of the SCCs.
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Proof. We start with 1. Consider an SCC and let v be the vertex in the SCC that is
explored first in depth-first order in the out-direction. We know that there exists a
directed path from v to every other vertex in the SCC consisting solely of vertices
in the SCC. The out-subtree rooted at v contains precisely of all vertices that can be
reached from v by an directed path of vertices which are unexplored when v is explored
(excluding v itself). These two observations imply that every other vertex in the SCC will
be in this out-subtree. This implies that they are all part of the same component of the
out-forest.

To prove 2, suppose there is an ancestral surplus edge from v to w. This implies that
w is an ancestor of v in an out-component, which implies that there is a path from w to v
as well. It follows that w and v are in the same SCC and that the ancestral surplus edge
from v to w is in this SCC as well.

To prove 3 and 4, suppose there is a non-ancestral surplus edge from v to w that is
part of an SCC, or that (v, w) is an edge in the out-forest that is part of an SCC. Then,
there is some directed path (x0, . . . , xm) with x0 = w and xm = v. Let k be minimal such
that xk is not a descendant of w (such a k exists, because by assumption, v is not a
descendant of w). Then, (xk−1, xk) is a surplus edge that is in the same SCC as v and w,
and xk−1 is a descendant of w by definition of k.

Finally, 2 and 3 imply 5.

Theorem 2.2 motivates the following definition.

Definition 2.3. We define candidates recursively. A dummy vertex is a candidate if one
of the following statements holds for the surplus edge that it corresponds to.

• It is an ancestral surplus edge, or

• Its head is an ancestor of a candidate.

The following proposition is at the core of our strategy to study the SCCs.

Proposition 2.4. Any edge that is part of an SCC is either a surplus edge corresponding
to a candidate, or is contained in the subforest of the out-forest that is spanned by the
candidates and the roots of the out-components.

Proof. This follows from Definition 2.3 and Theorem 2.2.

Theorem 2.4 implies that to sample the SCCs, we do not need to sample the heads
corresponding to all dummy leaves. Instead, for every dummy leaf, we only need to know
whether it is a candidate, and if so, where its head is.

2.1.2 Sampling the out-forest

This subsection discusses how to obtain the out-forest conditional on the order in which
the vertices are discovered. Let (D̂n,1, . . . , D̂n,n) be the degree pairs in order of discovery
(i.e. the order given by V in Algorithm 1).

Let Σ : [n]→ [n] be the random order in which the true vertices are discovered, such
that D̂n,i = DΣn(i) for i = 1, . . . n. We first study the law Σ conditional on D1, . . . ,Dn.
Algorithm 1 first explores all the vertices with positive in-degree. Let In = {i ∈ [n] :

D+
i > 0} be the original labels of these vertices with positive in-degree and Rn = |In| be

the number of such vertices.

Proposition 2.5. Σn has law given by

P(Σn = σ | D1, . . . ,Dn) =

Rn∏
i=1

D−σ(i)∑Rn
j=iD

−
σ(j)

· 1

(n−Rn)!
.
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for all bijections σ : [n]→ [n] such that σ([Rn]) = In (note both Rn and In are determinis-
tic once we condition on D1, . . . ,Dn). Further this law does not depend on the positions
of the dummy vertices.

Proof. In Algorithm 1, a vertex first becomes explored at the start of an out-component
(lines 12 and 14) or when an out-half-edge is paired to one of its in-half-edges (line 21).

The exploration only discovers vertices with zero in-degree on line 14 and does so
at the end of the exploration once all vertices of positive in-degree have been explored.
The n−Rn such vertices are chosen uniformly, hence appear in a uniform order at the
end of the exploration. This accounts for the 1

(n−Rn)! term in the product.
For the vertices of positive degree, suppose we have discovered m true vertices

and m < Rn. If the next vertex is explored by pairing one of its in-half-edges (line 21),
then we have chosen it with probability proportional to its unpaired in-degree. This
vertex is a true vertex in the out-tree if it hasn’t been discovered before, and thus has
unpaired in-degree equal to its original in-degree. Otherwise, it is at the start of a new
out-component (line 12), and since m < Rn, there are still vertices of positive in-degree
left to explore. Thus we still pick a new vertex with probability proportional to its
in-degree.

Therefore in all cases,

P(Σn(m+ 1) = σ(m+ 1) | Σn(1) = σ(1), . . . ,Σn(m) = σ(m),D1, . . . ,Dn)

=
D−σ(m+1)∑

i∈In D
−
i −

∑m
j=1D

−
σ(j)

=
D−σ(m+1)∑Rn
j=m+1D

−
σ(j)

.

From this, repeated applications of the definition of conditional probability yields the
first term of the product

Rn∏
i=1

D−σ(i)∑Rn
j=iD

−
σ(j)

.

Finally at every step, the probability of discovering w as the next true vertex only
depends on which true vertices have already been discovered and not the dummy
vertices. Thus the order of the true vertices is independent of the dummy vertices.

The following proposition deals with the discovery of dummy vertices.

Proposition 2.6. Suppose that the sequence of degrees in order of discovery is given
and denoted by (D̂n,1, . . . , D̂n,n). Suppose that for 1 ≤ k ≤ n, that up to time k, P̂n(k)

surplus edges have been sampled. Then,

(
Ŝ+
n (k), 1 ≤ k ≤ n

)
:=

k−P̂n(k)∑
i=1

D̂+
n,i − k, 1 ≤ k ≤ n


is the Łukasiewicz path of the out-forest. Moreover, for(

Î+
n (k), 1 ≤ k ≤ n

)
:=
(

min
{
Ŝ+
n (m) : 1 ≤ m ≤ k

}
, 1 ≤ k ≤ n

)
,

define (
Ŝ−n (k), 1 ≤ k ≤ n

)
:=

k−P̂n(k)∑
i=1

D̂−n,i − k − Î
+
n (k) + 1, 1 ≤ k ≤ n

 ,

so that Ŝ−n (k) is equal to the number of unpaired in-half-edges of discovered vertices at
time k. Then, if there are still unpaired in-half edges at time k, the probability that we
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sample a surplus edge at the (k + 1)th time-step (and therefore add a dummy vertex to
the out-forest and set P̂n(k+ 1) = P̂n(k) + 1) given (D̂n,1, . . . , D̂n,n) and (P̂n(l), 1 ≤ l ≤ k)

is given by
Ŝ−n (k)∑n

i=1D
−
i − k − Î

+
n (k) + 1

11{Î+n (k)=Î+n (k−1)}.

We do not need to know the position of the heads of the surplus edges in order to sample
the out-forest.

Proof. Note that if up to time k, P̂n(k) surplus edges have been sampled, this implies
that k − P̂n(k) true vertices have been discovered. Thus, up to time k, the out-forest
contains P̂n(k) dummy leaves, and true vertices with degrees (D̂+

n,1, . . . , D̂
+

n,k−P̂n(k)
),

so by definition of the Łukasiewicz path, its value is indeed equal to Ŝ+
n (k) at time k.

Moreover, up to time k, the total in-degree of the discovered true vertices is equal

to
∑k−P̂n(k)
i=1 D̂−n,i. At every time-step, we pair one in-half-edge of a discovered vertex,

unless we start a new component. The value −Î+
n (k) corresponds to the number of

out-components that are fully explored up to time k, so the total number of unpaired
in-half-edges of discovered vertices at time k is equal to Ŝ−n (k). By the same reasoning,
the total number of unpaired in-half-edges is equal to

∑n
i=1D

−
i − k − Î+

n (k) + 1. The
probability of sampling a surplus edge at step (k+1) follows. We note that this probability
does not depend on the positions of the heads of the surplus edges, but only on their
number, which implies that we can sample the out-forest without sampling the positions
of the heads.

Recall that when we are dealing with the out-forest, we will refer to the kth vertex in
depth-first order as ‘vertex k’, no matter whether this is a dummy leaf or a true vertex.

2.1.3 Sampling the candidates

We will now study the law of the candidates and their heads conditional on the out-forest.
We will first identify the candidates amongst the dummy leaves, and then we will sample
the positions of their heads.

If the vertex discovered at time k is a dummy leaf, the head of the corresponding
surplus edge is a uniform pick from the Ŝ−(k) unpaired in-half-edges of discovered
vertices at time k. Therefore, the probability that a dummy leaf added at time k

corresponds to an ancestral surplus edge is given by the number of unpaired in-edges
on its path to the root divided by Ŝ−(k). This implies that to understand the law of the
position of ancestral surplus edges, we need to understand where the unpaired in-edges
are.

We will study this by modifying the edge lengths in the out-forest. We extend our
definitions in Section 1.7 to trees with edge lengths as follows. Suppose T = (V,E, ρ)

is an ordered rooted finite tree, and suppose we have a function ` : E → [0,∞). Then,
we can view T as a metric space by regarding an e as a line segment with length `(e).
The distance d`T between points a1 and a2 on line segments l1 and l2 respectively is then
defined as the length of the unique non-self-intersecting path between a1 and a2 that
traverses the line segments of the tree, and we denote the resulting metric space (T, d`T )

by T`, and call it a ordered rooted finite tree with edge lengths. This gives rise to an
alternative height process, referred to as h`, which is defined

h`(i) = d`T (vi, v0),

i.e. for all i, h`(i) equals the distance from vi to the root in T`. We set the Łukasiewicz
path of T` equal to the Łukasiewicz path of T.
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We will now study the positions of the unpaired in-edges by modifying the edge
lengths as follows: for a vertex v with in-degree m, the edges connecting it to its children
will all have length m− 1 (unless v is the root of an out-component, in which case the
edges connecting to its children will be assigned length m). The height of vertex w in
this forest with modified edge lengths corresponds to the number of in-half-edges that
can be used to form an ancestral surplus edge with tail w. We assign lengths to all edges
in the out-forest and call the resulting forest with edge lengths the out-forest with edge
lengths. Denote the height process of the out-forest with edge lengths by (Ĥ`

n(k), k ≥ 1).
Recall from Lemma 2.2 that the surplus edge corresponding to the first candidate in
any component of the out-forest is ancestral. The following proposition illustrates the
importance of Ĥ`

n in finding the first ancestral surplus edges in the out-components.

Proposition 2.7. Consider the exploration of the out-forest at time k. If no ancestral
surplus edge has been sampled in the current component, then the probability that the
kth vertex in depth-first order is a candidate is given by

Ĥ`
n(k)

Ŝ−n (k)
11{P̂n(k)−P̂n(k−1)=1}.

This event is conditionally independent of the positions of the heads of the surplus edges
that were found before time k, given that none of them were ancestral in the current
component.

Proof. We claim that if no ancestral surplus edge has been sampled in the current
component, none of the ancestors of k are the head of a surplus edge. Indeed, for x an
ancestor of k, all vertices that are discovered since the discovery of x up to time k are
descendants of x, because the out-forest is explored in a depth-first manner. Therefore,
any surplus edge with head x sampled up to time k is ancestral. This implies that for
d− the in-degree of x, the number of unpaired in-half-edges of x at time k is equal to
d− − 1 (unless x is the root of the out-component, in which case it has d− unpaired
in-half-edges).

Therefore, the number of unpaired in-half-edges corresponding to ancestors of k is
equal to H`

n(k). Moreover, note that, by definition of the dummy leaves, k is the tail of a
surplus edge if and only if k is a dummy leaf, i.e. if and only if P̂n(k)− P̂n(k − 1) = 1. In
that case, the probability that it connects to given unpaired in-half-edge of a discovered
vertex is equal to 1/Ŝ−n (k). The stated probability follows. The independence of the
positions of the heads of earlier surplus edges is immediate.

We now illustrate how to find the other candidates in a component of the out-forest.

Let Tngn be a component of the out-forest with component size σn and the (gn + 1)th
vertex in depth-first order as its root (hereafter referred to as ‘vertex gn + 1’, see
Remark 2.1). Suppose the first ancestral surplus edge with vertices in Tngn corresponds
to a dummy leaf V n1 ∈ [gn+2, gn+σn] (i.e. the dummy leaf is the V n1 th vertex in depth-first
order in the out-forest). Let V n1 < k ≤ gn + σn, and suppose the candidates found up to
time k are given by V n1 , . . . , V

n
m (again, labelled by their position in depth-first order in the

out-forest). Let Tn,mk
k be the subtree of Tngn spanned by {gn + 1, V n1 , . . . , V

n
m, k}, and let

`(Tn,mk
k ) be its total length with edge lengths as encoded by (Ĥ`(i), i ∈ [gn + 1, gn + σn]).

Proposition 2.8. The probability that the vertex at step k is a candidate is given by

`
(
Tn,mk
k

)
−m

Ŝ−(k)
11{P̂n(k)−P̂n(k−1)=1}.
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Proof. Note that if k is a dummy leaf, it gets paired to a uniform pick from the Ŝ−(k)

as-yet unpaired in-half-edges of discovered vertices. By Definition 2.3, in that case, k is a
candidate if and only if the head of its corresponding surplus edge is in Tn,mk

k . Observe

that `
(
Tn,mk
k

)
is equal to the number of in-half-edges of Tk that can be used to form

surplus edges. By the definition of a candidate, exactly m of those have been paired: one

for each element in {V n1 , . . . , V nm}. This implies that `
(
Tn,mk
k

)
−m of the Ŝ−(k) options

will cause k to be a candidate.

Note that the probability that a dummy leaf is a candidate only depends on the
out-forest and the number of candidates that have been found in the component so far.
The position of the heads of the surplus edges corresponding to candidates can be found
as follows.

Let Tngn be a component of the out-forest with root gn + 1 and component size σn.
Suppose its candidates are given by {V n1 , . . . , V nNn}. Then, for 1 ≤ i ≤ Nn, suppose the
heads of the surplus edges corresponding to V n1 , . . . , V

n
i−1 are given by Wn

1 , . . . ,W
n
i−1

respectively, where Wn
1 , . . . ,W

n
i−1 are the positions of the heads in depth-first order in

the out-forest.

Proposition 2.9. The in-half-edge that V ni gets paired to is a uniform pick from the

`
(
Tn,mk
V ni

)
− (i− 1)

unpaired in-half-edges of Tn,mk
V ni

that remain.

Proof. Given that V ni is a candidate, its head will be in Tn,mk
V ni

. Then, the distribution
follows.

Propositions 2.6, 2.7, 2.8, and 2.9 justify the following sampling procedure.

1. Sample the out-forest, and suppose it has N vertices.

2. Define a counting process (An(k), k ≤ N), with the probability of an increment at
time k given by

Ĥ`
n(k)

Ŝ−n (k)
11{P̂n(k)−P̂n(k−1)=1}.

3. For i ≥ 1, let Xn
i = min{k : An(k) = i} be the time that the ith ancestral surplus

edge is sampled. For i ≥ 1, let Gni be the left endpoint of the excursion of Ŝ+
n above

its running infimum that encodes the out-component that contains the ith ancestral
surplus edge, and let Σni be the length of this excursion, i.e.

Gni = min
{
k ≥ 1 : Ŝ+

n (k) = min{Ŝ+
n (l) : l ≤ Xn

i }
}

Σni = min
{
k ≥ 1 : min

{
Ŝ+
n (l) : l ≤ Gni + k

}
< Ŝ+

n (Gni )
}
,

so that for each i ≥ 1, the excursion
(
Ŝ+(k), k ∈ [Gni + 1, Gni + Σni ]

)
encodes the

out-tree containing Xn
i . For each (gn, σn) ∈ {(Gni ,Σni )}, let Tngn be the tree in

out-forest with root gn + 1, and do the following.

(a) Set V n1 = min{m ≥ 1 : An(m) = An(gn) + 1}, and find the other candidates
{V n2 , . . . , V nNn} using the probabilities described in the statement of Theo-
rem 2.8.

(b) For the tails V n1 , . . . , V
n
Nn

, sample their corresponding heads Wn
1 , . . . ,W

n
Nn

respectively according to the distribution described in the statement of Theo-
rem 2.9.
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(c) Let Tn,mk(gn) be the subtree of Tngn spanned by {gn + 1, V n1 , . . . , V
n
Nn
}. Then,

quotient it by the equivalence relation ∼ which identifies V ni and Wn
i for each

1 ≤ i ≤ Nn to obtain a rooted metric space with surplus Nn

Mn
gn = Tn,mk(gn)/ ∼ .

Then, all SCCs of ~Gn(ν) are sub-digraphs of
{
Mn
Gni
, i ≥ 1

}
. Call the kernels of these

SCCs, ordered by decreasing size, (Ci(n), i ≥ 1), completed with an infinite repeat of
L. Observe that we may view Mn

Gni
as a finite rooted directed multigraph Mn

Gni
whose

edges are endowed with lengths. To be precise, in Mn
Gni

, let the vertex set consist of
Gni + 1, Wn

i for i ≤ Nn, and the branch points V ni ∧ V nj for i 6= j ≤ Nn. Then, we

obtain (Ci(n), i ≥ 1) by ordering the kernels of the non-trivial SCCs in
{
Mn
Gni
, i ≥ 1

}
by

decreasing size, and completing the list with an infinite repeat of L. See Figures 8a, 8b
and 8c for an illustration of this procedure.

2.2 The continuum case

We will now define the continuous counterpart of the sampling procedure of the out-
forest and the candidates. This is a modification of the procedure defined in Subsection
3.2.2 of [25].

2.2.1 R-trees and their encoding

The continuum analogue of discrete trees are given by R-trees. We give the basic
definitions here and refer the reader to the survey paper [31] for more details. An R-tree
is a compact metric space (T , d) such that for every a, b ∈ T the following two properties
hold:

1. There exists a unique isometry

ia,b : [0, d(a, b)]→ T

such that ia,b(0) = a and ia,b(d(a, b)) = b.

2. If q : [0, 1]→ T is any continuous injective map such that q(0) = a and q(1) = b then
the image of q is the same as the image of ia,b.

Let Ja, bK denote the image of ia,b. This is the unique path between a and b.
R-trees are often encoded by continuous excursions which can be seen as a continuous

analogue of the height function of a tree. Let f : [0, σ]→ [0,∞) be a continuous excursion,
meaning f is continuous, f(0) = f(σ) = 0 and f(x) > 0 for all x ∈ (0, σ). Using f we can
define a pseudo-metric

df (x, y) = f(x) + f(y)− 2 min
s∈[x∧y,x∨y]

f(s).

This allows us to define the quotient space

Tf = [0, σ]/{df = 0}.

The space Tf equipped with the metric df is the R-tree encoded by the excursion f . Let
pf : [0, σ]→ Tf be the natural projection function. Then Tf inherits a distinguished root
point ρ = p(0) = p(σ). A sequence of R-trees is referred to as an R-forest.

Łukasiewicz paths are commonly used because they behave akin to a random walk,
allowing us to apply known results such as Donsker’s theorem to find their scaling
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(a) This is a subtree of an out-component spanned by the root of the
out-component and the candidates (v1, . . . , v7). Call the marked tree
Tmk. The heads of the surplus edges corresponding to candidates
are denoted by (w1, . . . , w7).

(b) Identifying vi with wi for i ∈ [7] gives M .

(c) We find the SCCs that are contained in M .

Figure 8: We illustrate the procedure to find the SCCs in a component of the out-forest
after finding the candidates. Taken from [25] with permission of the authors.
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limit. Let T1, T2, . . . be a sequence of random planar forests. Suppose (Sn(i))i∈N is the
Łukasiewicz path of Tn and (Hn(i))i∈N is the height process Tn. Note we can obtain Hn

from Sn by the following formula:

Hn(k) = #

{
i = 1, . . . , k : Sn(i) = min

j=i,...,k
Sn(j)

}
Suppose we have proven that Sn when appropriately rescaled will converge to process of
the form S(t) = −αt+ σB(t) where α ≥ 0, σ > 0, and B is a standard Brownian motion.
We would like to obtain a continuum height function H from S analogously to how we
would obtain Hn from Sn. However for any fixed t ≥ 0, the Lebesgue measure of the set
of times {

u ≤ t : S(u) = inf
u≤r≤t

S(r)

}
will be 0. Thus instead we need to consider a local time. In [21, Section 1.2] it is proven
that if we let H be the reflected process

H(t) = S(t)− inf
u≤t

S(u),

then for any fixed t the following limit will hold in probability:

Ht = lim
ε↓0

1

ε

∫ t

0

11

{
S(u) = inf

u≤r≤t
S(r) + ε

}
du.

We refer to H as the continuous height process associated with S.

2.2.2 The limit object

Let B = (Bt, t ≥ 0) be a standard Brownian motion, and set

B̂ =
(
B̂t, t ≥ 0

)
=

(
Bt −

σ−+ + ν−
2σ+µ

t2, t ≥ 0

)
.

Remark 2.10. We note that the coefficient of the parabolic drift of B̂ is negative. Indeed,
by definition of σ−+ and ν−, the sign of the parabolic drift is the same as the sign of
µ− E[(D−)2D+], and we note that

E[(D−)2D+]

E[D+]
−
(
E[D+D−]

E[D+]

)2

=
E[(D−)2D+]

µ
− 1

is the variance of D− under the law of D size-biased by D+, which is positive. Hence
E[D+(D−)2]/µ ≥ 1, and the claimed negativity follows.

Define the reflected process

R̂ = (R̂t, t ≥ 0) =
(
B̂t − inf

{
B̂s : s ≤ t

}
, t ≥ 0

)
.

Then, it follows from the argument in Section 4 that
(

2
σ+
R̂t, t ≥ 0

)
is the height process

corresponding to an R-forest with Łukasiewicz path
(
σ+B̂t, t ≥ 0

)
. Call this forest the

out-R-forest.
Conditionally on R̂, let (At, t ≥ 0) be a Cox process of intensity

2(σ−+ + ν−)

σ+µ2
R̂t
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at time t. Then, for i in {1, 2, . . . }, set Xi = min{t : At = i}. For i in {1, 2, . . . }, define

Gi = inf
{
t ≥ 0 : B̂t = inf{B̂s : s ≤ Xi}

}
and

Σi = inf
{
t ≥ 0 : inf{B̂s : s ≤ Gi + t} < inf{B̂s : s ≤ Xi}

}
,

so that for each i in {1, 2, . . . },
(

2
σ+
R̂t, t ∈ [Gi, Gi + Σi]

)
encodes the R-tree in the out-

R-forest that contains Xi. For each element of {(Gi,Σi) : i = 1, 2, . . . } we will sample
the candidates in the R-tree. Fix i, and set (g, σ) = (Gi,Σi). Let V1 = inf{s > 0 : A(s) =

A(g) + 1}, so that g ≤ V1 ≤ g + σ by definition of (g, σ). Let Tg be the R-tree encoded by(
2
σ+
R̂t, t ∈ [g, g + σ]

)
and let pg : [g, g + σ] → Tl be the projection onto Tg given by the

encoding. Set

||Tg|| = sup

{
2

σ+
R̂t, t ∈ [g, g + σ]

}
,

the height of Tg.
Suppose we have found candidates {V1, . . . , Vm}. For Vm ≤ s ≤ g + σ, let Tmk

s be the
subtree of Tg spanned by pg ({g, V1, . . . , Vm, s}), and let |Tmk

s | be its total length. Then,
let Vm+1 be the first arrival time of a Poisson process on [Vm, g + σ] of intensity

σ−+ + ν−
µ2

|Tmk
s |ds.

If the process does not contain a point, let {V1, . . . , Vm} be the candidates of Tg, and set
N = m. Otherwise, we repeat the inductive step for {V1, . . . , Vm+1}. If the induction does
not terminate, we set N =∞.

We show that P(N = ∞) = 0, by adapting the argument in Subsection 3.2.2 of
[25] to our set-up. Indeed, note that Vm ≤ s ≤ Vm+1 implies that |Tmk

s | < (m + 1)||Tg||.
Therefore,

P (N ≥ g + 1, Vm+1 − Vm < t|N ≥ g) ≤ P(Em+1 < t),

for (Ek, k ≥ 1) a sequence of exponential random variables with respective rates

σ−+ + ν−
µ2

k||Tg||.

Then,

P (N =∞) = P (N =∞ and sup{Vi : i ∈ N} < g + σ) ≤ P

( ∞∑
i=2

Ek ≤ g + σ − V1

)
.

