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Abstract

A result of Arcones [Arc95] implies that if a measure-preserving linear operator S on
an abstract Wiener space (X,H, µ) is strongly mixing, then the set of limit points of
the random sequence ((2 logn)−1/2Snx)n∈N equals the unit ball of H for µ-a.e. x ∈ X,
which may be seen as a generalization of the classical Strassen’s law of the iterated
logarithm. We extend this result to the case of a continuous parameter n and higher
Gaussian chaoses, and we also prove a contraction-type principle for Strassen laws
of such chaoses. We then use these extensions to recover or prove Strassen-type
laws for a broad collection of processes derived from a Gaussian measure, including
“nonlinear” Strassen laws for singular SPDEs such as the KPZ equation.
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1 Introduction

The law of the iterated logarithm for Brownian motion states that if B is a standard
Brownian motion then lim supt→0(2t log log(1/t))−1/2Bt = 1. Strassen in a seminal work
[Str64] generalized this statement to show the functional form of this statement, namely
that if we let Bε(t) = ε−1/2B(εt) then the set of limit points as ε → 0 in C[0, 1] of the
sequence {(2 log log(1/ε))−1/2Bε}ε is almost surely equal to the closed unit ball of its
Cameron-Martin space. Since Strassen’s original work, there has been a tremendous
effort resulting in a large literature expanding the scope of the theorem into many dif-
ferent settings including Banach space-valued processes [KL73, Kue77, GKZ81, Ale89],
Gaussian processes and higher chaoses [Ood72, GK91, GK93, Arc95], iterated processes
[Bur93, Arc95, CCFR95, Neu98], stronger topologies [BBAK92], sharper envelopes
[R7́9], as well as more complicated stochastic processes driven by multiparameter fields
and fractional processes [Par75, DU99, LWC04, OM05, Fat21], etc. See [LT11, Chapter
8] for surveys of classical topics.

The goal of the present paper is to extend Strassen’s law in yet another general
direction, related to many of the aforementioned extensions, eventually culminating with
a compact limit set theorem for the small-noise regime of subcritical singular SPDEs such
as the KPZ equation, which have been of popular interest in the probability literature
recently, see e.g. [Cor12, CW15, CS20], etc. One difference from the aforementioned re-
sults is that we take a dynamical-systems and semigroup-theory perspective on Strassen’s
law, rather than considering an arbitrary sequence of random variables in a Banach
space. We are uncertain if this perspective is novel, or if it merely provides a convenient
notational framework to summarize proof methods that may already be well-known to
experts in the area. Nonetheless the dynamics perspective does allow us to concisely
recover and generalize some of the more classical results cited above, in particular our
main results (see Theorem 3 and its generalizations Theorems 29, and 30) recover results
from [KL73, Par75, BBAK92, Bur93, GK93, CCFR95, Arc95, Neu98, DU99, LWC04], see
Section 3.

First we establish some notation. If H is any real Hilbert space and S : H → H is
any bounded operator, we denote by S∗ its adjoint operator with respect to the inner
product of H. Throughout this work we will use the notion of abstract Wiener spaces
introduced by Leonard Gross [Gro67]. These are formal triples (X,H, µ) where X is a
Banach space, µ is a centered Gaussian measure on X, and H ↪→ X is the compactly
embedded Cameron-Martin space. In this paper we will consider measure-preserving
a.e. linear maps on X. These are Borel-measurable linear maps S : E → X where E ⊂ X
is a Borel-measurable linear subspace of full measure in X, such that S preserves the
measure µ. It is known that any such map necessarily maps H to itself and must satisfy
SS∗ = I there, see Lemma 32.

Conversely, given any bounded linear map S : H → H satisfying SS∗ = I, there
exists a Borel-measurable linear subspace E ⊂ X of full measure and a linear extension
Ŝ : E → X of S which is unique up to a.e. equivalence (this is despite the fact that H
may have measure zero). Moreover the condition SS∗ = I guarantees that this extension
is measure-preserving. We refer to Lemma 32 for a proof of these statements. Letting
E2 := {x ∈ E : Ŝx ∈ E}, we see that E2 is a measurable linear subspace and we can
sensibly define Ŝ2x := Ŝ(Ŝx) for x ∈ E2. Moreover, the measure-preserving property
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implies that µ(E2) = 1. Continuing iteratively we may define Ek+1 = {x : Ŝx ∈ Ek},
which will have full measure and admits a sensible definition of Ŝk+1. Then E∞ :=

⋂
Ek

will have full measure and admits a simultaneous definition of all Ŝn.
In the sequel we will not distinguish between Ŝ and S and simply write Ŝn =: Sn

without explicitly specifying these formalities of its definition on a linear subspace of full
measure. The forward implication of the following result may be seen as a special case
of [Arc95, Theorem 2.1] (albeit formulated differently) and the main focus of the present
paper will be to extend it to continuous-parameter settings and higher Gaussian chaoses,
ultimately culminating in a nonlinear version of Strassen’s Law for some singular SPDEs.
The reverse implication has not appeared in the literature as far as we know.

Proposition 1. Let (X,H, µ) be an abstract Wiener space. Let S : H → H be a bounded
linear operator and write SN := SN . Suppose that SS∗ = I, i.e., S is measure-preserving.

If 〈SNx, y〉H → 0 as N → ∞ for all x, y ∈ H (i.e., S is strongly mixing) then for
µ-almost every x ∈ X, the set of limit points of { SNx√

2 logN
: N ∈ N} is equal to the closed

unit ball of H.
Conversely, if the set of limit points of { SNx√

2 logN
: N ∈ N} is a.s. equal to the closed

unit ball of H, then one necessarily has 1
N

∑N
k=1 |〈Skx, y〉H | → 0 for all x, y ∈ H (i.e., S is

weakly mixing).

This is proved as Proposition 11 in the main body. Just to be clear, we are referring
to limit points with respect to the topology of X, and SNx is meant to be understood
in terms of the unique measurable linear extensions (explained above) if x ∈ X. The
equivalence of strong mixing or weak mixing to the stated conditions on the inner
products 〈Skx, y〉 is proved in Proposition 34 below. It turns out that in many cases of
interest, an even stronger mixing condition ‖SNx‖H → 0 is satisfied for all x ∈ H, and by
Lemma 33 this can be equivalently stated as

⋂
N∈N Im(S∗N ) = {0}, where Im(S) denotes

the image in H of S. This is easier to check in certain instances. Lemma 44 provides
another efficient way to check that the mixing condition is satisfied in many examples of
interest.

Now we will formulate a continuous-time version of Proposition 1. Recall that a
strongly continuous semigroup on a Banach space X is a collection (St)t≥0 of bounded
linear operators from X → X such that StSs = St+s for all s, t ≥ 0, and furthermore
‖Stx − x‖X → 0 as t → 0 for all x ∈ X. Moreover, if X is a Banach space and if
γ : [0,∞)→ X is any function, then we call x ∈ X a cluster point at infinity of γ if there
exists a sequence tn ↑ ∞ such that ‖γ(tn)− x‖X → 0. Similarly if γ : (0, 1]→ X then we
will call x ∈ X a cluster point at zero of γ if there exists a sequence εn ↓ 0 such that
‖γ(εn)− x‖X → 0.

Proposition 2. Let (X,H, µ) be an abstract Wiener space. Suppose that (St)t≥0 is a
family of bounded operators from H → H satisfying the following four properties:

1. St+u = StSu for all t, u ≥ 0.

2. StS∗t = I.

3. 〈Stx, y〉H → 0 as t→∞ for all x, y ∈ H.

4. (St)t≥0 extends to a strongly continuous semigroup on the larger space X.

Then for µ-almost every x ∈ X, the set of cluster points at infinity of { Stx√
2 log t

: t ≥ 0} is
equal to the closed unit ball of H.

This will be proved by combining the previous proposition with Lemma 12 in the main
body. Now let us relate this to the usual law of the iterated logarithm. We will say that a
strongly continuous multiplicative semigroup is a family of bounded operators (Rε)ε∈(0,1]

satisfying RεRδ = Rεδ and moreover ‖Rεx − x‖X → 0 as ε ↑ 1 for all x ∈ X. Then by
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setting St := Re−t , Proposition 2 can be restated in terms of multiplicative semigroups
as follows.

Let (X,H, µ) be an abstract Wiener space. Suppose that (Rε)ε∈(0,1] is a family of
bounded operators from H → H satisfying the following four properties:

1. RεRδ = Rεδ for all ε, δ ∈ (0, 1].

2. RεR∗ε = I.

3. 〈Rεx, y〉H → 0 as ε→ 0 for all x, y ∈ H.

4. (Rε)ε∈(0,1] extends to a strongly continuous multiplicative semigroup on the larger
space X.

Then for µ-almost every x ∈ X, the set of cluster points at zero of the set
{

Rεx√
2 log log(1/ε)

:

ε ∈ (0, 1]
}

is equal to the closed unit ball of H.

The quintessential example of such a setup is the classical Wiener space X =

C[0, 1], H = H1
0 [0, 1], and µ is the law of a standard Brownian motion. Then one sets

Rεf(x) = ε−1/2f(εx). One easily checks that ‖Rεf‖H1
0
→ 0 as ε → 0 for all f ∈ H1

0 [0, 1],
and thus the above statement recovers the classical version of Strassen’s law. Another
important example in the context of stochastic PDEs is the additive-noise stochastic heat
equation h driven by space-time white noise, started either from two-sided Brownian
motion or from zero initial condition, in which one obtains a compact limit set theorem
for the ε-indexed family of functions ε−1/2h(ε2t, εx), see Example 3.2 below. We will give
a self-contained proof of Propositions 1 and 2 in Subsection 2.1 below.

Next let us discuss our main result of the paper, the generalization to higher chaos
and the contraction principle. If (X,H, µ) is an abstract Wiener space, then the nth

homogeneous Wiener chaos, denoted by Hk(X,µ) is defined to be the closure in L2(X,µ)

of the linear span of Hk ◦ g as g varies through all elements of the continuous dual space
X∗, where Hk denotes the kth Hermite polynomial (normalized so that Hk(Z) has unit
variance for a standard normal Z). Letting Y be another separable Banach space, a Borel-
measurable map T : X → Y is called a chaos of order k over X if f ◦ T ∈ Hk(X,µ) for all
f ∈ Y ∗. For such a chaos we may define (following [Led96, HW15]) its “homogeneous
form” Thom : H → Yi by the Bochner integral formula

Thom(h) :=

∫
X

T (x+ h)µ(dx) =
1

k!

∫
X

T (x)〈x, h〉kµ(dx),

which may be shown to converge, see Proposition 14 below which is based on work of
[AG93].

For an abstract Wiener space (X,H, µ) we always let B(H) denote the closed unit
ball of the Cameron-Martin space H. Our main result in this work is the following.

Theorem 3. Let (X,H, µ) be an abstract Wiener space, let (Rε)ε∈(0,1] be a family of
Borel-measurable a.e. linear maps from X → X which are measure-preserving and
satisfy 〈Rεx, y〉H → 0 as ε → 0 for all x, y ∈ H (i.e., each Rε is strongly mixing). Let
T i : X → Yi be a chaos of degree ki over X for 1 ≤ i ≤ m, where Yi may be any separable
Banach spaces. Suppose that there exist strongly continuous semigroups (Qiε)ε∈(0,1] of
operators from Yi → Yi for 1 ≤ i ≤ m such that

T i ◦Rε = Qiε ◦ T i, µ-a.e. for all ε ∈ (0, 1] and 1 ≤ i ≤ m. (1.1)

LetM⊂ Y1 × · · ·Ym be a closed subset, such that for all δ > 0

µ({x ∈ X : (δk1T 1(x), ..., δkmTm(x)) ∈M}) = 1.
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Then the compact set K := {(T 1
hom(h), ..., Tmhom(h)) : h ∈ B(H)} is contained in M.

Moreover for any Banach space Z and any continuous map Φ :M→ Z, the set of cluster
points at zero of{

Φ
(
(2 log log(1/ε))−k1/2Q1

εT
1(x), . . . , (2 log log(1/ε))−km/2Qmε T

m(x)
)

: ε ∈ (0, 1]}

is almost surely equal to Φ(K).

This result builds upon a body of literature on sample paths of ergodic self-similar
processes derived from a Gaussian measure and their chaoses, which started with works
such as [MO86, Tak89, Alb90]. Besides the more abstract setup, a novelty of our result
is that there is no additional difficulty in allowing the topology on the spaces Yi and Z
to be taken as strong as one desires (e.g. Hölder spaces as opposed to just continuous
functions).

Theorem 3 is proved as Corollary 22 in the main body of the paper. Note that one
recovers Proposition 2 by setting m = 1, k1 = 1, Y1 = X = Z = M, and making Φ the
identity map. Classical and new examples using this general result are illustrated in
Sections 3 and 4. One particular example of interest which seems new, and which
sparked our interest in this problem, is the following.

Theorem 4. For ε ∈ (0, 1/e) let Cε := (log log(1/ε))1/2, and let hε denote the Hopf-Cole
solution to the KPZ equation on [0,∞)×R driven by standard Gaussian space-time white
noise:

∂th
ε = ∂2

xh
ε + Cε(∂xh

ε)2 + ξ, t ≥ 0, x ∈ R,

with initial data h(0, x) = 0. Fix S, Y > 0 the set of cluster points as ε ↓ 0 in CS,Y :=

C([0, S] × [−Y, Y ]) of the sequence of functions C−1
ε ε−1/2hε(ε2t, εx) is a.s. equal to the

compact set KZero given by the closure in CS,Y of the set of smooth space-time functions
h satisfying

h(0, x) = 0,
∥∥∂th− ∂2

xh− (∂xh)2
∥∥
L2([0,S]×[−Y,Y ])

≤ 1.

Moreover, the same compact limit set result holds for the same sequence of functions in
stronger topologies given by parabolic Hölder norms up to but excluding exponent 1/2
(defined in (3.9) below).

We remark that the KPZ equation here is defined on the full spacetime, however for
the statement of the Strassen law, we are restricting our attention of this space-time
process to a fixed compact box. This will be proved in Section 3.2. We remark that the
compact limit set is precisely the compact set on which the large deviation rate function
of small-noise KPZ is less than or equal to 1, see for instance [HW15, LT21].

The result of Theorem 3 can also be used to prove variants of Theorem 4. For instance
if we instead let hε(0, x) be a two sided Brownian motion (fixed for different values of
ε and independent of ξ) then one could furthermore show that a similar result holds
for C−1

ε ε−1/2hε(ε2t, εx), but with compact limit set KBr given by the closure of smooth
functions h ∈ CS,Y satisfying

h(0, 0) = 0, ‖∂xh(0, ·)‖2L2[−Y,Y ] +
∥∥∂th− ∂2

xh− (∂xh)2
∥∥2

L2([0,S]×[−Y,Y ])
≤ 1.

If we likewise define kε to be the solution of

∂tk
ε = ∂2

xk
ε + C−1

ε (∂xk
ε)2 + ξ,

then one can furthermore show that the same compact limit set results hold for the
family C−1

ε ε1/2kε(ε−2t, ε−1x), in other words the large-time regime as opposed to the
small-time one. For brevity we will not write down the proofs of these variants.
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Note that in Theorem 4, the nonlinearity in the equation describing hε must be scaled
along with the parameter ε, so that it blows up in the ε→ 0 limit. If we did not do this,
then the limiting compact set would simply agree with that of the linearized equation
∂thLinear = ∂2

xhLinear + ξ, namely

KLinear := {h ∈ CS,Y : h(0, x) = 0,
∥∥∂th− ∂2

xh
∥∥
L2([0,S]×[−Y,Y ])

≤ 1}.

Indeed this can be proved by decomposing hKPZ = hLinear + v where hKPZ is the Hopf-
Cole solution to KPZ with initial data zero and v is a remainder term which has better
regularity than hLinear (see e.g. Theorem 3.19 of [PR19]). Then under the scaling
necessary to obtain Strassen’s law, it is easy to check that the remainder term converges
a.s. to zero in the topology of C([0, S]× [−Y, Y ]) and the set of limit points for the part
corresponding to hLinear can be shown to be KLinear by applying Proposition 2 above (see
Example 3.2 below). Likewise in the result stated above for the family kε, the nonlinearity
must be scaled along with the parameter ε so that it vanishes in the ε→ 0 limit. If we
did not do this, then the asymptotics would be wrong entirely and instead one would
need to apply a scaling that respects the tail behavior of the so-called KPZ fixed point
[MQR21], namely (log log(1/ε))2/3, see [DG21]. The functional form of the latter result
seems to be a very interesting open problem, see [QT22] for some progress on large
deviations under the KPZ fixed point scaling.

The manner in which we prove Theorem 4 uses results from the theory of regularity
structures [Hai13] and is robust enough to prove similar theorems for other rough
equations on a full space that admit a factorization of the solution map in terms of a
finite number of Gaussian chaoses and a continuous map. In the case of Φ4

2 and Φ4
3,

such a methodology would only be applicable once one has developed such a solution
theory for the latter equation on the full space R2 or R3 using regularity structures or
paracontrolled products. In [MW17, GH21] the authors establish global well-posedness,
but the explicit construction of a continuous part of the solution map is not written down.

To show the generality of our method, we also prove a similar result for mollified
smooth versions of the noise, specifically we show that even though mollifying is not a
measure-preserving operation on the noise, it is enough to be “asymptotically measure-
preserving on exponential scales,” see Theorem 26 and its corollary Theorem 28 for the
KPZ equation. See Theorem 29 and the subsequent discussion for even more general
formulations of the main theorem, in which we discuss how one could potentially use our
results to give Strassen laws even for discrete or non-Gaussian systems, assuming that a
strong enough form of the “almost sure invariance principle” holds for the non-Gaussian
driving noise as well as for its higher chaoses.

In Section 4.2 we consider yet another generalization of the main result that may
be applied to obtain Strassen laws for so-called “iterated processes,” recovering and
generalizing some of the results from [Bur93, CCFR95, Neu98].

