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Abstract

We study the distributional properties of jumps of multi-type continuous state and
continuous time branching processes with immigration (multi-type CBI processes).
We derive an expression for the distribution function of the first jump time of a
multi-type CBI process with jump size in a given Borel set having finite total Lévy
measure, which is defined as the sum of the measures appearing in the branching
and immigration mechanisms of the multi-type CBI process in question. Using this we
derive an expression for the distribution function of the local supremum of the norm of
the jumps of a multi-type CBI process. Further, we show that if A is a nondegenerate
rectangle anchored at zero and with total Lévy measure zero, then the probability that
the local coordinate-wise supremum of jumps of the multi-type CBI process belongs to
A is zero. We also prove that a converse statement holds.
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1 Introduction

Multi-type continuous state and continuous time branching processes with immigra-
tion (multi-type CBI processes) are special Markov processes with values in [0,∞)d that
can be well-applied for describing the random evolution of a population consisting of
individuals having different (finitely many) types. In this paper we study the distribu-
tional properties of jumps of such processes. Given a multi-type CBI process (Xu)u>0,
a Borel set A of [0,∞)d \ {0} and t > 0, let us introduce τA := inf{u > 0 : ∆Xu ∈ A}
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Distributional properties of jumps of multi-type CBI processes

and Jt(A) := card({u ∈ (0, t] : ∆Xu ∈ A}), with the convention inf(∅) := ∞, where
∆Xu := Xu −Xu−, u > 0, and card(H) denotes the cardinality of a set H. One can call
∆Xu ∈ [0,∞)d and its Euclidean norm, the size vector and the size of the jump of X at
time u > 0, respectively.

In case of a single-type CBI process (Xu)u>0 (i.e., d = 1), He and Li [14, Theorem 3.1]
studied the distribution of Jt(A) and τA, namely, they showed that P(Jt(A) < ∞) = 1,
t > 0, and derived an expression for P(τA > t |X0 = x), t > 0, x > 0, in terms of a
solution of a deterministic differential equation provided that the set A has a finite
total Lévy measure, which is defined as the sum of the measures appearing in the
branching and immigration mechanisms of (Xu)u>0. He and Li [14, Theorem 4.1] also
proved that the total Lévy measure in question is equivalent to the probability measure
P
(

sups∈(0,t] ∆Xs ∈ · |X0 = x
)

for any t > 0 and x + γ > 0, where γ is the drift in the
immigration mechanism of (Xt)t>0. The above recalled results of He and Li [14] on the
distributional properties of jumps of single-type CBI processes are also contained in
Sections 10.3 and 10.4 in the new second edition of Li’s book [26].

In this paper, we generalize some results of He and Li [14] on the distributional
properties of jumps of single-type CBI processes. Before presenting our new results, we
recall and summarize some related research on the distributional properties of jumps of
CBI processes. Jiao et al. [19] considered a so-called α-CIR process, which is a natural
extension of the standard Cox-Ingersoll-Ross (CIR) process by adding a jump part driven
by an α-stable Lévy process with index α ∈ (1, 2]. This is a new short interest rate model.
They derived expressions for the Laplace transform of the number of large jumps in a
finite time interval whose jump sizes are larger than a given value (see Jiao et al. [19,
Proposition 5.1]), and for the distribution function and expectation of the first large jump
time (see Jiao et al. [19, Corollary 5.2 and Proposition 5.4]). Ji and Li [18, Proposition 4.5]
considered the expectation E(f(Xt)1{ζk>t}), t > 0, where k is a positive integer, (Xt)t>0

is a single-type CBI process starting at 0, the random variable ζk is the k-th jump time of
(Xt)t>0 with jump size in (1,∞) and f : [0,∞) → [0,∞) is a convex and nondecreasing
function satisfying some further properties (including integrability ones). They derived
an upper estimation for E(f(Xt)1{ζk>t}) in terms of E(f(Xs)1{ζk−1>t−s}), s ∈ [0, t], and
the distribution function of ζ1. Chen and Li [9, (1.7) and (1.8)] introduced the notion of a
continuous time mixed state branching process, which is a two-dimensional branching
Markov process (Y

(1)
t , Y

(2)
t )t>0 taking values in [0,∞)× {0, 1, 2, . . .} given as a pathwise

unique strong solution of a two-dimensional SDE. Among others, the authors derived
an expression for the distribution function of inf{s > 0 : ∆Y

(1)
s > r1 or ∆Y

(2)
s > r2} in

terms of the solution a two-dimensional system of deterministic differential equations,
where r1, r2 > 0, see Chen and Li [9, Theorem 5.3]. Horst and Xu [16, Subsection 5.1]
used Theorem 3.1 in He and Li [14] and the arguments in its proof to describe the joint
distribution of the arrival time of the last jump whose magnitude belongs to a given set
and the number of jumps with magnitudes in the same set up to a given time point for
a two-dimensional continuous time stochastic process of which the second coordinate
process is a single-type continuous state and continuous time branching process (single-
type CB process). The two-dimensional continuous time stochastic process in question
plays an important role in financial mathematics, and its second coordinate process is
called a volatility process.

According to our knowledge, multi-type CB processes were first introduced in 1969
by Watanabe [29] as special measure-valued branching processes, for more details on
the history, see Li [26]. There are different characterizations of multi-type CBI processes,
for example, using their Laplace transform (see Duffie et al. [10]), or viewing the process
as the pathwise unique strong solution of an SDE (see Ma [28] and Barczy et al. [2]),
or as the unique solution to a time-change equation (see Caballero et al. [7]). Through
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Distributional properties of jumps of multi-type CBI processes

these approaches, many authors have addressed several questions for multi-type CBI
processes, among others, their asymptotic behaviour [6, 25, 4, 5], extinction times
[24, 8], existence of densities [13], and behavior at the boundary [12].

Now we turn to summarize the content of our paper, it is structured as follows. At
the end of the Introduction, we collect all the notations that will be used throughout the
paper. In Section 2, we recall the definition of multi-type CBI processes, a result on their
representation as pathwise unique strong solutions of some SDEs (see (2.5)), and the
notion of irreducibility.

Section 3 is devoted to study the integral of a multi-type CBI process. We recall that
a (2d)-dimensional stochastic process having coordinate processes a d-type CBI process
and its integral process is a (2d)-type CBI process, see Proposition 3.1. Moreover, one
can give a formula for the Laplace transform of the integral of a multi-type CBI process,
see Proposition 3.2. We also study the limit behaviour of a function which appears in
the formula for the Laplace transform of the integral of a multi-type CBI process, this
function is a solution of a deterministic differential equation, see Proposition 3.4. This
result can be considered as a multi-type counterpart of Proposition 2.2 in He and Li [14].

In Section 4, we investigate the distributional properties of jump times of multi-type
CBI processes. Given a multi-type CBI process (Xu)u>0, under some moment conditions,
for any Borel set A in [0,∞)d \ {0} having finite total Lévy measure, we show that
E(Jt(A)) <∞, t > 0, and we derive an expression for P(τA > t |X0 = x), t > 0, x ∈ Rd+,
in terms of a solution of a deterministic differential equation, see Theorem 4.2. Our result
is a generalization of Proposition 3.1 and Theorem 3.1 in He and Li [14] to multi-type CBI
processes. We mention that part (iii) of our Theorem 4.2 has just appeared as Example
12.2 in the new second edition of Li’s book [26]. The two research works have been
carried out parallelly, so we decided to present our result as well. However, in this paper,
we do not include our proof, the interested readers can find it in our arXiv version [3]. For
a discussion on the comparison of the two proofs, see the second part of the paragraph
before Theorem 4.2. In Corollary 4.4, among others, we derive some sufficient conditions
under which P(τA =∞|X0 = x) = 1 or P(τA <∞|X0 = x) = 1 holds, respectively. We
also present some conditions under which the probability P(τA = ∞|X0 = x) can be
expressed in terms of the inverse of the branching mechanism of (Xu)u>0, introduced
by Chaumont and Marolleau [8, Theorem 2.1].

In Section 5, first we deal with the local and global supremum of the sizes of
the jumps of multi-type CBI processes. We derive expressions for the probability
P
(

sups∈(0,t] ‖∆Xs‖ 6 r |X0 = x
)
, r > 0, t > 0, x ∈ Rd+, and, if, in addition, the to-

tal Lévy measure of Rd+ \ {0} is finite, for P
(

sups∈(0,t] ‖∆Xs‖ = 0 |X0 = x
)
, t > 0,

x ∈ Rd+, as well, see Proposition 5.1. This result is a generalization of Theorem 4.1
in He and Li [14] to multi-type CBI processes. In Proposition 5.4, we derive sufficient
conditions under which sups∈(0,∞) ‖∆Xs‖ is a constant with probability one given any

initial value x ∈ [0,∞)d. This result is a multi-type counterpart of Corollary 4.1 in He
and Li [14].

In order to formulate the main result of the paper, for all t > 0 and x ∈ [0,∞)d, let us
introduce the probability measure πt,x on ([0,∞)d,B([0,∞)d)) defined by

πt,x(A) := P

(
sup
s∈(0,t]

∆Xs ∈ A
∣∣∣X0 = x

)
, A ∈ B([0,∞)d),

where sups∈(0,t] ∆Xs denotes coordinate-wise supremum. Further, let

Rd :=

{(
d∏
i=1

[0, wi]

)
\ {0} : w1, . . . , wd > 0

}
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be the collection of nondegenerate rectangles in [0,∞)d anchored at 0, but not containing
0. Under some moment conditions, we show that if A ∈ Rd is such that its total Lévy
measure is zero, then πt,x(A) = 0 for all t > 0 and x ∈ [0,∞)d. Conversely, if πt,x(A) = 0

for some t > 0, x ∈ (0,∞)d and A ∈ Rd, then the total Lévy measure of A is zero.
Furthermore, in case that the immigration mechanism of (Xu)u>0 has a drift β with
strictly positive coordinates, then we can extend it to x ∈ [0,∞)d as well, see Theorem 5.6.
This result can be considered as a multi-type counterpart of Theorem 4.2 in He and Li
[14], which is about single-type CBI processes. In Remark 5.8, we point out the fact
that in case of d > 2, part (i) of Theorem 5.6 does not hold for a general Borel set A in
[0,∞)d \ {0}, which also shows that, in general, the total Lévy measure of (Xt)t∈R+

is
not equivalent to the probability measure πt,x, where x ∈ Rd+ and t > 0. In Remark 5.9,
we highlight why the case x = β = 0 is excluded in part (ii) of Theorem 5.6. We also
mention that the proof of part (ii) of our Theorem 5.6 and that of Theorem 4.2 in He and
Li [14] use quite different arguments.

In the paper, we omit some proofs and details, for these details, see our arXiv version
[3].

Next, we summarize some of the difficulties that we encountered when passing from
single-type CBI processes to multi-type ones. First of all, we point out that, according
to our knowledge, only few results are available for the analysis of the distributional
properties of the jumps of multi-type CBI processes, see Chen and Li [9, Theorem 5.3],
Horst and Xu [16, Subsection 5.1] and Li [26, Example 12.2]. Compared to single-type
CBI processes, the notion of irreducibility plays an important role in the multi-type case,
in particular, we assume that the underlying multi-type CBI process is irreducible in part
(iii) of Proposition 3.4, in Corollary 3.5, in part (iii) of Corollary 4.4, in Lemma 5.3, and in
Proposition 5.4. Concerning our main Theorem 5.6, on the one hand, note that it is valid
for a general multi-type CBI process satisfying the moment condition (2.2) (in particular,
for reducible ones as well), on the other hand, we can handle only nondegenerate
rectangles in [0,∞)d anchored at 0 instead of a general Borel set of [0,∞)d \ {0}.

Finally, we introduce the notations that will be used throughout the paper. Let
Z+, N, R, R+, R++ and C denote the set of non-negative integers, positive integers,
real numbers, non-negative real numbers, positive real numbers and complex numbers,
respectively. For each d ∈ N, let Ud := Rd+ \ {0}. For x, y ∈ R, we will use the notations
x∧ y := min{x, y} and x+ := max{0, x}. For x = (x1, . . . , xd)

> and y = (y1, . . . , yd)
> ∈ Rd,

the inequality x 6 y means that xi 6 yi, i ∈ {1, . . . , d}, the inequality x < y means that
x 6 y and x 6= y, and 〈x,y〉 :=

∑d
j=1 xjyj denotes the Euclidean inner product. Given a

function f : Rd → Rp (where d, p ∈ N), we say that f is increasing, if f(x) 6 f(y) holds
for any x,y ∈ Rd with x 6 y, and we say that f is strictly increasing if f(x) < f(y) holds
for any x,y ∈ Rd with x < y. For a function g : R+ ×Rd+ → Rd, ∂1g denotes the partial
derivative of g with respect to its first variable (provided that it exists). By ‖x‖ and ‖A‖,
we denote the norm and the induced norm of x ∈ Rd and A ∈ Rd×d, respectively. The
null vector and the null matrix will be denoted by 0. The open ball around 0 with radius
ε > 0 in Rd+ is denoted by Kε := {y ∈ Rd+ : ‖y‖ < ε}. Moreover, Id ∈ Rd×d denotes the

identity matrix, and e(d)
1 , . . . , e(d)

d denotes the natural bases in Rd. The Borel σ-algebra
on a subset U of Rd is denoted by B(U), and recall that B(U) = U ∩ B(Rd). By a Borel
measure on a Borel set S ∈ B(Rd), we mean a measure on (S,B(S)). Every random
variable will be defined on an appropriate probability space (Ω,F ,P). Throughout this

paper, we make the conventions
∫ b
a

:=
∫

(a,b]
and

∫∞
a

:=
∫

(a,∞)
for any a, b ∈ R with a 6 b.
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2 Preliminaries on multi-type CBI processes

Definition 2.1. A matrix A = (ai,j)i,j∈{1,...,d} ∈ Rd×d is called essentially non-negative
if ai,j ∈ R+ whenever i, j ∈ {1, . . . , d} with i 6= j. The set of essentially non-negative
d× d matrices will be denoted by Rd×d(+) .

Definition 2.2. A tuple (d, c,β,B, ν,µ) is called a set of admissible parameters if

(i) d ∈ N,

(ii) c = (ci)i∈{1,...,d} ∈ Rd+,

(iii) β = (βi)i∈{1,...,d} ∈ Rd+,

(iv) B = (bi,j)i,j∈{1,...,d} ∈ Rd×d(+) ,

(v) ν is a Borel measure on Ud satisfying
∫
Ud(1 ∧ ‖r‖) ν(dr) <∞,

(vi) µ = (µ1, . . . , µd), where, for each i ∈ {1, . . . , d}, µi is a Borel measure on Ud
satisfying ∫

Ud

[
‖z‖ ∧ ‖z‖2 +

∑
j∈{1,...,d}\{i}

(1 ∧ zj)
]
µi(dz) <∞. (2.1)

Note that ν and µi, i ∈ {1, . . . , d}, are σ-finite measures, following from, e.g.,
Kallenberg [20, Lemma 1.4].

Theorem 2.3. Let (d, c,β,B, ν,µ) be a set of admissible parameters. Then there
exists a unique conservative transition semigroup (Pt)t∈R+

acting on the Banach space
(endowed with the supremum norm) of real-valued bounded Borel measurable functions
on the state space Rd+ such that its Laplace transform has a representation∫

Rd+

e−〈λ,y〉Pt(x,dy) = e−〈x,v(t,λ)〉−
∫ t
0
ψ(v(s,λ)) ds, x ∈ Rd+, λ ∈ Rd+, t ∈ R+,

where, for any λ ∈ Rd+, the continuously differentiable function R+ 3 t 7→ v(t,λ) =

(v1(t,λ), . . . , vd(t,λ))> ∈ Rd+ is the unique locally bounded solution to the system of
differential equations

∂1vi(t,λ) = −ϕi(v(t,λ)), t ∈ R+, vi(0,λ) = λi, i ∈ {1, . . . , d},

with

ϕi(λ) := ciλ
2
i − 〈Be

(d)
i ,λ〉+

∫
Ud

(
e−〈λ,z〉 − 1 + λi(1 ∧ zi)

)
µi(dz)

for λ ∈ Rd+, i ∈ {1, . . . , d}, and

ψ(λ) := 〈β,λ〉+

∫
Ud

(
1− e−〈λ,r〉

)
ν(dr), λ ∈ Rd+.

Theorem 2.3 is a special case of Theorem 2.7 of Duffie et al. [10] with m = d, n = 0

and zero killing rate. For the unique existence of a locally bounded solution to the
system of differential equations in Theorem 2.3, see Li [26, page 48] or Duffie et al. [10,
Proposition 6.4].

Definition 2.4. A conservative Markov process with state space Rd+ and with transition
semigroup (Pt)t∈R+ given in Theorem 2.3 is called a multi-type CBI process with
parameters (d, c,β,B, ν,µ). The function Rd+ 3 λ 7→ ϕ(λ) = (ϕ1(λ), . . . , ϕd(λ))> ∈ Rd
is called its branching mechanism, and the function Rd+ 3 λ 7→ ψ(λ) ∈ R+ is called
its immigration mechanism. When there is no immigration, i.e., β = 0 and ν = 0, the
process is simply called a multi-type CB process (a continuous state and continuous time
branching process).
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Given a set of admissible parameters (d, c,β,B, ν,µ), we get that ν and µi, i ∈
{1, . . . , d}, are Lévy measures on Ud, since, by parts (v) and (vi) of Definition 2.2, we have∫

Ud
(1 ∧ ‖r‖2) ν(dr) 6

∫
Ud

(1 ∧ ‖r‖) ν(dr) <∞,

and ∫
Ud

(1 ∧ ‖z‖2)µi(dz) 6
∫
Ud

(‖z‖ ∧ ‖z‖2)µi(dz) <∞, i ∈ {1, . . . , d}.