However,
∑∞
i=2Ek =∞ a.s., because the harmonic series diverges, so, indeed, we have

that P (N <∞) = 1.
Finally, for 1 ≤ i ≤ N , let the head corresponding to Vi, which we call Wi, be a

uniform pick from the length measure on Tmk
Vi

.
Let Tmk(g) be the subtree of Tg spanned by {g, V1, . . . , VN}. Then quotient Tmk(g) by

the equivalence relation ∼ which identifies Vi and Wi for each 1 ≤ i ≤ N to obtain a
rooted metric space

Mg := Tmk(g)/ ∼ .
ViewMg as an element of ~G in the natural way. To be precise, let the vertex set ofMg

consist of g, Wi for i ≤ N , and the branch points Vi ∧ Vj for i 6= j ≤ N . The directions
are inherited from Tg, by considering all edges directed away from the root. Remove
all edges that do not lie in an SCC ofMg and delete any isolated vertices that are thus
created. Then, apply the smoothing operation as defined in Subsection 1.4. This creates
a collection Cg of strongly connected MDMs. Doing this for each (g, σ) ∈ {[Gi,Σi]} yields
the collection of strongly connected MDMs C that has the law of the limit in Theorem 1.1.
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2.2.3 Properties of the limit object

In this section we discuss some interesting properties of the limit object. We note
that the distribution of the limit object is encoded by 3 parameters: the out-R-forest
is encoded by a Brownian motion with variance σ2

+ and parabolic drift with coefficient
−(σ−+ + ν−)/(2µ), and the identifications are a Cox process with intensity (σ−+ + ν−)/µ2

on the length measure of the subtree spanned by the previously found candidates and
the currently explored vertex as described in Subsection 2.2.2. The limit object that is
studied in [25] corresponding to λ = 0 (i.e. at criticality) is equal to our limit object in
the case σ2

+ = 1, −(σ−+ + ν−)/(2µ) = −1/2, and (σ−+ + ν−)/(µ2) = 1. Note that these
three conditions are satisfied if we let D− and D+ be independent Poisson(1) random
variables. In [25], some properties of the limit object corresponding to these specific
parameters are shown. A quick check shows that the proofs do not depend on the values
of the parameters, so we deduce that the same properties also hold for our limit object.
LetM :=

⋃
Gi
MGi .

Proposition 2.11. 1. The number of complex connected components ofM has finite
expectation.

2. The number of loops ofM is a.s. infinite.

Proposition 2.12. The SCCs ofM all have different lengths almost surely.

This proposition ensures there are no ties when ordering the SCCs of M by total
length.

Write C for the SCCs of M and Cg for those of Ml, in decreasing order of length,
withMg as defined in Subsection 2.2.2. Write Ccplx for the list of complex components of
C in decreasing order of length. For sequences (K1, . . . ,Kj) and (J1, . . . , Jk) of directed
multigraphs, write (J1, . . . , Jk) ≡ (K1, . . . ,Kj) if j = k and Ji is isomorphic to Ki for each
i ≤ j. Extend this notation naturally to the case where one or both of the sequences has
edge lengths by ignoring the edge lengths.

Theorem 2.13. Let K1, . . . ,Kj be a finite sequence consisting of 3-regular strongly
connected directed multigraphs or loops. We have

P [Cg ≡ (K1, . . . ,Kj)] > 0.

Assuming that K1, . . . ,Kj are all complex, we also have that

P [Ccplx ≡ (K1, . . . ,Kj)] > 0.

Let (ei, 1 ≤ i ≤ M) be an arbitrary ordering of the edges of K1, . . . ,Kj . Then, condi-
tionally on Cg ≡ (K1, . . . ,Kj), (resp. Ccplx ≡ (K1, . . . ,Kj)), Cg (resp. Ccplx) gives lengths
(`(ei), 1 ≤ i ≤M) to these edges, and their joint distribution has full support inx = (x1, . . . , xM ) ∈ RM+ : ∀1 ≤ i ≤ j − 1,

∑
k:ek∈E(Ki)

xk ≥
∑

k:ek∈E(Ki+1)

xk

 .

This theorem is interesting but is not needed to prove Theorem 1.1.

3 Analysis of the measure change

When D1, . . . ,Dn do not satisfy that
∑n
i=1D

−
n,i =

∑n
i=1D

+
n,i, the exploration process

is not well defined. However we can still define D̂n,1, D̂n,2, . . . , D̂n,n as follows. Let Rn
be the number of i such that D−i > 0 and let Σn be distributed according to

P(Σn = σ | D1, . . . ,Dn) =

Rn∏
i=1

D−σ(i)∑Rn
j=iD

−
σ(j)

· 1

(n−Rn)!
,
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like in Theorem 2.5. Then, set D̂n,i = DΣn(i). Then conditional on
∑n
i=1D

−
i =

∑n
i=1D

+
i ,

the (D̂n,1, D̂n,2, . . . , D̂n,n) are distributed as the degree pairs of the vertices in order of
discovery. By slight abuse of nomenclature, even if

∑n
i=1D

−
n,i 6=

∑n
i=1D

+
n,i, we will still

refer to 1, . . . , n as vertices and to D−i , D
+
i as the in- and out-degree of i.

The behaviour of the D̂n,m for m ≤ Rn and m > Rn is rather different. Before Rn,
new vertices are discovered with probability proportional to their in-degree. After Rn, all
vertices with positive in-degree have already been discovered and we choose to explore
the remaining vertices in some uniform order.

We remind the reader that an overview of the most important notation used can be
found in Appendix A.

Later in Section 5, we show that we only need to consider timescales of the order of
m = Θ(n2/3). Let p = P(D− > 0) such that Rn is distributed as a Binomial(n, p) random
variable. We show now that the probability that m ≤ Rn will converge exponentially to 1.

Lemma 3.1. If m = Θ(n2/3) then there exists c > 0 such that P(Rn < m) < e−cn.

Proof. If m = Θ(n2/3) then E[Rn]−m = pn−m = Θ(n). Thus by Hoeffding’s inequality

P(Rn < m) = P (E[Rn]−Rn > E[Rn]−m) ≤ e− 2
n (E[Rn]−m)2 < e−cn

for some c > 0.

Hence it is sensible to prove results on the event that m ≤ Rn.
When discussing the criticality condition, we gave heuristics showing that the limiting

distribution of D̂n,1 is given by Z where

P(Z− = k−, Z+ = k+) =
k−

µ
P(D− = k−, D+ = k+).

Similarly, D̂n,2 is also approximately distributed like Z for large n, and so on. In this

section we in fact prove a precise relation between D̂n,1, . . . , D̂n,m and a sequence
Z1,Z2, . . . of i.i.d. copies of Z.

The results proved in this section do not actually require the criticality condition,
so let us define notation for the mean of the Z±i and the two corresponding centered
random walks. Let

λ± = E[Z±1 ] and V ±(n) =
∑n
i=1(Z±i − λ±).

The criticality condition is then equivalent to assuming λ+ = 1. We also define the
notation

Ξ±n,n−m =

n∑
i=m+1

D±i and ∆n = Ξ−n,n − Ξ+
n,n

such that {∆n = 0} is the event that the total out-degree is equal to the total in-degree.
The following proposition asserts the existence of the measure change φnm, and

its joint scaling limit with the random walks V − and V + when m = bn2/3T c for some
T > 0. We show later in Theorem 3.4 that the measure change φnm is the expectation
of a deterministic function of Ξ−n,n−m and Ξ+

n,n−m only. The law of (Ξ−n,n−m,Ξ
+
n,n−m)

depends only on n −m, hence from this point on we will write (Ξ−n−m,Ξ
+
n−m) to mean

(Ξ−n,n−m,Ξ
+
n,n−m).

Proposition 3.2. For all positive integers n and m such that m ≤ n, there exists a
function φnm : (N×N)n → [0,∞) such that

E
[
u(D̂n,1, . . . , D̂n,m)11{Rn ≥ m}

∣∣∣∆n = 0
]

= E[u(Z1, . . . ,Zm)φnm(Z1, . . . ,Zm)]
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for all bounded test functions u : (N×N)m → R. Define

Φ(n,m) = φnm(Z1, . . . ,Zm).

Further, let (W−,W+) be a pair of correlated standard Brownian motions with correlation
Corr(Z−1 , Z

+
1 ) and, for T > 0, define

Φ(T ) = exp

(
−σ−
µ

∫ T

0

sdW−s −
σ2
−

6µ2
T 3

)
.

Then for all T > 0,(
Φ(n, bn2/3T c),

(
n−1/3V −

(
bn2/3tc

)
, n−1/3V +

(
bn2/3tc

))
t∈[0,T ]

)
(d)−−→

(
Φ(T ), (σ−W

−
t , σ+W

+
t )t∈[0,T ]

)
in R×D([0, T ],R2) as n→∞, even in the absence of the criticality condition.

The rest of this section is dedicated to proving this proposition.

3.1 Exact form of the measure change

To determine the exact form of the measure change, we first need to know the law of
the ordering of the first Rn vertices. Let In = {i ∈ [n] : D−i > 0}. The first Rn vertices
we explore in Algorithm 1 will have positive in-degree, thus the restriction of Σn to [Rn]

is a random bijection Σn|[Rn]: [Rn]→ In.
Next we establish the form of the measure change when we condition on the exact

value of Rn but not ∆n = 0.

Lemma 3.3. For all integers 0 ≤ r ≤ n and test functions u : (N×N)r ×N→ R,

E
[
u
(
D̂n,1, . . . , D̂n,r,

∑
i∈Icn

D+
i

) ∣∣∣Rn = r
]

= E
[
u
(
Z1, . . . ,Zr,

∑n−r
i=1 E

+
i

)
ψr(Z1, . . . ,Zr)

]
where

ψr(k1, . . . ,kr) =
1

pr

r∏
i=1

(r − i+ 1)µ∑r
j=i k

−
i

.

and E+
1 , E

+
2 , . . . are i.i.d. random variables such that E+

i has the same distribution as D+

conditioned on D− = 0. We take the sequences (E+
i )i≥1 and (Zi)i≥1 to be independent.

Proof. For any k1, . . . ,km ∈ N+ ×N for all i and s ∈ N.

P
(
D̂n,1 = k1, . . . , D̂n,r = kr,

∑
i∈Icn

D+
i = s,Rn = r

)
=
∑
I⊆[n]
|I|=r

∑
σ:[r]→I

P
(
DΣn(1) = k1, . . . ,DΣn(r) = kr,

∑
i∈Icn

D+
i = s, In = I,Σn|[Rn]= σ

)

where the second summation is taken over all bijections σ : [r]→ I. We examine a single
summand.

P
(
DΣn(1) = k1, . . . ,DΣn(r) = kr,

∑
i∈Icn

D+
i = s, In = I,Σn|[Rn]= σ

)
=P

(
Dσ(j) = kj for j = 1, . . . , r,

∑
i∈Ic D

+
i = s,D−i = 0 for i ∈ Ic,Σn|[Rn]= σ

)
=

r∏
i=1

k−i∑r
j=i k

−
j

×
r∏
i=1

λki × P
(∑

i∈Ic D
+
i = s,D−i = 0 for i ∈ Ic

)
.
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where λk = P(D1 = k). We have

P
(∑

i∈Ic D
+
i = s,D−i = 0 for i ∈ Ic

)
= (1− p)n−rP

(∑n−r
i=1 E

+
i = s

)
.

Also

r∏
i=1

k−i∑r
j=i k

−
j

×
r∏
i=1

λki =

r∏
i=1

k−i
µ
λki ×

r∏
i=1

µ∑r
j=i k

−
j

= P(Z1 = k1, . . . ,Zr = kr)×
r∏
i=1

µ∑r
j=i k

−
j

.

Therefore

P
(
D̂n,1 = k1, . . . , D̂n,r = kr,

∑
i∈Icn

D+
i = s,Rn = r

)
=

(
n

r

)
× r!×

r∏
i=1

µ∑r
j=i k

−
j

× (1− p)n−r × P
(
Z1 = k1, . . . ,Zr = kr,

∑n−r
i=1 E

+
i = s

)
=

(
n

r

)
pr(1− p)n−r × 1

pr

r∏
i=1

(r − i+ 1)µ∑r
j=i k

−
i

× P
(
Z1 = k1, . . . ,Zr = kr,

∑n−r
i=1 E

+
i = s

)
.

Finally dividing by P(Rn = r) =
(
n
r

)
pr(1− p)n−r gives the desired measure change.

Using the previous lemma we can prove existence and give the exact form of the
desired measure change φnm.

Lemma 3.4. For all m ≤ n and test functions u : (N×N)m → R,

E
[
u
(
D̂n,1, . . . , D̂n,m

)
11{Rn ≥ m}

∣∣∣∆n = 0
]

= E [u (Z1, . . . ,Zm)φnm(Z1, . . . ,Zm)] ,

where

φnm(k1, . . . ,km) =
1

P(∆n = 0)
E

[
11

{
∆n−m =

m∑
i=1

(k+
i − k

−
i )

}
m∏
i=1

(n− i+ 1)µ∑m
j=1 k

−
j + Ξ−n−m

]
.

Proof. By Theorem 3.3, for all r ≥ m

E
[
u
(
D̂n,1, . . . , D̂n,m

)
11{∆n = 0}

∣∣∣Rn = r
]

=E

[
u (Z1, . . . ,Zm) 11

{
r∑
i=1

(Z−i − Z
+
i )−

n−r∑
i=1

E+
i = 0

}
1

pr

r∏
i=1

(r − i+ 1)µ∑r
j=i Z

−
j

]

=E

[
u (Z1, . . . ,Zm)E

[
11

{
r∑
i=1

(Z−i − Z
+
i )−

n−r∑
i=1

E+
i = 0

}
1

pr

r∏
i=1

(r − i+ 1)µ∑r
j=i Z

−
j

∣∣∣∣∣Z1, . . . ,Zm

]]
=E [u (Z1, . . . ,Zm) γ̃n,mr (Z1, . . . ,Zm)] ,
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where

γ̃n,mr (k1, . . . ,km) = E

[
11

{
r∑
i=1

(Z−i − Z
+
i )−

n−r∑
i=1

E+
i = 0

}
×

1

pr

r∏
i=1

(r − i+ 1)µ∑r
j=i Z

−
j

∣∣∣∣∣Z1 = k1, . . . ,Zm = km

]

= E

[
11

{
r∑

i=m+1

(Z−i − Z
+
i )−

n−r∑
i=1

E+
i =

m∑
i=1

(k+
i − k

−
i )

}
×

1

pm

m∏
i=1

(r − i+ 1)µ∑m
j=i k

−
j +

∑r
j=m+1 Z

−
j

1

pr−m

r∏
i=m+1

(r − i+ 1)µ∑r
j=i Z

−
j

]

= E

[
11

{
r−m∑
i=1

(Z−i − Z
+
i )−

n−r∑
i=1

E+
i =

m∑
i=1

(k+
i − k

−
i )

}
×

1

pm

m∏
i=1

(r − i+ 1)µ∑m
j=i k

−
j +

∑r−m
j=1 Z−j

1

pr−m

r−m∏
i=1

(r −m− i+ 1)µ∑r−m
j=i Z−j

]
,

since (Zi)
r
i=m+1 has the same law as (Zi)

r−m
i=1 . Then applying Theorem 3.3 again shows

that

γ̃n,mr (k1, . . . ,km) = E

[
11


r−m∑
i=1

(D̂−n−m,i − D̂
+
n−m,i)−

∑
i∈Icn−m

D+
i =

m∑
i=1

(k+
i − k

−
i )

×
1

pm

m∏
i=1

(r − i+ 1)µ∑m
j=i k

−
j +

∑r−m
j=1 D̂−n−m,j

∣∣∣∣∣ Rn−m = r −m

]
.

Conditional on Rn−m = r −m, we have

r−m∑
j=1

(D̂−n−m,j − D̂
+
n−m,j)−

∑
i∈Icn−m

D+
i = ∆n−m and

r−m∑
j=1

D̂−n−m,j = Ξ−n−m.

Therefore,

γ̃n,mr (k1, . . . ,km) = E

[
1

pm

m∏
i=1

(r − i+ 1)µ∑m
j=i k

−
j + Ξ−n−m

11An

∣∣∣∣∣Rn−m = r −m

]
,

where

An = An(k1, . . . ,km) =

{
∆n−m =

m∑
i=1

(k+
i − k

−
i )

}
.

Hence,

E
[
u
(
D̂n,1, . . . , D̂n,m

)
11{Rn ≥ m,∆n = 0}

]
= E

[
u (Z1, . . . ,Zm) φ̃nm(Z1, . . . ,Zm)

]
,

where

φ̃nm(k1, . . . ,km)

=

n∑
r=m

(
n

r

)
pr(1− p)n−rE

[
1

pm

m∏
i=1

(r − i+ 1)µ∑m
j=i k

−
j + Ξ−n−m

11An

∣∣∣∣∣Rn−m = r −m

]

=

n−m∑
l=0

(
n

l +m

)
pl+m(1− p)n−m−lE

[
1

pm

m∏
i=1

(l +m− i+ 1)µ∑m
j=i k

−
j + Ξ−n−m

11An

∣∣∣∣∣Rn−m = l

]
.
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We wish to view the sum as an expectation over Rn−m. In order to do this, we rewrite
the expression so that we are taking a sum over the probabilities of a Binomial(n−m, p)
distribution. We can calculate(

n
l+m

)
pl+m(1− p)n−m−l(

n−m
l

)
pl(1− p)n−m−l

= pm
m∏
i=1

(n− i+ 1)

(l +m− i+ 1)
.

Therefore,

φ̃nm(k1, . . . ,km) =

n−m∑
l=1

(
n−m
l

)
pl(1− p)n−m−lE

[
m∏
i=1

(n− i+ 1)µ∑m
j=i k

−
j + Ξ−n−m

11An

∣∣∣∣∣Rn−m = l

]

= E

[
E

[
m∏
i=1

(n− i+ 1)µ∑m
j=i k

−
j + Ξ−n−m

11An

∣∣∣∣∣Rn−m
]]

= E

[
m∏
i=1

(n− i+ 1)µ∑m
j=i k

−
j + Ξ−n−m

11An

]
.

Finally, dividing by P(∆n = 0) yields the desired form of φnm.

3.2 Asymptotic lower bound on the measure change

Recall that our goal in Theorem 3.2 is to determine the limiting distribution of

Φ(n,m) = φnm(Z1, . . . ,Zm),

as n → ∞, in the regime where m = Θ(n2/3). When dealing with convergence in
distribution, it is sufficient and necessary to work on a sequence of events occuring with
high probability. In particular, for the proof of Theorem 3.2, we work on the event Em
where

Em =

{
max

i=1,...,m

∣∣∣∑i
j=1(Z−j − λ−)

∣∣∣ ≤ m1/2 log(m)

and max
i=1,...,m

∣∣∣∑i
j=1(Z+

j − λ+)
∣∣∣ ≤ m1/2 log(m)

}
.

This says that the centered random walks corresponding to Z+
i and Z−i both do not devi-

ate by more than m1/2 log(m) in the first m steps. The conditions in Section 1.3 ensure
each Z+

i and Z−i has finite variance, thus this event will occur with high probability.
The following lemma is an analogue of Conchon–Kerjan and Goldschmidt [14, Lemma

6.7]. In it we prove a deterministic lower bound on φnm(k1, . . . ,km), for all k1, . . . ,km
such that

{Z1 = k1, . . . ,Zm = km} ⊆ Em,
up to an error which vanishes as n→∞.

Proposition 3.5. Let k1, . . . ,km ∈ N×N and for i = 1, . . . ,m let ki = (k−i , k
+
i ). Define

s±(i) =
∑i
j=1(k±i − λ±).

Suppose that k1, . . . ,km are such that

max
i=1,...,m

|s−(i)| ≤ m 1
2 log(m) and max

i=1,...,m
|s+(i)| ≤ m 1

2 log(m) (3.1)

Then in the regime m = Θ(n2/3), as n→∞,

φnm(k1, . . . ,km) ≥ exp

(
1

µn

m∑
i=0

(s−(i)− s−(m))− σ−
6µ2

m3

n2

)
+ o(1),

where the o(1) error term is independent of k1, . . . ,km satisfying the assumption in (3.1).
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The fact that we only prove a lower bound may seem strange at first. To understand
why this is sufficient, first note that all measure changes are non-negative random
variables and have expectation 1. Hence if the sequence of lower bounds on the measure
changes converge to a limit that also has expectation 1, then we have not have lost a
significant amount of probability mass. It follows that the measure changes converge
to the same limit as the lower bounds. This is made formal by Conchon–Kerjan and
Goldschmidt [14, Lemma 4.8]. In Theorem 3.2 we are considering the joint convergence
of the measure change with two other random walks, and thus we adapt [14, Lemma 4.8]
to allow for an additional coordinate that is converging jointly with the first coordinate.

Lemma 3.6. Let (Xn, Yn, Zn)n≥1 be a sequence of [0,∞) × [0,∞) × S-valued random
variables where S is a metric space. Suppose there exists a [0,∞)× S-valued random
variable (Y, Z) such that the following holds:

1. (Yn, Zn)
(d)−−→ (Y,Z) as n→∞.

2. Xn ≥ Yn almost surely for all n.

3. E[Xn] = 1 for all n and E[Y ] = 1.

Then (Xn, Zn)
(d)−−→ (Y,Z) also. Moreover (Xn)n≥1 is a sequence of uniformly integrable

random variables.

The proof of this lemma is obtained by simply adding the corresponding Zn or Z
coordinate to quantities in the proof of [14, Lemma 4.8] and so we will not repeat it here.

3.2.1 Discrete local limit theorem

To prove Theorem 3.5, we first need to understand the denominator of φnm, which, as
given by Theorem 3.4, is P(∆n = 0). The random variable ∆n is a sum of independent
integer-valued random variables and the asymptotic behaviour of such a sum being equal
to some value is described by the discrete local limit theorem. Such a theorem was first
proven by Gnedenko [24]. In this subsection, we discuss the standard one-dimensional
local limit theorem in the finite variance case. For this we borrow the presentation from
Durrett [22, Section 3.5]. Then, in Section 3.2.4, we prove a multivariate version of this.

Let X1, X2, . . . be i.i.d. integer-valued random variables with mean µ and finite
variance σ2. Then, by the central limit theorem,∑n

i=1Xi − nµ
σ
√
n

(d)−−→ N(0, 1)

as n→∞. This suggests that the probability mass function of
∑n
i=1Xi should be well

approximated by the probability density function of a N(nµ, nσ2) distribution, and in
particular we hope that

sup
s∈Z

∣∣∣P(∑n
i=1Xi = s

)
− 1√

2πnσ2
exp

(
−(s−nµ)2

2nσ2

)∣∣∣ = o(n−1/2). (3.2)

This, however, is not always the case. Suppose, for example, that each Xi is almost
surely even such that P (

∑n
i=1Xi = s) = 0 for all odd s. Let sn be the closest odd integer

to nµ. Then

sup
s∈Z

∣∣∣P(∑n
i=1Xi = s

)
− 1√

2πnσ2
exp

(
−(s−nµ)2

2nσ2

)∣∣∣≥ 1√
2πnσ2

exp

(
−(sn − nµ)2

2nσ2

)
=Θ(n−1/2).

Fortunately this kind of periodic behaviour can be mitigated by normalizing the
random variables. A one-dimensional random variable X is lattice if it is not almost
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surely constant, and there exists h > 0 and c ∈ R such that X ∈ c + hZ almost surely.
The largest such h is called the span of X. For example, if X is almost surely even then
X has span at least 2. If X is lattice with span h and c is in the support of X, then the
affine transform 1

h (X − c) is an integer-valued random variable with span 1, for which it
can be shown that the approximation in Eq. (3.2) does hold. This gives us the discrete
local limit theorem:

Theorem 3.7 (Discrete local limit theorem). Let X1, X2, . . . be i.i.d. R-valued lattice
random variables with span h and fix arbitrary c ∈ supp(X1). Then

sup
s∈nc+hZ

∣∣∣P(∑n
i=1Xi = s

)
− h√

2πnσ2
exp

(
−(s−nµ)2

2nσ2

)∣∣∣ = o(n−1/2).

Remark 3.8. For each sequence of integers (sn)n≥1 such that |sn − nµ| = ω(n1/2), we
have that

1√
2πnσ2

exp

(
−(sn − nµ)2

2nσ2

)
= o(n−1/2).

Hence the discrete local limit theorem (Theorem 3.7) tells us only that

P

(
n∑
i=1

Xi = sn

)
= o(n−1/2).

It gives no precise characterization of the leading order term.

While this remark will be important later, here ∆n is centered and we are interested
in the probability P(∆n = 0). In addition, the strong aperiodicity condition in Section 1.3
tells us exactly that the D− −D+ is lattice with span 1. Thus the following is a direct
corollary of the discrete local limit theorem (Theorem 3.7).

Corollary 3.9. We have

P(∆n = 0) =
1√

2πσ2n
+ o(n−1/2)

as n→∞, where σ is the variance of D− −D+.

Remark 3.10. The exact value of σ2 is not important for the asymptotic behaviour of
φnm because we show later that it will cancel with a term in the numerator of φnm.

3.2.2 Exponential tilting

Next we turn to the numerator of φnm. By Theorem 3.4, this is given by

E

[
11

{
∆n−m =

m∑
i=1

(k+
i − k

−
i )

}
m∏
i=1

(n− i+ 1)µ∑m
j=i k

−
j + Ξ−n−m

]
. (3.3)

Like in the proof of Lemma 3.4 we denote

A = An(k1, . . . ,km) =

{
∆n−m =

m∑
i=1

(k+
i − k

−
i )

}
.

