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Analytic aspects of the dilation inequality for
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Abstract

We discuss an analytic form of the dilation inequality with respect to a probability mea-
sure for symmetric convex sets in Euclidean spaces, which is a counterpart of analytic
aspects of Cheeger’s isoperimetric inequality. We show that the dilation inequality
for symmetric convex sets is equivalent to a certain bound of the relative entropy for
even quasi-convex functions, which is close to the logarithmic Sobolev inequality or
Cramér–Rao inequality. As corollaries, we investigate the reverse Shannon inequality,
logarithmic Sobolev inequality, Kahane–Khintchine inequality, deviation inequality and
isoperimetry. We also give new probability measures satisfying the dilation inequality
for symmetric convex sets via bounded perturbations and tensorization.
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1 Introduction

Cheeger’s isoperimetric inequality with respect to a probability measure µ on Rn is
one of the most important geometric inequalities in geometry and geometric analysis.
Cheeger [15] and Maz’ya [28, 29] showed that Cheeger’s isoperimetric inequality gives
the spectral gap of the Laplace–Beltrami operator induced by µ. Conversely, Buser [13]
(see also Ledoux [26]) also proved that the spectral gap, or equivalently the Poincaré
inequality, gives Cheeger’s isoperimetric inequality. Hence we can naturally regard the
Poincaré inequality as an analytic form of Cheeger’s isoperimetric inequality. Moreover,
Bobkov–Houdré [8] also gave an equivalence between Cheeger’s isoperimetric inequality
and the (1, 1)-Poincaré inequality, and thus the (1, 1)-Poincaré inequality is another
analytic aspect of Cheeger’s isoperimetric inequality. Further developments in this
direction are investigated in the work by Milman [30] in which the equivalence of
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Analytic aspects of the dilation inequality

Cheeger’s isoperimetric inequality, the Poincaré inequality, exponential concentration
and First-Moment concentration are discussed.

On the other hand, Nazarov–Sodin–Volberg [33] showed a new sharp isoperimetric-
type inequality for a log-concave probability measure on Rn, which we call the dilation
inequality in this paper. This inequality is originally given by Borell [10] and investigated
by many researchers in [27, 19, 33, 5, 6, 9, 17, 22, 35] where the sharpness and
generalization of the dilation inequality are discussed. Here, a measure µ on Rn is
log-concave if for any compact subsets A,B ⊂ Rn, it holds

µ((1− t)A+ tB) ≥ µ(A)1−tµ(B)t, ∀t ∈ (0, 1),

where (1 − t)A + tB := {(1 − t)a + tb | a ∈ A, b ∈ B} is the Minkowski average. For a
Borel subset A ⊂ Rn and ε ∈ (0, 1), we define the ε-dilation of A by

Aε := A ∪

{
x ∈ Rn

∣∣∣∣∣ ∃y ∈ Rn,
∫ 1

0

1A((1− t)x+ ty) dt > 1− ε

}
(1.1)

and define the dilation area of A by

µ∗(A) := lim inf
ε↓0

µ(Aε)− µ(A)

ε
. (1.2)

The ε-dilation Aε is a counterpart of the ε-neighborhood [A]ε := {x ∈ Rn | ∃a ∈ A, |x−a| <
ε}, where | · | is the standard Euclidean norm, and the dilation area µ∗(A) is a counterpart
of the µ-perimeter of A (or the Minkowski content of A with respect to µ) given by

µ+(A) := lim inf
ε↓0

µ([A]ε)− µ(A)

ε
. (1.3)

Then, from the work by Nazarov–Sodin–Volberg [33] (see also [35]), we see that any
log-concave probability measure µ on Rn satisfies

µ∗(A) ≥ −(1− µ(A)) log(1− µ(A)), (1.4)

for any Borel subset A ⊂ Rn.
We note that it is natural to consider (1.4) as a counterpart of Cheeger’s isoperimetric

inequality, namely
µ+(A) ≥ κmin{µ(A), 1− µ(A)}, (1.5)

for any Borel subset A ⊂ Rn with some κ > 0. In fact, Kannan–Lovász–Simonovits
[21] (see also [4, 6]) showed that every log-concave probability measure µ on Rn also
satisfies (1.5) with some positive constant depending on µ. Moreover, on one hand, we see
that the two-sided exponential measure dν2(x) = 1

2e
−|x| dx on R satisfies ν+

2 ((−∞, x)) =

min{ν2((−∞, x), ν2((x,∞))} for any x ∈ R, on the other hand, the one-sided exponential
measure dν1(x) = e−x dx on (0,∞) satisfies (1.4) with equality for A = (0, x) for any
x > 0. Thus the both inequalities (1.4) and (1.5) are sharp in the class of log-concave
probability measures.

Our main goal in this paper is to investigate an analytic aspect of the dilation
inequality (1.4) as the Poincaré inequality and (1, 1)-Poincaré inequality are analytic
forms of Cheeger’s isoperimetric inequality. To this end, however the definition of the
dilation (1.1) is complicated, and thus as first step, we focus only on symmetric open
convex sets K ⊂ Rn (we say that K is symmetric if K = −K). In this case, it is known
(see [17]) that the ε-dilation of K can be represented simply as

Kε =
1 + ε

1− ε
K.
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Analytic aspects of the dilation inequality

From this property, we consider (1.1) as a generalization of the dilation. We also remark
that on one hand, we have

Kε = K +
2ε

1− ε
K, (1.6)

on the other hand, the ε-neighborhood of K can be rewritten as

[K]ε = K + εBn2 ,

where Bn2 := {x ∈ Rn | |x| < 1} is the standard Euclidean open unit ball. Therefore the
difference between the ε-neighborhood and ε-dilation is clear.

We also note that our restriction to symmetric open convex sets is enough to develop
theory related to the dilation inequality. In fact, the dilation inequality has its origin in
Borell’s lemma which states that

µ(Rn \ tK) ≤
(

1− µ(K)

µ(K)

) t+1
2

µ(K), t ≥ 1

for any log-concave probability measure µ on Rn and symmetric convex set K ⊂ Rn.
Moreover Lovász–Simonovits [27] strengthened Borell’s lemma as follows:

µ(Rn \ tK) ≤ (1− µ(K))
t+1
2 , t ≥ 1. (1.7)

Replacing t by 1+ε
1−ε , (1.7) may be rewritten as

µ(Kε) ≥ 1− (1− µ(K))
1

1−ε .

Hence we may actually check that (1.4) follows as A = K by the definition of the dilation
area. On the other hand, it follows from Borell’s lemma that

µ(Rn \ tK) ≤ ce−Ct, t ≥ 1 (1.8)

whenever µ(K) ≥ 1/2 + ε, where c, C > 0 are constants depending only on ε > 0. This
inequality is a concentration of measure with respect to dilations, and we can observe
that the same inequality follows from (1.4) for log-concave probability measures (see
[35, Theorem 4.1]). By using (1.8), various geometric and analytic inequalities are
deduced like the Kahane–Khintchine inequality in [10, 19] (see also [32]) and Cheeger’s
isoperimetric inequality in [4]. We can see other applications of (1.8) in [12].

To describe our results in this paper, we introduce some notions. Let Ω ⊂ Rn be a
symmetric convex domain, and let Kns (Ω) be the set of all nonempty, symmetric open
convex sets in Ω.

Definition 1.1. A probability measure µ supported on a symmetric convex domain
Ω ⊂ Rn satisfies the dilation inequality for Kns (Ω) with κ > 0 if for any K ∈ Kns (Ω), it
holds that

µ∗(K) ≥ −κ(1− µ(K)) log(1− µ(K)). (1.9)

We may replace Kns (Ω) by Kns (Rn) in (1.9). Indeed, by the definition (1.1), it holds
that (K ∩ Ω)ε ⊂ Kε for any K ∈ Kns (Rn) and ε ∈ (0, 1), and thus µ∗(K ∩ Ω) ≤ µ∗(K) by
µ(K) = µ(K ∩ Ω). In addition, K ∩ Ω ∈ Kns (Ω) follows since K and Ω are symmetric
convex domains. Thus the fact that (1.9) holds true for all K ∈ Kns (Ω) is equivalent
to one for all K ∈ Kns (Rn). We also remark that µ might not be symmetric even if
its support is symmetric. As we have already mentioned, all log-concave probability
measures on Ω (and thus on Rn) satisfy the dilation inequality for Kns (Ω) with κ = 1. In
particular, important examples are symmetric log-concave probability measures on R
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Analytic aspects of the dilation inequality

and the standard Gaussian measure dγn := (2π)−n/2e−|x|
2/2 dx on Rn. We can observe

that these measures satisfy (1.9) with κ = 2 (see Appendix).
Next, we introduce the relative entropy. For a nonnegative Borel function f and a

probability measure µ on Ω with
∫

Ω
f dµ < +∞, we define the relative entropy of f with

respect to µ by

Entµ(f) :=

∫
Ω

f log f dµ−
∫

Ω

f dµ log

∫
Ω

f dµ,

where we put 0 log 0 := 0. Jensen’s inequality implies that the relative entropy is
nonnegative, and is 0 if and only if f is constant µ-a.e., on Ω.

The following functional inequalities, which are special cases of Theorem 2.5, follow
from (1.9).

Theorem 1.2. Let µ be a probability measure supported on a symmetric convex domain
Ω and let f : Ω→ [0,∞) be a continuous and even quasi-convex function with f ∈ L1(µ).
We assume that µ satisfies the dilation inequality for Kns (Ω) for some κ > 0.

(1) If f is locally Lipschitz on Ω, then it holds that

Entµ(f) ≤ 2

κ

∫
Ω

〈x,∇f(x)〉 dµ(x). (1.10)

(2) If f is locally Lipschitz on {x ∈ Ω | f(x) > f(0)}, then it holds that

Entµ(f) ≤ 2

κ

∫
{f>f(0)}

〈x,∇f(x)〉 dµ(x). (1.11)

Here we say that a function f : Ω → R is quasi-convex if {x ∈ Ω | f(x) < λ} is a
convex set for any λ ∈ R. In particular, quasi-convexity is a generalization of convexity.
An important example is | · |p for p > 0, which is continuous and even quasi-convex on Rn

and locally Lipschitz on Rn \ {0}. In addition, | · |p is locally Lipschitz and convex on Rn

when p ≥ 1. Therefore (1.11) is meaningful for f = | · |p even if p ∈ (0, 1). See Section 2
for more details and other examples of quasi-convex functions.

We also remark that f is differentiable almost everywhere on Ω in (1.10) (or {f >
f(0)} in (1.11)) by Rademacher’s theorem since f is locally Lipschitz.

We emphasize that Theorem 1.2 is the special case of Theorem 2.5 where we will show
a more general inequality for functions in a more wider class. Moreover, we will actually
confirm that Theorem 2.5 can recover the dilation inequality (1.9) in Theorem 4.1. In
this sense, our theorem gives the optimal estimate.

As the first application of Theorem 1.2, we obtain the following reverse Shannon
entropy inequality.

Corollary 1.3. Let h be a nonnegative differentiable function such that h/γn is even
quasi-convex function with

∫
Rn
h(x) dx = 1 and lim|x|→+∞ |x|h(x) = 0. Then it holds that∫

Rn
h log h dx ≤ 1

2

∫
Rn
|x|2h(x) dx− n

2
log(2πe2). (1.12)

We remark that the assumption lim|x|→+∞ |x|h(x) = 0 is used to ensure integrating
by parts, and thus this assumption might not be essential.

The classical Shannon entropy inequality (for instance, see [16]) implies the lower
bound of the Shannon entropy such that∫

Rn
h log h dx ≥ −n

2
log

(
2πe

n

∫
Rn
|x|2h(x) dx

)

EJP 29 (2024), paper 64.
Page 4/31

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1122
https://imstat.org/journals-and-publications/electronic-journal-of-probability/
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for any nonnegative function h on Rn with
∫
Rn
h dx = 1 and

∫
Rn
|x|2h(x) dx < +∞.

Furthermore, certain modified Shannon entropy inequality for log-concave probability
measures is also discussed by Artstein-Avidan–Klartag–Schütt–Werner [1] and Caglar–
Fradelizi–Guédon–Lehec–Schütt–Werner [14]. To see this, let us denote the Shannon
entropy of a density h by

S(h) := −Entdx(h) = −
∫
Rn
h log h dx.

Then in [1, 14], they showed that if h = e−ψ is a log-concave density, then∫
Rn

log det∇2ψ dx ≤ 2(S(γn)− S(h)). (1.13)

On the other hand, (1.12) gives the upper bound of the Shannon entropy. Specifically,
we can check that (1.12) is equivalent to

2(S(γn)− S(h)) ≤
∫
Rn
|x|2 dγn − n.