For this reason, we call ν+
∑d
i=1 µi the total Lévy measure corresponding to a multi-type

CBI process with parameters (d, c,β,B, ν,µ).
By Barczy et al. [2, Remark 2.3 and (2.12)], for each i ∈ {1, . . . , d}, the moment

condition (2.1) is equivalent to∫
Ud

[
‖z‖ ∧ ‖z‖2 +

∑
j∈{1,...,d}\{i}

zj

]
µi(dz) <∞,

which coincides with the moment condition in Example 2.5 in Li [26, page 48] for
multi-type CB processes, where multi-type CB processes are considered as special
superprocesses.

By Li [26, Theorem A.7], (Xt)t∈R+
has càdlàg realizations, and any such realization

of the process has a càdlàg modification (X̃t)t∈R+
, and hence P(Xt = X̃t) = 1, t ∈ R+,

and all the sample paths of (X̃t)t∈R+
are right continuous at every t ∈ R+ and possesses

left limit at every t ∈ R++.
Now, we present a property of ψ, which will be used in the proof of Corollary 4.4 as

well.

Lemma 2.5. If the immigration mechanism ψ given in Definition 2.4 is not identically
zero, then ψ(λ) > 0 for all λ ∈ (0,∞)d.

Proof. Let us suppose that ψ is not identically zero. Then β 6= 0 or ν 6= 0. If β 6= 0,
then, using that β ∈ Rd+, there exists i0 ∈ {1, . . . , d} such that βi0 > 0, and hence,
for all λ ∈ (0,∞)d, we have ψ(λ) > 〈β,λ〉 > λi0βi0 > 0. If β = 0, then ν 6= 0,
and, similarly as before, for all λ ∈ (0,∞)d, we have 〈λ, r〉 > 0, r ∈ Ud, and hence
1− e−〈λ,r〉 > 0, r ∈ Ud. This together with ν(Ud) > 0 (following from the fact that ν is
not identically zero) yield that ψ(λ) =

∫
Ud

(
1− e−〈λ,r〉

)
ν(dr) > 0 for all λ ∈ (0,∞)d.

For a multi-type CBI process (Xt)t∈R+
, x ∈ Rd+, an event A ∈ σ(Xt, t ∈ R+) and

an Rp-valued random variable ξ which is σ(Xt, t ∈ R+)-measurable (where p ∈ N), let
Px(A) := P(A |X0 = x) and Ex(ξ) := E(ξ |X0 = x), respectively.

Let (Xt)t∈R+
be a multi-type CBI process with parameters (d, c,β,B, ν,µ) such

that the moment condition ∫
Ud
‖r‖1{‖r‖>1} ν(dr) <∞ (2.2)

holds. Then, by formula (3.4) in Barczy et al. [2] (see also formula (79) in Li [27]),

Ex(Xt) = etB̃x+

∫ t

0

euB̃β̃ du, x ∈ Rd+, t ∈ R+, (2.3)

where

B̃ := (̃bi,j)i,j∈{1,...,d}, b̃i,j := bi,j +

∫
Ud

(zi − δi,j)+ µj(dz), β̃ := β +

∫
Ud
r ν(dr),

(2.4)

EJP 29 (2024), paper 70.
Page 6/39

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1125
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Distributional properties of jumps of multi-type CBI processes

with δi,j := 1 if i = j, and δi,j := 0 if i 6= j. Note that, for all x ∈ Rd+, the function

R+ 3 t 7→ Ex(Xt) is continuous, and B̃ ∈ Rd×d(+) and β̃ ∈ Rd+. Indeed, part (v) of
Definition 2.2 together with the moment condition (2.2) and Barczy et al. [2, Remark 2.3
and formulas (2.11) and (2.12)] yield that∫

Ud
‖r‖ ν(dr) <∞,

∫
Ud

(zi − δi,j)+ µj(dz) <∞, i, j ∈ {1, . . . , d}.

Here we point out that the fact that the matrix B̃ belongs to Rd×d(+) even if the moment

condition (2.2) does not hold, however, the vector β̃ belongs to Rd+ if and only if the
moment condition (2.2) holds.

Given a set of admissible parameters (d, c,β,B, ν,µ) such that the moment condi-
tion (2.2) holds, let us consider the stochastic differential equation (SDE)

Xt = X0 +

∫ t

0

(β + B̃Xu) du+

d∑
`=1

∫ t

0

√
2c` max{0, Xu,`}dWu,` e

(d)
`

+

d∑
`=1

∫ t

0

∫
Ud

∫
U1
z1{w6Xu−,`} Ñ`(du,dz,dw) +

∫ t

0

∫
Ud
rM(du,dr)

(2.5)

for t ∈ R+, where Xt,`, ` ∈ {1, . . . , d}, denotes the `th coordinate of Xt, (Wt,1)t∈R+ , . . .,
(Wt,d)t∈R+ are standard Wiener processes, N`, ` ∈ {1, . . . , d}, and M are Poisson
random measures on U1×Ud×U1 and on U1×Ud with intensity measures duµ`(dz) dw,
` ∈ {1, . . . , d}, and du ν(dr), respectively, and Ñ`(du,dz,dw) := N`(du,dz,dw) −
duµ`(dz) dw, ` ∈ {1, . . . , d}. We suppose that E(‖X0‖) <∞ and that X0, (Wt,1)t∈R+

,
. . . , (Wt,d)t∈R+

, N1, . . . , Nd and M are mutually independent. The SDE (2.5) has
a pathwise unique Rd+-valued càdlàg strong solution, and the solution is a multi-type
CBI process with parameters (d, c,β,B, ν,µ), see Theorem 4.6 and Section 5 in Barczy
et al. [2], where (2.5) was proved only for d ∈ {1, 2}, but their method clearly works
for all d ∈ N. Consequently, given a càdlàg CBI process (Xt)t∈R+

with parameters
(d, c,β,B, ν,µ) such that E(‖X0‖) <∞ and the moment condition (2.2) hold, its law on
the space of Rd-valued càdlàg functions defined on R+ coincides with the law of the
pathwise unique càdlàg strong solution of the SDE (2.5). In the remaining part of the
paper, when we refer to a CBI process (Xt)t∈R+

with parameters (d, c,β,B, ν,µ) such
that E(‖X0‖) < ∞ and the moment condition (2.2) hold, we consider it as a pathwise
unique càdlàg strong solution of the SDE (2.5).

Finally, we recall the notion of irreducibility for a matrix and for a multi-type CBI
process. A matrix A ∈ Rd×d is called reducible if there exist a permutation matrix
P ∈ Rd×d and an integer p with 1 6 p 6 d− 1 such that

P>AP =

(
A1 A2

0 A3

)
,

where A1 ∈ Rp×p, A2 ∈ Rp×(d−p), A3 ∈ R(d−p)×(d−p), and 0 ∈ R(d−p)×p is a null
matrix. A matrix A ∈ Rd×d is called irreducible if it is not reducible, see, e.g., Horn and
Johnson [15, Definitions 6.2.21 and 6.2.22]. We do emphasize that no 1-by-1 matrix is
reducible.

Definition 2.6. Let (Xt)t∈R+
be a multi-type CBI process with parameters (d, c,β,B,

ν,µ). Then (Xt)t∈R+ is called irreducible if B̃ is irreducible.

We point out the fact that for the definition of irreducibility of a multi-type CBI process
in Definition 2.6, we do not need the moment condition (2.2) on ν, so the notion of
irreducibility is a property only of the branching mechanism of a multi-type CBI process.
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Note that every single-type CBI process is irreducible, and hence irreducibility comes
into play for multi-type CBI processes with at least two types. Recall that B̃ ∈ Rd×d(+) is

irreducible if and only if etB̃ ∈ Rd×d++ for all t ∈ R++ (see Barczy and Pap [6, Lemma
A.1]). If (Xt)t∈R+

is an irreducible multi-type CBI process and x ∈ Rd+ is such that at
least one of its coordinates is positive (i.e., x 6= 0), then (2.3) yields that Ex(Xt) ∈ Rd++

for all t ∈ R++. Roughly speaking, irreducibility of a multi-type CBI process implies that
each type continuously generates mass of all the types.

3 A multi-type CBI process and its integral process

The next result states that a (2d)-dimensional stochastic process having coordinate
processes a d-type CBI process and its integral process is a (2d)-type CBI process, where
d ∈ N.

Proposition 3.1. Let (Xt)t∈R+ be a multi-type CBI process with parameters (d, c,β,B,

ν,µ) such that E(‖X0‖) <∞ and the moment condition (2.2) hold. Let Y 0 be an Rd+-
valued random variable such that E(‖Y 0‖) <∞ and it is independent of (Wt,1)t∈R+ , . . . ,

(Wt,d)t∈R+ , N1, . . . , Nd and M appearing in the SDE (2.5). Let Y t := Y 0 +
∫ t

0
Xu du,

t ∈ R+. Then (Xt,Y t)t∈R+ is a (2d)-type CBI process with branching mechanism
ϕ∗ : R2d

+ → R2d,

ϕ∗(λ, λ̃) := (ϕ1(λ)− λ̃1, . . . , ϕd(λ)− λ̃d, 0, . . . , 0), (λ, λ̃) ∈ R2d
+ ,

and with immigration mechanism ψ∗ : R2d
+ → R+,

ψ∗(λ, λ̃) := ψ(λ), (λ, λ̃) ∈ R2d
+ ,

where ϕ = (ϕ1, . . . , ϕd) : Rd+ → Rd and ψ : Rd+ → R+ is the branching mechanism and

the immigration mechanism of (Xt)t∈R+
, respectively, and λ̃ := (λ̃1, . . . , λ̃d).

The fact that (Xt,Y t)t∈R+
is a (2d)-dimensional CBI process follows from Filipović

et al. [11, paragraph before Theorem 4.3] or Theorem 4.10 in Keller-Ressel [21], where
this property is stated for general regular affine processes. Filipović et al. [11] did not
give any proof, Keller-Ressel [21] gave a proof, where he calculated conditional moment
generating function of (Xt,Y t)t∈R+

. In our arXiv version [3], we give a different proof
based on the SDE (2.5) for (Xt)t∈R+

.
Next, we present a result on the Laplace transform of the integral of a multi-type CBI

process. It is a special case of Theorem 9.22 in Li [26] for immigration superprocesses or
of Corollary 4.11 in Keller-Ressel [21] for analytic affine processes. In our arXiv version
[3], the reader can see another proof based on Proposition 3.1.

Proposition 3.2. Let (Xt)t∈R+
be a multi-type CBI process with parameters (d, c,β,B,

ν,µ) such that the moment condition (2.2) holds. Then

Ex

(
exp

{
−
〈
λ̃,

∫ t

0

Xu du

〉})
= exp

{
−〈x, ṽ(t, λ̃)〉 −

∫ t

0

ψ(ṽ(s, λ̃)) ds

}
for t ∈ R+, λ̃ ∈ Rd+ and x ∈ Rd+, where, for all λ̃ = (λ̃1, . . . , λ̃d)

> ∈ Rd+, the

continuously differentiable function R+ 3 t 7→ ṽ(t, λ̃) =: (ṽ1(t, λ̃), . . . , ṽd(t, λ̃))> ∈ Rd+ is
the unique locally bounded solution to the system of differential equations

∂1ṽi(t, λ̃) = λ̃i − ϕi(ṽ(t, λ̃)), ṽi(0, λ̃) = 0, i ∈ {1, . . . , d}. (3.1)

Now, we specialize Proposition 3.2 to multi-type CB processes (see Definition 2.4).
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Corollary 3.3. Let (Zt)t∈R+
be a multi-type CB process with parameters (d, c,0,B, 0,µ).

Then

Ez

(
exp

{
−
〈
λ̃,

∫ t

0

Zu du

〉})
= e−〈z,ṽ(t,λ̃)〉 (3.2)

for t ∈ R+, λ̃ ∈ Rd+ and z ∈ Rd+, where R+ 3 t 7→ ṽ(t, λ̃) = (ṽ1(t, λ̃), . . . , ṽd(t, λ̃))> ∈
Rd+ is the unique locally bounded solution to the system of differential equations (3.1).

We recall a result on the existence of an inverse of the branching mechanism ϕ

of a multi-type CBI process with parameters (d, c,β,B, ν,µ) due to Chaumont and
Marolleau [8, Theorem 2.1]. Let

Dϕ :=
{
λ ∈ Rd+ : ϕj(λ) > 0, j = 1, . . . , d

}
.

If Dϕ is not empty, then there exists a mapping φ = (φ1, . . . , φd) : Rd+ → Rd+ such
that φ(λ) ∈ Dϕ for all λ ∈ (0,∞)d, and the restriction φ|(0,∞)d : (0,∞)d → Dϕ of
the mapping φ onto (0,∞)d is a diffeomorphism (a differentiable bijection with a
differentiable inverse) such that its inverse is ϕ|Dϕ : Dϕ → (0,∞)d satisfying

ϕ(φ(λ)) = λ, λ ∈ (0,∞)d, and φ(ϕ(λ)) = λ, λ ∈ Dϕ. (3.3)

For simplicity, we will call φ the inverse of the branching mechanism ϕ. Here, we
note that one can indeed apply Theorem 2.1 in Chaumont and Marolleau [8], since
ϕi, i = 1, . . . , d (given in Theorem 2.3), can be written in the form of (5) in Chaumont
and Marolleau [8], and the moment condition (2.1) implies the moment condition after
formula (5) on page 3 in Chaumont and Marolleau [8] (for details, see our arXiv version
[3]).

The next proposition can be considered as a multi-type counterpart of Proposition
2.2 in He and Li [14].

Proposition 3.4. Let (d, c,β,B, ν,µ) be a set of admissible parameters. For all λ̃ ∈ Rd+,
let us consider the continuously differentiable function

R+ 3 t 7→ ṽ(t, λ̃) = (ṽ1(t, λ̃), . . . , ṽd(t, λ̃))> ∈ Rd+, (3.4)

which is the unique locally bounded solution to the system of differential equations (3.1).

(i) For all λ̃ ∈ Rd+, the function (3.4) is increasing, and, consequently, the limit

ṽ(∞, λ̃) = (ṽ1(∞, λ̃), . . . , ṽd(∞, λ̃))> := lim
t→∞

ṽ(t, λ̃) ∈ [0,∞]d exists.

(ii) Let (Zt)t∈R+ be a multi-type CB process with parameters (d, c,0,B, 0,µ). If

λ̃ ∈ (0,∞)d and i ∈ {1, . . . , d} are such that ṽi(∞, λ̃) =∞, then

P
e
(d)
i

(
∃ j ∈ {1, . . . , d} :

∫ ∞
0

Zu,j du =∞
)

= P
e
(d)
i

(∫ ∞
0

Zu du /∈ Rd+
)

= 1.

(iii) If, in addition, B̃ ∈ Rd×d(+) (given in (2.4)) is irreducible, then, for all λ̃ ∈ Rd+ with

λ̃ 6= 0, we get ṽ(∞, λ̃) ∈ (0,∞]d.

(iv) If, in addition, Dϕ 6= ∅, then for all λ̃ ∈ (0,∞)d satisfying ṽ(∞, λ̃) ∈ (0,∞)d, we

have that ṽ(∞, λ̃) = φ(λ̃), where the diffeomorphism φ|(0,∞)d : (0,∞)d → Dϕ is
the inverse of ϕ|Dϕ : Dϕ → (0,∞)d (see (3.3)).
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Proof. (i): First, note that the function ṽ only depends on the parameters c, B and
µ, since the functions ϕ1, . . . , ϕd appearing in the system of differential equations (3.1)
depend only on these parameters. Hence, in order to prove part (i), it is enough to
consider a multi-type CB process (Zt)t∈R+

with parameters (d, c,0,B, 0,µ). For all

z ∈ Rd+ and λ̃ ∈ Rd+, the left hand side of (3.2) as a function of t is decreasing and hence

the same holds for the right hand side of (3.2). Consequently, for all z ∈ Rd+ and λ̃ ∈ Rd+,

the mapping R+ 3 t 7→ 〈z, ṽ(t, λ̃)〉 is increasing. By choosing z = e
(d)
i , i = 1, . . . , d, we

have that for all λ̃ ∈ Rd+, the mappings R+ 3 t 7→ ṽi(t, λ̃), i = 1, . . . , d, are increasing.

This implies that the function (3.4) is increasing for all λ̃ ∈ Rd+. Consequently, for all

λ̃ ∈ Rd+, we have that ∂1ṽi(t, λ̃) > 0, t ∈ R+, i = 1, . . . , d, and the limit

ṽ(∞, λ̃) := lim
t→∞

ṽ(t, λ̃) ∈ [0,∞]d exists.

(ii): Let λ̃ ∈ (0,∞)d and i ∈ {1, . . . , d} be such that ṽi(∞, λ̃) = ∞. Then we

have e−〈e
(d)
i ,ṽ(t,λ̃)〉 = e−ṽi(t,λ̃) → 0 as t → ∞. Hence, using (3.2) and the dominated

convergence theorem, we have that

0 = lim
t→∞

E
e
(d)
i

(
exp

{
−
〈
λ̃,

∫ t

0

Zu du

〉})
= E

e
(d)
i

(
exp

{
−
〈
λ̃,

∫ ∞
0

Zu du

〉}
1{∫∞0 Zu du∈Rd+}

)
,

yielding that

P
e
(d)
i

(
exp

{
−
〈
λ̃,

∫ ∞
0

Zu du

〉}
1{∫∞0 Zu du∈Rd+} = 0

)
= 1.

This implies (ii).
(iii): Similarly as it was explained at the beginning of the proof of part (i), it is

enough to consider a multi-type CB process (Zt)t∈R+
with parameters (d, c,0,B, 0,µ).