From now on, we assume that the k1, . . . ,km satisfy the condition in (3.1). We face two
problems in evaluating the expectation in Eq. (3.3).

The first problem concerns the event An. To evaluate the expectation we need to
understand the asymptotic probability of this event. Unfortunately a naïve application of
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the discrete local limit theorem will not work in this case, as we now explain. Firstly,
note that

m∑
i=1

(k−i − k
+
i ) = s−(m)− s+(m) + (λ+ − λ−)m.

We have that

λ+ − λ− = E[Z− − Z+] = 1
µE[D−D+ − (D−)2]

which is, in general, non-zero. Then m = Θ(n2/3) whereas, under our assumptions on
k1, . . . ,kn, s−(m) and s+(m) are both of order O(n1/3 log n). Therefore

m∑
i=1

(k−i − k
+
i ) = Θ(n2/3).

In contrast, ∆n−m is centered, so An is looking at the event that ∆n−m takes a value at
distance Θ(n2/3) away from its mean. As stated in Theorem 3.8, the discrete local limit
theorem provides no useful information in this regime.

The second problem is that even in absence of the indicator function, the expectation
being evaluated in Eq. (3.3) is not dictated by the typical fluctuations of the random
variables Ξ−n−m. In other words, it is not the case that

E

[
m∏
i=1

(n− i+ 1)µ∑m
j=i k

−
j + Ξ−n−m

]
6≈

m∏
i=1

(n− i+ 1)µ∑m
j=i k

−
j + E[Ξ−n−m]

(3.4)

It turns out that both of these issues can be addressed by introducing a sequence of
exponentially tilted measures. The first effect of the exponentially tilted measures will
be to shift the mean of ∆n−m in such a way that, after the tilting, the event An concerns
only a typical deviation of ∆n−m which can be addressed by a local limit theorem. The
second effect is that the expectation being evaluated in Eq. (3.3) will be dictated by the
typical fluctations of Ξ−n−m under the tilted measure.

The next result defines this tilt and then gives asymptotic expansions for cumulant
generating function of D−, the mean of D− and the mean of D+ under this tilting.

Lemma 3.11. Define an measure Pθ, for θ ≥ 0, by its Radon–Nikodym derivative

dPθ
dP

= exp
(
−θD− − α(θ)

)
where α(θ) = logE

[
e−θD

−
]
.

Then as θ ↓ 0 we have

α(θ) = −µθ + 1
2 Var(D−)θ2 − 1

6E
[
(D− − µ)3

]
θ3 + o(θ3),

Eθ[D
−] = µ−Var(D−)θ +O(θ2),

and Eθ[D
+] = µ− Cov(D−, D+)θ +O(θ2).

Proof. Since E
[
|D−|3

]
< ∞ and D− is non-negative, by the dominated convergence

theorem

E
[
(D−)3 exp(−θD−)

]
= E

[
(D−)3

]
+ o(1) (3.5)

as θ ↓ 0. Integrating Eq. (3.5) with respect to θ and applying Fubini’s theorem to
exchange the order of the expectation and integral gives

E

[∫ θ

0

(D−)3e−θ
′D− dθ′

]
= E

[∫ θ

0

{
(D−)3 + o(1)

}
dθ′

]
= E

[
(D−)3

]
θ + o(θ).
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Evaluating the integral with respect to θ′ on the left hand side and rearranging gives
that

E
[
(D−)2e−θD

−
]

= E
[
(D−)2

]
− E

[
(D−)3

]
θ + o(θ).

Repeating this method yields

E
[
D−e−θD

−
]

= µ− E
[
(D−)2

]
θ + 1

2E
[
(D−)3

]
θ2 + o(θ2), (3.6)

and E
[
e−θD

−
]

= 1− µθ + 1
2E
[
(D−)2

]
θ2 − 1

6E
[
(D−)3

]
θ3 + o(θ3). (3.7)

Similarly integrating the equation

E
[
(D−)2D+ exp(−θD−)

]
= E

[
(D−)2D+

]
+ o(1)

twice gives

E
[
D+e−θD

−
]

= µθ − E
[
D−D+

]
θ + 1

2E
[
(D−)2D+

]
θ2 + o(θ2). (3.8)

Eq. (3.7) gives the small-θ expansion of the normalising constant of the measure change.
Combining this with Eq. (3.6) and Eq. (3.8) yields the expansions for Eθ[D−] and Eθ[D+]

respectively. Taking the logarithm of Eq. (3.7) gives the expansion of the cumulant
generating function α(θ).

To achieve the recentering of ∆n−m we desire, let us define a sequence of tilted
measures Pn defined by their Radon–Nikodym derivative

dPn
dP

= exp
(
−θnΞ−n−m − (n−m)α(θn)

)
, (3.9)

where θn = m
µn . This factorises and so D1, . . . ,Dn remain i.i.d. under this tilting, each

having the law of D under Pθn . Applying Theorem 3.11, we can compute that

En[∆n−m] = m(λ+ − λ−) +O(n1/3).

Hence,∑m
i=1(k−i − k

+
i )− En[∆n−m] = s−(m)− s+(m) +

[
m(λ+ − λ−)− En[∆n−m]

]
= O(n1/3 log n),

which is within the O(n1/2) range from the mean required for a typical deviation. This
justifies our choice of θn = m

µn .

3.2.3 Expansion of the numerator

Remarkably the same tilting to apply the local limit theorem also correctly recenters
Ξ−n−m such that the expectation in Eq. (3.3) is dominated by the typical behaviour of
Ξ−n−m under Pn. Using Theorem 3.11, we have that

En[Ξ−n−m] = µn− λ−m+O(n1/3)

under the tilting. Thus we will expand the numerator under the event

Bn =
{
|Ξ−n−m − µn+ λ−m| ≤ n1/2 log(n)

}
.

This event is saying that Ξ−n−m is at ‘typical fluctations’ from its tilted mean. The next
lemma then expands the numerator of φnm on the event Bn.
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Lemma 3.12. We have that

E

[
11An∩Bn

m∏
i=1

(n− i+ 1)µ∑m
j=1 k

−
j + Ξ−n−m

]
=

{
exp

(
1

µn

m∑
i=0

(s−(i)− s−(m))− σ−
6µ2

m3

n2

)
+ o(1)

}
× Pn(An ∩ Bn)

where the o(1) term is bounded uniformly in all k1, . . . ,km that satisfy assumption (3.1).

Proof. Firstly,
m∏
i=1

(n− i+ 1)µ∑m
j=i k

−
j + Ξ−n−m

= exp(Xn − Yn),

where

Xn =

m∑
i=1

log

(
1− i− 1

n

)
and Yn =

m∑
i=1

log

(∑m
j=i k

−
j + Ξ−n−m

µn

)
.

Note that
m∑
j=i

k−j = s−(m)− s−(i− 1) + (m− i+ 1)λ−.

For convenience, define
Ω−n = Ξ−n−m − µn+ λ−m

such that B = {|Ω−n | < n1/2 log n}. Then we have

Yn =

m∑
i=1

log

(
s−(m)− s−(i− 1) + (m− i+ 1)λ− + Ω−n + µn− λ−m

µn

)

=

m∑
i=1

log (1 +Ai,n +Bi,n)

where

Ai,n =
1

µn

{
Ω−n −

[
s−(i− 1)− s−(m)

]}
, Bi,n = −λ−

µn
(i− 1).

Then on the event Bn,

max
i=1,...,m

|Ai,n| = O(n−1/2 log n) and max
i=1,...,m

|Bi,n| = O(n−1/3).

where the O bounds are uniform for k1, . . . ,km satifying (3.1). There are m = Θ(n2/3)

terms in the summation. Thus to keep all terms of order Ω(1), we keep terms of order
Ω(n−2/3), uniformly in i, when expanding log(1 +Ai,n +Bi,n). The only such terms are
Ai,n, Bi,n and B2

i,n. Moreover,

m∑
i=1

Bi,n = −λ−
2µ

m2

n
+ o(1) and

m∑
i=1

(Bi,n)2 =
λ2
−

3µ2

m3

n2
+ o(1).

Therefore,

Yn =

m∑
i=1

(Ai,n +Bi,n − 1
2B

2
i,n) + o(1)

= − 1

µn

m∑
i=0

(
s−(i)− s−(m)

)
+
m

µn
Ω−n −

λ−
2µ

m2

n
−
λ2
−

6µ2

m3

n2
+ o(1),
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where we use that
∑m
i=1 (s−(i− 1)− s−(m)) =

∑m
i=0 (s−(i)− s−(m)).

Similarly, the Taylor expansion of Xn has the form

Xn = −m
2

2n
− m3

6n2
+ o(1).

Thus,

11An∩Bn

m∏
i=1

(n− i+ 1)µ∑m
j=i k

−
j + Ξ−n−m

= exp

(
1

µn

m∑
i=1

(s−(i)− s−(m))− m

µn
Ω−n +

(λ− − µ)

2µ

m2

n
+

(λ2
− − µ2)

6µ2

m3

n2
+ o(1)

)
11An∩Bn .

In addition, using Theorem 3.11, the measure change can be expanded as

dPn
dP

= exp

(
− m
µn

Ω−n +
(λ− − µ)

2µ

m2

n
+

(λ2
− − µ2)

6µ2

m3

n2
+
σ−
6µ2

m3

n2
+ o(1)

)
.

Hence,

E

[
11An∩Bn

m∏
i=1

(n− i+ 1)µ∑m
j=i k

−
j + Ξ−n−m

]

=En

[
dP

dPn
11An∩Bn

m∏
i=1

(n− i+ 1)µ∑m
j=i k

−
j + Ξ−n−m

]

=En

[
11An∩Bn exp

(
1

µn

m∑
i=0

(s−(i)− s−(m))− σ−
6µ2

m3

n2
+ o(1)

)]

=

{
exp

(
1

µn

m∑
i=0

(s−(i)− s−(m))− σ−
6µ2

m3

n2

)
+ o(1)

}
Pn(An ∩ Bn)

as required.

3.2.4 Multivariate local limit theorem

To complete the proof of Theorem 3.5 we need to understand the asymptotic behaviour
of Pn(An ∩ Bn). Recall an effect of the tilting was to center ∆n−m in such a way that the
probability of the event

An =
{

∆n−m =
∑m
i=1(k+

i − k
−
i )
}

can be addressed by the local limit theorem. However, due to the tilting, Pn changes
with n. In effect, ∆n under Pn has the same distribution as

∑n−m
i=1 Xn,i where (Xn,i)

n
i=1

has the same joint distribution as (D−i − D+
i )ni=1 under Pn. Then Xn,1, . . . , Xn,n are

i.i.d. but the distribution of Xn,1 can change with n. A collection of random variables
(Xn,1, . . . , Xn,n)∞n=1 satisfying this property is a row-wise i.i.d. triangular array. Thus we
require a generalisation of the discrete local limit theorem which can deal with such
arrays. In addition, to deal with the event

Bn =
{∣∣Ξ−n−m − µn+ λ−m

∣∣ ≤ n1/2 log n
}
,

we will prove a multivariate local limit theorem applicable to (∆n−m,Ξ
−
n−m) under Pn

and then sum over the possible values of Ξ−n .
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Before we state the result we use, we first define some terminology regarding lattices
in Rd. A set Λ of points in Rd is a lattice if there exists a basis a1, . . . ,ad of Rd such that

Λ =
{∑d

i=1 niai : ni ∈ Z for i = 1, . . . , d
}
.

We say Λ is generated by a1, . . . ,ad. We can summarise the basis by a n × n matrix A
whose columns are a1, . . . ,an. In other words Aij = a

(i)
j . The choice of basis generating

a lattice is not unique, and the following lemma adapted from [37, Corollary 4.3a]
characterises when two basis generate the same lattice.

Lemma 3.13. Let A and B be n× n matrices of full rank. Then the columns of A and B
generate the same matrix if and only if there exists a matrix U such that U has integer
entries, det(U) = ±1 and A = BU .

iherefore we can define det(Λ) to be |det(A)| for any matrix A whose columns generate
Λ, and this definition is independent of the choice of A.

For integer lattices, we can obtain a canonical choice of the basis generating the
lattice. We say a d× d matrix A is in Hermite normal form if A is lower triangular with
entries

A =

a1,1 0
...

. . .

ad,1 · · · ad,d


satisfying

1. ai,j is a non-negative integer for all i, j = 1, . . . , d,

2. ai,i > 0 for all i = 1, . . . , d, and

3. ai,j < ai,i for all j = 1, . . . , d, in other words the unique maximal entry in each row
is on the diagonal.

Then the following lemma, adapted from [37, Corollary 4.3b], gives existence of a
canonical choice of basis generating an integer lattice.

Lemma 3.14. Suppose Λ ⊆ Zd is a lattice. Then there exists a unique d× d matrix A in
Hermite normal form such that the columns of A form a basis which generates Λ.

An Rd-valued random variable X is non-degenerate if it is not supported on an affine
hyperplane of Rd. X is lattice if it is non-degenerate and supported on a translation of a
lattice. To avoid dealing with translations, it is convenient to work with the symmetrisa-
tion of X. This is the random variable X∗ = X1 −X2 where X1 and X2 are independent
copies of X. For each lattice Λ, X is supported on a translation of Λ if and only if X∗ is
supported on Λ without translation.

If X is lattice, the main lattice Λ(X) of X is the intersection of all lattices containing
the support of X∗. This is in itself a lattice, and is explicitly given by

Λ(X) =

∞⋃
k=1

{∑k
i=1 nix

∗
i : ni ∈ Z and x∗i ∈ supp(X∗) for i = 1, . . . , k

}
.

It will turn out that if X is an Rd-valued lattice random variable with main lattice Λ, then
det(Λ(X)) can be seen as a generalisation of the span of an R-valued random variable.

To deal with the triangular array, we recall the exponential tilt is given by

dPn
dP

= exp(−θnΞ−n−m − (n−m)α(θn))

where θn = m
µn . Since θn → 0, the distribution of Di under Pn is converging to that of Di

under P as n→∞. This allows us to ignore the tilting in the limit.
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Theorem 3.15. For each n ≥ 1 let Xn be an Rd valued random variable and

Xn,1,Xn,2, . . . ,Xn,n

be i.i.d. copies of Xn. Assume that the following holds:

1. There exists a random variable X such that Xn
(d)−−→ X as n→∞.

2. (‖Xn‖2)n≥1 is a uniformly integrable sequence of random variables. Explicitly

lim
L→∞

sup
n
E
[
‖Xn‖211

{
‖Xn‖2 > L

}]
= 0. (3.10)

3. For all n, Xn and X are lattice with common main lattice Λ.

Then X has finite second moment. Further, for each n let cn be an arbitrary element in
the support of

∑n
i=1 Xn,i. Then uniformly for y ∈ cn + Λ,

P
(∑n

i=1 Xn,i = y
)

= n−d/2 det(Λ)f (xn(y)) + o
(
n−d/2

)
where xn(y) = y−nE[Xn]√

n

and f is the density of a N(0,Cov(X)) distribution. This means that

lim
n→∞

sup
y∈cn+Λ

∣∣∣nd/2P(∑n
i=1 Xn,i = y

)
− det(Λ)f(xn(y))

∣∣∣ = 0.

We defer the proof of this to Section B in the appendix, and instead make a few
remarks. Firstly X is assumed to be lattice and thus non-degenerate. Hence Cov(X) is
invertible, ensuring N(0,Cov(X)) has a valid density f , which is explicitly given by

f(x) =
1√

(2π)d det(Cov(X))
exp

(
− 1

2
x · Cov(X)−1x

)
.

Secondly, since the X1,X2, . . . do not necessarily live in the same probability space
we should not technically refer to the sequence (‖Xn‖2)n≥1 as uniformly integrable.
However the condition in Eq. (3.10) is still well defined.

We apply Theorem 3.15 to (Ξ−n−m,∆n−m). Suppose (D−−D+, D−) is non-degenerate
and let Λ be its main lattice. By Theorem 3.14, Λ is generated by the columns of a matrix
A in Hermite normal formal. Since D−−D+ has span 1, it must be the case that A1,1 = 1.
Thus there exists positive integers p and q such that

A =

(
1 0

p q

)
.

Finally let Σ be the covariance matrix of (D−−D+, D−). With this notation, the following
lemma holds:

Lemma 3.16. Suppose (D− −D+, D−) is non-degenerate. For each n, let cn be in the
support of (∆n−m,Ξ

−
n−m). Then uniformly for (x, y) ∈ cn + Λ,

Pn
(
∆n−m = E

[
∆n−m

]
+ x, Ξ−n−m = E

[
Ξ−n−m

]
+ y
)

=
q

2π det(Σ)1/2 n
exp

(
−1

2n

(
x y

)
Σ

(
x

y

))
+ o(n−1)

as n→∞.

EJP 29 (2024), paper 87.
Page 38/85

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1131
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Universality for the directed configuration model

Proof. Let X = (D− − D+, D−). For each n, let Xn be distributed as (D− − D+, D−)

under Pθn . Then (
D−1 −D

+
1

D−1

)
, . . . ,

(
D−n −D+

n

D−n

)
under Pn can be seen as n i.i.d. copies of Xn. Since θn → 0, we have that Xn

(d)−−→ X as
n→∞.

For any L > 0,

sup
n
E
[
‖Xn‖211{‖Xn‖2 > L}

]
= sup

n
E
[
e−θnD

−−α(θn)‖X‖211{‖X‖2 > L}
]

≤
(

sup
n
e−α(θn)

)
E
[
‖X‖211{‖X‖2 > L}

]
since θn and D−n are non-negative. Since θn is convergent,

sup
n
e−α(θn) <∞.

Moreover E
[
‖X‖211{‖X‖2 > L}

]
→ 0 as L → ∞ as X has finite second moment. Thus

(‖Xn‖2)n≥1 satisfies the uniform integrability condition in Eq. (3.10).
Finally the exponential tilt does not change the support of the random variables. Thus

X and Xn share a common main lattice Λ. In addition, det(Λ) = q.
Hence the result follows by Theorem 3.15. There is a small change in that we are

considering a sum of n−m random variables rather than n. However since m = o(n),
the same asymptotic result holds.

Now we show P(An ∩ Bn) has the same asymptotic behaviour as P(∆n = 0). We only
prove a lower bound, but this is sufficient for proving Theorem 3.5.

Lemma 3.17. Under the assumptions of Theorem 3.5,

Pn

(
∆n−m =

m∑
i=1

(k+
i − k

−
i ), |Ξ−n−m − En[Ξ−n−m]| ≤ n 1

2 log n

)
≥ 1√

2πσ2n
(1 + o(1)).

Proof. For convenience let

Pn = Pn

(
∆n−m =

m∑
i=1

(k+
i − k

−
i ), |Ξ−n−m − En[Ξ−n−m]| ≤ n 1

2 log n

)
.

Firstly, suppose (D− −D+, D−) is degenerate. Then since we assume that D− −D+ is
non-deterministic, it must be the case that either D− or D+ is deterministic. Either way,
it becomes the case that{

∆n−m =

m∑
i=1

(k+
i − k

−
i ), |Ξ−n−m − En[Ξ−n−m]| ≤ n 1

2 log n

}
=

{
∆n−m =

m∑
i=1

(k+
i − k

−
i )

}
.

Then applying Theorem 3.15, as we did in the proof of Theorem 3.16, shows that

Pn
(
∆n−m =

∑m
i=1(k+

i − k
−
i )
)

=
1√

2πσ2n
(1 + o(1)).

Otherwise assume that (D− −D+, D−) is non-degenerate. Define

an =

m∑
i=1

(k+
i − k

−
i )− En[∆n−m].
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Also let

Ln =
{
y :

(∑m
i=1(k+

i − k
−
i ), y

)
∈ cn + Λ

}
,

where cn is an arbitrary element in the support of
∑n
i=1 Xn,i, as in the statement

of Theorem 3.15. Ln has a simpler representation. Fix any y0 ∈ Ln. Then if Λ is
generated by the columns of (

1 0

p q

)
we must have Ln = y0 + qZ. Fix an arbitrary M > 0. Then

Pn =
∑
y∈Ln

|y|≤n1/2 logn

Pn
(
∆n−m = En[∆n−m] + an, Ξ−n−m = En[Ξ−n−m] + y

)
≥

∑
y∈Ln

|y|≤Mn1/2

Pn
(
∆n−m = En[∆n−m] + an, Ξ−n−m = En[Ξ−n−m] + y

)

for all n sufficiently large. By Theorem 3.16, using that the error is uniform, we have
that

Pn ≥
∑
y∈Ln

|y|≤Mn1/2

q

2π det(Σ)1/2 n
exp

(
−1

2n

(
an
y

)
· Σ−1

(
an
y

))
+ o(n−1/2).

We wish to factorise the summand. To this end, we make a change of variables. There
exists c ∈ R such that

Cov(D− − c(D− −D+), D− −D+) = 0.

Let τ2 be the variance of D− − c(D− −D+). Then

q

2π det(Σ)1/2 n
exp

(
1

2n

(
an
y

)
· Σ−1

(
an
y

))
=

1√
2πσ2n

exp

(
− 1

2σ2

a2
n

n

)
q√

2πτ2n
exp

(
− 1

2τ2

(y − can)2

n

)
. (3.11)

We now examine the asymptotic behaviour of an. By Theorem 3.11,

En[∆n−m] = (n−m)Eθn [D− −D+]

= −(λ− − λ+)m+O(n1/3).

Therefore

an = s+(m)− s−(m) +O(n1/3) = O(n1/3 log n),

by the assumption in (3.1), so

exp

(
− 1

2σ2

a2
n

n

)
= 1 + o(1)

and Eq. (3.11) yields that

Pn ≥
1√

2πσ2n
(1 + o(1))

∑
y∈Ln

|y|≤Mn1/2

q√
2πτ2n

exp

(
− 1

2τ2

(y − can)2

n

)
+ o(n−1/2).
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Note that ∑
y∈Ln

|y|≤Mn1/2

q√
2πτ2n

exp

(
− 1

2τ2

(y − can)2

n

)
=

∑
y∈Ln

|y|≤Mn1/2

q√
n
g

(
y − can√

n

)

where

g(z) =
1√

2πτ2
exp

(
−z2

2τ2

)
.

Since an = O(n1/3+ε), for n sufficiently large∑
y∈Ln

|y|≤Mn1/2

q√
2πτ2n

exp

(
− 1

2τ2

(y − can)2

n

)
≥

∑
z∈Ln−can
|z|≤ 1

2Mn1/2

q√
n
g

(
z√
n

)
(3.12)

=
∑
z∈L̃n
|z|≤ 1

2M

q√
n
g(z) (3.13)

where

L̃n =
Ln − can√

n
.

Then L̃n ∩ [− 1
2M, 1

2M ] is a partition of [− 1
2M, 1

2M ] where adjacent points are distance
q/
√
n apart from each other. Thus Eq. (3.13) is a Riemann sum approximation of the

integral of the continuous function g. Hence∑
y∈Ln

|y|≤Mn1/2

q√
2πτ2n

exp

(
− 1

2τ2

(y − can)2

n

)
≥ (1 + o(1))

∫ 1
2M

− 1
2M

g(z) dz.

Thus

Pn ≥
1√

2πσ2n
(1 + o(1))

∫ 1
2M

− 1
2M

g(z) dz.

This holds for all M > 0, and
∫∞
−∞ g(z) dz = 1. Therefore,

Pn ≥
1√

2πσ2n
(1 + o(1)) ,

as required.

3.3 Proof of lower bound

Now we are ready to prove Theorem 3.5.

Proof of Theorem 3.5. By Theorem 3.4 and Theorem 3.12 we have that

φ(k1, . . . ,km) ≥

{
exp

(
1

µn

m∑
i=0

(s−(i)− s−(m))− σ−
6µ2

m3

n2

)
+ o(1)

}
Pn(An ∩ Bn)

P(∆n = 0)

where the o(1) term is independent of k1, . . . ,km satisfying our assumptions. Then
by Theorem 3.17 and Theorem 3.9 we have that

Pn(An ∩ Bn)

P(∆n = 0)
≥ 1 + o(1)

where the o(1) term is independent of k1, . . . ,km satisfying our assumptions. Thus

φ(k1, . . . ,km) ≥ exp

(
1

µn

m∑
i=0

(s−(i)− s−(m))− σ−
6µ2

m3

n2

)
+ o(1)

as required.
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3.4 Convergence of the measure change

We are now ready to prove the main result of this section.

Proof of Theorem 3.2. The existence of the measure change is covered by Theorem 3.4.
Define

Γ(n,m) = exp

(
1

µn

m∑
i=0

(
V −(i)− V −(m)

)
− σ−

6µ2

m3

n2

)
.

