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Branching Brownian motion in an expanding ball and
application to the mild obstacle problem

Mehmet Öz*

Abstract

We first study a d-dimensional branching Brownian motion (BBM) among mild Poisso-
nian obstacles, where a random trap field in Rd is created via a Poisson point process.
The trap field consists of balls of fixed radius centered at the atoms of the Poisson
point process. The mild obstacle rule is that when particles are inside traps, they
branch at a lower rate, which is allowed to be zero, whereas when outside traps they
branch at the normal rate. We prove upper bounds on the large-deviation probabilities
for the total mass of BBM among mild obstacles, which we then use along with the
Borel-Cantelli lemma to prove the corresponding strong law of large numbers. Our
results are quenched, that is, they hold in almost every environment with respect to
the Poisson point process. Our strong law improves on the existing corresponding
weak law in [Ann. Inst. Henri Poincaré Probab. Stat. 44 (2008), 490–518]. We also
study a d-dimensional BBM inside subdiffusively expanding balls, where the boundary
of the ball is deactivating in the sense that once a particle of the BBM hits the moving
boundary, it is instantly deactivated but will be reactivated at a later time provided
its ancestral line is fully inside the expanding ball at that later time. We obtain a
large-deviation result as time tends to infinity on the probability that the mass inside
the ball is aytpically small. An essential ingredient in the proofs of the strong law
of large numbers for BBM among mild obstacles turns out to be the large-deviation
result on the mass of BBM inside expanding balls.
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1 Introduction

In this work, we study two models involving a branching Brownian motion (BBM),
where the population growth is slower than that of an ordinary (free) BBM. It is well-
known that typically the population, that is, the total mass, of a BBM grows exponentially
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BBM in an expanding ball and among mild obstacles

in time. To be precise, if Nt denotes the total mass of a strictly dyadic BBM at time t and
β is the branching rate, then (Nt)t≥0 is a Yule process, and the limit M := limt→∞Nt e

−βt

exists, is positive and finite a.s. In each of the two models considered in this paper, there
is a reproduction suppressing mechanism which contributes a subexponentially decaying
factor to the typical population size.

We first consider the model of BBM among mild Poissonian obstacles. We study the
growth of mass of a BBM evolving in a random environment in Rd, which is composed
of randomly located spherical traps of fixed radius with centers given by a Poisson
point process (PPP). The mild obstacle rule is that when a particle is inside the traps,
it branches at a lower rate, which is allowed to be zero, than usual, that is, when it
is not in a trap. The mild obstacle problem for BBM was proposed by Engländer in
[6], and on a set of full measure with respect to the PPP, a kind of weak law of large
numbers (WLLN) was obtained (see [6, Theorem 1]) for the mass of the process as well
as a result on its spatial spread (see [6, Theorem 2]). In Theorem 2.1, by estimating
successive large-deviation probabilities, we improve the WLLN in [6] to the strong law of
large numbers (SLLN). We also include the possibility of no branching inside the traps,
which was not covered in [6]. The case of zero branching inside the traps adds a major
challenge to the problem. In this case, it is difficult to show that exponentially many
particles are produced with ‘high’ probability in the presence of mild obstacles, whereas
if the branching inside the traps is a positive constant, say β1, then a growth of ∼ eβ1t

particles ‘comes for free’ since the branching rate is at least β1 everywhere on Rd.

Then, we consider a BBM in an expanding ball of fixed center, where the radius of
the ball is increasing subdiffusively in time, and the boundary of the ball is deactivating
in the sense that once a particle of the BBM hits the moving boundary, it is instantly
deactivated but it will be reactivated at a later time provided its ancestral line is fully
inside the expanding ball again at that later time. On this model, in Theorem 2.4,
we obtain a large-deviation result, giving the large-time asymptotic behavior of the
probability that the total mass of the BBM is atypically small in the expanding ball.

An essential ingredient in the proof of Theorem 2.1 turns out be Theorem 2.4, that
is, the lower tail asymptotics for the mass of BBM in expanding balls. In the mild
obstacle problem, a suitable time-dependent clearing (see Definition 4.1) in the random
environment in Rd serves as the expanding ball of Theorem 2.4.

1.1 Formulation of the problems

We now describe the two sources of randomness in the models, and formulate the
problems in a precise way.

1. Trap field and mild obstacle problem for BBM: The setting of random ob-
stacles in Rd is formed as follows. Let Π be a Poisson point process (PPP) in Rd with
constant intensity ν > 0, and (Ω,P) be the corresponding probability space with expec-
tation E. By a trap associated to a point x ∈ Rd, we mean a closed ball of fixed radius
a > 0 centered at x, and by a trap field, we mean the random set

K = K(ω) :=
⋃

xi∈ supp(Π)

B̄(xi, a), (1.1)

where B̄(x, a) denotes the closed ball of radius a centered at x ∈ Rd.
In the first part of the current work, a branching Brownian motion (which is briefly

described below) is assumed to live in Rd, to which K is attached. For ω ∈ Ω, we refer to
Rd with K(ω) attached simply as the random environment ω, and use Pω to denote the
conditional law of the BBM in the random environment ω. The mild obstacle problem
for BBM has the following rule: when a particle of BBM is in Kc, it branches at rate β2,
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whereas when in K, it branches at a lower rate β1 with 0 ≤ β1 < β2. That is, under the
law Pω, the BBM has a spatially dependent branching rate

β(x, ω) := β2 1Kc(ω)(x) + β1 1K(ω)(x).

Our focus is on the total mass of BBM among mild obstacles. We first find upper
bounds that are valid for large t on the large-deviation probabilities that the mass is
atypically small and atypically large. Then, via Borel-Cantelli arguments, we obtain the
corresponding SLLN, which says that the total mass of BBM among mild obstacles grows
as its expectation as t→∞. That is, on a set of full P-measure, in a loose sense,

logNt
t

≈ logEω[Nt]

t
, t→∞, Pω-a.s.

(See Theorem 2.1 and Remark 2.3 for precise statements.) The result is valid in almost
every environment ω; hence, it is called a quenched SLLN. We refer the reader to [6,
Section 1.2] for a list of problems that serve as motivation to study the current model.

We emphasize that here we allow the possibility of complete suppression of branching
in K, that is, β1 = 0, which was not considered in [6]. The case β1 = 0 is inherently
harder to deal with. The challenge is to produce exponentially many particles with ‘high’
probability in the presence of mild traps. If β1 = 0, it is difficult to show this, because
there are random regions in Rd where particles don’t branch at all; whereas if the
branching inside the traps is a positive constant, say β1, then a growth of ∼ eβ1t particles
‘comes for free’ since the branching rate is at least β1 everywhere on Rd. Hence, if
β1 = 0, one must have some control over the motion of the BBM inside the traps. A
priori, one may think that with significant probability the particles spend too much time
inside the traps so that exponential growth cannot be achieved. We show, inter alia, in
the proof of the lower bound of Theorem 2.1 that this is not the case.

2. Branching Brownian motion in an expanding ball: Let Z = (Zt)t≥0 be a
strictly dyadic d-dimensional BBM with branching rate β > 0, where t represents time.
Strictly dyadic means that every time a particle branches it gives precisely two offspring.
The process can be described as follows. It starts with a single particle, which performs
a Brownian motion (BM) in Rd for a random lifetime, at the end of which it dies and
simultaneously gives birth to two offspring. Similarly, starting from the position where
their parent dies, each offspring particle repeats the same procedure as their parent
independently of others and the parent, and the process evolves through time in this
way. All particle lifetimes are exponentially distributed with constant parameter β > 0.
For each t ≥ 0, Zt can be viewed as a finite discrete measure on Rd, which is supported
at the positions of the particles at time t. For t ≥ 0, we use |Zt| to denote the total mass
of Z at time t, and occasionally use Nt := |Zt|. Also, for a Borel set A ⊆ Rd and t ≥ 0, we
write Zt(A) to denote the mass of Z that fall inside A at time t.

We also define a BBM deactivated at a moving boundary. For a Borel set A ∈ Rd,
denote by ∂A the boundary of A. Consider a family of Borel sets B = (Bt)t≥0. Let
ZB = (ZBtt )t≥0 be the BBM deactivated at ∂B, which can be obtained from Z as follows.
For each t ≥ 0, start with Zt, and delete from it any particle whose ancestral line up
to t has exited Bt to obtain ZBtt . This means, ZBtt consists of particles at time t whose
ancestral lines have been confined to Bt up to time t (but may have left Bs at an earlier
time s), and therefore it can be viewed as a finite discrete measure in Bt. The terminology
‘deactivated’ reflects on the following nature of the process: if a particle of Zs is not part
of ZBss at time s, this means it has been deactivated since its ancestral line has exited Bs
over [0, s]; it could reappear (or be reactivated) at a later time u and hence be a part of
ZBuu provided its ancestral line becomes fully contained in Bu over [0, u].

This choice of a model for a BBM deactivated at a moving boundary is natural to apply
in the mild obstacle problem for BBM. One can show that in almost every environment in
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Rd, that is, Rd with a random trap field as in (1.1) is attached, certain trap-free regions
of different sizes and locations exist, which may be suitably indexed by time t and thus
serve as suitable time-dependent balls with moving boundaries. It is the free growth of
the BBM inside these trap-free regions that decides the overall growth rate of the BBM
in the random environment in Rd.

We denote by Ω̂ the sample space for the BBM, and use Px and Ex, respectively, to
denote the law and corresponding expectation of a BBM starting with a single particle
at x ∈ Rd. By an abuse of notation, we use Px and Ex also for the BBM deactivated at a
boundary. For simplicity, we set P = P0. Also, we sometimes use

nt := |ZBtt |

to denote the mass at time t of a BBM deactivated at ∂B.
Consider a radius function r : R+ → R+ with limt→∞ r(t) =∞, which is subdiffusively

increasing, that is, r is increasing and r(t) = o(
√
t) as t → ∞. For t > 0, let Bt :=

B(0, r(t)), and pt be the probability of confinement to Bt of a standard BM (starting from
the origin) over [0, t]. In the second part of the current work (see Theorem 2.4), for a
suitably decreasing function γ : R+ → R+ with limt→∞ γ(t) = 0, we find the asymptotic
behavior as t→∞ of the large-deviation (LD) probability

P
(∣∣ZBtt ∣∣ < γtpte

βt
)
,

where we have set γt = γ(t) for convenience. It is easy to show that E[nt] = pte
βt;

therefore, since limt→∞ γ(t) = 0, for large t one could suspect that γtpteβt is atypically
small for the mass of a BBM deactivated at ∂B. Indeed, Theorem 2.4 verifies that this is
the case. To the best of our knowledge, it is not known whether the almost sure growth
of nt agrees with its expected growth.