Since B̃ is irreducible, by Definition 2.6, we have (Zt)t∈R+ is irreducible. Let

λ̃ = (λ̃1, . . . , λ̃d) ∈ Rd+ be such that λ̃ 6= 0. We need to check that

ṽj(∞, λ̃) > 0 for each j ∈ {1, . . . , d}. (3.5)

On the contrary, let us assume that there exists i ∈ {1, . . . , d} such that ṽi(∞, λ̃) = 0.
Then, since the function R+ 3 t 7→ ṽi(t, λ̃) is non-negative and increasing (see part (i)),

we get ṽi(t, λ̃) = 0, t ∈ R+. Using (3.2) with the choice z := e
(d)
i , it implies that

E
e
(d)
i

(
exp

{
−
〈
λ̃,

∫ t

0

Zu du

〉})
= 1, t ∈ R+.

Consequently, we have that

P
e
(d)
i

(∫ t

0

〈λ̃,Zu〉du = 0

)
= 1, t ∈ R+. (3.6)

Next, we check that (3.6) yields that

P
e
(d)
i

(
λ̃jZ

(j)
t = 0

)
= 1, t ∈ R+, j ∈ {1, . . . , d}. (3.7)

It will easily follow from the following auxiliary lemma.
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Auxiliary lemma: If t > 0 and f : [0, t] → R is a càdlàg function such that f(u) = 0

Lebesgue a.e. u ∈ [0, t], then f(u) = 0 for all u ∈ [0, t).
Proof of Auxiliary lemma: By the assumption, there exists a Lebesgue measurable set

S ⊆ [0, t] having Lebesgue measure 0 such that f(t) = 0 for u ∈ [0, t] \ S. Let u0 ∈ [0, t)

be arbitrary. Since S has Lebesgue measure 0, there is no right neighbourhood of u0

contained in S. Hence for all ε > 0, we have [u0, u0 + ε) * S, yielding that for each n ∈ N,
there exists un ∈ [0, t] \ S such that un ∈ [u0, u0 + 1

n ). Then un → u0 as n → ∞, and
f(un) = 0, n ∈ N. Since f is right continuous, we get f(un)→ f(u0) as n→∞, yielding
that f(u0) = 0, as desired.

We start to check (3.7). Using that 〈λ̃,Zu〉 ∈ R+, u ∈ R+, if ω ∈ Ω and t ∈ R+

are such that
∫ t

0
〈λ̃,Zu(ω)〉du = 0, then 〈λ̃,Zu(ω)〉 = 0 Lebesgue a.e. u ∈ [0, t]. Since

(Zu(ω))u∈R+
is càdlàg, we have that (〈λ̃,Zu(ω)〉)u∈R+

is càdlàg as well, and hence, by

the Auxiliary lemma above, we get that 〈λ̃,Zu(ω)〉 = 0 for all u ∈ [0, t). Using that

〈λ̃,Zu(ω)〉 = 0 holds if and only if λ̃jZ
(j)
u (ω) = 0, j ∈ {1, . . . , d}, we get that if ω ∈ Ω

and t ∈ R+ are such that
∫ t

0
〈λ̃,Zu(ω)〉du = 0, then λ̃jZ

(j)
u (ω) = 0 for all u ∈ [0, t),

j ∈ {1, . . . , d}. Taking into account (3.6), it implies (3.7).

In particular, (3.7) with j := i and t := 0 yields that P
e
(d)
i

(λ̃iZ
(i)
0 = 0) = 1, and

hence λ̃i = 0. Further, (3.7) also yields that

P
e
(d)
i

(
Z

(j)
t = 0

)
= 1, t ∈ R+,

for each j ∈ {1, . . . , d}\{i} with λ̃j > 0. In particular, it implies that E
e
(d)
i

(Z
(j)
1 ) = 0 for

each j ∈ {1, . . . , d} \ {i} with λ̃j > 0. By (2.3), we have that (e
(d)
j )>eB̃e

(d)
i = E

e
(d)
i

(Z
(j)
1 ),

and hence (eB̃)j,i = 0 for each j ∈ {1, . . . , d}\{i} with λ̃j > 0. Since B̃ is irreducible,

we have eB̃ ∈ Rd×d++ (see, e.g., Barczy and Pap [6, Lemma A.1]), which yields that there

does not exist j ∈ {1, . . . , d} \ {i} with λ̃j > 0. Taking into account that λ̃i = 0, it

implies that λ̃ = 0, leading us to a contradiction. That is, we get (3.5), as desired.
(iv): Let us suppose that Dϕ 6= ∅, and let λ̃ ∈ (0,∞)d be such that ṽ(∞, λ̃) ∈

(0,∞)d. Let i ∈ {1, . . . , d} be fixed. Recall that ϕi is continuous. Hence the limit
limt→∞ ϕi(ṽ(t, λ̃)) = ϕi(ṽ(∞, λ̃)) exists. Further, using (3.1) and that ∂1ṽi(t, λ̃) > 0,
t ∈ R+ (following from part (i)), we get

ϕi(ṽ(t, λ̃)) = λ̃i − ∂1ṽi(t, λ̃) 6 λ̃i, t ∈ R+,

which yields that ϕi(ṽ(∞, λ̃)) ∈ (−∞, λ̃i]. Applying again (3.1), we have

lim
t→∞

∂1ṽi(t, λ̃) = λ̃i − lim
t→∞

ϕi(ṽ(t, λ̃)) = λ̃i − ϕi(ṽ(∞, λ̃)) ∈ [0,∞). (3.8)

Using that R+ 3 t 7→ ṽi(t, λ̃) is increasing, ṽi(∞, λ̃) ∈ (0,∞) and that limt→∞ ∂1ṽi(t, λ̃) ∈
[0,∞), an elementary calculus shows that limt→∞ ∂1ṽi(t, λ̃) = 0. Indeed, for all t ∈ R+,
by the mean value theorem, there exists ξt ∈ [t, t+ 1] such that

ṽi(t+ 1, λ̃)− ṽi(t, λ̃) = ∂1ṽi(ξt, λ̃).

By taking the limit of both sides as t→∞, we get

ṽi(∞, λ̃)− ṽi(∞, λ̃) = lim
t→∞

∂1ṽi(t, λ̃),

implying that limt→∞ ∂1ṽi(t, λ̃) = 0, as desired. Hence, by (3.8), for all λ̃ ∈ (0,∞)d

satisfying ṽ(∞, λ̃) ∈ (0,∞)d, we have

ϕi(ṽ(∞, λ̃)) = λ̃i, i = 1, . . . , d, that is, ϕ(ṽ(∞, λ̃)) = λ̃.
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Using (3.3), we have ϕ(φ(λ̃)) = λ̃, and hence ṽ(∞, λ̃) = φ(λ̃) for all λ̃ ∈ (0,∞)d

satisfying ṽ(∞, λ̃) ∈ (0,∞)d, as desired.

The following Corollary 3.5 can be considered as a multi-type counterpart of Corollary
2.1 in He and Li [14], which is also contained as Corollary 5.21 in Li [26].

Corollary 3.5. Let (Zt)t∈R+ be an irreducible multi-type CB process with parameters
(d, c,0,B, 0,µ) such that Dϕ 6= ∅. Then

Ez

(
exp

{
−
〈
λ̃,

∫ ∞
0

Zu du

〉}
1{∫∞0 Zu du∈Rd+}

)
= e−〈z,ṽ(∞,λ̃)〉 = e−〈z,φ(λ̃)〉

for all z ∈ Rd+, and λ̃ ∈ (0,∞)d satisfying vi(∞, λ̃) <∞, i ∈ {1, . . . , d}.

Proof. It follows from dominated convergence theorem, Corollary 3.3 and Proposition 3.4.

We observe that Corollary 3.5 can also be derived by the theory of spectrally positive
additive Lévy fields. According to Proposition 2.1 in Chaumont and Marolleau [8],
if Z0 = z ∈ Rd+, then

∫∞
0
Zu du = T z holds P-almost surely, where T z is the

(multivariate) first hitting time of the level −z by the spectrally positive additive Lévy
field corresponding to the branching mechanism of (Zt)t∈R+

, see Proposition 1 in
Chaumont and Marolleau [8]. Then using Theorem 2.1 in Chaumont and Marolleau [8]
and the convention e−∞ := 0, we get Corollary 3.5.

4 Distributional properties of jump times

Recall that B(Ud) denotes the set of Borel subsets of Ud. For all t ∈ R++ and
A ∈ B(Ud), let

τA := inf{u ∈ R++ : ∆Xu ∈ A}, Jt(A) := card({u ∈ (0, t] : ∆Xu ∈ A}),

with the convention inf(∅) :=∞, where ∆Xu := Xu −Xu−, u ∈ R++, and card(H)

denotes the cardinality of a set H.
In the forthcoming results, given a set A ∈ B(Ud), the condition ν(A)+

∑d
`=1 µ`(A) <

∞ will come into play. In the next remark, we give a sufficient condition under which it
holds.

Remark 4.1. First, recall the notation Kε = {y ∈ Rd+ : ‖y‖ < ε}. If A ∈ B(Ud) is such
that there exists ε ∈ (0, 1) with A ⊆ Rd+ \Kε (or equivalently, A ∈ B(Ud) is such that

0 is not contained in the closure of A), then ν(A) +
∑d
`=1 µ`(A) <∞. Indeed, by part

(vi) of Definition 2.2, for each ` ∈ {1, . . . , d},

µ`(A) 6 µ`(R
d
+ \Kε) 6

1

ε2

∫
{z∈Ud : ε6‖z‖61}

‖z‖2 µ`(dz) +

∫
{z∈Ud : ‖z‖>1}

‖z‖µ`(dz) <∞,

and one can argue similarly in case of ν. 2

The next result is a generalization of Proposition 3.1 and Theorem 3.1 in He and Li
[14]. We mention that Theorem 3.1 in He and Li [14] is also contained as Theorem 10.13
in Li [26]. For completeness, we note that He and Li [14] do not assume the moment
condition (2.2) for deriving their results, however we will assume this condition in order
to derive our forthcoming results in Theorem 4.2. The moment condition (2.2) is needed
for our approach in order to be able to use Theorem 4.6 in Barczy et al. [2] about the SDE
representations of multi-type CBI processes, and in order to ensure the finiteness of the
expectation of the norm of a multi-type CBI process at a given time point. Further, as we
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already mentioned in the Introduction, the vector β̃ belongs Rd+ if and only if the moment
condition (2.2) holds. Under the condition (2.2), we can prove not only that Jt(A) is finite
almost surely for all t ∈ R+, but also that Jt(A) has a finite expectation, see part (i) of
Theorem 4.2. We also mention that part (iii) of our Theorem 4.2 has just appeared as
Example 12.2 in the new second edition of Li’s book [26]. The two research works have
been carried out parallelly, so we decided to present our result as well. However, in this
paper, we do not include our proof, the interested readers can find it in our arXiv version
[3], here we only make a comparison of the two proofs. Concerning the proof of Example
12.2 in Li [26], Li derived his Example 12.2 as a special case of Theorem 12.22 in Li [26],
which is a measure-valued generalization of Theorem 3.1 in He and Li [14]. The proof of
Theorem 12.22 in Li [26] is based on the fact that a càdlàg immigration superprocess
can be represented as a pathwise unique càdlàg strong solution of a stochastic integral
equation (see Theorem 12.14 in Li [26]). In our proof, we directly use the SDE (2.5) for a
multi-type CBI process, which may be more easily accessible than that of immigration
superprocess.

Given a set of admissible parameters (d, c,β,B, ν,µ) and a Borel set A ∈ B(Ud) such
that ν(A) +

∑d
`=1 µ`(A) <∞, let us introduce B(A) ∈ Rd×d(+) , ν(Ud\A), and µ(Ud\A) by

(B(A))i,j := bi,j + δi,j

∫
A

(
(zi − 1)+ − zi

)
µi(dz), i, j ∈ {1, . . . , d},

ν(Ud\A) := ν|Ud\A,

µ(Ud\A) :=
(
µ

(Ud\A)
1 , . . . , µ

(Ud\A)
d

)
with µ

(Ud\A)
` := µ`|Ud\A, ` ∈ {1, . . . , d}.

(4.1)

Then one can easily see that
(
d, c,β,B(A), ν(Ud\A),µ(Ud\A)

)
is a set of admissible

parameters. Indeed, for each i ∈ {1, . . . , d}, we have
∫
A
|(zi − 1)+ − zi|µi(dz) =∫

A
zi1{zi61} µi(dz) +

∫
A
1{zi>1} µi(dz) 6 2µi(A) < ∞. Further, given a multi-type CBI

process (Xt)t∈R+
with parameters (d, c,β,B, ν,µ) and a Borel set A ∈ B(Ud) such that

ν(A) +
∑d
`=1 µ`(A) <∞, let (X

(A)
t )t∈R+ be a multi-type CBI process with parameters(

d, c,β,B(A), ν(Ud\A),µ(Ud\A)
)

such that X(A)
0 = X0. Intuitively, the process (X

(A)
t )t∈R+

is obtained by removing from (Xt)t∈R+
all the masses produced by the jumps with size

vectors in the set A. This argument is made precise in mathematical terms in the proof
of our next Theorem 4.2. Note that if the moment condition (2.2) holds for (Xt)t∈R+

,

then it also holds for (X
(A)
t )t∈R+ , since∫

Ud
‖r‖1{‖r‖>1} ν

(Ud\A)(dr) =

∫
Ud\A

‖r‖1{‖r‖>1} ν(dr) <∞. (4.2)

For the branching and immigration mechanisms, and an SDE for (X
(A)
t )t∈R+

, see Theo-
rem 4.2 and (4.13), respectively.

Theorem 4.2. Let (Xt)t∈R+
be a multi-type CBI process with parameters (d, c,β,B,

ν,µ) such that E(‖X0‖) < ∞ and the moment condition (2.2) hold. Then for all
A ∈ B(Ud) such that ν(A) +

∑d
`=1 µ`(A) <∞, we have

(i) E(Jt(A)) < ∞, t ∈ R++, which, in particular, implies that P(Jt(A) < ∞) = 1,
t ∈ R++;

(ii) for all t ∈ R+,

P(τA > t |X0) = e−ν(A)tE

(
exp

{
−

d∑
`=1

µ`(A)

∫ t

0

X
(A)
u,` du

} ∣∣∣∣X0

)
, (4.3)
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Distributional properties of jumps of multi-type CBI processes

where (X
(A)
t )t∈R+

is a multi-type CBI process with parameters(
d, c,β,B(A), ν(Ud\A),µ(Ud\A)

)
such that X(A)

0 = X0, where B(A), ν(Ud\A), and µ(Ud\A) are given in (4.1), and

X
(A)
t,` denotes the `th coordinate of X(A)

t for any t ∈ R+ and ` ∈ {1, . . . , d};
(iii) for all t ∈ R+ and x = (x1, . . . , xd)

> ∈ Rd+,

Px(τA > t) = exp

{
−ν(A)t−

d∑
`=1

x` ṽ
(A)
` (t,µ(A))−

∫ t

0

ψ(A)
(
ṽ(A)(s,µ(A))

)
ds

}
,

(4.4)

where

• µ(A) := (µ1(A), . . . , µd(A)),
• the function

Rd+ 3 λ 7→ ψ(A)(λ) := 〈β,λ〉+

∫
Ud\A

(
1− e−〈λ,r〉

)
ν(dr) ∈ R+ (4.5)

is the immigration mechanism of (X
(A)
t )t∈R+ ,

• the continuously differentiable function

R+ 3 t 7→ ṽ(A)(t,µ(A)) := (ṽ
(A)
1 (t,µ(A)), . . . , ṽ

(A)
d (t,µ(A)))> ∈ Rd+ (4.6)

is the unique locally bounded solution to the system of differential equations

∂1ṽ
(A)
i (t,µ(A)) = µi(A)− ϕ(A)

i (ṽ(A)(t,µ(A))), i ∈ {1, . . . , d},

ṽ
(A)
i (0,µ(A)) = 0, i ∈ {1, . . . , d},

(4.7)

where the function Rd+ 3 λ 7→ ϕ(A)(λ) := (ϕ
(A)
1 (λ), . . . , ϕ

(A)
d (λ))> ∈ Rd with

ϕ
(A)
` (λ) := ϕ`(λ) +

∫
A

(1− e−〈λ,z〉)µ`(dz) (4.8)

for λ ∈ Rd+, ` ∈ {1, . . . , d}, is the branching mechanism of (X
(A)
t )t∈R+ .

Concerning the notations in Theorem 4.2, we note that (A) in the superscript of a

formula (e.g. in that of ϕ
(A)
` ) means only that the corresponding expression depends

on A (however, it may depend on Ud \A as well). Nonetheless, the restrictions of the
measures ν and µ onto Ud \A are denoted by ν(Ud\A) and µ(Ud\A), respectively, in
order to avoid some possible confusion.
Proof of Theorem 4.2. First, note that, by (2.3), we have

‖E(Xt)‖ = ‖E(E(Xt |X0))‖ 6 E(‖E(Xt |X0)‖) 6
∥∥∥etB̃

∥∥∥E(‖X0‖) + ‖β̃‖
∫ t

0

∥∥∥euB̃
∥∥∥ du

for t ∈ R+. Consequently,∫ t

0

‖E(Xu)‖ du 6 E(‖X0‖)
∫ t

0

∥∥∥euB̃
∥∥∥ du+ ‖β̃‖

∫ t

0

∫ u

0

∥∥∥evB̃
∥∥∥ dv du <∞, t ∈ R+,

(4.9)

since the function R+ 3 u 7→ ‖euB̃‖ is continuous.
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Let A ∈ B(Ud) be fixed such that ν(A) +
∑d
`=1 µ`(A) <∞. The proof is divided into

Steps 1-7.