Organization. In Section 2 we prove the main result Theorem 3, first expositing on
the known results before moving onto the newer higher chaos results. Section 3 is
devoted to giving many examples culminating in the proof of Theorem 4. Section 4
gives further generalizations of Theorem 3. Appendix A studies the ergodic properties of
measure-preserving linear operators on an abstract Wiener space. Appendix B contains
functional-analytic lemmas that are useful in checking the conditions of Theorem 3 in
cases of interest.

Notation and Conventions. Throughout this paper we use (X,H, µ) to denote an
abstract Wiener space, and we use x or ξ to denote a general element of the space
X. We generally use SN , Gt, Rε, Qε for measure-preserving semigroups of operators
on these spaces. For a Gaussian chaos we typically use T or sometimes ψ, and for its
homogeneous form we always use the subscript “hom.”
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2 Proofs of main theorems

2.1 Strassen law for strongly mixing linear operators

In this subsection we prove Propositions 1 and 2. Although most of these results
for first-order chaos are already known (as we explained in the introduction), we give a
short proof here because we use some of the lemmas later for the higher chaos results,
and because it allows the exposition to flow more smoothly in later sections. First we
need some preliminary lemmas and then we will formulate the result as Theorem 11.

Lemma 5. Let (Xi)i≥0 be a stationary sequence of real-valued jointly Gaussian random
variables. Suppose that var(X0) = 1 and cov(X0, Xn)→ 0 as n→∞. Then

lim sup
n→∞

Xn√
2 log n

= 1, a.s..

This lemma is classical and is a special case of [Arc95, Lemma 2.1], which in turn is
an improvement of classical results from [Pic67, Nis67, Lai74]. The proof may be found
in those works, or proved directly as a straightforward corollary of Slepian’s Lemma
(using a comparison with the stationary Gaussian process ξj with unit variance, whose
covariance is given for i < j by cov(ξi, ξj) = ε for some fixed small ε ∈ (0, 1)).

We remark that the above lemma is the only place where the mixing condition is used,
and is also the reason why we are not able to extend the result to the ergodic case (i.e.,
it seems difficult to prove or find a counterexample to the above fact under the weaker
assumption 1

n

∑n
1 |cov(X0, Xn)| → 0). Next we generalize the above lemma to RN . We

denote the unit sphere of RN to be the set of all points (a1, ..., aN ) with
∑N

1 a2
i = 1.

Corollary 6. Let ( ~Xn)n≥1 be a stationary sequence of jointly Gaussian random vari-
ables in RN , say ~Xn = (X1

n, X
2
n, ..., X

N
n ). Suppose that cov(Xi

0, X
j
0) = δij and that

cov(Xi
0, X

j
n)→ 0 as n→∞ for all 1 ≤ i, j ≤ N . Then the unit sphere of RN is contained

in the set of limit points of the random sequence ((2 log n)−1/2 ~Xn)n≥2.

Proof. By Lemma 5, if we restrict our attention to only the first coordinate, then the
set of limit points of the random sequence ((2 log n)−1/2 ~Xn)n≥1 must contain a point
on the set A := {(a1, ..., aN ) : a1 = 1}. On the other hand, by Borel-Cantelli and
cov(Xi

0, X
j
0) = δij , it is clear that the set of limit points must be contained in the set

B := {(a1, ..., aN ) :
∑N
i=1 a

2
i ≤ 1}.

Since A∩B = {(1, 0, ..., 0)} it follows that (1, 0, ..., 0) is a.s. a limit point of the random
sequence ((2 log n)−1/2 ~Xn)n≥1. The fact that any point on the unit sphere is a limit point
then follows from rotational invariance of the conditions that cov(Xi

0, X
j
0) = δij and

cov(Xi
0, X

j
n)→ 0 (i.e., these conditions remain true if we replace ( ~Xn)n by (U( ~Xn))n for

some orthogonal N ×N matrix U ).

Definition 7. Let H be a real Hilbert space. We will henceforth denote S(H) := {h ∈
H : ‖h‖H = 1} and B(H) := {h ∈ H : ‖h‖H ≤ 1}.
Lemma 8. Let (X,H, µ) be an abstract Wiener space of infinite dimension. Then the
closure in X of S(H) is B(H).

Proof. B(H) is a compact (hence closed) subset of X which contains S(H), so the set
of limit points of S(H) must be contained in B(H). Choose an orthonormal basis {en}n
for H. Since en ∈ B(H), since B(H) is compact in X [Bog98], and since en → 0 weakly
in H, it follows that ‖en‖X → 0 as n → ∞. Now fix h ∈ H with ‖h‖H ≤ 1. Choose
cn ∈ R such that ‖h+ cnen‖H = 1. It is clear that |cn| ≤ 2 (otherwise 1 = ‖cnen + h‖H ≥
|cn|‖en‖ − ‖h‖ > 2− 1 = 1), and therefore ‖cnen‖X → 0. Thus h+ cnen is a sequence in
S(H) converging to h ∈ B(H) with respect to the topology of X.
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At this point we invite the reader to review the main results of Appendix A. Given
an abstract Wiener space (X,H, µ), the set of measure-preserving a.e. linear maps
from X → X (modulo a.e. equivalence) is in bijection with the set of bounded linear
maps from H → H satisfying SS∗ = I. Moreover, the bijection is given by simply
restricting S to H. This is shown in the appendix, see Lemma 32. In the sequel we
will not notationally distinguish between such a map S on H and its a.e.-unique and
a.e.-linear measure-preserving extension on X.

Lemma 9. Let (X,H, µ) be an abstract Wiener space. Suppose that S : H → H is a
bounded linear operator satisfying SS∗ = I. Then for any a /∈ B(H) there exists ε > 0

such that

µ

({
x ∈ X :

Skx√
log k

∈ B(a, ε) infinitely often

})
= 0.

Proof. By definition of the Cameron-Martin space, for every x ∈ X, we have

sup{`(x) : ` ∈ X∗,
∫
`2dµ = 1} = ‖x‖H

(we set ‖x‖H = ∞ when x /∈ H). For any x ∈ X\B(H), there exists ` ∈ X∗ such that
`(x) >

√
2 and

∫
X
`2dµ = 1. For each n ∈ N, under µ, `(Snx) is a standard Gaussian

random variables. Using Borel-Cantelli lemma and Gaussian tail bound, together with
`(x) >

√
2, there exist small enough εx > 0 such that

P
({ `(Snξ)√

log n

}∞
n=1
∈ B(`(x), εx) infinitely often

)
= 0

By making εx smaller, we have

P
({ Snξ√

log n

}∞
n=1
∈ B(x, εx) infinitely often

)
= 0.

Lemma 10. [Led96, Equation (4.4)] Let µ be a centered Gaussian measure on a separa-
ble Banach space, then for all a > 0

µ({x ∈ X : ‖x‖X > a+

∫
X

‖u‖Xµ(du)}) ≤ e−a
2/(2σ2),

where σ := sup‖f‖X∗≤1

∫
X
f(x)2µ(dx) = sup‖h‖H≤1 ‖h‖X .

Finally we are ready to prove the main result of the section, a restatement of Proposi-
tion 1 in addition to a partial converse.

Proposition 11. Let (X,H, µ) be an abstract Wiener space. Let E ⊂ X be a Borel
measurable linear subspace of measure 1, and suppose S : E → X is linear and measure-
preserving. If S is strongly mixing, then the set of limit points of the random sequence
((2 log n)−1/2Snx)n∈N equals the closed unit ball of H for a.e. x ∈ X.

Conversely, if S is any measure-preserving linear operator such that the set of limit
points of the random sequence ((2 log n)−1/2Snx)n∈N equals the closed unit ball of H for
a.e. x ∈ X, then S must be ergodic (equivalently weakly mixing by Proposition 34).

Proof. Fix h ∈ H with ‖h‖H = 1, and let ε > 0. We wish to show that ‖(2 log n)−1/2Snx−
h‖H < ε infinitely often. To this end, let {ei}i be an orthonormal basis of H with e1 = h.
Let Pk denote the orthogonal projection onto the subspace Mk which is spanned by
{ei}ki=1.

Choose some k ∈ N so that
∫
X
‖x− Pkx‖2Xµ(dx) < (ε/5)2. Then for all n we have that

P(‖Snξ − Pk(Snξ)‖X > a) = P(‖ξ − Pk(ξ)‖X > a) ≤ e−Ma2E[eM‖ξ−Pk(ξ)‖2X ] (2.1)
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for any a > 0 and for any M > 0 such that the expectation on the right side is finite.
By Lemma 10, it is true that

∫
X
eα‖x‖

2

ν(dx) is finite whenever α < (2
∫
X
‖x‖2ν(dx))−1,

for any centered Gaussian measure ν on X. Consequently in (2.1) we can take M to be
(5/ε)2 and we can take a to be ε

√
2 log n/4 and we find∑

n>1

P

(
‖Snξ − Pk(Snξ)‖X√

2 log n
> ε/4

)
<∞,

where ξ is distributed according to µ. Then by the Borel-Cantelli lemma, we find that

(2 log n)−1/2‖Snξ − Pk(Snξ)‖X < ε/4

for all but finitely many n, a.s.. Thus we just need to show that ‖(2 log n)−1/2Pk(Snx)−
h‖X < ε/4 infinitely often. But this is just a finite dimensional statement which immedi-
ately follows from Corollary 6. Indeed, by assumption h lies on the unit sphere of Mk,
and the joint covariances tend to zero precisely because of the condition that S is mixing
(via Item (2) in Proposition 34).

In the notation of Lemma 8, we have shown that any point on S(H) is almost surely
a limit point of (2 log n)−1/2Snx. By that same lemma, any point of B(H) is also a limit
point. It is clear from Lemma 9 that no point outside of B(H) can be a limit point
of (2 log n)−1/2Snx. That lemma is still valid in this case, since it only relies on the
measure-preserving property of Sn and nothing else. This completes the proof of the
first statement.

Next we prove that S must be ergodic if the set of limit points of ((2 log n)−1/2Snx)n∈N
equals the closed unit ball of H for a.e. x ∈ X. Indeed, if S is not ergodic, then by
Item (3d) in Proposition 34, there is a two-dimensional invariant subspace M on which
S acts by a rotation matrix. We claim that no nonzero point which lies in M can be
visited infinitely often, since (2 log n)−1/2Snx converges to zero a.s. for any x ∈ M .
Indeed, let P be the projection onto M and let Q = I − P denote the projection onto
M⊥. Let ξ be sampled from µ, so that Qξ has Cameron-Martin space M⊥. Since M and
M⊥ are invariant under S, it follows that PSn = SnP and QSn = SnQ. By Lemma 9
it is clear that the set of limit points of (2 log n)−1/2QSnξ = (2 log n)−1/2Sn(Qξ) must
be contained in the closed unit ball of the Cameron-Martin space of Qξ, namely M⊥

(this lemma only relies on the measure-preserving property of Sn and nothing else).
Furthermore, since (2 log n)−1/2Snx converges to zero a.s. for any x ∈ M , it follows
that (2 log n)−1/2PSnξ = (2 log n)−1/2Sn(Pξ) converges to zero a.s. Consequently the set
of limit points of (2 log n)−1/2Snξ = (2 log n)−1/2PSnξ + (2 log n)−1/2QSnξ must also be
contained in M⊥, and hence contain no nonzero points of M , proving the claim.

This already proves Proposition 1, and to prove Proposition 2 one only needs the
following.

Lemma 12. Let (X,H, µ) be an abstract Wiener space. Suppose that St : H → H is
a family of bounded linear operators satisfying StS

∗
t = I. Moreover assume that (St)

extends to a strongly continuous semigroup on X. Then there exists a deterministic
function C : [0, 1]→ [0,∞) such that C(ρ)→ 0 as ρ ↓ 0 and such that

µ

({
x ∈ X : lim sup

k→∞

supt∈[kρ,(k+1)ρ] ‖Stx− Skρx‖X√
log k

≤ C(ρ)

})
= 1

for all ρ ∈ [0, 1]. In particular (Stx)t≥0 has the same set of cluster points as (SNx)N∈N
for x in a set of full µ-measure.

Proof. Let ξ denote a random variable in X with law µ, defined on some probability space
(Ω,F ,P). Then (Stξ)t∈[0,1] is continuous in t, thus it can be viewed as a Gaussian random
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variable taking values in the Banach space C([0, 1], X) of continuous paths in X, endowed
with norm ‖F‖C([0,1],X) := supt∈[0,1] ‖F (t)‖X . By Fernique’s theorem, E[supt∈[0,1] ‖Stξ −
ξ‖pX ] <∞ for all p ≥ 1. By continuity, we also know that supt∈[0,ρ] ‖Stξ− ξ‖X → 0 as ρ ↓ 0.
Letting

C(ρ) := E[ sup
t∈[0,ρ]

‖Stξ − ξ‖2X ],

we thus have by uniform integrability that limρ↓0 C(ρ) = 0. Letting

A(k, ρ) := sup
t∈[kρ,(k+1)ρ]

‖Stx− Skρx‖X ,

the stationarity of the process (Stξ)t≥0 implies that A(k, ρ)
d
= A(0, ρ) for all k ∈ N. We

thus find that

P(A(k, ρ) > E[A(0, ρ)] + u) = P(A(0, ρ) > E[A(0, ρ)] + u) ≤ e−u
2/(2C(ρ)),

where we used Lemma 10 in the last inequality. But E[A(0, ρ)] ≤ E[A(0, ρ)2]1/2 = C(ρ)1/2,
and therefore

P(A(k, ρ) > u) ≤ e−(u−C(ρ)1/2)2/(2C(ρ)) ≤ e1/2 · e−u
2/(4C(ρ))

where we used (a− b)2 ≥ 1
2a

2 − b2 in the last inequality. Thus

P(A(k, ρ) > 4C(ρ)
√

log k) . k−4,

so by the Borel-Cantelli lemma we find that

lim sup
k→∞

A(k, ρ)√
log k

≤ 4C(ρ), a.s.

As we already observed eariler C(ρ)→ 0 as ρ ↓ 0, completing the proof.

To summarize the main results of this section, let (X,H, µ) be an abstract Wiener
space, let S : X → X be measure-preserving and a.e. linear, and consider the following
statements:

1.
⋂
n σ(Sn) is a trivial sigma algebra.

2. S is strongly mixing.

3. The set of limit points of the random sequence ((2 log n)−1/2Snx)n∈N equals the
closed unit ball of H for a.e. x ∈ X.

4. S is ergodic/weakly mixing.

Appendix A shows that (1) implies (2) (which is actually true for any dynamical system,
by e.g. the reverse martingale convergence theorem), that (2) implies (3), and that (3)
implies (4). From Proposition 34, it is clear that (2) does not imply (1) in general, and
that (4) does not imply (2) in general.

We do not know if (3) implies (2) or if (4) implies (3), although Proposition 34 implies
that both cannot simultaneously be true in general. To show that (4) implies (3), one
would need to prove Lemma 5 with the condition cov(X0, Xn) → 0 replaced by the
condition 1

n

∑n
j=1 |cov(X0, Xj)| → 0. We do not know how to prove this, nor are we

certain that it is even true. We have reason to suspect that “(4) implies (3)” may actually
be false, and a counterexample might be given by an operator whose spectral measure
is atomless but highly singular with respect to Lebesgue measure. For instance, in
the case that the spectral measure looks like the usual two-thirds Cantor measure,
we have some reason to suspect that the set of limit points of the random sequence
((2 log n)−1/2Snx)n∈N equals the ball in H of radius

√
log3 2 for a.e. x ∈ X, rather than

the closed unit ball. However, we do not have a proof of this.
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2.2 Strassen law for higher Gaussian chaos

The main goal of this subsection is to prove a version of Strassen’s law for higher
Gaussian chaoses, which reduces to the previous version for first-order chaos.

In the proofs, we will use the standard fact that for each h ∈ H there exists an a.e.
defined linear extension of the map from H → R given by v 7→ 〈v, h〉H . By an abuse of
notation we denote this linear extension as 〈·, h〉 as well, and the map from H → L2(X,µ)

given by h 7→ 〈h, ·〉 is a linear isometry. In particular, the law of each 〈h, ·〉 is a Gaussian
of variance ‖h‖2H with respect to µ, see [Hai09, Section 3.4].

If (X,H, µ) is an abstract Wiener space, then the kth homogeneous Wiener chaos,
denoted by Hk(X,µ) is defined to be the closure in L2(X,µ) of the linear span of Hk ◦ g
as g varies through all elements of the continuous dual space X∗, where Hk denotes the
kth Hermite polynomial

Hk(x) := (−1)ke
x2

2
dk

dxk
e−

x2

2 .

Equivalently Hk can be described as the closure in L2(X,µ) of the closure of the linear
span of Hk(〈·, v〉) as v ranges through all elements of H and satisfies ‖v‖H = 1. One
always has the orthonormal decomposition L2(X,µ) =

⊕
k≥0Hk(X,µ), see e.g. [Nua06,

Section 1.1]. Sometimes the kth chaos is also described slightly differently as linear
combinations of products of Hermite polynomials of degree adding up to k, for instance in
[HW15, Section 3], but our formulation is equivalent by the umbral identity for Hermite
polynomials (see e.g. [Hai16, Corollary 2.3]) together with the fact that for any vector
space H the “diagonal” elements of the form h⊗sk (h ∈ H) span the entire symmetric
tensor product H⊗sk.

Definition 13. Let (X,H, µ) be an abstract Wiener space, and let Y be another separable
Banach space. A Borel-measurable map T : X → Y is called a homogeneous chaos of
order k if f ◦ T ∈ Hk(X,µ) for all f ∈ Y ∗.

Before formulating the main result of this section, we collect a few important re-
sults about homogeneous variables. In [AG93] the authors show that the norm of any
Gaussian chaos has moments of all orders. Moreover, [AG93, equation (4.1)] gives a
hypercontractive bound for any Gaussian chaos T of order k:∫

X

‖T (x)‖2pY µ(dx) ≤ (2p− 1)pk
[ ∫

X

‖T (x)‖2Y µ(dx)

]p
. (2.2)

Here p ≥ 1 is arbitrary. Immediately this gives the following strong integrability result.