1.2 History

The study of branching diffusions among random obstacles in Rd goes back to
Engländer [3], who studied a BBM among hard Poissonian obstacles in the case of a
uniform field, and obtained the asymptotic probability of survival for the system as
t→∞ in d ≥ 2. In the hard obstacle model, the process is killed instantly when a particle
hits the traps. Engländer and den Hollander [4] then studied the more interesting case
where the trap intensity was radially decaying as

dν

dx
∼ `

|x|d−1
, |x| → ∞, ` > 0, (1.2)

where dν/dx denotes the density of the mean measure of the PPP with respect to the
Lebesgue measure. It is shown in [4] that the decay rate in (1.2) is interesting, because
it gives rise to a phase transition at a critical intensity ` = `cr > 0, at which the behavior
of the system changes in terms of the optimal survival strategy. In contrast, if the decay
order is larger (or smaller), there will be no such phase transition and the optimal
survival strategy will simply be as in the case of the decay in (1.2) and ` > `cr (or ` < `cr).
In both [3] and [4], the branching rule was taken as strictly dyadic, and the main result
was the exponential asymptotic decay rate of the annealed survival probability as t→∞;
in addition, in [4], several optimal survival strategies were proved. For a BBM with a
generic branching law, denote by p0 the probability that a particle gives no offspring at
the end of its lifetime. In [16], the work in [3] was extended to a BBM with a generic
branching law, including the case where p0 > 0. Likewise in [17], the work in [4] on the
radially decaying trap field was extended to a BBM with a generic branching law, with the
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possibility of p0 > 0. Recently in [18], conditioning the BBM on the event of survival from
hard Poissonian obstacles, Öz and Engländer proved several optimal survival strategies
in the annealed environment, with particular emphasis on the population size.

The annealed setting can be quite different from the quenched setting. An annealed
result is obtained by averaging over all environments, that is, with the notation intro-
duced above, the law (E ⊗ Pω)(·) is used to calculate probabilities. This means, joint
strategies involving both the random process (the BBM in the current problem) and the
random environment can be used to realize the event in question, whereas only strate-
gies involving the random process which can be realized in almost every environment
can be used in the quenched setting. In this sense, the system has significantly more
‘freedom’ in the annealed setting. For instance, the quenched and annealed asymptotics
are different for the classical problem of Brownian survival among Poissonian traps (see
Theorems 4.5.1 and 4.5.3 in [22]).

We refer the reader to [5] for a survey, and to [7] for a detailed treatment on the
topic of BBM among random obstacles, and to [13] for a related problem where a
critical BBM that is killed at a small rate inside the traps (such traps are called soft
obstacles) is studied. We repeat that the mild obstacle model studied in the current
work was proposed by Engländer in [6]. It is the partial aim of this work to improve the
WLLN therein for the population size of the BBM to the SLLN using purely probabilistic
techniques as opposed to techniques involving partial differential equations (PDEs) in
[6], as well as extending the results to the case of no branching within the obstacles.

The study of branching diffusions in restricted domains with absorbing boundaries
goes back to Sevast’yanov [20], who studied the survival of such systems in bounded
domains in Rd. In [12], Kesten studied a BBM with negative drift in one dimension
starting with a single particle at position x > 0 in the presence of absorption at the origin.
He obtained a survival criterion depending on the drift of the process, and an asymptotic
result on the number of particles in a given interval. Later, various further results were
obtained on the one-dimensional model with absorption at a one-sided barrier. In [15],
considering a BBM starting with a single particle at the origin and with a strong enough
negative drift so as to make extinction almost sure, Neveu studied the process (Zx)x≥0

formed by the total mass that is frozen upon exiting ((−∞,−x), x ≥ 0). Berestycki et
al. followed up on Kesten’s model of BBM with absorption at the origin, and in [1] and
[2] studied, respectively, the survival probability of the BBM near the critical drift as a
function of x > 0, and the genealogy of the process. In [9], on the same model, Harris et
al. studied the one-sided FKPP travelling-wave equation, and obtained several results on
the asymptotic speed of the rightmost particle, the almost sure exponential growth rate
of particles having different speeds, and the asymptotic probability of presence of the
BBM in the subcritical speed area. Then, in [14], Maillard improved on Neveu’s work in
the case where the process goes extinct almost surely, and obtained precise asymptotics
on the number of absorbed particles at the linear one-sided barrier. More recently in
[10], Harris et al. studied a BBM with drift in a fixed-size interval, that is, a two-sided
barriered version of Kesten’s model, and obtained a survival criterion involving a critical
width for the interval, and also the asymptotics of the near-critical survival probability.
The one-dimensional model involving a BBM with drift and a fixed barrier is equivalent to
the model involving a BBM with no drift and a linearly moving barrier. The second part of
the current work gives a lower tail large-deviation result on the population size of a BBM
in a subdiffusively expanding (time-dependent) ball in d dimensions with deactivating
boundary.

Notation: We use c, c0, c1, . . . as generic positive constants, whose values may change
from line to line. If we wish to emphasize the dependence of c on a parameter p, then
we write c(p). We denote by f : A → B a function f from a set A to a set B. For two
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functions f, g : R+ → R+, we write g(t) = o(f(t)) if g(t)/f(t) → 0 as t → ∞. Also, for a
generic function g : R+ → R+, we occasionally set gt = g(t) for notational convenience.
We use N as the set of positive integers. For x ∈ Rd, we use |x| to denote its Euclidean
norm; also, for a generic finite set S, we use |S| to denote its cardinality. We use B(x, a)

to denote the open ball of radius a > 0 centered at x ∈ Rd. For an event A, we use Ac to
denote its complement, and 1A its indicator function.

We denote by X = (Xt)t≥0 a generic standard Brownian motion (BM) in d-dimensions,
and use Px and Ex, respectively, as the law of X started at position x ∈ Rd, and the
corresponding expectation.

Outline: The rest of the paper is organized as follows. In Section 2, we present our
main results. In Section 3, we discuss some further problems related to the model of
BBM among random obstacles. Section 4 contains several introductory results, which
serve as preparation for the proofs of Theorem 2.1 and Theorem 2.4. In Section 5 and
Section 6, we present, respectively, the proofs of Theorem 2.1 and Theorem 2.4.

2 Main results

The first main result is a quenched SLLN for the total mass of BBM among mild
Poissonian obstacles in Rd. Recall that (Ω,P) is the probability space for the PPP that
creates the random environment, and Nt := |Zt|. We now introduce further notation.
Let λd,r be the principal Dirichlet eigenvalue of − 1

2∆ on B(0, r) in d dimensions (see [7,
Section 1.10] where λc(− 1

2∆, B(0, r)) = λd,r). Write λd := λd,1, and let ωd be the volume
of the d-dimensional unit ball. For d ≥ 1 and ν > 0, define the constant

c(d, ν) := λd

(
d

νωd

)−2/d

. (2.1)

Theorem 2.1 (Quenched SLLN for BBM among mild obstacles). On a set of full P-measure,

lim
t→∞

(log t)2/d

(
logNt
t
− β2

)
= −c(d, ν) Pω-a.s. (2.2)

Remark 2.2. Note that the branching rate β1 in the trap field K and the trap radius a do
not appear in the formula. The rough intuition for this, is as follows. The growth of mass
among mild traps, to the leading order, is entirely determined by the free growth inside
a ‘large’ clearing (see Definition 4.1), which is known to exist almost surely regardless
of the values of β1 and a (see Proposition D). Also, regardless of β1 and a, with high
probability the system is able to hit such a clearing soon enough so that the sub-BBM
emanating from the particle that hits the large clearing produces sufficiently many
particles inside this clearing in the remaining time. The details are presented in the
proof of the lower bound of Theorem 2.1. Needless to say, the growth inside the large
clearing does not feel the effect of either β1 or a. In essence, the growth of mass is
determined by large trap-free regions rather than the traps, which is why the result is
quite robust to the details of the trapping mechanism such as the values of β1 and a.

Remark 2.3. It was shown in [6] that on a set of full P-measure,

Eω[Nt] = exp

[
β2t− c(d, ν)

t

(log t)2/d
(1 + o(1))

]
. (2.3)

Theorem 2.1 is called a SLLN for BBM among mild obstacles, because it says that with
Pω-probability one, the total mass of BBM among mild obstacles grows as its expectation
as t→∞. The reason why it is called a quenched SLLN is that it holds on a set of full
P-measure.
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It would be difficult to obtain any finer result than the one in Theorem 2.1 for the
following reason. The expected value formula in (2.3) comes from a ‘one-particle picture’
along with the many-to-one formula for spatial branching processes (see, for instance
[8, Lemma 1]), where the one-particle picture gives the quenched asymptotic behavior
as t→∞ of the survival probability of a single Brownian motion among soft Poissonian
obstacles with killing function W (·) = (β2 − β1)1B(0,a)(·) (except that W is not summed
up on overlapping balls). This quenched result is known from Sznitman’s celebrated
work [21, Theorem 2.6], and says that the aforementioned large-time survival probability
decays as

exp

[
−c(d, ν)

t

(log t)2/d
(1 + o(1))

]
on a set of full P-measure. To the best of our knowledge, a lower order correction to this
result that accounts for the o(1) term above, has not been obtained. Therefore, a finer
result on even Eω[Nt] seems far from trivial.

Our second main result gives the large-time asymptotic behavior of the probability
that the mass of BBM inside a subdiffusively expanding ball B = (Bt)t≥0 that is deacti-
vated at the boundary of the ball, is atypically small. A subdiffusive expansion means
that the ball is expanding slower than the rate at which a typical BM moves away from
the origin, which means for large t it would be a ‘rare event’ for the BM to be confined in
Bt. For a generic standard Brownian motion X = (Xt)t≥0 and a Borel set A ⊆ Rd, define
σA = inf{s ≥ 0 : Xs /∈ A} to be the first exit time of X out of A.

Theorem 2.4 (Large-deviation for mass of BBM in an expanding ball). Let r : R+ → R+

be increasing such that r(t) → ∞ as t → ∞ and r(t) = o(
√
t). Also, let γ : R+ → R+

be defined by γ(t) = e−κr(t), where κ > 0 is a constant. For t > 0, set Bt = B(0, r(t)),
pt = P0(σBt ≥ t), and nt = |ZBtt |.
If 0 < κ ≤

√
β/2, then

lim
t→∞

1

r(t)
logP

(
nt < γtpte

βt
)

= −κ, (2.4)

and if κ >
√
β/2, then

−(κ ∧
√

2β) ≤ lim inf
t→∞

1

r(t)
logP

(
nt < γtpte

βt
)

(2.5)

≤ lim sup
t→∞

1

r(t)
logP

(
nt < γtpte

βt
)
≤ −

√
β/2, (2.6)

where we use a ∧ b to denote the minimum of the numbers a and b.

Remark 2.5. The reason we call P (nt < γtpte
βt) with γt = e−κr(t) a large-deviation (LD)

probability is that with this choice of γt, both P (nt < γtpte
βt) and P (nt = 0) decay as

e−cr(t) to the leading order for large t, where the values of the constant c > 0 may differ.
Indeed, start with

P (nt < γtpte
βt) ≥ P (nt = 0).