Step 1. Roughly speaking, the jumps of (Xt)t∈R+
are associated with the jumps

of the mutually independent Poisson point processes corresponding to the mutually
independent Poisson random measures N`, ` ∈ {1, . . . , d}, and M . In what follows, we
make it precise. We can rewrite the SDE (2.5) in the form

Xt = X0 +

∫ t

0

(β + B̃Xu) du−
d∑
`=1

∫ t

0

∫
Ud

∫
U1
z1A(z)1{w6Xu,`} duµ`(dz) dw

+

d∑
`=1

∫ t

0

√
2c` max{0, Xu,`}dWu,` e

(d)
` +

∫ t

0

∫
Ud
r1Ud\A(r)M(du,dr)

+

d∑
`=1

∫ t

0

∫
Ud

∫
U1
z1Ud\A(z)1{w6Xu−,`} Ñ`(du,dz,dw)

+

d∑
`=1

∫ t

0

∫
Ud

∫
U1
z1A(z)1{w6Xu−,`}N`(du,dz,dw)

+

∫ t

0

∫
Ud
r1A(r)M(du,dr), t ∈ R+,

(4.10)

since, by page 62 in Ikeda and Watanabe [17], part (v) in Definition 2.2 and (2.2), we
have

E

(∫ t

0

∫
Ud
‖r‖M(du,dr)

)
=

∫ t

0

∫
Ud
‖r‖ du ν(dr) = t

∫
Ud
‖r‖ ν(dr) <∞,

and, by page 62 in Ikeda and Watanabe [17], part (vi) in Definition 2.2 and (4.9), for all
` ∈ {1, . . . , d}, we get

E

(∫ t

0

∫
Ud

∫
U1
‖z‖1A(z)1{w6Xu,`} duµ`(dz) dw

)
=

∫ t

0

∫
Ud
‖z‖1A(z)E(Xu,`) duµ`(dz)

6
∫ t

0

‖E(Xu)‖ du

∫
Ud
‖z‖1A(z)µ`(dz)

6
∫ t

0

‖E(Xu)‖ du

(
µ`(A) +

∫
Ud
‖z‖1{‖z‖>1} µ`(dz)

)
<∞.

(4.11)

Step 2. As a consequence of the SDE (4.10) for (Xt)t∈R+ , the jumps of (Xt)t∈R+ are
related to the last four terms of the right hand side of (4.10). We check that

Jt(A) =

d∑
`=1

∫ t

0

∫
Ud

∫
U1
1A(z)1{w6Xu−,`}N`(du,dz,dw) +

∫ t

0

∫
Ud
1A(r)M(du,dr) (4.12)

almost surely for all t ∈ R++. To prove (4.12), it is enough to verify that the last four
terms on the right hand side of (4.10) cannot have jumps simultaneously almost surely,
and that the jumps with size vectors in A correspond to the last two terms on the right
hand side of (4.10). These follow from the steps (a)–(e) in the proof of Theorem 4.2 in
our arXiv version [3].

Step 3. By taking the expectation of both sides of (4.12) and using page 62 in Ikeda
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and Watanabe [17] and (4.9), we have

E(Jt(A)) =

d∑
`=1

∫ t

0

∫
Ud
1A(z)E(Xu,`) dudµ`(z) +

∫ t

0

∫
Ud
1A(r) du ν(dr) <∞, t ∈ R++.

Indeed, by (4.9), for each ` ∈ {1, . . . , d} and t ∈ R+, we have∫ t

0

∫
Ud
1A(z)E(Xu,`) dudµ`(z) 6 µ`(A)

∫ t

0

‖E(Xu)‖ du <∞,

and ∫ t

0

∫
Ud
1A(z) du ν(dr) = tν(A) <∞.

Consequently, for all t ∈ R++, we have E(Jt(A)) <∞ and hence P(Jt(A) <∞) = 1,
i.e., we get part (i). It also yields that P(∆XτA ∈ A | τA <∞) = 1.

Step 4. Motivated by the SDE (4.10), we will consider another SDE (see (4.13)) in a
way that we remove all the parts from the SDE (4.10) which correspond to the jumps
with size vectors in the set A. We will check that this new SDE (4.13) admits a pathwise

unique strong solution, which is a multi-type CBI process. Let D̃
(A)
∈ Rd×d+ be the

matrix with `th column given by
∫
Ud z1A(z)µ`(dz), ` ∈ {1, . . . , d}. The entries of D̃

(A)

are indeed in R+, since
∫
Ud ‖z‖1A(z)µ`(dz) <∞, ` ∈ {1, . . . , d}, following from (4.11).

First, note that

d∑
`=1

∫ t

0

∫
Ud

∫
U1
z1A(z)1{w6Xu,`} duµ`(dz) dw =

∫ t

0

D̃
(A)
Xu du, t ∈ R+.

Let us consider the SDE

X
(A)
t = X

(A)
0 +

∫ t

0

(
β + (B̃ − D̃

(A)
)X(A)

u

)
du

+

d∑
`=1

∫ t

0

√
2c` max{0, X(A)

u,` } dWu,` e
(d)
`

+

d∑
`=1

∫ t

0

∫
Ud

∫
U1
z1Ud\A(z)1{w6X(A)

u−,`}
Ñ`(du,dz,dw)

+

∫ t

0

∫
Ud
r1Ud\A(r)M(du,dr), t ∈ R+,

(4.13)

with X
(A)
0 := X0. For all t ∈ R+ and ` ∈ {1, . . . , d}, by the definition of stochastic

integrals with respect to (compensated) Poisson random measures, we have∫ t

0

∫
Ud

∫
U1
z1Ud\A(z)1{w6X(A)

u−,`}
Ñ`(du,dz,dw)

=

∫ t

0

∫
Ud\A

∫
U1
z1{w6X(A)

u−,`}
Ñ

(Ud\A)
` (du,dz,dw)

and ∫ t

0

∫
Ud
r1Ud\A(r)M(du,dr) =

∫ t

0

∫
Ud\A

rM (Ud\A)(du,dr),
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where N
(Ud\A)
1 , . . . , N

(Ud\A)
d denote the restrictions of N1, . . . , Nd to U1 × (Ud \A)× U1

and M (Ud\A) denotes the restriction of M to U1 × (Ud \A), and Ñ (Ud\A)
` (du,dz,dw) :=

N
(Ud\A)
` (du,dz,dw) − du1Ud\A(z)µ`(dz) dw, ` ∈ {1, . . . , d}. Here N

(Ud\A)
1 , . . . , N

(Ud\A)
d

and M (Ud\A) are mutually independent Poisson random measures on U1 × (Ud \A)×U1

and on U1 × (Ud \ A) with intensity measures du1Ud\A(z)µ`(dz) dw, ` ∈ {1, . . . , d},
and du1Ud\A(r)ν(dr), respectively (see, e.g., Kyprianou [23, Corollary 2.5]). Hence the
SDE (4.13) takes the form

X
(A)
t = X

(A)
0 +

∫ t

0

(
β + (B̃ − D̃

(A)
)X(A)

u

)
du

+

d∑
`=1

∫ t

0

√
2c` max{0, X(A)

u,` } dWu,` e
(d)
`

+

d∑
`=1

∫ t

0

∫
Ud\A

∫
U1
z1{w6X(A)

u−,`}
Ñ

(Ud\A)
` (du,dz,dw)

+

∫ t

0

∫
Ud\A

rM (Ud\A)(du,dr)

(4.14)

for t ∈ R+. Here B̃
(A)

:= B̃− D̃
(A)
∈ Rd×d(+) , since, with the notation B̃

(A)
= (̃b

(A)
i,j )di,j=1,

for each i, j ∈ {1, . . . , d} with i 6= j, we have

b̃
(A)
i,j = b̃i,j − (D̃

(A)
)i,j = bi,j +

∫
Ud
zi(1− 1A(z))µj(dz) ∈ R+,

where we used (2.4) and that bi,j ∈ R+ for each i, j ∈ {1, . . . , d} with i 6= j (due to

B ∈ Rd×d(+) ). Note that the matrices B(A) and B̃
(A)

satisfy the relations

b̃
(A)
i,j = b

(A)
i,j +

∫
Ud

(zi − δi,j)+ µ
(Ud\A)
j (dz), i, j ∈ {1, . . . , d}, (4.15)

which are required (see (2.4) for the corresponding relations for B and B̃), for more
details, see our arXiv version [3]. Let us introduce the diagonal matrix D(A) = (d

(A)
i,j )di,j=1

given by

d
(A)
i,j := δi,j

∫
A

(
(zi − 1)+ − zi

)
µi(dz), i, j ∈ {1, . . . , d}.

Then, by (4.1), we have b
(A)
i,j = bi,j + d

(A)
i,j , i, j ∈ {1, . . . , d}.

Recall that (d, c,β,B(A), ν(Ud\A),µ(Ud\A)) is a set of admissible parameters, the

expectation E(‖X(A)
0 ‖) is finite, and the measure ν(Ud\A) satisfies the moment condi-

tion (2.2) (see (4.2)). Consequently, by Barczy et al. [2, Theorem 4.6 and Section 5], the
SDE (4.14) admits a pathwise unique càdlàg strong solution (X

(A)
t )t∈R+

, which is a

multi-type CBI process with parameters (d, c,β,B(A), ν(Ud\A),µ(Ud\A)). One can calcu-
late that the branching mechanism and the immigration mechanism take the form (4.8)
and (4.5), respectively.

Step 5. We check that, for all t ∈ R++, we have

{τA > t} =

{ d∑
`=1

∫ t

0

∫
A

∫
U1
1{w6X(A)

u−,`}
N

(A)
` (du,dz,dw) +

∫ t

0

∫
A

1M (A)(du,dr) = 0

}
(4.16)

up to a P-null set, where N
(A)
1 , . . . , N

(A)
d are the restrictions of N1, . . . , Nd to U1×A×U1,

and M (A) is the restriction of M to U1 × A. Here N
(A)
1 , . . . , N

(A)
d and M (A) are
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mutually independent Poisson random measures on U1 ×A× U1 and on U1 ×A with
intensity measures du1A(z)µ`(dz) dw, ` ∈ {1, . . . , d}, and du1A(r)ν(dr), respectively
(see, e.g., Kyprianou [23, Corollary 2.5]). Note that {τA > 0} ⊆ {Js(A) = 0, s ∈ (0, τA)},
and hence, using (4.12), we get the following inclusion up to a P-null set:

{τA > 0} ⊆
{ d∑
`=1

∫ s

0

∫
Ud

∫
U1
1A(z)1{w6Xu−,`}N`(du,dz,dw) = 0, s ∈ [0, τA)

}
∩
{∫ s

0

∫
Ud
1A(r)M(du,dr) = 0, s ∈ [0, τA)

}
.

In view of (4.10) and (4.13), this implies that P(Xs = X(A)
s , s ∈ [0, τA)) = 1, which

yields that P(Xs− = X
(A)
s− , s ∈ (0, τA]) = 1. Hence, using again (4.12), for all t ∈ R++,

we obtain the following inclusion up to a P-null set:

{τA > t} = {τA > t} ∩ {Jt(A) = 0}

= {τA > t} ∩
{ d∑
`=1

∫ t

0

∫
Ud

∫
U1
1A(z)1{w6Xu−,`}N`(du,dz,dw)

+

∫ t

0

∫
Ud
1A(r)M(du,dr) = 0

}
= {τA > t} ∩

{ d∑
`=1

∫ t

0

∫
A

∫
U1
1{w6Xu−,`}N

(A)
` (du,dz,dw) +

∫ t

0

∫
A

1M (A)(du,dr) = 0

}

⊆
{ d∑
`=1

∫ t

0

∫
A

∫
U1
1{w6X(A)

u−,`}
N

(A)
` (du,dz,dw) +

∫ t

0

∫
A

1M (A)(du,dr) = 0

}
.

In what follows, we show that the reversed inclusion up to a P-null set holds as well.
Similarly as above, using part (i) (which was already proved, see Step 3), (4.12) and
P(Xs− = X

(A)
s− , s ∈ (0, τA]) = 1, for all t ∈ R++, we have the following inclusions up to

a P-null set:

{τA 6 t} ⊆ {τA 6 t} ∩ {JτA(A) > 0}

= {τA 6 t} ∩
{ d∑
`=1

∫ τA

0

∫
Ud

∫
U1
1A(z)1{w6Xu−,`}N`(du,dz,dw)

+

∫ τA

0

∫
Ud
1A(r)M(du,dr) > 0

}
= {τA 6 t} ∩

{ d∑
`=1

∫ τA

0

∫
A

∫
U1
1{w6Xu−,`}N

(A)
` (du,dz,dw)

+

∫ τA

0

∫
A

1M (A)(du,dr) > 0

}
= {τA 6 t} ∩

{ d∑
`=1

∫ τA

0

∫
A

∫
U1
1{w6X(A)

u−,`}
N

(A)
` (du,dz,dw)

+

∫ τA

0

∫
A

1M (A)(du,dr) > 0

}
⊆
{ d∑
`=1

∫ t

0

∫
A

∫
U1
1{w6X(A)

u−,`}
N

(A)
` (du,dz,dw) +

∫ t

0

∫
A

1M (A)(du,dr) > 0

}
.
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Hence, by taking complement, we have{ d∑
`=1

∫ t

0

∫
A

∫
U1
1{w6X(A)

u−,`}
N

(A)
` (du,dz,dw) +

∫ t

0

∫
A

1M (A)(du,dr) = 0

}
⊆ {τA > t}.

Consequently, we obtain (4.16).
Step 6. Using (4.16) and X0 = X

(A)
0 , we have for all t ∈ R++,

P(τA > t |X0) = P(τA > t |X(A)
0 )

= P

( d∑
`=1

∫ t

0

∫
A

∫
U1
1{w6X(A)

u−,`}
N

(A)
` (du,dz,dw) +

∫ t

0

∫
A

1M (A)(du,dr) = 0
∣∣∣X(A)

0

)
.

Since the process (X
(A)
t )t∈R+

is a pathwise unique strong solution of the SDE (4.14)
(see Step 4), it is progressively measurable with respect to the filtration generated by{

X
(A)
0 , (Wt,1)t∈R+

, . . . , (Wt,d)t∈R+
, N

(Ud\A)
1 , . . . , N

(Ud\A)
d ,M (Ud\A)

}
,

and all the σ-algebras belonging to this filtration are independent of N (A)
1 , . . . , N

(A)
d and

M (A). This yields that the process (X
(A)
t )t∈R+

is independent of N
(A)
1 , . . . , N

(A)
d and

M (A). Consequently, using also the independence of N
(A)
1 , . . . , N

(A)
d and M (A), and

that X0 = X
(A)
0 , by the tower rule for conditional expectation, for all t ∈ R++, we

obtain

P(τA > t |X0)

= E

(
P

({∫ t

0

∫
A

1M (A)(du,dr) = 0

}
∩

d⋂
`=1

{∫ t

0

∫
A

∫
U1
1{w6X(A)

u−,`}
N

(A)
` (du,dz,dw) = 0

} ∣∣∣∣ (X(A)
u )u∈[0,t]

) ∣∣∣∣X(A)
0

)
= E

(
P

(∫ t

0

∫
A

1M (A)(du,dr) = 0

)
×

d∏
`=1

P

(∫ t

0

∫
A

∫
U1
1{w6X(A)

u−,`}
N

(A)
` (du,dz,dw) = 0

∣∣∣∣ (X(A)
u )u∈[0,t]

) ∣∣∣∣X(A)
0

)
= P

(∫ t

0

∫
A

1M (A)(du,dr) = 0

)
× E

( d∏
`=1

P

(∫ t

0

∫
A

∫
U1
1{w6X(A)

u−,`}
N

(A)
` (du,dz,dw) = 0

∣∣∣∣ (X(A)
u )u∈[0,t]

) ∣∣∣∣X(A)
0

)

= e−ν(A)tE

(
exp

{
−

d∑
`=1

µ`(A)

∫ t

0

X
(A)
u,` du

} ∣∣∣∣X(A)
0

)

= e−ν(A)tE

(
exp

{
−

d∑
`=1

µ`(A)

∫ t

0

X
(A)
u,` du

} ∣∣∣∣X0

)
,

yielding (4.3) in case of t ∈ R++, i.e., part (ii) in case of t ∈ R++. Indeed, the last but
one equality can be checked as follows. For all t ∈ R+, we have

∫ t
0

∫
A

1M (A)(du,dr)

has a Poisson distribution with parameter
∫ t

0

∫
A

1 du ν(dr) = tν(A), and for all t ∈ R+

and ` ∈ {1, . . . , d}, the conditional distribution of∫ t

0

∫
A

∫
U1
1{w6X(A)

u−,`}
N

(A)
` (du,dz,dw)
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Distributional properties of jumps of multi-type CBI processes

given (X(A)
u )u∈[0,t] is a Poisson distribution with parameter∫ t

0

∫
A

∫
U1
1{w6X(A)

u−,`}
duµ`(dz) dw = µ`(A)

∫ t

0

X
(A)
u,` du.

Consequently, we have

P

(∫ t

0

∫
A

1M (A)(du,dr) = 0

)
= e−ν(A)t, t ∈ R+,

and for each ` ∈ {1, . . . , d},

P

(∫ t

0

∫
A

∫
U1
1{w6X(A)

u−,`}
N

(A)
` (du,dz,dw) = 0

∣∣∣∣ (X(A)
u )u∈[0,t]

)
= exp

{
−µ`(A)

∫ t

0

X
(A)
u,` du

}
, t ∈ R+.

In case of t = 0, (4.3) follows from the facts that (4.3) holds for all t ∈ R++ and both
sides of (4.3) as functions of t are right continuous at 0. Indeed, the latter statement
in case of the right hand side of (4.3) follows from the dominated convergence theorem
for conditional expectations, and, in case of the left hand side of (4.3), from

lim
t↓0
P(τA > t |X0) = lim

t↓0
E(1{τA>t} |X0) = E

(
lim
t↓0

1{τA>t} |X0

)
= E(1{τA>0} |X0) = P(τA > 0 |X0).

Step 7. Formula (4.4) directly follows by (4.3) and Proposition 3.2 taking into account
that the branching and immigration mechanisms of (X

(A)
t )t∈R+ have been calculated in

Step 4, i.e., we get part (iii) as well. 2

Next, we formulate a corollary of Theorem 4.2 for multi-type CB processes.