Hence (1.12) may be also regard as the reverse inequality of (1.13) for specific functions.
We remark that as we will see in Subsection 3.1, one has

∫
Rn
|x|2h(x) dx ≥ n in our

settings, and thus it always holds that

−n
2

log

(
2πe

n

∫
Rn
|x|2h(x) dx

)
≤ 1

2

∫
Rn
|x|2h(x) dx− n

2
log(2πe2).

In addition, we can check that when h = γn, then equality in (1.12) holds.
As another application of Theorem 1.2, we can observe the logarithmic Sobolev

type or Cramér–Rao type inequality in the special case, which will be investigated in
Subsection 3.2. In general, we say that a probability measure µ satisfies the logarithmic
Sobolev inequality with ρ > 0 if

Entµ(f) ≤ 1

2ρ
Iµ(f) (1.14)

for any nonnegative locally Lipschitz function f on Rn, where Iµ(f) is the Fisher infor-
mation of f with respect to µ given by

Iµ(f) :=

∫
Rn

|∇f |2

f
dµ.

It is known that if dµ = e−ϕ dx with ϕ ∈ C∞(Rn) satisfies ∇2ϕ ≥ ρ for some ρ > 0, then
µ satisfies the logarithmic Sobolev inequality with ρ. However, when ∇2ϕ ≥ 0 (which
means that ϕ is convex), µ may not satisfy (1.14) for any ρ > 0. Indeed, if µ satisfies the
logarithmic Sobolev inequality, µ should satisfy the normal concentration, or equivalently∫
Rn
eε|x|

2

dµ(x) < +∞ for some ε > 0. In particular, since ∇2ϕ ≥ 0 is equivalent to the
log-concavity of µ by [11], we can observe that a log-concave probability measure may
not satisfy (1.14) for any ρ > 0 in general. We refer the reader to [3] for details of the
logarithmic Sobolev inequality. Nevertheless, we obtain the relation between the relative
entropy and the Fisher information from Theorem 1.2 by the Cauchy–Schwarz inequality
immediately.

Proposition 1.4. Let µ, Ω and f be as in Theorem 1.2. If f is a locally Lipschitz and
quasi-convex function on Ω, then it holds

Entµ(f) ≤ 2

κ

(∫
Ω

|x|2f(x) dµ(x)

)1/2√
Iµ(f). (1.15)
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We note that (1.15) is also close to the Cramér–Rao inequality. The classical Cramér–
Rao inequality (or the Heisenberg–Pauli–Weyl inequality) implies that for any nonnegative
locally Lipschitz function h with

∫
Rn
h dx = 1 and

∫
Rn
|x|2h(x) dx < +∞, it holds

n ≤
(∫

Rn
|x|2h(x) dx

) 1
2 √

Idx(h). (1.16)

Our result (1.15) does not induce (1.16) since the relative entropy can take the value
0, and in this sense (1.15) is different from the uncertainty principle. However, this
difference is natural since on one hand, we cannot take any constant function in (1.16),
on the other hand, we can take one in (1.15) due to the finite mass of µ. Neverthe-
less, the behavior of the relative entropy is closely related to the dimension. In fact,
given probability measures µ1, µ2 and nonnegative functions f1, f2 on Rn1 and Rn2 with∫
Rn1

f1(x) dx =
∫
Rn2

f2(x) dx = 1, we can check that

Entµ1⊗µ2
(f12) = Entµ1

(f1) + Entµ2
(f2),

where f12(x1, x2) := f1(x1)f2(x2) for (x1, x2) ∈ Rn1 ×Rn2 . This implies that the relative
entropy can be linear increasing in the dimension n, and in this sense, the bound (1.15)
is similar to (1.16).

As we will see in Subsection 3.3, we will also discuss Kahane–Khintchine inequalities
with positive and negative exponents for symmetric quasi-convex functions via Theo-
rem 1.2 (and Theorem 2.5 and Proposition 2.4), and discuss deviation inequalities as their
application. Similar inequalities for general functions have been already investigated
in [33, 6, 17, 35] where we need to assume the Remez type inequality. On the other
hand, we can obtain Kahane–Khintchine inequalities and deviation inequalities without
the Remez type inequality. We enumerate our results only on deviation inequalities in
special cases.

Corollary 1.5. Let µ and Ω be as in Theorem 1.2.

(1) Let f be a positive, differentiable and even quasi-convex function on Ω satisfying

f ∈
⋂
p≥1

Lp(µ).

We set
α :=

κ

2‖〈·,∇ log f(·)〉‖L∞
.

If 1 ≤ α < +∞, then it holds that

µ({x ∈ Ω | f(x) ≥ Ctα−1/α‖f‖Lα(µ)}) ≤ 2 exp(−tα), ∀t ≥ 1, (1.17)

where C > 0 is an absolute constant.
(2) Suppose that Ω is bounded, and let f be a positive, differentiable and even quasi-

convex function on some neighborhood of Ω and set

β :=
2

κ log 2
‖〈·,∇ log f(·)〉‖L∞ .

Suppose that 0 < β < +∞ with f−1/β ∈ L1(µ). Then for any small enough ε > 0, it
holds that

µ({x ∈ Ω | f(x) ≤ tmed(f)}) ≤
(
e

εβ

)1−εβ

t
1
β−ε, ∀t ∈ (0, 1],

where med(f) ∈ R is a Lévy mean of f , which means that

µ({x ∈ Ω | f(x) ≥ med(f)}) ≥ 1

2
, µ({x ∈ Ω | f(x) ≤ med(f)}) ≥ 1

2
.
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As the final application, we can also obtain the following result on isoperimetry.

Corollary 1.6. Let µ = e−ϕ(x) dx be a probability measure supported on a symmetric
convex domain Ω ⊂ Rn. Suppose that ϕ is smooth on some neighborhood of Ω and µ

satisfies the dilation inequality for Kns (Ω) with κ > 0. Then for any bounded K ∈ Kns (Ω)

with smooth boundary and p ∈ (1, 2], we have

µ+(K) ≥
(

r(K)∫
∂K
〈x, η(x)〉|x|p′e−ϕ(x) dσK(x)

)p−1 [
−κ

2
(1− µ(K)) log(1− µ(K))

]p
, (1.18)

where p′ is the conjugate of p, r(K) is the maximal constant c > 0 such that cBn2 ⊂ K, η
is the outer unit normal vector along ∂K and σK is the surface measure on ∂K.

Corollary 1.6 reminds us of Cheeger’s isoperimetric inequality for log-concave prob-
ability measures by Kannan–Lovász–Simonovits [21] and Bobkov [4, 7] where the first
or second moment appears as isoperimetric constants. Kannan–Lovász–Simonovits also
conjecture that the isoperimetric constant of every log-concave probability measure is
controlled by the covariance matrix, which is called the KLS conjecture. We refer the
reader to [12] for its history and related works and to [23] for the recent development.

We remark that the dilation inequality (1.9) can give an estimate of the µ-perimeter
directly. Indeed, if R(K) > 0 is the minimal constant C > 0 such that K ⊂ CBn2 for
K ∈ Kns (Rn), then it follows from (1.6) that

Kε ⊂ K +
2ε

1− ε
R(K)Bn2 = [K] 2ε

1−εR(K),

which implies that
µ∗(K) ≤ 2R(K)µ+(K).

Combining this inequality with (1.9), we conclude

µ+(K) ≥ − κ

2R(K)
(1− µ(K)) log(1− µ(K)). (1.19)

We can find a similar estimate in [4] for log-concave probability measures. How-
ever, (1.18) seems different from (1.19) since (1.18) requires not only the geometric
structure of K, but also the distribution. In particular, we can recover (1.19) from (1.18).
In fact, by the definition of R(K), we have |x| ≤ R(K) for x ∈ ∂K, which implies that∫

∂K

〈x, η(x)〉|x|p
′
e−ϕ(x) dσK(x) ≤ R(K)p

′+1

∫
∂K

e−ϕ dσK .

Hence (1.18) yields that

µ+(K) ≥ 1

R(K)2p−1

(
r(K)∫

∂K
e−ϕ dσK

)p−1 [
−κ

2
(1− µ(K)) log(1− µ(K))

]p
,

and thus letting p ↓ 1, we obtain (1.19).
In Section 4, we will show the equivalence between (1.9) and Theorem 2.5 which

generalizes Theorem 1.2, and as its corollaries, we will give new classes satisfying the
dilation inequality (1.9). More precisely, we will discuss the stability under bounded
perturbations and tensor products.

Corollary 1.7. Let µ be a probability measure supported on a symmetric convex domain
Ω ⊂ Rn with

∫
Ω
|x| dµ(x) < +∞ and let h be a positive Borel function on Ω such that

b−1 ≤ h ≤ b for some b > 1 and
∫

Ω
h dµ = 1. Let ν be a probability measure on Ω given by

dν = h dµ. If µ satisfies the dilation inequality for Kns (Ω) with κ > 0, then ν satisfies the
dilation inequality for Kns (Ω) with the constant b−2κ.

EJP 29 (2024), paper 64.
Page 7/31

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1122
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Analytic aspects of the dilation inequality

Corollary 1.8. Let µ1, µ2 be probability measures supported on symmetric convex do-
mains Ω1 ⊂ R and Ω2 ⊂ Rn, respectively, with

∫
Ω1
|x| dµ1,

∫
Ω2
|x| dµ2 < +∞. We suppose

that µ1, µ2 satisfy the dilation inequality for K1
s(Ω1),Kns (Ω2) with some κ1, κ2 > 0, respec-

tively. Let K ⊂ R × Rn be an open convex set such that if (x, y) ∈ K ⊂ R × Rn, then
it holds that (−x, y), (x,−y), (−x,−y) ∈ K. Then µ1 ⊗ µ2 satisfies (1.9) for K with the
constant κ = (κ−1

1 + κ−1
2 )−1.

The structure of the rest of this paper is as follows. In Section 2, we introduce
the class of functions including good enough even quasi-convex functions and define
certain derivative as a counterpart of the gradient. After that, we show the functional
form of the dilation inequality which leads to Theorem 1.2. In Section 3, we give
some applications which follow from Theorems 1.2 and 2.5. More precisely, we show
the reverse Shannon inequality, logarithmic Sobolev inequality, Kahane–Khintchine
inequality, deviation inequality and the estimate of isoperimetry. In the final section,
we show the dilation inequality from the functional inequality constructed in Section 2,
and confirm the equivalence between the dilation inequality and the functional form. As
corollaries, we give stability results of the dilation inequality via bounded perturbations
and tensorization.

2 Functional inequality derived from the dilation inequality

Our main result in this section is Theorem 2.5, which is a functional form of the
dilation inequality (1.9) and generalizes Theorem 1.2.

In what follows, let Ω ⊂ Rn be a symmetric convex domain. Recall that a function
f : Ω → R is quasi-convex if a set {x ∈ Ω | f(x) < λ} is convex for any λ ∈ R, or
equivalently it holds that

f((1− t)x+ ty) ≤ max{f(x), f(y)}, ∀x, y ∈ Ω,∀t ∈ [0, 1].

For instance, all convex functions are quasi-convex. Another example is | · |p on Rn for
p > 0 which is quasi-convex, but not convex when p ∈ (0, 1). This example also implies
that quasi-convexity does not yield convexity. It is also known that a continuous function
f on R is quasi-convex if and only if f is either monotone on R or there exists some
point x0 ∈ R such that f is non-increasing on (−∞, x0] and non-decreasing on [x0,∞)

(see [2, Proposition 3.8 and Proposition 3.9]). Moreover, if a function f on Ω ⊂ Rn is
differentiable, then quasi-convexity of f is characterized by

〈x− y,∇f(x)〉 ≥ 0

for any x, y ∈ Ω with f(x) ≥ f(y) (see [2, Theorem 3.1]). In particular, when f is even
(which means that f(x) = f(−x) for any x ∈ Ω), then we have

〈x,∇f(x)〉 ≥ 0, ∀x ∈ Ω

since f(0) = minx∈Ω f(x) by quasi-convexity and evenness of f . The reader is referred to
[2] for more information on quasi-convexity.

Given an even quasi-convex function f : Ω→ [0,∞), we define the function Φf : Ω→
[0,∞] by

Φf (x) := lim sup
ε↓0

f(x)− f( 1−ε
1+εx)

ε
, x ∈ Ω. (2.1)

Since f is a nonnegative and even quasi-convex function, for any ε ∈ (0, 1) and x ∈ Ω, it
holds that f(x) ≥ f( 1−ε

1+εx), and thus that Φf is always nonnegative. In particular, when f
is differentiable at x ∈ Ω, we see that

Φf (x) = 2〈x,∇f(x)〉. (2.2)
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Analytic aspects of the dilation inequality

An important example is a norm. Let ‖ · ‖K for K ∈ Kns (Rn) be a nonnegative function on
Rn defined by

‖x‖K := inf{λ > 0 | x ∈ λK}, x ∈ Rn. (2.3)

We call it the gauge function of K. If K is a convex body, then the gauge function ‖ · ‖K
is exactly a norm whose closed unit ball is K. By the definition, we can immediately
check that

Φ‖·‖K = 2‖ · ‖K (2.4)

since ‖ · ‖K is 1-homogeneous. We remark that ‖ · ‖K is not differentiable at least at
the origin. An advantage of the definition of (2.1) is that we may not suppose certain
regularities of f and thus we can consider function which is non-differentiable on the
whole space like a norm. We also note that by the definition, Φf is Borel measurable
when Φf is finite and f is continuous on Ω.