One way to realize {nt = 0} is to completely suppress the branching and move the initial
particle out of Bt := B(0, r(t)) over [0, kr(t)], where k > 0 is a constant. The probability
of realizing this joint strategy is

exp

[
−βkr(t)− r(t)

2k
(1 + o(1))

]
, (2.7)

where the second term in the exponent comes from Proposition A (see Section 4) along
with Brownian scaling. To minimize the absolute value of the exponent in (2.7), set
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βkr(t) = r(t)/(2k), which yields k = 1/(
√

2β). With this choice of k, we arrive at

P (nt = 0) ≥ exp
[
−
√

2βr(t)(1 + o(1))
]
. (2.8)

The lower bound strategies presented here for {nt < γtpte
βt} and {nt = 0} turn out to

be the same when κ ≥
√

2β, but different when 0 < κ <
√

2β (see the proof of the lower
bound of Theorem 2.4 in Section 6). Here is the heuristics behind these strategies. When
κ is small (κ ≤

√
2β), an obvious strategy to realize the unlikely event {nt < γtpte

βt} is to
simply suppress the branching of the initial particle for long enough just so as to account
for the factor of γt in γtpte

βt, that is, long enough so that γtpteβt is no longer atypical
for the growth of the BBM in B(0, r(t)) in the remaining time interval. On the other
hand, when κ is large (κ >

√
2β), a less costly lower bound strategy is to simultaneously

suppress the branching of the initial particle and move it out of the ball B(0, r(t)), over
a time period of optimal length such that the joint cost of these two partial strategies
is minimized. Once the initial particle is moved out of B(0, r(t)), the event {nt = 0} is
realized, and no further suppression of branching is needed.

Remark 2.6. In Theorem 2.4, the reason why we assume r(t) → ∞ as t → ∞ and
r(t) = o(

√
t) is that we are interested in a model where the typical population growth

of BBM has an extra subexponentially decaying factor compared to that of an ordinary
BBM. That is, we are looking for a typical population size of f(t)eβt at time t, where
f(t)→ 0 subexponentially as t→∞. If r(t) ≤M for all large t for some M > 0, then the
extra factor decays at least exponentially fast; whereas if the expansion of B(0, r(t)) is
diffusive or faster, the extra factor would not decay to zero.

Also, in Theorem 2.4, we only consider γ with γt = e−κr(t) for the following reason.
It can be shown that if γt → 0 as t → ∞, then for all large t, P (nt < γtpte

βt) ≥ δγt
for some 0 < δ < 1 (see the proof of the lower bound of Theorem 2.4 in Section 6).
Hence, if γt decays sufficiently slowly so as to satisfy (log γt)/r(t) → 0 as t → ∞, then
lim inft→∞

1
r(t) logP

(
nt < γtpte

βt
)
≥ 0. Therefore, in view of (2.4) and (2.6) which hold

in the case γt = e−κr(t), the event {nt < γtpte
βt} would not be an LD event when

(log γt)/r(t)→ 0 as t→∞.

Remark 2.7. A close look at Theorem 2.4 suggests that there is a critical value of κ at
which a phase transition concerning the optimal strategy to realize the unlikely event
{nt < γtpte

βt} occurs, but this critical value could be any number in [
√
β/2,

√
2β].

We believe that the lower bound in (2.5) is sharp, and therefore have the following
conjecture.

Conjecture 2.8. Under the assumptions of Theorem 2.4 and using the notation therein,
for any κ > 0,

lim
t→∞

1

r(t)
logP

(
nt < γtpte

βt
)

= −(κ ∧
√

2β).

If the conjecture holds, this would also imply that the critical value of κ is
√

2β, and
that the presented lower bound strategies, that is, the strategy described in Remark 2.5
when κ >

√
2β, and the strategy described in the proof of the lower bound of Theorem 2.4

when 0 < κ ≤
√

2β, are indeed optimal.
The reason why we believe that the lower bound in (2.5) is sharp, is as follows. In

this kind of models involving branching, in order to realize large-deviation events where
the population size is aytpically small with the lowest cost, the system has to prevent
growth in the beginning of the relevant time interval. Once many particles are produced,
the cost of controlling the growth will be much higher, and therefore such a strategy
cannot be optimal. Both of the current lower bound strategies (the one in Remark 2.5
and the one in the proof of the lower bound of Theorem 2.4) indeed prevent growth as
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early as possible, starting from the initial particle. Therefore, the lower bound in (2.5) is
conjectured to be sharp.

3 Further problems

In this section, we discuss some further related problems. Recall that K = K(ω)

denotes the trap field in the environment ω. When we say a BBM has offspring law
(qk)k≥0, we mean that each particle gives k offspring upon branching with probability qk
so that qk ≥ 0 for each k ≥ 0 and

∑∞
k=0 qk = 1.

3.1 More general branching inside obstacles

Consider a more general branching mechanism inK such that when insideK particles
branch according to the offspring law (pk)k≥0 with p0 = 0 as opposed to binary branching.
We assume that p0 = 0 since otherwise particles would be killed inside K with positive
probability, and we discuss the soft obstacle model which allows killing inside K as a
separate problem below. Let µ1 =

∑∞
k=1 kpk be the associated mean number of offspring.

We continue to assume binary branching outside K. Note that in this way, both the
branching rate and the offspring mean depend on position as

β(x, ω) = β2 1Kc(ω)(x) + β1 1K(ω)(x), (3.1)

µ(x, ω) = 21Kc(ω)(x) + µ1 1K(ω)(x). (3.2)

Intuitively, as long as β2 > β1(µ1 − 1), which means the net growth rate per particle
outside K is larger than the rate inside K, one would expect the growth of mass for
large times to be governed by large clearings to the leading order similar to the case
of binary branching inside K, and hence expect the SLLN in Theorem 2.1 to be robust
against this change of offspring law inside K. Indeed, we have the following theorem.

Theorem 3.1. For each ω, suppose that the branching rate is as in (3.1), the branching
is binary in Kc(ω), and (pk)k≥0 is the offspring law inside K(ω). Assume that p0 = 0 and
let µ1 =

∑∞
k=1 kpk <∞. Provided β2 > β1(µ1 − 1), on a set of full P-measure,

lim
t→∞

(log t)2/d

(
logNt
t
− β2

)
= −c(d, ν) Pω-a.s. (3.3)

Proof. The lower bound in (3.3) follows from Theorem 2.1 by ω-wise comparison with
the case β1 = 0, since p0 = 0 by assumption here and the ‘worst’ case of no branching,
that is, β1 = 0, inside K is already covered by Theorem 2.1.

For the upper bound, we follow a similar approach as for that of Theorem 2.1. Define
m(x, ω) = µ(x, ω)− 1 and m1 = µ1 − 1. Applying the classical first moment formula for
spatial branching processes ω-wise (see, for instance [8, Lemma 1] for a more general
version), we have

Eω[Nt] = E0

[
exp

(∫ t

0

β(Xs, ω)m(Xs, ω)ds

)]
, (3.4)

where, as before, X = (Xt)t≥0 is a Brownian motion in d-dimensions, and Ex is the
corresponding expectation for a process started at x. Write β = β2 − (β2 − β1)1K in (3.1)
and m = 1 − (1 − m1)1K in (3.2), which yield βm = β2 − (β2 − β1m1)1K . It follows
from (3.4) that

Eω[Nt] = eβ2tE0

[
exp

(
−
∫ t

0

(β2 − β1m1)1K(ω)(Xs)ds

)]
. (3.5)

Note that by assumption, β2 − β1m1 > 0. Then, the expectation on the right-hand side
is the survival probability up to t of a single Brownian motion among soft obstacles
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with killing function W (x) = (β2 − β1m1)1B̄(0,a)(x), except that W is not summed on
the overlapping balls. This, nonetheless, does not affect the asymptotic behavior of the
survival probability (see [22, Remark 4.2.2]). Therefore, it follows from [22, Theorem
4.5.1] that on a set of full P-measure,

Eω[Nt] = exp

[
β2t− c(d, ν)

t

(log t)2/d
(1 + o(1))

]
. (3.6)

By the Markov inequality, we then have for any ε > 0,

Pω
(

(log t)2/d

(
logNt
t
− β2

)
+ c(d, ν) > ε

)
= Pω

(
Nt > exp

[
t

(
β2 −

c(d, ν)− ε
(log t)2/d

)])
≤ exp

[
−εt(log t)−2/d + o

(
t(log t)−2/d

)]
.

(3.7)

The rest of the proof is identical to the corresponding part of the proof of the upper
bound of Theorem 2.1.

In the proof above, observe that there was no need to modify Theorem 2.4, which
plays a key role in the proof of the lower bound of Theorem 2.1. The reason is, in
the latter proof, Theorem 2.4 is used to argue that there is sufficient growth of mass
inside certain clearings (i.e., trap-free regions) with high probability, and changing the
offspring law inside the traps has no effect on what happens inside clearings.

3.2 More general branching outside obstacles

Consider a more general branching mechanism in Kc such that when inside Kc

particles branch according to the offspring law (p∗k)k≥0. Let µ2 =
∑∞
k=0 kp

∗
k be the

associated mean. Assume that µ2 <∞ and set m2 = µ2 − 1. Without loss of generality,
we also assume that p∗1 = 0. Let E be the event of extinction for the BBM. Also, let q be
the extinction probability of a discrete time Galton-Watson process with offspring law
(p∗k)k≥0. Then, q = P (E), and from the elementary theory of branching processes, it is
known that q = 1 if and only if µ2 ≤ 1. Therefore, for meaningful results, we consider
the supercritical case, that is, µ2 > 1.

First, assume further that p∗0 = 0 so that q = 0. It follows by a similar reasoning
leading to (3.6) that

Eω[Nt] = exp

[
β2m2t− c(d, ν)

t

(log t)2/d
(1 + o(1))

]
.

Then, an application of Markov inequality similar to (3.7) followed by a standard Borel-
Cantelli argument will lead to

lim sup
t→∞

(log t)(2/d)

(
logNt
t
− β2m2

)
≤ −c(d, ν) Pω-a.s.

on a set of full P-measure.
We believe that an SLLN similar to the one in Theorem 2.1 holds with β2 replaced by

β2m2 in (2.2), but to prove the lower bound, one needs to extend Theorem 2.4 to a BBM
with a general offspring law (p∗k)k≥0. The upper bound of this extension turns out to be
difficult, and the main reason is as follows. (A close look at the proof of Theorem 2.1
shows that we only use the upper bound in Theorem 2.4 to prove Theorem 2.1.) In the
proof of the upper bound of Theorem 2.4, as an essential part of the second moment
argument that is used to bound P (nt < γtpte

βt) (for details, see the proof of the upper
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bound of Theorem 2.4), one needs estimates on the distribution of the most recent
common ancestor of two particles of BBM randomly chosen among the particles alive at
time t, and this distribution is known in the case of binary branching. To the best of our
knowledge, under a general offspring law, this distribution or any kind of useful estimate
such as (6.20) thereof is not known, and finding it would be a problem of independent
interest. If one overcomes this problem, and hence is able to find a positive upper
bound for − lim supt→∞

1
r(t) logP

(
nt < γtpte

βt
)
, then the proof of the lower bound of

Theorem 2.1 can be carried out in the same way as in Section 5.2 with the replacement
of β2 by β2m2 throughout the proof.