Proposition 14. Let (X,H, µ) be an abstract Wiener space and let T : X → Y be a chaos
of order k. Let ‖T‖2L2(X,µ;Y ) :=

∫
X
‖T (x)‖2Y µ(dx). Then ‖T‖L2(X,µ;Y ) <∞ and moreover

µ({x ∈ X : ‖T (x)‖Y > u}) < C exp
[
− α

(
u/‖T‖L2(X,µ;Y )

)2/k]
, (2.3)

where C,α > 0 depend on k but are independent of the choice of X,H, µ, Y, T , and u > 0.

Let (X,H, µ) be an abstract Wiener space. Choose an orthonormal basis {ei}i for H,
and for x ∈ H let

PNx :=

N∑
j=1

〈x, ej〉ej , QNx :=

∞∑
j=N+1

〈x, ej〉ej = x− PNx.

where the infinite sum converges in the topology of H. Note that if x is sampled
from µ then PNx,QNx still make sense (in a set of measure 1) and moreover they are
independent since {〈x, ej〉}j≥1 are i.i.d. standard Gaussian random variables under
µ. Therefore if (x, y) is sampled from µ⊗2, then PNx + QNy is distributed as µ. If
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T : X → Y is a chaos of order k, we thus define a sequence of “finite-rank Cameron-
Martin projections” for T by the formula

TN (x) :=

∫
X

T (PNx+QNy)µ(dy). (2.4)

This is a well-defined Bochner integral for µ a.e. x ∈ X. Indeed, since∫
X

∫
X

‖T (PNx+QNy)‖Y µ(dy)µ(dx) =

∫
X

‖T (u)‖Y µ(du) <∞,

it follows that
∫
X
‖T (PNx+QNy)‖Y µ(dy) is finite for a.e. x.

Corollary 15. Let (X,H, µ) be an abstract Wiener space, and let T : X → Y be a chaos
of order k. If TN is defined as in (2.4), then TN is also a chaos of order k, and moreover
‖TN − T‖Y → 0 a.e. and in every Lp(X,µ) as N → ∞. In fact, one has the following
super-polynomial convergence bound:

µ({x ∈ X : ‖TN (x)− T (x)‖Y > u}) ≤ C exp
[
− α

(
u/‖TN − T‖2L2(X,µ;Y )

)2/k]
(2.5)

where C,α are independent of X,H, µ, Y, T, u,N and the choice of basis {ei}i, but may
depend on the homogeneity k.

Proof. That TN is a chaos of order k is clear. The a.e. and L2 convergence follows
immediately from the martingale convergence theorem for Banach-valued random vari-
ables [Cha68], since TN = Eµ[T |FN ] where FN is the σ-algebra generated by the i.i.d.
variables 〈x, ei〉 for 1 ≤ i ≤ N . The super-polynomial convergence bound then follows
immediately from Proposition 14 applied to the chaos T − TN .

If (X,H, µ) is an abstract Wiener space and T : X → Y is a chaos of order k, then we
define the associated map Thom : H → Y by

Thom(h) :=

∫
X

T (x+ h)µ(dx) =
1

k!

∫
X

T (x)〈x, h〉kµ(dx). (2.6)

The latter equality follows by applying the Cameron-Martin formula to first replace
T (x+h) by T (x)e〈x,h〉−

1
2‖h‖

2
H , then expanding the exponential as

∑∞
n=0

‖h‖n
n! Hn(〈x, h/‖h‖〉)

and using the fact that T is orthogonal to all Hn ◦ g when n 6= k and g ∈ X∗.
Lemma 16. Let (X,H, µ) be an abstract Wiener space, and let T : X → Y be a chaos of
order k. Choose an orthonormal basis {ei} of H and let TN be the finite-rank approxima-
tion given in (2.4). Then we have the uniform convergence

lim
N→∞

sup
‖h‖H≤1

∥∥(TN )hom(h)− Thom(h)
∥∥
Y

= 0.

Letting B(H) denote the closed unit ball of H, it follows that Thom is continuous from
B(H)→ Y , where B(H) is given the topology of X (not of H).

This is proved in [HW15, (3.8)]. Since continuous functions map compact sets to
compact sets, we immediately obtain the following.

Corollary 17. Let (X,H, µ) be an abstract Wiener space, and let T i : X → Yi be a chaos
of order ki for 1 ≤ i ≤ m, where m ∈ N. Then the set

{(T 1
hom(h), ..., Tmhom(h)) : h ∈ B(H)}

is a compact subset of Y1 × · · ·Ym.
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With all of these preliminaries in place, we are ready to formulate the main theorem of
this subsection, which is a generalization of the main theorem to homogeneous variables
of order k.

Theorem 18. Let (X,H, µ) be an abstract Wiener space, fix m ∈ N. Let T i : X → Yi
be chaoses of order ki respectively, for 1 ≤ i ≤ m. Let S : X → X be a.e. linear,
measure-preserving, and strongly mixing. Then almost surely, the set of limit points of
the random set{(

(2 log n)−k1/2T 1(Snx), . . . , (2 log n)−km/2Tm(Snx)
)

: n ∈ N}

is equal to the compact set K := {(T 1
hom(h), ..., Tmhom(h)) : h ∈ B(H)}.

Proof. Recall that S(H) = {h ∈ H : ‖h‖H = 1}. Note by Lemma 8 that S(H) is dense in
B(H) with respect to the topology of X. Therefore, the set

D := {(T 1
hom(h), ..., Tmhom(h)) : h ∈ S(H)}

is dense in K. Thus it suffices to show that any point in D is a limit point of the given
sequence. So fix a point (T 1

hom(h), ..., Tmhom(h)) ∈ D, where ‖h‖H = 1, and let ε > 0. We
wish to show that

m∑
i=1

∥∥(2 log n)−ki/2T i(Snx)− T ihom(h)
∥∥
Yi
< ε (2.7)

infinitely often. Fix an orthonormal basis {ei} for H, with e1 = h, and let T iN be
the associated finite rank Cameron-Martin projections as in (2.4). We claim that it is
enough to prove (2.7) with each T i(Snx) replaced by T iN (Snx) and T ihom(h) replaced by
(T iN )hom(h) (and also replacing ε by ε/2), for some large enough N .

Indeed, by Corollary 15 we can choose N so large that
∫
X
‖T iN − T i‖2Yidµ < ε/(2m).

Then by (2.5) and the fact that Sn is measure preserving, it is clear that∑
n≥2

µ({x : (2 log n)−ki/2‖T iN (Snx)− T i(Snx)‖Y > ε/m}) <∞, (2.8)

so by Borel-Cantelli lemma, (2 log n)−ki/2‖T iN (Snx)− T i(Snx)‖Y < ε/m for all but finitely
many n ∈ N almost surely. Furthermore, by Lemma 16 we can (by making N larger)
ensure that ‖(T iN )hom(h)− T ihom(h)‖Y < ε/m.

Thus we just need to show that

m∑
i=1

∥∥(2 log n)−ki/2T iN (Snx)− (T iN )hom(h)
∥∥
Yi
< ε/2 (2.9)

infinitely often. Note that each T i is a chaos of order k and measurable with respect to a
finite collection {〈·, ei〉}Ni=1 of i.i.d. standard Gaussian random variables, therefore one
can verify that each T iN can be written as

T iN (x) =

Mi∑
j=1

yijHki(〈vij , x〉), (2.10)

for some finite collection of vectors {vij} ⊂ span({ei}Ni=1), {yij} ⊂ Y , and Mi ∈ N. Here
Hk is the kth Hermite polynomial. Using Cameron-Martin theorem, one can see that

(T iN )hom(h) =

Mi∑
j=1

yij〈vij , h〉ki . (2.11)
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Note that ∣∣〈vij , (2 log n)−1/2Snx〉ki − (2 log n)−ki/2Hki(〈vij , Snx〉)
∣∣→ 0 a.s.,

by Borel-Cantelli lemma and the fact that x 7→ 〈vij , Snx〉 are standard Gaussian random
variables under µ. Thus it suffices to show that∑

1≤i≤m
1≤j≤Mi

‖yij‖Y
∣∣〈vij , (2 log n)−1/2Snx〉ki − 〈vij , h〉ki

∣∣ < ε/2

happens infinitely often. Letting PN : H → span{ei}Ni=1 denote the orthogonal projection,
it is clear that vij = PN (vij), thus by exploiting self-adjointness of PN , the previous
expression is equivalent to showing that∑

1≤i≤m
1≤j≤Mi

‖yij‖Y
∣∣〈vij , (2 log n)−1/2PN (Snx)〉ki − 〈vij , h〉ki

∣∣ < ε/2

infinitely often. Since h = e1, we know from Corollary 6 that ‖(log n)−1/2PN (Snx)−h‖H <

δ infinitely often, for arbitrary δ > 0. By choosing δ small enough and noting that 〈vij , ·〉 is
a continuous function on span{ei}Ni=1, the claim (2.9) immediately follows, and thus (2.7)
is proved.

Now the only thing left to show is that the set of limit points of the given sequence
cannot contain points outside of the set K. This will be done in the following lemma.

Lemma 19. In the setting of Theorem 18, let

an(x) :=
(
(2 log n)−k1/2T 1(Snx), . . . , (2 log n)−km/2Tm(Snx)

)
.

For a.e x ∈ X one has that dist(an(x),K) < ε for all but finitely many n.

Proof. Note that if our abstract Wiener space (X,H, µ) is finite dimensional, then the
statement is straightforward, since T and Thom are of the form (2.10) and (2.11) respec-
tively, and since all of the relevant quantities are continuous functions.

Now we move to the infinite-dimensional case. Suppose for contradiction the claim
was false. Let U denote a neighborhood of size ε around K. Then since S is strongly
mixing (hence ergodic) and since the event “dist(U c, an(x)) < ε/5 infinitely often” is shift
invariant, it follows that it actually occurs with probability 1. By the same argument
used in deriving (2.8), we can choose N so large that

∑m
n=1(2 log n)−ki/2‖T i(Snx) −

T iN (Snx)‖Yi < ε/5 for all but finitely many n almost surely, and moreover by Lemma 16 we
can ensure (by making N possibly larger) that

∑m
n=1 sup‖h‖≤1 ‖T ihom(h)−(T iN )hom(h)‖Yi <

ε/5. By the latter bound and the definition of U it is clear that

dist

(
U c ,

(
(T 1

hom)N (h), ..., (TmN )hom(h)
) )

> 4ε/5

for any h such that ‖h‖H ≤ 1. On the other hand the former bound and our shift-invariant
event of full probability guarantees that dist(U c, aNn (x)) < 2ε/5 infinitely often (for a.e.
x), where

aNn (x) :=
(
(2 log n)−k1/2T 1

N (Snx), ..., (2 log n)−km/2TmN (Snx)
)
.

The preceding two sentences imply (by finite dimensionality) that the sequence (aNn (x))n≥1

contains a limit point outside of the set

{((T 1
N )hom(h), ..., (TmN )hom(h)) : ‖h‖H ≤ 1},

since the distance of aNn (x) to that set must be greater than 2ε/5 infinitely often. This
contradicts the finite dimensional version of the statement that the set of limit points
must be contained in K, which is impossible as noted earlier.
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Next we formulate a continuous-time version of the above results. If Y is a Banach
space, we denote by C([0, 1], Y ) the space of continuous maps from [0, 1]→ Y , equipped
with the Banach space norm ‖γ‖C([0,1],Y ) := supt∈[0,1] ‖γ(t)‖Y . For t ∈ [0, 1] we define
πt : C([0, 1], Y )→ Y by sending γ 7→ γ(t).

Theorem 20. Let (X,H, µ) be an abstract Wiener space, let (St)t≥0 be a family of Borel-
measurable a.e. linear maps from X → X which are measure-preserving and strongly
mixing, and let T i : X → Yi be homogeneous of degree ki for 1 ≤ i ≤ m. Suppose
that there exist strongly continuous semigroups (Git)t≥0 of operators from Yi → Yi for
1 ≤ i ≤ m with the property that

T i ◦ St = Git ◦ T i, µ-a.e. for all t ≥ 0. (2.12)

Then almost surely, the set of cluster points at infinity of the random set{(
(2 log t)−k1/2G1

tT
1(x), . . . , (2 log t)−km/2Gmt T

m(x)
)

: t ∈ [0,∞)}

is equal to the compact set K := {(T 1
hom(h), ..., Tmhom(h)) : h ∈ B(H)}.

Note that we impose no semigroup condition on (St) itself. This is because we do not
need to, though in practice (St) will usually be a strongly continuous semigroup on X.
Note that this theorem implies Proposition 2: set k = 1, m = 1, Y = X, let T 1 be the
identity on X, and let G1

t = St.

Proof. First we claim that that (Git(T
i(ξ)))t∈[0,1] is homogeneous variable of order ki

taking values in the space C([0, 1], Yi). To prove this, note that if Y, Z are Banach spaces,
if T : X → Y is a chaos of order k, and if A : Y → Z is a bounded linear map, then A ◦ T
is also a chaos of order k. We simply apply this to the case where Y = Yi, Z = C([0, 1], Yi)

and A : Yi → C([0, 1], Yi) sends a point y to (Gity)t∈[0,1]. This linear map is bounded by
the uniform boundedness principle.

Next, note that the set of cluster points must contain K by Theorem 18. Thus we just
need to show it contains no other points. Consider the random set{(

(2 log t)−k1/2G1
t (T

1(x)), . . . , (2 log t)−km/2Gmt (Tm(x))
)

: t ∈ [0,∞)}.

The argument that this set contains no cluster points outside of K is very similar to
that of Lemma 12. More precisely, we show that there exists deterministic functions
Ci : [0, 1]→ [0,∞) such that Ci(ρ)→ 0 as ρ ↓ 0 and such that

µ

({
x ∈ X : lim sup

n→∞

supt∈[nρ,(n+1)ρ] ‖Git(T i(x))−Ginρ(T i(x))‖Yi
(log n)ki/2

≤ Ci(ρ)

})
= 1

for all ρ ∈ [0, 1] and 1 ≤ i ≤ m. In particular (Git(T
i(x)))t≥0 has the same set of cluster

points as (GN (T i(x)))N∈N for x in a set of full µ-measure.
To prove the above claim, one uses precisely the same arguments as we did in the

proof of Lemma 12. Namely one defines Ci(ρ) := CE[supt∈[0,ρ] ‖Git(T i(ξ)) − T i(ξ)‖2Yi ],
where ξ is sampled from µ and C > 0 is to be determined later. Then one uses the fact
that (Git(T

i(ξ)))t∈[0,1] is homogeneous variable of order ki taking values in the space
C([0, 1], Yi), by the discussion above. Finally one uses the associated tail bounds for such
homogeneous variables as given in Proposition 14, and concludes using the Borel-Cantelli
lemma.

2.3 Contraction principle for Strassen Laws

We derive a corollary that will be used in deriving Strassen’s Law for singular
semilinear SPDEs later. The following can be viewed as a sort of contraction principle
for Strassen’s law under continuous maps which may be nonlinear.
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Corollary 21. Let (X,H, µ) be an abstract Wiener space, and let T i : X → Yi be a chaos
of order ki for 1 ≤ i ≤ m, where m ∈ N. Let Z be a Banach space, and letM⊂ Y1×· · ·Ym
be a closed subset, such that for all δ > 0 one has

µ({x ∈ X : (δk1T 1(x), ..., δkmTm(x)) ∈M}) = 1. (2.13)

Let Φ :M→ Z be continuous. Then the compact set K := {(T 1
hom(h), ..., Tmhom(h)) : h ∈

B(H)} is necessarily contained inM, and moreover the set of cluster points at infinity
of the random set{

Φ
(
(2 log n)−k1/2T 1(Snx), . . . , (2 log n)−km/2Tm(Snx)

)
: n ∈ N

}
is almost surely equal to Φ(K).

Proof. Note that if (a1, ..., am) ∈ K then by Theorem 18 there exists a subset E ⊂ X

of full measure such that for each x ∈ E, the sequence
(
(2 log n)−k1/2T 1(Snx), . . . ,

(2 log n)−km/2Tm(Snx)
)

converges to (a1, ..., am) along some subsequence as n → ∞.
Since Sn are measure-preserving it holds by (2.13) that(

(2 log n)−k1/2T 1(Snx), . . . , (2 log n)−km/2Tm(Snx)
)
∈M

for a.e. x ∈ X. Consequently (a1, ..., am) is a limit point of the closed setM and thus
belongs toM. This implies that K is contained inM.

Now we prove that the limit set is necessarily Φ(K). The fact that any point z ∈ Φ(K)

is a limit point is due to the fact that Φ is continuous and any point of K is a limit point
of the sequence (

(2 log n)−k1/2T 1(Snx), . . . , (2 log n)−km/2Tm(Snx)
)

as n→∞ (see Theorem 18).
Now we need to prove that points outside of Φ(K) are not limit points. Suppose

z /∈ Φ(K). The latter set is closed so we may choose ε > 0 such that ‖z − b‖Z > ε

for all b ∈ Φ(K). Choose δ > 0 so that dist(Φ(a),Φ(K)) < ε whenever dist(a,K) < δ

(this δ exists by compactness of K). We choose points a1, ..., aN so that B(ai, ε) form
an open cover of Φ(K), then consider the open cover Ui := Φ−1(B(ai, ε)) of K, then let
U denote the union of the Ui, and take δ := minx∈K dist(x, U c) > 0). Letting an(x) :=(
(2 log n)−k1/2T 1(Snx), . . . , (2 log n)−km/2Tm(Snx)

)
, by Lemma 19 we know that for a.e

x ∈ X that dist(an(x),K) < δ for all but finitely many n and therefore z is not a limit
point of Φ(an(x)).

Corollary 22. Let (X,H, µ) be an abstract Wiener space, let (St)t≥0 be a family of Borel-
measurable a.e. linear maps from X → X which are measure-preserving and strongly
mixing, and let T i : X → Yi be homogeneous of degree ki for 1 ≤ i ≤ m. Suppose
that there exist strongly continuous semigroups (Git)t≥0 of operators from Yi → Yi for
1 ≤ i ≤ m with the property that

T i ◦ St = Git ◦ T i, µ-a.e. for all t ≥ 0.