Next, let µ be a probability measure supported on Ω. We denote by QC(Ω, µ) all
nonnegative, continuous and even quasi-convex functions f on Ω such that there exists a
nonnegative Borel function g : Ω→ [0,∞) in L1(µ) and small enough ε0 ∈ (0, 1] satisfying

sup
ε∈(0,ε0)

f(x)− f( 1−ε
1+εx)

ε
≤ g(x), ∀x ∈ Ω. (2.5)

We may replace ε0 with 1 in (2.5) when f ∈ L1(µ). To see this, let f, g and ε0 be as above.
Then we can observe that for any ε ∈ (0, 1),

f(x)− f( 1−ε
1+εx)

ε
≤ g(x) +

1

ε 0
f(x), ∀x ∈ Ω.

This fact implies that we can take a function g̃ ∈ L1(µ) satisfying

sup
ε∈(0,1)

f(x)− f( 1−ε
1+εx)

ε
≤ g̃(x), ∀x ∈ Ω.

We remark that by the definition, if f ∈ QC(Ω, µ), then af and f + α for any a > 0

and α ≥ − infx∈Ω f(x) also belong to QC(Ω, µ), and in particular, we have Φaf = aΦf and
Φf+α = Φf .

An important example belonging to QC(Ω, µ) is a norm. Indeed, we can easily check
that the gauge function ‖·‖K for K ∈ Kns (Ω) is in QC(Ω, µ) when µ has finite first moment,
namely

∫
Ω
|x| dµ(x) < +∞. More generally, we can ensure that QC(Ω, µ) includes

good locally Lipschitz and even quasi-convex functions. Here a function f : Ω → R is
locally Lipschitz if for any x ∈ Ω, there exists some r > 0 such that f is Lipschitz on
B(x; r) := {y ∈ Ω | |x− y| < r}, or equivalently

|∇f(z)| := lim sup
y→x

|f(y)− f(z)|
|y − z|

is finite on B(x; r).

Proposition 2.1. Let µ be a probability measure supported on a bounded symmetric
convex domain Ω ⊂ Rn. Let f be a nonnegative, continuous and even quasi-convex
function on some neighborhood of Ω. If f is locally Lipschitz on Ω, then it holds that
f ∈ QC(Ω, µ) and Φf (x) ≤ 2|x||∇f(x)| for any x ∈ Ω.

Proof. Since f is locally Lipschitz, for any x ∈ Ω, there exist some ε(x) ∈ (0, 1), r(x) > 0

and M(x) > 0 such that

|f( 1−ε
1+εy)− f(y)|
| 1−ε1+εy − y|

≤M(x), ∀ε ∈ (0, ε(x)),∀y ∈ B(x, r(x)). (2.6)
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Since Ω is compact, we can take finite points {xk}Nk=1 ⊂ Ω (N ∈ N) such that

|f( 1−ε
1+εy)− f(y)|
| 1−ε1+εy − y|

≤ max
k=1,2,...,N

M(xk), ∀ε ∈ (0, ε),∀y ∈ Ω,

where we set ε := mink=1,2,...,N ε(xk) > 0. In particular, we obtain

|f( 1−ε
1+εy)− f(y)|

ε
≤ 2

1 + ε
|y| max

k=1,2,...,N
M(xk) ≤ 2diam Ω max

k=1,2,...,N
M(xk)

for any ε ∈ (0, ε) and y ∈ Ω, which ensures (2.5). Hence we enjoy f ∈ QC(Ω, µ).
In particular, by the definition, for any δ > 0 and x ∈ Ω, we can take some ε0 ∈ (0, 1)

depending on δ and x such that

|f( 1−ε
1+εx)− f(x)|
| 1−ε1+εx− x|

≤ (1 + δ)|∇f(x)|, ∀ε ∈ (0, ε0),

from which we see that

f(x)− f( 1−ε
1+εx)

ε
≤ 2(1 + δ)

1 + ε
|x||∇f(x)| ≤ 2(1 + δ)|x||∇f(x)|.

Letting ε ↓ 0, we have
Φf (x) ≤ 2(1 + δ)|x||∇f(x)|.

Since δ > 0 is arbitrary, we obtain Φf (x) ≤ 2|x||∇f(x)| for any x ∈ Ω.

Moreover, when f is a convex function instead of a quasi-convex function in Proposi-
tion 2.1, we can specify Φf .

Proposition 2.2. Let µ be a probability measure supported on a symmetric convex
domain Ω ⊂ Rn. If an even function f : Ω→ [0,∞) is convex, then it holds that Φf (x) =

2 infy∈∂f(x)〈x, y〉 for any x ∈ Ω. Moreover, if we have
∫

Ω
infy∈∂f(x)〈x, y〉 dµ(x) < +∞, then

f ∈ QC(Ω, µ). Here ∂f(x) ⊂ Rn is the subdifferential of f at x ∈ Ω, namely

y ∈ ∂f(x) ⇐⇒ [f(z) ≥ f(x) + 〈y, z − x〉, ∀z ∈ Ω] .

We note that when f is convex, the subdifferential of f is always nonempty on Ω, and
in particular ∂f(x) = {∇f(x)} if f is differentiable at x ∈ Ω (see [36]). Especially, since
any convex function is differentiable Legesgue-almost everywhere by Rademacher’s
theorem, we see that Φf = 2〈x,∇f(x)〉 for dx-a.e., x ∈ Ω in Proposition 2.2.

Remark 2.3. The first assertion in Proposition 2.2 implies that infy∈∂f(x)〈x, y〉 is Borel
measurable since Φf is Borel measurable.

Proof. We fix x ∈ Ω, and firstly show Φf (x) = 2 infy∈∂f(x)〈x, y〉. By the definition of the
subdifferential of f , we have

f

(
1− ε
1 + ε

x

)
≥ f(x) +

〈
y,

1− ε
1 + ε

x− x
〉

for any x ∈ Ω, ε ∈ (0, 1) and y ∈ ∂f(x), which is equivalent to

f(x)− f( 1−ε
1+εx)

ε
≤ 2

1 + ε
〈x, y〉.

Hence we obtain
f(x)− f( 1−ε

1+εx)

ε
≤ 2 inf

y∈∂f(x)
〈x, y〉. (2.7)
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Letting ε ↓ 0, we conclude Φf (x) ≤ 2 infy∈∂f(x)〈x, y〉.
Next we show Φf (x) ≥ 2 infy∈∂f(x)〈x, y〉. Let {εk}k∈N ⊂ (0, 1) be a monotone decreas-

ing sequence satisfying limk→+∞ εk = 0 and

lim
k→+∞

f(x)− f(xk)

εk
= Φf (x),

where we set xk := 1−εk
1+εk

x, and take yk ∈ ∂f(xk) for each k ∈ N. If we can take a
subsequence {yk`}`∈N of {yk}k∈N such that yk` = 0 for all ` ∈ N, then for any z ∈ Ω and
` ∈ N, we have f(z) ≥ f(xk`). Letting `→ +∞, we get f(z) ≥ f(x) for any z ∈ Ω, which
yields 0 ∈ ∂f(x). Hence we have infy∈∂f(x)〈x, y〉 = 0. On the other hand, we also see
that f(xk`) = f(0) since f is even and convex. Thus it follows that f(tx) = f(0) for any
t ∈ [0, 1], which implies Φf (x) = 0. Hence we have Φf (x) = 0 = 2 infy∈∂f(x)〈x, y〉.

Therefore we may suppose that yk 6= 0 for all k ∈ N. In addition, without loss of
generality, we may suppose that {xk}k∈N ⊂ B(x; r/2) and B(x; r) ⊂ Ω for some r > 0,
where B(x; r) := {w ∈ Rn | |x− w| < r}. By the definition of the subdifferential, it holds
that

f(z) ≥ f(xk) + 〈yk, z − xk〉, ∀z ∈ Ω (2.8)

for each k ∈ N. Inserting zk := ryk
2|yk| + xk in z, we obtain

f(zk) ≥ f(xk) +
r

2
|yk|.

Here we remark that |x− zk| ≤ r/2 + |xk − x| < r, and thus zk ∈ Ω. Moreover we have
zk, xk ∈ B(x; r). Hence since B(x; r) ⊂ Ω and f is continuous, we have

|yk| ≤
1

r
max

w∈B(x;r)
f(w), ∀k ∈ N.

Hence we can take a subsequence of {yk}k∈N converging to some ỹ ∈ Rn. Without loss
of generality, we may suppose that limk→+∞ yk = ỹ. Letting k → +∞ in (2.8), we have

f(z) ≥ f(x) + 〈ỹ, z − x〉, ∀z ∈ Ω,

which implies that ỹ ∈ ∂f(x). Moreover, it follows from (2.8) that

f(x) ≥ f(xk) + 〈yk, x− xk〉,

which yields that
f(x)− f(xk)

εk
≥ 2

1 + εk
〈yk, x〉.

Letting k → +∞, we obtain that

Φf (x) ≥ 2〈ỹ, x〉 ≥ 2 inf
y∈∂f(x)

〈x, y〉.

This is the desired assertion.
Finally, (2.7) and

∫
Ω

infy∈∂f(x)〈x, y〉 dµ(x) < +∞ imply that f ∈ QC(Ω, µ).

To show our main result, we firstly give the following co-area formula associated with
the dilation area, which has appeared in [35] with a more weaker form.

Proposition 2.4. Let µ be a probability measure supported on a symmetric convex
domain Ω ⊂ Rn and let p > 0. Then for any nonnegative function f with fp ∈ QC(Ω, µ),
we have ∫ ∞

0

tp−1µ∗({x ∈ Rn | f(x) < t}) dt ≤
∫

Ω

fp−1Φf dµ. (2.9)
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Moreover, for any positive function f with fp ∈ QC(Ω, µ), we also have

∫ ∞
0

tp−1µ∗

({
x ∈ Rn

∣∣∣∣∣ 1

f(x)
> t

})
dt ≤

∫
Ω

f−p−1Φf dµ. (2.10)

We remark that µ∗({x ∈ Rn | f(x) < t}) is Borel measurable in t since {x ∈ Rn |
f(x) < t} is monotone in t and µ has the finite mass.

Proof. Since fp ∈ QC(Ω, µ) and p > 0, f is a nonnegative, continuous and even quasi-
convex function, and thus {x ∈ Rn | f(x) < λ} is a symmetric open convex set for any
λ > 0, from which it holds

{x ∈ Rn | f(x) < λ}ε =
1 + ε

1− ε
{x ∈ Rn | f(x) < λ} =

{
x ∈ Rn

∣∣∣∣∣f
(

1− ε
1 + ε

x

)
< λ

}

for any λ > 0. Hence it follows from Fatou’s lemma and µ(Rn) = 1 that∫ ∞
0

tp−1µ∗({x ∈ Rn | f(x) < t}) dt

=

∫ ∞
0

tp−1 lim inf
ε↓0

µ({x ∈ Rn | f(x) < t}ε)− µ({x ∈ Rn | f(x) < t})
ε

dt

≤ lim inf
ε↓0

∫ ∞
0

tp−1µ({x ∈ Rn | f(x) < t}ε)− µ({x ∈ Rn | f(x) < t})
ε

dt

= lim inf
ε↓0

∫ ∞
0

1

ε
tp−1

[
µ

({
x ∈ Rn

∣∣∣∣∣f
(

1− ε
1 + ε

x

)
< t

})
− µ({x ∈ Rn | f(x) < t})

]
dt

= lim inf
ε↓0

∫ ∞
0

1

ε
tp−1

[
µ({x ∈ Rn | f(x) ≥ t})− µ

({
x ∈ Rn

∣∣∣∣∣f
(

1− ε
1 + ε

x

)
≥ t

})]
dt

=
1

p
lim inf
ε↓0

∫
Ω

1

ε

(
fp(x)− fp

(
1− ε
1 + ε

x

))
dµ(x).

Moreover, by (2.5) and fp ∈ QC(Ω, µ), we can justify

lim inf
ε↓0

∫
Ω

1

ε

(
fp(x)− fp

(
1− ε
1 + ε

x

))
dµ(x) ≤ lim sup

ε↓0

∫
Ω

1

ε

(
fp(x)− fp

(
1− ε
1 + ε

x

))
dµ(x)

≤
∫

Ω

Φfp(x) dµ(x),

where we used Fatou’s lemma again. Hence we obtain∫ ∞
0

tp−1µ∗({x ∈ Rn | f(x) < t}) dt ≤ 1

p

∫
Ω

Φfp(x) dµ(x).