Corollary 4.3. Let (Zt)t∈R+
be a multi-type CB process with parameters (d, c,0,B, 0,µ).

Then for all t ∈ R+ and A ∈ B(Ud) with
∑d
`=1 µ`(A) <∞, we have

Pz(τA > t) = exp

{
−

d∑
`=1

z` ṽ
(A)
` (t,µ(A))

}
, z = (z1, . . . , zd)

> ∈ Rd+, (4.17)

where µ(A) = (µ1(A), . . . , µd(A)) and the function R+ 3 t 7→ ṽ(A)(t,µ(A)) ∈ Rd+ is given
in (4.6).

Proof. This readily follows from part (iii) of Theorem 4.2, since, by the assumption,
ψ ≡ 0, which yields that ν(A) = 0 and ψ(A) ≡ 0.

The following corollary can be considered as a multi-type counterpart of Corollaries
3.1 and 3.2 in He and Li [14].

Corollary 4.4. Let (Xt)t∈R+
be a multi-type CBI process with parameters (d, c,β,B, ν,µ)

such that the moment condition (2.2) holds.

(i) If A,B ∈ B(Ud) are such that A ⊆ B and
∑d
i=1 µi(B) <∞, then

ṽ(A)(t,µ(A)) 6 ṽ(B)(t,µ(B)), t ∈ R+,

where the functions R+ 3 t 7→ ṽ(A)(t,µ(A)) and R+ 3 t 7→ ṽ(B)(t,µ(B)) are the
unique locally bounded solutions of the system of differential equations (4.7) with
the choices A and B, respectively.
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(ii) If A ∈ B(Ud) is such that ν(A) +
∑d
i=1 µi(A) = 0, then

Px(τA =∞) = 1 and Px(Jt(A) = 0) = 1, x ∈ Rd+, t ∈ R++.

(iii) If one of the following two conditions hold:

(a) A ∈ B(Ud) is such that ν(A) ∈ (0,∞],
(b) A ∈ B(Ud) is such that ν(A) = 0 and

∑d
i=1 µi(A) ∈ (0,∞), (X

(A)
t )t∈R+

is
irreducible and ψ is not identically zero,

then
Px(τA <∞) = 1, x ∈ Rd+.

(iv) If Dϕ(A) 6= ∅, ψ ≡ 0 and A ∈ B(Ud) is such that 0 < µi(A) < ∞, i ∈ {1, . . . , d},
then

Px(τA =∞) = e−
〈
x,φ(A)(µ(A))

〉
, x ∈ Rd+,

provided that ṽ(A)(∞,µ(A)) ∈ (0,∞)d, where φ(A) is the inverse of the branching

mechanism ϕ(A) = (ϕ
(A)
1 , . . . , ϕ

(A)
d ) (for more details on the existence of φ(A), see

the discussion after Corollary 3.3).

Proof. (i): First, note that the function ṽ(A) depends on the parameters c, B and µ,
since the functions ϕ

(A)
1 , . . . , ϕ

(A)
d appearing in the system of differential equations (4.7)

depend on c, B and µ, but not on β and ν. Hence, in order to prove part (i), it is
enough to consider a multi-type CB process (Zt)t∈R+

with parameters (d, c,0,B, 0,µ).

Since A ⊆ B, we have
∑d
i=1 µi(A) <∞ and τA > τB, yielding that

Pz(τB > t) 6 Pz(τA > t), t ∈ R+, z ∈ Rd+.

Using (4.17), it implies that

exp

{
−

d∑
`=1

z` ṽ
(B)
` (t,µ(B))

}
6 exp

{
−

d∑
`=1

z` ṽ
(A)
` (t,µ(A))

}

for t ∈ R+ and z = (z1, . . . , zd)
> ∈ Rd+. By choosing z := e

(d)
i , i = 1, . . . , d, we

have ṽ
(B)
i (t,µ(B)) > ṽ

(A)
i (t,µ(A)), t ∈ R+, i = 1, . . . , d, implying that ṽ(B)(t,µ(B)) >

ṽ(A)(t,µ(A)), t ∈ R+, as desired.
(ii): Let A ∈ B(Ud) be such that ν(A) +

∑d
i=1 µi(A) = 0. Since µ(A) = 0 and

ϕ
(A)
` (0) = 0, ` ∈ {1, . . . , d}, by the uniqueness of a locally bounded solution of the

system of differential equations (4.7), we get ṽ(A)(t,µ(A)) = ṽ(A)(t,0) = 0, t ∈ R+.
Consequently, using again ν(A) = 0, µ(A) = 0 and ψ(A)(0) = 0, (4.4) yields that

Px(τA > t) = 1, x ∈ Rd+, t ∈ R+.

Therefore, using that {τA > t} ⊆ {Jt(A) = 0}, t ∈ R++, we have Px(Jt(A) = 0) = 1,
x ∈ Rd+, t ∈ R++. Further, we have

Px(τA =∞) = lim
t→∞

Px(τA > t) = 1, x ∈ Rd+.

(iii): First, we check that we may and do assume that 0 < ν(A) +
∑d
i=1 µi(A) < ∞.

In case of (b), it holds trivially by our assumption. In case of (a), if ν(A) ∈ (0,∞] and
ν(A) +

∑d
i=1 µi(A) =∞, then, by Remark 4.1, we have ν(A \Kε) +

∑d
i=1 µi(A \Kε) <∞

for all ε ∈ (0, 1). Using that A\Kε ↑ A as ε ↓ 0, the continuity from below of the measure ν
implies that ν(A \Kε) ↑ ν(A) as ε ↓ 0. Consequently, since ν(A) > 0, we get the existence
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of an ε ∈ (0, 1) such that 0 < ν(A \Kε) +
∑d
i=1 µi(A \Kε) <∞. We also have τA\Kε > τA,

so if Px(τA\Kε < ∞) = 1, x ∈ Rd+, then Px(τA < ∞) = 1, x ∈ Rd+, holds as well.

Therefore, it is enough to consider A ∈ B(Ud) such that 0 < ν(A) +
∑d
i=1 µi(A) <∞.

In what follows, let A ∈ B(Ud) be such that 0 < ν(A) +
∑d
i=1 µi(A) <∞.

In case of (a), we have tν(A)→∞ as t→∞, and, since
∑d
i=1 µi(A) <∞, we also

get µ(A) ∈ Rd+. Then using that ṽ(A)(t,µ(A)) ∈ Rd+ and ψ(A)(λ) ∈ R+, λ ∈ Rd+, as a
consequence of the continuity of probability and (4.4), we can conclude that

Px(τA =∞) = lim
t→∞

Px(τA > t) 6 lim
t→∞

e−ν(A)t = 0, x ∈ Rd+,

yielding that Px(τA =∞) = 0, x ∈ Rd+, as desired.

In case of (b), we have ν(A) = 0, yielding that ψ(A) = ψ, and, by our assumption,
we have that

∑d
i=1 µi(A) ∈ (0,∞). It implies that µ(A) ∈ Rd+ with µ(A) 6= 0. By

part (i) of Proposition 3.4, we have that the function R+ 3 t 7→ ṽ(A)(t,µ(A)) ∈ Rd+ is
increasing, and hence

ṽ(A)(∞,µ(A)) := lim
t→∞

ṽ(A)(t,µ(A)) ∈ [0,∞]d exists.

By the assumption, (X
(A)
t )t∈R+ is irreducible (i.e., B̃

(A)
, given in (4.15), is irre-

ducible), and hence, by part (iii) of Proposition 3.4, we have that ṽ(A)(∞,µ(A)) ∈ (0,∞]d.
Since ψ(A) = ψ and ψ is not identically zero, by Lemma 2.5, we get that

lim
t→∞

∫ t

0

ψ(A)
(
ṽ(A)(s,µ(A))

)
ds =∞. (4.18)

Indeed, using that the limit of the increasing function R+ 3 t 7→ ṽ(A)(t,µ(A)) ∈ Rd+ as

t→∞ is ṽ(A)(∞,µ(A)) ∈ (0,∞]d, we get that there exists t0 ∈ R+ such that

ṽ(A)(t,µ(A)) > ṽ(A)(t0,µ(A)) > 0 for all t > t0.

Using that ψ(A) = ψ is monotone increasing, it implies that

ψ(A)(ṽ(A)(t,µ(A))) > ψ(A)
(
ṽ(A)(t0,µ(A))

)
, t > t0.

Further, since ṽ(A)(t0,µ(A)) ∈ (0,∞)d, and ψ(A) = ψ is not identically zero, by

Lemma 2.5, we have that ψ(A)
(
ṽ(A)(t0,µ(A))

)
=ψ

(
ṽ(A)(t0,µ(A))

)
> 0, which yields (4.18).

In view of (4.4) and (4.18), using the continuity of probability and that ṽ(A)(t,µ(A)) ∈
Rd+, t ∈ R+, we have that

Px(τA =∞) = lim
t→∞

Px(τA > t) 6 lim sup
t→∞

exp

{
−
∫ t

0

ψ(A)
(
ṽ(A)(s,µ(A))

)
ds

}
= 0

for x ∈ Rd+, yielding that Px(τA =∞) = 0, x ∈ Rd+, as desired.

(iv): First, note that µ(A) ∈ (0,∞)d. By the continuity of probability, (4.17) and parts
(i) and (iv) of Proposition 3.4, we have that for every x = (x1, . . . , x`) ∈ Rd+,

Px(τA =∞) = lim
t→∞

Px(τA > t) = e−
〈
x,ṽ(A)(∞,µ(A))

〉
= e−

〈
x,φ(A)(µ(A))

〉
,

provided that ṽ(A)(∞,µ(A)) ∈ (0,∞)d, as desired.

EJP 29 (2024), paper 70.
Page 22/39

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1125
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Distributional properties of jumps of multi-type CBI processes

5 Local and global supremum for jumps

Recall that for all r > 0, Kr = {y ∈ Rd+ : ‖y‖ < r} denotes the open ball in Rd+
around 0 with radius r. For all r > 0, let Kr be the closure of Kr, and let Kc

r := Ud\Kr

and K
c

r := Ud \Kr. The next result is a generalization of Theorem 4.1 in He and Li [14]
to multi-type CBI processes.

Proposition 5.1. Let (Xt)t∈R+ be a multi-type CBI process with parameters (d, c,β,B,

ν,µ) such that the moment condition (2.2) holds.

(i) Then for all r > 0, t > 0 and x = (x1, . . . , xd)
> ∈ Rd+, we have P(Jt(K

c

r) <∞) = 1,
and

Px

(
sup
s∈(0,t]

‖∆Xs‖ 6 r
)

= exp

{
−ν(K

c

r)t−
d∑
`=1

x` ṽ
(K

c
r)

` (t,µ(K
c

r))−
∫ t

0

ψ(K
c
r)
(
ṽ(K

c
r)(s,µ(K

c

r))
)

ds

}
,

where the continuously differentiable function

R+ 3 t 7→ ṽ(K
c
r)(t,µ(K

c

r)) := (ṽ
(K

c
r)

1 (t,µ(K
c

r)), . . . , ṽ
(K

c
r)

d (t,µ(K
c

r)))
> ∈ Rd+

is the unique locally bounded solution to (4.7) with the choice A := K
c

r.
(ii) If, in addition, ν(Ud) +

∑d
i=1 µi(Ud) <∞, then for all t > 0 and x = (x1, . . . , xd)

> ∈
Rd+, we have P(Jt(Ud) <∞) = 1 and

Px

(
sup
s∈(0,t]

‖∆Xs‖ = 0
)

= exp

{
−ν(Ud)t−

d∑
`=1

x` ṽ
(Ud)
` (t,µ(Ud))−

∫ t

0

〈
β, ṽ(Ud)(s,µ(Ud))

〉
ds

}
.

Proof. (i). Let r > 0, t > 0 and x ∈ Rd+ be fixed arbitrarily. Note that the closure

of K
c

r coincides with Kc
r = Ud \Kr, and since 0 is not contained in Kc

r , by Remark 4.1,
we have that ν(K

c

r) +
∑d
i=1 µi(K

c

r) < ∞. Then, by part (i) of Theorem 4.2, we have
P(Jt(K

c

r) <∞) = 1. Next, we check that

Px

(
sup
s∈(0,t]

‖∆Xs‖ 6 r
)

= Px
(
τKc

r
> t
)
. (5.1)

If sups∈(0,t] ‖∆Xs‖ 6 r holds, then ‖∆Xs‖ 6 r, s ∈ (0, t], yielding that ∆Xs /∈ K
c

r,
s ∈ (0, t], and hence, due to the definition of τKc

r
, we have that τKc

r
> t. Here τKc

r
= t can

hold only with probability zero, since, if τKc
r

= t, then, using that ‖∆Xt‖ 6 r, we have
that there exists a strictly decreasing sequence (tn)n∈N such that tn ↓ t as n→∞ and
‖∆Xtn‖ > r, n ∈ N, and, in particular, we have Jt+1(K

c

r) = ∞, which has probability
zero. This implies that the left hand side of (5.1) is less than or equal to its right hand
side. Conversely, if τKc

r
> t, then ∆Xs /∈ K

c

r, s ∈ (0, t], and hence ‖∆Xs‖ 6 r, s ∈ (0, t],
yielding that sups∈(0,t] ‖∆Xs‖ 6 r. This implies that the right hand side of (5.1) is less
than or equal to its left hand side. Thus we get (5.1). Consequently, (5.1) and part (iii) of
Theorem 4.2 yield part (i).

(ii). The same proof works as in case of (i). Namely, similarly as (5.1) with the
convention K

c

0 := Ud, one can derive that

Px

(
sup
s∈(0,t]

‖∆Xs‖ = 0
)

= Px
(
τUd > t

)
, t > 0, x ∈ Rd+.

Consequently, part (iii) of Theorem 4.2 together with the fact that ψ(Ud)(λ) = 〈β,λ〉,
λ ∈ Rd+, yield part (ii).
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Remark 5.2. If (Xt)t∈R+
is a multi-type CBI process with parameters (d, c,β,B, ν,0)

(i.e., µ = 0) such that the moment condition (2.2) holds, then part (i) of Proposition 5.1
yields that

Px

(
sup
s∈(0,t]

‖∆Xs‖ > r
)

= 1− e−ν(K
c
r)t = 1− P

(
M((0, t]×Kc

r) = 0
)

(5.2)

for all r > 0, t > 0 and x ∈ Rd+. Indeed, µ(K
c

r) = 0 yields that ṽ(K
c
r)(s,µ(K

c

r)) =

ṽ(K
c
r)(s,0) = 0, s ∈ R+ (due to the uniqueness of a locally bounded solution of the

system of differential equations (4.7)) and, by ψ(K
c
r)(0) = 0, we have the first equality

in (5.2). The second equality in (5.2) follows from the fact that M is a Poisson random
measure on U1 ×Ud with intensity measure du ν(dr) (appearing in the SDE (2.5)). Recall
that, given a real-valued Lévy process (ξt)t∈R+

such that its Lévy measure Π satisfies
Π((−∞, 0]) = 0, then

Px

(
sup
s∈(0,t]

|∆ξs| > r
)

= 1− e−Π(R+\[0,r])t, t > 0, x > 0,

see, e.g., Kyprianou [23, Exercise 2.7]. This formula is in accordance with (5.2) with
d = 1. Indeed, in case of d = 1 and µ = 0, by the SDE (2.5), we have that

Px

(
sup
s∈(0,t]

|∆Xt| > r
)

= P
(

sup
s∈(0,t]

∆Yt > r
)
, t > 0, r > 0,

where (Yt)t∈R+
is the Lévy process given by

Yt :=

∫ t

0

∫
U1
rM(du,dr), t ∈ R+,

which has a Lévy measure ν.
In particular, if (Xt)t∈R+ is a multi-type CBI process with parameters (d, c,β,B, 0,0)

(i.e., ν = 0 and µ = 0), then (5.2) yields that

Px

(
sup
s∈(0,t]

‖∆Xs‖ > r
)

= 0, r > 0, t > 0, x ∈ Rd+.

Consequently, we obtain that Px
(

sups∈(0,t] ‖∆Xs‖ = 0
)

= 1 for all t > 0 and x ∈ Rd+. 2

Given a measure κ on (Ud,B(Ud)), let

κsup :=

{
sup

{
r > 0 : κ(K

c

r) > 0
}

if κ 6= 0,

0 if κ = 0.
(5.3)

One may call κsup the supremum of the support of κ (the smallest closed set whose
complement has measure 0 under κ). Note that if κ 6= 0, then κsup ∈ (0,∞] (for more
details, see our arXiv version [3]). Remark also that κsup 6 ηsup for measures κ and η on
(Ud,B(Ud)) satisfying κ 6 η (following from {r > 0 : κ(K

c

r) > 0} ⊆ {r > 0 : η(K
c

r) > 0}).
Next, we will give a counterpart of Corollary 4.1 in He and Li [14] for multi-type CBI

processes. For this, we need an auxiliary lemma in which we give a set of sufficient

conditions under which the multi-type CBI process (X
(K

c
r)

t )t∈R+ (for its definition, see

the paragraph before Theorem 4.2 by choosing A := K
c

r) is irreducible for sufficiently

large r > 0. Note that in case of d = 1, the single-type CBI process (X
(K

c
r)

t )t∈R+
=

(X
((r,∞))
t )t∈R+

is irreducible for all r > 0, since all the single-type CBI processes are
irreducible. Therefore, in the next lemma, we only consider the case d > 2, d ∈ N.
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Lemma 5.3. Let (Xt)t∈R+
be an irreducible multi-type CBI process with parameters

(d, c,β,B, ν,µ) such that d > 2, E(‖X0‖) < ∞ and the moment condition (2.2) hold.
Assume that µ 6= 0, i.e., µk 6= 0 for some k ∈ {1, . . . , d}. Then there exists a finite

constant r0 ∈
(
0,maxk=1,...,d (µk)sup

]
such that the multi-type CBI process (X

(K
c
r)

t )t∈R+

is irreducible for all r > r0.