Let Z be a Banach space, and letM⊂ Y1 × · · ·Ym be a closed subset, such that for all
δ > 0

µ({x ∈ X : (δk1T 1(x), ..., δkmTm(x)) ∈M}) = 1.

Let Φ :M→ Z be continuous. Then the compact set K := {(T 1
hom(h), ..., Tmhom(h)) : h ∈

B(H)} is necessarily contained inM, and moreover the set of cluster points at infinity of{
Φ
(
(2 log t)−k1/2G1

tT
1(x), . . . , (2 log t)−km/2Gmt T

m(x)
)

: t ∈ [0,∞)}

is almost surely equal to Φ(K).
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Proof. The argument is similar to the previous corollary but applying Theorem 20 rather
than Theorem 18.

Note that the previous two corollaries are the most general version of the Strassen’s
Law that we have stated so far (e.g. set Z = Y1 × · · ·Ym = M and let Φ be the
identity). Note also that Corollary 22 will be used in multiplicative form later (see
Theorem 3), not the additive form stated above. Even further generalizations will be
given in Theorems 26, 29, and 30 below.

3 Examples and applications to SPDEs

With the above results in place, we now move on to the main result of the paper.
Although we want to study the application of the above results to singular SPDEs such
as KPZ, we start with a series of simpler examples just to illustrate the methods.

3.1 First examples

The first two examples will be done with first-order chaos (in other words just a
Gaussian measure) so that only Proposition 2 is needed as opposed to the full generality
of Theorem 3. Then the final two examples will be done with higher chaos and contraction
by continuous maps. A few of these examples will concisely recover classical results.

Example 3.1 (Brownian and fractional Brownian motion). Consider the fractional Brow-
nian motion (BH(t))t∈[0,1] with Hurst parameter H ∈ (0, 1). Let F denote the space of
smooth real-valued functions on [0, 1] which vanish at 0. We can let X be the closure of
F in the Hölder space Cκ[0, 1] for κ ∈ (0, H). In fact, one may consider the closure of F
with respect to an even stronger norm

‖f‖X = sup
0<|t−s|<1/3

|f(x)− f(y)|
ϕ(|t− s|)

where ϕ may be any increasing function vanishing at 0 whose growth near 0 is strictly
larger than the modulus of continuity of BH (for instance ϕ(a) = aH(log(1/a))

1
2 +γ where

γ > 0). One may apply Theorems 2.52 and 8.27 in [Wea18] to see that the law of BH

is supported on the closure of smooth functions in such a norm (in fact, the closure
contains any function with a strictly better modulus of continuity than ϕ).

One defines the measure-preserving operator Rεf(t) := ε−Hf(εt). Since ϕ is increas-
ing we see that supε∈[e−1,1] supa∈(0,1/4] ε

−Hϕ(εa)/ϕ(a) ≤ eH < ∞, therefore Lemma 43
implies that (Rε) is strongly continuous on this Banach space. Now to prove the Strassen
law, we need to verify a strong mixing condition on the appropriate space. Since this
mixing condition is the crucial input needed to yield the Strassen law, and since one of
the main contributions of this work is to reduce the proof of the Strassen law to this
deterministic mixing calculation, we give several different proofs of the mixing condition.

1. A result of [DU99, (6)] shows that the Cameron-Martin space H of BH consists
of functions of the form h(t) =

∫ t
0
KH(t, s)`(s)ds for some ` ∈ L2[0, 1], with the

isometric identity ‖h‖H = ‖`‖L2 , where KH is an explicit kernel that satisfies
KH(εt, εs) = εH−

1
2KH(t, s). Consequently one has ‖Rεh‖H = ‖R̃ε`‖L2[0,1] → 0 as

ε→ 0, where R̃ε`(t) = ε1/2`(εt).

2. Again using [DU99, (6)], one may write BH(t) =
∫ t

0
KH(s, t)dB

1
2 (s) for a standard

Brownian motion B
1
2 on [0, 1]. If we let X̃ := C[0, 1], H̃ = H1

0 [0, 1] and µ the law
on X of C[0, 1], then we may then view BH as an X-valued chaos of order 1 over
(X̃, H̃, µ). More precisely we have BH = ψ(B1/2) where ψ(B) =

∫ •
0
KH(s, •)dB(s).

Note that ψhom(`) =
∫ •

0
KH(s, •)`(s)ds for ` ∈ L2[0, 1]. Moreover, we clearly have
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the relation Rεψ = ψR̃ε where R̃ε is the same semigroup on L2[0, 1] as in the proof
(1) above. Thus we may conclude the Strassen law from Theorem 3. While this
perspective is equivalent to the proof used in (1) just above, the paradigm will be
more useful when we deal with higher chaos.

This concludes the proof for the Strassen law of BH on the unit interval [0, 1]. Rather
than considering the Strassen law for BH restricted to the unit interval, we can instead
consider it on the full real line R as well. Indeed, the Banach space X := {f ∈ C[0,∞) :

limt→∞
|f(t)|
t = 0} with norm given by supt≥0

|f(t)|
1+t is a separable Banach space which

supports BH (for all time, not just the unit interval) almost surely. Alternatively one can
also use Holder spaces X with suitable weight functions.

In this full-line setting, we can give alternative and more self-contained proofs of
the calculation of the Cameron-Martin space and the mixing property of the operators
Rεf(t) = ε−Hf(εt). In fact we will do this in a self-contained manner without using
[DU99], instead using results from Appendix B. Letting C(s, t) := |t|2H + |s|2H − |t− s|2H ,
we can define a bounded operator on L2(R) by Qf(t) = 1

2

∫
R
C(s, t)f(s)ds. In the sense

of tempered distributions, the Fourier transform of a(t) = |t|2H is given by (the finite
part of) â(ξ) = cH |ξ|−2H−1 for some universal cH > 0 (this is immediate from a scaling
argument, or see e.g. [Erd54, Kam00]). This implies that if φ ∈ C∞c (R), then

(Qφ′, φ′)L2(R) = −1

2

∫
R

∫
R

|t− s|2Hφ′(s)φ′(t)dsdt =
cH
2

∫
R

|φ̂(ξ)|2|ξ|1−2Hdξ, (3.1)

where φ′ is the usual derivative, and the last equality can be deduced using Plancherel’s
identity and the convolution-to-multiplication property of the Fourier transform. Since
|ξ|1−2H has polynomial growth or decay at infinity, this identity is enough to show that the
completion of L2(R) with respect to the norm (Qφ, φ)1/2 is contained in the space S ′(R)

of tempered distributions. Using Lemma 42 in Appendix B, we see that the image of Q1/2

contains S(R) and, regardless of the choice of norm on the larger space X, the Cameron-
Martin space of BH is given by the completion of S(R) under ‖φ‖H = ‖Q−1/2φ‖L2 . Now
to verify the mixing condition, note that if f, g are any smooth functions such that f ′, g′

have compact support, then

〈Rεf, g〉H = (ε ·Rε(f ′),Q−1
derg

′)L2(R) =
2

cH

∫
R

|ξ|2H−1ε−H−1 · iξf̂(ε−1ξ) · iξĝ(ξ)dξ, (3.2)

where Qder := − d
dtQ

d
dt whose Fourier symbol is cH

2 |ξ|
1−2H by (3.1). Note that by setting

ε = 1, this shows that 〈f, g〉H = 2
cH

∫
R
|ξ|2H+1f̂(ξ)ĝ(ξ)dξ.

Using the fact that ε−1f̂(ε−1ξ) is an approximate delta function, the right side of (3.2)
can be bounded above by Cε−1−H · ε · ε2H+1 = Cε1+H where C may depend on f, g but not
on ε ∈ (0, 1]. We may now use Lemma 44, noting that such f, g (as specified before (3.2))
are dense in S(R). Then Strassen’s law for (log log(1/ε))−1/2RεB

H thus follows from the
multiplicative form of Proposition 2. This concludes the alternative direct proof of the
Strassen’s law (on the full line).

We remark that this full-line proof generalizes to yield Strassen’s law for the multipa-
rameter fractional Brownian sheet studied in [LWC04], in every Hölder space. Rather
than considering the small-time version of Strassen’s law for fractional Brownian motion,
we can also directly prove the large-time version on the full real line. Indeed one similarly
checks that the family of operators R̃εf(x) = εHf(ε−1x) is strongly mixing with respect
to this norm, using the result of Lemma 44. Consequently one obtains the Strassen’s
Law for εHB(ε−1t)/

√
2 log log(1/ε) with respect to the norm of X.

Example 3.2. Consider the stochastic heat equation

∂th(t, x) = ∂2
xh(t, x) + ξ(t, x), h(0, x) = 0, t ≥ 0, x ∈ Rd, (3.3)
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where ξ is a Gaussian space-time white noise on [0,∞)×R. The solution is defined by
h = K ∗ ξ, where K(t, x) = 1√

2πt
e−x

2/2t1{t≥0}, where ∗ denotes convolution in both space
and time, and the convolution may be interpreted as a stochastic integral against ξ.

In the notation of Appendix B, let U = (0,∞)×Rd and we define the Frechet space
F(U) to be the set of all smooth functions of rapid decay on [0,∞) × Rd such that
f(0, x) = 0 for all x ∈ R. For d = 1 one may show that the solution h is supported on
the space X given by the completion of F(U) with respect to ‖φ‖X := supt,x

φ(t,x)
1+t+|x| . For

d > 1 the equation cannot be realized as a continuous function, thus one has to use a
space of generalized functions for X. An example would be the closure of Schwartz
functions in a weighted parabolic Besov-Hölder space of negative exponent α := 1

2−
d
2−κ

where κ > 0 is arbitrary. More specifically, one takes the closure of F(U) under

‖φ‖X := sup
‖ψ‖Cr≤1

sup
λ∈(0,1],(t,x)∈[0,∞)×R

λ−α|(φ, ψλt,x)|
w(t, x)

, (3.4)

where r = −bαc, ψλt,x(s, y) = λ−d−2φ(λ−2(t− s), λ−1(x− y)). Here w(t, x) may be taken
to be (1 + t+ |x|)σ for sufficiently large σ > 0. See [MW17, Section 5 – Lemma 9] for a
proof of these support statements.

If we define Rεh(x) = ε
d
2−1h(ε2t, εx) (to be interpreted by integration against a test

function if X consists of a space of distributions), then one verifies that Rε sends X
boundedly to itself and satisfies all of the conditions of Lemma 43 for either choice of
norm above. Next we need to verify the mixing condition on an appropriate space. Again
we give two separate paradigms for doing this.

1. Using e.g. Lemma 41 and Remark 42, one verifies that the solution of the equation
has Cameron-Martin space given by the completion of F(U) with respect to the
norm ‖h‖H := ‖∂th − ∂2

xh‖L2([0,∞)×Rd). Indeed, note that E[(h, φ)(h, ψ)] = 〈φ,K ∗
Ks ∗ψ〉L2([0,∞)×R) where Ks(t, x) = 1√

2π|t|
e−x

2/2|t|1{t≤0}. Since K ∗Ks is the kernel

for the inverse operator of (∂t−∂2
x)(∂t+∂2

x), the claim is immediate from Lemma 42.
Consequently by Proposition 2 (and the discussion afterwards) one finds that the
set {(log log(1/ε))−1/2Rεh}ε∈(0,1] is precompact and that its set of cluster points in
X as ε→ 0 equals the closed unit ball of H.

2. Rather than viewing h as an intrinsic object we can view it as a chaos of order 1
over ξ, specifically h = ψ(ξ) := K ∗ ξ so that ψhom(h) = K ∗ h. We may view ξ as
taking values in the Banach space X̃ given (for example) by the closure of F(U)

under the norm ‖K ∗ f‖X . If we define R̃εf(t, x) := ε3/2f(ε2t, εx) then one uses
Lemma 43 to verify the mixing condition required of R̃ε (considering functions with
compact support contained in U ). Furthermore one has the relation Rεψ = ψR̃ε,
thanks to the scaling property of the heat kernel. Thus one applies Theorem 3 to
obtain the Strassen law.

This concludes the examples with first-order chaos, and now we move on to examples
with higher chaos. Henceforth we shall not verify the calculation of the Cameron-Martin
norm and the mixing condition as explicitly as we have done above, as it should be
understood that this may be done similarly to above, using e.g. results from Appendix B.

Example 3.3. We give a simple example in the second chaos. Let X = C([0, 1],R2),
take µ to be the law on X of 2d standard Brownian motion, which has Cameron-Martin
space H = {(f1, f2) ∈ X :

∫ 1

0
(f ′1(t)2 + f ′2(t)2)dt < ∞}. Let Y = C[0, 1] and consider the

(discontinuous) map ψ : X → Y

ψ(B1, B2) =

∫ •
0

B1(t)dB2(t).
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It is known that ψ is a homogeneous chaos of order two, see e.g. [Nua06, Chapter 1].
For f ∈ Y and (f1, f2) ∈ X let us define

Qεf(t) := ε−1f(εt),

Rε(f1, f2)(t) := (ε−1/2f1(εt), ε−1/2f2(εt)).

Then it is clear that ψ ◦ Rε = Qε ◦ ψ a.s., and thus one can obtain the Strassen law (as
ε→ 0) for the family of processes{(

(2ε log log(1/ε))−1

∫ εt

0

B1(s)dB2(s)

)
t∈[0,1]

}
0<ε<1/e

.

The compact limit set is checked to be {
∫ •

0
f1(s)f ′2(s)ds :

∫ 1

0
f ′1(s)2 +f ′2(s)2 ≤ 1}. Note that

one may strengthen the topology of Y to the closure of smooth functions with respect
to the Hölder norm of any exponent less than 1/2. See e.g. [FH20, Proposition 3.4] to
see that the path has this Hölder regularity, and note that Lemma 41 ensures that the
compact limit set remains unchanged by changing the Banach spaces X and Y chosen
to contain (B1, B2) or ψ(B1, B2) respectively.

Note that there is no additional difficulty in carrying out this same procedure for
k-fold iterated integrals for any k ∈ N, which recovers and generalizes [MO86].

Example 3.4. Consider a standard space-time white noise ξ on [0,∞)×R and consider
a k-fold stochastic integral of the form

F (t, x) :=

∫
t1<...<tk

∫
Rk

k∏
j=1

pti−ti−1
(xi − xi−1)ξ(dtk, dxk) · · · ξ(dt1, dx1), (3.5)

where t0 = t, x0 = x, and pt(x) = (2πt)−1/2e−x
2/2t is the standard heat kernel. Such an

expression appears when considering chaos expansions for the Hopf-Cole transform of
the KPZ equation, see e.g. [Wal86]. If we consider ψ(ξ) = F as a homogeneous chaos of
order k [Nua06, Chapter 1], then it turns out [Wal86] that ψ can take values in the space
Cα given by the closure of smooth functions in the Banach space of Hölder continuous
functions on B := [0, 1]× [−1, 1] (for instance), with norm

‖h‖Cα := sup
(t,x)∈B

|h(t, x)|+ sup
(t,x)6=(t′,x)∈B

|h(t, x)− h(t′, x′)|
|t− t′|α/2 + |x− x′|α

.

Furthermore, if one defines (Rεξ)(t, x) := ε3/2ξ(ε2t, εx), then by using the identity
cpc2t(cx) = pt(x) for c > 0, one verifies that ψRε = Qεψ where QεF (t, x) = ε−k/2F (ε2t, εx).
Consequently, with F given by (3.5), the set of limit points of {(log log(1/ε))−k/2ε−k/2

F (ε2t, εx)} is equal to the compact set of functions in Cα which are of the form∫
t1<...<tk

∫
Rk

k∏
j=1

pti−ti−1(xi − xi−1)f(tk, xk) · · · f(t1, x1)dxk · · · dx1dtk · · · dt1,

where ‖f‖L2([0,∞)×R) ≤ 1.

Example 3.5. Let b : Rd → Rd be smooth and globally Lipchitz, and let σ : Rd → Rd×d

be smooth and globally Lipchitz. Let B = (Bt)t≥0 be a standard Brownian motion. For
δ > 0 we consider the Itô SDE in Rd given by

dXδ = b(Xδ)dt+ δ · σ(Xδ)dB, (3.6)

with Xδ(0) = 0. Then a unique solution exists which is adapted to the filtration of
B [RY99, Chapter XI]. It is known for d ≥ 2 that the measurable map B 7→ Xδ is
discontinuous in general.
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However we can factor it into a continuous map and a second-order chaos as follows.
We fix α ∈ (1/3, 1/2). We let Cα([0, 1],Rd) be the closure of smooth paths with respect to
the α-Hölder norm on paths [0, 1] → Rd, and we let Cα([0, 1]2,Rd ⊗Rd) be the Banach
space consisting of those functions (s, t) 7→ Fs,t ∈ Rd ⊗Rd which lie in the closure of the
set of smooth functions vanishing along the diagonal, with respect to the norm given by

sup
s6=t

|Fs,t|
|t− s|2α

,

where |·| can be any norm onRd⊗Rd. We then letM⊂ Cα([0, 1],Rd)×Cα([0, 1]2,Rd⊗Rd)
be the space of rough paths in the sense of [FH20, Definition 2.1], that is all those pairs
(F,F) ∈ Cα([0, 1],Rd)× Cα([0, 1]2,Rd ⊗Rd) satisfying

Fs,t = Fs,u + Fu,t + (Fu − Fs)⊗ (Fs − Ft), 0 ≤ s, t, u ≤ 1.

Then there exists a continuous map Φ :M→ C([0, 1],Rd) such that the solution of (3.6)
is given by

Xδ = Φ

(
δB, δ2

∫ −
•

(Br −B•)⊗ dBr
)
, (3.7)

for all δ > 0, where explicitly the latter stochastic integral should be understood as(∫ −
•

(Br −B•)⊗ dBr
)
s,t

:=

d∑
i,j=1

(∫ t

s

(Bir −Bis)dBjr
)
ei ⊗ ej

where {ei} is the standard basis of Rd. The fact that this second-order chaos is a.e.
defined (albeit discontinuous as a function of B) and takes values in the Banach space
Cα([0, 1]2,Rd ⊗Rd) for α ∈ (1/3, 1/2) is proved in [FH20, Proposition 3.4]. This map Φ is
called the Itô-Lyons map and its construction and structural properties are described in
great detail in [FH20, Chapters 8 and 9]. More specifically, the continuity of Φ is proved
as [FH20, Theorem 8.5] and the identity (3.7) is proved as [FH20, Theorem 9.1].