Since we see that Φfp = pfp−1Φf by the definition of Φf and continuity of f , we can
conclude (2.9).

Next, we show (2.10). We remark that a := infx∈Ω f(x) = f(0) > 0 since f > 0 on
Ω and f is an even quasi-convex function by p > 0. Moreover, {x ∈ Rn | f(x)−1 > t}
is a symmetric open convex set for any t > 0 since f is a continuous and symmetric
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quasi-convex function. As in the above argument, Fatou’s lemma yields that∫ ∞
0

tp−1µ∗

({
x ∈ Rn

∣∣∣∣∣ 1

f(x)
> t

})
dt

≤ lim inf
ε↓0

∫ ∞
0

1

ε
tp−1

[
µ

({
x ∈ Rn

∣∣∣∣∣ 1

f( 1−ε
1+εx)

> t

})
− µ

({
x ∈ Rn

∣∣∣∣∣ 1

f(x)
> t

})]
dt

=
1

p
lim inf
ε↓0

∫
Ω

1

ε

 1

fp
(

1−ε
1+εx

) − 1

fp(x)

 dµ(x).

Since we see that

1

ε

 1

fp
(

1−ε
1+εx

) − 1

fp(x)

 ≤ a−2p 1

ε

(
fp(x)− fp

(
1− ε
1 + ε

x

))

and since fp ∈ QC(Ω, µ), we can apply Fatou’s lemma to see that

lim inf
ε↓0

∫
Ω

1

ε

 1

fp
(

1−ε
1+εx

) − 1

fp(x)

 dµ(x) ≤ lim sup
ε↓0

∫
Ω

1

ε

 1

fp
(

1−ε
1+εx

) − 1

fp(x)

 dµ(x)

≤
∫

Ω

1

f(x)2p
Φfp(x) dµ(x).

Finally using Φfp = pfp−1Φf , we obtain (2.10).

Let QCp(Ω, µ) for p > 0 be the set of all functions f on Ω such that fp ∈ QC(Ω, µ) ∩
L1(µ). Our main theorem in this section is the following.

Theorem 2.5. Let µ be a probability measure supported on a symmetric convex domain
Ω ⊂ Rn. We assume that µ satisfies the dilation inequality for Kns (Ω) for some κ > 0. If f
is in QC1(Ω, µ) and differentiable on Ω, then (1.10) holds.

More generally, if f ∈ QC1(Ω, µ), then it holds that

Entµ(f) ≤ 1

κ

∫
Ω

Φf dµ. (2.11)

Our proof of this claim is almost same as the proof of [35, Theorem 5.3]. For the
completeness, we give the proof of Theorem 2.5 here.

Proof. First assertion follows from (2.11). Hence let us show (2.11). Since f ∈ QC(Ω, µ),
we can apply (2.9) with p = 1 for sublevel sets of f . It follows from (1.9), µ(Ω) = 1

and (2.9) that we have

−
∫ ∞

0

µ(Af (t)) logµ(Af (t)) dt ≤ 1

κ

∫
Ω

Φf dµ, (2.12)

where we defined

Af (t) := {x ∈ Ω | f(x) ≥ t}, t ≥ 0.

To prove (2.11), without loss of generality, we may assume that
∫

Ω
f dµ = 1. In fact, we

know that f ∈ L1(µ) and

Φaf = aΦf , Entµ(af) = aEntµ(f)
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for any a > 0 and f ∈ QC1(Ω, µ) from which we can add the condition
∫

Ω
f dµ = 1. Now,

recall the dual formula of the relative entropy: for any continuous function h : Ω→ [0,∞)

with
∫

Ω
h dµ = 1, it holds that

Entµ(h) = sup
ϕ∈Cb(Ω)

[∫
Ω

hϕdµ− log

∫
Ω

eϕ dµ

]
, (2.13)

where Cb(Ω) is the set of all bounded continuous functions on Ω (for instance, see [34, 18]
and their proofs). Hence, since Entµ(µ(A)−11A) = − logµ(A) and

∫
Ω
µ(A)−11A dµ = 1

for any Borel subset A ⊂ Ω with µ(A) > 0, it holds that

−
∫ ∞

0

µ(Af (t)) logµ(Af (t)) dt

=

∫ ∞
0

µ(Af (t))Entµ(µ(Af (t))−11Af (t)) dt

=

∫ ∞
0

sup
ϕ∈Cb(Ω)

[∫
Ω

ϕ1Af (t) dµ− µ(Af (t)) log

∫
Ω

eϕ dµ

]
dt

≥ sup
ϕ∈Cb(Ω)

[∫
Ω

∫ ∞
0

ϕ1Af (t) dtdµ−
∫ ∞

0

µ(Af (t)) dt log

∫
Ω

eϕ dµ

]
= sup
ϕ∈Cb(Ω)

[∫
Ω

ϕf dµ− log

∫
Ω

eϕ dµ

]
=Entµ(f),

where we used
∫∞

0
1Af (t)(x) dt = f(x) for every x ∈ Ω and

∫∞
0
µ(Af (t)) dt =

∫
Ω
f dµ = 1.

Combining this with (2.12), we conclude the desired assertion.

We conclude this section by giving the proof of Theorem 1.2.

Proof of Theorem 1.2. First, let us show (2). Since the proof of (1) is almost same as (2),
we will give a comment after the proof of (2).

Take an increasing sequence {Ωk}k∈N such that Ωk is an open, bounded symmetric
convex set with Ωk ⊂ Ω and limk→+∞ Ωk = Ω. We can take such a sequence, for instance,
by considering {x ∈ Ω | ‖x‖Ω < 1 − 1/k} ∩ (kBn2 ). Let µk be a normalized probability
measure of µ on Ωk, namely dµk := µ(Ωk)−11Ωk dµ. Next, let f be a function given in
Theorem 1.2 (2), and for `,m ∈ N, we set f`,m(x) := max{min{f(x), `}, f(0) + 1/m} for
x ∈ Ω. Then since f is locally Lipschitz on {x ∈ Ω | f(x) > f(0)}, f`,m is locally Lipschitz
on Ω for any `,m ∈ N. In addition, f`,m is even quasi-convex with f`,m ∈ L1(µk) for
any k, `,m ∈ N by its construction. Hence applying Proposition 2.1, we have f`,m ∈
QC1(Ωk, µk) for any k, `,m ∈ N. Moreover, µk satisfies the dilation inequality for Kns (Ωk)

with κ. To see this, let K ∈ Kns (Ωk). Then by the definition, we see that

µ∗k(K) =
1

µ(Ωk)
µ∗(K).

Hence (1.9) yields that

µ∗k(K) ≥− κ

µ(Ωk)
(1− µ(K)) log(1− µ(K))

=− κ

µ(Ωk)
(1− µ(Ωk)µk(K)) log(1− µ(Ωk)µk(K)).

By the elementary inequality −θ−1(1− θx) log(1− θx) ≥ −(1− x) log(1− x) for θ ∈ (0, 1)

and x ∈ (0, 1), we can obtain

µ∗k(K) ≥ −κ(1− µk(K)) log(1− µk(K)),
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which is the desired assertion.
Thus we can apply Theorem 2.5 to see that

Entµk(f`,m) ≤ 1

κ

∫
Ωk

Φf`,m dµk.

Since f`,m is a bounded continuous function, the lower semi-continuity of the relative
entropy (which follows from (2.13)) and the monotone convergence theorem as k → +∞
imply that

Entµ(f`,m) ≤ 1

κ

∫
Ω

Φf`,m dµ.

Since f is locally Lipschitz, we have

Φf`,m(x) =

{
2〈x,∇f(x)〉 if f(0) + 1/m < f(x) ≤ `
0 otherwise

for dx-a.e., x ∈ Ω. Moreover, we see that{
2〈x,∇f(x)〉 if f(0) + 1/m < f(x) ≤ `
0 otherwise

≤

{
2〈x,∇f(x)〉 if f(x) > f(0)

0 otherwise

for dx-a.e., x ∈ Ω. Hence we have

Entµ(f`,m) ≤ 2

κ

∫
{f>f(0)}

〈x,∇f(x)〉 dµ(x).

Thus by lim`,m→+∞ f`,m = f and the lower semi-continuity of the relative entropy, we
obtain (1.11).

If f is a locally Lipschitz on Ω, then we may also obtain

Φf`,m(x) ≤ 2〈x,∇f(x)〉

for dx-a.e., x ∈ Ω from the same argument above, and thus we have

Entµ(f`,m) ≤ 2

κ

∫
Ω

〈x,∇f(x)〉 dµ(x).

Hence as `,m→ +∞, we also conclude (1.10).

3 Some applications of Theorem 2.5

3.1 Comparisons of the relative entropy, Wasserstein distance and variance

As the first application of Theorem 2.5, we give comparisons of the relative entropy,
Wasserstein distance and the variance in the case of the Gaussian measure. We denote
the standard Gaussian measure on Rn by dγn = (2π)−n/2e−

1
2 |x|

2

dx. To state our results,
we introduce the L2-Wasserstein distance, which appears in optimal transport theory.

Let µ, ν be probability measures on Rn with finite second moment. Then the L2-
Wasserstein distance of µ and ν is given by

W2(µ, ν) :=

{
inf

π∈Π(µ,ν)

∫
Rn×Rn

|x− y|2 dπ(x, y)

}1/2

,

where Π(µ, ν) is the set of all couplings π between µ and ν, namely π is a probability
measure on Rn ×Rn such that π(A ×Rn) = µ(A) and π(Rn × A) = ν(A) for any Borel
subset A ⊂ Rn. It is known that W2 is a distance function on the set of all probability
measures on Rn with finite second moment. We refer the reader to [36, 37] for optimal
transport theory and its related topics.
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Analytic aspects of the dilation inequality

Proposition 3.1. Let f : Rn → R+ be a differentiable even quasi-convex function with∫
Rn
f dγn = 1 and

lim
|x|→+∞

|x|f(x)γn(x) = 0. (3.1)

Then we have

Entγn(f) ≤
∫
Rn
|x|2f(x) dγn(x)− n (3.2)

and
1

2
W 2

2 (γn, ν) ≤
∫
Rn
|x|2f(x) dγn(x)− n, (3.3)

where dν := f dγn.

We remark that (3.2) in particular implies that every differentiable even quasi-convex
function f : Rn → [0,∞) as in Proposition 3.1 satisfies∫

Rn
|x|2f(x) dγn(x) ≥ n, (3.4)

and equality holds if and only if f ≡ 1 on Ω. Moreover, when the deficit of (3.4) is small
such that ∫

Rn
|x|2f(x) dγn(x)− n ≤ ε

for small enough ε > 0, then (3.2) and (3.3) imply that f is close to the constant 1 in the
both senses of the relative entropy and the L2-Wasserstein distance.

We also note that we have the trivial upper bound of W2(γn, ν) such as

1

2
W 2

2 (γn, ν) ≤
∫
Rn
|x|2f(x) dγn(x) + n.

Thus (3.3) strengthen this trivial bound.

Proof. We first note that the standard Gaussian measure satisfies (1.9) for Kns (Rn) with
κ = 2 (see Appendix). Hence by Theorem 1.2, we have

Entγn(f) ≤
∫
Rn
〈x,∇f(x)〉 dγn(x).

Moreover, by (3.1), integrating by parts yields that∫
Rn
〈x,∇f(x)〉 dγn(x) =

∫
Rn
|x|2f(x) dγn(x)− n.

Combining these facts, we obtain (3.2).
The second assertion (3.3) immediately follows from (3.2) and Gaussian Talagrand’s

transportation inequality (see [36, 37])

1

2
W 2

2 (γn, ν) ≤ Entγn(f).

Proof of Corollary 1.3. We set f := h/γn, then we can check that f satisfies the assump-
tions in Proposition 3.1. Hence applying Proposition 3.1 to f , we see that∫

Rn
h log h dx ≤

∫
Rn
h log γn dx+

∫
Rn
|x|2h(x) dx− n

=
1

2

∫
Rn
|x|2h(x) dx− n

2
log(2πe2),

which is the desired assertion.
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Analytic aspects of the dilation inequality

3.2 Cramér–Rao inequality and logarithmic Sobolev inequality

From Theorem 1.2, we can obtain the following logarithmic Sobolev type inequality
or Cramér–Rao type inequality, which includes Proposition 1.4.

Proposition 3.2. Let µ and Ω be as in Theorem 2.5 and let f ∈ L1(µ) be a nonnegative,
locally Lipschitz and even quasi-convex function. Then it holds that

Entµ(f) ≤ 2

κ

(∫
Ω

|x|2f(x) dµ(x)

)1/2√
Iµ(f) (3.5)

and

Entµ(f) ≤ 1

κ
Iµ(f) +

1

κ

∫
Ω

|x|2f(x) dµ(x). (3.6)

Proof. Let f be a function satisfying our assumptions. Then by Theorem 1.2, we see that

Entµ(f) ≤ 2

κ

∫
Ω

|x||∇f(x)| dµ.