By Donsker’s invariance principle,(
n−1/3V −(btn2/3c), n−1/3V +(btn2/3c)

)
t≥0

(d)−−→
(
σ−W

−
t , σ+W

+
t

)
t≥0

inD
(
[0,∞),R2

)
, where (W−t ,W

+
t )t≥0 are a pair of correlated standard Brownian motions

with correlation Corr(Z−1 , Z
+
1 ). We can write

1

n

bTn2/3c∑
i=0

V −(i) = n−2/3

∫ bTn2/3c+1

0

n−1/3V −(buc) du

=

∫ n−2/3(bTn2/3+1c)

0

n−1/3V −(bsn2/3c) ds.

Thus, by the continuous mapping theorem,

1

n

bTn2/3c∑
i=0

σ−
(
V −(i)− V −(m)

) (d)−−→
∫ T

0

(
W−s −W−T

)
ds = −

∫ T

0

sdW−s .

Hence,(
Γ(n, bTn2/3c),

(
n−1/3V −(btn2/3c), n−1/3V +(btn2/3c)

)
t∈[0,T ]

)
(d)−−→

(
Φ(T ), (σ−W

−
t , σ+W

+
t )t∈[0,T ]

)
in R×D([0, T ],R), as n→∞. Recall the event

Em =

{
max

i=1,...,m
|V −(i)| ≤ m1/2 logm and max

i=1,...,m
|V +(i)| ≤ m1/2 logm

}
By Theorem 3.5, it is the case that

Φ(n,m) ≥ (Γ(n,m) + o(1))11Em .

The processes (V ±(n))n≥0 are discrete martingales. Therefore, by Doob’s maximal
inequality,

P

(
max

i=1,...,m
|V ±(i)| > m1/2 log(m)

)
≤ E[(V ±(m))2]

m(logm)2
=

σ2
±

(logm)2
→ 0

as m→∞. Thus P(Em)→ 1 as m→∞. Hence, we still have that(
(Γ(n, bTn2/3c) + o(1))11EbTn2/3c

,
(
n−1/3V −(btn2/3c), n−1/3V +(btn2/3c)

)
t∈[0,T ]

)
(d)−−→

(
Φ(T ), (σ−W

−
t , σ+W

+
t )t∈[0,T ]

)
.
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We have E[Φ(T )] = 1 by a standard stochastic calculus calculation. Therefore, by Theo-
rem 3.6, we get the desired result that(

Φ(n, bTn2/3c),
(
n−1/3V −(btn2/3c), n−1/3V +(btn2/3c)

)
t∈[0,T ]

)
(d)−−→

(
Φ(T ), (σ−W

−
t , σ+W

+
t )t∈[0,T ]

)
,

and that (Φ(n, bTn2/3c))n≥1 is a uniformly integrable sequence.

4 Convergence of the out-forest

Fix T > 0. In this section we will show that the Łukasiewicz path and height process
corresponding to the out-forest converge under rescaling up to time bTn2/3c. Note that
the out-forest will contain at least n vertices, so for n large enough, bTn2/3c ≤ n and the
encoding processes are well-defined up to time bTn2/3c.

We remind the reader that an overview of the most important notation used can be
found in Appendix A. We also remind the reader that when dealing with the out-forest,
we refer to the kth vertex in depth-first order in the out-forest as ‘vertex k’, no matter
whether this is a true vertex or a dummy leaf.

We will show that the convergence under rescaling of the Łukasiewicz path and height
process (Ŝ+

n (k), Ĥn(k), k ≤ bTn2/3c) occurs jointly with convergence in distribution under
rescaling of (Ŝ−n (k), P̂n(k), k ≤ bTn2/3c), for Ŝ−n (k) the number of unpaired in-half-edges
of vertices that have been discovered at time k, and P̂n(k) the number of dummy leaves
added in the first k time-steps.

We let (Bt)t≥0 be a Brownian motion, and define

(B̂t, t ≥ 0) :=

(
Bt −

σ−+ + ν−
2σ+µ

t2, t ≥ 0

)
.

We define the reflected process

(R̂t, t ≥ 0) =
(
B̂t − inf

{
B̂s : s ≤ t

}
, t ≥ 0

)
.

The main result of this section is as follows.

Proposition 4.1. It holds that(
n−1/3Ŝ+

n

(
bn2/3tc

)
, n−1/3Ĥn

(
bn2/3tc

)
, t ≤ T

)
(d)−−→

(
σ+B̂t,

2

σ+
R̂t, t ≤ T

)
in D([0, T ],R)2, and(

n−2/3Ŝ−n

(
bn2/3tc

)
, n−1/3P̂n

(
bn2/3tc

)
, t ≤ T

)
(p)−−→

(
ν−t,

ν−
2µ
t2, t ≤ T

)
in D([0, T ],R)2 as n→∞.

We prove Theorem 4.1 by studying two other forests that are related to the out-forest
via a change of measure.

The proof is structured as follows.

1. Recall that (D̂n,1, . . . , D̂n,n) are the degree pairs of the vertices in order of discovery.
Also recall Z1,Z2, . . . in an i.i.d. sequence of N × N-valued random variables,
Zi := (Z−i , Z

+
i ), such that

P(Z−i = k−, Z+
i = k+) =

k−P(D− = k−, D+ = k+)

µ
.

EJP 29 (2024), paper 87.
Page 43/85

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1131
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Universality for the directed configuration model

In Section 3, we showed that the law of (D̂n,1, . . . , D̂n,m) conditional on
∑n
i=1D

−
i =∑n

i=1D
+
i and m ≤ Rn is absolutely continuous with respect to that of (Z1, . . . ,Zm),

and we showed the convergence under rescaling of the Radon-Nikodym derivative
φnm for m = bTn2/3c.

2. Point 1 motivates us to study a Bienaymé forest with offspring distributed as Z+
1 .

The convergence of the Łukasiewicz path of this forest under rescaling follows
from Donsker’s theorem.

3. In Subsection 4.2, we modify the Bienaymé forest in order to include dummy leaves.
We add extra randomness, approximating the procedure described in Theorem 2.6,
in such a way that at some time-steps, a dummy leaf is added. We call the resulting
forest the forest with dummy leaves. We respect the order of the degrees in the
Bienaymé forest, in the sense that for any k, the kth true vertex in the forest
with dummy leaves has the same number of children as the kth vertex in the
Bienaymé forest. The law of the forest with dummy leaves depends on n, because
the probability of finding a dummy leaf depends on n. We then show that the
Łukasiewicz path and height process of the forest with dummy leaves converge
under rescaling, jointly with the convergence of the Łukasiewicz path and height
process of the Bienaymé forest under rescaling up to time bTn2/3c.

4. We show convergence under rescaling of the out-forest up to time bTn2/3c by
applying the measure change to the forest with dummy leaves and showing that
the resulting forest is a good approximation of the out-forest.

4.1 Convergence before adding the dummy leaves

We define the two processes

Ŷ ±(k) =

k∑
i=1

(D̂±n,i − 1),

for 1 ≤ k ≤ n, which encode the degrees in order of discovery.
We will study these processes via the measure change that we defined in Section 3.

Let

Y ±(k) =

k∑
i=1

(Z±i − 1)

be the corresponding walks for (Zi)
∞
i=1. Then, in the critical case, these are related to

the centered random walks V ± by

Y +(k) = V +(k) and Y −(k) = V −(k)− (λ− − 1)k = V −(k)− ν−k.

Therefore, applying the more general Theorem 3.2 to our setting yields the following
result.

Corollary 4.2. It holds that for all T > 0,(
Φ(n, bn2/3T c),

(
n−1/3V −

(
bn2/3tc

)
, n−1/3V +

(
bn2/3tc

))
t∈[0,T ]

)
(d)−−→

(
Φ(T ), (σ−W

−
t , σ+W

+
t )t∈[0,T ]

)
in R×D([0, T ],R2) as n→∞ and

(
Φ(n, bn2/3T c)

)
n≥1

is uniformly integrable.

We will first show that the law of (B̂t, t ≥ 0) is locally absolutely continuous to a
Brownian motion and we characterise the Radon–Nikodym derivative. This is the content
of the next proposition.
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Proposition 4.3. It holds that for F a continuous bounded function, and for (Bt)t≥0 a
standard Brownian motion,

E
[
F (σ+B̂t, 0 ≤ t ≤ T )

]
= E

[
exp

(
−σ−+

σ+µ

∫ T

0

sdBs −
σ2
−+T

3

6σ2
+µ

2

)
F (σ+Bt, 0 ≤ t ≤ T )

]
.

Proof. Firstly, we have that for any t ∈ [0, T ] and θ > 0,

E

[
exp

(
−θ
(
σ+Bt −

σ−+

2µ
t2
))]

= exp

(
σ2

+t

2
θ2 +

σ−+t
2

2µ
θ

)
= exp

(
−

σ2
−+

2σ2
+µ

2

∫ t

0

(
s+

σ2
+θµ

σ−+

)2

ds−
σ2
−+t

3

6σ2
+µ

2

)

= E

[
exp

(
−σ−+

σ+µ

∫ t

0

(
s+

σ2
+θµ

σ−+

)
dBs −

σ2
−+t

3

6σ2
+µ

2

)]
= E

[
exp

(
−σ−+

σ+µ

∫ t

0

sdBs −
σ2
−+t

3

6σ2
+µ

2

)
exp (−θσ+Bt)

]
Then, more generally, for m > 0, 0 = t0 ≤ t1 ≤ · · · ≤ tm = t, and θ1, . . . , θm ∈ R+,

E

[
exp

(
−

m∑
i=1

θi

(
σ+(Bt −Bti)−

σ−+

2µ
(t2i − t2i−1)

))]

=

m∏
i=1

exp

(
σ2

+(ti − ti−1)

2
θ2
i +

σ−+(t2i − t2i−1)

2µ
θi

)

=

m∏
i=1

exp

(
−

σ2
−+

2σ2
+µ

2

∫ ti

ti−1

(
s+

σ2
+θiµ

σ−+

)2

ds−
σ2
−+(t3i − t3i−1)

6σ2
+µ

2

)

=

m∏
i=1

E

[
exp

(
−σ−+

σ+µ

∫ ti

ti−1

sdBs −
σ2
−+(t3i − t3i−1)

6σ2
+µ

2
− θiσ+(Bti −Bti−1

)

)]

= E

[
exp

(
−σ−+

σ+µ

∫ t

0

sdBs −
σ2
−+t

3

6σ2
+µ

2

)
exp

(
−

m∑
i=1

θi(σ+Bti − σ+Bti−1
)

)]
,

which proves the result.

Proposition 4.4. We have that(
n−2/3Ŷ −

(
bn2/3tc

)
, n−1/3Ŷ +

(
bn2/3tc

)
, 0 ≤ t ≤ T

)
(d)−−→

(
ν−t, σ+B̂t, 0 ≤ t ≤ T

)
in the Skorokhod topology as n→∞.

Proof. We recall from the statement of Theorem 4.2 that (W−,W+) is a pair of correlated
standard Brownian motions with correlation Corr(Z−1 , Z

+
1 ). Let (B1

t , t ≥ 0) and (B2
t , t ≥ 0)

be two independent Brownian motions, so that we may define

(σ−W
−
t , σ+W

+
t , t ≥ 0) =

(
σ−+

σ+
B1
t +

(
σ2
− −

σ2
−+

σ2
+

)1/2

B2
t , σ+B

1
t , t ≥ 0

)
.
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Then, Theorem 4.2 implies that for F a continuous, bounded test function,

E
[
F
(
n−1/3Ŷ +

(
bn2/3tc

)
, 0 ≤ t ≤ T

)]
= E

[
F
(
n−1/3Ŷ +

(
bn2/3tc

)
, 0 ≤ t ≤ T

)
11bTn2/3c≤Rn

]
+ o(1)

= E
[
Φ(n, bn2/3T c)F

(
n−1/3V +

(
bn2/3tc

)
, 0 ≤ t ≤ T

)]
+ o(1).

By the proof of Proposition 3.2, we see that for

Γ(n,m) = exp

(
1

µn

m∑
i=0

(V −(i)− V −(m))− σ−
6µ2

m3

n2

)
,

we have that
E
[∣∣∣Φ(n, bn2/3T c)− Γ(n, bn2/3T c)

∣∣∣]→ 0

as n→∞, so it sufficient to show that

E
[
Γ(n, bn2/3T c)F

(
n−1/3V +

(
bn2/3tc

)
, 0 ≤ t ≤ T

)]
→ E

[
F
(
σ+B̂t, 0 ≤ t ≤ T

)]
.

Write V +
(n)(t) = n−1/3V +

(
bn2/3tc

)
and V −(n)(t) = n−1/3V −

(
bn2/3tc

)
. Then we observe that

Γ(n, bn2/3T c) = exp

(
1

µ

∫ T

0

(
V −(n)(t)− V

−
(n)(T )

)
dt− σ−

6µ2

bTn2/3c3

n2

)
.

For a path x ∈ D([0, T ],R), let

Θ(x, T ) = exp

(
1

µ

∫ T

0

(x(t)− x(T )) dt− σ−
6µ2

T 3

)
so that Θ is a continuous functional of its first argument and

E
[∣∣∣Γ(n, bn2/3T c)−Θ(V −(n), T )

∣∣∣]→ 0

as n→∞. This implies that it suffices to show that

E
[
Θ(V −(n), T )F

(
V +

(n)(t), 0 ≤ t ≤ T
)]
→ E

[
F
(
σ+B̂t, 0 ≤ t ≤ T

)]
.

But, by the continuity of Θ and Corollary 4.2, we get that

E
[
Θ(V −(n), T )F

(
V +

(n)(t), 0 ≤ t ≤ T
)]
→ E

[
Θ(σ−W

−
t , T )F

(
σ+W

+
t , 0 ≤ t ≤ T

)]
=E

[
exp

(
− 1

µ

∫ T

0

sd

(
σ−+

σ+
B1
s +

(
σ2
− −

σ2
−+

σ2
+

)1/2

B2
s

)
−
T 3σ2

−
6µ2

)
F
(
σ+B

1
t , 0 ≤ t ≤ T

)]

=E

[
exp

(
−σ−+

σ+µ

∫ T

0

sdB1
s −

σ2
−+T

3

6σ2
+µ

2

)
F (σ+B

1
t , 0 ≤ t ≤ T )

]
.

Then, we observe that, while (V −(k), k ≥ 1) is centered, the random walk (Y −(k), k ≥
1) has steps of mean ν−, so the process Y −

(
bn2/3tc

)
is Θ(n2/3) and has a deterministic

scaling limit by the strong law of large numbers. To be precise,(
n−2/3Y −

(
bn2/3tc

)
, t ≥ 0

)
(p)−−→ (ν−t, t ≥ 0) ,

and then, by repeating the argument above, noting that the change of measure does not
affect the deterministic process (ν−t, t ≥ 0), also(

n−2/3Ŷ −
(
bn2/3tc

)
, t ≥ 0

)
(p)−−→ (ν−t, t ≥ 0) ,

which proves the statement.
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4.2 Adding dummy leaves to a Bienaymé forest

We would like to add dummy leaves to the forest encoded by (Y +(l), 1 ≤ l ≤ k).
However, in the absence of a true stack of in-edges, we need to approximate the
probability of adding a dummy leaf. We do this by approximating the stack size by its
mean µn. We use this idea to define the forest with dummy leaves and its Łukasiewicz
path (S+

n (k), k ≥ 1) as a function of (Y −(k), Y +(k), k ≥ 1) and some extra randomness to
decide at which time-steps we add a dummy leaf.

1. Set Pn(1) = 0, S+
n (1) = Z+

1 − 1, S−n (1) = Z−1 .

2. Suppose we are given (Pn(l), S+
n (l), S−n (l), 1 ≤ l ≤ k). Define I+(k) = min{S+

n (l), l ≤
k}. Then, with probability

pk+1 :=
S−n (k)

µn− k − I+(k) + 1
11{I+(k)=I+(k−1)},

independently of everything else, set Pn(k + 1) = Pn(k) + 1. Otherwise, set
Pn(k + 1) = Pn(k).

3. Set
S+
n (k + 1) = Y +(k + 1− Pn(k + 1))− Pn(k + 1),

and
S−n (k + 1) = Y −(k + 1− Pn(k + 1))− Pn(k + 1)− I+(k) + 1.

Let the forest with dummy leaves be the forest with Łukasiewicz path (S+
n (k), k ≥ 1) in

which the kth vertex is a dummy leaf if and only if Pn(k)− Pn(k − 1) = 1.

4.2.1 Convergence of the Łukasiewicz path

To show the convergence of the Łukasiewicz path corresponding to the forest with
dummy leaves, we will first examine the limit of (Pn(k), k ≥ 1) under rescaling. We will
first prove tightness, after which we will show convergence.

Lemma 4.5. We have that, (
n−1/3Pn

(
bn2/3tc

))
n≥1

is tight for all t > 0.

Proof. Set m = bn2/3tc and fix ε > 0. It is trivial that for any k ≤ m,

S−(k) ≤
k∑
i=1

Z−i = Y −(k) + k.

Moreover, µn− k − I+(l) + 1 > µn− k. Therefore,

pk+1 ≤
Y −(k) + k

µn− k
.

This upper bound is increasing in k. Consequently, conditional on (Y +(j), Y −(j), j ≥ 1),
Pn(m) is stochastically dominated by a binomial random variable with parameters m and

Y −(m) +m

µn−m
∧ 1.

Since the sequence (Y −(k) + k, k ≥ 1) is a random walk with steps of finite mean, the
sequence

(
n−2/3(Y −(m) +m), n ≥ 1

)
is tight. Therefore,(

n1/3Y
−(m) +m

µn−m

)
n≥1
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is tight, which implies that a binomial random variable with parameters m and

Y −(m) +m

µn−m
∧ 1,

rescaled by n−1/3, is tight. The statement follows.

Lemma 4.6. We have(
n−1/3Pn(bn2/3tc), t ≥ 0

)
(p)−−→

(
ν−
2µ
t2, t ≥ 0

)
in D(R+,R) as n→∞.

Proof. Recall that

pk+1 =
S−n (k)

µn− k − I+(k) + 1
11{I+(k)=I+(k−1)}.

Define M+(k) = min{Y +(l) : l ≤ k} so that 0 ≥ I+(k) ≥ M+(k) − Pn(k). Then, by
Lemma 4.5, the convergence under rescaling of Y + shown in Theorem 4.2, and the
continuous mapping theorem,

(
n−1/3I+(bn2/3tc)

)
n≥1

is tight for all t ≥ 0. We will now
argue that the indicator, which ensures that the roots are never dummy leaves, does not
have an effect on (Pn(k), k ≤ m) on the scale of interest. Let m = bn2/3tc. Define

Ep(m) :=

m−1∑
k=0

S−n (k)

µn− k − I+(k) + 1
11{I+(k) 6=I+(k−1)}

≤ −I+(m)
Y −(m) +m

µn−m
,

so since I+(m) is of order n1/3 and Y −(m)+m
µn−m is of order n−1/3, (Ep(m))n≥1 is tight. This

means that if we allow the roots to be dummy leaves, with high probability, we would
only sample O(1) roots that are dummy leaves up to time O(n2/3). This does not affect
(Pn(k), k ≤ m) on the scale of interest.

Then, the convergence under rescaling of Y − and Y + shown in Theorem 4.2, the
tightness of

(
n−1/3I+(bn2/3tc)

)
n≥1

and Lemma 4.5 imply that(
n1/3 S−n

(
bn2/3tc

)
µn− bn2/3tc − I+

(
bn2/3tc

)
+ 1

, t ≥ 0

)

=

(
n1/3Y

− (bn2/3tc − Pn
(
bn2/3tc

))
− Pn

(
bn2/3tc

)
− I+

(
bn2/3tc

)
+ 1

µn− bn2/3tc − I+
(
bn2/3tc

)
+ 1

, t ≥ 0

)
(p)−−→

(
ν−
µ
t, t ≥ 0

)
(4.1)

in D(R+,R) as n→∞. Then, by the continuous mapping theorem and the tightness of
(Ep(m))n≥1, n−1/3

bn2/3tc∑
k=0

pk, t ≥ 0

 (p)−−→
(
ν−
2µ
t2, t ≥ 0

)
in D(R+,R) as n→∞.

Let G = (Gk, k ≥ 1) denote the filtration such that Gk contains the information on
the shape of the forest until time k, including which of the first k vertices are dummy
vertices. Then,

Mn(k) :=

k∑
i=1

(11{Pn(i)−Pn(i−1)=1} − pi)
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is a G-martingale. We claim that (n−1/3Mn(bn2/3tc), t ≥ 0) converges to 0 in probability
in D(R+,R). Indeed, for any t ≥ 0,

E[n−2/3Mn(bn2/3tc)2] = n−2/3

bn2/3tc∑
i=1

E[E[(11{Pn(i)−Pn(i−1)=1} − pi)2|Gi−1]]

= n−2/3

bn2/3tc∑
i=1

E[pi − p2
i ]→ 0.

Hence, since for all t ≥ 0,

n−1/3Pn(bn2/3tc) = n−1/3

bn2/3tc∑
i=1

11{Pn(i)−Pn(i−1)=1}

= n−1/3

bn2/3tc∑
i=0

pk + n−1/3Mn

(
bn2/3tc

)
,

we have (
n−1/3Pn(bn2/3tc), t ≥ 0

)
(d)−−→

(
ν−
2µ
t2, t ≥ 0

)
,

which proves the statement.

The convergence of Pn under rescaling implies the convergence of S+
n and S−n under

rescaling, which is the content of the following lemma. Let (Bt, t ≥ 0) be a Brownian
motion, and define

(Bd
t , t ≥ 0) =

(
Bt −

ν−
2µσ+

t2, t ≥ 0

)
.

Lemma 4.7. We have(
n−1/3Y +

(
bn2/3tc

)
, n−1/3S+

n

(
bn2/3tc

)
, t ≥ 0

)
(d)−−→

(
σ+Bt, σ+B

d
t , t ≥ 0

)
in D(R+,R)2 and (

n−2/3S−n

(
bn2/3tc

)
, t ≥ 0

)
(p)−−→ (ν−t, t ≥ 0)

in D(R+,R) as n→∞.

Proof. This follows from the convergence under rescaling of Y + and Y − shown in Theo-
rem 4.2 and Lemma 4.6, and the expressions

S+
n (k + 1) = Y + (k + 1− Pn(k + 1))− Pn(k + 1),

and
S−n (k + 1) = Y − (k + 1− Pn(k + 1))− Pn(k + 1)− I+(k) + 1.

4.2.2 Convergence of the height process

In this subsection, we will extend Theorem 4.7. We will show that, under rescaling, the
height process of the forest with dummy leaves converges jointly with the other encoding
processes of the forest with dummy leaves. Let (H+

n (k), k ≥ 1) be the height process
corresponding to the forest with dummy leaves. Set

(Rd
t , t ≥ 0) =

(
Bd
t − inf

{
Bd
s : s ≤ t

}
, t ≥ 0

)
.
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Proposition 4.8. We have that(
n−1/3Y +

(
bn2/3tc

)
, n−1/3S+

n

(
bn2/3tc

)
, n−1/3H+

n

(
bn2/3tc

)
, t ≥ 0

)
(d)−−→

(
σ+Bt, σ+B

d
t ,

2

σ+
Rd
t , t ≥ 0

)
in D(R+,R)3, and (

n−2/3S−n

(
bn2/3tc

)
, t ≥ 0

)
(p)−−→ (ν−t, t ≥ 0)

in D(R+,R) as n→∞.

The difficulty in proving this proposition is the fact that the forest with dummy leaves
is not a Bienaymé forest, because the probability of sampling a dummy leaf changes
as the exploration is performed. The theory of convergence of height processes under
rescaling is well-developed for Bienaymé processes (see e.g. Duquesne and Le Gall
[21]), but this is not the case for more general processes. We will adapt a technique that
Broutin, Duquesne and Wang developed in [8] to show the convergence of the height
process of an inhomogeneous random graph under rescaling. The key idea is that the
forest with dummy leaves itself is not a Bienaymé forest, but we can embed it in a
Bienaymé forest that does not depend on n. We call the extra vertices filler vertices
and call the resulting forest the forest with dummy and filler vertices. We then show
convergence under rescaling of the height process corresponding to the forest with
dummy and filler vertices, and use this to obtain height process convergence for the
forest with dummy leaves.

We start by defining the forest with dummy and filler vertices. Informally, we obtain
it by modifying the forest with dummy leaves in such a way that a sub-tree consisting
of the descendants of a dummy vertex has the same law as a sub-tree consisting of
the descendants of a true vertex. We do this by sampling extra Bienaymé trees with
offspring distributed as Z+, whose vertices are all filler vertices, and then identifying
their roots with the dummy leaves. The resulting forest is a Bienaymé forest containing
true, dummy and filler vertices, in which the forest with true vertices and dummy leaves
is embedded. This is illustrated in Figure 9.