Now let us formulate a version of Strassen’s law for this SDE. If we let Rεf :

Cα([0, 1],Rd)→ Cα([0, 1],Rd) by Rεf(t) = ε−1f(ε2t) then we can consider the sequence
Xε of Itô solutions to

dXε = b(Xε)dt+ (log log(1/ε))−1/2σ(Xε)d
(
RεB

)
.

Moreover, we have the second-order chaos ψ : Cα([0, 1],Rd)→ Cα([0, 1]2,Rd ⊗Rd) given
by

ψ(B) =

∫ −
•

(Br −B•)⊗ dBr.

We can then define Q1
ε := Rε : Cα([0, 1],Rd)→ Cα([0, 1],Rd) and we can also define Q2

ε :

Cα([0, 1]2,Rd ⊗Rd) → Cα([0, 1],Rd ⊗Rd) by Q2
εg(s, t) = ε−2g(ε2s, ε2t), then one verifies

that the commutation assumption of Theorem 3 holds, namely that (RεB,ψ(RεB)) =

(Q1
εB,Q

2
εψ(B)). The Qi are checked to be strongly continuous using e.g. Lemma 43. We

already remarked in an earlier example that Rε is strongly mixing, so by continuity of
the map Φ, we may then apply Theorem 3, as well as the result of Example 3.3 to obtain
that the set of limit points of C([0, 1],Rd) of {Xε}ε∈(0,1] as ε→ 0 is equal to the compact
set K of functions of the form

Φ

(
f,

∫ −
•

(f(r)− f(•))⊗ f ′(r)dr
)
,
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as f ranges throughout the closed unit ball of the Cameron-Martin space of B, namely
{f ∈ C([0, 1],Rd) :

∫ 1

0
‖f ′(s)‖2Euds ≤ 1}, where ‖x‖Eu denotes the Euclidean norm of

x ∈ Rd. As above (•,−) denotes the argument of a general two-variable function here.
Now when f is a smooth function from [0, 1]→ Rd, then the last expression inside of

Φ is a smooth geometric rough path, and the Itô-Lyons map Φ acts on such a path by
sending it to the solution of the classical ODE ẋ = b(x) + σ(x)f as explained in [FH20,
Remark 8.4]. We may then conclude that the compact limit set K of {Xε} is equal to the
closure in C([0, 1],Rd) of the set of functions x where x(0) = 0 and ẋ = b(x) + σ(x)f for
some smooth path f ∈ C([0, 1],Rd) such that

∫ 1

0
‖f ′(s)‖2Eu ≤ 1.

3.2 Strassen law for the KPZ equation

In this subsection we prove Theorem 4. Although we focus on KPZ, the method
described here is general and may apply to any SPDE whose solution map can be
factored into a finite number of chaoses and a continuous part

ξ 7→ (ψ1(ξ), ..., ψm(ξ))
continuous7→ solution of SPDE,

which is always the case when using the theory of regularity structures as we do
here. The only caveat is that it is difficult to come up with interesting examples of
semigroups satisfying the mixing conditions unless the solution (in addition to admitting
a factorization as above) is globally well-posed on the full space Rd, for which KPZ
(or rather its Hopf-Cole transform) seems to be the only example [HL18, PR19]. For
example, in [MW17] the Φ4

2 equation is shown to be globally well-posed on R2 but it
lacks the explicit construction of a continuous part of the solution map on the full space,
which is needed to be able to formulate a Strassen law for Φ4

2 in our context.
Let ξ be a standard space-time white noise on [0,∞) × R and define the following

distribution-valued chaoses for z ∈ [0,∞)×R:

Πξ
zΞ(ψ) :=

∫
[0,∞)×R

ψ(w)ξ(dw),

Πξ
z

[
ΞI[Ξ]

]
(ψ) :=

∫
([0,∞)×R)2

ψ(w)(K(w − a)−K(z − a))ξ(da)ξ(dw),

Πξ
z

[
ΞI[ΞI[Ξ]]

]
(ψ) :=

∫
([0,∞)×R)3

ψ(w)(K(w − a)−K(z − a))

· (K(a− b)−K(z − b))ξ(db)ξ(da)ξ(dw),

Πξ
z

[
ΞI[ΞI[ΞI[Ξ]]]

]
(ψ) :=

∫
([0,∞)×R)4

ψ(w)(K(w − a)−K(z − a))(K(a− b)−K(z − b))

·
(
K(b− c)−K(z − c)− (tz − tc)∂tK(z − c)
− (xz − xc)∂xK(z − c)

)
ξ(dc)ξ(db)ξ(da)ξ(dw),

Πξ
z

[
ΞI[X1Ξ]

]
(ψ) :=

∫
([0,∞)×R)2

ψ(w)K(w − a)(xz − xa)ξ(da)ξ(dw)

where z = (tz, xz), a = (ta, xa), b = (tb, xb), and c = (tc, xc) ∈ [0,∞) × R. We refer to
e.g. [CW15, Appendix A] for a definition of the iterated stochastic integrals against
space-time white noise on the full space. The requirement for these stochastic integrals
to exist is that the integrands are L2 functions jointly in all of the integration variables,
which may be checked using the decay properties of the heat kernel. The usage of the
abstract symbols on the left side will be explained shortly, but for now one should simply
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take the stochastic integrals on the right side as the definition of the objects on the left
side, which are indexed by ψ and z. For

τ ∈ W := {Ξ,ΞI[Ξ],ΞI[ΞI[Ξ]],ΞI[ΞI[ΞI[Ξ]]],ΞI[X1Ξ]}, (3.8)

we define the order |τ | to be −3/2− κ,−1− 2κ,−1/2− 3κ,−4κ,−2κ respectively, where
κ ∈ (0, 1/8) is arbitrary but fixed.

Now we want to find a Banach space for the above chaoses to be supported. To do
this we follow a method used by [HW15, Section 4]. Clearly each Πξ

zτ is linear in ψ

as a map from L2([0,∞) × R) → L2(Ω,F , P ) where the latter denotes the underlying
probability space of the noise ξ. Thus one can expect to be supported on a space of
distributions in space-time. In fact we will do this jointly in the (z, ψ) coordinates, so
that the Πξ are viewed as a generalized function of two space-time coordinates (z, z′).

Definition 23. Fix a time horizon T > 0 and set ΛT := [0, T ]×R. We thus identify ΛT as
our space-time, so that the space Λ2

T = ΛT × ΛT consists of pairs of space-time points
(z, z′). For j = 1, 2 we say that a function ΛjT → R is Schwartz if it is the restriction to ΛjT
of some Schwartz function from R2j → R. Given a Schwartz function Π : Λ2

T → R and
α < 0 one may define a norm

‖Π‖ := sup
λ∈(0,1]

sup
ϕ∈Br

sup
z∈ΛT

w(z)−1λ−α
∫

ΛT

Π(z, z′)Sλz ϕ(z′)dz′,

where if z = (s, y) and z′ = (t, x) then Sλz ϕ(z′) = λ−3ϕ(λ−2(t− s), λ−1(x− y)), where w is
a weight function, and where Br is the set of smooth functions R2 → R supported on the
closed unit ball with Cr norm less than 1 where r := −bαc. One may then define Eαw to
be the closure of Schwartz functions Π under this norm (thus Eαw implicitly depends on
the time horizon T which we have chosen).

Note that if Π ∈ Eαw, then for all z ∈ ΛT we can sensibly define Π(z, ·) as a tempered
distribution supported on ΛT . This will be important for Theorem 24 Item (3) below.

It turns out that the above symbols Πξτ defined above are supported in the spaces
E
|τ |
w for the appropriate choice of w (see Theorem 24 just below). Assuming this fact,

let us now define the appropriate semigroups on the spaces Eτ . The semigroup acting
on the noise is Rεf(t, x) = ε3/2f(ε2t, εx). For τ ∈ W, define the E|τ |w -valued homogeneous
chaos ψτ (ξ) := Πξτ as given above. Then by using the fact that each of the functions
K(t, x), t · ∂tK(t, x), x · ∂xK(t, x) are invariant under the scaling f(t, x) → cf(c2t, cx)

for c > 0, one checks that the following five semigroups Qτ on Eτw will satisfy the
commutation relation Qτε ◦ ψτ = ψτ ◦Rε (ε ∈ (0, 1]) which is needed to apply Theorem 3:

QΞ
ε f(t, x, s, y) = ε3/2f(ε2t, εx, ε2s, εy),

QΞI[Ξ]
ε f(t, x, s, y) = εf(ε2t, εx, ε2s, εy),

QΞI[ΞI[Ξ]]
ε f(t, x, s, y) = ε1/2f(ε2t, εx, ε2s, εy),

QΞI[ΞI[ΞI[Ξ]]]
ε f(t, x, s, y) = f(ε2t, εx, ε2s, εy),

QΞI[X1Ξ]
ε f(t, x, s, y) = f(ε2t, εx, ε2s, εy)

where the (t, x) stands for the z variable and the (s, y) stands for the w variable in
the integrals above (note that the f appearing here will be distributional in the latter
variable and thus, as usual, the rescaling of coordinates needs to be interpreted by
integrating against test functions). In other words one simply has Qτε f(t, x, s, y) =

ε−|τ |0f(ε2t, εx, ε2s, εy) where |τ |0 denotes the order of τ without the κ term.
We henceforth fix S, Y > 0 and α ∈ (0, 1/2 − 4κ) where κ is the same as specified

after (3.8). We will let CαS,Y denote the closure of smooth functions in the Banach space
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of Hölder continuous functions on B := [0, S]× [−Y, Y ], whose norm is given by

‖h‖CαS,Y := sup
(t,x)∈B

|h(t, x)|+ sup
(t,x) 6=(t′,x)∈B

|h(t, x)− h(t′, x′)|
|t− t′|α/2 + |x− x′|α

. (3.9)

We will now prove Theorem 4. The main idea is to first note that in the notation of that
theorem, we see that the function h̃(t, x) := C−1

ε ε−1/2hε(ε2t, εx) is the Hopf-Cole solution
of

∂th̃(t, x) = ∂2
xh̃(t, x) + (∂xh̃(t, x))2 + (log log(1/ε))−1/2(Rεξ)(t, x),

where Rε is the measure-preserving operation defined above. Therefore when combined
with Theorem 3, the following result clearly implies Theorem 4. Its proof is based entirely
on the extensive framework and estimates developed in [HP15, HL18]. Moreover, taking
the logarithm poses no issue since we are working on a compact domain and the solution
is strictly positive.

Theorem 24 ([HL18, HP15]). The following hold true.

1. The above symbols Πξτ defined above are supported in the spaces E|τ |w for the
appropriate choice of weight w. Furthermore the semigroups Qτ as defined above
are strongly continuous on the spaces E|τ |w .

2. For all δ > 0 replace ξ by δξ in the above stochastic integrals defining Πξτ , and
denote the resulting 5-tuple of objects as (Πδξτ)τ∈W . There exists a (nonlinear)

closed subset X of
⊕

τ∈W E
|τ |
w with the property that for all δ > 0 the 5-tuple

(Πδξτ)τ∈W is supported on X , and moreover there exists a deterministic continuous
map Φ : X → Cαs,y such that Φ sends (Πδξτ)τ∈W to the Itô solution of the SPDE
given by ∂tz = ∂2

xz + δzξ, with initial data z(0, x) = 1.

3. For τ ∈ W, define the E|τ |w -valued homogeneous chaos ψτ (ξ) := Πξτ as above. Let
(ψτ )hom(z; f) be defined as (ψτ )hom(f) evaluated at z ∈ ΛT in the first coordinate.
Then for all space-time Schwartz functions f , the function (ψτ )hom(z; f) is given by
the expression for Πξ

zτ but with ξ(dw), ξ(da), ξ(db), ξ(dc) respectively replaced by
f(w)dw, f(a)da, f(b)db, f(c)dc (so these are now classical integrals, not stochastic
integrals as above).

4. For all space-time Schwartz functions f on ΛT , the map Φ sends
(
(ψτ )hom(f)

)
τ∈W

to the classical solution of the deterministic equation ∂tz = ∂2
xz + zf , with initial

data z(0, x) = 1.

Proof. (1) Let w(t, x) = ea(1+|x|) where a > 0 is arbitrary. The fact that the symbols Πξτ

are supported on E|τ |w follows from [HL18, Theorem 5.3] by taking p =∞, see Remark
2.7 there (note that since our initial data is zero which is a smooth function, we do
not even need to consider finite p in their results, which is done only for the sake of
considering singular initial data). The fact that the operator semigroups Qτ are strongly
continuous on these spaces is follows from Lemma 43.

(2) One defines the regularity structure (T,A,G) where T is the graded vector space
generated by the list of twelve symbols in [HL18, Figure 1], and A is the respective list
of homogeneities. Note that the list of symbols is precisely those symbols τ appearing in
W as defined in (3.8) plus symbols of the form Iτ with τ ∈ W as well as ΞXi and I(ΞXi).
The group G will be described later.

We are going to let X denote the space of those functions Π ∈
⊕

τ∈W E
|τ |
w which

extend to admissible models in the sense of [HL18, Definition 2.2] (such Π are also called
“minimal models” in [HW15]). For any map Π satisfying the requirements [HL18, (2.2)
and (2.5)] of an admissible model, there is a way to define a corresponding family of
invertible transformations Γxy of T such that one has the relations ΠxΓxy = Πy and
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ΓxyΓyz = Γxz for all x, y, z ∈ ΛT , as well as [HL18, (2.3)]. The first condition and the fact
that ΠxX

k(z) = (z − x)k forces Γxy to act on elements I[τ ] by the formula

ΓxyI[τ ] = I[τ ] +
∑

|k|s≤|τ |+2

Xk

k!

∫
Rd+1

(
∂kK(y − a)− ∂kK(x− a)

)
(Πxτ)(da)

+
∑

|k|s≤|τ |+2

(X + y − x)k −Xk

k!

∫
Rd+1

∂kK(y − a)(Πxτ)(da),

where the sum is over multi-indices k = (k1, k2) and |k|s = 2k1+k2. Furthermore it is clear
that ΓxyΞ = Ξ. Finally one has Γxy(ΞXkI[τ ]) = ΞXkΓxyI[τ ] and ΓxyX

k = (X + y − x)k.
The structure group G may then be described as the group of all Γx,z as x, z range
throughout ΛT .

Since the five symbols Πδξτ (τ ∈ W) may be checked to verify [HL18, (2.2) and (2.5)]
for all τ ∈ W, and since Πτ for τ /∈ W may be obtained uniquely and continuously as
a function of these five symbols by the same rules [HL18, (2.2) and (2.5)], we then
conclude that those five symbols indeed constitute an element of X . Now the existence
and local Lipchitz continuity of the solution map Φ is done in [HL18, Theorem 5.2], and
the fact that Φ sends (Πδξτ)τ∈W to the Itô solution of the SPDE given by ∂tz = ∂2

xz + δzξ,
with initial data z(0, x) = 1, is stated in [HL18, Theorem 1.1] (the proof is not given there
but rather it is stated that the proof is nearly identical to [HP15, Theorem 6.2] which is
done in a compact setting).

(3) Suppose (X,H, µ) is any abstract Wiener space, Y is another Banach space.
Suppose that ψ : X → Y is any “simple” Gaussian chaos of order k given by x 7→
(Hk ◦ g)(x)y where y ∈ Y is fixed, g ∈ X∗ is fixed, and Hk denotes the kth Hermite
polynomial. Then one may check using (2.6) that ψhom(h) = g(h)ky. Since “hom” is an
additive operation and since any chaos of order k can be approximated by finite linear
combinations of simple chaoses of order k (Lemma 15), the claim then follows from
Lemma 16 since the space-time white noise ξ (when viewed as an element of the space
E
|Ξ|
w ) has Cameron-Martin space given by L2([0, T ]×R), see e.g. Lemma 41.

(4) We note that the 5-tuple
(
(ψτ )hom(·; f)

)
τ∈W extends to a canonical model in the

sense of [HL18, Remark 2.3]. This precisely means that [HL18, (5.3)] is satisfied except
that cε and c(1)

ε are both replaced by 0. Then following through that proof immediately
gives the claim.

4 Further generalizations

Although Theorem 3 is fairly general and widely applicable, there are interesting
examples where it does not apply. Here we study such examples, giving further gerenal-
izations such as Theorems 29 and 30 below.

4.1 Noise-smoothing and non-measure-preserving systems

In this section we will further generalize the results of the previous sections. This will
culminate in Theorems 26 and 29, with a specific SPDE example given in Theorem 28.

One may want to consider proving Strassen’s law for a family of processes that is
being diffusively scaled while being simultaneously approximated by mollified noise,
similar to what was done in [HW15]. Specifically consider δ = δ(ε) and look at the family
of processes hε defined with smooth noises at scale δ(ε), i.e., letting L2 := log log we
want to consider the “smooth KPZ equation”

∂th
ε = ∂2

xh
ε + ((∂xh

ε)2 − Cδ(ε)/ε) + (L2(1/ε))−1/2ε3/2ξδ(ε)(ε
2t, εx),
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where ξδ = ξ ∗ ϕδ where ∗ is space-time convolution and ϕδ(t, x) = δ−3ϕ(δ−2t, δ−1x) for
a smooth nonnegative compactly supported function ϕ : R2 → R which integrates to 1.
For an appropriate choice of divergent constants Cε, the goal is to try to find the set
of limit points of the sequence of functions given by hε(ε2t, εx), and in particular show
that the compact limit set is the same as in Theorem 4. The main result of this section
will be rather intuitive: the limit points in Cαs,y coincide with those found previously if
δ(ε) = ε1+u for some u > 0, they depend on the mollifier if δ(ε) = ε, and it is a trivial set
consisting of a one-dimensional family of functions if δ(ε) = ε1−u. To prove this, we need
some preliminaries.