Now suppose that p∗0 > 0. In this case, there is positive probability of extinction
for the underlying Galton-Watson process, that is, q = P (E) > 0, and the process is
conditioned on non-extinction for meaningful results on the growth of mass of BBM for
large times. A detailed treatment of a BBM conditioned on non-extinction is given in [17]
(see Lemma 4 and Proposition 2 therein). In particular, conditioned on Ec, the BBM has
the two-type decomposition:

(Zt)t≥0 = (Z1
t , Z

2
t )t≥0,

where Z1 is the process consisting of particles with infinite lines of descent, called the
skeleton, and Z2 is the one consisting of particles with finite lines of descent. Conditional
on Ec, the process Z1 = (Z1

t )t≥0 is a BBM of its own, with the same net growth per particle
β2m2 as the original process Z. Therefore, if an SLLN for Nt similar to Theorem 2.1 is
proved for the case of a general offspring distribution with p∗0 = 0, then the same result
would hold for the total mass |Z1| of the skeleton in the case p∗0 > 0 conditional on Ec.
The analysis for the process Z2 is not so simple since it is not a BBM, and is formed by a
collection of independent BBMs initiated at random times along the skeletal lines (see
[18, Section 5] for details).

3.3 Soft killing inside obstacles

On top of complete suppression of branching, one may consider soft killing inside the
obstacles. More generally, we may describe the soft obstacle model for BBM as follows.
Consider a positive, bounded, measurable and compactly supported killing function
W : Rd → (0,∞), and for ω =

∑
i δxi ∈ Ω, x ∈ Rd, define the potential

V (x, ω) =
∑
i

W (x− xi). (3.8)

Then, the Poissonian trap field K = K(ω) in Rd and the soft obstacle model for BBM are
formed as follows:

x ∈ K(ω) ⇔ V (x, ω) > 0, (3.9)

particles branch at the normal rate β when outside K, whereas inside K they are killed
at rate V = V (x, ω) and their branching is completely suppressed. Note that the special
case of constant killing rate inside spherical traps defined in (1.1) corresponds to taking
W = α1B̄(0,a) with some constant α > 0 except that W is not summed up on overlapping
balls. A formal treatment of BBM killed at rate V = V (x, ω) in Rd is given in [13].

Compared to the mild obstacle model, the main extra challenge comes from the fact
that there is positive probability for the entire process to be killed in a finite time due
to possible killing of particles. Therefore, to obtain meaningful results, the process is
conditioned on the event of ultimate survival. Recall that Nt = |Zt| denotes the mass of
BBM at time t. Let

St = {Nt ≥ 1}, S =
⋂
t≥0

St
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be, respectively, the event of survival up to time t, and the event of ultimate survival. As
before, we use Pω to denote the conditional law of the BBM in the random environment
ω. By continuity of measure from above, one easily sees that limt→∞ Pω(St) = Pω(S).
Moreover, it is not hard to prove the following result (see [19, Proposition 3.2]).

Proposition 3.2 (Survival probability, soft obstacles). In the soft obstacle model de-
scribed above, on a set of full P-measure, 0 < Pω(S) < 1.

Note that any conditioning on S or on St for some t will change the law of the BBM. In
particular, the ancestral lines will no longer have the law of standard Brownian motions.

In the mild obstacle problem, we have seen that the SLLN in Theorem 2.1 does not
depend on the reduced rate β1 inside the obstacles or the trap radius a (see Remark 2.2),
and as the corresponding proof of the lower bound shows, this is because the growth
is mainly due to the free growth inside a large clearing which the BBM is able to hit
soon enough. Even when there is killing inside the obstacles, such a large clearing
will continue to exist almost surely, and intuitively the BBM should still be able to hit
this large clearing soon enough with high probability. Therefore, we have the following
conjecture. Define the law P̂ω as P̂ω( · ) = Pω( · | S).

Conjecture 3.3. In the soft obstacle model described above, on a set of full P-measure,

lim
t→∞

(log t)2/d

(
logNt
t
− β

)
= −c(d, ν) P̂ω-a.s.

Remark 3.4. Very recently, in a follow-up paper to the current work, a weaker version of
Conjecture 3.3 was proved in the case d ≥ 2, where the convergence holds in probability
(see [19, Theorem 2.1]).

We think that a proof for Conjecture 3.3 can be given by following a similar method
as in the proof of Theorem 2.1. Nonetheless, there will be some serious additional
challenges compared to the mild obstacle case. We now give an outline of the main
similarities between the two models. The discussion on the main differences is postponed
to the end of Section 5.2 (see Remark 5.2 therein), which contains the relevant proofs,
so that the reader has a better understanding of the additional challenges introduced by
soft killing.

The expected mass at time t can be obtained similar to (3.6). Observe that soft
killing under the potential V together with complete suppression of branching inside the
obstacles is tantamount to the offspring law (pk)k≥0 with p0 = 1 and rate β1 = V (x, ω)

in (3.1), which yields

β(x, ω) = β2 1Kc(ω)(x) + V (x, ω)1K(ω)(x),

µ(x, ω) = 21Kc(ω)(x).

Note that p0 = 1 implies µ1 = 0. By the construction in (3.9), V = V 1K . Then,
β(µ− 1) = βm = β2 − (β2 + V )1K . Apply the many-to-one formula in (3.4) to obtain

Eω[Nt] = eβ2tE0

[
exp

(
−
∫ t

0

(β21K(ω)(Xs) + V (Xs, ω))ds

)]
.

Using [22, Theorem 4.5.1], again, we obtain

Eω[Nt] = exp

[
β2t− c(d, ν)

t

(log t)2/d
(1 + o(1))

]
,

which holds on a set of full P-measure. Then, to prove the upper bound of Conjecture 3.3,
we may proceed in the same way as in the mild obstacle case. In contrast, the proof of
the lower bound seems far more than a simple modification of that of the mild obstacle
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case. One similarity is that since the soft killing rule applies only inside the trap field K,
and the killing function V is compactly supported by assumption (for comparison with
spherical traps, take a = supx∈K0

{|x| : V (x) > 0} where K0 is the compact on which V is
supported), large clearings that are used in the proof of Theorem 2.1 will continue to
exist in almost every environment under soft killing as well. This means, Theorem 2.4
will continue to be useful in its current form just as in the case of general branching
inside obstacles, which was discussed in Section 3.1.

4 Preparations

In this section, we present introductory results that serve as preparations for the
proofs of the main theorems. The first two results are standard in the theory of Brownian
motion. Proposition A is on the large-time asymptotic probability of atypically large
Brownian displacements. For a proof, see for example [17, Lemma 5].

Proposition A (Linear Brownian displacements). For k > 0,

P0

(
sup

0≤s≤t
|Xs| > kt

)
= exp

[
−k

2t

2
(1 + o(1))

]
.

The following is a standard result on the large-time Brownian confinement in balls,
and for instance can be deduced from [7, Prop. 1.6], along with the scaling λd,r = λd/r

2.
Recall that σA = inf{s ≥ 0 : Xs /∈ A} denotes the first exit time of X out of A.

Proposition B (Brownian confinement in small balls). For t > 0, let Bt = B(0, r(t)),
where r : R+ → R+ is such that r(t)→∞ as t→∞ and r(t) = o(

√
t). Then, as t→∞,

P0 (σBt ≥ t) = exp

[
− λdt

r2(t)
(1 + o(1))

]
.

The following result is well-known in the theory of branching processes. For a proof,
see for example [11, Section 8.11].

Proposition C (Distribution of mass in branching systems). For a strictly dyadic continuous-
time branching process N = (Nt)t≥0 with constant branching rate β > 0, the probability
distribution at time t is given by

P (Nt = k) = e−βt(1− e−βt)k−1, k ≥ 1,

from which it follows that
P (Nt > k) = (1− e−βt)k. (4.1)

We now focus on the model of Poissonian traps in Rd. Recall that a random environ-
ment in Rd is created via a PPP, called Π, with

K :=
⋃

xi∈ supp(Π)

B̄(xi, a)

being the trap field attached to Rd.

Definition 4.1. A clearing in the random environment ω is a trap-free region in Rd, that
is, A ⊆ Rd is a clearing if A ⊆ Kc. By a clearing of radius r, we mean a ball of radius r
which is a clearing.

The following result is Lemma 4.5.2 in [22].

Proposition D. Let

R0 = R0(d, ν) :=

(
d

νωd

)1/d

=

√
λd

c(d, ν)
. (4.2)
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Then, on a set of full P-measure, there exists `0 = `0(ω) > 0 such that for each ` ≥ `0 the
cube (−`, `)d contains a clearing of radius

R` := R0(log `)1/d − (log log `)2, ` > 1. (4.3)

We now prove a somewhat stronger version of Proposition D, which will be needed
in the proof of the lower bound of Theorem 2.1 (see Section 5). For a Borel set B and
x ∈ Rd, we define their sum in the sense of sum of sets as x+B := {x+ y : y ∈ B}.
Lemma 4.2 (Almost sure clearings). Let n ∈ N and a ∈ R+ be fixed, and for ` > 0

let x1, . . . , xd`ne be any set of d`ne points in Rd. Define the cubes Cj,` = xj + (−`, `)d,
1 ≤ j ≤ d`ne. Then, on a set of full P-measure, there exists `0 = `0(ω) > 0 such that for
each ` ≥ `0, each of C1,`, C2,`, . . . , Cd`ne,` contains a clearing of radius R` + a, where R`
is as in (4.3).

Proof. Let x1, x2, . . . be a sequence of points in Rd, and Cj,` := xj+(−`, `)d for j = 1, 2, . . .

For k ≥ 0, let A`,k be the event that there is a clearing of radius R` + k in each
C1,`, C2,`, . . . , Cd(2`)ne,`. Also, for k ≥ 0, define

E`,k = {(−`, `)d contains a clearing of radius R` + k}.

Due to the homogeneity of the PPP, it is clear that for all x ∈ Rd and k > 0,

P
(
x+ (−`, `)d contains a clearing of radius R` + k

)
= P(E`,k).

Then, the union bound gives

P(Ac`,k) ≤ d(2`)neP(Ec`,k). (4.4)

We now estimate P(Ec`,k). Partition (−`, `)d into smaller cubes of side length 2(R` + k).
Then, a ball of radius R` + k can be inscribed in each smaller cube, and we can bound
P(Ec`,k) from above as

P(Ec`,k) ≤
[
1− e−νωd(R`+k)d

]b`/(R`+k)cd

≤ exp

[
−
⌊

`

R` + k

⌋d
e−νωd(R`+k)d

]
, (4.5)

where we have used the estimate 1 + x ≤ ex. Let

α` :=

⌊
`

R` + k

⌋d
e−νωd(R`+k)d .