Then (3.5) follows by combining this with the Cauchy–Schwarz inequality, and (3.6)
follows from (3.5) and the arithmetic-geometric mean inequality.

As we described in our introduction, (3.5) is close to the logarithmic Sobolev inequal-
ity, and exactly gives

Entµ(f) ≤ 2

κ

(∫
Ω

|x|2f(x) dµ(x)

)1/2

Iµ(f)

if Iµ(f) ≥ 1, and

Entµ(f) ≤ 4

κ2

∫
Ω

|x|2f(x) dµ(x)Iµ(f)

if Entµ(f) ≥ 1. We emphasize that the constant of (3.5) depends only on
∫

Ω
|x|2f(x) dµ(x)

and κ. The logarithmic Sobolev inequality also appears in [35] where we need the
Poincaré constant of µ.

On the other hand, (3.6) is close to the defective logarithmic Sobolev inequality. Here
we say that a probability measure µ on Rn satisfies the defective logarithmic Sobolev
inequality with constants ρ > 0 and τ ≥ 0 if

Entµ(f) ≤ 1

2ρ
Iµ(f) + τ

∫
Ω

f dµ

for any nonnegative locally Lipschitz function f on Ω. We refer the reader to [3] for
details of the defective logarithmic Sobolev inequality. In our case, when Ω is bounded,
since Ω is symmetric, (3.6) implies that

Entµ(f) ≤ 1

κ
Iµ(f) +

1

4κ
(diam Ω)2

∫
Ω

f dµ. (3.7)

In particular, when Ω is an interval inR, we also obtain the logarithmic Sobolev inequality
associated with the Poincaré constant of µ. Here we say that µ satisfies the Poincaré
inequality with constant Cµ > 0 if

Cµ

∫
Ω

f2 dµ ≤
∫

Ω

|∇f |2 dµ

for any locally Lipschitz function f on Ω with
∫

Ω
f dµ = 0.
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Analytic aspects of the dilation inequality

Corollary 3.3. Let µ be a symmetric probability measure on a bounded symmetric open
interval I ⊂ R and f : I → R be a locally Lipschitz function. Suppose that µ satisfies
the dilation inequality for K1

s(I) with κ > 0 and the Poincaré inequality with Cµ > 0. In
addition, we suppose that f is odd and monotone function with f ∈ L2(µ). Then it holds
that

Entµ(f2) ≤ 1

κ

(
4 +

1

4Cµ
(diam I)2

)∫
I

|f ′|2 dµ. (3.8)

In particular, when dµ = e−ϕ(x) dx is log-concave, then we have

Entµ(f2) ≤
(

2 +
1

8e−2ϕ(0)
(diam I)2

)∫
I

|f ′|2 dµ. (3.9)

Proof. First we remark that f2 is a nonnegative, locally Lipschitz and even quasi-convex
function. Indeed, since |f |2 is decreasing on I∩(−∞, 0] and increasing on I∩[0,∞) by the
monotonicity of f , |f |2 is quasi-convex. Moreover |f |2 is locally Lipschitz and symmetric
since f is locally Lipschitz and odd. Applying Proposition 3.2, in particular (3.7), to f2,
we obtain

Entµ(f2) ≤ 4

κ

∫
I

|f ′|2 dµ+
1

4κ
(diam I)2

∫
I

f2 dµ.

On the other hand, since f is odd and µ is symmetric from which we have
∫
I
f dµ = 0,

we can apply the Poincaré inequality to f to see that

Cµ

∫
I

f2 dµ ≤
∫
I

|f ′|2 dµ.

Therefore we enjoy

Entµ(f2) ≤ 4

κ

∫
I

|f ′|2 dµ+
1

4κCµ
(diam I)2

∫
I

|f ′|2 dµ,

which implies (3.8).
For the second assertion, we employ the result by Bobkov [4] where it is shown that

every log-concave probability measure µ = e−ϕ dx on R satisfies Cheeger’s isoperimetric
inequality with the constant 2e−ϕ(m), where m ∈ I is the median of µ. In our case, since
µ is symmetric, we can take m as 0. Hence, Cheeger’s inequality [15] (see also [12,
Theorem 14.1.6]) implies that Cµ ≥ e−2ϕ(0). (3.9) follows from combining (3.8) with the
bound of the Poincaré constant and κ = 2. The latter follows from every symmetric
log-concave probability measure satisfying (1.9) with κ = 2 (see Appendix).

3.3 Kahane–Khintchine inequalities and deviation inequalities

In this subsection, we consider deviation inequalities as described in Corollary 1.5.
To see this, we give the following moment estimate for positive exponent which is a
generalization of the comparison result of moments for log-concave probability measures,
firstly discussed by Borell [10] (see also [32, 20, 31]).

Proposition 3.4. Let µ and Ω be as in Theorem 2.5 and p0 > 1. If a nonnegative function
f on Ω satisfies

f ∈
⋂

1≤p≤p0

QCp(Ω, µ),

it holds that

‖f‖Lq(µ) ≤
(
q

p

) 1
κ‖

Φf
f ‖L∞({f>0})

‖f‖Lp(µ) (3.10)
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Analytic aspects of the dilation inequality

for any 1 ≤ p ≤ q < p0, where

‖Φf
f
‖L∞({f>0}) := ess sup{Φf (x)

f(x)
| x ∈ Ω, f(x) > 0}.

In particular, if f is differentiable on Ω and satisfies

f ∈
⋂
p≥1

QCp(Ω, µ), (3.11)

then we have

‖f‖Lq(µ) ≤
(
q

p

) 2
κ‖〈·,∇ log f(·)〉‖L∞({f>0})

‖f‖Lp(µ) (3.12)

for any 1 ≤ p ≤ q.

Proof. Set

Λ(t) :=
1

t
log

∫
Ω

f t dµ,

then we see that

Λ′(t) =− 1

t2
log

∫
Ω

f t dµ+
1

t

∫
Ω
f t log f dµ∫
Ω
f t dµ

=
1

t2
1∫

Ω
f t dµ

Entµ(f t).

Since f ∈ QCt(Ω, µ) for any 1 ≤ t < p0, it follows from Theorem 2.5 that

Λ′(t) ≤ 1

t2
1

κ

1∫
Ω
f t dµ

∫
Ω

Φft dµ

=
1

t

1

κ

1∫
Ω
f t dµ

∫
{x∈Ω|f(x)>0}

f t−1Φf dµ

≤ 1

κt
‖Φf
f
‖L∞({f>0}).

Here we used the fact that Φft(x) = 0 for any t > 0 if f(x) = 0 at x ∈ Ω, which
follows from f t ∈ QC(Ω, µ). Hence integrating the above inequality from p to q with
1 ≤ p ≤ q < p0 yields the desired assertion (3.10).

(3.12) also follows by the same proof above and by (2.2).

For instance, when µ is log-concave, the gauge function ‖ · ‖K for K ∈ Kns (Rn)

satisfies (3.11), and we can check ‖Φ‖·‖K
‖·‖K ‖L∞({‖·‖K>0}) = 2. Hence, (3.10) yields

‖‖ · ‖K‖Lq(µ) ≤
(
q

p

)2

‖‖ · ‖K‖Lp(µ)

for any 1 ≤ p ≤ q since all log-concave probability measures satisfy the dilation inequality
with κ = 1. In particular, when µ is symmetric on R, since we can take κ = 2 as we see
in Appendix, we also obtain

‖| · |‖Lq(µ) ≤
q

p
‖| · |‖Lp(µ)

for any 1 ≤ p ≤ q. It is known that the order of q/p above is optimal (for instance, see
[20]). On the other hand, it is known that all log-concave probability measures on Rn

satisfy

‖‖ · ‖K‖Lq(µ) ≤ C
q

p
‖‖ · ‖K‖Lp(µ)
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for any 1 ≤ p ≤ q, where C > 0 is an absolute constant (see [32, 12, 20]). We remark
that the similar inequality for general functions has already appeared in [35] (see also
[6, 17]). More precisely, in [35], we need the Remez function to construct the moment
comparison like (3.10). For s ≥ 1, we define uf (s) ≥ 1 by the best constant C ≥ 1 such
that

{x ∈ Ω | f(x) ≤ λ}1−1/s ⊂ {x ∈ Ω | f(x) ≤ λuf (s)}, ∀λ > 0.

We call the function uf : [1,∞)→ [1,∞) the Remez function of f , and set

u′f (1) := lim sup
s↓1

u(s)− 1

s− 1
.

Then it follows from [35, Corollary 5.7] that

‖f‖Lq(µ) ≤
(
q

p

)u′f (1)

‖f‖Lp(µ)

for any nonnegative integrable function f with u′f (1) < +∞ and for any 1 ≤ p ≤ q. We

remark that ‖Φf
f ‖L∞({f>0}) ≤ u′f (1) holds when f is a continuous and even quasi-convex

function. Indeed by the definition of uf , we have

f(x) ≤ f
(

1− ε
1 + ε

x

)
uf

(
1

1− ε

)
, ∀ε(0, 1),∀x ∈ Ω.

Hence it holds that Φf (x) ≤ f(x)u′f (1) for x ∈ Ω, which yields ‖Φf
f ‖L∞({f>0}) ≤ u′f (1).

As a corollary of Proposition 3.4, we give a tail estimate of a measure. To see this, we
introduce the Orlicz norm ‖ · ‖ψα for α ≥ 1. Given any α ≥ 1 and Borel function f : Ω→ R,
we set

‖f‖ψα := inf

{
t > 0

∣∣∣∣∣
∫

Ω

exp

((
|f(x)|
t

)α)
dµ ≤ 2

}
.

It is known that the Orlicz norm ‖ · ‖ψα is also given by Lp-norms for p ≥ α (see [12,
Lemma 2.4.2]).

Lemma 3.5. Let α ≥ 1 and f : Ω→ R be a Borel function. Then

‖f‖ψα ' sup
p≥α

‖f‖Lp(µ)

p1/α
.

Here A ' B means that there exist some absolute constants c, C > 0 such that cB ≤ A ≤
CB.

By Proposition 3.4, we obtain the following estimate of some Orlicz norm and the
deviation inequality.

Corollary 3.6. Let µ and Ω be as in Theorem 2.5 and let f be a nonnegative function on
Ω satisfying

f ∈
⋂
p≥1

QCp(Ω, µ).

We set
α :=

κ

‖Φf
f ‖L∞({f>0})

.

If 1 ≤ α < +∞, then it holds that

‖f‖ψα ' α−
1
α ‖f‖Lα(µ). (3.13)

In addition, we have

µ({x ∈ Ω | f(x) ≥ Ctα−1/α‖f‖Lα(µ)}) ≤ 2 exp(−tα), ∀t ≥ 1, (3.14)

where C > 0 is an absolute constant.
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Proof. (3.13) is a direct consequence of Proposition 3.4 and Lemma 3.5. (3.14) also
follows from (3.13) and Markov’s inequality.

Proof of Corollary 1.5 (1). Let f be a function given in Corollary 1.5 (1). Then for any
t ≥ 1, f t is a positive, differentiable and even quasi-convex function on Ω with f t ∈ L1(µ).
Hence by Theorem 1.2, we have

Entµ(f t) ≤ 2t

κ

∫
Ω

f t−1〈x,∇f(x)〉 dµ(x).

Applying this inequality instead of Theorem 2.5 in the proof of Proposition 3.4, we obtain

‖f‖Lq(µ) ≤
(
q

p

) 2
κ‖〈x,∇ log f〉‖L∞

‖f‖Lp(µ)

for any 1 ≤ p ≤ q. Finally by the same argument as in the proof of Corollary 3.6, we
conclude the desired assertion.

Next, we consider the Kahane–Khintchine inequality for negative exponent via Propo-
sition 2.4.

Proposition 3.7. Let µ and Ω be as in Theorem 2.5. Let f be a positive, continuous and
even quasi-convex function with

0 < β :=
1

κ log 2
‖Φf
f
‖L∞ < +∞.

Suppose that f also satisfies fp ∈ QC(Ω, µ) and f−p ∈ L1(µ) for some 0 < p < 1/β. Then
it holds that

med(f) ≤
(

e

1− βp

)β
‖f‖L−p(µ).

Proof. We may suppose that med(f) > 0, otherwise our assertion is obvious.
We firstly note that we have

−(1− θ) log(1− θ) ≥ log 2 min{θ, 1− θ}, ∀θ ∈ [0, 1].