Proof. Step 1. First, note that maxk=1,...,d (µk)sup > 0, which follows from µ 6= 0 and the

discussion after (5.3). Further, for all r > 0, the multi-type CBI process (X
(K

c
r)

t )t∈R+
is

well-defined, since ν(K
c

r) +
∑d
k=1 µk(K

c

r) < ∞ for all r > 0, see the discussion at the
beginning of the proof of Proposition 5.1. We need to prove that there exists a finite

r0 ∈
(
0,maxk=1,...,d (µk)sup

]
such that B̃

(K
c
r)
∈ Rd×d(+) is irreducible for all r > r0, where,

due to (2.4), (at this point, we hiddenly use that E(‖X0‖) < ∞ and that the moment
condition (2.2) hold), we have

b̃
(K

c
r)

i,j = b
(K

c
r)

i,j +

∫
Ud
zi µ

(Ud\K
c
r)

j (dz) = bi,j +

∫
Ud
zi1Kr

(z)µj(dz), (5.4)

for i 6= j with i, j ∈ {1, . . . , d}. Since (Xt)t∈R+
is irreducible, we have B̃ ∈ Rd×d(+) is

irreducible, where, due to (2.4),

b̃i,j = bi,j +

∫
Ud

(zi − δi,j)+ µj(dz), i, j ∈ {1, . . . , d}.

Step 2. Recall that for each j ∈ {1, . . . d}, we have (µj)sup = 0 if µj = 0, and
(µj)sup ∈ (0,∞] if µj 6= 0. Further, if (µj)sup ∈ (0,∞), then we check that µj(K

c

(µj)sup) = 0.

Indeed, by the definition of supremum, we have µj(K
c

(µj)sup+ε) = 0 for all ε > 0. Using

that K(µj)sup+ε ↓ K(µj)sup
as ε ↓ 0, we get K

c

(µj)sup+ε ↑ K
c

(µj)sup as ε ↓ 0, and the continuity
from below of the measure µj yields that

0 = µj

(
K
c

(µj)sup+ε

)
↑ µj

(
K
c

(µj)sup

)
as ε ↓ 0.

Consequently, we get µj(K
c

(µj)sup
) = 0, as desired.

Step 3. If µj 6= 0 is such that (µj)sup =∞ for some j ∈ {1, . . . , d}, then, since Kr ↑ Ud
as r ↑ (µj)sup =∞, by the continuity from below of the measure µj , we get

µj({z ∈ Kr : zi 6= 0}) ↑ µj({z ∈ Ud : zi 6= 0}) as r ↑ (µj)sup. (5.5)

If µj 6= 0 is such that (µj)sup ∈ (0,∞) for some j ∈ {1, . . . , d}, then, since Kr ↑ K(µj)sup as
r ↑ (µj)sup, by the continuity from below of the measure µj , we get

µj({z ∈ Kr : zi 6= 0}) ↑ µj({z ∈ K(µj)sup : zi 6= 0}) as r ↑ (µj)sup. (5.6)

Step 4. We check that there exists a finite constant r0 ∈
(
0,maxk=1,...,d (µk)sup

]
such

that if b̃i,j > 0 for some i 6= j, i, j ∈ {1, . . . , d}, then b̃
(K

c
r)

i,j > 0 holds for all r > r0. In

what follows, for each i 6= j, i, j ∈ {1, . . . , d} with b̃i,j > 0, we define an appropriate
constant ri,j , we let r0 be the maximum of these constants ri,j , and then we check that
it satisfies the property in question.

In the remaining part of this step, let i 6= j, i, j ∈ {1, . . . , d} with

b̃i,j = bi,j +

∫
Ud
zi µj(dz) > 0,

where the equality is due to (2.4). Then bi,j > 0 or
∫
Ud zi µj(dz) > 0.
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If bi,j > 0, then let ri,j := 1
2

(
1 ∧maxk=1,...,d (µk)sup

)
.

If bi,j = 0,
∫
Ud zi µj(dz) > 0 and (µj)sup =∞, then µj 6= 0 and µj({z ∈ Ud : zi 6= 0}) > 0,

since otherwise
∫
Ud zi µj(dz) =

∫
Ud zi1{z∈Ud:zi 6=0} µj(dz) = 0 were true, and hence (5.5)

implies the existence of an ri,j ∈ (0,∞) such that µj({z ∈ Kr : zi 6= 0}) > 0 for all
r > ri,j .

If bi,j = 0,
∫
Ud zi µj(dz) > 0 and (µj)sup ∈ (0,∞), then µj 6= 0 and

µj({z ∈ K(µj)sup
: zi 6= 0}) = µj({z ∈ Ud : zi 6= 0}) > 0,

where the equality follows from Step 2 and the inequality from
∫
Ud zi µj(dz) > 0 (detailed

before). Since

µj({z ∈ K(µj)sup
: zi 6= 0}) = µj({z ∈ K(µj)sup : zi 6= 0})

+ µj({z ∈ Ud : ‖z‖ = (µj)sup, zi 6= 0}),

we have µj({z ∈ K(µj)sup
: zi 6= 0}) > 0 or µj({z ∈ Ud : ‖z‖ = (µj)sup, zi 6= 0}) > 0

hold. In case of µj({z ∈ K(µj)sup
: zi 6= 0}) > 0, using (5.6), we have the existence of

an ri,j ∈ (0, (µj)sup) such that µj({z ∈ Kr : zi 6= 0}) > 0 for all r > ri,j . In case
of µj({z ∈ K(µj)sup

: zi 6= 0}) = 0 and µj({z ∈ Ud : ‖z‖ = (µj)sup, zi 6= 0}) > 0, let

ri,j := (µj)sup. Therefore, in this case we also have that µj({z ∈ Kr : zi 6= 0}) > 0 for all
r > ri,j , since {z ∈ Ud : ‖z‖ = (µj)sup} ⊆ Kr for all r > ri,j .

Let us define

r0 := max
{
ri,j : i 6= j, i, j ∈ {1, . . . , d}, b̃i,j > 0

}
.

Note that r0 is well-defined, since there exist i 6= j, i, j ∈ {1, . . . , d} for which b̃i,j > 0.

Indeed, otherwise B̃ would be a diagonal matrix, and hence B̃ would be reducible,
leading us to a contradiction, since (Xt)t∈R+

is irreducible due to our assumption.
Next, we check that the finite constant r0 defined above satisfies the following two

properties: r0 ∈
(
0,maxk=1,...,d (µk)sup

]
and if b̃i,j > 0 for some i 6= j, i, j ∈ {1, . . . , d},

then b̃
(K

c
r)

i,j > 0 holds for all r > r0.
Since (µj)sup 6 maxk=1,...,d (µk)sup, j ∈ {1, . . . , d}, by the choices of ri,j , i 6= j,

i, j ∈ {1, . . . , n}, we readily have that r0 ∈
(
0,maxk=1,...,d (µk)sup

]
.

Recall that if b̃i,j > 0 for some i 6= j, i, j ∈ {1, . . . , d}, then, by (2.4), we have
bi,j > 0 or

∫
Ud zi µj(dz) > 0.

If bi,j > 0, then, by (5.4), we get b̃
(K

c
r)

i,j > 0 for all r > 0 (in particular, for all r > r0).

If bi,j = 0 and
∫
Ud zi µj(dz) > 0, then, as we already checked, µj({z ∈ Kr : zi 6= 0}) >

0 for all r > r0 > ri,j > 0. This implies that
∫
Ud zi1Kr

(z)µj(dz) > 0 for all r > r0 (since,

otherwise,
∫
Ud zi1Kr

(z)µj(dz) =
∫
Kr

zi µj(dz) = 0 were true), which, as a consequence

of (5.4), yields that b̃
(K

c
r)

i,j > 0 for all r > r0.

Step 5. We check that B̃
(K

c
r)

is irreducible for all r > r0, where r0 is defined in

Step 4. On the contrary, let us assume that there exists an r > r0 such that B̃
(K

c
r)

is
reducible. Then there exist a permutation matrix P ∈ Rd×d and an integer p with
1 6 p 6 d− 1 such that

P>B̃
(K

c
r)
P =

(
A1 A2

0 A3

)
,

where A1 ∈ Rp×p, A2 ∈ Rp×(d−p), A3 ∈ R(d−p)×(d−p), and 0 ∈ R(d−p)×p is a null

matrix. Let ` 6= m, `,m ∈ {1, . . . , d} be arbitrary such that (P>B̃
(K

c
r)
P )`,m = 0.

Then, since P is a permutation matrix, there exist i 6= j, i, j ∈ {1, . . . , d} such that

EJP 29 (2024), paper 70.
Page 26/39

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1125
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Distributional properties of jumps of multi-type CBI processes

(P>B̃
(K

c
r)
P )`,m = b̃

(K
c
r)

i,j , and hence b̃
(K

c
r)

i,j = 0. Using Step 4 and that b̃i,j > 0 (which

holds due to B̃ ∈ Rd×d(+) ), we have b̃i,j = 0 (indeed, otherwise, b̃
(K

c
r)

i,j would be positive).

Using again that P is a permutation matrix, we get (P>B̃P )`,m = b̃i,j = 0. In particular,

we have (P>B̃P )`,m = 0 for ` ∈ {p + 1, . . . , d} and m ∈ {1, . . . , p}. It implies that B̃ is
reducible, leading us to a contradiction.

Proposition 5.4. Let (Xt)t∈R+
be an irreducible multi-type CBI process with param-

eters (d, c,β,B, ν,µ) such that the moment condition (2.2) holds. Let us suppose
that

(i) ψ is not identically zero (i.e., β 6= 0 or ν 6= 0),

(ii) for each i 6= j, i, j ∈ {1, . . . , d} with b̃i,j > 0, bi,j = 0 and (µj)sup ∈ (0,∞), we have
that µj({z ∈ K(µj)sup

: zi 6= 0}) > 0.

Then for all x ∈ Rd+, we have that

Px

(
sup

s∈(0,∞)

‖∆Xs‖ =
(
ν +

d∑
i=1

µi

)
sup

)
= 1.

Before proving Proposition 5.4, in the next remark, we shed some light on the role of
the assumption (ii) of Proposition 5.4.

Remark 5.5. In the proof of Proposition 5.4 in case of d > 2 and µ 6= 0, we will use
Lemma 5.3 in order to verify the existence of a finite constant r0 ∈

(
0,maxk=1,...,d (µk)sup

]
such that the multi-type CBI process (X

(K
c
r)

t )t∈R+
is irreducible for all r > r0. In the

case of R :=
(
ν +

∑d
i=1 µi

)
sup
∈ (0,∞), there is a subcase in the proof, where we will

need that (X
(K

c
R−ε)

t )t∈R+
is irreducible for sufficiently small ε > 0 in order to be able to

apply part (iii) of Corollary 4.4. For this, we need that r0 < R, which follows under the
assumption (ii) of Proposition 5.4 (see the forthcoming proof of Proposition 5.4). Finally,
we note that in case of d = 1, the statement of Proposition 5.4 gives back Corollary 4.1 in
He and Li [14], since in case of d = 1, all the (single-type) CBI processes are irreducible
and the assumption (ii) of Proposition 5.4 holds automatically. 2

Proof of Proposition 5.4. Recall the notation R = (ν+
∑d
i=1 µi)sup. Let x ∈ Rd+ be fixed

arbitrarily. First, note that{
sup

s∈(0,t2]

‖∆Xs‖ 6 y
}
⊆
{

sup
s∈(0,t1]

‖∆Xs‖ 6 y
}
, y > 0, t2 > t1 > 0,{

sup
s∈(0,∞)

‖∆Xs‖ 6 y
}

=
⋂
t>0

{
sup
s∈(0,t]

‖∆Xs‖ 6 y
}
, y > 0,

and, by the continuity of probability, for all y > 0, we get

Px

(
sup

s∈(0,∞)

‖∆Xs‖ 6 y
)

= lim
t→∞

Px

(
sup
s∈(0,t]

‖∆Xs‖ 6 y
)
. (5.7)

Case I. Assume that ν +
∑d
i=1 µi = 0. Then R = 0, and, by part (ii) of Corollary 4.4,

we have that Px(τUd =∞) = 1. Since

{τUd =∞} ⊆ {∆Xu = 0, ∀ u ∈ R++} ⊆
{

sup
s∈(0,∞)

‖∆Xs‖ = 0
}
,

this yields the statement in case of ν +
∑d
i=1 µi = 0.

EJP 29 (2024), paper 70.
Page 27/39

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1125
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Distributional properties of jumps of multi-type CBI processes

Case II. Assume that ν +
∑d
i=1 µi 6= 0. Then, as we discussed before Lemma 5.3, we

have R ∈ (0,∞].
Case II/(a). Assume, in addition, that R =∞. Then (ν +

∑d
i=1 µi)(K

c

M ) ∈ (0,∞) for

each M ∈ N. Indeed, for each M ∈ N, Remark 4.1 implies that (ν +
∑d
i=1 µi)(K

c

M ) <∞,

and, by the definition of supremum, there exists rM > M such that (ν+
∑d
i=1 µi)(K

c

rM ) >

0 and K
c

rM ⊆ K
c

M . Consequently, if µ = 0, then ν(K
c

M ) > 0 for each M ∈ N, and hence,
by part (iii) of Corollary 4.4, we have Px(τKc

M
< ∞) = 1, M ∈ N. If µ 6= 0, then we

can also apply part (iii) of Corollary 4.4, since in case of d = 1, every (single-type) CBI
process is irreducible; and in case of d > 2, using that (Xt)t∈R+ is irreducible (due to
our assumption), by Lemma 5.3, there exists a finite constant r0 ∈

(
0,maxk=1,...,d (µk)sup

]
such that the multi-type the CBI process (X

(K
c
M )

t )t∈R+
is irreducible for each M > r0,

M ∈ N, and, in view of part (iii) of Corollary 4.4, we get that

Px(τKc
M
<∞) = 1 for each M > r0, M ∈ N,

All in all, in Case II/(a), we have that

Px(τKc
M
<∞) = 1

for each M ∈ N in case of d = 1 or µ = 0, and for each M > r0, M ∈ N in case of d > 2

and µ 6= 0.
In what follows, first, we handle the case d > 2 and µ 6= 0. Then, using that

{τKc
M
<∞} ⊆ {sups∈(0,∞) ‖∆Xs‖ > M}, M ∈ N, we have

Px

(
sup

s∈(0,∞)

‖∆Xs‖ > M
)

= 1 (5.8)

for each M > r0, M ∈ N. Since{
sup

s∈(0,∞)

‖∆Xs‖ =∞
}

=

∞⋂
M=br0c+1

{
sup

s∈(0,∞)

‖∆Xs‖ > M
}
,

the continuity of probability yields that

Px

(
sup

s∈(0,∞)

‖∆Xs‖ =∞
)

= 1.

The other two cases d = 1 or µ = 0 can be handled in the same way (in these two
cases (5.8) holds for each M ∈ N). This yields the statement in Case II/(a).

Case II/(b). Assume, in addition, that R ∈ (0,∞). Using that ν 6 ν +
∑d
i=1 µi and

µk 6 ν +
∑d
i=1 µi, k ∈ {1, . . . , d}, we have νsup 6 R < ∞ and (µk)sup 6 R < ∞,

k ∈ {1, . . . , d}. Further, by the definition of supremum, we have (ν+
∑d
i=1 µi)(K

c

R+ε) = 0

for all ε > 0. Hence, using part (i) of Proposition 5.1, for all t > 0 and ε > 0, we get

Px

(
sup
s∈(0,t]

‖∆Xs‖ 6 R+ ε
)

= e0 = 1,

where we used that the solution (ṽ(K
c
R+ε)(t,0))t∈R+

of the system (4.7) of differential

equations with µ(K
c

R+ε) = 0 is the identically 0 function and ψ(K
c
R+ε)(0) = 0. Hence,

by (5.7), for all ε > 0, we have

Px

(
sup

s∈(0,∞)

‖∆Xs‖ 6 R+ ε
)

= 1. (5.9)
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Moreover, using again the definition of supremum and Remark 4.1, one can see that(
ν +

d∑
i=1

µi

)
(K

c

R−ε) ∈ (0,∞), ε ∈ (0, R). (5.10)

Indeed, by the definition of supremum, for all ε ∈ (0, R), there exists Rε ∈ (R −
ε,R) such that

(
ν +

∑d
i=1 µi

)
(K

c

Rε) > 0, and, since K
c

Rε ⊆ K
c

R−ε, it yields that(
ν +

∑d
i=1 µi

)
(K

c

R−ε) > 0. Further, the discussion at the beginning of the proof of

Proposition 5.1 implies that
(
ν +

∑d
i=1 µi

)
(K

c

R−ε) <∞.

If µ = 0, then, as a consequence of (5.10), ν(K
c

R−ε) ∈ (0,∞), ε ∈ (0, R), and hence,
using part (iii) of Corollary 4.4, for all ε ∈ (0, R), we have

Px
(
τKc

R−ε
<∞

)
= 1. (5.11)

If d = 1 and µ 6= 0, then using that every single-type CBI process is irreducible, part
(iii) of Corollary 4.4 implies that (5.11) holds for all ε ∈ (0, R).

If d > 2 and µ 6= 0, then, using that (Xt)t∈R+
is irreducible (due to our assumption),

by Lemma 5.3, there exists a finite constant r0 ∈
(
0,maxk=1,...,d (µk)sup

]
⊆ (0, R] such

that the multi-type CBI process (X
(K

c
r)

t )t∈R+
is irreducible for all r > r0. Next, we

check that in this case we have r0 < R. By Step 4 in the proof of Lemma 5.3 and
the assumption (ii), for each i 6= j, i, j ∈ {1, . . . , d} with b̃i,j > 0 we have that ri,j =
1
2

(
1 ∧ maxk=1,...,d (µk)sup

)
or ri,j ∈ (0, (µj)sup), and hence ri,j ∈ (0,maxk=1,...,d (µk)sup).