Then, using (4.3), and that logb`/(R` + k)c ≥ log `
2(R`+k) , we obtain

logα` ≥ d log `−d log[2(R0(log `)1/d−(log log `)2 + k)]−νωd[R0(log `)1/d−(log log `)2 + k]d

= d log `− d log[2(R0(log `)1/d − (log log `)2 + k)]− νωdRd0 log `

[
1− (log log `)2 − k

R0(log `)1/d

]d
≥ d log `− d log 2− d log[R0(log `)1/d − (log log `)2 + k]

− d log `+
d2

R0
(log `)1−1/d[(log log `)2 − k]− d3

2R2
0

(log `)1−2/d[(log log `)2 − k]2

≥ 1

2R0
(log log `)2 (4.6)

for all large `, where we have used in the first inequality that Rd0 = d/(νωd), and that
(1− x)n ≤ 1− xn+ (xn)2/2 for x ∈ [0, 1]. It follows from (4.5) and (4.6) that for a given
k > 0, for all large `,

P(Ec`,k) ≤ e−α` ≤ e− exp[(log log `)2/(2R0)].
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Take ` = 2m with m ∈ N. Then, since for all sufficiently large m, e−α(2m) ≤ exp
(
−m

logm
2R0

)
≤ e−m2

; this, along with (4.4) and (4.6) implies

∞∑
m=1

P
(
Ac2m,k

)
≤ c(m0) +

∞∑
m=m0

⌈
(2n)m+1

⌉
e−m

2

<∞,

where c(m0) is a constant that depends on m0. Applying Borel-Cantelli lemma to the
cubes (−2m, 2m)d, we conclude that with P-probability one, only finitely many Ac2m,k
occur. That is, P(Ω0) = 1, where

Ω0 = {ω : ∃m0 = m0(ω) ∀m ≥ m0, each C1,2m , . . . , Cd(2m+1)ne,2m

has a clearing of radius R(2m) + k}.
(4.7)

Let ω0 ∈ Ω0, and m0 = m0(ω0) be the ‘sufficiently large m’ from (4.7). If we choose
k ≥ a, then to complete the proof, it suffices to show that in the environment ω0 for each
m ≥ m0 and 2m ≤ ` ≤ 2m+1, each C1,`, . . . , Cd`ne,` contains a clearing of radius R` + a.
Let ` ≥ 2m0 so that 2m ≤ ` ≤ 2m+1 for some m ≥ m0. Fix this integer m. Observe that

R(2m+1) −R(2m) ≤ R0(log 2)1/d
[
(m+ 1)1/d −m1/d

]
≤ R0 log 2.

Choose k = R0 log 2 + a (so far the choice of k > 0 was arbitrary). Then, since R` is
increasing in ` for large `, we have

R` + a ≤ R(2m+1) + a ≤ R(2m) +R0 log 2 + a = R(2m) + k. (4.8)

Furthermore,
d`ne ≤

⌈
(2m+1)n

⌉
. (4.9)

Then, setting `0 = 2m0 , (4.7), (4.8) and (4.9) imply that for ` ≥ `0, each of C1,`, . . . , Cd`ne,`
contains a clearing of radius R` + a. This completes the proof since the choice of ω0 ∈ Ω0

was arbitrary and P(Ω0) = 1.

5 Proof of Theorem 2.1

5.1 Proof of the upper bound

The following upper bound was proved in [6, Section 6.1] via a first moment argument,
using (2.3) and the Markov inequality. On a set of full P-measure, say Ω0, for any ε > 0,

Pω
(

(log t)2/d

(
logNt
t
− β2

)
+ c(d, ν) > ε

)
≤ exp

[
−εt(log t)−2/d + o

(
t(log t)−2/d

)]
.

(5.1)
To pass from (5.1) to the upper bound of the corresponding SLLN, we use a standard
Borel-Cantelli argument. Recall that Ω̂ is the sample space for the BBM. For t > 0, define

Yt := (log t)2/d

(
logNt
t
− β2

)
,

and let

Ω̂0 := {$ ∈ Ω̂ : ∀ ε > 0 ∃ t0 = t0($) such that ∀ t ≥ t0, Yt ≤ −c(d, ν) + ε}.

Let ω ∈ Ω0. We will show that Pω(Ω̂0) = 1. For n ∈ N, define

An := {Yn > −c(d, ν) + ε}.
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BBM in an expanding ball and among mild obstacles

By (5.1), there exists n0 ∈ N such that for all n ≥ n0, Pω(An) ≤ e−c(ε)n(logn)−2/d

. Then,

∞∑
n=1

Pω(An) = c+

∞∑
n=n0

Pω(An) ≤ c+

∞∑
n=n0

e−c(ε)n(logn)−2/d

<∞.

By the Borel-Cantelli lemma, it follows that Pω(An occurs i.o.) = 0, where i.o. stands for
infinitely often. Choosing ε = 1/k, this implies that for each k ≥ 1, we have

Pω(Ω̂k) = 1, Ω̂k := {$ ∈ Ω̂ : ∃n0 = n0($) such that ∀n ≥ n0, Yn ≤ −c(d, ν) + 1/k}.

Since Pω(Ω̂k) = 1 for each k ≥ 1, we have Pω(Ω̂0) = Pω(∩k≥1Ω̂k) = 1. Hence, on a set of
full P-measure,

lim sup
t→∞

(log t)(2/d)

(
logNt
t
− β2

)
≤ −c(d, ν) Pω-a.s.

5.2 Proof of the lower bound

Let ε > 0. We will find an upper bound for

Pω
(

(log t)2/d

(
logNt
t
− β2

)
+ c(d, ν) < −ε

)
= Pω

(
Nt < exp

[
t

(
β2 −

c(d, ν) + ε

(log t)2/d

)])
(5.2)

that is valid for large t on a set of full P-measure, and then use this upper bound along
with the Borel-Cantelli lemma to pass to the corresponding SLLN.

The proof is split into four parts for better readability. The first three parts are based
on a bootstrap argument, where in part one, we find an upper bound on P (Nt < eδt) for
0 < δ < β2, and then use this upper bound in parts two and three to find a similar upper
bound on (5.2). We follow a similar proof strategy as in [6]. However, we are required to
significantly improve the first and third parts of the corresponding proof in [6] in order
to extend the WLLN therein to SLLN, where the extra work is due to finding rates of
decay to zero for the relevant probabilities as t→∞ as opposed to merely showing that
they tend to zero.

In the first part of the proof, we use probabilistic arguments alone, including The-
orem 2.4, in contrast to the partial differential equations (PDE) approach used in [6].
The main challenge is due to the possibility of β1 = 0 (no branching inside the traps),
which makes it difficult to show that even in the presence of mild obstacles the system
produces exponentially many particles with ‘high’ probability. It is possible to include
the case β1 = 0 here thanks to the probabilistic approach that we follow in the first
part of the proof: we show that with ‘high’ probability the BBM first finds a ‘good’ point
(see Lemma 5.1), which is the center of a large-enough clearing, and then produces
exponentially many particles within this clearing. We emphasize that the case β1 = 0

was not covered in [6], and the PDE approach used therein exploits the condition β1 > 0.
The second part of the proof is similar to that in [6]; here, with minor further work, we
find the rate of convergence to zero of the probability of the relevant unlikely event. The
third part of the proof is an application of Theorem 2.4, where we argue that with ‘high’
probability sufficiently many particles are produced in a certain expanding clearing
in Rd, which exists in almost every environment. The fourth part of the proof uses a
Borel-Cantelli argument along with the upper bound on (5.2) from part three to obtain
the lower bound of the SLLN in (2.2).

Part 1: Upper bound on exponentially few total mass
In the first part of the proof, we will find an upper bound for

Pω(Nt < eδt) with 0 < δ < β2,
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that is valid for large t on a set of full P-measure. The argument will be based on the
following lemma of independent interest, which is on the hitting probability of a standard
BM to clearings of a certain size. Recall that X = (Xt)t≥0 denotes a standard BM in d
dimensions, and Px is the law of X started at position x ∈ Rd. Also, recall the definition
of R0 from (4.2).

Lemma 5.1 (Hitting probability of BM to large clearings). Let r : R+ → R+ be such that

r(t) =
R0

3

(
1

6d

)1/d

(log t)1/d, t > 1. (5.3)

For ω ∈ Ω and t > 0, define

Φωt = {x ∈ Rd : B(x, r(t)) ⊆ Kc(ω)}.

Let Pωx be the conditional law of X started at position x ∈ Rd in the random environment
ω. Then, there exists Ω1 ⊆ Ω with P(Ω1) = 1 such that for every ω ∈ Ω1, there exists
t0 = t0(ω) such that for all t ≥ t0,

Pω0

(( ⋃
0≤s≤t

{Xs}
)
∩ Φωt = ∅

)
≤ e−t

1/3

.

Proof. Introduce a time scale h(t), and two different space scales ρ(t) and r(t), as follows.
Let h, ρ, r : R+ → R+ satisfy:

(a) limt→∞ h(t) =∞ and h(t) = o(t),

(b) ρ(t) = o(
√
h(t)) and ρ(t) = td/(d+m) for some m ∈ N,

(c) r(t) = R0

3 [log ρ(t)]1/d for t > 1.

Later, we will choose h(t) and ρ(t), and hence r(t), in a precise way so that r(t) will be as
in (5.3).

First, we establish a suitable almost-sure environment in Rd with sufficient concen-
tration of ‘large’ clearings in C(0, t) := [−t, t]d. Consider the simple cubic packing of
C(0, t) with balls of radius ρ(t)/(2

√
d). Then, at most

nt :=

⌈
t

ρ(t)/(2
√
d)

⌉d
balls are needed to completely pack C(0, t), say with centers (zj : 1 ≤ j ≤ nt). For each
j, let Bj,t = B(zj , ρ(t)/(2

√
d)). Now consider generically a simple cubic packing of Rd

by balls (Bj : j ∈ N) of radius R > 0, and let x ∈ Rd be any point. It is easy to see that
minj maxz∈Bj |x − z| < (

√
d/2)4R, where

√
d/2 is the distance between the center and

any vertex of the d-dimensional unit cube, i.e., C(0, 1/2). Then, since the packing ball
radius is ρ(t)/(2

√
d) in our case, it follows that

∀x ∈ C(0, t), min
1≤j≤nt

max
z∈Bj,t

|x− z| < ρ(t). (5.4)

Observe from the definition of nt that

nt ≤ (3
√
d)d
(

t

ρ(t)

)d
. (5.5)

Let ` = ρ(t) = td/(d+m). Then, t = `(d+m)/d, and it follows from (5.5) that for all large `,

nt ≤ (3
√
d)d`m ≤ `m+1. (5.6)
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Now, with the choices ` = td/(d+m), n = m + 1, and xj = zj for 1 ≤ j ≤ nt, where
(zj : 1 ≤ j ≤ nt) are as above, in view of (5.4) and since ` → ∞ as t → ∞, Lemma 4.2
implies the following. On a set of full P-measure, there exists t0 > 0 such that for all
t ≥ t0, B(x, ρ(t)) contains a clearing of radius Rρ(t) for each x ∈ C(0, t), where Rρ(t) is as
in (4.3). That is, P(Ω1) = 1, where

Ω1 := {ω ∈ Ω : ∃ t0 ∀ t ≥ t0, ∀ x ∈ C(0, t) ∃ y ∈ B(x, ρ(t)) withB
(
y,Rρ(t)

)
⊆ Kc}. (5.7)

It follows from (4.3) and the requirement (c) that 2r(t) ≤ Rρ(t), and therefore for each
ω ∈ Ω1, for all large t there is a clearing of radius 2r(t) inside any ball of radius ρ(t)

centered within C(0, t). In this proof, we will use Ω1 as the almost-sure, i.e., quenched,
environment for the BM.