Hence, by (1.9) and (2.10), we have

κ log 2

∫ ∞
0

tp−1 min{µ({x ∈ Rn | f(x) < t−1}), 1− µ({x ∈ Rn | f(x) < t−1})} dt

≤
∫

Ω

f−p−1Φf dµ. (3.15)

Since the definition of the Lévy mean implies that

µ({x ∈ Rn | f(x) < t−1}) ≤ µ({x ∈ Rn | f(x) < med(f)}) < 1

2
, ∀t ≥ 1

med(f)
,

we enjoy∫ ∞
0

tp−1 min{µ({x ∈ Rn | f(x) < t−1}), 1− µ({x ∈ Rn | f(x) < t−1})} dt

≥
∫ ∞

1
med(f)

tp−1µ({x ∈ Rn | f(x) < t−1}) dt

=

∫ ∞
0

tp−1µ({x ∈ Rn | f(x) < t−1}) dt−
∫ 1

med(f)

0

tp−1µ({x ∈ Rn | f(x) < t−1}) dt

≥1

p

∫
Ω

f−p dµ− 1

p

(
1

med(f)

)p
. (3.16)
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On the other hand, it holds that∫
Ω

f−p−1Φf dµ ≤ ‖
Φf
f
‖L∞

∫
Ω

f−p dµ. (3.17)

Since f−p ∈ L1(µ) and ‖Φf
f ‖L∞ < +∞, combining (3.15) with (3.16) and (3.17), if

κ log 2
p > ‖Φf

f ‖L∞ , we obtain(
κ log 2

p
− ‖Φf

f
‖L∞

)∫
Ω

f−p dµ ≤ κ log 2

p

(
1

med(f)

)p
.

Therefore it holds that

med(f) ≤
(

1− p

κ log 2
‖Φf
f
‖L∞

)− 1
p

‖f‖L−p(µ).

Since direct calculations yield (1 − t0p)−
1
p+t0 ≤ et0 for t0 > 0 and any 0 < p < t−1

0 , we
can obtain the desired assertion.

Guédon [19] (see also [12, Theorem 2.4.9]) showed that every log-concave probability
measure and norm ‖ · ‖ on Rn satisfy∫

Rn
‖x‖ dµ ≤ C

1 + q

(∫
Rn
‖x‖q dµ

)1/q

,

for any −1 < q < 0, where C > 0 is an absolute constant. Hence Proposition 3.7 is
a generalization of Guédon’s result in some sense. An extension of Guédon’s result
for general functions is also discussed in [9, 17]. We also remark that Guédon’s result
follows from the small ball estimate,

µ

({
x ∈ Rn

∣∣∣∣∣ ‖x‖ ≤ t
∫
Rn
‖x‖ dµ

})
≤ Ct, ∀t ≥ 1,

which is shown by Latała [24]. Similarly, we can show the deviation inequality around
the origin.

Corollary 3.8. Let µ and Ω be as in Theorem 2.5. Let f be a positive, continuous and
even quasi-convex function with

0 < β :=
1

κ log 2
‖Φf
f
‖L∞ < +∞.

Suppose that f also satisfies fp ∈ QC(Ω, µ) and f−p ∈ L1(µ) for any 0 < p < 1/β. Then
for any small enough ε > 0, it holds that

µ({x ∈ Ω | f(x) ≤ tmed(f)}) ≤
(
e

εβ

)1−εβ

t
1
β−ε, ∀t ∈ (0, 1].

Proof. Let p := 1
β − ε ∈ (0, 1

β ) for small enough ε > 0. It follows from Proposition 3.7 that∫
Ω

f−p dµ ≤
(

eβ

med(f)(1− βp)β

)p
.

Hence Markov’s inequality implies that

µ({x ∈ Ω | f(x) ≤ tmed(f)}) ≤
(

e

1− βp

)βp
tp, ∀t ∈ (0, 1].

This implies the desired assertion by p = 1
β − ε.
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Proof of Corollary 1.5 (2). Let f be a positive, differentiable and even quasi-convex
function on some neighborhood of Ω with 0 < β < +∞ and f−1/β ∈ L1(µ). Then for
any p > 0, fp is also a positive, differentiable and even quasi-convex function on some
neighborhood of Ω, and thus fp ∈ QC(µ,Ω) by Proposition 2.1 since Ω is bounded.
Moreover, for any 0 < p < 1/β, we have f−p ∈ L1(µ) by f−1/β ∈ L1(µ) and Hölder’s
inequality. Hence we see that f satisfies the assumptions in Corollary 3.8. Applying
Corollary 3.8 to f , we can conclude the desired assertion.

3.4 µ-perimeter

Our goal in this subsection is to give the estimate of the µ-perimeter of K ∈ Kns (Ω)

described in Corollary 1.6.

Proof of Corollary 1.6. Without loss of generality, we may suppose that µ(K) = µ(K).
We set for ε > 0,

fε(x) := min

{
1,

1

ε
d(x,K)

}
, x ∈ Rn.

Then fε is a locally Lipschitz function on {x ∈ Rn | fε(x) > 0}. Moreover, we can check
that fε is a nonnegative and even quasi-convex function with fε ∈ L1(µ). Hence it follows
from Theorem 1.2 that

Entµ(fε) ≤
2

κ

∫
Ω

|x||∇fε(x)| dµ(x). (3.18)

Since we see that ∇fε(x) = 0 if x ∈ K ∪ (Rn \ [K]ε) and |∇fε| ≤ ε−1 on Rn, it holds that∫
Ω

|x||∇fε(x)| dµ(x)

≤1

ε

∫
Ω

|x|1[K]ε\K dµ(x)

≤
(

1

ε

∫
Ω

|x|p
′
1[K]ε\K(x) dµ(x)

)1/p′ (
1

ε

∫
Ω

1[K]ε\K(x) dµ(x)

)1/p

=

(
1

ε

∫
Ω

|x|p
′
1[K]ε\K(x) dµ(x)

)1/p′ (
1

ε
(µ([K]ε)− µ(K))

)1/p

,

where we used Hölder’s inequality. Furthermore, since we have by r(K)Bn2 ⊂ K,

[K]ε = K + εBn2 ⊂
(

1 +
ε

r(K)

)
K,

it holds that

1

ε

∫
Ω

|x|p
′
1[K]ε\K(x) dµ(x)

=
1

ε

(∫
[K]ε

|x|p
′
dµ(x)−

∫
K

|x|p
′
dµ(x)

)

≤1

ε

(∫
(1+ ε

r(K)
)K

|x|p
′
dµ(x)−

∫
K

|x|p
′
dµ(x)

)

=

∫
K

1

ε

[(
1 +

ε

r(K)

)p′+n
e−ϕ((1+ ε

r(K)
)x) − e−ϕ(x)

]
|x|p

′
dx.

Since K is bounded and ϕ is smooth, Fatou’s lemma yields that

lim inf
ε↓0

1

ε

∫
Ω

|x|p
′
1[K]ε\K(x) dµ(x) ≤ 1

r(K)

∫
K

(p′ + n− 〈x,∇ϕ(x)〉)|x|p
′
e−ϕ(x) dx.
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Moreover, since we enjoy

div(x|x|p
′
e−ϕ(x)) = (p′ + n− 〈x,∇ϕ(x)〉)|x|p

′
e−ϕ(x),

the divergence theorem implies that

lim inf
ε↓0

1

ε

∫
Ω

|x|p
′
1[K]ε\K(x) dµ(x) ≤ 1

r(K)

∫
∂K

〈x, η(x)〉|x|p
′
e−ϕ(x) dσK(x).

Therefore, letting ε ↓ 0 in (3.18), we obtain

lim inf
ε↓0

Entµ(fε) ≤
2

κ

(
1

r(K)

∫
∂K

〈x, η(x)〉|x|p
′
e−ϕ(x) dσK(x)

)1/p′

µ+(K)1/p.

Since limε↓0 fε = 1Rn\K and µ(K) = µ(K), the lower semi-continuity of the relative
entropy yields that

−(1− µ(K)) log(1− µ(K)) ≤ 2

κ

(
1

r(K)

∫
∂K

〈x, η(x)〉|x|p
′
e−ϕ(x) dσK(x)

)1/p′

µ+(K)1/p,

which implies the desired assertion.

4 Revisit to the dilation inequality

4.1 Reconstruction

In Section 2, we investigated the functional form of the dilation inequality. In this
section, conversely, we will confirm that the dilation inequality can be recovered from
the functional inequality (2.11).

For K ∈ Kns (Rn), we define a function NK : Rn → [0,∞) by

NK(x) :=

{
‖x‖K if x /∈ K
1 if x ∈ K.

Then we can easily check that NK is a continuous, even and quasi-convex function on
Rn.

Theorem 4.1. Let µ be a probability measure supported on a symmetric convex domain
Ω ⊂ Rn with

∫
Ω
|x| dµ(x) < +∞. We suppose that (2.11) holds for any f ∈ QC1(Ω, µ) with

some κ > 0. Then µ satisfies the dilation inequality (1.9) for Kns (Ω) with the constant κ.

Proof. Let us fix K ∈ Kns (Ω). We first remark that we may assume µ(K) = µ(K),
otherwise we have µ∗(K) = +∞ since

µ(Kε)− µ(K)

ε
≥ µ(K)− µ(K)

ε

and thus nothing to prove.
Let σ ∈ (0, 1) and set δ := 2σ/(1− σ)2. We define

fσ(x) := min

{
1

δ
(NK(x)− 1), 1− σ

}
=

{
1
δ (NK(x)− 1) if x ∈ Kσ

1− σ if x /∈ Kσ

=


0 if x ∈ K
1
δ (‖x‖K − 1) if x ∈ Kσ \K
1− σ if x /∈ Kσ
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for x ∈ Rn. Note that fσ is a nonnegative, even, continuous and quasi-convex function.
We can also check that fσ ∈ L1(µ) since fσ ≤ 1 − σ on Rn. Moreover, we can obtain
fσ ∈ QC1(Ω, µ). To see this, we shall justify (2.5) for fσ. For any ε ∈ (0, 1) and x ∈ Rn, it
holds

fσ

(
1− ε
1 + ε

x

)
=


0 if x ∈ Kε

1
δ ( 1−ε

1+ε‖x‖K − 1) if x ∈ (Kσ)ε \Kε

1− σ if x /∈ (Kσ)ε,

where we used 1+ε
1−εK = Kε. Hence for any ε ∈ (0, σ), we have

1

ε

(
fσ(x)− fσ

(
1− ε
1 + ε

x

))
=


1
ε

1
δ (‖x‖K − 1) if x ∈ Kε \K

1
ε ( 1
δ (‖x‖K − 1)− 1

δ ( 1−ε
1+ε‖x‖K − 1)) if x ∈ Kσ \Kε

1
ε (1− σ − 1

δ ( 1−ε
1+ε‖x‖K − 1)) if x ∈ (Kσ)ε \Kσ

0 otherwise.

For any x ∈ Kε, since 1−ε
1+ε‖x‖K = ‖x‖Kε ≤ 1, we have

1

ε

1

δ
(‖x‖K − 1) ≤ 1

ε

1

δ

(
‖x‖K −

1− ε
1 + ε

‖x‖K
)

=
2

δ(1 + ε)
‖x‖K ≤

2

δ
‖x‖K .

Next for x 6∈ Kσ, we have

1− σ ≤ 1

δ
(‖x‖K − 1)

by ‖x‖K ≥ 1+σ
1−σ . Thus it holds that

1

ε

(
1− σ − 1

δ

(
1− ε
1 + ε

‖x‖K − 1

))
≤1

ε

(
1

δ
(‖x‖K − 1)− 1

δ

(
1− ε
1 + ε

‖x‖K − 1

))
=

2

δ(1 + ε)
‖x‖K

≤2

δ
‖x‖K .

In particular, for any x ∈ Rn, we have

1

ε

(
1

δ
(‖x‖K − 1)− 1

δ

(
1− ε
1 + ε

‖x‖K − 1

))
≤ 2

δ
‖x‖K .

Therefore summarizing our arguments above, we can conclude that

1

ε

(
fσ(x)− fσ

(
1− ε
1 + ε

x

))
≤ 2

δ
‖x‖K

for any x ∈ Rn and ε ∈ (0, σ), which ensures (2.5) for fσ since we can take some constant
C > 0 such that ‖ · ‖K ≤ C| · | and since we have

∫
Ω
|x| dµ < +∞. Hence we could check

fσ ∈ QC1(Ω, µ). Moreover, we can get

Φfσ (x) =
2

δ
‖x‖K1Kσ\K(x), x ∈ Rn.

Hence we can apply (2.11) to fσ to see

Entµ(fσ) ≤ 1

κ

∫
Ω

Φfσ dµ.
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In the right hand side, since it holds that

‖x‖K ≤
1 + σ

1− σ
, x ∈ Kσ,

we obtain ∫
Ω

Φfσ dµ ≤
2

δ

1 + σ

1− σ
(µ(Kσ)− µ(K)) ≤ (1− σ2)

1

σ
(µ(K(1+τ)σ)− µ(K))

for any small enough τ > 0, where we used Kσ ⊂ K(1+τ)σ and µ(K) = µ(K) in the last
inequality. Hence we have

lim inf
σ↓0

∫
Ω

Φfσ dµ ≤ (1 + τ)µ∗(K)

for any small enough τ > 0, and thus

lim inf
σ↓0

∫
Ω

Φfσ dµ ≤ µ∗(K).