This yields that r0 ∈ (0,maxk=1,...,d (µk)sup) (following from the definition of r0 in Step 4
in the proof of Lemma 5.3), and consequently,

0 < r0 < max
k=1,...,d

(µk)sup 6
(
ν +

d∑
i=1

µi

)
sup

= R.

Therefore, we have r0 < R, as desired. Since r0 < R, using (5.10), for all ε ∈ (0, R −
r0), we have that

(
ν +

∑d
i=1 µi

)
(K

c

R−ε) ∈ (0,∞) and (X
(K

c
R−ε)

t )t∈R+
is irreducible.

Consequently, using again part (iii) of Corollary 4.4, we get that (5.11) holds for all
ε ∈ (0, R− r0).

All in all, in Case II/(b), we get that

1 = Px
(
τKc

R−ε
<∞

)
6 Px

(
sup

s∈(0,∞)

‖∆Xs‖ > R− ε

)
for all ε ∈ (0, R) in case of d = 1 or µ = 0, and for all ε ∈ (0, R− r0) in case of d > 2 and
µ 6= 0.

In what follows, we handle the case d > 2 and µ 6= 0, the other two cases d = 1

or µ = 0 can be handled in the same way (replace ε ∈ (0, R − r0) by ε ∈ (0, R) in the
following argument). Then for all ε ∈ (0, R− r0), we have

Px

(
sup

s∈(0,∞)

‖∆Xs‖ > R− ε
)

= 1. (5.12)

Using (5.9) and (5.12), for all ε ∈ (0, R− r0), we get

Px

(
sup

s∈(0,∞)

‖∆Xs‖ ∈ (R− ε,R+ ε]
)

= 1.

By taking the limit as ε ↓ 0, the continuity of probability implies that

Px

(
sup

s∈(0,∞)

‖∆Xs‖ = R
)

= 1.
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This yields the statement in Case II/(b) as well. 2

In what follows, we will study the relationship between the distributional properties
of jumps for a multi-type CBI process (Xt)t∈R+

and its total Lévy measure ν +
∑d
i=1 µi

on (Ud,B(Ud)).
For a càdlàg, Rd-valued stochastic process (ξt)t∈R+

, let us introduce the notation

sup
s∈(0,t]

ξs :=

(
sup
s∈(0,t]

ξs,1, . . . , sup
s∈(0,t]

ξs,d

)>
∈ Rd, t > 0,

where ξt = (ξt,1, . . . , ξt,d)
>, t ∈ R+. Recall the notation

Rd =

{(
d∏
i=1

[0, wi]

)
\ {0} : w1, . . . , wd ∈ R++

}
.

Given a multi-type CBI process (Xt)t∈R+
, recall that for all t > 0 and x ∈ Rd+, the

probability measure πt,x on (Rd+,B(Rd+)) is given by

πt,x(A) = Px

(
sup
s∈(0,t]

∆Xs ∈ A

)
, A ∈ B(Rd+).

The forthcoming Theorem 5.6 can be considered as a multi-type counterpart of
Theorem 4.2 in He and Li [14], which is about single-type CBI processes. Theorem 4.2 in
He and Li [14] is also contained as Theorem 10.23 in Li [26]. In the proof of part (ii) of
Theorem 5.6, we use quite different arguments from those used in the proof of Theorem
4.2 in He and Li [14].

Theorem 5.6. Let (Xt)t∈R+ be a multi-type CBI process with parameters (d, c,β,B,

ν,µ) such that the moment condition (2.2) holds.

(i) If (ν +
∑d
i=1 µi)(A) = 0 with some A ∈ Rd, then πt,x(A) = 0 for all t > 0 and

x ∈ Rd+.

(ii) If πt,x(A) = 0 for some t > 0, x ∈ Rd++ and A ∈ Rd, then (ν +
∑d
i=1 µi)(A) = 0.

Furthermore, in case of β ∈ Rd++, we can extend it to x ∈ Rd+, i.e., if πt,x(A) = 0

for some t > 0, x ∈ Rd+ and A ∈ Rd, then (ν +
∑d
i=1 µi)(A) = 0.

Proof. (i). Let t > 0, x ∈ Rd+, and A ∈ Rd be such that ν(A) +
∑d
i=1 µi(A) = 0. We check

that {
sup
s∈(0,t]

∆Xs ∈ A
}
⊆ {τA 6 t}. (5.13)

If sups∈(0,t] ∆Xs ∈ A, then there exists a = (a1, . . . , ad)
> ∈ A such that sups∈(0,t] ∆Xs =

a. Then, by the definition of sups∈(0,t] ∆Xs, we get that sups∈(0,t] ∆Xs,i = ai, i = 1, . . . , d.
Since a ∈ A and 0 /∈ A, we have that ai > 0, i ∈ {1, . . . , d}, and there exists i0 ∈ {1, . . . , d}
such that ai0 > 0. Further, by the definition of supremum of a set of real numbers, there

exists a sequence (s
(i0)
n )n∈N in (0, t] such that ∆X

s
(i0)
n ,i0

↑ ai0 as n→∞, and hence, since
ai0 > 0, we also have ∆X

s
(i0)
n ,i0

> 0 (in particular, ∆X
s
(i0)
n
6= 0) for sufficiently large

n ∈ N. Using that sups∈(0,t] ∆Xs = a, we get that ∆X
s
(i0)
n

6 a, n ∈ N. Consequently,
since A ∈ Rd, it yields that ∆X

s
(i0)
n
∈ A for sufficiently large n ∈ N. Hence, we obtain

that Jt(A) > 1 and τA 6 t, yielding (5.13).
Consequently, part (iii) of Theorem 4.2 implies that for all t > 0 and x ∈ Rd+, we have

that

πt,x(A) 6 Px(τA 6 t) = 1− Px(τA > t) = 1− e0 = 0,
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since µ(A) = 0 implies that ṽ(A)(t,µ(A)) = 0, t ∈ R+, and ψ(A)(0) = 0. This yields
the assertion of part (i).

(ii). We will prove it by contradiction. Let t > 0 and A ∈ Rd be such that πt,x(A) = 0,
where x ∈ Rd++ or β ∈ Rd++ (and x ∈ Rd+), and, on the contrary, let us assume that(
ν +

∑d
`=1 µ`

)
(A) > 0. We check that there exists an r0 > 0 such that Kr \ {0} ⊆ A

and
(
ν +

∑d
`=1 µ`

)
(A ∩Kc

r) ∈ (0,∞) for all r ∈ (0, r0). First, note that if A has the form

(
∏d
i=1[0, wi]) \ {0} with some w1, . . . , wd ∈ R++, then K 1

2 (w1∧···∧wd) \ {0} ⊆ A. Further,
by Remark 4.1, we have(

ν +

d∑
`=1

µ`

)
(A ∩Kc

r) 6
(
ν +

d∑
`=1

µ`

)
(Kc

r) <∞ for all r > 0.

Moreover, since A is a nondegenerate rectangle in Rd+ anchored at 0, we have that

A =
⋃
r>0(A ∩Kc

r), and hence the continuity below of the measure ν +
∑d
`=1 µ` implies

that

lim
r↓0

(
ν +

d∑
`=1

µ`

)
(A ∩Kc

r) =
(
ν +

d∑
`=1

µ`

)
(A) > 0.

This yields the existence of an r0 ∈ (0, 1
2 (w1∧· · ·∧wd)) such that

(
ν+

∑d
`=1 µ`

)
(A∩Kc

r) ∈
(0,∞) for all r ∈ (0, r0), as desired.

Using part (i) of Corollary 4.4, Kc
r \ A ⊆ Kc

r , and that
(∑d

`=1 µ`
)
(Kc

r) < ∞ (see
Remark 4.1), we have

ṽ(Kc
r\A)(t,µ(Kc

r \A)) 6 ṽ(Kc
r)(t,µ(Kc

r)). (5.14)

By (4.4), we obtain that

Px(τKc
r
> t) = exp

{
−ν(Kc

r)t−
d∑
`=1

x` ṽ
(Kc

r)
` (t,µ(Kc

r))−
∫ t

0

ψ(Kc
r)
(
ṽ(Kc

r)(s,µ(Kc
r))
)

ds

}
.

Here for all λ ∈ Rd+, by the definitions of ψ(Kc
r) and ψ(Kc

r\A) (see (4.5)), we have that

ψ(Kc
r)(λ) = ψ(λ)−

∫
Kc
r

(
1− e−〈λ,r〉

)
ν(dr)

= ψ(λ)−
∫
Kc
r\A

(
1− e−〈λ,r〉

)
ν(dr)−

∫
Kc
r∩A

(
1− e−〈λ,r〉

)
ν(dr)

= ψ(Kc
r\A)(λ)−

∫
Kc
r∩A

(
1− e−〈λ,r〉

)
ν(dr),

and hence

Px(τKc
r
> t)

= exp
{
− ν(Kc

r \A)t−
d∑
`=1

x` ṽ
(Kc

r)
` (t,µ(Kc

r))−
∫ t

0

ψ(Kc
r\A)

(
ṽ(Kc

r)(s,µ(Kc
r))
)

ds

− ν(Kc
r ∩A)t+

∫ t

0

(∫
Kc
r∩A

(
1− e−

〈
ṽ(Kcr)(s,µ(Kc

r)),r
〉)
ν(dr)

)
ds
}

= exp
{
− ν(Kc

r \A)t−
d∑
`=1

x` ṽ
(Kc

r)
` (t,µ(Kc

r))−
∫ t

0

ψ(Kc
r\A)

(
ṽ(Kc

r)(s,µ(Kc
r))
)

ds

−
∫ t

0

(∫
Kc
r∩A

e−
〈
ṽ(Kcr)(s,µ(Kc

r)),r
〉
ν(dr)

)
ds
}
,

(5.15)
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where the second equality follows from
∫ t

0
(
∫
Kc
r∩A

1 ν(dr))ds = tν(Kc
r ∩A) <∞.

Case I: First, we consider the case ν(A ∩Kc
r) > 0. Using (4.5) and that β ∈ Rd+, we

have ψ(Kc
r\A) is monotone increasing. This together with (5.14) and (5.15) yield that

Px(τKc
r
> t)

< exp

{
−ν(Kc

r \A)t−
d∑
`=1

x` ṽ
(Kc

r)
` (t,µ(Kc

r))−
∫ t

0

ψ(Kc
r\A)

(
ṽ(Kc

r)(s,µ(Kc
r))
)

ds

}

6 exp

{
− ν(Kc

r \A)t−
d∑
`=1

x` ṽ
(Kc

r\A)
` (t,µ(Kc

r \A))

−
∫ t

0

ψ(Kc
r\A)

(
ṽ(Kc

r\A)(s,µ(Kc
r \A))

)
ds

}
,

where the strict inequality follows from ν(A ∩Kc
r) > 0 and e−

〈
ṽ(Kcr)(s,µ(Kc

r)),r
〉
∈ (0, 1]

for s > 0 (following from
∑d
`=1 µ`(K

c
r) <∞ and ṽ(Kc

r)(s,µ(Kc
r)) ∈ Rd+, s ∈ R+). Using

again (4.4), the right hand side of the above inequality coincides with Px(τKc
r\A > t),

and hence we have

Px(τKc
r
> t) < Px(τKc

r\A > t). (5.16)

Furthermore, we get{
sup
s∈(0,t]

∆Xs ∈ A ∩Kc
r

}
⊇ {τKc

r∩A 6 t} ∩ {τKc
r\A > t} ∩ {Jt+1(Kc

r ∩A) <∞}

=
(
{τKc

r
6 t} \ {τKc

r\A 6 t}
)
∩ {Jt+1(Kc

r ∩A) <∞},
(5.17)

where the equality follows from the (not necessarily disjoint) decomposition

{τKc
r
6 t} = {τKc

r∩A 6 t} ∪ {τKc
r\A 6 t},

and the inclusion can be checked as follows. If Jt+1(Kc
r ∩A) <∞, then (Xs)s∈R+ has at

most a finite number of jumps of which the size vectors belong to the set Kc
r ∩A during

the time interval (0, t + 1]. If, in addition, τKc
r∩A 6 t and τKc

r\A > t hold, then, on the
one hand, (Xs)s∈R+ has at least one jump, at time point τKc

r∩A, of which the size vector
belongs to Kc

r ∩ A during the time interval (0, t]; and, on the other hand, there is no
jump of which the size vector belongs to Kc

r \ A = Kc
r ∩ Ac = (Kr ∪ A)c = (A ∪ {0})c

(due to Kr \ {0} ⊆ A) during the time interval (0, t]. Consequently, on the one hand,
we get sups∈(0,t] ∆Xs ∈ Kc

r , since, with the notation y := ∆XτKcr∩A
and using that

τKc
r∩A ∈ (0, t], we have sups∈(0,t] ∆Xs,i > yi > 0, i = 1, . . . , d, and hence∥∥∥∥∥ sup

s∈(0,t]

∆Xs

∥∥∥∥∥ =

(
d∑
i=1

(
sup
s∈(0,t]

∆Xs,i

)2
)1/2

>

(
d∑
i=1

y2
i

)1/2

= ‖y‖ > r.

On the other hand, taking into account that A has the form (
∏d
i=1[0, wi]) \ {0} with some

w1, . . . , wd ∈ R++, we get sups∈(0,t] ∆Xs ∈ A, yielding the inclusion in (5.17).

Since
(
ν +

∑d
`=1 µ`

)
(A ∩Kc

r) <∞, by part (i) of Theorem 4.2, we have

Px(Js(K
c
r ∩A) <∞) = 1, s > 0,

and consequently, by (5.17), we obtain that

πt,x(Kc
r ∩A) > Px

(
{τKc

r
6 t} \ {τKc

r\A 6 t}
)

= Px(τKc
r
6 t)− Px(τKc

r\A 6 t) = Px(τKc
r\A > t)− Px(τKc

r
> t),

(5.18)
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where the second equality follows from τKc
r
6 τKc

r\A yielding that {τKc
r\A 6 t} ⊆

{τKc
r
6 t}. Hence, by (5.16), we get πt,x(Kc

r ∩A) > 0. This is a contradiction, since the
assumption πt,x(A) = 0 yields that πt,x(Kc

r ∩A) = 0.

Case II: Next, we consider the case ν(A ∩Kc
r) = 0. Then, since

(
ν +

∑d
`=1 µ`

)
(A ∩

Kc
r) ∈ (0,∞), we must have

∑d
`=1 µ`(A ∩Kc

r) ∈ (0,∞). Hence, we obtain that

d∑
`=1

µ`(K
c
r) =

d∑
`=1

µ`(K
c
r ∩A) +

d∑
`=1

µ`(K
c
r \A) >

d∑
`=1

µ`(K
c
r \A).

We are going to prove that for all z = (z1, . . . , zd) ∈ Rd++, there exists a sufficiently
small t0 ∈ (0, t) (may depend on z, t, r and A) such that

d∑
`=1

z`ṽ
(Kc

r)
` (s,µ(Kc

r)) >

d∑
`=1

z`ṽ
(Kc

r\A)
` (s,µ(Kc

r \A)), s ∈ (0, t0]. (5.19)

By (4.7), we have that

d∑
`=1

z`

(
∂1ṽ

(Kc
r)

` (s,µ(Kc
r))− ∂1ṽ

(Kc
r\A)

` (s,µ(Kc
r \A))

)
=

d∑
`=1

z`

(
µ`(K

c
r)− µ`(Kc

r \A)− ϕ(Kc
r)

` (ṽ(Kc
r)(s,µ(Kc

r)))

+ ϕ
(Kc

r\A)
` (ṽ(Kc

r\A)(s,µ(Kc
r \A)))

)
=

d∑
`=1

z`µ`(K
c
r ∩A)−

d∑
`=1

z`

(
ϕ

(Kc
r)

` (ṽ(Kc
r)(s,µ(Kc

r)))

− ϕ(Kc
r\A)

` (ṽ(Kc
r\A)(s,µ(Kc

r \A)))
)

(5.20)

for s ∈ R++ and

ṽ(Kc
r)(0,µ(Kc

r)) = 0 = ṽ(Kc
r\A)(0,µ(Kc

r \A)). (5.21)

Using that ϕ
(Kc

r)
` (0) = ϕ

(Kc
r\A)

` (0) = 0, ` ∈ {1, . . . , d}, (5.21) yields that

d∑
`=1

z`

(
ϕ

(Kc
r)

` (ṽ(Kc
r)(0,µ(Kc

r)))− ϕ
(Kc

r\A)
` (ṽ(Kc

r\A)(0,µ(Kc
r \A)))

)
= 0. (5.22)

By part (iii) of Theorem 4.2 and the continuity of ϕ, for all S ∈ B(Ud) with
∑d
`=1 µ`(S) <

∞, we get that the functions Rd+ 3 λ 7→ ϕ(S)(λ) and R+ 3 t 7→ ṽ(S)(t,µ(S)) are
continuous. Hence, using also (5.22), we have that

lim
s↓0

[
d∑
`=1

z`

(
ϕ

(Kc
r)

` (ṽ(Kc
r)(s,µ(Kc

r)))− ϕ
(Kc

r\A)
` (ṽ(Kc

r\A)(s,µ(Kc
r \A)))

)]
= 0.

Since
∑d
`=1 µ`(K

c
r ∩ A) ∈ (0,∞) and z ∈ Rd++, we have

∑d
`=1 z`µ`(K

c
r ∩ A) ∈ (0,∞).