The formal procedure is as follows. Suppose we are given (Y +(k), S+
n (k), Pn(k), k ≥ 1),

which encodes the forest with dummy leaves.

1. Let (Y f(k), k ≥ 1) be an independent copy of (Y +(k), k ≥ 1), which will encode the
pendant subtrees that consist of filler vertices.

2. Define θn(k) = k − Pn(k − 1) + min{j : Y f(j) = −Pn(k − 1)}.
3. Set Λn(k) = max{j : θn(j) ≤ k} − Pn(max{j : θn(j) ≤ k}).
4. We now define

(Y df(k), k ≥ 1) = (Y +(Λn(k)) + Y f(k − Λn(k)), k ≥ 1) (4.2)

and we let the forest with dummy and filler vertices be the forest with Łukasiewicz
path (Y df(k), k ≥ 1), in which Pn(max{j : θn(j) ≤ k}) of the first k vertices are
dummy vertices, Λn(k) of the first k vertices are true vertices, and the rest are
filler vertices. We let (Hdf(k), k ≥ 1) be the height process corresponding to the
forest with dummy and filler vertices.

By removing the filler vertices from the forest with dummy and filler vertices, we obtain
the original forest with dummy leaves. We make the following observations.
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Figure 9: Given a component of the forest with dummy vertices (left), we modify it by
sampling independent Bienaymé trees with offspring distributed as Z+ consisting of
filler vertices and identifying each dummy leaf with a root of such a tree. The resulting
tree (right) is a Bienaymé tree, and the resulting forest is a Bienaymé forest.

1. We claim that θn(k) is equal to the index in depth first order of the kth true or
dummy vertex in the forest with dummy and filler vertices. Indeed, note that
min{j : Y f(j) = −Pn(k− 1)} is equal to the number of vertices in the first Pn(k− 1)

trees in the forest encoded by Y f , so that

min{j : Y f(j) = −Pn(k − 1)} − Pn(k − 1)

is equal to the number of filler vertices in depth-first order until the kth true or
dummy vertex.

2. Note that Λn(k) is the number of true vertices amongst the first k vertices. This
follows from the fact that max{j : θn(j) ≤ k} is the number of true or dummy
vertices amongst the first k vertices.

3. By the previous remark, (Λn(k), k ≥ 1) only takes steps of size 0 or 1. Both
(Y +(k), k ≥ 1) and (Y f(k), k ≥ 1) are random walks with steps distributed as Z+−1,
so, by construction, (Y df(k), k ≥ 1) is a random walk with steps distributed as
Z+ − 1, so the forest with dummy and filler vertices is a Bienaymé forest with
offspring distributed as Z+.

4. By construction, (Hdf(θn(k)), k ≥ 1) is the height process corresponding to the
forest with dummy vertices. Moreover,

(S+
n (k), k ≥ 1) = (Y df(θn(k))− E(θn(k)), k ≥ 1), (4.3)

where E(k) counts the number of children of the kth vertex in the forest with
dummy and filler vertices that are filler vertices.

In order to prove Theorem 4.8, considering the construction above and Theorem 4.7, it
is sufficient to prove the following lemma.
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Lemma 4.9. There exists a process (Dt, t ≥ 0) such that(
n−1/3

[
Y df

(
θn

(
bn2/3tc

))
− E

(
bn2/3tc

)]
, n−1/3Hdf

(
θn

(
bn2/3tc

))
, t ≥ 0

)
(d)−−→

(
σ+Dt,

2

σ+
(Dt − inf {Ds, s ≤ t}) , t ≥ 0

)
in D(R+,R)2 as n → ∞ and

(
2
σ+

(Dt − inf {Ds, s ≤ t}) , t ≥ 0
)

is the height process

corresponding to (σ+Dt, t ≥ 0).

The next lemma show that the pathwise construction of (Y df(k), Hdf(k), k ≥ 1) con-
verges to its continuous counterpart.

Let (Bt, t ≥ 0) and (Bf
t , t ≥ 0) be two independent Brownian motions and let

θ(t) := t+ inf

{
s ≥ 0 : σ+B

f
s < −

ν−
2µ
t2
}
,

and Λ(t) = inf{s ≥ 0 : θ(s) > t}. Define(
Bdf
t , t ≥ 0

)
:=
(
BΛ(t) +Bf

t−Λ(t), t ≥ 0
)

(4.4)

and set
(Rdf

t , t ≥ 0) :=
(
Bdf
t − inf{Bdf

s , s ≤ t}, t ≥ 0
)
.

Lemma 4.10. We have that
(
(2/σ+)Rdf

t , t ≥ 0
)

is the height process corresponding to(
σ+B

df
t , t ≥ 0

)
. Moreover,(

n−1/3Y df
(
bn2/3tc

)
, n−1/3Hdf

(
bn2/3tc

)
, t ≥ 0

)
(d)−−→

(
σ+B

df
t ,

2

σ+
Rdf
t , t ≥ 0

)
(4.5)

in D(R+,R)2, jointly with(
n−1/3Y +

(
bn2/3tc

)
, n−1/3Y f

(
bn2/3tc

)
, t ≥ 0

)
(d)−−→

(
σ+Bt, σ+B

f
t , t ≥ 0

)
in D(R+,R)2 and(

n−2/3Λn

(
bn2/3tc

)
, n−2/3θn

(
bn2/3tc

)
, t ≥ 0

)
(d)−−→ (Λ(t), θ(t), t ≥ 0)

in D(R+,R)2 as n→∞. Moreover,(
n−1/3Y df

(
θn

(
bn2/3tc

))
, n−1/3Hdf

(
θn

(
bn2/3tc

))
, t ≥ 0

)
(d)−−→

(
σ+B

df
θ(t),

2

σ+
Rdf
θ(t), t ≥ 0

)
(4.6)

in D(R+,R)2 as n→∞ jointly with the other convergences.

In the proof of Lemma 4.10 we use the following straightforward technical result that
follows immediately from the characterization of convergence in the Skorokhod topology
given in Ethier and Kurtz [23, Proposition 3.6.5],.

Lemma 4.11. Suppose hn → h in D(R+,R+) and fn → f in D(R+,R) as n→∞. Then,
if hn and h are non-decreasing and h is continuous, or if f is continuous, then

fn ◦ hn → f ◦ h

in D(R+,R) as n→∞.
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We also use the following technical result, that is proved in Appendix C.

Lemma 4.12. If fn → f in D(R+,R) as n → ∞, and f is a continuous function that is
not bounded from above, with f(0) = 0 and with unique local maxima, then

(inf{t : fn(t) > s}, s > 0)→ (inf{t : f(t) > s}, s > 0)

in D(R+,R) as n→∞.

Proof of Lemma 4.10. Firstly, note that since (Y df(k), k ≥ 1) encodes a critical Bienaymé
forest with offspring variance σ2

+, the proof of Theorem 1.8 in Le Gall [31] gives us that
for (B∗s , s ≥ 0) a Brownian motion,(

n−1/3Y df
(
bn2/3sc

)
, n−1/3Hdf

(
bn2/3sc

)
, s ≥ 0

)
(d)−−→

(
σ+B

∗
s ,

2

σ+
(B∗s − inf{B∗u : u ≤ s}) , s ≥ 0

)
(4.7)

in D(R+,R)2 as n→∞, and that
(

2
σ+

(B∗s − inf{B∗u, u ≤ s}), s ≥ 0
)

is the height process

corresponding to (σ+B
∗
s , s ≥ 0). Then, we note that since (Y +(k), k ≥ 1)

d
= (Y df(k), k ≥

1), so that also (
n−1/3Y +

(
bn2/3tc

)
, t ≥ 0

)
(d)−−→ (σ+Bt, t ≥ 0)

in D(R+,R) as n → ∞. Then, since also (Y +(k), k ≥ 1)
d
= (Y f(k), k ≥ 1) and by

Lemma 4.12 and the almost sure uniqueness of the local minima of Brownian motion, we
get that(

n−1/3Y f
(
bn2/3sc

)
, n−2/3 inf

{
k : n−1/3Y f(k) ≤ −x

}
, s ≥ 0, x ≥ 0

)
(d)−−→

(
σ+B

f
s, inf

{
u : σ+B

f
u < −x

}
, s ≥ 0, x ≥ 0

) (4.8)

in D(R+,R)2 as n→∞.
Since (Pn(k), k ≥ 1) is non-decreasing, applying Lemma 4.11, and combining the

convergence in Eq. (4.8) with Lemma 4.6 gives that also(
n−2/3 inf

{
k : Y f(k) ≤ −Pn

(
bn2/3tc − 1

)}
, t ≥ 0

)
(d)−−→
(

inf

{
u : σ+B

f
u < −

ν−
2µ
t2
}
, t ≥ 0

)
in D(R+,R) as n→∞ jointly with the convergence in Eq. (4.8). Therefore,(

n−2/3θn

(
bn2/3tc

)
, t ≥ 0

)
(d)−−→ (θ(t), t ≥ 0) (4.9)

in D(R+,R) as n→∞ jointly with the convergence in Eq. (4.8). Recall that

Λn(k) = max{j : θn(j) ≤ k} − Pn(max{j : θn(j) ≤ k}).

By definition, for all n, (θn(k), k ≥ 1) and (θ(t), t ≥ 0) are strictly increasing, so(
n−2/3 max{j : θn(j) ≤ bn2/3tc}), t ≥ 0

)
(d)−−→ (Λ(t), t ≥ 0)

in D(R+,R) as n → ∞ jointly with the convergence in Eq. (4.8) and Eq. (4.9). Since
max{j : θn(j) ≤ bn2/3tc} is of order n2/3, and, by Lemma 4.6, Pn(bn2/3tc) is of order n1/3,
we get that (

n−2/3Λn

(
bn2/3tc

)
, t ≥ 0

)
(d)−−→ (Λ(t), t ≥ 0)
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in D(R+,R) as n→∞ jointly with the convergence in Eq. (4.8) and Eq. (4.9).
To finish the proof, we examine the construction of (Y df(k), k ≥ 1) in Eq. (4.2) and the

construction of (Bdf
s , s ≥ 0) in Eq. (4.4). Note that Λn(k) and k−Λn(k) are non-decreasing.

Again, by Lemma 4.11, this implies that(
n−1/3Y df

(
bn2/3tc

)
, t ≥ 0

)
(d)−−→

(
Bdf
t , t ≥ 0

)
in D(R+,R) as n → ∞ jointly with all earlier mentioned convergences. Combining
this with the convergence in Eq. (4.7) proves Eq. (4.5). The fact that (θn(k), k ≥ 1) is
non-decreasing and Lemma 4.11 then imply Eq. (4.6).

Lemma 4.13. We have that(
n−1/3S+

(
bn2/3tc

)
), n−1/3H+

(
bn2/3tc

)
, t ≥ 0

)
(d)−−→

(
σ+B

df
θ(t),

2

σ+

(
Bdf
θ(t) − inf{Bdf

s : s ≤ θ(t)}
)
, t ≥ 0

)
in D(R+,R)2 as n→∞.

Proof. By Eq. (4.3), and by Lemma 4.10, it is sufficient to show that for any t > 0,

n−1/3 max
k≤bn2/3tc

E(k)
(p)−−→ 0.

We remind the reader that E(k) counts the number children of the kth vertex in the
forest with dummy and filler vertices that are filler vertices, and so

n−1/3 max
k≤bn2/3tc

E(k) ≤ n−1/3 max
k≤θn(bn2/3tc)

(Y f(k)− Y f(k − 1) + 1),

which converges to 0 by tightness of
(
n−2/3θn(bn2/3tc)

)
n≥1

and the fact that(
n−1/3Y f

(
bn2/3sc

)
, s ≥ 0

)
converges in distribution to a continuous process in D(R+,R) as n→∞.

The following lemma is the last ingredient in the proof of Theorem 4.9.

Lemma 4.14. We have that with probability 1,(
2

σ+

(
Bdf
θ(t) − inf{Bdf

s : s ≤ θ(t)}
)
, t ≤ T

)
=

(
2

σ+

(
Bdf
θ(t) − inf{Bdf

θ(s) : s ≤ t}
)
, t ≤ T

)
,

which is continuous, and it is the height process corresponding to
(
σ+B

df
θ(t), t ≤ T

)
.

Proof. From [31], we know that
(

2
σ+
Rdf
t , t ≥ 0

)
is the height process corresponding to(

σ+B
df
t , t ≥ 0

)
. By definition of the height process, it is sufficient to show that, firstly,

with probability 1, (Bdf
θ(t), t ≥ 0) is continuous, and, secondly, for all t ≥ 0, and all s such

that θ(t−) < s < θ(t), we have Bdf
s > Bdf

θ(t).

Recall that (Bt, t ≥ 0) and (Bf
t , t ≥ 0) are two independent Brownian motions,

θ(t) = t+ inf

{
s ≥ 0 : σ+B

f
s < −

ν−
2µ
t2
}
,
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we have Λ(t) = inf{s ≥ 0 : θ(s) > t}, and(
Bdf
t , t ≥ 0

)
:=
(
BΛ(t) +Bf

t−Λ(t), t ≥ 0
)
.

Firstly, note that the jumps of θ correspond to excursions above the infimum of Bf .
With probability 1, for each of these excursions, the minimum on the excursion is only
attained at the endpoints. This can be seen by the almost sure uniqueness of local
minima of Brownian motion. We will work on this event of probability 1.

Now fix t such that θ(t−) 6= θ(t) and let s ∈ (θ(t−), θ(t)). Observe that Λ is equal to
t on [θ(t−), θ(t)]. For [θ(t−), θ(t)) this follows by definition of Λ, and for θ(t) it follows
since (θ(u) : u ≥ 0) is strictly increasing. This implies that

s− Λ(s) < θ(t)− Λ(θ(t)) = inf

{
u ≥ 0 : σ+B

f
u < −

ν−
2µ
t2
}
.

By our assumption on the minima of the excursions above the infimum of Bf , this implies
that

Bf
s−Λ(s) > −

ν−
2µ
t2 = Bf

θ(t)−Λ(θ(t))

where the last equality follows from continuity of Bf . Combining this with Λ(s) = Λ(θ(t))

implies that Bdf
s > Bdf

θ(t).
Finally,

Bdf
θ(t−) = BΛ(θ(t−)) +Bf

θ(t−)−Λ(θ(t−)) = Bt +Bf
θ(t−)−t

and by continuity of (Bf
s, s ≥ 0),

Bf
θ(t−)−t = Bf

(
lim
s↑t

inf{u : Bf
u < −

ν−
2µ
s2}
)

= lim
s↑t

Bf

(
inf

{
u : Bf

u < −
ν−
2µ
s2

})
= − ν−

2µ2
t2

= Bf
θ(t)−t,

so Bdf
θ(t−) = Bdf

θ(t).

4.3 Proof of Proposition 4.1

We will now combine the convergence of the measure change under rescaling,
which is the content of Theorem 4.2, and the convergence of the encoding processes
of the forest with dummy leaves, which is the content of Theorem 4.8, in order to
prove Theorem 4.1.

Proof of Theorem 4.1. Recall that P̂n(k) denotes the number of dummy leaves amongst
the first k vertices in the forest with dummy leaves. Then, as shown in Theorem 2.6, the
probability that the (k + 1)th vertex in the out-forest is a dummy leaf, given the degrees
in order of discovery and the dummy leaves amongst the first k vertices is equal to

qk+1 :=
Ŝ−n (k)∑n

i=1D
−
i − k − Î

+
n (k)

11{Î+n (k−1)=Î+n (k)},

where Î+
n (k) = min{Ŝ+

n (l) : l ≤ k}. In order to use the results on the forest with dummy
leaves, we need to replace the term

∑n
i=1D

−
i in the denominator by µn. Therefore, define

a new forest, the approximate out-forest, in which the degrees in order of discovery are
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the same as in the out-forest. However, in this forest, the probability that the (k + 1)th
vertex is a dummy leaf, given the degrees in order of discovery and the dummy leaves
amongst the first k vertices, is equal to

q̃k+1 :=
S̃−n (k)

µn− k − Ĩn(k)
11{Ĩn(k−1)=Ĩn(k)},

where S̃−n (k) is the number of unused in-edges of previously discovered vertices in the
approximate out-forest up to time k and −Ĩ+

n (k) is the number of components in the
approximate out-forest up to time k. We let P̃n(k) denote the number of dummy leaves
amongst the first k vertices in the approximate out-forest. We claim that there exists a
coupling between our real process and our approximate process such that

bn2/3Tc∑
i=1

|qi − q̃i|
(p)−−→ 0

as n→∞. Indeed, by the convergence in Theorem 4.4,n−2/3

bn2/3Tc∑
i=1

D̂n
i


n>0

is tight. Moreover, with a trivial adaptation to the proof of Lemma 4.5, we can show that(
n−1/3P̃n

(
bn2/3T c

))
n>0

is tight. This, combined with the convergence under rescaling

of (Ŷ +
n (k), k ≥ 1), implies that also

(
n−1/3Ĩ+

n

(
bn2/3T c

))
n>0

is tight. Since D−1 , . . . , D
−
n

are i.i.d. random variables with mean µ and finite variance,
(
n−1/2

(∑n
i=1D

−
i − µn

))
n>0

is tight. The trivial identity a/b− c/d = (b(a− c)− c(d− b))/bd yields that, for k = O(n2/3),
on the event that Î+

n (k − 1) = Î+
n (k) and Ĩ+

n (k − 1) = Ĩ+
n (k),

|qk − q′k| ≤
µn
∣∣∣S̃−n (k)− S̄−n (k)

∣∣∣+
∣∣∣S̃−n (k)

∣∣∣ (∣∣∑n
i=1D

−
i − µn

∣∣+
∣∣∣Î+
n (k)− Ĩ+

n (k)
∣∣∣)∣∣∣∑n

i=1D
−
i − k − Î

+
n (k)

∣∣∣ ∣∣∣µn− k − Ĩn(k)
∣∣∣

=
O(n)O

(
maxk≤bn2/3Tc |P̂n(k)− P̃n(k)|

)
+O(n2/3)

(
O(n1/2) +O(n1/3)

)
Θ(n2)

in probability. The suboptimal bound

max
k≤bn2/3Tc

|P̂n(k)− P̃n(k)| ≤ P̂n
(
bn2/3T c

)
+ P̃n

(
bn2/3T c

)
= O(n1/3)

shows that this ratio is O(n−2/3) in probability for the Θ(n2/3) times that Î+
n (k − 1) =

Î+
n (k) and Ĩ+

n (k − 1) = Ĩ+
n (k). For the other Θ(n1/3) times, we use the bound that

|qk − q′k| ≤ max{qk, q′k} = O(n−1/3). These two bounds imply that there exists a coupling

such that
(

maxk≤bn2/3Tc |P̂n(k)− P̃n(k)|
)
n>1

is tight, which implies that, by improving

the suboptimal bound above,

bn2/3Tc∑
i=1

|qi − q̃i|11{Î+n (k−1)=Î+n (k),Ĩ+n (k−1)=Ĩ+n (k)}
(p)−−→ 0

as n→∞. Therefore, under the right coupling, restricted to times at which

{Î+
n (k − 1) = Î+

n (k), Ĩ+
n (k − 1) = Ĩ+

n (k)}
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holds, up to time Θ(n2/3), we sample dummy vertices at exactly the same moments in
both the approximate out-forest and the real out-forest. This implies that Î+

n = Ĩ+
n , so

that the indicators in the definitions of qk and q′k are 0 at the same times and

P

(
max

k≤bn2/3Tc
|P̂n(k)− P̃n(k)| > 0

)
→ 0.

In other words, we can couple the out-forest and the approximate out-forest in such a
way that we do not see any difference on the scale of interest. Therefore, we can show
convergence under rescaling of the encoding processes of the approximate out-forest
instead. To avoid further complicating notation, we will from now on refer to its encoding
processes as

(Ŝ+
n (k), Ĥn, Ŝ

−
n (k), P̂n(k), 1 ≤ k ≤ bn2/3T c).

Then, these processes are constructed out of sample paths of (Ŷ +(k), Ŷ −(k), 1 ≤ k ≤
bn2/3T c) and independent randomness in exactly the same way as the sample paths of

(S+
n (k), H+

n (k), S−n (k), Pn(k), 1 ≤ k ≤ bn2/3T c)

(corresponding to the forest with dummy vertices) are constructed out of sample paths of
(Y +(k), Y −(k), 1 ≤ k ≤ bn2/3T c) and independent randomness. We will use the following
notation:

Ŷ +
(n) :=

(
n−1/3Ŷ +

(
bn2/3tc

)
, 0 ≤ t ≤ T

)
Ŝ+

(n) :=
(
n−1/3Ŝ+

n

(
bn2/3tc

)
, 0 ≤ t ≤ T

)
Ĥ(n) :=

(
n−1/3Ĥn

(
bn2/3tc

)
, 0 ≤ t ≤ T

)
Y +

(n) :=
(
n−1/3Y +

(
bn2/3tc

)
, 0 ≤ t ≤ T

)
S+

(n) :=
(
n−1/3S+

n

(
bn2/3tc

)
, 0 ≤ t ≤ T

)
H+

(n) :=
(
n−1/3H+

n

(
bn2/3tc

)
, 0 ≤ t ≤ T

)
Let f : D([0, T ],R)3 → R be a bounded, continuous test-function. Then, for m = bn2/3T c

E
[
f
(
Ŷ +

(n), Ŝ
+
(n), Ĥ(n)

)]
= E

[
f
(
Ŷ +

(n), Ŝ
+
(n), Ĥ(n)

)
11Rn≥m

]
+ o(1)

= E
[
E
[
f
(
Ŷ +

(n), Ŝ
+
(n), Ĥ(n)

)∣∣∣ D̂n,1, . . . , D̂n,m

]
11Rn≥m

]
+ o(1)

= E
[
Φ(n,m)E

[
f
(
Y +

(n), S
+
(n), H

+
(n)

)∣∣∣Z1, . . . ,Zm

]]
+ o(1)

= E
[
Φ(n,m)f

(
Y +

(n), S
+
(n), H

+
(n)

)]
+ o(1),

where we use that E
[
f
(
Ŷ +

(n), Ŝ
+
(n), Ĥ(n)

)∣∣∣ D̂n,1, . . . , D̂n,m

]
and 11Rn≥m are bounded,

adapted functions of D̂n,1, . . . , D̂n,m, and that Φ(n,m) is the measure change from
(Z1, . . . ,Zm) to (D̂n,1, . . . , D̂n,m). Then, if we repeat the proof of Proposition 4.4, using
Proposition 4.8 to include the convergence of S+

(n) and H+
(n), we obtain that

E
[
f
(
Ŷ +

(n), Ŝ
+
(n), Ĥ(n)

)]
→ E

[
Φ(T )f

(
σ+Bt, σ+B

+
t ,

2

σ+
R+
t , 0 ≤ t ≤ T

)]
.

Since

(B+
t , t ≥ 0) =

(
Bt −

ν−
2σ+µ

t2, t ≥ 0

)
,

Theorem 4.3 implies that the limit object has the right law. By Theorem 4.8, S−n
converges in distribution under rescaling to a deterministic process, which will not be
affected by the measure change. This completes the proof.
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4.4 Conditioning on simplicity

In this section, we will first show that, with high probability, there exists a simple
graph with the degree sequence that we sample and we show that the multigraph
resulting from the configuration model is simple with probability asymptotically bounded
away from 0. Then, we show that when we sample the configuration model according
to Algorithm 1, we do not see any loops or multiple edges far beyond our time scale
of interest. We will then use an argument by Joseph [28] to show that this implies
that Theorem 4.1 holds conditional on the resulting multigraph being simple.

We start by showing that with high probability, there exists a simple graph with the
degree sequence that we sample. For this, we need the following lemma.

Lemma 4.15. On the event
{∑n

i=1D
−
i =

∑n
i=1D

+
i

}
, for all integers i and j with 1 ≤

i+ j ≤ 3 or {i, j} = {1, 3} it holds that

1

n

n∑
k=1

(D−k )i(D+
k )j

(p)−−→ E
[
(D−)i(D+)j

]
.

Proof. First, for l,m ∈ N, define ρm(l) = P
(∑m

k=1(D−k −D
+
k ) = l

)
. Then, since the

second moment of D− −D+ is finite, the discrete local limit theorem implies that there
exists a C > 0 such that ρm(l) < Cm−1/2 for all l,m. Moreover, again by the discrete
local limit theorem and because D− −D+ is strongly aperiodic, there exists a c > 0 such
that ρm(0) > cm−1/2 for all m large enough.