Next, suppose that t/h(t) is an integer for notational convenience1, and split [0, t] into
t/h(t) pieces as

[0, h(t)], [h(t), 2h(t)], . . . , [t− h(t), t].

For j = 1, 2, . . . , t/h(t), let
xj = X(j−1)h(t),

and define the intervals Ij,t and the balls Bj,t, respectively, as

Ij,t = [(j − 1)h(t), jh(t)], Bj,t = B(xj , ρ(t)).

We call x ∈ Rd a good point for ω ∈ Ω at time t ifB(x, r(t)) is a clearing (see Definition 4.1)
in the random environment ω. That is,

Φωt = {x ∈ Rd : B(x, r(t)) ⊆ Kc(ω)}

is the set of good points associated to the pair (ω, t). We now estimate the conditional
probability that X does not hit Φωt up to a large time t given that ω ∈ Ω1.

For f ∈ C[0, t] and 0 ≤ a < b ≤ t, let f[a,b] = {f(s) : a ≤ s ≤ b}. Then, for t > 1 and
1 ≤ j ≤ t/h(t), define the events

Ej,t = {XIj,t ∩ Φωt = ∅}, Gj,t = {|xj+1 − xj | > h(t)},

and let Et =
⋂t/h(t)
j=1 Ej,t. In words, Et is the event that X does not hit a good point

associated to (ω, t) over [0, t], that is,

Et =

{( ⋃
0≤s≤t

{Xs}
)
∩ Φωt = ∅

}
.

Since a BM typically moves a distance of order
√
s over a time period of length s, Gj,t

is an unlikely event for large t. Set Pω = Pω0 . Using that Et =
⋂t/h(t)
j=1 Ej,t, we estimate

Pω(Et) by applying repeated conditioning on Gcj,t at times jh(t) for 1 ≤ j ≤ t/h(t) − 1

and throwing away the rare events Gj,t as

Pω(Et) ≤Pω(E1,t)

t/h(t)∏
j=2

Pω

(
Ej,t

∣∣∣∣ j−1⋂
k=1

(Ek,t, G
c
k,t)

)
+ Pω(G1,t)

+

t/h(t)∑
j=2

Pω

(
Gj,t

∣∣∣∣ j−1⋂
k=1

(Ek,t, G
c
k,t)

)
.

(5.8)

In the rest of the proof, we find a suitable upper bound on the right-hand side of (5.8).

1We would like to avoid the floor function in notation.
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Recall that Ij,t = [(j − 1)h(t), jh(t)] and Bj,t = B(xj , ρ(t)) with xj = X(j−1)h(t). Let
q0(t) be the probability that X stays inside Bj,t over the period Ij,t. From Proposition B,
we have

q0(t) = exp

[
−λd h(t)

ρ2(t)
(1 + o(1))

]
, t→∞. (5.9)

Let ω ∈ Ω1 (see (5.7)), and choose t large enough so that t ≥ t0 = t0(ω), where t0 is
as in (5.7). Then, B1,t = B(0, ρ(t)) contains a clearing of radius 2r(t), hence a ball of
radius r(t), say B1,t, that is entirely contained in Φωt . That is, B1,t ⊆ Φωt ∩B1,t. Likewise,
for each j = 2, . . . , t/h(t), conditional on

⋂j−1
k=1(Ek,t, G

c
k,t), we have |xj | = |X(j−1)h(t)| < t,

and therefore by definition of Ω1, Bj,t = B(xj , ρ(t)) contains a ball of radius r(t), say Bj,t,
that is entirely contained in Φωt ; that is, Bj,t ⊆ Φωt ∩Bj,t. Now let q1,j(t) be the probability
that X doesn’t hit Bj,t conditional on exiting Bj,t over Ij,t. If X is conditioned to exit
Bj,t = B(xj , ρ(t)) over Ij,t, over this same period it must also exit B(xj , r̂(t)), where r̂(t)
is the distance between xj and the center of Bj,t. Therefore, since the Brownian exit
distribution out of a ball centered at the starting point has rotational invariance (even
under the conditioning), by comparing the surface area of the r̂(t)-ball that intersects
Bj,t to the total surface area of the r̂(t)-ball, and since r̂(t) ≤ ρ(t) for each t > 1, we
obtain

q1,j(t) ≤ 1− κd r
d−1(t)

ρd−1(t)
=: q1(t) for all t > 1, (5.10)

where κd is a constant that only depends on the dimension d. Also, from Proposition A,
we have

Pω(Gj,t) = Pω(G1,t) ≤ Pω

(
sup

0≤s≤h(t)

|Xs| > h(t)

)
≤ exp

[
−1

2
h(t)(1 + o(1))

]
. (5.11)

Now apply the Markov property of the Brownian path (Xs)0≤s≤t at times h(t), 2h(t), . . . ,

t− h(t), and use (5.9)-(5.11) to continue the estimate in (5.8) as

Pω(Et) ≤ [q0(t) + q1(t)]t/h(t) +
t

h(t)
Pω(G1,t)

≤
[
e
−λd h(t)

ρ2(t)
(1+o(1))

+ 1− κd r
d−1(t)

ρd−1(t)

]t/h(t)

+
t

h(t)
exp

[
−1

2
h(t)(1 + o(1))

]
. (5.12)

We now choose h(t), ρ(t), and r(t) in a suitable way so as to keep Pω(Et) sufficiently
small in view of (5.12), while respecting the previously stated requirements (a)-(c):

h(t) =
√
t, ρ(t) = t1/(6d), r(t) =

R0

3

(
1

6d

)1/d

(log t)1/d, t > 1.

With these choices, since exp
[
−λd h(t)

ρ2(t)

]
≤ (κd/2)rd−1(t)

ρd−1(t)
for all large t, it follows from (5.12)

and the estimate 1 + x ≤ ex that for all large t,

Pω(Et) ≤
[
1− (κd/2)rd−1(t)

ρd−1(t)

]t/h(t)

+
t

h(t)
exp

[
−1

2
h(t)(1 + o(1))

]
≤ exp

[
−κd

2

(
r(t)

ρ(t)

)d−1
t

h(t)

]
+

t

h(t)
exp

[
−1

2
h(t)(1 + o(1))

]
= exp

[
−κd

2

c(R0, d)(log t)(d−1)/dt1/2

t(d−1)/(6d)

]
+ t1/2 exp

[
−1

2
t1/2(1 + o(1))

]
≤ exp

[
−t1/2−(d−1)/(6d)

]
+ exp

[
−1

3
t1/2

]
≤ e−t

1/3

,
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where the last inequality follows since 1
3 < 1

2 −
d−1
6d . Hence, we reach the following

conclusion. There exists Ω1 ⊆ Ω with P(Ω1) = 1 such that ∀ω ∈ Ω1, ∃ t0 = t0(ω) such
that ∀ t ≥ t0,

Pω ((∪0≤s≤t{Xs}) ∩ Φωt = ∅) ≤ e−t
1/3

.

Next, we use Lemma 5.1 to complete the first part of the proof of the upper bound
of Theorem 2.1. Recall that 0 ≤ δ < β2. Choose α such that 0 < α < 1− δ/β2. Split the
interval [0, t] into two pieces as [0, αt] and [αt, t]. We argue that with ‘high’ probability,
the BBM hits a good point, say z0 ∈ Rd, associated to (ω, αt) over [0, αt], and then the
sub-BBM emanating from the particle that hits z0 produces at least eδt particles over
[αt, t] inside B(z0, r(αt)).

Let Y1 = (Y1(s))s≥0 be a randomly2 chosen ancestral line of the BBM in the random
environment ω. Note that even under Pω, since branching and motion mechanisms are
independent of each other, (Y1(s))s≥0 is identically distributed as a standard Brownian
motion. The range (accumulated support) of Z is the process defined by

R(t) =
⋃

0≤s≤t

supp(Zs). (5.13)

Since Y1 is an ancestral line of Z, we have ∪0≤s≤tY1(s) ⊆ R(t) for each t ≥ 0. Then, since
Y1 is Brownian, Lemma 5.1 implies that for 0 < α < 1, on a set of full P-measure, say Ω2,
for all large t,

Pω(R(αt) ∩ Φωαt = ∅) ≤ e−α
1/3t1/3 . (5.14)

Observe that {R(αt) ∩Φωαt = ∅} is the event that Z doesn’t hit a good point associated to
(ω, αt) over [0, αt].

Now let τ = τ(ω) = inf{s > 0 : R(s)∩Φωαt 6= ∅} be the first hitting time of Z to Φωαt. Let
Y2 be the ancestral line of Z that first hits Φωαt, and let z0 = Y2(τ). Conditional on τ < αt,
apply the strong Markov property at time τ , and then apply Theorem 2.4 to the growth
inside B(z0, r(αt)) of the sub-BBM initiated by Y2 at time τ . Note that Bt := B(z0, r(αt))

is a clearing in the random environment ω by definition of τ , z0 and Φωαt.
In detail, for u ≥ 0, let

∣∣ZBt[τ,τ+u]

∣∣ denote the mass at time τ+u of the sub-BBM initiated

at position z0 and time τ by Y2 with deactivation at ∂Bt. Let s := (1− α)t, r̂ : R+ → R+

be such that

r̂(s) =
R0

3

(
1

6d

)1/d [
log

(
αs

1− α

)]1/d

for large s, and Bs := B(0, r̂(s)). Observe the equality of events {τ ≤ αt} = {R(αt) ∩
Φωαt 6= ∅}, and that t − τ ≥ (1 − α)t conditional on τ ≤ αt, and r̂(s) = r(αt). Then,
on Ω2 with P(Ω2) = 1, applying the strong Markov property at τ = τ(ω), and taking
γs = exp[−

√
β2/2 r̂(s)] for instance, Theorem 2.4 implies that for all large t,

Pω
(
Nt < eδt

∣∣R(αt) ∩ Φωαt 6= ∅
)
≤ Pω

(∣∣ZBt[τ,t]

∣∣ < e−
√
β2/2 r̂(s)e

− λds

(r̂(s))2
(1+o(1))

eβ2s

)
≤ Pω

(∣∣ZBt[τ,τ+(1−α)t]

∣∣ < e−
√
β2/2 r̂(s)e

− λds

(r̂(s))2
(1+o(1))

eβ2s

)
= P

(∣∣ZBss ∣∣ < e−
√
β2/2 r̂(s)e

− λds

(r̂(s))2
(1+o(1))

eβ2s

)
= e−

√
β2/2 r̂(s)(1+o(1)), (5.15)

2One can choose an ancestral line randomly as follows: start with the path of the initial particle from t = 0
until it branches, and when it branches, pick one of the two offspring with probability 1/2, and concatenate
the previously traced path to the path of the chosen offspring until it, too, branches; repeat indefinitely the
procedure of picking an offspring particle with probability 1/2 upon branching and concatenating its path to
the previously traced path.
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where, in the first inequality, we have used that δt < (1− α)β2t = β2s due to the choice
α < 1− δ/β2, and in the first equality we have used that Bt is a clearing in ω followed by
translation invariance. Then, in view of r̂(s) = r(αt) and the definition of r(t) from (5.3),
we reach the following conclusion via (5.14) and (5.15): on Ω2 ⊆ Ω with P(Ω2) = 1,

Pω
(
Nt < eδt

)
≤ e−c(log t)1/d(1+o(1)), (5.16)

where c = c(d, ν, β2, δ) > 0. (The dependence of c on ν is through R0, which appears in
the definition of r(t); see (4.2) and (5.3).) This gives a quenched upper bound on the
probability that Nt = |Zt| is exponentially few, and completes the first part of the proof
of the lower bound of Theorem 2.1.