On the other hand, since it holds that fσ → 1Rn\K as σ ↓ 0, it follows from the lower
semi-continuity of Entµ that

lim inf
σ↓0

Entµ(fσ) ≥ Entµ(1Rn\K) = −(1−µ(K)) log(1−µ(K)) = −(1−µ(K)) log(1−µ(K))

by µ(K) = µ(K). Eventually, we have

−(1− µ(K)) log(1− µ(K)) ≤ 1

κ
µ∗(K),

which is the desired assertion.

4.2 Applications

As a corollary of Theorem 4.1, we obtain the stability of the dilation inequality for
bounded perturbations, which is described in Corollary 1.7. To show this corollary, we
employ the following lemma.

Lemma 4.2 ([3, Lemma 5.1.7]). For any nonnegative function f ∈ L1(Rn, µ) satisfying∫
Rn
f dµ > 0, it holds

Entµ(f) = inf
r∈(0,∞)

∫
Rn

[φ(f)− φ(r)− φ′(r)(f − r)] dµ.

Here we set φ(r) := r log r for r > 0.

Proof of Corollary 1.7. We firstly note that since h is bounded from above and below by
a positive constant, we have QC1(Ω, µ) = QC1(Ω, ν). Moreover it follows from h ≤ b and
Lemma 4.2 that Entν(f) ≤ bEntµ(f) for any f ∈ QC1(Ω, ν). Since µ satisfies the dilation
inequality for Kns (Ω) with κ > 0, we can apply Theorem 2.5 to see

Entν(f) ≤ b

κ

∫
Ω

Φf dµ

for any f ∈ QC1(Ω, ν). By h ≥ b−1, we conclude

Entν(f) ≤ b2

κ

∫
Ω

Φf dν

for any f ∈ QC1(Ω, ν).
Now we can check

∫
Ω
|x| dν < +∞ since

∫
Ω
|x| dµ < +∞ and h is bounded from above.

Hence we obtain the desired assertion by applying Theorem 4.1 to ν.
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As another consequence of Theorem 4.1, we can observe the tensorization property
in the special case, which is described in Corollary 1.8. We remark that Ω1 × Ω2 is also a
symmetric convex domain in Rn+1.

Proof of Corollary 1.8. Let QC1,∗(Ω1×Ω2, µ1⊗µ2) be the set of all functions f ∈ QC1(Ω1×
Ω2, µ1 ⊗ µ2) such that f is bounded on Ω1 × Ω2 and satisfies

f(x, y) = f(−x, y) = f(x,−y) = f(−x,−y), ∀(x, y) ∈ Ω1 × Ω2. (4.1)

Now, fix f ∈ QC1,∗(Ω1 × Ω2, µ1 ⊗ µ2), and set

g(x) :=

∫
Ω2

f(x, y) dµ2(y).

Then we see that

Entµ1⊗µ2
(f)

=Entµ1
(g)

+

∫
Ω1

(∫
Ω2

f(x, y) log f(x, y) dµ2(y)−
∫

Ω2

f(x, y) dµ2(y) log

∫
Ω2

f(x, y) dµ2(y)

)
dµ1(x).

If we have g ∈ QC1(Ω1, µ1) and f(x, ·) ∈ QC1(Ω2, µ2) for µ1-a.e., x ∈ Ω1, then we can
apply Theorem 2.5 to see that

Entµ1⊗µ2
(f) ≤ 1

κ1

∫
Ω1

Φg(x) dµ1(x) +
1

κ2

∫
Ω1

∫
Ω2

Φf(x,·)(y) dµ2(y)dµ1(x). (4.2)

By the definition, we have

Φg(x) = lim sup
ε↓0

∫
Ω2

1

ε

(
f(x, y)− f

(
1− ε
1 + ε

x, y

))
dµ2(y).

Now we remark that f( 1−ε
1+εx, y) ≥ f( 1−ε

1+εx,
1−ε
1+εy) for any (x, y) ∈ Ω1 × Ω2. Indeed, since

f is even quasi-convex function on Ω1 × Ω2 and satisfies (4.1), f(z, ·) is even quasi-
convex on Ω2 for each z ∈ Ω1. In particular, f(z, ty) is monotone increasing in t ≥ 0

for any y ∈ Ω2, and hence we conclude f( 1−ε
1+εx, y) ≥ f( 1−ε

1+εx,
1−ε
1+εy). From this and

f ∈ QC1(Ω1 × Ω2, µ1 ⊗ µ2), we obtain

1

ε

(
f(x, y)− f

(
1− ε
1 + ε

x, y

))
≤ 1

ε

(
f(x, y)− f

(
1− ε
1 + ε

x,
1− ε
1 + ε

y

))
≤ h(x, y)

for all small enough ε > 0 and (x, y) ∈ Ω1 × Ω2, where h is a Borel function in L1(Ω1 ×
Ω2, µ1 ⊗ µ2). In particular, h(x, ·) ∈ L1(Ω2, µ2) holds for µ1-a.e., x ∈ Ω1. Hence it follows
from Fatou’s lemma that

Φg(x) ≤
∫

Ω2

Φf (x, y) dµ2(y)

for µ1-a.e., x ∈ Ω1. Similarly, we can observe that Φf(x,·)(y) ≤ Φf (x, y). Therefore we can
conclude

Entµ1⊗µ2
(f) ≤

(
1

κ1
+

1

κ2

)∫
Ω1×Ω2

Φf (x, y) dµ1 ⊗ µ2(x, y) (4.3)

for any f ∈ QC1,∗(Ω1 × Ω2, µ1 ⊗ µ2).
Now let K ⊂ R × Rn be a symmetric open convex set such that if (x, y) ∈ R × Rn

belongs to K, then (−x, y), (x,−y), (−x,−y) also belong to K. Let us consider the
function fσ given in the proof of Theorem 4.1 for σ ∈ (0, 1) and K. Then by the property
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of K and the definition of fσ, we see that fσ ∈ QC1,∗(Ω1 × Ω2, µ1 ⊗ µ2). We also remark
that it holds that

∫
R×Rn |(x, y)| dµ1 ⊗ µ2(x, y) < +∞ by assumptions. Hence, by iterating

the same arguments for fσ as in the proof of Theorem 4.1 via (4.3), we can obtain

µ∗(K) ≥ −
(

1

κ1
+

1

κ2

)−1

(1− µ(K)) log(1− µ(K)),

which is the desired assertion.
Finally, to justify the above argument, we prove g ∈ QC1(Ω1, µ1) and f(x, ·) ∈

QC1(Ω2, µ2) for µ1-a.e., x ∈ Ω1. Since f is bounded and satisfies (4.1), we can eas-
ily check that f(x, ·) and g are nonnegative, continuous and even functions, and f(x, ·)
is quasi-convex. In addition, since f is integrable, we see that g ∈ L1(Ω1, µ1) and
f(x, ·) ∈ L1(Ω2, µ2) for µ1-a.e., x ∈ Ω1. Since we have already shown that g and f(x, ·)
satisfy the condition (2.5) by the above argument, we obtain f(x, ·) ∈ QC1(Ω2, µ2) for
µ1-a.e., x ∈ Ω1. Therefore it suffices to show that g is quasi-convex from which we can
conclude g ∈ QC1(Ω1, µ1).

Let λ > 0 and consider A(λ) := {x ∈ R | g(x) < λ}. Without loss of generality, we
may assume that A(λ) 6= ∅. We remark that A(λ) is symmetric since g is even. Now take
z ∈ A(λ) with z ≥ 0. Since f is quasi-convex, f(·, y) is also quasi-convex for any y ∈ Ω2.
In particular, since f(·, y) is even by (4.1), we see that f(tz, y) is monotone increasing in
t ≥ 0. Thus for any z′ ∈ [0, z] and y ∈ Ω2, we have f(z′, y) ≤ f(z, y) which implies that
g(z′) ≤ g(z) < λ. Since g is even, we obtain [−z, z] ⊂ A(λ) from which A(λ) should be an
interval. Hence g is quasi-convex, and our proof is complete.

Remark 4.3. It is natural to expect the tensorization property for high dimensional
spaces. More precisely, if µ1 and µ2 are probability measures on Rn1 and Rn2 satisfying
dilation inequalities for Kn1

s (Rn1) and Kn2
s (Rn2), respectively, then does µ1 ⊗ µ2 also

satisfy the dilation inequality for Kn1+n2
s (Rn1+n2)? Corollary 1.8 gives a partial answer

affirmatively when either n1 or n2 is 1, but it is open when n1, n2 ≥ 2. In our argument,
this difficulty comes from quasi-convexity. In fact, let f1 and f2 be nonnegative even
quasi-convex functions on Rn. Then in our proof of Corollary 1.8, we used the fact
that f1 + f2 is also an even quasi-convex function when n = 1. However, when n ≥ 2,
the same phenomenon fails. For instance, let us consider functions f1(x1, x2) = |x1|2/3
and f2(x1, x2) = |x2|2/3 for (x1, x2) ∈ R2. Then we can check that both functions are
even and quasi-convex, but f1 + f2 is not quasi-convex on R2 (the curve {(x1, x2) ∈ R2 |
f1(x1, x2) + f2(x1, x2) = 1} is the astroid).

In our proof of Corollary 1.8, we also showed the tensorization property of the
functional dilation inequality (2.11). If we focus on this tensorization, we can improve
the functional version of Corollary 1.8 in the following special case.

Corollary 4.4. Let µ1, µ2 be probability measures supported on symmetric convex do-
mains Ω1 ⊂ R and Ω2 ⊂ Rn, respectively. We suppose that µ1, µ2 satisfy (2.11) with some
κ1, κ2 > 0, respectively. Then µ1 ⊗ µ2 satisfies (2.11) with the constant κ = min{κ1, κ2}
for any bounded function f ∈ QC1(Ω1 × Ω2, µ1 ⊗ µ2) ∩ C1(Ω1 × Ω2) satisfying (4.1).

Proof. Almost all arguments are the same as in the proof of Corollary 1.8, but we remark
that since f ∈ C1(Ω1 × Ω2), we have

Φg(x) = 2

∫
Ω2

〈x,∇xf(x, y)〉 dµ2(y), x ∈ Ω1

and

Φf(x,·)(y) = 2〈y,∇yf(x, y)〉, (x, y) ∈ Ω1 × Ω2.
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Hence since we also see that

Φf (x, y) = 2〈(x, y),∇f(x, y)〉, (x, y) ∈ Ω1 × Ω2,

it follows from (4.2) that

Entµ1⊗µ2(f)

≤max

{
1

κ1
,

1

κ2

}
×
(

2

∫
Ω1

∫
Ω2

〈x,∇xf(x, y)〉 dµ2(y) dµ1(x) + 2

∫
Ω1

∫
Ω2

〈y,∇yf(x, y)〉 dµ2(y)dµ1(x)

)
=

2

min{κ1, κ2}

∫
Ω1×Ω2

〈(x, y),∇f(x, y)〉 dµ1 ⊗ µ2(x, y)

=
1

min{κ1, κ2}

∫
Ω1×Ω2

Φf (x, y) dµ1 ⊗ µ2(x, y),

which is the desired assertion.

A Appendix

Here we will investigate the dilation inequality for symmetric log-concave probability
measures on R and the standard Gaussian measure γn on Rn.

Proposition A.1. Every symmetric log-concave probability measure on R satisfies the
dilation inequality for K1

s(R) with κ = 2.

Proof. Let µ = e−ϕ(x) dx be a symmetric probability measure on R. Then we see that
µ∗((−t, t)) = 4e−ϕ(t)t for any t > 0 (see [35]). We set dν := 2e−ϕ(x)1(0,∞) dx, then ν is a log-
concave probability measure since µ is symmetric. Moreover, we get ν∗((0, t)) = 2e−ϕ(t)t

for any t > 0. Hence, we obtain µ∗((−t, t)) = 2ν∗((0, t)). On the other hand, since every
log-concave probability measure satisfies the dilation inequality (1.4), we can conclude

µ∗((−t, t)) ≥ −2(1− ν((0, t))) log(1− ν((0, t))).

Finally, since we have ν((0, t)) = µ((−t, t)) by symmetry of µ, we obtain the desired
assertion.

Proposition A.2. The standard Gaussian measure γn satisfies the dilation inequality for
Kns (Rn) with κ = 2.