Now, let i, j be as in the statement of the lemma. Fix ε > 0. Then,

P

 1

n

∣∣∣∣∣∣
bnc∑
k=1

(
(D−k )i(D+

k )j − E
[
(D−)i(D+)j

])∣∣∣∣∣∣ > ε

∣∣∣∣∣∣
n∑
k=1

D−k =

n∑
k=1

D+
k


≤ P

 1

n

∣∣∣∣∣∣
bn/2c∑
k=1

(
(D−k )i(D+

k )j − E
[
(D−)i(D+)j

])∣∣∣∣∣∣ > ε/2

∣∣∣∣∣∣
n∑
k=1

D−k =

n∑
k=1

D+
k


+ P

 1

n

∣∣∣∣∣∣
n∑

k=bn/2c+1

(
(D−k )i(D+

k )j − E
[
(D−)i(D+)j

])∣∣∣∣∣∣ > ε/2

∣∣∣∣∣∣
n∑
k=1

D−k =

n∑
k=1

D+
k


by the triangle inequality, so by symmetry it suffices to show that the second term goes
to 0 as n→∞. Denote

An = An(Dbn/2c+1, . . . ,Dn) =

 1

n

∣∣∣∣∣∣
n∑

k=bn/2c+1

(
(D−k )i(D+

k )j − E
[
(D−)i(D+)j

])∣∣∣∣∣∣ > ε/2


so that P(An)→ 0 as n→∞ by the weak law of large numbers. We note that

P

(
An

∣∣∣∣∣
n∑
k=1

D−k =

n∑
k=1

D+
k

)

=
E
[
11AnP

(∑bn/2c
k=1 (D−k −D

+
k ) =

∑n
k=bn/2c+1(D+

k −D
−
k )
∣∣∣Dbn/2c+1, . . . ,Dn

)]
P
(∑n

k=1(D−k −D
+
k ) = 0

)
= E

11An

ρbn/2c

(∑n
k=bn/2c+1(D+

k −D
−
k )
)

ρn(0)


where we use the definition of conditional probability and the tower property in the
second line and the independence between {D1, . . .Dbn/2c} and {Dbn/2c+1, . . .Dn} in the
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third line. However, by our observations above, there is a C ′ such that
ρbn/2c(k)

ρn(0) < C ′ for
all n large enough and for all k, so

P

(
An

∣∣∣∣∣
n∑
k=1

D−k =

n∑
k=1

D+
k

)
≤ C ′P(An)

which tends to 0.

This yields the following proposition.

Proposition 4.16. Let (D1,n, . . . ,Dn,n) be a progression of sequences of i.i.d. samples

from ν, conditional on the event that
{∑n

k=1D
−
k,n =

∑n
k=1D

+
k,n

}
. Then, the probability

that there exists a simple digraph with degree sequence (D1,n, . . . ,Dn,n) tends to 1 as
n→∞. Moreover, the probability that the configuration model on (D1,n, . . . ,Dn,n) yields
a simple graph tends to

exp

(
−1− (E[(D−)2]− µ)(E[(D+)2]− µ)

µ2

)
as n→∞.

Proof. By Lemma 4.15, we may work on a probability space where for all non-negative
integers i and j with 1 ≤ i+ j ≤ 3 or {i, j} = {1, 3} it holds that

1

n

n∑
k=1

(D−k,n)i(D+
k,n)j → E

[
(D−)i(D+)j

]
almost surely as n→∞.

Now, let (d1,n, . . . ,dn,n)n≥1 be a progression of sequences with dk,n = (d−k,n, d
+
k,n) ∈

N×N for each k, n. Assume that for each n it holds that, firstly,
∑n
k=1 d

−
k,n =

∑n
k=1 d

+
k,n,

secondly, maxk≤n d
−
k,n ∨ d

+
k,n = o(

√
n), and, finally, for all non-negative integers i, j such

that 1 ≤ i+ j ≤ 2 there exist positive ai,j such that

1

n

n∑
k=1

(d−k,n)i(d+
k,n)j → ai,j .

Then, for Sn the number of self-loops and Mn the number of directed edges with
multiplicity exceeding 1 in the directed configuration model on vertex set [n] with
degree sequence (d1,n, . . . ,dn,n), it holds that (Sn,Mn) converges in distribution to
(S,M), for S and M two independent Poisson random variables with means a1,1/a1,0 and
(a2,0 − a1,0)(a0,2 − a0,1)/a2

1,0 respectively. This follows from a trivial adaptation of the
proof of [39, Proposition 7.13], where an analogous property is shown for the undirected
configuration model.

Therefore, on the coupling on degree sequences that we consider above, almost
surely, the number of self-loops and multiple edges in the configuration model on
degree sequence (D1,n, . . . ,Dn,n) converges in distribution to (S,M) for S and M two
independent Poisson random variables with means E[D−D+]/E[D−] = 1 and (E[(D−)2]−
E[D−])(E[(D+)2] − E[D+])/E[D−]2 respectively, and in particular, almost surely, the
asymptotic probability of sampling a simple graph is bounded away from 0. Here we
use that the almost sure convergence of 1

n

∑n
k=1(D−k,n)3 implies that max{D−k,n} = o(

√
n)

almost surely and, similarly, we have that max{D+
k,n} = o(

√
n) almost surely. The result

follows.
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We will now show that when we sample the configuration model according to Algo-
rithm 1, we do not see any loops or multiple edges far beyond our time scale of interest.
We let Bn(k) be the number of ‘bad edges’ up to time k; to be precise, it equals be the
number of self-loops and edges created parallel to an existing edge in the same direction
as that edge, up until discovery of the kth vertex of the out-forest. Following [14], we
call these anomalous edges.

Proposition 4.17. Suppose β < 1. Then we have

P
(
Bn(bnβc) > 0

)
→ 0

as n→∞.

Remark 4.18. We adapt the proof of [28, Lemma 7.1] and of [14, Proposition 5.3] to the
directed setting. A significant complication is caused by the conditioning on{

n∑
i=1

D−i =

n∑
i=1

D+
i

}
.

We observe that in both papers, the proof of the aforementioned result is not fully
correct, because the authors use the wrong expression for the probability of sampling
an anomalous edge. However, the argument below can be adapted to the setting of [28]
and [14] to yield a correct proof.

Proof. We distinguish between the following types of anomalous edges.
Self-loops occur when the out-half-edge of a vertex is paired to an in-half-edge of

the same vertex. Let B1
n(k) be the number of self-loops that are found up to time k.

For v explored up to time bnβc, a vertex with in-degree d−v and out-degree d+
v , there

are d−v d
+
v possible combinations of an in-half-edge and an out-half-edge that form a self-

loop connected to v. Any of these combinations of half-edges is paired with probability
bounded above by

1∑n
i=bnβc+1 D̂

−
i

.

Parallel edges occur when an out-half-edge of a vertex is paired to an in-half-edge of
one of its previously explored children. Let B2

n(k) be the number of parallel edges that
are found up to time k. For any vertex v with in-degree d−v , and a parent p(v) with out-
degree d+

p(v), there are at most d−v d
+
p(v) possible combinations of an in-half-edge and an

out-half-edge that form a parallel edge from p(v) to v. Again, any of these combinations
of half-edges is paired with probability bounded above by

1∑n
i=bnβc+1 D̂

−
i

.

The last type of anomalous edges is a surplus edge with multiplicity greater than 1. Let
B3
n(k) be the number of surplus edges with multiplicity greater than 1 that are found up

to time k. For a vertex w with out-degree d+
w and a vertex v with in-degree d−v , a multiple

surplus edge from w to v can only occur if v is discovered before w. In that case, there
are at most (d+

w)2(d−v )2 possible pairs of combinations of half-edges, and each of these
pairs appears with probability bounded above by(

1∑n
i=bnβc+1 D̂

−
i

)2

.

Let p(i) denote the index of the parent of the vertex with index i. Also, denote

Gn = σ
(
D̂−1 , D̂

+
1 , . . . , D̂

−
n , D̂

+
n

)
.
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Then, by the conditional version of Markov’s inequality,

P
(
B1
n(bnβc) > 0

∣∣Gn) ≤ ∑bnβc
i=1 D̂−i D̂

+
i∑n

i=bnβc+1 D̂
−
i

∧ 1,

P
(
B2
n(bnβc) > 0

∣∣Gn) ≤ ∑bnβci=1 D̂−i E
[
D̂+
p(i)

∣∣∣Gn]∑n
i=bnβc+1 D̂

−
i

∧ 1,

P
(
B3
n(bnβc) > 0

∣∣Gn) ≤ ∑bnβci=1

∑
j<i(D̂

+
i )2(D̂−j )2(∑n

i=bnβc+1 D̂
−
i

)2 ∧ 1,

where we note that p(i) is not adapted to Gn, because ancestral relations in the tree
also depend on the surplus edges. However, we observe that by the Cauchy-Schwarz
inequality,

bnβc∑
i=1

D̂−i E
[
D̂+
p(i)

∣∣∣Gn] ≤
bnβc∑

i=1

(D̂−i )2

1/2bnβc∑
i=1

E
[
D̂+
p(i)

∣∣∣Gn]2
1/2

=

bnβc∑
i=1

(D̂−i )2

1/2bnβc∑
j=1

(D̂+
j )2

bnβc∑
i=1

E
[

11j=p(i)
∣∣Gn]

1/2

≤

bnβc∑
i=1

(D̂−i )2

1/2bnβc∑
i=1

(D̂+
i )3

1/2

.

We will show that

P
(
B1
n(bnβc) +B2

n(bnβc) +B3
n(bnβc) > 0

∣∣Gn) p→ 0 (4.10)

as n→∞. We note that

n∑
i=bnβc+1

D̂−i =

n∑
i=1

D−i −
bnβc−1∑
i=1

D̂−i ,

and by the weak law of large numbers, 1
n

∑n
i=1D

−
i

p→ µn, so Eq. (4.10) follows if we
show that

1. 1
n

∑bnβc
i=1 D̂−i

p→ 0,

2. 1
n

∑bnβc
i=1 D̂−i D̂

+
i

p→ 0,

3. 1
n

∑bnβc
i=1 (D̂−i )2 p→ 0, and

4. 1
n

∑bnβc
i=1 (D̂+

i )3 p→ 0

as n→∞. The proposition will then follow from the bounded convergence theorem.

Note that we can only show the convergence of the Radon-Nikodym derivative
Φ(n,m) under rescaling for m = O(n2/3), so it is not straightforward to use the measure
change to prove results on the time scale O(nβ) for β > 2/3, such as the convergences
above. Therefore, instead, we will use Poissonization to sample (D̂n,1, . . . , D̂Rn,n). This
technique was also used by Joseph in [28].
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Let Rn be as before, and, conditional on Rn, let D0,+
1 , . . . , D0,+

n−Rn i.i.d. random vari-

ables with the law of D+ conditional on the event {D− = 0}, and set Sn =
∑n−Rn
i=1 D0,+

i .
Suppose Rn = r and Sn = s. Let

π0(dt, k1, k2) = rP(D− = k1, D
+ = k2|D− > 0)k1 exp(−k1t)dt

be a measure on R+ ×N2, and let Π0 be a Poisson point process with intensity measure
π0 conditional on Π0(R,N,N) = r. We view the first coordinate as the time coordinate,
and refer to the second and third coordinate as the point. Then, the points in Π0

ordered by time have the same law as (D̂n,1, . . . , D̂r,n) (before conditioning on the event
{
∑n
i=1D

−
i =

∑n
i=1D

+
i }). The intensity of this process is not constant in t, so we perform

a time change. Define

LD(x, y) = E
[
exp(−xD− − yD+)

∣∣D− > 0
]
,

and set

ψ(t) = (1− LD(·, 0))
−1
,

so that, by a trivial adaptation of [28, Lemma 4.1], for

πr(dt, k1, k2) := P(D− = k1, D
+ = k2|D− > 0)k1 exp (−k1ψ(t/r))ψ′(t/r)dt

on (0, r) ×N2, we have that for t ∈ (0, r), there exists a probability measure Pt on N2

such that

πr(dt, k1, k2) = Pt(k1, k2)dt.

where (D−, D+) ∼ Pt. Observe that Pt depends on r; to avoid overcomplicating notation
we do not make this dependency explicit.

Let Πr be a Poisson point process with intensity πr. (This random measure may be
sampled as follows: sample a Poisson process with intensity dt on (0, r) and if there is a
jump at time s, sample the corresponding point with law Ps.) Define Nr = Πr((0, r),N,N)

and ∆r =
∫

(0,r)×N2(k1−k2)Πr(dt, k1, k2) = s. Then, let Πr,s have the law of Πr conditional

on the events {Nr = r} and {∆r = s}. Then, the points of Πr,s ordered by time
are distributed as (D̂n,1, . . . , D̂n,Rn) conditional on the events

{∑n
i=1D

−
i =

∑n
i=1D

+
i

}
,

{Rn = r} and {Sn = s}. Let λr,st be the marginal density of Πr,s in t, so that there exists a
probability distribution P r,st (k1, k2) on N2 such that for πr,st (k1, k2) the marginal intensity
measure on N2 of Πr,s in t,

πr,st (k1, k2) = λr,st P r,st (k1, k2)

for all k1, k2 ∈ N.

For any L > 0, define

EL =
{
|Rn − E[Rn]| ≤ Ln1/2, |Sn − E[Sn]| ≤ Ln1/2

}
.

Then, note that

P

 1

n

bnβc∑
i=1

D̂−i D̂
+
i > ε

 ≤P(EcL) + P
(

ΠRn,Sn
(
(0, 2nβ),N2

)
< nβ

∣∣ EL)
+ P

(
1

n

∫
(0,2nβ)×N2

k1k2ΠRn,Sn(dt, k1, k2) > ε

∣∣∣∣∣ EL
)
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Fix ε > 0. By the central limit theorem, we can pick an L such that P(EcL) < ε for all n.
We condition on EL. Suppose Rn = r and Sn = s. Then, for P a Poisson random variable
with rate 2nβ ,

P
(
Πr,s

(
(0, 2nβ),N2

)
< nβ

)
≤

P
(
P < nβ

)
P(∆r = s,Nr = r)

We note that the numerator is the probability of a large-deviation event and decreases
exponentially fast in nβ, while the local limit theorem yields that the denominator is of
order n−1/2 uniformly in all r and s that we consider on EL. This implies that

P
(

ΠRn,Sn
(
(0, 2nβ),N2

)
< nβ

∣∣ EL)→ 0

as n→∞. Now, note that for Er,st denoting the expectation with respect to P r,st ,

E

[
1

n

∫
(0,2nβ)×N2

k1k2Πr,s(dt, k1, k2)

]
=

1

n

∫
(0,2nβ)

λr,st Er,st [D−D+]dt,

so we start by bounding Er,st [D−D+]. We note that

Er,st
[
D−D+

]
= Et

[
D−D+

∣∣∆r = s,Nr = r
]

= Ert

[
D−D+P [∆n = s,Nr = r|Πr(t,D

−, D+) = 1]

P [∆r = s,Nr = r]

]
.

By the fact that Πr is a Poisson point process, we have that for k1, k2 in N,

P [∆r = s,Nr = r |Πr(t, k1, k2) = 1] = P [∆r = s+ k2 − k1, Nr = r − 1] ,

so that, since Nr ∼ Poisson(r), and since on the event {Nr = r − 1} (resp. {Nr = r}),
∆r − s is the sum of r − 1 (resp. r) i.i.d. random variables with finite variance and mean
at most O(n−1/2), we observe that, by the local limit theorem,

P
[
∆r = s,Nr = r

∣∣∣D̂−t = k1, D̂
+
t = k2

]
= O(n−1/2), and

P [∆r = s,Nr = r] = Θ(n−1/2)

for any k1 and k2, and any r and s that we consider on EL. Therefore, there exists a c1
such that

P
[
∆r = s,Nr = r

∣∣∣D̂−t = k1, D̂
+
t = k2

]
P [∆r = s,Nr = r]

< c1

for any k1, k2, t and n, and any r and s that we consider on EL. If we show that for some
c2

Ert

[
D̂−D̂+

]
< c2

for all r in the interval that we consider and all t < 2nβ , it follows that there is a c3 such
that

Er,st

[
D̂−D̂+

]
< c3

for any k1, k2, t and n, and any r and s that we consider on EL. We note that by definition
of πr(dt, k1, k1),

Ert

[
D̂−D̂+

]
=

d3

dx2dyLD(x, y)|(ψ(t/r),0)

d
dxLD(x, y)|(ψ(t/r),0)

.

Careful analysis of LD(x, y) and ψ(s) implies that this quantity is bounded uniformly for
all n, all r in the interval that we consider and all t ∈ (0, 2nβ). We refer the reader to the
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proof of [28, Lemma A.1] for the details of a similar argument in the undirected setting.
This implies that

E

[
1

n

∫
(0,2nβ)×N2

k1k2Πr,s(dt, k1, k2)

]
≤ C

n
E
[
Πr,s

(
(0, 2nβ),N,N

)]
.

Then, we note that for any x > 0, for P a Poisson random variable with rate 2nβ ,

P
(
Πr,s

(
(0, 2nβ),N,N

)
> (x+ 1)2nβ

)
≤
P
[
P > (x+ 1)2nβ

]
P [∆r = s,Nr = r]

.

Then, by the local limit theorem and the exponential tail of the Poisson distribution, we
obtain that there exist c4, c5 > 0 such that for all n, all r and s in the interval of interest
and all x > 1,

P
(
Πr,s

(
(0, 2nβ),N,N

)
> (x+ 1)2nβ

)
≤ c4 exp(−c5xnβ).

This shows that there is a constant c6 such that

E
[
Πr,s

(
(0, 2nβ),N,N

)]
≤ c6nβ

for all n and all r and s that we consider under EL. It then follows that

E

[
1

n

∫
(0,2nβ)×N2

k1k2Πr,s(dt, k1, k2)

]
→ 0

as n→∞ uniformly in all r and s of interest, so for n large enough,

P

(
1

n

∫
(0,2nβ)×N2

k1k2ΠRn,Sn(dt, k1, k2) > ε

∣∣∣∣∣ EL
)
< ε.

This implies that

1

n

bnβc∑
i=1

D̂−i D̂
+
i

p→ 0.

The other convergences are proved similarly, and the result follows.

Proposition 4.19. Theorem 4.1 holds conditionally on the resulting multigraph being
simple.

Proof. Let ρ(n) = inf{k ≥ 1 : Bn(k) > 0}, and note that the event that the multigraph
formed by the configuration model on n vertices is simple is equal to {ρ(n) = ∞}.
Proposition 4.17 shows that we do not observe any anomalous edges far beyond the
timescale in which we explore the largest components of the out-forest. This allows
us to conclude that all of the results we prove using the exploration up to time O(n2/3)

are also true conditioned on {ρ(n) =∞}. This follows from the proof of Theorem 3.2 in
[28].

The results that follow are all obtained by studying the exploration up to time O(n2/3),
so will also be true conditional on the resulting directed multigraph being simple.

5 Convergence of the SCCs under rescaling

In this section, we will use the convergence of the out-forest that we obtained in
Section 4 to show that the SCCs ordered by decreasing number of edges converge under
rescaling in the d~G-product topology.

We remind the reader that an overview of the most important notation used can be
found in Appendix A.
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5.1 Convergence of the out-components that contain an ancestral surplus edge

In this subsection, we will prove that the out-components that are explored up to time
O(n2/3) that contain an ancestral surplus edge converge under rescaling. Recall the
definition of (An(k), k ≥ 1) from Subsection 2.1.3, and recall that the out-components
that contain a non-trivial SCC are the out-components on which (An(k), k ≥ 1) increases.
Moreover, if (An(k), k ≥ 1) increases on a component, the law of the first increase
time corresponds to the position of the tail of the first ancestral surplus edge in the
component.

We first study the convergence of (Ĥ`
n(k), k ≥ 1) under rescaling. This is an extension

of Theorem 4.1. Recall that for (Bt, t ≥ 0) a standard Brownian motion, we defined

(B̂t, t ≥ 0) =

(
Bt −

σ−+ + ν−
2σ+µ

t2, t ≥ 0

)
,

and its reflected process

(R̂t, t ≥ 0) =
(
B̂t − inf

{
B̂s : s ≤ t

}
, t ≥ 0

)
.

Proposition 5.1. We have that(
n−1/3Ŝ+

n

(
bn2/3tc

)
, n−1/3Ĥn

(
bn2/3tc

)
, n−1/3Ĥ`

n

(
bn2/3tc

)
, t ≤ T

)
(d)−−→

(
σ+B̂t,

2

σ+
R̂t,

2(σ−+ + ν−)

σ+µ
R̂t, t ≤ T

)
in D([0, T ],R)3, jointly with(

n−2/3Ŝ−n

(
bn2/3tc

)
, n−1/3P̂n

(
bn2/3tc

)
, t ≤ T

)
p→
(
ν−t,

ν−
2µ
t2, t ≤ T

)
in D([0, T ],R)2 as n→∞.

Proof. We use result [17, Theorem 1] by de Raphélis, which states the convergence of
the height process of a Bienaymé forest with edge-lengths under a few conditions on the
degree and edge length distribution. We will apply this result to the Bienaymé forest
with dummy and filler vertices, as defined in Subsection 4.2.2.

We equip this forest with edge lengths similarly to how we equipped the out-forest
with edge-lengths when we described how to sample the candidates in Subsection 2.1.3.
We do this as follows. For a dummy or filler vertex with out degree d+, sample its
in-degree with law Z− for Z conditional on the event {Z+ = d+}. The in-degree of
the true vertices is encoded by (Y −(k), k ≥ 1). Then, for a vertex with in-degree d−,
let the edges connecting it to its children have length d− − 1 (unless it is the root of
the component, then let the edges connecting it to its children have length d−). Let
(Hdf,`(k), k ≥ 1) be the height process of the resulting forest.

We will translate the conditions of Theorem 1 in [17] to our setting and check them.
The conditions are as follows.

1. E[Z+] = 1

2. 1 < E[(Z+)2] <∞
3. E

[
Z+11{Z−>x}

]
= o(x−2) as x→∞.

Under these conditions, using the notation from Subsection 4.2.2,(
n−1/3Y df

(
btn2/3c

)
, n−1/3Hdf

(
btn2/3c

)
, n−1/3Hdf,`

(
btn2/3c

)
, t ≥ 0

)
(d)−−→

(
σ+Bs,

2

σ+
Rs,

2(σ+− + ν−)

µσ+
Rs, t ≥ 0

)
(5.1)

EJP 29 (2024), paper 87.
Page 65/85

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1131
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Universality for the directed configuration model

in D(R+,R)3 as n → ∞. Then, we observe that the rest of the argument in Subsec-
tions 4.2.2 and 4.3 can be extended to include the height process with edge lengths.
This yields the result.

Therefore, to finish the proof, we need the conditions of Theorem 1 in [17] to hold.
The conditions are equivalent to

1. E[D+D−] = E[D−]

2. 1 < E[(D+)2D−]
E[D−] <∞

3. E [D+D−11D−>x] = o(x−2) as x→∞.

Note that the first and second conditions follow directly from the assumptions, and the
third condition is implied by E[D+(D−)3] <∞.

Proposition 5.2. We have, jointly with the convergence in Theorem 5.1,(
An

(
btn2/3c

)
, t ≤ T

)
(d)−−→ (At, t ≤ T ) ,

as n→∞, where (At, t ≥ 0) is a Cox process of intensity

2(σ−+ + ν−)

σ+µ2
R̂t

at time t. The convergence is in D([0, T ],R).

Proof. The compensator of a counting process is the unique adapted process that,
when subtracted from the counting process, turns it into a martingale. Observe that
(An(k), k ≥ 1) is a counting process with compensator

Acompn (k) =

k∑
i=1

Ĥ`(i)

Ŝ−n (i)
11{P̂n(i)−P̂n(i−1)=1}

=

P̂n(k)∑
j=1

Ĥ`(min{l : P̂n(l) ≥ k})
Ŝ−n (min{l : P̂n(l) ≥ k})

.

By Daley and Vere-Jones [16, Theorem 14.2.VIII], the claimed convergence under rescal-
ing of (An(k), k ≥ 1) follows if we show that

(
Acompn

(
btn2/3c

)
, t ≥ 0

)
(d)−−→

(
2(σ−+ + ν−)

σ+µ2

∫ t

0

R̂vdv, t ≥ 0

)
(5.2)

in D(R+,R) as n→∞ jointly with the convergence in Theorem 5.1. Therefore, we will
now prove that Eq. (5.2) holds. Since(

n−1/3P̂n

(
bn2/3tc

)
, t ≥ 0

)
p→
(
ν−
2µ
t2, t ≥ 0

)
in D(R+,R) as n→∞, we get that(

n−2/3 min{l ≥ 1 : n−1/3P̂n(l) ≥ t}, t ≥ 0
)

p→
(

min

{
s > 0 :

ν−
2µ
s2 > t

}
, t ≥ 0

)
=: (τ(t), t ≥ 0)
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in D(R+,R) as n→∞, because
(
ν−
2µ t

2, t ≥ 0
)

is strictly increasing. Then, Theorem 5.1,

Lemma 4.11, Slutsky’s lemma and the continuous mapping theorem imply thatbn1/3tc∑
j=1

Ĥ`(min{l : P̂n(l) ≥ k})
Ŝ−n (min{l : P̂n(l) ≥ k})

, t ≥ 0

 (d)−−→

(
2(σ−+ + ν−)

σ+µ

∫ t

0

R̂τ(s)

ν−τ(s)
ds, t ≥ 0

)
in D(R+,R) as n → ∞. If we combine this with the convergence under rescaling
of (Pn(k), k ≥ 1) from Lemma 4.6 and apply Lemma 4.11, some simple analysis then
yields Eq. (5.2), which proves the statement.