Definition 25. Consider a strongly continuous (multiplicative) semigroup (Rε)ε∈(0,1]

on a Banach space X. Writing St := Re−t note that ‖St+s‖ ≤ ‖St‖‖Ss‖, by Fekete’s
subadditive lemma we know that the following quantity exists as a real number

β(R) := lim
t→∞

t−1 log ‖St‖ = inf
t>0

t−1 log ‖St‖.

In other words, ‖Rε‖X→X ≤ ε−β(R)−oε(1), and β(R) is the optimal such exponent (here
oε(1) is some non-negative function of ε ∈ (0, 1] which tends to zero as ε → 0). Now
to illustrate our results, we will consider a simpler setting first. Suppose we have a
Gaussian measure µ on X such that Rε is measure-preserving and satisfies the strong
mixing condition on the Cameron-Martin space H. Suppose we are given a family of
bounded linear operators Aε on X (where (x, ε) 7→ Aε(x) is Borel-measurable, but Aε is
not necessarily a semigroup). Suppose that there exists a Banach space Y and constants
C, γ > 0 such that

1. Y embeds continuously into X.

2. µ(Y ) = 1.

3. ‖Aεy − y‖X ≤ Cεβ(R)+γ for all y with ‖y‖Y ≤ 1.

Then we have the bounds ‖RεAεx−Rεx‖X ≤ ‖Rε‖‖Aεx−x‖ ≤ ε−β(R)−oε(1)‖Aεx−x‖. Now
for all x in a set of full measure (namely x ∈ Y ) we can bound ‖Aεx−x‖ ≤ C‖x‖Y εβ(R)+γ .
Consequently,

‖RεAεx−Rεx‖X ≤ Cεγ−oε(1)‖x‖Y ,

and thus as long as x ∈ Y (which is almost every x) then the set of limit points of
(log log(1/ε))−1/2RεAεx coincides with those of (log log(1/ε))−1/2Rεx, namely B(H).

This gives the seemingly obvious fact that the Strassen’s law still holds as long as we
mollify fast enough relative to the rescaling operation (Rε). Consider the simple example
of two-sided Brownian motion for instance, say Wiener measure on X = C[−1, 1]. Let
Aεf(x) = f ∗φε where φ is a smooth even mollifier and φε(x) = ε−1φ(ε−1x) (by convention
we let Aεf be constant on each of [−1,−1 + ε] and [1 − ε, 1]). Let Rεf(x) = ε−u/2f(εux)

where u > 0, so that β(R) = u/2. If u < 1 then we may define Y to be the closure of
smooth functions with respect to the Hölder norm of exponent (u+1)/4 and we know that
this space supports Wiener measure almost surely. Moreover an easy computation shows
that ‖y ∗ φε − y‖C[−1,1] ≤ Cε(u+1)/4 as long as ‖y‖Y ≤ 1 (where C =

∫
R
φ(v)|v|(u+1)/4dv).

Consequently by the discussion in the previous paragraph, one obtains the same Strassen
law as Brownian motion for the family RεAε on C[−1, 1]. On the other hand if u = 1 then
the limit points will be the mollifier-dependent compact set {φ∗f : f(0) = 0, ‖f ′‖L2[−1,1] ≤
1}, since one has that RεAεf = φ ∗Rεf in this case. Thus we find that u < 1 is necessary
to obtain a nontrivial limit set that coincides with the non-mollified case. For u > 1 the
smoothing dominates the rescaling, so one obtains a trivial limit set consisting only of
constant functions of absolute value bounded above by 1, as may be checked by hand.

We thus formulate the following abstract result:
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Theorem 26. Let (X,H, µ) be an abstract Wiener space, let (Rε)ε∈(0,1] be a family of
Borel-measurable a.e. linear maps from X → X which are measure-preserving and
strongly mixing, and let T i : X → Yi be homogeneous of degree ki for 1 ≤ i ≤ m.
Suppose that there exist strongly continuous semigroups (Qiε)t≥0 operators from Yi → Yi
for 1 ≤ i ≤ m with the property that T i ◦ Rε = Qiε ◦ T i, µ-a.e. for all ε ∈ (0, 1]. Suppose
that J iε : X → Yi is a family of measurable maps such that at least one of the following
two conditions holds

1. There exist γ > 0 and measurable functions Ci : X → [0,∞) such that ‖J iε(x) −
T i(x)‖Yi ≤ Ci(x)εβ(Qi)+γ for all ε ∈ (0, 1].

2. Letting J i0 := T i, assume that J iε is a homogeneous chaos of order ki ∈ N and
there exist C, γ > 0 such that

∫
X
‖J iε(x)− J iε′(x)‖Yi µ(dx) ≤ C|ε− ε′|β(Qi)+γ , for all

ε, ε′ ∈ [0, 1].

LetM⊂ Y1× · · ·Ym be a closed subset, such that the semigroup Q1
ε ⊕ · · · ⊕Qmε sendsM

to itself, and moreover for all δ, ε > 0 assume that µ({x ∈ X : (δk1J1
ε (x), ..., δkmJmε (x)) ∈

M}) = 1.
Then for all δ > 0 we have that µ({x ∈ X : (δk1T 1(x), ..., δkmTm(x)) ∈ M}) = 1, and

furthermore the compact set K := {(T 1
hom(h), ..., Tmhom(h)) : h ∈ B(H)} is necessarily

contained inM. Moreover, for any Banach space Z and any Φ :M→ Z that is uniformly
continuous on bounded sets, the set of cluster points at zero of{

Φ
(
(2 log log(1/ε))−k1/2Q1

εJ
1
ε (x), . . . , (2 log log(1/ε))−km/2Qmε J

m
ε (x)

)
: ε ∈ (0, 1]}

is almost surely equal to Φ(K).

We recover the result of the discussion above (for first order chaos) when we setm = 1

with X = Y1 = Z =M and J1
ε = Aε and Qiε = Rε and Φ = I and C1(x) = C‖x‖Y . Note

also that we do not make the requirement that QiεJ
i
ε = J iεRε and in general this will be

false. Finally we remark that when J iε = T i the above theorem recovers Theorem 22, at
least in the case that Φ is uniformly continuous andM is invariant under the semigroup
(which is usually true in practice).

Proof. First let us show that µ({x ∈ X : (δk1T 1(x), ..., δkmTm(x)) ∈ M}) = 1. Note that,
regardless of whether (1) or (2) holds, we have that ‖J i2−N (x)− T i(x)‖Yi → 0 as N →∞
for almost every x ∈ X (indeed β(Qi) must be strictly positive under the assumptions
of the theorem, else ‖Qiε‖Yi→Yi ≤ 1 so that (log log(1/ε))−ki/2‖QiεT i(x)‖Yi → 0, which
contradicts the result of Theorem 20). Consequently, (δk1T 1(x), ..., δkmTm(x)) is the
almost sure limit of (δk1J1

2−N (x), ..., δkmJm2−N (x)). Since the latter is assumed to be an
element ofM and sinceM is a closed subset, we conclude that the former is also an
almost sure element ofM.

The proof that K is contained inM assuming that µ({x ∈ X : (δk1T 1(x), ..., δkmTm(x))

∈M}) = 1 for all δ > 0 is given in the first paragraph of the proof of Corollary 21.
Now assume Condition (1) holds true. One makes the bound

‖QiεJ iε(x)−QiεT i(x)‖ ≤ ‖Qiε‖Y i→Y i‖J iε(x)− T i(x)‖

≤ ‖Qiε‖Y i→Y iCi(x)εβ(Qi)+γ ≤ Ci(x)εγ−oε(1)

where we used by definition of β(Qi) that ‖Qiε‖εβ(Qi) ≤ ε−oε(1) (here oε(1) is some
non-negative function of ε ∈ (0, 1] which tends to zero as ε → 0). Multiplying by
(log log(1/ε))−ki/2 on both sides, we see that the set of limit points of the desired sequence
must coincide with that of Theorem 3 since the difference tends to zero as an element of
Z. Note that one needs the additional assumption of uniform continuity of Φ on bounded
subsets ofM to argue this last part.
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A nonlinear Strassen Law for singular SPDEs

Now assume Condition (2) holds true instead. Since J iε is a homogeneous chaos, (2.2)
gives (∫

X

‖J iε(x)− J iε′(x)‖pYiµ(dx)

)1/p

≤ Cp|ε− ε′|β(Qi)+γ

for all p ≥ 1. By Kolmogorov-Chentsov, for a.e. x ∈ X it is clear that ε 7→ J iε(x) is Hölder
continuous on [0, 1] of any desired exponent strictly less than β(Qi) + γ. In particular, we
may conclude that Condition (1) holds with γ replaced by γ/2.

Now let us argue how this result allows us to obtain the Strassen law for a version
of KPZ driven by a smooth noise mollified in both time and space. Let ξ be a standard
space-time white noise on [0,∞)×R and define the following distribution-valued chaoses
for z ∈ [0,∞)×R and δ > 0:

Πξ,ε
z Ξ(ψ) :=

∫
[0,∞)×R

ψ(w)ξε(dw),

Πξ,ε
z

[
ΞI[Ξ]

]
(ψ) :=

∫
([0,∞)×R)2

ψ(w)(K(w − a)−K(z − a))ξε(da) � ξε(dw),

Πξ,ε
z

[
ΞI[ΞI[Ξ]]

]
(ψ) :=

∫
([0,∞)×R)3

ψ(w)(K(w − a)−K(z − a))

· (K(a− b)−K(z − b))ξε(db) � ξε(da) � ξε(dw),

Πξ,ε
z

[
ΞI[ΞI[ΞI[Ξ]]]

]
(ψ) :=

∫
([0,∞)×R)4

ψ(w)(K(w − a)−K(z − a))(K(a− b)−K(z − b))

·
(
K(b− c)−K(z − c)− (tz − tc)∂tK(z − c)
− (xz − xc)∂xK(z − c)

)
ξε(dc) � ξε(db) � ξε(da) � ξε(dw),

Πξ,ε
z

[
ΞI[X1Ξ]

]
(ψ) :=

∫
([0,∞)×R)2

ψ(w)K(w− a)(xz − xa)ξε(da) � ξε(dw)

where z = (tz, xz), a = (ta, xa), b = (tb, xb), and c = (tc, xc) ∈ [0,∞)×R. The “�” products
above should be interpreted as follows: first one interprets the integrals as classical
integrals against the smooth noise ξδ, then one projects the resultant object onto the
homogeneous chaos of order given by the number of times that ξδ appears in the integral.
For τ ∈ W from (3.8) we let kτ be the number of instances of Ξ in the symbol τ . We then
have the following result.

Proposition 27. Let X and Φ be as in Theorem 24, and let W be as in (3.8). Then for
all δ, ε > 0 the 5-tuple (δkτΠξ,ετ)τ∈W is almost surely an element of X . Furthermore
Φ
(
(δkτΠξ,ετ)τ∈W

)
is given by the solution to the classical equation

∂tz = ∂2
xz + z(δξε − Cε,δ),

with z(0, x) = 1 and where

Cε,δ = cδ2ε−1 + δ4c′ε

where c is a constant depending only on the mollifier (not ε, δ) and where c′ε may depend
on both ε and the mollifier but is convergent to a finite constant as ε→ 0.

Proof. This is proved in [HL18, Theorem 5.3]. The constants are explicitly written
out in [HL18, (1.1)], and their ε → 0 asymptotics are explained in the subsequent
paragraphs.
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With this established, we can prove the following theorem, the main result of this
subsection.

Theorem 28. Let ϕδ(t, x) = δ−3ϕ(δ−2t, δ−1x) for a smooth nonnegative compactly sup-
ported function ϕ : R2 → R which integrates to 1. Consider the sequence of solutions to
the classical PDE

∂th(t, x) = ∂2
xh(t, x) + (∂xh(t, x))2 − Cεs−1,δ(ε) + δ(ε)ε3/2ξεs(ε

2t, εx)

where h(0, x) = 0 and ξε = ξ ∗ ϕε and δ(ε) = (log log(1/ε))−1/2. If s > 1 then the set of
cluster points in Cαt,y as ε→ 0 is equal to the same compact limit set K as in Theorem 4,
for any α < 1/2.

Proof. Let Rε and Qτε (τ ∈ W) be the same multiplicative semigroups as defined in the
previous subsection. We define Jτε (ξ) to be equal to Πξ,ετ . We also fix some exponent
s > 0. We claim for each ε > 0 that v := Φ

(
(δkτQτεsJ

τ
εsξ)τ∈W

)
is the solution of the

equation
∂tv(t, x) = ∂2

xv(t, x) + v(δε3/2ξεs(ε
2t, εx)− Cεs−1,δ)

where v(0, x) = 1 and ξε = ξ ∗ ϕε. Indeed one verifies that QτεsJ
τ
εsξ = Jτεs−1(Rεξ), so

that the claim is immediate from Proposition 27 and the fact that
(
(Rεξ) ∗ ϕεs−1

)
(t, x) =

ε3/2ξεs(ε
2t, εx) (note that this calculation shows why we need s > 1).

Now to finish our analysis of the mollified equation, one needs as in assumption (2)
of Theorem 26 to show a bound of the type E‖Jτε (ξ)− Jτε′(ξ)‖E|τ|w ≤ C|ε− ε

′|β(Qτ )+γ . We

first remark that for the semigroups Qτ on the spaces E|τ |w one has β(Qτ ) = kτκ where
κ on the right side is the same as in the previous subsection, which may be verified by
hand. By choosing κ, γ to be sufficiently small relative to the desired exponent α from
the theorem statement, the desired bound follows (as noted in [HL18, Theorem 5.3]) by
following the logic in [HP15, Theorem 4.5] (see also [Tem23, (3.7) and (3.8)]). By taking
a logarithm and using compactness of the domain, we obtain the claim.

We remark that mollification at scale εs is not the only example of where Theorem 26
is useful. One can also use it, for instance, when looking at a noise ξ that is spatially
periodic with some large period ε−1, by defining the chaoses J iε to be the spatially
periodized version of the chaoses T i (which may be checked to satisfy a bound of the
desired form (2) in Theorem 26). This would be useful in showing a Strassen law for
KPZ (and potentially other singular models) on periodic domains such as a torus.

While the preceding result illustrates the use of Theorem 26, we note that it can
be generalized even further by considering some family of maps Φε : M → Z where
ε ∈ (0, 1] and then imposing suitably strong convergence conditions on Φε as ε → 0.
Additionally, we remark that in Condition (1) the chaoses J iε do not need to be assumed
to be deterministic functions of the Gaussian noise x. In particular we have the following
result which can be viewed as a generalization of all of other results thus far, whose
interest will be explained shortly.

Theorem 29. Let (X,H, µ) be an abstract Wiener space, let (Rε)ε∈(0,1] be a family of
Borel-measurable a.e. linear maps from X → X which are measure-preserving and
strongly mixing, and let T i : X → Yi be homogeneous of degree ki for 1 ≤ i ≤ m.
Suppose that there exist strongly continuous semigroups (Qiε)t≥0 operators from Yi → Yi
for 1 ≤ i ≤ m with the property that

T i ◦Rε = Qiε ◦ T i, µ-a.e. for all ε ∈ (0, 1].

Assume that there exists some probability space (Ω,F , P ) which admits a coupling of the
following form: there is a map x : Ω→ X such that the law of x is µ (i.e., P∗x = µ) and
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there is a collection of measurable functions (J1
ε , ..., J

m
ε )ε∈(0,1] from Ω→M such that

‖Jiε(ω)−QiεT i(x(ω))‖Yi ≤ Ci(ω) (4.1)

for some collection of measurable functions Ci : Ω→ [0,∞). LetM⊂ Y1 × · · ·Ym be a
closed subset, such that for all δ, ε > 0

P ((δk1J1
ε , ..., δ

kmJmε ) ∈M) = 1, and µ({x ∈ X : (δk1T 1(x), ..., δkmTm(x)) ∈M}) = 1.

Then the compact set K := {(T 1
hom(h), ..., Tmhom(h)) : h ∈ B(H)} is necessarily contained

inM. Moreover, consider any Banach space Z and any family of maps {Φε}ε∈(0,1] from
M→ Z that converges uniformly on bounded subsets ofM as ε→ 0 to a limit Φ that is
uniformly continuous on bounded subsets ofM. Then the set of cluster points as ε→ 0

of Φε
(
((log log(1/ε))−ki/2Jiε(ω))1≤i≤m

)
is equal to Φ(K) for a.e. ω ∈ Ω.

Proof. Note that the assumptions are equivalent to the following statement: for all
bounded sequences {yε}, {y′ε} ⊂ M, we have

lim
ε→0
‖Φε(yε)− Φ(y′ε)‖Z = 0 whenever lim

ε→0
‖yε − y′ε‖Y1⊕...⊕Ym = 0. (4.2)

Note that (log log(1/ε))−ki/2QiεT
i(x(ω)) remains almost surely bounded as ε → 0 by

Theorem 20. Thus we have by (4.2) that∥∥Φε
(
((log log(1/ε))−ki/2Jiε(ω))1≤i≤m

)
− Φ

(
((log log(1/ε))−ki/2QiεT

i(x(ω)))1≤i≤m
)∥∥
Z
→ 0

as ε→ 0. The term on the right has the desired set of limit points by Theorem 3.

Theorem 26 is recovered by taking Ω = X and Jiε = QiεJ
i
ε and Φε = Φ. Such

a general statement would be useful in showing (for instance) that Strassen’s law
holds if we replace ξε by some non-Gaussian approximation of a Gaussian noise, for
instance a Poisson noise or some other discrete approximation of the desired limiting
system, e.g., random walk approximations of Brownian motion, or statistical mechanical
approximations of SPDEs such as KPZ.

When applying the theorem in practice, one can usually obtain a stronger bound
than (4.1), typically an “almost sure invariance principle” (ASIP) which gives a bound of
the form Ci(ω)εα where α > 0. For instance, in a random walk approximation of standard
Brownian motion, the KMT coupling [KMT76] will give such a bound with α slightly less
than 1/2 on the space constructed for the large-time regime in Example 3.1. For more
complicated examples involving higher chaos, the discretized analogue Jiε of each of the
m chaoses also needs to be constructed, and then the joint ASIP for these chaoses needs
to be proved “by hand.” This is rather difficult in general, see for instance [GMW23]
for some recent progress on a discrete approximation theory for Gaussian chaoses by
general martingale chaoses. The mollification example above may be viewed a particular
case where the ASIP for the chaoses is particularly simple to prove, compared to other
choices of prelimiting objects such as discretizations.