Proof. We employ the result by Latała–Oleszkiewicz [25] where they showed that for any
K ∈ Kns (Rn), it holds that

γn(tK) ≥ γn(tP ), ∀t ≥ 1,

where P ⊂ Rn is a symmetric strip such that γn(P ) = γn(K). In particular, we can
take θK > 0 satisfying γn(P ) = γn(Rn−1 × (−θK , θK)), γn(tK) ≥ γ1((−tθK , tθK)) for any
t ≥ 1 and γn(K) = γ1((−θK , θK)). Hence, by the definition of the dilation area, we can
conclude γ∗n(K) ≥ γ∗1 ((−θK , θK)). Finally, since γ1 is log-concave, Proposition A.1 implies
the desired assertion.

We also remark that κ = 2 is optimal in Proposition A.2. Indeed, we can check that
for t > 0,

γ∗1 ((−t, t)) =
4√
2π
e−

1
2 t

2

t

and

−(1− γ1((−t, t))) log(1− γ1((−t, t))) =
2√
2π
t+ o(t)

as t→ +0. Hence if γ1 satisfies (1.9) for K1
s(R) with κ > 0, then κ should satisfy κ ≤ 2.

EJP 29 (2024), paper 64.
Page 29/31

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1122
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Analytic aspects of the dilation inequality

References

[1] S. Artstein-Avidan, B. Klartag, C. Schütt, E. Werner, Functional affine-isoperimetry and
an inverse logarithmic Sobolev inequality, J. Funct. Anal. 262 (2012), no.9, 4181–4204.
MR2899992

[2] M. Avriel, W. E. Diewert, S. Schaible, I. Zang, Generalized Concavity, Society for Industrial
and Applied Mathematics, 2010. MR3396214

[3] D. Bakry, I. Gentil and M. Ledoux, Analysis and geometry of Markov diffusion operators,
Grundlehren der Mathematischen Wissenschaften, 348, Springer, Cham, 2014. MR3155209

[4] S. G. Bobkov, Isoperimetric and analytic inequalities for log-concave probability measures,
Ann. Probab. 27 (1999), no. 4, 1903–1921. MR1742893

[5] S. G. Bobkov, Large deviations via transference plans, Advances in mathematics research,
Vol. 2, 151–175, Adv. Math. Res., 2, Nova Sci. Publ., Hauppauge, NY, 2003. MR2035184

[6] S. G. Bobkov, Large deviations and isoperimetry over convex probability measures with heavy
tails, Electron. J. Probab. 12 (2007), 1072–1100. MR2336600

[7] S. G. Bobkov, On isoperimetric constants for log-concave probability distributions, Geometric
aspects of functional analysis, 81–88, Lecture Notes in Math., 1910, Springer, Berlin, 2007.
MR2347041

[8] S. G. Bobkov and C. Houdré, Isoperimetric constants for product probability measures, Ann.
Probab. 25 (1997), no. 1, 184–205. MR1428505

[9] S. G. Bobkov and F. Nazarov, Sharp dilation-type inequalities with fixed parameter of convexity,
Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 351 (2007), Veroyatnost’i
Statistika. 12, 54–78, 299; reprinted in J. Math. Sci. (N.Y.) 152 (2008), no. 6, 826–839.
MR2742901

[10] C. Borell, Convex measures on locally convex spaces, Ark. Mat. 12 (1974), 239–252.
MR0388475

[11] C. Borell, Convex set functions in d-space, Period. Math. Hungar. 6 (1975), no. 2, 111–136.
MR0404559

[12] S. Brazitikos, A. Giannopoulos, P. Valettas and B.-H. Vritsiou, Geometry of isotropic con-
vex bodies, Mathematical Surveys and Monographs, 196. American Mathematical Society,
Providence, RI, 2014. MR3185453

[13] P. Buser, A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. (4) 15 (1982), no.
2, 213–230. MR0683635

[14] U. Caglar, M. Fradelizi, O. Guédon, J. Lehec, C. Schütt, E. Werner, Functional versions of
Lp-affine surface area and entropy inequalities. Int. Math. Res. Not. IMRN (2016), no.4,
1223–1250. MR3493447

[15] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis,
pp. 195–199. Princeton Univ. Press, Princeton, N.J., 1970. MR0402831

[16] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed., Wiley-Interscience,
New York, 2006. MR2239987

[17] M. Fradelizi, Concentration inequalities for s-concave measures of dilations of Borel sets and
applications, Electron. J. Probab. 14 (2009), no. 71, 2068–2090. MR2550293

[18] N. Gozlan, The deficit in the Gaussian log-Sobolev inequality and inverse Santaló inequalities,
Int. Math. Res. Not. IMRN 2022, no. 17, 13396–13446. MR4475270

[19] O. Guédon, Kahane-Khinchine type inequalities for negative exponent, Mathematika 46
(1999), no. 1, 165–173. MR1750653

[20] O. Guédon, P. Nayar and T. Tkocz, Concentration inequalities and geometry of convex bodies,
Analytical and probabilistic methods in the geometry of convex bodies, 9–86, IMPAN Lect.
Notes, 2, Polish Acad. Sci. Inst. Math., Warsaw, 2014. MR3329056

[21] R. Kannan, L. Lovász, M. Simonovits, Isoperimetric problems for convex bodies and a
localization lemma, Discrete Comput. Geom. 13 (1995), no. 3-4, 541–559. MR1318794

[22] B. Klartag, Needle decompositions in Riemannian geometry, Mem. Amer. Math. Soc. 249
(2017), no. 1180. MR3709716

EJP 29 (2024), paper 64.
Page 30/31

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=2899992
https://mathscinet.ams.org/mathscinet-getitem?mr=3396214
https://mathscinet.ams.org/mathscinet-getitem?mr=3155209
https://mathscinet.ams.org/mathscinet-getitem?mr=1742893
https://mathscinet.ams.org/mathscinet-getitem?mr=2035184
https://mathscinet.ams.org/mathscinet-getitem?mr=2336600
https://mathscinet.ams.org/mathscinet-getitem?mr=2347041
https://mathscinet.ams.org/mathscinet-getitem?mr=1428505
https://mathscinet.ams.org/mathscinet-getitem?mr=2742901
https://mathscinet.ams.org/mathscinet-getitem?mr=0388475
https://mathscinet.ams.org/mathscinet-getitem?mr=0404559
https://mathscinet.ams.org/mathscinet-getitem?mr=3185453
https://mathscinet.ams.org/mathscinet-getitem?mr=0683635
https://mathscinet.ams.org/mathscinet-getitem?mr=3493447
https://mathscinet.ams.org/mathscinet-getitem?mr=0402831
https://mathscinet.ams.org/mathscinet-getitem?mr=2239987
https://mathscinet.ams.org/mathscinet-getitem?mr=2550293
https://mathscinet.ams.org/mathscinet-getitem?mr=4475270
https://mathscinet.ams.org/mathscinet-getitem?mr=1750653
https://mathscinet.ams.org/mathscinet-getitem?mr=3329056
https://mathscinet.ams.org/mathscinet-getitem?mr=1318794
https://mathscinet.ams.org/mathscinet-getitem?mr=3709716
https://doi.org/10.1214/24-EJP1122
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Analytic aspects of the dilation inequality

[23] B. Klartag, Logarithmic bounds for isoperimetry and slices of convex sets, arXiv:2303.14938.
MR4603941

[24] R. Latała, On the equivalence between geometric and arithmetic means for log-concave
measures, Convex geometric analysis (Berkeley, CA, 1996), 123-127, Math. Sci. Res. Inst.
Publ., 34, Cambridge Univ. Press, Cambridge, 1999. MR1665584

[25] R. Latała and K. Oleszkiewicz, Gaussian measures of dilatations of convex symmetric sets.
Ann. Probab. 27 (1999), no. 4, 1922–1938. MR1742894

[26] M. Ledoux, A simple analytic proof of an inequality by P. Buser, Proc. Amer. Math. Soc. 121
(1994), no. 3, 951–959. MR1186991

[27] L. Lovász and M. Simonovits, Random walks in a convex body and an improved volume
algorithm, Random Structures Algorithms 4 (1993), no. 4, 359–412. MR1238906

[28] V. G. Maz’ya, The negative spectrum of the higher-dimensional Schrödinger operator, Dokl.
Akad. Nauk SSSR 144 1962 721–722. MR0138880

[29] V. G. Maz’ya, On the solvability of the Neumann problem, Dokl. Akad. Nauk SSSR 147 1962
294–296. MR0144058

[30] E. Milman, Uniform tail-decay of Lipschitz functions implies Cheeger’s isoperimetric inequal-
ity under convexity assumptions. C. R. Math. Acad. Sci. Paris 346(2008), no.17-18, 989–994.
MR2449642

[31] E. Milman, Reverse Hölder inequalities for log-Lipschitz functions, Pure Appl. Funct. Anal. 8
(2023), no. 1, 297–310. MR4568961

[32] V. D. Milman, G. Schechtman, Asymptotic Theory of Finite Dimensional Normed Spaces,
Springer-Verlag, New York (1986). MR0856576

[33] F. Nazarov, M. Sodin and A. Volberg, The geometric Kannan-Lovász-Simonovits lemma,
dimension-free estimates for the distribution of the values of polynomials, and the distribution
of the zeros of random analytic functions, Algebra i Analiz 14 (2002), no. 2, 214–234;
translation in St. Petersburg Math. J. 14 (2003), no. 2, 351–366. MR1925887

[34] B. Simon, Convexity. An analytic viewpoint, Cambridge Tracts in Mathematics, 187. Cam-
bridge University Press, Cambridge, 2011. MR2814377

[35] H. Tsuji, Dilation type inequalities for strongly-convex sets in weighted Riemannian manifolds.
Anal. Geom. Metr. Spaces 9 (2021), no. 1, 219–253. MR4355408

[36] C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics, 58. American
Mathematical Society, Providence, RI, 2003. MR1964483

[37] C. Villani, Optimal transport, old and new, Springer-Verlag, Berlin, 2009. MR2459454

Acknowledgments. The author would like to thank Professors Shin-ichi Ohta and
Shohei Nakamura for helpful comments. The author also thank an anonymous referee
for very helpful comments which have led to an improved presentation.

EJP 29 (2024), paper 64.
Page 31/31

https://www.imstat.org/ejp

https://arXiv.org/abs/2303.14938
https://mathscinet.ams.org/mathscinet-getitem?mr=4603941
https://mathscinet.ams.org/mathscinet-getitem?mr=1665584
https://mathscinet.ams.org/mathscinet-getitem?mr=1742894
https://mathscinet.ams.org/mathscinet-getitem?mr=1186991
https://mathscinet.ams.org/mathscinet-getitem?mr=1238906
https://mathscinet.ams.org/mathscinet-getitem?mr=0138880
https://mathscinet.ams.org/mathscinet-getitem?mr=0144058
https://mathscinet.ams.org/mathscinet-getitem?mr=2449642
https://mathscinet.ams.org/mathscinet-getitem?mr=4568961
https://mathscinet.ams.org/mathscinet-getitem?mr=0856576
https://mathscinet.ams.org/mathscinet-getitem?mr=1925887
https://mathscinet.ams.org/mathscinet-getitem?mr=2814377
https://mathscinet.ams.org/mathscinet-getitem?mr=4355408
https://mathscinet.ams.org/mathscinet-getitem?mr=1964483
https://mathscinet.ams.org/mathscinet-getitem?mr=2459454
https://doi.org/10.1214/24-EJP1122
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Electronic Journal of Probability
Electronic Communications in Probability

Advantages of publishing in EJP-ECP

•Very high standards

•Free for authors, free for readers

•Quick publication (no backlog)

•Secure publication (LOCKSS1)

•Easy interface (EJMS2)

Economical model of EJP-ECP

•Non profit, sponsored by IMS3, BS4, ProjectEuclid5

•Purely electronic

Help keep the journal free and vigorous

•Donate to the IMS open access fund6 (click here to donate!)

•Submit your best articles to EJP-ECP

•Choose EJP-ECP over for-profit journals

1LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
2EJMS: Electronic Journal Management System: https://vtex.lt/services/ejms-peer-review/
3IMS: Institute of Mathematical Statistics http://www.imstat.org/
4BS: Bernoulli Society http://www.bernoulli-society.org/
5Project Euclid: https://projecteuclid.org/
6IMS Open Access Fund: https://imstat.org/shop/donation/

http://en.wikipedia.org/wiki/LOCKSS
https://vtex.lt/services/ejms-peer-review
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
https://projecteuclid.org/
https://imstat.org/shop/donation/
http://www.lockss.org/
https://vtex.lt/services/ejms-peer-review/
http://www.imstat.org/
http://www.bernoulli-society.org/
https://projecteuclid.org/
https://imstat.org/shop/donation/

	Introduction
	Functional inequality derived from the dilation inequality
	Some applications of Theorem 2.5
	Comparisons of the relative entropy, Wasserstein distance and variance
	Cramér–Rao inequality and logarithmic Sobolev inequality
	Kahane–Khintchine inequalities and deviation inequalities
	-perimeter

	Revisit to the dilation inequality
	Reconstruction
	Applications

	Appendix
	References