5.2 Finding the important components in the out-forest

In this subsection, we will show that, conditional on the convergence under rescaling
in Proposition 5.2, the sequence of intervals that encode the trees with ancestral surplus
edges sampled up to time bTn2/3/2c converges as well under rescaling. We want all
of the trees that contain such an ancestral surplus edge to be fully explored by time
bTn2/3c, so we let T be large enough so that this is likely. To be precise, fix ε > 0 and,
from now on, let T be large enough such that inf{B̂t, t ≤ T} < inf{B̂t, t ≤ T/2} with
probability at least 1−ε. (Such T exists for a Brownian motion with parabolic downwards
drift; morally because the mean of B̂s is −cs2 for some c while the variance is s. This can
be made rigorous as follows. With the reflection principle for Brownian motion and the
second moment method one can show that inf{B̂t, t ≤ T/2} > − c

2T
2 with probability at

least 1− ε/2 while, again by the second moment method B̂t < − c
2T

2 with probability at
least 1− ε/2.)

Lemma 5.4 is a statement about extracting excursion intervals from deterministic
functions with marks, which we will apply to the sample paths of (Ŝ+

n (k), k ≥ 1) with the
increase times of (An(k), k ≥ 1) playing the rôle of the marks. The lemma tells us that if
the sample paths and increase times converge under rescaling, then the beginnings and
endpoints of the excursions above the running infimum that contain the increase times
converge as well.

In this section, we want to consider convergence of finite sequences of elements in R
or Rk, so we need to set up some notation.

Definition 5.3. Let M be a metric space, which will be R or Rk for our purposes. We
will be using the product topology on Mn in this definition. Let M<N =

⋃∞
n=0M

n denote
the space of all finite sequences in M . The topology we use on M<N is the final topology
induced by the set of standard inclusion functions incn : Mn →M<N, for each n ∈ N.

Under this topology, a sequence v1,v2, . . . in M converges to v in M if and only if
there exists N such that vn and v have a common length l for all n ≥ N and vn → v in
M l as n→∞ over all n ≥ n.

Let (fn(t), t ≤ T ) for n ≥ 1, and (f(t), t ≤ T ) be functions in D(R+,R), such that

(fn(t), t ≤ T )→ (f(t), t ≤ T )

in D([0, T ],R) as n → ∞. Assume that (f(t), t ≤ T ) is continuous and that the local
minima of (f(t), t ≥ 0) are unique. Moreover, let (xni )1≤i≤m, for n ≥ 1, and (xi)1≤i≤m be
elements of [0, T ]m such that for all i ∈ [m], xni → xi in [0, T ] as n → ∞, and such that
f(xi) − inf{f(s) : s ≤ xi} > 0 for all i ∈ [m]. Moreover, assume that inf{f(t) : t ≤ T} <
inf{f(t) : t ≤ xm} and that inf{fn(t) : t ≤ T} < inf{fn(t) : t ≤ xnm}. For i ∈ [m], n ≥ 1, let
gni be the left endpoint of the excursion of fn above its running infimum that contains xni ,
and let σni be the length of this excursion, i.e.

gni = inf {t ≥ 0 : fn(t) = inf{fn(s) : s ≤ xni }} ,
σni = inf {t ≥ 0 : inf{fn(s) : s ≤ gni + t} < inf{fn(s) : s ≤ xni }} .
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Similarly, let gi be the left endpoint of the excursion of f above its running infimum that
contains xi, and let σi be the length of this excursion, i.e.

gi = inf {t ≥ 0 : f(t) = inf{f(s) : s ≤ xi}} ,
σi = inf {t ≥ 0 : inf{f(s) : s ≤ gi + t} < inf{f(s) : s ≤ xi}} .

For S = {(ai, bi), i ∈ [m]}, let ord(S) be a sequence consisting of the elements of S put in
decreasing order of ai, with ties broken arbitrarily, and concatenated with (0, 0)i≥1 so
that ord(S) ∈ (R2)∞.

Lemma 5.4. We have that

ord ({(gni , σni ) : 1 ≤ i ≤ m})→ ord ({(gi, σi) : 1 ≤ i ≤ m})

in (R2)m equipped with the product topology as n→∞.

Note that if a given excursion of f above its running infimum contains multiple
marks, only one instance of its left endpoint and excursion length will appear in
ord ({(gni , σni ) : 1 ≤ i ≤ m}). Therefore, the number of non-zero entries of

ord ({(gni , σni ) : 1 ≤ i ≤ m})

can vary as n varies, which is why we work in (R2)∞. This lemma is proved in Appendix C.
We now apply this result to our process to extract the excursion intervals that contain

the marks representing ancestral backedges that are sampled up to time bTn2/3/2c. We
recall the following definitions from Subsection 2.1.3. We have thatGni is the left endpoint
of the excursion of Ŝ+

n above its running infimum that encodes the out-component that
contains the ith ancestral surplus edge, and Σni is the length of this excursion. Moreover,
Gi and Σi are their continuous counterparts. Formally, for i ∈

{
1, . . . , An

(
bTn2/3/2c

)}
,

Gni = min
{
k ≥ 1 : Ŝ+

n (k) = min{Ŝp,+n (l) : l ≤ Xn
i }
}

and

Σni = min
{
k ≥ 1 : min

{
Ŝp,+n (l) : l ≤ Gni + k

}
< min

{
Ŝp,+n (l) : l ≤ Xn

i

}}
,

and for i ∈ {1, . . . , A (T/2)},

Gi = inf
{
t ≥ 0 : σ+B̂t = inf{σ+B̂s : s ≤ Xi}

}
and

Σi = inf
{
t ≥ 0 : inf{σ+B̂s : s ≤ Gi + t} < inf{σ+B̂s : s ≤ Xi}

}
.

Proposition 5.5. It holds that

ord
({(

n−2/3Gni , n
−2/3Σni

)
: 1 ≤ i ≤ An

(
bTn2/3/2c

)})
(d)−−→ ord ({(Gi,Σi) : 1 ≤ i ≤ A(T/2)})

as n→∞ in the final topology on (R2)<N, jointly with the convergence in Proposition 5.2.

Proof. By Skorokhod’s representation theorem, we may work on a probability space
where the convergence in Proposition 5.2 holds almost surely. We only consider the
event on which the convergence holds and inf{B̂t, t ≤ T} < inf{B̂t, t ≤ T/2} holds and

claim that we can apply Lemma 5.4 to the sample paths of
(
n−1/3Ŝ+

n

(
bn2/3tc

)
, t ≤ T

)
with marks (

n−2/3Xi
n

)
1≤i≤An(bTn2/3/2c)

,
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where we observe that by the convergence, for n large enough, also

inf
{
Ŝ+
n

(
bn2/3tc

)
, t ≤ T

}
< inf

{
Ŝ+
n

(
bn2/3tc

)
, t ≤ T/2

}
holds. We check the conditions. Firstly, note that by An

(
bTn2/3/2c

)
→ A (T/2) as n→∞,

we can pick n large enough such that An
(
bTn2/3/2c

)
= A (T/2). By the local absolute

continuity of (B̂t, t ≥ 0) to a Brownian motion, its local minima are almost surely unique.
Since (

An

(
btn2/3c

)
, t ≤ T/2

)
a.s.→ (A (t) , t ≤ T/2)

in D(R+,R) as n→∞, we observe that for all i ∈ {1, . . . , A(T/2)}, n−2/3Xn
i → Xi almost

surely in R as n→∞. The intensity of the Cox process (At, t ≥ 0) at time t is proportional
to R̂t, so R̂Xi > 0 for all i almost surely. This allows us to apply Lemma 5.4, and the
convergence follows.

5.3 Convergence of the set of candidates

By Theorem 5.5, we know that the intervals that encode the out-components that
contain an ancestral surplus edge converge under rescaling. This convergence holds
jointly with the convergence under rescaling of the first time-step at which an ancestral
surplus edge is found in each of these components. We will show that the positions of the
other candidates in a component converge as well under rescaling. Recall the procedure
to sample candidates that is described in Subsection 2.1.3.

We will now show convergence under rescaling of the sequence of candidates in a
particular component of (F̂n(k), k ≥ 1).

By Skorokhod’s representation theorem, we may work on a probability space where
the convergence in Propositions 5.2 and 5.5 holds almost surely. Let (g, σ) ∈ {(Gi,Σi) :

i ≤ A(T/2)}, so that, for each n large enough, we can find (gn, σn) ∈ {(Gni ,Σni ) : i ≤ An
(bTn2/3/2c)} such that (gn, σn)→ (g, σ). Set V1 = inf{t ∈ [g, g+ σ] : A(t) = A(g) + 1}, and
similarly, set V n1 = min{gn < k ≤ gn + σn : An(k) = An(gn) + 1}, which are well-defined
by definition of g, σ, gn and σn. By construction, {gn + 1, . . . , gn + σn} encodes an out-
component. Call this component Tngn . We apply the procedure defined in Theorem 2.8
to find the candidates in Tngn . Let Vn(gn) denote the sequence of the times of discovery
of the candidates in Tngn (hereafter referred to as the sequence of candidates, see
Remark 2.1). Similarly, [g, g + σ] encodes a component of the out-R-forest. Call this
component Tg, and apply the procedure in Subsection 2.2.2 to find the candidates in Tg.
Denote the sequence of candidates by V(g).

Proposition 5.6. Jointly with the convergence in Proposition 5.5,

n−2/3Vn(gn)
(d)−−→ V(g)

with respect to the final topology on R<N.

Proof. We will find a coupling such that n−2/3Vn(gn)
a.s.→ V(g). By the convergence in

Propositions 5.2 and 5.5, n−2/3V n1
a.s.→ V1. In general, let V nm denote the mth candidate

that is found in Tngn , and let Vm denote the mth candidate that is found in Tg. Suppose
that, for some m, we have found a coupling such that

n−2/3(V n1 , . . . , V
n
m)

a.s.→ (V1, . . . , Vm). (5.3)

Then, V nm+1 is distributed as the position of the first jump of a counting process Kn
m+1(k)

on [0,∞) with compensator

Kn
comp,m+1(k) =

k∑
i=V nm+1

`
(
Tn,mk
i

)
−m

Ŝ−(i)
11{Pn(i)=Pn(i−1)+1}
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for k ∈ [V nm + 1, gn + σn] and 0 otherwise, where Tn,mk
i is the subtree of Tngn spanned by

{gn + 1, V n1 , . . . , V
n
m, i}. Moreover, for Ts the subtree of Tg spanned by {g, V1, . . . , Vm, s},

and |Ts| its length as encoded by
(

2
σ+
R̂t, t ≥ 0

)
, Vm+1 is the first jump in a counting

process Km+1(t) on [0,∞) with compensator

Kcomp,m+1(t) =

∫ t

Vm

σ−+ + ν−
µ2

|Ts|ds

for t ∈ [Vm, g + σ] and 0 otherwise. By the convergence under rescaling of (Ĥ`
n(k), k ≥ 1)

in Theorem 5.1, and by Proposition 5.5, we get that the metric structure of Tngn with

distances defined by (Ĥ`
n(k), k ≥ 1), and its projection onto [n−2/3(gn+1), n−2/3(gn+σn)],

converge under rescaling to the metric structure of Tg with distances defined by(
2(σ−+ + ν−)

σ+µ
R̂t, t ≥ 0

)
and its projection onto [g, g + σ]. This, combined with Eq. (5.3) implies that(

n−1/3`
(
Tn,mk
btn2/3c

)
, Vm ≤ t ≤ g + σ

)
a.s.→
(
σ−+ + ν−

µ2
|Tmk
t |, Vm ≤ t ≤ l + σ

)
in D([Vm, g + σ],R+) as n → ∞. Then, a similar argument to that used in the proof of
Proposition 5.2 implies that(

Kn
comp,m+1

(
btn2/3c

)
, Vm ≤ t ≤ g + σ

)
a.s.→ (Kcomp,m+1(t), Vm ≤ t ≤ g + σ) ,

D(R+,R+) as n→∞. This implies that

(Kn
m+1(btn2/3c), t ≥ 0)

(d)−−→ (Km+1(t), t ≥ 0)

in D(R+,R+) as n→∞ and, in particular, we can find a coupling such that Km(∞) > 0

if and only if Kn
m(∞) > 0 for all n large enough, and such that on this event,

n−2/3V nm+1
a.s.→ Vm+1.

If Km(∞) = 0, set V(g) = (V1, . . . , Vm), Vn(gn) = (V n1 , . . . , V
n
m), and the statement

follows. If Km(∞) > 0, apply the induction step to (V1, . . . , Vm+1) and (V n1 , . . . , V
n
m+1).

The fact that |V(g)| <∞ almost surely, as shown in Subsection 2.2.2, implies that the
induction terminates.

The following proposition shows that also the law of the heads of the surplus edges
corresponding to a candidate converges under rescaling. Moreover, we show conver-
gence under rescaling in the pointed Gromov-Hausdorff topology of an out-component
with the location of the candidates and the heads of their corresponding surplus edges.
(Note that the number of marked points may vary; we define the topology by setting the
distance between two pointed metric spaces as∞ if they do not have the same number
of marked points, and if they both have m marked points we use the distance in the
m-pointed Gromov-Hausdorff metric.)

Proposition 5.7. Suppose the convergence in Propositions 5.2, 5.5 and 5.6 holds almost
surely. Then, for Vn(gn) = (V n1 , . . . , V

n
Nn

), V(g) = (V1, . . . , VN ), let Wn
i be the index of

the vertex that the surplus edge corresponding to V ni connects to. Similarly, let Wi be
the index of the vertex that the surplus edge corresponding to Vi connects to. Then,(

n−1/3Tngn , n
−2/3(gn + 1),

(
n−2/3V n1 , n

−2/3Wn
1

)
. . . ,

(
n−2/3V nNn , n

−2/3Wn
Nn

))
(d)−−→ (Tg, l, (V1,W1), . . . , (VN ,WN ))

in the pointed Gromov-Hausdorff topology.
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Proof. For S a subset of the vertices of Tngn , let Tngn(S) denote the subtree of Tngn spanned
by S. By definition, for m ≤ Nn, Wn

m is the vertex corresponding to a uniform unpaired
in-half-edge of the vertices in Tngn ({gn + 1, V n1 , . . . , V

n
m}). By Theorem 5.1 and Slutsky’s

lemma, (
Ĥ`
n

(
btn2/3c

)
Ĥn

(
btn2/3c

) , t ≥ 0

)
a.s.→
(
σ−+ + ν−

2µ
, t ≥ 0

)
in D(R+,R) as n→∞, which implies that the total variation distance between the law of
Wn
m and the law of a uniform vertex in Tngn ({gn + 1, V n1 , . . . , V

n
m}) goes to 0. Note that, by

Theorem 4.1, Propositions 5.5 and 5.6, we know that the height process of Tngn converges
under rescaling to the height process of Tg, jointly with the convergence under rescaling
of the positions of the candidates. By the proof of Proposition 5.4 in [25], this implies
that (

n−1/3Tngn , n
−2/3gn + 1, n−2/3V n1 , . . . , n

−2/3V nm

)
a.s.→ (Tg, g, V1, . . . , Vm)

in the (m+ 1)-pointed Gromov-Hausdorff topology. Since the relation∣∣Tngn ({gn + 1, V n1 , . . . , V
n
m})

∣∣ =
∣∣Tngn ({gn + 1, V n1 , . . . , V

n
m,W

n
m})

∣∣
passes to the limit under rescaling, with | · | denoting the total length in the tree, so that
also

|Tg ({g, V1, . . . , Vm})| = |Tg ({g, V1, . . . , Vm,Wm})|

which implies that the limit in distribution of n−2/3Wn
m is a uniform point on the subtree

of Tg spanned by (g, V1, . . . , Vm), which is equal to the law of Wm. This proves the
statement.

The proofs of Propositions 5.6 and 5.7 imply the following proposition.

Proposition 5.8. By Skorokhod’s representation theorem, we may work on a probability
space where the convergence in Propositions 5.6 and 5.7 holds almost surely. Let
Tn,mk(gn) be the subtree of Tngn spanned by {gn+1, V n1 , . . . , V

n
Nn
}, and similarly, let Tmk(g)

be the subtree of Tg spanned by {g, V1, . . . , VN}. Then, also(
n−1/3Tn,mk(gn), n−2/3(gn + 1),

(
n−2/3V n1 , n

−2/3Wn
1

)
. . . ,

(
n−2/3V nNn , n

−2/3Wn
Nn

))
→
(
Tmk(g), g, (V1,W1), . . . , (VN ,WN )

)
almost surely in the pointed Gromov-Hausdorff topology as n→∞. Also the total length
in the trees converges, i.e.

n−1/3
∣∣Tn,mk(gn)

∣∣→ ∣∣Tmk(g)
∣∣

almost surely as n→∞.

We now identify the candidates with their targets, as described in Subsection 2.1.3.
In Tn,mk(gn), set V ni ∼Wn

i for each 1 ≤ i ≤ Nn, and set Mn
gn := Tn,mk(gn)/ ∼. Moreover,

in Tmk(g), set Vi ∼ Wi for each 1 ≤ i ≤ N , and set Mg := Tmk(g)/ ∼. View both as
elements of ~G in the natural way. To be precise, in Mn

gn , let the vertex set consist of
gn + 1, Wn

i for i ≤ Nn, and the branch points V ni ∧ V nj for i 6= j ≤ Nn. Similarly, inMg,
let the vertex set consist of g, Wi for i ≤ N , and the branch points Vi ∧ Vj for i 6= j ≤ N .
Then we have the following proposition.

Proposition 5.9. On the probability space where the convergence in Propositions 5.6
and 5.7 holds almost surely, n−1/3Mn

gn

a.s.→ Mg in ~G.

Proof. The proof is analogous to the proof of Proposition 5.6 in [25].
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Proposition 5.10. On the probability space where the convergence in Propositions 5.6
and 5.7 holds almost surely, the SCCs in n−1/3Mn

gn , listed in decreasing order of length,

converge to the SCCs inMg, listed in decreasing order of length, in ~G almost surely as
n→∞.

Proof. This follows from Proposition 5.3 in [25]. This proposition requires that the
lengths of the SCCs inMg have different lengths almost surely, which is the content of
Proposition 2.12.

Proposition 5.11. Let T > 0, and let (CTi (n), i ≥ 1) be the kernels of the SCCs that
contain a candidate with label at most bTn2/3/2c, ordered by length. Similarly, let
(CTi , i ≥ 1) be the kernels of the SCCs obtained from the out-R-forest with a candidate
before time T/2, ordered by length. Then,(

n−1/3CTi (n), i ≥ 1
)

(d)−−→ (CTi , i ≥ 1)

in the ~G-product topology, as n→∞.

Proof. This follows from Proposition 5.5, Theorem 5.10, and the fact that all SCCs in the
limit object have a different length by Theorem 2.12.

Finally, we claim that we can choose T large enough such that the SCCs with the
highest number of edges are explored before time bTn2/3c. This is the content of the
following lemma. The proof is in the same spirit as Aldous [2, Lemma 9].

Lemma 5.12. For δ > 0 and I an interval, let SCC(n, I, δ) denote the number of SCCs
whose vertices have at total of at least δn1/3 in-edges (including those which are not
part of the SCC) and whose time of first discovery is in n2/3I. Then,

lim
s→∞

lim sup
n

P (SCC(n, (s,∞), δ) ≥ 1) = 0 for all δ > 0.

Proof. Fix δ > 0. Suppose there is an SCC denoted by C with vn1/3 total in-edges.
Conditionally on this fact, the in-edges that are paired up until the time the first in-edge
of C is paired are uniform picks (without replacement) from the total set of in-edges. We
use Ξn to denote the time of discovery of the first in-edge of C multiplied by n−2/3. Then,

Ξn
(d)−−→ Exp(v). Fix ε > 0. We have that, by the memoryless property at time s,

P (SCC (n, (s, 2s), δ) = 0|SCC (n, (s,∞), δ) ≥ 1)

is asymptotically bounded from above by exp(−sδ) by the memoryless property at time s.
So that we can find an s > 0 such that for all n large enough,

P (SCC (n, (s,∞), δ) ≥ 1 and SCC (n, (s, 2s), δ) = 0) < ε.

We claim that, by possibly increasing s and n, we also get that

P (SCC (n, (s, 2s), δ) = 0) > 1− ε,

which proves the statement. Firstly, we observe that the ratio of the length of an SCC
and its total in-degree are asymptotically equal to σ−++ν−

2µ by the proof of Proposition 5.7.
Then, note that for any c > 0, the limit process almost surely only has a finite number of
excursions with length exceeding c. This implies that for s large enough, with probability
at most ε/2, an SCC with total length at least µ

σ−++ν−
δ is discovered after time s. By the
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convergence of the exploration process on compact time intervals, by choosing n large
enough, we can then ensure that

P (SCC (n, (s, 2s), δ) = 0) > 1− ε.

We conclude that

P(SCC (n, (s,∞), δ) ≥ 1) ≤ 2ε.

Note that the number of edges in an SCC is bounded from below by the total number
of in-edges of vertices in the SCC.

We now show that for any j and any ε > 0, we can pick T large enough such the j
largest components in (Ci, i ≥ 1) are contained in (CTi , i ≥ 1) with probability at least
1− ε.
Lemma 5.13. For all j holds that

lim
T→∞

P
(
∀i ≤ j, Ci ∈ (CTi , i ≥ 1)

)
= 1.

Proof. Fix ε > 0. By [25, Proposition 5.10] adapted to our limit object, for k large enough,
with probability 1 − ε/2, the j largest components of (Ci, i ≥ 1) are contained in the k
largest components of the out-forest with identifications. Moreover, for T large enough,
with probability 1− ε/2, the k largest excursions above the infimum of a Brownian motion
with negative parabolic drift occur before time T (see [3, Section 3]). This implies the
statement.

Theorem 1.1 then follows from Theorem 5.11, Theorem 5.12 and Theorem 5.13.

6 Open problems

Our work contains the first quantitative results on the directed configuration model
at criticality, and is the second metric space convergence result for a directed graph
model (after the directed Erdős-Rényi graph was studied in [25]), and many interesting
unresolved questions remain.

1. The law of our limit object is defined by three parameters that are functions of the
(mixed) moments of the degree distribution. Does a different choice of parameters
always give a different limit distribution? If so, are the laws absolutely continuous
to one another?

2. Our methods show that the diameter of the configuration model at criticality is
Ω(n1/3) in probability, which is in contrast with the off-critical cases (for determin-
istic degrees), in which the diameter is Θ(log(n)) in probability [9]. We conjecture
that the diameter is in fact Θ(n1/3) in probability. Goldschmidt and Maazoun are
working on this question for the directed Erdős-Rényi graph at criticality.

3. In [25], the authors show convergence of the sequence of SCCs in the `1-sense,
which is stronger than the product topology as considered by us. This for example
implies that for the directed Erdős-Rényi graph, under rescaling, the total length
in the SCCs converges in distribution to some finite random variable. Also for
undirected configuration models, there are no results that show metric space
convergence in a topology on the sequence of components that is stronger than
the product topology [5, 14, 4]. It would be interesting to obtain stronger con-
vergence results for the directed (and undirected) configuration model that imply
convergence of more statistics of the graphs.
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4. We conjecture that, just like the directed Erdős-Rényi graph [25], the directed
configuration model gives rise to a critical window, that in some sense interpolates
between subcritical and supercritical models. It would be interesting to adapt our
methods to the critical window.

5. In future work, we plan to extend our understanding of the SCCs by studying the
directed graphs in which they are embedded. A first step would be to study all
vertices that can be reached from the non-trivial strongly connected components.
This would illuminate connections between the SCCs and expose the fractal struc-
ture of the directed graph, which is not observed when only studying the SCCs
themselves.

6. Another natural next step is to study the model under weaker moment conditions.
The first condition to eliminate would be E

[
(D−)i(D+)j

]
< ∞ for (i, j) = (1, 3)

and (i, j) = (3, 1). Removing the former condition would in some sense make the
identifications less uniform on the ancestral lines. To be precise, (Ĥ`(k)/Ĥ(k), k ≥
0) will not necessarily converge to a constant process under rescaling of time,
which means that the in-edges that can be used to form surplus edges are spread
out less uniformly on the out-components. We have reason to believe that this would
place the model in a different universality class, but further research is needed to
confirm this. Removing the latter condition requires an adaptation of the proof of
Proposition 4.17 that does not use the Cauchy-Schwarz inequality. Also the heavy-
tailed case is not well-understood, but given our results, it is natural to expect that
a potential limit object would be embedded in a tilted stable tree as defined in [14].
Moreover, one could define hybrid models by letting the tail-behaviour of the in-
and out-degrees be different.