Consequently, the limit of the right hand side of (5.20) as s ↓ 0 is
∑d
`=1 z`µ`(K

c
r ∩A) ∈

(0,∞). Hence, using that t > 0 and the definition of the limit of a function at a point,
there exists a sufficiently small t0 ∈ (0, t) such that the right hand side of (5.20) is
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positive for all s ∈ [0, t0]. Consequently, using that the right hand side of (5.20) as
a function of s is continuous, its integral on [0, s] is positive for all s ∈ (0, t0]. Then,
integrating the left and right hand sides of (5.20) and using (5.21), we get

d∑
`=1

z`

(
ṽ

(Kc
r)

` (s,µ(Kc
r))− ṽ

(Kc
r\A)

` (s,µ(Kc
r \A))

)
=

∫ s

0

z`

d∑
`=1

[
µ`(K

c
r ∩A)−

(
ϕ

(Kc
r)

` (ṽ(Kc
r)(u,µ(Kc

r)))− ϕ
(Kc

r\A)
` (ṽ(Kc

r\A)(u,µ(Kc
r \A)))

)]
du

is positive for all s ∈ (0, t0], implying (5.19), as desired.

Using (4.4) (similarly, as we derived (5.15) for which we did not use that πt,x(A) = 0)
together with ν(A ∩Kc

r) = 0, we can get that

Px(τKc
r
> t0)

= exp
{
− ν(Kc

r \A)t0 −
d∑
`=1

x` ṽ
(Kc

r)
` (t0,µ(Kc

r))−
∫ t0

0

ψ(Kc
r\A)

(
ṽ(Kc

r)(s,µ(Kc
r))
)

ds
}

< exp
{
− ν(Kc

r \A)t0 −
d∑
`=1

x` ṽ
(Kc

r\A)
` (t0,µ(Kc

r \A))

−
∫ t0

0

ψ(Kc
r\A)

(
ṽ(Kc

r\A)(s,µ(Kc
r \A))

)
ds
}

= Px(τKc
r\A > t0),

(5.23)

where, at the second step, the strict inequality can be checked as follows. In case of
x ∈ Rd++, it directly follows from (5.19) together with the facts that ṽ(Kc

r\A)(s,µ(Kc
r \

A)) 6 ṽ(Kc
r)(s,µ(Kc

r)), s ∈ [0, t0] (due to part (i) of Corollary 4.4, Kc
r \ A ⊆ Kc

r , and(∑d
`=1 µ`

)
(Kc

r) < ∞) and that ψ(Kc
r\A) is monotone increasing. In case of β ∈ Rd++,

using (4.5), we have

∫ t0

0

ψ(Kc
r\A)

(
ṽ(Kc

r)(s,µ(Kc
r))
)

ds

=

∫ t0

0

〈
β, ṽ(Kc

r)(s,µ(Kc
r))
〉

ds+

∫ t0

0

∫
Ud\(Kc

r\A)

(1− e−〈ṽ
(Kcr)(s,µ(Kc

r)),r〉) ν(dr) ds.

Using β ∈ Rd++, (5.19) and the continuity of the functions R+ 3 s 7→ ṽ(Kc
r)(s,µ(Kc

r)) and

R+ 3 s 7→ ṽ(Kc
r\A)(s,µ(Kc

r \A)), we have

∫ t0

0

〈
β, ṽ(Kc

r)(s,µ(Kc
r))
〉

ds−
∫ t0

0

〈
β, ṽ(Kc

r\A)(s,µ(Kc
r \A))

〉
ds

=

∫ t0

0

(
d∑
`=1

β`

(
ṽ

(Kc
r)

` (s,µ(Kc
r))− ṽ

(Kc
r\A)

` (s,µ(Kc
r \A))

))
ds > 0.

Consequently, using also ṽ(Kc
r\A)(s,µ(Kc

r \ A)) 6 ṽ(Kc
r)(s,µ(Kc

r)), s ∈ [0, t0], we obtain
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that∫ t0

0

ψ(Kc
r\A)

(
ṽ(Kc

r)(s,µ(Kc
r))
)

ds

>

∫ t0

0

〈
β, ṽ(Kc

r\A)(s,µ(Kc
r \A))

〉
ds+

∫ t0

0

∫
Ud\(Kc

r\A)

(1− e−〈ṽ
(Kcr)(s,µ(Kc

r)),r〉) ν(dr) ds

>
∫ t0

0

〈
β, ṽ(Kc

r\A)(s,µ(Kc
r \A))

〉
ds+

∫ t0

0

∫
Ud\(Kc

r\A)

(1− e−〈ṽ
(Kcr\A)(s,µ(Kc

r\A)),r〉) ν(dr) ds

=

∫ t0

0

ψ(Kc
r\A)

(
ṽ(Kc

r\A)(s,µ(Kc
r \A))

)
ds.

Just as in Case I (see (5.16) and (5.18)), we can see that (5.23) implies that πt0,x(Kc
r ∩

A) > 0. The aim of the following discussion is to show that πt,x(Kc
r ∩ A) > 0 holds as

well. Let Ar ∈ Rd be such that Ar ⊆ Kr \{0} ⊆ A. By the Markov property of (Xs)s∈R+
,

we have

πt,X0
(Kc

r ∩A) > P
({

sup
s∈(0,t0]

∆Xs ∈ Kc
r ∩A

}
∩
{

sup
s∈(t0,t]

∆Xs ∈ Ar ∪ {0}
} ∣∣∣X0

)
= E

(
1{sups∈(0,t0] ∆Xs∈Kc

r∩A}P
(

sup
s∈(t0,t]

∆Xs ∈ Ar ∪ {0}
∣∣ σ(Xu, u ∈ [0, t0])

) ∣∣∣X0

)
= E

(
1{sups∈(0,t0] ∆Xs∈Kc

r∩A}P
(

sup
s∈(t0,t]

∆Xs ∈ Ar ∪ {0}
∣∣Xt0

) ∣∣∣X0

)
.

(5.24)

Recall that the conditional distribution of (Xs)s∈[t0,t] given Xt0 = y (where y ∈
Rd+) coincides with that of (Xs)s∈[0,t−t0] given X0 = y as a consequence of the time-
homogeneous Markov property of (Xs)s∈R+

. Consequently, we obtain that

P
(

sup
s∈(t0,t]

∆Xs ∈ Ar ∪ {0}
∣∣Xt0 = y

)
= Py

(
sup

s∈(0,t−t0]

∆Xs ∈ Ar ∪ {0}
)

(5.25)

for y ∈ Rd+. Using that Ar is of the form (
∏d
i=1[0, wi])\{0} with some w1, . . . , wd ∈ R++,

i = 1, . . . , d, we have{
sup

s∈(0,t−t0]

∆Xs ∈ Ar ∪ {0}
}
∩ {Jt−t0+1(Acr ∩ Ud) <∞}

=
{
τAcr∩Ud > t− t0

}
∩ {Jt−t0+1(Acr ∩ Ud) <∞}.

By Remark 4.1, we have (ν +
∑d
i=1 µi)(A

c
r ∩ Ud) <∞, and hence part (i) of Theorem 4.2

yields that P(Jt−t0+1(Acr ∩ Ud) <∞) = 1. This together with (5.25) implies that

P
(

sup
s∈(t0,t]

∆Xs ∈ Ar ∪ {0}
∣∣Xt0 = y

)
= Py

(
τAcr∩Ud > t− t0

)
, y ∈ Rd+. (5.26)

Using again (ν+
∑d
i=1 µi)(A

c
r∩Ud) <∞, by part (iii) of Theorem 4.2, we get Py(τAcr∩Ud >

t− t0) > 0, y ∈ Rd+. Hence, by (5.26), we obtain that

P
(

sup
s∈(t0,t]

∆Xs ∈ Ar ∪ {0}
∣∣Xt0

)
> 0 P-almost surely. (5.27)

Consequently, taking into account that πt0,x(Kc
r ∩A) = Px(sups∈(0,t0] ∆Xs ∈ Kc

r ∩A) > 0,
we check that πt,x(Kc

r ∩ A) > 0. On the contrary, let us suppose that πt,x(Kc
r ∩ A) = 0.

Then, by (5.24), we would have that

1{sups∈(0,t0] ∆Xs∈Kc
r∩A}Px

(
sup

s∈(t0,t]

∆Xs ∈ Ar ∪ {0}
∣∣Xt0

)
= 0 Px-almost surely.
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Then, taking into account (5.27), we would get Px(sups∈(0,t0] ∆Xs ∈ Kc
r ∩ A) = 0,

leading us to a contradiction with the fact that Px(sups∈(0,t0] ∆Xs ∈ Kc
r ∩ A) > 0, as

desired.

All in all, we derived that πt,x(Kc
r ∩A) > 0. This leads us to the desired contradiction

in Case II, since the assumption πt,x(A) = 0 yields that πt,x(Kc
r ∩A) = 0.

The next remark is devoted to a consequence of Theorem 5.6. We check that if the
total Lévy measure ν +

∑d
i=1 µi is not zero, then, for all t > 0 and x ∈ Rd++, we have

sups∈(0,t] ∆Xs can not be 0 with probability 1 given that X0 = x.

Remark 5.7. If the total Lévy measure ν+
∑d
i=1 µi is not zero (i.e., ν 6= 0 or µi 6= 0 for

some i ∈ {1, . . . , d}), then there exists an A ∈ Rd such that (ν +
∑d
i=1 µi)(A) > 0, and,

in this case, part (ii) of Theorem 5.6 yields that πt,x(A) > 0 for all t > 0 and x ∈ Rd++.
Using that A ⊆ Ud, for all t > 0 and x ∈ Rd++, we get

0 < πt,x(A) 6 Px
(

sup
s∈(0,t]

∆Xs ∈ Ud
)

= 1− Px
(

sup
s∈(0,t]

∆Xs = 0
)
,

which yields that Px
(

sups∈(0,t] ∆Xs = 0
)
< 1, t > 0, x ∈ Rd++. 2

In the next remark, we point out the fact that in case of d > 2, part (i) of Theorem 5.6
does not hold for a general Borel set A ∈ B(Ud). This also shows that, in general, the total
Lévy measure of a multi-type CBI process (Xt)t∈R+

is not equivalent to the probability
measure πt,x, where x ∈ Rd+ and t > 0.

Remark 5.8. As a consequence of Theorem 4.2 in He and Li [14], in case of d = 1

both statements (i) and (ii) of our Theorem 5.6 remain true for a general A ∈ B(U1) =

B((0,∞)). In case of d > 2, the following counterexample shows that part (i) of Theo-
rem 5.6 does not hold for a general A ∈ B(Ud). Let d := 2 and (Xt)t∈R+

be a two-type
CBI process with parameters (2, c,β,B, ν,µ) such that E(‖X0‖) <∞, β ∈ R2

++, ν is
the point mass at ( 3

4 ,
1
4 ), µ1 is the point mass at ( 1

4 ,
3
4 ) and µ2 := 0. Then the moment

condition (2.2) holds. We also have (ν + µ1 + µ2)(B) = 0 for any B ∈ B(U2) such that
( 3

4 ,
1
4 ), ( 1

4 ,
3
4 ) /∈ B, and in this case, by part (ii) of Corollary 4.4, we have Px(Jt(B) = 0) = 1,

x ∈ R2
+, t > 0. Consequently, we get

Px

(
∆Xu ∈

{
(0, 0),

(1

4
,

3

4

)
,
(3

4
,

1

4

)}
, u ∈ (0, t]

)
= 1, x ∈ R2

+, t > 0. (5.28)

Let A := [ 1
2 , 1]× [ 1

2 , 1]. Then A ∈ B(U2), but A does not belong to R2. Further, (ν + µ1 +

µ2)(A) = 0, and we show that it cannot hold that πt,x(A) = 0 for all t > 0 and x ∈ R2
+,

yielding that part (i) of Theorem 5.6 does not hold for the given 2-type CBI process and
A ∈ B(U2). Let B := ([0, 1

2 ]× [0, 1]) \ {0} and C := ([0, 1]× [0, 1
2 ]) \ {0}. Then B,C ∈ R2,

(ν + µ1 + µ2)(B) = 1 and (ν + µ1 + µ2)(C) = 1, and hence, using that β ∈ R2
++, part

(ii) of Theorem 5.6 implies that πt,x(B) > 0 and πt,x(C) > 0 for all t > 0 and x ∈ R2
+.

Consequently, using (5.28), we have

0 < πt,0(B) = P0

(
sup
s∈(0,t]

∆Xs ∈ B

)
6 P0

(
τ{( 1

4 ,
3
4 )} 6 t

)
, t > 0, (5.29)

and

0 < πt,0(C) = P0

(
sup
s∈(0,t]

∆Xs ∈ C

)
6 P0

(
τ{( 3

4 ,
1
4 )} 6 t

)
, t > 0.
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Using again (5.28), we have

P0

(
τ{( 1

4 ,
3
4 )} 6 t, τ{( 3

4 ,
1
4 )} 6 s

)
6 P0

(
sup

u∈(0,s]

∆Xu =

(
3

4
,

3

4

))

6 P0

(
sup

u∈(0,s]

∆Xu ∈ A

)
= πs,0(A)

(5.30)

for all 0 < t < s. If part (i) of Theorem 5.6 were true for the given two-type CBI process
(Xt)t∈R+

and A = [ 1
2 , 1]× [ 1

2 , 1] ∈ B(U2), then, since (ν + µ1 + µ2)(A) = 0, we would get
that πs,x(A) = 0 for all s > 0 and x ∈ R2

+. In particular, πs,0(A) = 0 were true for all
s > 0, and hence (5.30) would imply that

P0

(
τ{( 1

4 ,
3
4 )} 6 t, τ{( 3

4 ,
1
4 )} 6 s

)
= 0, 0 < t < s. (5.31)

Using the continuity of probability and that
⋃
s>0{τ( 3

4 ,
1
4 ) 6 s} = {τ( 3

4 ,
1
4 ) <∞}, by taking

the limit in (5.31) as s ↑ ∞ for any fixed t > 0, we would get

P0

(
τ{( 1

4 ,
3
4 )} 6 t, τ{( 3

4 ,
1
4 )} <∞

)
= 0, t > 0. (5.32)

Since ν({( 3
4 ,

1
4 )}) = 1 ∈ (0,∞], part (iii) of Corollary 4.4 implies that P0(τ{( 3

4 ,
1
4 )} <

∞) = 1. Hence, taking into account (5.32), we have

P0

(
τ{( 1

4 ,
3
4 )} 6 t

)
= 0, t > 0.

This leads us to a contradiction (see (5.29)). 2

In the next remark, we highlight why the case x = β = 0 is excluded in part (ii) of
Theorem 5.6.

Remark 5.9. Let (Xt)t∈R+
be a multi-type CBI process with parameters (d, c,β,B, ν,µ)

such that X0 := 0, β := 0, ν is the point mass at r0 with r0 := (d+ 1, 0, . . . , 0) ∈ Ud, µ1

is the point mass at z0 with z0 := (1, 0, . . . , 0) ∈ Ud and µi := 0, i = 2, . . . , d. We readily
have that E(‖X0‖) <∞ and the moment condition (2.2) hold. Then

(
ν+
∑d
i=1 µi

)
(B) = 0

for any B ∈ B(Ud) such that r0, z0 /∈ B, and in this case, by part (ii) of Corollary 4.4, we
have P0(Jt(B) = 0) = 1, t > 0. Consequently, we get

P0

(
∆Xu ∈ {0, r0, z0}, u ∈ (0, t]

)
= 1, t > 0. (5.33)

Further, for all λ = (λ1, . . . , λd) ∈ Rd+, we get that

ϕ1(λ) = c1λ
2
1 − 〈Be

(d)
1 ,λ〉+ e−λ1 − 1 + λ1,

ϕi(λ) = ciλ
2
i − 〈Be

(d)
i ,λ〉, i = 2, . . . , d,

ψ(λ) = 1− e−(d+1)λ1 ,

and, using formulae (4.5) and (4.8),

ϕ
({z0})
1 (λ) = c1λ

2
1 − 〈Be

(d)
1 ,λ〉+ λ1,

ϕ
({z0})
i (λ) = ciλ

2
i − 〈Be

(d)
i ,λ〉, i = 2, . . . , d,

ψ({z0})(λ) = 1− e−(d+1)λ1 = ψ(λ).

In what folows, let t ∈ R++ be fixed arbitrarily. Next, we show that if τ{z0} 6 t,
then τ{r0} 6 t. For this it is enough to check that the first jump time of the given CBI
process (Xt)t∈R+

is τ{r0}, i.e., τ{r0} 6 τ{z0}. First, note that a multi-type CB process
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starting from 0 is the identically 0 process. Further, using that X0 = 0 and β = 0,
we have (Xs)s∈[0,τ{r0})

coincides with a multi-type CB process starting from 0 on the
time interval [0, τ{r0}). Indeed, pathwise uniqueness holds for the SDE (2.5) and both
branching processes in question are strong solutions of this SDE on the time interval
[0, τ{r0}). This is due to

∫ s
0

∫
Ud rM(du,dr) = 0, 0 < s < τ{r0} almost surely, where M

is the Poisson random measure on U1 × Ud with intensity measure du ν(dr) appearing
in the SDE (2.5) for (Xs)s∈R+

. To summarize, we get

P0

(
τ{r0} 6 t | τ{z0} 6 t

)
= 1.

Using (5.33) and that z0 6 r0, it implies that P0

(
sups∈(0,t] ∆Xs ∈ {0, r0}

)
= 1

Let A := ([0, 1]×· · ·× [0, 1]) \ {0} ∈ Rd. Since 0 and r0 are not contained in A, we get

πt,0(A) = P0

(
sup
s∈(0,t]

∆Xs ∈ A
)

= 0.

However,
(
ν +

∑d
i=1 µi

)
(A) = µ1(A) = 1, and hence we obtain that part (ii) of Theo-

rem 5.6 does not hold for the given multi-type CBI process (Xs)s∈R+
and A. It is not a

contradiction, since in part (ii) of Theorem 5.6 we excluded the case that X0 = 0 and
β = 0. 2
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