Part 2: Time scales within [0, t] and moving a particle into a large clearing
This part of the proof is not new; it is essentially taken from [6] with minor improve-

ments, where we also estimate the rate of decay to zero as t→∞ of the probabilities
of the relevant unlikely events as opposed to merely showing that they tend to zero.
Introduce two different time scales, `(t) and m(t), where `(t) = o(m(t)) and m(t) = o(t),
and split the interval [0, t] into [0, `(t)], [`(t),m(t)] and [m(t), t]. More precisely, let
`,m : R+ → R+ be two functions satisfying `(t) < m(t) < t for all t > 0, and

(i) limt→∞ `(t) =∞,

(ii) limt→∞
log t

log(`(t)) = 1,

(iii) `(t) = o(m(t)),

(iv) m(t) = o(`2(t)),

(v) m(t) = o(t(log t)−2/d).

For concreteness, we fix the following choices of ` and m that satisfy (i)-(v): let `(t) and
m(t) be arbitrarily defined with `(t) < m(t) < t for t ∈ (0, e], and

`(t) = t1−1/(log log t), m(t) = t1−1/(2 log log t), for t > e.

Firstly, using Part 1 of the proof, we prepare the setting at time `(t). Fix δ ∈ (0, β2),
and define

I(t) = beδ`(t)c.

Recall the definition of R(t) from (5.13), and for t > 0, let

Mt := inf{r ≥ 0 : R(t) ⊆ B(0, r)}.

Next, for t > 0, define the families of events

Gt := {N`(t) ≥ I(t)}, Ht := {M`(t) ≤
√

2β2 + ε `(t)}.

Recall that we write Zt(B) to denote the mass of Z that fall inside B at time t, and define
further the family of events

Ft :=
{
Z`(t)

(
B(0,

√
2β2 + ε `(t))

)
≥ I(t)

}
.

Since limt→∞ `(t) =∞, by (5.16), on a set of full P-measure, which we had called Ω2,

Pω(Gct) = Pω
(
N`(t) < beδ`(t)c

)
≤ e−c(log `(t))1/d(1+o(1)) (5.17)

with c = c(d, ν, β2, δ) > 0. Next, we establish some control on the spatial spread of the
BBM at time `(t). Observe that Mt/t is a measure of the spread of Z over [0, t]. As
before, let Nt denote the set of particles of Z that are alive at time t, and for u ∈ Nt, let
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(Yu(s))0≤s≤t denote the ancestral line up to t of particle u. Note that Nt = |Nt|. Then,
using the union bound, for γ > 0,

P (Mt > γt) = P

(
∃u ∈ Nt : sup

0≤s≤t
|Yu(s)| > γt

)
≤ E[Nt] P0

(
sup

0≤s≤t
|Xs| > γt

)
. (5.18)

Here, we use P for the law of a standard BBM in Rd with constant binary branch-
ing rate β2 everywhere. It is a standard result that E[Nt] = exp(β2t) (one can de-
duce this, for example, from Proposition C), and we know from Proposition A that
P0

(
sup0≤s≤t |Xs| > γt

)
= exp[−γ2t/2(1 + o(1))]. Moreover, the following stochastic dom-

ination is clear: for all B ⊆ Rd Borel, all k ∈ N, and t ≥ 0,

P (Zt(B) < k) ≤ Pω(Zt(B) < k) for each ω ∈ Ω. (5.19)

Then, taking B =
(
B(0,

√
2β + ε `(t))

)c
and k = 1 in (5.19), and γ =

√
2β2 + ε in (5.18),

and replacing t by `(t) in both (5.18) and (5.19), it follows that on Ω, for any ε > 0,

Pω(Hc
t ) = Pω

(
M`(t) >

√
2β2 + ε `(t)

)
≤ e−

ε`(t)
2 (1+o(1)). (5.20)

Since Gt ∩ Ht ⊆ Ft, we have Pω(F ct ) ≤ Pω(Gct) + Pω(Hc
t ), which, in view of (5.17)

and (5.20) implies that on Ω2,

Pω(F ct ) ≤ e−c(log `(t))1/d(1+o(1)), c = c(d, ν, β2, δ) > 0. (5.21)

This means, on a set of full P-measure, with ‘high’ Pω-probability, there are at least I(t)

particles in B(0,
√

2β2 + ε `(t)) at time `(t) for large t.
Next, we prepare the setting at time m(t). Recall (4.3) and define

R(t) = R`(t) = R0[log `(t)]1/d − [log log `(t)]2, for t > ee. (5.22)

Since limt→∞ `(t) = ∞, Lemma 4.2 implies that on a set of full P-measure, say Ω3,
there is a clearing B(x0, R(t) + 1) such that |x0| ≤ `(t) for all large t. Let ω ∈ Ω2 ∩ Ω3.
Conditional on the event Ft, the distance between x0 and each of the at least I(t) many
particles in B(0,

√
2β2 + ε `(t)) at time `(t) is at most

(1 +
√

2β2 + ε)`(t).

A Brownian particle present at time `(t) in B(0,
√

2β2 + ε `(t)) moves to B(x0, 1) over
[`(t),m(t)] with probability at least

qt = exp

[
− [(1 +

√
2β2 + ε)`(t)]2

2[m(t)− `(t)]
(1 + o(1))

]
,

which follows from (iii) and (iv), along with the Brownian transition density. Apply the
Markov property of the BBM at time `(t), and neglect possible branching of particles
over [`(t),m(t)] for an upper bound on the probability of Cct , where

Ct := {Zm(t)(B(x0, 1)) > 0}. (5.23)

Observe that conditional on the event Ft, the event Ct is realized if one of the sub-BBMs
initiated by each of the at least I(t) many particles present in B(0,

√
2β2 + ε `(t)) at time

`(t) contributes a particle to B(x0, 1) at time m(t). Therefore, by the independence of
particles present at time `(t), we have

Pω(Cct | Ft) ≤ (1− qt)I(t) = e−qtI(t), (5.24)
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where we have used the estimate 1 + x ≤ ex. Since (iii) implies that `2(t)
m(t) = o(`(t)), we

have

qte
δ`(t) = exp[δ`(t)(1 + o(1))].

Then, it follows from (5.24) that for all large t,

Pω(Cct | Ft) ≤ exp
[
−eδ`(t)(1+o(1))

]
≤ e−t

2

, (5.25)

where we have used that by choice, `(t) = t1−1/(log log t). Note that (5.25) is superex-
ponentially small in t. Thus far, the value of δ ∈ (0, β2) was arbitrary. For the rest of
the argument, the exact value of δ has no importance; therefore let us now fix it as
δ = β2/2. Then, it follows from (5.21), (5.25), and assumption (ii) that on Ω0 := Ω2 ∩ Ω3

with P(Ω0) = 1,

Pω(Cct ) ≤ Pω(Cct | Ft) + P (F ct ) ≤ e−c(log t)1/d(1+o(1)), c = c(d, ν, β2) > 0. (5.26)

This means, on a set of full P-measure, with ‘high’ Pω-probability, there is at least one
particle of Z inside B(x0, 1) at time m(t) for large t, where |x0| ≤ `(t). Let us generically
call this particle v, and denote by y0 := Xv(m(t)) its position at time m(t).

Part 3: BBM in the large expanding clearing
Let ω ∈ Ω0, and recall that B(x0, R(t) + 1) is a clearing in ω. In this part of the proof,

we will work under the law Pω( · | Ct), where Ct was defined in (5.23). Conditional on
the event Ct, we show that Bt = B(y0, R(t)) is a large enough expanding clearing in ω
in which the BBM can produce sufficiently many particles. In particular, we study the
evolution of the sub-BBM initiated by v at time m(t) over the period [m(t), t] within the
expanding clearing Bt. Denote this sub-BBM by Ẑ. We will use Pωx for the law of a BBM
started with a single particle at x ∈ Rd in the random environment ω. For t > 0 and
ε > 0, define

At,ε :=

{
Nt < exp

[
t

(
β2 −

c(d, ν) + ε

(log t)2/d

)]}
. (5.27)

Recall that our goal (see (5.2)) is to find a suitable upper bound on Pω(At,ε).

Define R̂ : R+ → R+ such that R̂(t −m(t)) = R(t) for all large t. (By the choice of
m(t), t−m(t) is increasing on t ≥ t0 for some t0 > 0. Therefore, t1 −m(t1) = t2 −m(t2)

implies that t1 = t2 for t1 ∧ t2 ≥ t0). Next, let s := t−m(t), B̂s := B(y0, R̂(s)) and

ps := Py0(σB̂s ≥ s) = P0(σB(0,R̂(s)) ≥ s),

where, as before, Px denotes the law of a standard BM started at x ∈ Rd. By the Markov
property of Z applied at time m(t), Ẑ is a BBM started with a single particle at y0. Noting
that B̂s is a clearing in ω for all large s, and taking γs = exp[−

√
β2/2 R̂(s)], Theorem 2.4

implies that

Pω
(
|Ẑs| < e−

√
β2/2 R̂(s)pse

β2s
∣∣ Ct) ≤ Pωy0 (∣∣ZB̂ss ∣∣ < e−

√
β2/2 R̂(s)pse

β2s
)

= exp
[
−
√
β2/2 R̂(s)(1 + o(1))

]
. (5.28)

By Proposition B, (5.22), and since R̂(s) = R(t) and c(d, ν) = λd/R
2
0,

ps = exp

[
− λds

R̂2(s)
(1 + o(1))

]
= exp

[
−c(d, ν)(t−m(t))

(log `(t))2/d
(1 + o(1))

]
. (5.29)
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For two functions f, g : R+ → R+, use f(t) ∼ g(t) to express that limt→∞ f(t)/g(t) = 1.
Then, it follows from assumptions (ii) and (v) that

t−m(t)

(log `(t))2/d
∼ t

(log t)2/d
,

by which, we can continue (5.29) with

ps = exp

[
− c(d, ν)t

(log t)2/d
(1 + o(1))

]
. (5.30)

Furthermore, using that s = t−m(t), we have for any ε > 0,

exp

[
t

(
β2 −

c(d, ν) + ε

(log t)2/d

)]
= exp

[
β2s+ β2m(t)− (c(d, ν) + ε)t

(log t)2/d

]
≤ e−

√
β2/2 R̂(s)pse

β2s

for all large t, where we have used (5.30), assumption (v), and that R̂(s) = R(t) =

o(t(log t)−2/d) in passing to the inequality. It is clear that Nt ≥ |Ẑt−m(t)| = |Ẑs|. Then, it
follows from (5.28) that for all large t,

Pω
(
Nt < exp

[
t

(
β2 −

c(d, ν) + ε

(log t)2/d

)] ∣∣∣∣ Ct) ≤ Pω (|Ẑs| < e−
√

2β2R̂(s)pse
β2s
∣∣ Ct)

≤ exp
[
−
√

2β2R̂(s)(1 + o(1))
]
.