4.2 Iterated processes

In this subsection we consider a different generalization of the main result (Theo-
rem 3) than those described in the previous subsection, specifically we study the effect of
reparametrizing the ε variable, which destroys the semigroup property. To motivate why
one might be interested in such a reparametrization of ε, we consider iterated processes.

Burdzy in [Bur93] proved that if B,W are independent two-sided Brownian motions,
then

lim sup
t→0

B(W (t))

t1/4 log(log(1/t))3/4
= 25/43−3/4.
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In [CCFR95], the authors extend this to prove a functional version of this theorem,
namely that that the set of limit points of the family of random functions Zε : [−1, 1]→ R

defined by
Zε(t) := ε−1/4(log log(1/ε))−3/4B(W (εt)), (4.3)

as ε→ 0 equals the compact set of functions in C[0, 1] given by

Q := {f ◦ g : f, g ∈ C([−1, 1]), f(0) = g(0) = 0,

∫ 1

−1

f ′(t)2 + g′(t)2 ≤ 1}.

Note that the composition is well-defined because the integral condition implies that g
maps [−1, 1] to itself.

We would like to recover this result using our abstract framework. For X,Y ⊂ R
let C(X,Y ) denote continuous maps from X to Y and CX := C(X,R). Define Rεf(t) =

ε−1/2f(εt). Note that the map Φ from C[−2, 2]× C([−1, 1], [−2, 2])→ C[−1, 1] defined by
(f, g) 7→ f ◦ g is continuous. Furthermore we note that

Zε = Φ
(
(log log(1/ε))−1/2R(ε log log(1/ε))1/2B , (log log(1/ε))−1/2RεW

)
. (4.4)

The latter expression makes sense because Lemmas 12 and 19 ensure that with proba-
bility 1, RεW has image contained in [−2, 2] for small ε almost surely.

Note that Theorem 3 is not directly applicable here due to the expression
R(ε log log(1/ε))1/2B. This is of the form Rg(ε)B where one still has that log(g(ε))/ log(ε)

remains bounded away from 0 and +∞ as ε→ 0, but where Rg(ε) does not respect the
multiplicative semigroup property since g(ε)g(δ) 6= g(εδ). The main problem which we
now face is that the variable ε in the expression RεW has not been reparametrized in
the same way in (4.4). This motivates the following abstract result.

Theorem 30. For 1 ≤ j ≤ r let (Xj , Hj , µj) be abstract Wiener spaces, let (Rjε)ε∈(0,1]

(1 ≤ j ≤ r) be a family of Borel-measurable a.e. linear maps from Xj → Xj which are
measure-preserving and strongly mixing, and let T ij : Xj → Yij be homogeneous of
degree ki,j for 1 ≤ i ≤ m and 1 ≤ j ≤ r, where Yij are Banach spaces. Assume that
M⊂

⊕
i,j Yij is a closed subset. Assume that there exist strongly continuous semigroups

Qij on Yij such that one has Qijε T
ij = T ijRjε µj -a.e. for all i, j and ε ∈ (0, 1]. Also assume

that for all δ > 0,

(µ1 ⊗ · · · ⊗ µr)
({

(x1, ..., xr) :
(
δki,jT ij(xj)

)
i,j
∈M

})
= 1.

Then the compact set K := {
(
(T i,j)hom(hj)

)
i,j

: ‖h1‖2H1
+ ...+ ‖hr‖2Hr ≤ 1} is contained

inM. Moreover consider any collection {gj}rj=1 of maps from (0, 1] → (0, 1] such that
log(gj(ε))/ log(ε) remains bounded away from 0 and +∞ as ε→ 0. Sample (ξ1, ..., ξr) from
µ1 ⊗ · · · ⊗ µr. Then for any Banach space Z and any continuous function Φ :M→ Z, the
set of cluster points as ε → 0 of Φ

((
(log log(1/ε))−ki,j/2Qijgj(ε)T

ij(ξj)
)
i,j

)
is a.s. equal to

Φ(K).

Before the proof, we remark by (4.4) that this theorem immediately gives the desired
compact limit set for the iterated process Zε from (4.3), since B and W are assumed
to be independent. Note that we may also obtain the result in every Hölder norm of
exponent less than 1/4 by noting that for all 0 < α < 1 the composition map is continuous
from Cα[−2, 2]× Cα([−1, 1], [−2, 2])→ Cα

2

[−1, 1], where Cα here denotes the closure of
smooth functions in the Hölder-α norm.

Proof. The proof essentially follows the same line of logic as the proof of Theorem 3.
We will indicate the places in the argument that need to be modified in order for the
theorem to be proved.
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Firstly, in Lemma 5 we need weaker assumptions since we no longer have the
structure of a stationary sequence. More precisely, thanks to the assumption that
log(gj(ε))/ log(ε) remains bounded, it suffices to show that if (Xj)j≥0 is a (possibly
non-stationary) sequence of joint mean-zero Gaussians of unit variance such that
limN→∞max|i−j|>N |E[XiXj ]| = 0, then one has that limn→∞(2 log n)−1/2Xn = 1. One
may verify that this is indeed true by again using Slepian’s lemma, alternatively see the
main result of [Man76], where this was first observed.

This then leads to the following generalization of Corollary 6. If Xn := (Xij
n )1≤i≤N,1≤j≤r

∈ RN×r is a jointly Gaussian sequence such that the r distinct collections given by

(Xi1
n )Ni=1, ..., (X

ir
n )Ni=1 are independent of each other, and each satisfies cov(Xij

0 , X
i′j
0 ) =

δii′ and limA→∞max|m−n|>A |E[Xij
mX

i′j
n ]| = 0, then the unit sphere of RN×r is contained

in the set of limit points of the sequence ((2 log n)−1/2Xn)n≥2.
From here, the line of proof will then use the same strategy as in Subsections 2.2

and 2.3, first proving the discrete-time formulation (see Theorems 18 and 21) along the
subsequence ε = 2−n by using the finite-rank approximations T ijN from (2.4) and using the
result of the previous paragraph. The remainder of the proofs are then straightforward
to modify, but taking into account that there are now r independent noises as opposed to
just 1, thus giving image of the closed unit ball of the Hilbert space H1 ⊕ ...⊕Hr for the
limit sets.

Example 4.1. Using the expression (4.4), we immediately obtain the Strassen law for
the iterated process in (4.3) by using the result of Thorem 30. We now give another
example using iterated processes derived from higher chaoses. This will recover the main
result of [Neu98], where the author proves that if W,B1, B2 are independent two-sided
standard Brownian motions, and if A(t) := 1

2

∫ t
0
B2(s)dB1(s)−B1(s)dB2(s), then

lim sup
t→0

A(W (t))

t1/2(log log(1/t))3/2
= (2/3)−3/2/π.

We can obtain a functional version of this using the above theorem. Define the process
Zε(t) := ε−1/2(log log(1/ε))−3/2A(W (εt)), and note that

Zε := Φ((log log(1/ε))−1Q(ε log log(1/ε))1/2A , (log log(1/ε))−1/2RεW ),

where Qεf(t) = ε−1f(εt), Rεf(t) = ε−1/2f(εt), and Φ(f, g) = f ◦ g is the composition map
as above. We remark that if we view A = ψ(B1, B2) as a chaos of order 2, then we have
a commutation relation Qεψ = ψR̃ε where R̃ε(f1, f2)(t) = (ε−1/2f1(εt), ε−1/2f2(εt)) for
(f1, f2) ∈ C[0, 1]× C[0, 1]. Note in the above expression that the exponent of −1 on the
double logarithm in the first coordinate is consistent with the fact that A is a chaos of
order 2.

Hence, mimicking the previous example but using the full generality of the above
theorem, we see that Zε has the set of limit points given by the closure of functions of
the form f ◦ g where f, g ∈ C[−1, 1] are smooth and f is of the form 1

2

∫ •
0
h2h

′
1 − h1h

′
2

where
∫ 1

−1
g′(t)2 + h′1(t)2 + h′2(t)2dt ≤ 1, and g(0) = hi(0) = 0 for i = 1, 2.

A Ergodic properties of measure-preserving linear operators

In this appendix we review the fact that the ergodic properties of measure-preserving
linear operators on an abstract Wiener space are necessarily determined by their action
on the Cameron-Martin space.

Definition 31. Let (X,H, µ) be an abstract Wiener space. We say that a Borel-measurable
map S : X → X is a measure-preserving a.e. linear map if there exists a Borel-
measurable linear subspace E ⊂ X with µ(E) = 1 such that S : E → X is linear and
µ(S−1(F )) = µ(F ) for all Borel subsets F ⊂ X.
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Lemma 32. Let (X,H, µ) be an abstract Wiener space. The set of measure-preserving
a.e. linear maps (modulo a.e. equivalence) is in bijection with the set of bounded
linear maps from H → H satisfying SS∗ = I. Moreover the bijection is given by simply
restricting S to H.

Proof. We need to show that any a.e. defined measure-preserving linear transformation
from X → X necessarily maps H → H boundedly and satisfies SS∗ = I on H. To
prove this, let S : E → X be a measure preserving Borel measurable linear map, where
E ⊂ X is a Borel measurable linear subspace satisfying µ(E) = 1. It is known [Hai09,
Section 3.4] that H equals the intersection of all Borel-measurable linear subspaces of
X of measure 1. If F is any Borel-measurable linear subspace of measure 1, then so is
E ∩ S−1(F ), and thus x ∈ H implies x ∈ S−1(F ) so that Sx ∈ F . Since F is arbitrary, we
have shown that Sx ∈ H for all x ∈ H. Thus S is a globally defined Borel measurable
linear map from H → H, from which it follows that S is automatically bounded [Sch66].
In order for S to be measure-reserving, it must clearly satisfy SS∗ = I (e.g. by computing
the covariance structure of the pushforward measure S∗µ).

Conversely, given any bounded linear map S : H → H satisfying SS∗ = I, there exists
a µ-a.e.-defined Borel-measurable linear extension Ŝ on X which is unique up to a.e.
equivalence [Hai09, Sections 3.5 and 3.6]. Moreover the condition SS∗ = I guarantees
that this extension is measure-preserving, as this is precisely the condition under which
the covariance operator of the underlying Gaussian measure is unchanged.

Below and in the main body of the paper we always write Ŝ = S without specifying
that it actually denotes the unique extension. Next we have a lemma about the structure
of such measure-preserving transformations, namely that they can be orthogonally
decomposed into a unitary part and a part converging strongly to zero.

Lemma 33. Let H be a Hilbert space and consider any linear operator S : H → H

satisfying SS∗ = I. Then we can orthogonally decompose H = A⊕B where A and B are
both invariant under S and S∗. Moreover S : A→ A is unitary and limn→∞ ‖Snx‖H = 0

for all x ∈ B. Explicitly one can write A =
⋂
n∈N Im(S∗n) and B =

⋃
n∈N ker(Sn), where

the bar denotes the closure in H.

Proof. Since SS∗ = I, we have SnS∗n = I. It is clear that S and S∗ both leave
⋂
n∈N Im(S∗n)

invariant and S∗S is the identity there. For each n, one has H = Im(S∗n) ⊕ ker(Sn) via
the decomposition x = S∗nSnx+ (x− S∗nSnx). Hence, S∗nSn is merely the projection map
from H onto Im(S∗n) and indeed the two given subspaces A,B are orthogonal. Moreover
it is clear that ‖Snx‖ → 0 on the closure of

⋃
n∈N ker(Sn), since ‖Snx‖ is eventually zero

for all x in the dense subspace
⋃

ker(Sn).

Below, we will refer to the subspace A as the unitary part. Given Lemma 32, it is
natural then to ask what conditions on S, when viewed as a map from H → H, ensure
that the measure-preserving extension S is ergodic, weakly mixing and strongly mixing.
The next proposition addresses this.

Proposition 34. Let (X,H, µ) be an abstract Wiener space. Consider any linear operator
S : H → H satisfying SS∗ = I. Then we have the following equivalences.

1.
⋂
n≥1 σ(Sn) is a 0-1 σ-algebra (i.e., consists only of sets of µ-measure 0 or 1) if and

only if ‖Snx‖H → 0 as n→∞ for all x ∈ H.
2. S is strongly mixing if and only if 〈Snx, y〉H → 0 as n→∞ for all x, y ∈ H.

3. S is ergodic if and only if any of the following five equivalent conditions hold:

(a) 1
n

∑n
j=1〈Sjx, y〉kH → 0 as n→∞ for all x, y ∈ H and k ∈ N.

(b) 1
n

∑n
j=1 |〈Sjx, y〉H | → 0 as n→∞ for all x, y ∈ H.
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(c) S is weakly mixing.
(d) S admits no invariant subspace of dimension two on which it acts by a rotation

matrix.
(e) The spectral measure µx of S is atomless for every x in the unitary part of S.

These statements are classical, but we give a proof of the proposition for complete-
ness. For example, Item (3e) is a reformulation of the well-known Maruyama theorem
on ergodicity of shifts of Gaussian fields [Mar49]. The equivalence of ergodicity and
weak mixing is a special case of e.g. [RZ97]. Regarding (2) and (3), Ustunel and Zakai
have proved stronger results even for nonlinear maps of the Wiener space, see e.g.
[UZ95, UZ00, UZ01].

Recall that for each h ∈ H there exists an a.e. defined linear extension of the map
from H → R given by v 7→ 〈v, h〉H . By an abuse of notation we denote this linear
extension as 〈·, h〉 as well, and the map from H → L2(X,µ) given by h 7→ 〈h, ·〉 is a linear
isometry. In particular, the law of each 〈h, ·〉 is a Gaussian of variance ‖h‖2H with respect
to µ, see [Hai09, Section 3.4].

Proof of Item (1). Assume first that ‖Snx‖H → 0 for all x ∈ H. Then one can decompose
H into an orthogonal direct sum: H =

⊕
n≥0Hn where Hn := ker(Sn+1) ∩ Im(S∗n), via

the formula

x =

∞∑
k=0

S∗kSkx− S∗k+1Sk+1x.

The series converges to x in H because the N th partial sum equals x − S∗N+1SN+1x

and we know that ‖S∗N+1SN+1x‖H ≤ ‖SN+1x‖H → 0. Moreover one easily checks that
S∗kSkx − S∗k+1Sk+1x ∈ ker(Sk+1) ∩ Im(S∗k), and that ker(Si) ∩ Im(S∗i−1) is orthogonal to
ker(Sj) ∩ Im(S∗j−1) for i < j.

Let ξ be a B-valued random variable with law µ and define ξn to be the projection
of ξ onto Hn. Note that the ξn are independent X-valued random variables (but not
necessarily i.i.d.). Note also that Snξ is measurable with respect to {ξj}j≥n. Consequently⋂
n≥1 σ(Snξ) ⊆

⋂
n≥1 σ({ξj : j ≥ n}), which by Kolmogorov’s 0-1 law is a 0-1 sigma

algebra.
Conversely, suppose that ‖Snx‖ 6→ 0 as n→∞ for some x ∈ H. Then by Lemma 33,

the closed subspace A :=
⋂
n≥0 Im(S∗n) is nonzero. Letting ξ denote a random variable

in X with law µ, let ξA denote the projection onto A applied to ξ. Since S|A is unitary
(again by Lemma 33) it is clear that

⋂
n σ(Sn) contains at least σ(ξA), which is nontrivial

since A 6= {0} so that at least one nonzero Gaussian random variable is measurable with
respect to it.

Proof of Item (2). Suppose that 〈Snx, y〉H → 0 for all x, y ∈ H. We wish to show that

lim
n→∞

∫
X

f(Snx)g(x)µ(dx) = 0

for all bounded measurable functions f, g : X → R such that
∫
X
fdµ =

∫
X
gdµ = 0. By an

application of Cauchy-Schwarz and the measure-preserving property of Sn, it suffices to
prove this in a dense subspace of L2(X,µ).

By using the Wick forumla (aka Isserlis’ theorem), one can easily show that the claim
is at least true whenever f and g are both of the form x 7→ p(〈x, e1〉, ..., 〈x, ek〉) for some
k ∈ N, some polynomial p : Rk → R and some orthonormal set of vectors e1, ..., ek in H.
Then by a density argument and the fact that the 〈x, ei〉 has Gaussian tails, one can extend
this from k-variable polynomials p to all continuous functions f, g : Rk → R with at-worst
polynomial growth at infinity. One can then extend to all bounded Borel-measurable
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functions f, g : Rk → R by density of continuous functions in L2(Rk, γk) where γk is the
standard Gaussian measure on Rk.

Thus, to finish the argument, it suffices to show that the set of all functions of
the form x 7→ f(〈x, e1〉, ..., 〈x, ek〉), where f : Rk → R is bounded and measurable, is
dense in L2(X,µ). To show this, choose an orthonormal basis {ej} for H and Let Fn
denote the sigma algebra generated by 〈x, e1〉, ..., 〈x, en〉. Let f ∈ L∞(X,µ) and let fn :=

E[f |Fn]. Then fn is bounded and measurable and of the form x 7→ h(〈x, e1〉, ..., 〈x, en〉).
Furthermore by martingale convergence ‖fn − f‖L2 → 0, completing the proof.

The converse direction is striaghtforward: if S is strongly mixing, then apply the
mixing definition to f(x) := 〈x, a〉 and g(x) := 〈x, b〉 to conclude that 〈Sna, b〉 → 0.

Proof of Item (3). We are going to show that ergodicity implies (a) which implies (b)
which implies (c). Clearly (c) implies ergodicity. Then we show that (d) is equivalent to
(e) for the unitary part of the operator from the decomposition in Lemma 33. Then we
will show that for unitary operators, (e) holds if and only if (b) holds.