7. We conjecture that the rank-1 inhomogeneous directed random graph model under
suitable conditions is part of the same universality class as the directed Erdős-Rényi
graph [25] and the model we consider in this work. We believe that our methods
and the methods of [25] can be adapted to obtain a metric space scaling limit for
the inhomogeneous directed random graph model, and we intend to pursue this in
future work.
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Appendix A Overview of notation

Basic definitions

ν Probability measure on N2 from which we sample the degree
sequence

Di = (D−i , D
+
i ) Degree pair (consisting of the in- and out-degree) of vertex i

(with law ν)

~Gn(ν) Uniformly random digraph with degree sequence D1, . . . ,Dn

conditional on
∑
D−i =

∑
D+
i

Z = (Z−, Z+) Sample from ν size-biased by the first coordinate

µ E[D−] = E[D+] = E[D−D+]

ν− E[Z−]− 1

σ2
− Var(Z−)

σ2
+ Var(Z+)

σ−+ Cov(Z−, Z+)

Ci(n) The ith strongly connected component in ~Gn(ν) in order of
discovery

D̂n,i = (D̂−n,i, D̂
+
n,i) The ith degree pair in ~Gn(ν) in order of discovery

Encoding processes

Ŝ+
n (resp. B̂t) Łukasiewicz path of out-forest (resp. continuous out-forest)

R̂+
n (resp.

R̂t)
Ŝ+
n (resp. B̂t) reflected at 0

Î+
n (resp. Î) Running infimum of Ŝ+

n (resp. B̂t)

P̂n(k) Number of surplus edges sampled up to time k

Ŝ−n (k) Number of unpaired in-half-edges of discovered vertices at time k

Ĥ+
n Height process of out-forest

Ĥ`,+
n Height process of out-forest with edge lengths that represent available

in-half-edges

Ŷ ±(k)
k∑
i=1

(D̂±n,i − 1) (encoding the degrees in order of discovery)

Y ±(k)
∑k
i=1(Z±i − 1) (random walk)

S+
n , S

−
n , Pn Counterparts of Ŝ+

n , Ŝ
−
n , P̂n resp. using Y + instead of Ŷ + to encode

degrees in order of discovery (i.e. before the measure change)

Bd
t , R

d Counterparts of B̂t, R̂t before measure change
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A change of measure

Rn Number of vertices with positive in-degree

∆n The difference between the total in- and out-degree

Φ(n,m) =

φnm(Z1, . . . ,Zm)

The Radon–Nikodym derivative between (Z1, . . . ,Zm) on one hand
and (D̂n,1, . . . , D̂n,m) on the event Rn ≥ m conditional on ∆n = 0

on the other hand

Φ(t) The Radon–Nikodym derivative between Bt and B̂t

Filler vertices

Y f (resp. Bf) Independent copy of Y + (resp. B) that is the Łukasiewicz path of
the trees that consist of filler vertices

Y df (resp. Bdf) Łukasiewicz path of the forest with dummy and filler vertices

Rdf (resp. Rdf) Reflection of Y df (resp. Bdf) at 0

Hdf Height process of the forest with dummy and filler vertices

Hdf,` Height process of the forest with dummy and filler vertices with
edge lengths that represent the number of available in-half-edges

σn(k) (resp.
σ(t))

Time in depth first order until we have seen k (resp. mass t) non-
filler vertices in the forest with dummy and filler vertices

Λn(k) (resp.
Λ(t))

Number (resp. mass) of non-filler vertices in forest with dummy
and filler vertices up to time k (resp. t)

From the out-forest to SCCs

Gni + 1 (resp.
Gi)

The root of the component of the out-forest (resp. cont. out-process)
that contains the ith ancestral surplus edge

TnGni
(resp. TGi) The component of the out-forest with root Gni + 1 (resp. Gi)

Σni (resp. Σi) Size of TnGni (resp. TGi)

V nk The kth candidate in TnGni (resp. TGi)

Wn
k (resp. Wk) Head of the kth candidate in TnGni (resp. TGi)

Nn (resp. N ) Number of candidates in TnGni (resp. TGi)

An (resp. A) Counting process of ancestral surplus edges

Tn,mk(Gin)

(resp. T mk
Gi

)
Subtree of TnGni (resp. TGi) spanned by the root and the candidates

Mn
Gni

(resp.
MGi)

The MDM resulting from identifying the candidates and their heads
in Tn,mk(Gni ) (resp. T mk

Gi
)
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Appendix B Multivariate triangular local limit theorem

The goal of this section is to prove Theorem 3.15. This can be deduced from Mukhin
[34, Corollary 1]. However, Mukhin’s result is more general than is needed to prove The-
orem 3.15. As a result, the conditions which we need to check in order to apply Mukhin’s
result are rather complicated. Instead, we offer here an elementary proof.

First, we recall some definitions. An Rd-valued random variable X is lattice if it is
non-degenerate and is supported on the translation of some lattice. The symmetrisation
of X is given by X∗ = X1 −X2 where X1 and X2 are independent copies of X. If X is
lattice, the main lattice of X is given by

Λ =

∞⋃
m=1

{
∑m
i=1 nix

∗
i : ni ∈ Z and x∗i ∈ supp(X∗) for all i = 1, . . . ,m} .

Now we restate Theorem 3.15.

Theorem 3.15. For each n ≥ 1 let Xn be an Rd valued random variable and

Xn,1,Xn,2, . . . ,Xn,n

be i.i.d. copies of Xn. Assume that the following holds:

1. There exists a random variable X such that Xn
(d)−−→ X as n→∞.

2. (‖Xn‖2)n≥1 is a uniformly integrable sequence of random variables. Explicitly

lim
L→∞

sup
n
E
[
‖Xn‖211

{
‖Xn‖2 > L

}]
= 0. (3.10)

3. For all n, Xn and X are lattice with common main lattice Λ.

Then X has finite second moment. Further, for each n let cn be an arbitrary element in
the support of

∑n
i=1 Xn,i. Then uniformly for y ∈ cn + Λ,

P
(∑n

i=1 Xn,i = y
)

= n−d/2 det(Λ)f (xn(y)) + o
(
n−d/2

)
where xn(y) = y−nE[Xn]√

n

and f is the density of a N(0,Cov(X)) distribution. This means that

lim
n→∞

sup
y∈cn+Λ

∣∣∣nd/2P(∑n
i=1 Xn,i = y

)
− det(Λ)f(xn(y))

∣∣∣ = 0.

Before we prove Theorem 3.15, we first prove a sequence of lemmas. Our proof of
the local limit theorem will use characteristic functions. Let X be Rd-valued. We use the
convention that the characteristic function of X is given by

φ(u) = E
[
eiu·X

]
.

The following lemma shows the points at which the characteristic function of a lattice
random variables attains 1 in absolute value can be precisely characterised when the
main lattice is known. This is an adaptation of [38, P.67, T1].

Lemma B.1. Suppose X is lattice with main lattice Zd and characteristic function φ.
Then |φ(u)| = 1 if and only if u ∈ (2πZ)d.

Proof. If every coordinate of u is a multiple of 2π, then u ·X has support in t+ 2πZ for
some t ∈ R. Therefore eiu·X is constant and hence |φ(u)| = 1.

For the converse, note the characteristic function of the symmetrisation X∗ satisfies

E
[
eiu·X

∗
]

= E
[
eiuX1

]
E
[
e−iuX2

]
=
∣∣E [eiuX]∣∣2 = 1.
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Thus eiu·x
∗ ∈ 2πZ for all x∗ in the support of X∗. Since the fundamental lattice of X is

Zd, there exists x∗1, . . . ,x
∗
m in the support of X∗ and k1, . . . , km ∈ Z such that

m∑
i=1

kix
∗
i = (1, 0, . . . , 0).

Therefore,

u(1) =

m∑
i=1

kiu · x∗i ∈ 2πZ.

Repeating this argument for the other coordinates of u shows all coordinates of u are
multiples of 2π.

The next lemma shows convergence of the means and covariance of Xn to that of X,
and moreover shows the uniform integrability condition still holds after centering the
random variables.

Lemma B.2. Suppose conditions (1) and (2) of Theorem 3.15 hold. Then, as n→∞,

E[Xn]→ E[X] and Cov(Xn)→ Cov(X).

Further for each n, let X̂n = Xn − E[Xn], and X̂ = X − E[X]. Then the uniform
integrability condition in Eq. (3.10) holds for the centered random variables (X̂n)n≥1.
This means that

lim
L→∞

sup
n
E
[
‖X̂n‖211

{
‖X̂n‖2 > L

}]
= 0.

Proof. By Skorokhod’s representation theorem, we can assume without loss of generality
that (Xn)n≥1 and X are in the same probability space and Xn → X almost surely as
n → ∞. Then, the condition in Eq. (3.10) gives uniform integrability of (‖Xn‖22)n≥1.
Thus, by Vitali’s convergence theorem, Xn → X in L2 as n→∞. Therefore, X has finite
second moment and the mean and covariance of Xn converge to that of X.

Since the means converge, the centerings X̂n → X̂ in L2 as n → ∞ also. Thus,
(‖X̂n‖22)n≥1 is uniformly integrable by the converse statement in Vitali’s theorem, as
required.

The following lemma shows that we have a normal central limit theorem.

Lemma B.3. Suppose we are in the setting of Theorem 3.15. Then

1√
n

n∑
i=1

(Xn,i − E[Xn])
(d)−−→ N(0,Σ)

as n→∞.

Proof. We use the Lindeberg-Feller central limit theorem. We will use the notation
Σ = Cov(X), Σn = Cov(Xn), X̂n,i = Xn,i − E[Xn] and X̂n = Xn − E[Xn]. We will reduce
the problem to the one-dimensional case. By the Cramér–Wold device it is sufficient to
show that

1√
n

n∑
i=1

u · X̂n,i
(d)−−→ N(0,u · Σu)

for all u ∈ Rd. Define

An,i =
1√
n
u · X̂n,i.

Then by the version of the Lindeberg–Feller central limit theorem stated by Durrett in
[22, P.128-129, Theorem 3.4.10], to complete the proof it suffices to check that
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1. limn→∞
∑n
i=1E[A2

n,i] = u · Σu.

2. For all ε > 0, limn→∞
∑n
i=1E

[
A2
n,i11 {|An,i| > ε}

]
= 0.

To check condition (1),

lim
n→∞

n∑
i=1

E[A2
n,i] = lim

n→∞
E
[
(u · X̂n)2

]
= lim
n→∞

u · Σnu = u · Σu

by Theorem B.2. To check condition (2), for all ε > 0

lim
n→∞

n∑
i=1

E
[
A2
n,i11 {|An,i| > ε}

]
= lim
n→∞

E
[
(u · X̂n)211

{
(u · X̂n)2 > ε2n

}]
≤ ‖u‖2 lim

n→∞
E

[
‖X̂n‖211

{
‖X̂n‖2 >

ε2

‖u‖2
n

}]

≤ ‖u‖2 lim
n→∞

sup
k
E

[
‖X̂k‖211

{
‖X̂k‖2 >

ε2

‖u‖2
n

}]
= 0

by Theorem B.2.

The last lemma we prove provides bounds on the absolute value of the characteristic
functions of Xn. This will be used to apply the dominated convergence theorem in the
main proof.

Lemma B.4. Suppose we are in the setting of Theorem 3.15. Moreover assume that the
common main lattice Λ isZd. Let φn(u) be the characteristic function of X̂n = Xn−E[Xn].
Then there exist δ, c > 0, ρ ∈ (0, 1) and N such that for all n ≥ N

1. |φn(u)| ≤ 1− c‖u‖2 for all u ∈ S(δ), and

2. |φn(u)| ≤ ρ for all u ∈ S(π) \ S(δ)

where, for all r > 0, S(r) = [−r, r]d.

Proof. Firstly we use a analytical lemma stated by Durrett in [22, P.116, Lemma 3.3.19].
By that lemma, there exists a constant A > 0 such that∣∣eix − (1 + ix− 1

2x
2
)∣∣ ≤ Amin{|x|, 1}x2

for all x ∈ R. Then applying this with x = u · (Xn − E[Xn])

|φn(u)| ≤
∣∣1− 1

2u · Cov(Xn)u
∣∣+Rn(u)

where
Rn(u) ≤ AE

[
min{|u · X̂n|, 1}(u · X̂n)2

]
.

We provide bounds on Rn and |1− 1
2u · Cov(Xn)u|, starting with |1− 1

2u · Cov(Xn)u|.
Let λminn and λmaxn be the minimum and maximum eigenvalues of Cov(Xn) respec-

tively. Then, by standard theory for quadratic forms,

λminn‖u‖
2 ≤ u · Cov(Xn)u ≤ λmaxn‖u‖

2
.

Moreover, let λmin and λmax be the minimum and maximum eigenvalues of Cov(X)

respectively. The eigenvalues of a matrix are continuous in its entries and Cov(Xn)→
Cov(X) by Theorem B.2. Therefore λminn → λmin and λmaxn → λmax as n→∞.
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We have assumed that Cov(X) is non-degenerate thus λmin > 0. Hence, there exists
N such that for all n ≥ N ,

1

2
λmin ≤ λminn ≤ λmaxn ≤ 2λmax.

There also exists δ1 > 0 sufficiently small that λmax‖u‖2 < 1 for all u ∈ S(δ1). Then for all
n ≥ N and u ∈ S(δ1),∣∣1− 1

2u · Cov(Xn)u
∣∣ = 1− 1

2u · Cov(Xn)u ≤ 1− 1
4λmin‖u‖2. (B.1)

To bound Rn, by the Cauchy-Schwarz inequality

Rn(u) ≤ AEn(u)‖u‖2 where En(u) = E[min{‖u‖‖X̂n‖, 1}‖X̂n‖2].

Then for all L > 0, splitting the expectation into the case where ‖X̂n‖2 ≤ L2 and the
case when ‖X̂n‖2 > L2,

sup
n
En(u) ≤ L2 min{L‖u‖, 1}+ sup

n
E
[
‖X̂n‖211

{
‖X̂n‖2 > L2

}]
→ sup

n
E
[
‖X̂n‖211

{
‖X̂n‖2 > L2

}]
as u→ 0. This holds for all L > 0, hence taking the limit L→∞ and using Theorem B.2
we obtain that limu→0 supnEn(u) = 0. Thus, there exists δ2 such that for all u ∈ S(δ2)

Rn(u) ≤ 1

8
λmin‖u‖2. (B.2)

Thus setting δ = min {δ1, δ2}, for all n ≥ N and u ∈ S(δ)

|φn(u)| ≤ 1− c‖u‖2,

where c = 1
8λmin.

We now address the second bound. let φ be the characteristic function of X. We
assume X has main lattice Zd, thus |φ(u)| = 1 if and only if every entry of u is a multiple
of 2π by Theorem B.1. In particular |φ(u)| < 1 for all u ∈ S(π) \ S(δ). φ is continuous and
S(π) \S(δ) is compact. Therefore there exists ε > 0 such that supu∈S(π)\S(δ)|φ(u)| ≤ 1− ε.

Since Xn
(d)−−→ X as n→∞, φn → φ uniformly on compact sets. Therefore there exists

N such that for all n ≥ N

sup
u∈S(π)\S(δ)

|φn(u)| ≤ ρ = 1− 1
2ε.

We are finally ready to prove Theorem 3.15

Proof of Theorem 3.15. We first address the case where the main lattice of X and all Xn

is Zd. The main trick in the proof is to notice that if n is integer valued then

11{n = 0} =
1

2π

∫ π

−π
einu du.

For all y ∈ cn +Zd,
∑n
i=1 Xn,i − y ∈ Zd, so

P

(
n∑
i=1

Xn,i = y

)
= E

[
1

(2π)d

∫
S(π)

eiu·(
∑n
i=1 Xn,i−y) du

]

=
1

(2π)d

∫
S(π)

φn(u)ne−iu·(y−nE[Xn]) du,
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where φn(u) = E[eiu·(Xn−E[Xn])] and S(r) = [−r, r]d for all r > 0. Recall

xn = n−1/2(y − nE[Xn]).

Then, changing variables with s =
√
nu,

nd/2P

(
n∑
i=1

Xn,i = y

)
=

1

(2π)d

∫
S(π
√
n)

φn(s/
√
n)ne−is·xn ds.

By the Fourier inversion theorem,

f(x) =
1

(2π)d

∫
Rd
ψ(s)e−is·x ds

where ψ is the characteristic function of the N(0,Cov(X)) distribution. Therefore

sup
y∈cn+Λ

∣∣∣nd/2P (
∑n
i=1 Xn,i = y)− f(xn(y))

∣∣∣
= sup

y∈cn+Λ

∣∣∣∣∫
Rd

(
11S(π

√
n)(s)φn(s/

√
n)n − ψ(s)

)
e−is·xn(y) ds

∣∣∣∣
≤
∫
Rd

∣∣11S(π
√
n)(s)φn(s/

√
n)n − ψ(s)

∣∣ds.
We apply the dominated convergence theorem. To dominate the integrand, first note
that ψ is integrable. Secondly let δ, c, ρ and N be as in Theorem B.4. For all n ≥ N and
for all s ∈ S(δ

√
n),

|φn(s/
√
n)|n ≤ (1− c‖s‖2/n)n ≤ e−c‖s‖

2

.

Let C = − log(ρ). Note if s ∈ S(π
√
n) then ‖s‖2 ≤ π2dn. Thus for all n ≥ N and

s ∈ S(π
√
n) \ S(δ

√
n)

|φn(s/
√
n)|n ≤ e−Cn ≤ e−

C
π2d
‖s‖2 .

Hence for all n ≥ N ,∣∣11S(π
√
n)(s)φn(s/

√
n)n − ψ(s)

∣∣ ≤ e−c‖s‖2 + e−
C
π2d
‖s‖2 + |ψ(s)|

where, in particular, the right hand side is integrable. By Theorem B.3,

φn(s/
√
n)n → ψ(s)

as n→∞ for all s ∈ Rd. Thus for all s ∈ Rd

11S(π
√
n)(s)φ(s/

√
n)n → ψ(s)

as n→∞. Hence by the dominated convergence theorem

lim
n→∞

sup
y∈cn+Λ

∣∣∣nd/2P (
∑n
i=1 Xn,i = y)− f(xn)

∣∣∣ = 0,

as required.
Finally we generalise to any main lattice Λ. Suppose that Λ is generated by the

columns of the invertible matrix A. Then A, viewed as a linear transform, is a isomor-
phism mapping Zd to Λ. Thus A−1Xn and A−1X will have common lattice Zd for all
n. Moreover we can check the remaining assumptions of Theorem 3.15 still hold, thus
uniformly for y in the translation of Λ containing the support of

∑n
i=1 Xn,i,

P

(
n∑
i=1

A−1Xn,i = A−1y

)
=

1√
(2πn)d det Σ̃

exp

(
−1

2
(A−1xn)T Σ̃−1(A−1xn)

)
+ o(n−d/2).
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where Σ̃ = Cov(A−1X). This simplifies to

P

(
n∑
i=1

Xn,i = y

)
=

1√
(2πn)d det Σ̃

exp

(
−1

2
xTn (AΣ̃AT )−1xn

)
+ o(n−d/2).

We have that
Σ̃ = Cov(A−1X) = A−1 Cov(X)(A−1)T .

Therefore
det(Σ̃) = det(A)−2 det(Cov(X)) = det(Λ)−2 det(Cov(X))

and so

P

(
n∑
i=1

Xn,i = y

)
=

det(Λ)√
(2πn)d det(CovX)

exp

(
−1

2
xTn Cov(X)−1xn

)
+ o(n−d/2),

as required.

Appendix C Proof of technical lemmas

Proof of Lemma 4.12. Denote gn(s) = inf{t : fn(t) > s} and g(s) = inf{t : f(t) > s}. By
Proposition 3.6.5 in the book by Ethier and Kurtz [23], it is sufficient to show that for
any s > 0, for any sn → s,

1. max{|gn(sn)− g(s)|, |gn(sn)− g(s−)|} → 0;

2. If un ≤ sn for all n, sn → s, un → s and gn(sn)→ g(s−), then gn(un)→ g(s−);

3. If un ≥ sn for all n, sn → s, un → s and gn(sn)→ g(s), then gn(un)→ g(s).

Fix s > 0. If g(s−) = g(s), the result is straightforward, so we focus on g(s−) < g(s).
We start by proving the first property. Fix ε > 0 and suppose sn → s. We observe that

g(s−) < g(s) implies that f has a local maximum at g(s−) and that f(g(s−)) = f(g(s)) = s.
By the uniqueness of local maxima of f and the definition of g, there exists a δ1 > 0 such
that for all t < g(s−)− ε, we have that f(t) < s− δ1. Similarly, there exists a δ2 > 0 such
that for all g(s−) + ε < t < g(s)− ε, we have that f(t) < s− δ2. Moreover, define

δ3 = sup {f(t) : g(s) < t < g(s) + ε} − s,

so that, by definition of g, we have that δ3 > 0. Define δ = min{δ1, δ2, δ3}. Now, let n
be large enough such that supt∈[0,g(s)+ε] |fn(s)− f(s)| < δ/2 and |sn − s| < δ/2. Then, it
holds that

1. fn(t) < s− δ/2 < sn for all t < g(s−)− ε;
2. fn(t) < s− δ < sn for all g(s−) + ε < t < g(s)− ε;
3. There is a g(s) < t < g(s) + ε such that fn(t) > s+ δ/2 > sn.

These tree facts imply that gn(sn) ⊆ [g(s−)−ε, g(s−)+ε]∪ [g(s)−ε, g(s)+ε], which proves
the first of the three conditions.

Then, the second and third property follow immediately from the first property and
the monotonicity of gn and g.

Proof of Lemma 5.4. First, note that gni , σni , gi, and σi are well-defined for all i ∈ [m],
n ≥ 1 by inf{f(t) : t ≤ T} < inf{f(t) : t ≤ xm} and inf{fn(t) : t ≤ T} < inf{fn(t) : t ≤
xnm}.

Fix i. We will first show that gni → gi and σni → σi as n→∞. Firstly, note that by the
assumption that f(xi)− inf{f(s) : s ≤ xi} > 0 and the continuity of f , gi < xi < gi + σi.
Fix 0 < ε < min{xi − gi, gi + σi − xi}/2. We claim that the following conditions are
sufficient for gni → gi and σni → σi as n→∞. For all n large enough,
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1. gi + ε < xni < gi + σi − ε
2. inf {fn(s) : s ∈ (gi − ε, gi + ε)} < inf {fn(s) : s ∈ [gi + ε, gi + σi − ε]},
3. inf {fn(s) : s ∈ (gi − ε, gi + ε)} < inf {fn(s) : s ∈ [0, gi − ε]},
4. inf {fn(s) : s ∈ (gi + σi − ε, gi + σi + ε)} < inf {fn(s) : s ∈ [0, gi + σi − ε]}

Indeed, conditions 1, 2 and 3 imply |gni − gi| < ε, while conditions 1, 2 and 4 imply
|(gni + σni )− (gi + σi)| < ε. Note that condition 1 holds for n large enough by definition of
ε and the convergence of xni to xi. To show the other conditions, define

δ1 = inf {f(s) : s ∈ [gi + ε, gi + σi − ε]} − inf {f(s) : s ∈ (gi − ε, gi + ε)}
δ2 = inf {f(s) : s ∈ [0, gi − ε]} − inf {f(s) : s ∈ (gi − ε, gi + ε)}
δ3 = inf {f(s) : s ∈ [0, gi + σi − ε]} − inf {f(s) : s ∈ (gi + σi − ε, gi + σi + ε)} .

By uniqueness of local minima and the definition of gi and σi, we have that

δ := min{δ1, δ2, δ3}/3 > 0.

Then, note that for n large enough, sup{|fn(s) − f(s)| : s ≤ gi + ε} < δ, which implies
conditions 2, 3, and 4 for such n.

Since i was arbitrary, and m is finite, we find that

(gni , σ
n
i )1≤i≤m → (gi, σi)1≤i≤m

in R2m as n→∞.
We now claim that gni → gi and gnj → gi implies that gni = gnj for n large enough.

Indeed, by definition of gni , gnj and σni , we have that gni < gnj implies that gnj − gni ≥ σni ,
and by the argument above, σni → σi > 0, so gni − gnj → 0 can only hold if gni = gnj for n
large enough. This implies that

# {(gni , σni ) : 1 ≤ i ≤ m} → # {(gi, σi) : 1 ≤ i ≤ m} .

Then, the result follows.
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