So assume that S is ergodic as a map from X → X. This is equivalent to the state-
ment that

∫
X

(
1
n

∑n
j=1 f(Sjx)

)
g(x)µ(dx) → 0 for all f, g ∈ L2(X,µ) such that

∫
X
fdµ =∫

X
gdµ = 0. Now fix k ∈ N and a, b ∈ H. Letting Hk denote the kth Hermite polynomial,

we set f(x) := 1√
k!
Hk(〈x, a〉) and g(x) := 1√

k!
Hk(〈x, b〉). Then

∫
X
f(Sjx)g(x)dµ = 〈a, Sjb〉kH

(see e.g. [Nua06]), so by ergodicity we obtain (a).

Now assume (a) holds. Let a, b ∈ H with ‖a‖ = ‖b‖ = 1. Fix ε > 0 and let p : [−1, 1]→
R be a polynomial such that supx∈[−1,1]

∣∣p(x)− |x|
∣∣ < ε. Since |〈a, Sjb〉| ≤ 1 for all j ∈ N,

it follows that 1
n

∑n
j=1

∣∣p(〈a, Sjb〉)−|〈a, Sjb〉|∣∣ < ε. Moreover, since (a) holds we know that
1
n

∑n
j=1 p(〈a, Sjb〉)→ 0. Consequently we find that lim supn

1
n

∑n
j=1 |〈a, Sjb〉H | ≤ ε. Since

ε is arbitrary, it follows that (b) holds.

Now assume that (b) holds. To show (c), we want that 1
n

∑n
j=1

∣∣ ∫
X
f(Sjx)g(x)µ(dx)

∣∣→
0 for all f, g ∈ L2(X,µ) that have mean zero. First note that, by essentially the same
series of density arguments given in the proof of Item (2), it suffices to prove this
whenever f, g are of the form x 7→ p(〈x, e1〉, ..., 〈x, ek〉) for some k ∈ N, some polynomial
p : Rk → R and some orthonormal set of vectors e1, ..., ek in H. In turn, by Wick formula
it suffices to show that 1

n

∑n
j=1 |〈a, Sjb〉H |k → 0 for all a, b ∈ H and all k ∈ N. Note that

we have |〈a, Sjb〉| ≤ ‖a‖‖b‖, so |〈a, Sjb〉H |k ≤ ‖a‖k−1‖b‖k−1|〈a, Sjb〉H |. Summing over j
and applying (b), we conclude 1

n

∑n
j=1 |〈a, Sjb〉H |k → 0.

It is straightforward to show that (using the spectral theorem of the unitary operator)
atoms of µx correspond precisely to complex eigenvalues of S, i.e., two-dimensional
subspaces on which S acts by rotation. Thus (d) implies (e) and vice versa (by focusing
only on the Finally we explain why (e) is equivalent to (b). The spectral measure µx
of S is supported on T := {z ∈ C : |z| = 1} and defined via its Fourier transform:
µ̂x(k) := 〈Skx, x〉 where k ∈ Z and Sk := S∗−k if k < 0. Thus, to show that (b) and (e) are
equivalent, we just need to show that a finite measure µ on T is atomless if and only if
1
n

∑n
k=−n |µ̂(k)| → 0 as n→∞. This is a direct consequence of Wiener’s Lemma.

B Gaussian measures on spaces of distributions

The results of this appendix are included only for completeness and convenience.
Here we show under general conditions how to identify the Cameron-Martin space of
a given Gaussian measure on some space of distributions, and how to identify when a
semigroup of operators on some Banach space of distributions is strongly continuous or
satisfies the mixing condition, as needed in Theorem 3. We let U ⊂ Rd be any open set
(possibly unbounded), and we let Ū denote its closure.
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Definition 35. We shall consider a vector space F(U) of smooth bounded functions
f : Ū → R (not necessarily vanishing on ∂U ) such that all of the seminorms

‖f‖β,n := sup
x∈Ū

(1 + |x|2n)|∂βf(x)|

are finite, as we range over n ∈ N and multi-indices β. Here |x| denotes Euclidean norm
of the vector x ∈ Rd. We will always assume the following:

• F(U) contains all smooth functions with compact support contained in U .

• F(U) is complete with respect to the above family of seminorms.

Such a space F(U) has the structure of a Frechet space if we endow it with these
seminorms, hence it has a continuous dual which will be denoted as F ′(U), endowed
with its weak* topology.

Note that one has a natural embedding F(U) ↪→ F ′(U) given by identifying a smooth
function f with the element in the dual given by sending g 7→

∫
Ū
fg. Such an embedding

is injective by the first bullet point above. Below we will not distinguish F(U) from the
image of this embedding, instead simply viewing all spaces as subsets of F ′(U).

A typical example of F(U) will be of the following form: assume U ⊂ Rd is bounded
with smooth boundary, then partition the boundary of U into some finite number of
subsets, and let F(U) be the set of smooth functions whose derivatives satisfy some
linear relation on each element of the partition (e.g. U = (0, 1) and F(U) consists of those
smooth functions on [0, 1] whose derivatives up to order k vanish at the left endpoint,
where k ∈ N). Unless U = Rd, the spaces F(U) and F ′(U) will typically not be closed
under the partial differentiation operators in the same way that S(Rd) and S ′(Rd) are.

Note that the continuous dual F ′(U) as a topological space (despite not being second-
countable) has a Borel σ-algebra which is generated by a countably infinite set of
continuous linear functionals F ′(U) → R. Indeed continuous linear functionals on
F ′(U) are precisely elements of F(U). The latter is second-countable and metrizable,
hence admits a countable dense subset. Since the topology of F ′(U) is (by definition)
generated by all continuous linear functionals on it, this countable set of continuous
linear functionals is sufficient to generate the Borel σ-algebra on F ′(U).

Definition 36. We say that a Banach space X is embedded between F(U) and F ′(U) if
X is a Borel-measurable linear subspace of F ′(U) which contains F(U), and such that
the norm of X (defined to be infinity outside of X) is a Borel-measurable function on
F ′(U).

The norm topology on a Banach space is the one induced by the metric d(x, y) =

‖x − y‖. The weak topology on a Banach space X is the one generated by the linear
functionals f ∈ X∗, and the weak* topology on X∗ is the one generated by the linear
functionals on X∗ given by x̂ : f 7→ f(x) as x ranges throughout X.

Lemma 37. A linear subspace of a Banach space is weak-dense if and only if it is
norm-dense.

The proof is immediate by Hahn-Banach. Our next lemma is a result which roughly
says that if X is a Banach space of distributions that is embedded between F(U) and
F ′(U) in such a way that X densely contains F(U), then its dual space X∗ is also
embedded between F(U) and F ′(U), up to an isometric isomorphism. The dual space
may no longer densely contain F(U), but in the weak* topology it still does. We will
use (·, ·) to denote the natural pairing between F(U) and F ′(U) with (φ, ψ) =

∫
Ū
φψ if

φ, ψ ∈ F(U), i.e., the pairing in L2(Ū).

Lemma 38. Suppose X is a Banach space that is embedded between F(U) and F ′(U).
Suppose that the image of the first embedding is norm-dense in X. Then there exists a
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Banach space Xdu which is also embedded between F(U) and F ′(U), and which admits
a “canonical” bilinear pairing B : X ×Xdu → R in the sense that following properties
hold:

1. |B(x, f)| ≤ ‖x‖X‖f‖Xdu .
2. The map from Xdu → X∗ given by f 7→ B(·, f) is an isomorphism and a linear

isometry.
3. B(φ, f) = (f, φ) and B(x, φ) = (x, φ) for all x ∈ X, all f ∈ Xdu, and all φ ∈ F(U).

The image of the first embedding F(U) ↪→ Xdu may not be norm-dense in Xdu, but it is
always dense with respect to the weak* topology on Xdu.

Before proving the lemma, let us give examples when U = Rd so F(U) = S(Rd).
If X = Lp(Rd) with 1 ≤ p < ∞, then Xdu = Lq(Rd) with 1

p + 1
q = 1. If X = C0(Rd)

then Xdu consists of finite signed Borel measures on Rd equipped with total variation
norm. Note in this case that the weak-closure of S(Rd) in Xdu is L1(Rd), which is a
proper closed subspace of Xdu, but still dense with respect to weak (i.e. Prohorov)
convergence of measures. Further examples are given by Sobolev spaces X = Hs(Rd)

and Xdu = H−s(Rd) with s ∈ R. A rich class of examples is given by more general
Sobolev spaces and Besov spaces including those defined with weight functions.

Proof. Note that we have a map G from X∗ → F ′(U) given by restriction to the Schwartz

class, i.e., f
G7→ f |F(U). The map clearly defines a continuous linear operator from

X∗ → F ′(U). We define Xdu to be the image of X∗ under G. We also note that G is
injective since F(U) is dense in X by assumption. We thus define the norm on Xdu by
‖Gf‖Xdu = ‖f‖X∗ . Then clearly Xdu is a Banach space that is isometric to X∗ (via G)
and the inclusion Xdu ↪→ F ′(U) is clearly continuous.

We now claim that F(U) is contained in Xdu. To prove this we need to check that if
φ ∈ F(U) then the map aφ from X → R given by x 7→ (x, φ) is continuous. This is clear
because if xn → x in X, then xn → x in F ′(U) so that (xn, φ) → (x, φ). Next, we note
that φ = Gaφ ∈ Xdu, proving the claim. By the closed graph theorem, it follows that the
inclusion map F(U) ↪→ Xdu is automatically continuous.

Now we construct the bilinear map B. For this, we simply define B(x,Gf) := f(x)

whenever x ∈ X and f ∈ X∗. Clearly |B(x,Gf)| ≤ ‖f‖X∗‖x‖X = ‖Gf‖Xdu‖x‖X , so that
B is bounded. Note that if φ ∈ S(Rd) then B(φ,Gf) = f(φ) = (f |S(Rd), φ) = (Gf, φ),
as desired. Also B(x, φ) = B(x,Gaφ) = aφ(x) = (x, φ), completing the proof. The map
f 7→ B(·, f) is an isometry from Xdu → X∗ because it is inverse to the isometry G.

Finally we need to show that F(U) is weak* dense in Xdu. This follows immediately
from the fact that F(U) is a total set in Xdu, i.e., it separates points of X. This is clear
because it separates points of the larger space S ′. It is known that totality is equivalent
to weak* density of the finite linear span of any given subset of X∗, see [CA13, Corollary
5.108].

Remark 39. The assumptions in Lemma 38 automatically imply separability of X in its
norm topology, because F(U) is necessarily second-countable and completely metrizable.
However, we also remark that a linear subspace of X∗ can certainly be weak* dense
without being norm dense, e.g., C0(R) is dense in the weak* topology but not the norm
topology of L∞(R) = L1(R)∗. Consequently under the assumptions of Lemma 38, Xdu

may not be separable in its norm topology (e.g. take U = R and take X to be L1(R) or
C0(R)).

Remark 40. In the above proof, we stated the formula B(x,Gf) = f(x). This implies
that for f ∈ Xdu, the dual norm is given by the conjugate formula

‖f‖Xdu = sup{(f, φ) : φ ∈ F(U), ‖φ‖X ≤ 1}, (B.1)
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since (f, φ) = B(f, φ) if φ ∈ F(U). Conversely, if f ∈ F ′(U) such that the right side
is finite, then f ∈ Xdu with norm given by that supremum, since (f, ·) ∈ X∗ so that
G((f, ·)) = f .

A corollary Lemma 38 is that if we want to check that a given Hilbert space H is the
Cameron-Martin space of a Gaussian measure µ on some separable Banach space X of
distributions as above, then it suffices to check the action of the covariance function only
on smooth test functions, as opposed to the entire dual space of X.

Lemma 41. Let H be a Hilbert space and let X be a Banach space such that both spaces
are embedded between F(U) and F ′(U). Suppose that F(U) is norm-dense in both H

and X. Let µ be a Gaussian measure on X. If∫
X

(x, φ)(x, ψ)µ(dx) = 〈φ, ψ〉H (B.2)

for all φ, ψ ∈ F(U), then µ has Cameron-Martin spaceHdu, which is necessarily contained
in X.

Proof. The Cameron-Martin norm may be defined for h ∈ X by

‖h‖CM = sup{f(h) : f ∈ X∗,
∫
X

f2dµ ≤ 1}. (B.3)

By the separability of X and weak* density of F(U) in Xdu, for any f ∈ X∗, there exist
fn ∈ F(U) such that fn converges to f pointwise. Since for a sequence of Gaussian
random variables, pointwise convergence implies the convergence in variance, hence
we have limn→∞

∫
X
f2
ndµ =

∫
X
f2dµ. Using this together with (B.3), we have

‖h‖CM = sup{(h, φ) : φ ∈ F(U),

∫
X

(x, φ)2µ(dx) ≤ 1}

= sup{(h, φ) : φ ∈ F(U), ‖φ‖2H ≤ 1}.

The second equality is due to (B.2). By the weak density of S in H, the right hand side
above equals the operator norm of the linear functional on H given by (·, h), which
by (B.1) equals the conjugate norm ‖h‖Hdu (to be understood as +∞ if h /∈ Hdu). Hence,
for h ∈ X ∩Hdu, we have ‖h‖CM = ‖h‖Hdu .

So far this argument shows that the Cameron-Martin space of µ equals X ∩ Hdu

(with the norm of Hdu), which is therefore closed in Hdu. To finish the proof we need to
show that Hdu does not contain any vectors outside of X. Assume for contradiction that
such a vector does exist; then X ∩Hdu would have a nonzero orthogonal complement
with respect to the inner product of Hdu. Take some nonzero bounded linear functional
u : Hdu → R which vanishes on the closed subspace X ∩Hdu. Since H is reflexive, every
linear functional on Hdu is represented as B(f, ·) for some f ∈ H where B is the bilinear
form constructed in the previous lemma. Thus write u = B(f, ·) for some f ∈ H. Since
X ∩ Hdu contains F(U) we see that (f, φ) = B(f, φ) = 0 for all φ ∈ F(U). This means
that f = 0 so that u = 0, a contradiction.

Lemma 42. Suppose that Q is a densely defined and closable linear operator from
L2(Ū)→ L2(Ū) such that (Qφ, φ) > 0 for all φ ∈ F(U). Let X be a Banach space that is
embedded between F(U) and F ′(U). Assume that

• µ is a Gaussian measure on X such that
∫
X

(x, φ)(x, ψ)µ(dx) = (Qφ, ψ) for all
φ, ψ ∈ F(U).

• The completion of L2(Ū) with respect to (Qf, f)1/2 embeds continuously into F ′(U).
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ThenQ has a unique positive square rootQ1/2, which is also closable and densely defined.
Furthermore the image of L2(Ū) under Q1/2 contains F(U), and Cameron-Martin space
of µ is the completion of F(U) under the norm ‖Q−1/2φ‖L2(Ū).

We remark that the second bullet point is a nontrivial condition. For example if U = Rd

and Q denotes convolution with heat kernel at time 1, then Q is a well-behaved (e.g.
bounded linear) operator. However the image of Q1/2 does not contain F(U) = S(Rd).
As always (·, ·) here denotes the pairing in L2(Ū).

Proof. First let us verify thatQ is closable and positive-definite on L2(Ū). The assumption
that that

∫
X

(x, φ)(x, ψ)µ(dx) = (Qφ, ψ) guarantees that Q is self-adjoint. It is positive-
definite since we assumed that (Qφ, φ) > 0 for all φ in the dense subspace F(U) of L2(Ū).
By functional calculus (equivalently the spectral theorem) we can define Qα for any
α ∈ R, and this is also a closable and densely defined operator, such that the domain of
Qα is contained in the domain of Qβ if α < β < 0. Let I denote the domain of Q−1.

Let H be the Hilbert space obtained by completing F(U) with respect to the norm
(Qφ, φ)1/2. By assumption H embeds into the continuous dual space F ′(U). Then for
φ ∈ I one has

‖Q−1/2φ‖L2(Ū) =
√

(Q−1φ, φ) = sup{(φ, ψ) : ψ ∈ F(U), (Qψ,ψ) ≤ 1}
= sup{(φ, ψ) : ψ ∈ F(U), ‖ψ‖H ≤ 1} = ‖φ‖Hdu ,

where the last equality follows from (B.1). Consequently we may conclude that Hdu

is simply the completion of I equipped with the norm given by ‖Q−1/2φ‖L2(Ū), and by
Lemma 38 the latter Hilbert space is in turn necessarily embedded between F(U) and
F ′(U) in the sense of Definition 36. Lemma 38 also implies that F(U) is dense in the
weak* topology, but as H is a Hilbert space, the weak and weak* topology coincide. As
F(U) is a linear subspace, Lemma 37 implies it is norm dense.

Next we identify conditions for a semigroup St of operators on a Banach space X
embedded in F ′(U) to be strongly continuous. The following lemma is straightforward
given Remark 39.

Lemma 43. Let X be a Banach space that is embedded between F(U) and F ′(U), such
that F(U) is weakly dense in X. Let St : X → X be a semigroup of bounded operators
for t ≥ 0 such that

1. each St maps F(U) to itself.

2. Stφ
F(U)→ φ as t→ 0 for all φ ∈ F(U).

3. supt≤1 ‖St‖X→X <∞.

Then (St) is a strongly continuous semigroup on X.

In the main body of the paper, we often use the above lemma in multiplicative form,

where the assumptions translate to Rεφ
F(U)→ φ as ε ↑ 1 and supε∈[e−1,1] ‖Rε‖X→X < ∞.

Finally the following lemma gives an easy way to check the mixing condition which is
required in Theorem 3.

Lemma 44. Let H be a Hilbert space that is embedded between F(U) and F ′(U), such
that F(U) is weakly dense in H. Let Fo(U) be a dense subset of F(U). Let S : H → H

be a bounded operator such that SS∗ = I and 〈Snφ, ψ〉H → 0 for all φ, ψ ∈ Fo(U). Then
〈Snφ, ψ〉H → 0 for all φ, ψ ∈ H.

Since Fo(U) is necessarily norm-dense in H (Remark 39), the proof is clear by a
density argument and the fact that ‖Sn‖H→H ≤ 1 for all n. The lemma makes the mixing
condition easy to check, since in examples of interest we often have that Fo(U) consists
of compactly supported functions.
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