Finally, using assumption (ii), (5.22) along with R̂(s) = R(t), and (5.26), we reach the
following conclusion. On Ω0, which is a set of full P-measure, for any ε > 0,

Pω
(
Nt < exp

[
t

(
β2 −

c(d, ν) + ε

(log t)2/d

)])
≤ exp

[
−c(log t)1/d(1 + o(1))

]
, (5.31)

where c = c(d, ν, β2) > 0. In the next part of the proof, we will exploit the fact that the
right-hand side of (5.31) does not depend on ε.

Part 4: Borel-Cantelli argument
We will show that on a set of full P-measure, for any ε > 0,

lim inf
t→∞

(log t)2/d

(
logNt
t
− β2

)
≥ − [c(d, ν) + ε] Pω-a.s. (5.32)

Recall the definition of At,ε from (5.27). It follows from (5.31) that there exists c =

c(d, ν, β2)/2, independent of ε, such that on Ω0, for all large t,

Pω
(
At,ε/2

)
≤ e−c(log t)1/d . (5.33)

Define the function f : N→ R+ by

f(k) = exp

[(
2

c

)d
(log k)d

]
. (5.34)

Take ω ∈ Ω0. By the choice of f(k) and (5.33), there exist constants c0 > 0 and k0 > 0

such that

∞∑
k=1

Pω
(
Af(k),ε/2

)
≤ c0 +

∞∑
k=k0

e−c(log f(k))1/d = c0 +

∞∑
k=k0

1

k2
<∞.
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Then, by the Borel-Cantelli lemma, on a set of full Pω-measure, only finitely many events
Af(k),ε/2 occur. That is, for each ω ∈ Ω0 there exists Ω̂0 ⊆ Ω̂ (recall that Ω̂ is the sample

space for the BBM) such that Pω(Ω̂0) = 1 with

Ω̂0 =

{
$ ∈ Ω̂ : ∃ k0 = k0($) ∀ k ≥ k0, Nf(k) ≥ exp

[
f(k)

(
β2 −

c(d, ν) + ε/2

(log f(k))2/d

)]}
.

(5.35)
To prove (5.32), it suffices to show that for each $ ∈ Ω̂0,

Ns ≥ exp

[
s

(
β2 −

c(d, ν) + ε

(log s)2/d

)]
, f(k) < s < f(k + 1) (5.36)

for all large k. Indeed, (5.35) and (5.36) would together imply (5.32) on Ω0. Observe that
Ns is Pω-almost surely increasing in s, and the right-hand side of (5.36) is also increasing
in s for all large s. Therefore, to prove (5.36), it suffices to show that for all large k,

Nf(k) ≥ exp

[
f(k + 1)

(
β2 −

c(d, ν) + ε

(log f(k + 1))2/d

)]
. (5.37)

Next, we control f(k + 1)− f(k). Using (5.34), it can be shown that as k →∞,

f(k + 1)− f(k) ∼ d
(

2

c

)d
f(k)

(log k)d−1

k
, (5.38)

and that if we set t = f(k), then

k = exp
[ c

2
(log t)1/d

]
. (5.39)

Then, setting g(t) = f(k + 1)− f(k), it follows from (5.38) and (5.39) that

g(t) ∼ d
(

2

c

)d
t

(c/2)d−1(log t)(d−1)/d

exp
[
c
2 (log t)1/d

] . (5.40)

Using (5.22) and (5.40), it can be shown that

lim
t→∞

g(t)R2(t)

t
= 0.

This implies that for all large k,

f(k + 1)− f(k) ≤ εf(k)

2β2[log f(k)]2/d
,

which further implies that

β2f(k)− c(d, ν) + ε/2

[log f(k)]2/d
f(k) ≥ β2f(k + 1)− c(d, ν) + ε

[log f(k + 1)]2/d
f(k + 1) (5.41)

since f(z)/[log f(z)]2/d is increasing for large z. As (5.41) implies (5.37) on Ω̂0, this
proves (5.32), and hence completes the proof of the lower bound of Theorem 2.1.

Remark 5.2. We now continue the comparison between the models of mild obstacles and
soft killing for BBM (see Section 3.3), focusing on the additional challenges introduced
by soft killing. We only consider key difficulties, and note that there are various other
minor hurdles that need to be overcome and are not present in the case of mild obstacles.

As noted in Section 1, the most challenging part of the proof of the lower bound of
Theorem 2.1 is Part 1, where we argue that in almost every environment exponentially
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many particles are produced with high probability. A close look at the proof shows,
Lemma 5.1 is the key tool in Part 1 and is based on careful choices of the time-scale
h(t) and the space scale ρ(t), and the estimate Pω(Ec1,t) ≥ (κd/2)rd−1(t)/ρd−1(t), which
follows from elementary geometry. Under soft killing, this estimate no longer holds. In
the language of Lemma 5.1, Pω(Ec1,t) is the probability that a Brownian particle hits a
‘good point’ over the interval [0, h(t)], and under soft killing the particle has to avoid
being killed by V and hit the r(t)-clearing at the same time. That is, the particle has to
‘hit and survive’ over [0, h(t)], which is more costly than just hitting the r(t)-clearing as
in the case of mild obstacles. To avoid V , one must have control over the path of the
particle over [0, h(t)]. As a result, the upper bound on Pω(Et, St) (one needs to estimate
Pω(Et, St) instead of Pω(Et)) will be significantly larger than the corresponding bound
in the mild obstacle case, which in turn will affect the Borel-Cantelli argument in Part 4.
Overall, by suitably adjusting the scales h(t) and ρ(t), it could still be possible to show
that Pω(Et, St)→ 0 as t→∞, but it is not clear whether the rate of convergence to zero
is fast enough for the Borel-Cantelli argument to work in Part 4. Moreover, h(t) and ρ(t)

will have to be chosen small (a closer look shows that powerlike growth will not work,
one has to at best settle for logarithmic growth), which, as explained below, disturbs the
preparation of the a.s. environment where we wish our quenched results to hold.

We now turn our attention to Lemma 4.2. Observe that after proving Lemma 4.2,
we set ` = ρ(t) therein to prepare our almost-sure environment (see (5.7)). The key
consideration is that roughly we split the cube [−t, t]d into ∼ [t/ρ(t)]d smaller balls and
would like to have a clearing of radius ∼ r(t) inside each small ball of radius ρ(t). In
view of ` = ρ(t), a smaller ρ(t) would require stating Lemma 4.2 with a larger number of
cubes Cj,`. In particular, if ρ(t) has logarithmic growth, we would need Lemma 4.2 to
be stated with exponentially many cubes Cj,` as opposed to polynomially many, and this
would certainly affect the Borel-Cantelli argument in Lemma 4.2. Hence, there will be
extra challenges in preparing the a.s. environment as well due to the soft killing inside
obstacles.

We finally briefly discuss how Parts 2-4 of the proof will be affected by soft killing.
Part 2 of the proof concerns the hitting of the large clearing, denoted by B(y0, R(t)) in
the proof, over the interval [`(t),m(t)] by the sub-BBM emanating from one of the many
particles that are present at time `(t). In the presence of the killing potential V , not only
a progeny of such a particle should hit the large clearing by time m(t), but it also has to
avoid being killed by V over [`(t),m(t)]. Therefore, one has to show that the probability
for the BBM to hit B(y0, R(t)) is large enough even in the presence of V , and to do this,
one will presumably need to change the time scales `(t) and m(t). Part 3 of the proof
will not be disturbed since V does not affect what happens in the clearings, and since
Theorem 2.4 continues to hold. On the other hand, Part 4 will drastically be affected by
soft killing since throughout the proof, the rates of decay to zero for most of the relevant
probabilities will be much slower compared to the case of mild obstacles, which will
disturb the Borel-Cantelli argument in Part 4. Moreover, the total mass Nt of BBM is
no longer a.s. increasing due to possible killing of particles, and this monotonicity of Nt
was used in Part 4.

We stress that only key additional difficulties resulting from soft killing were discussed
here. As noted in Section 3.3, these difficulties were partially overcome in [19] to prove
a kind of law of large numbers for the mass of BBM under soft killing in the case d ≥ 2.

6 Proof of Theorem 2.4

Recall that by assumption r : R+ → R+ satisfies r(t)→∞ as t→∞ and r(t) = o(
√
t).

Also, we set Bt = B(0, r(t)) for t ≥ 0. Throughout this section, we will use that the law
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of |ZBtt | is the same as the law of number of particles of Z which are present at t and
whose ancestral lines over [0, t] have been confined to Bt.

6.1 Proof of the lower bound

Suppose that
γt = e−κr(t), where κ > 0.

Consider the joint strategy of suppressing the branching over [0, f(t)], and then letting
the BBM evolve ‘normally’ in the remaining interval [f(t), t]. To be precise, recall that
nt := |ZBtt |, σA denotes the first exit time out of A, and pt := P0(σBt ≥ t); and let
f : R+ → R+ satisfy f(t) = o(t). For t > 0 define the events

At = {Nf(t) = 1}, Et = {nt < γtpte
βt}.

Estimate
P (Et) ≥ P (Et ∩At) = P (Et | At)P (At). (6.1)

We will show that P (Ect | At) tends to a constant smaller than one as t→∞ for suitable
f . Let (Y1(s))0≤s≤τ1 be the path of the initial particle, where τ1 denotes the particle’s
lifetime. Conditional on At, it is clear that τ1 ≥ f(t), and that nt = 0 if Y1(z) /∈ Bt for
some 0 ≤ z ≤ f(t). Next, for t > 0 define

Dt = {Y1(z) ∈ Bt ∀ 0 ≤ z ≤ f(t)}.

Then,

E [nt | At] = E [nt1Dt | At] + E
[
nt1Dct | At

]
= E [nt | At, Dt]P (Dt | At), (6.2)

where the second term on the right-hand side vanishes. Write

E [nt | At, Dt] =

∫
Bt

E [nt | At, Dt, Y1(f(t)) = y]P (Y1(f(t)) ∈ dy | At, Dt). (6.3)

Define

p̃(t)(x, s, dy) := Px(Xs ∈ dy | Xz ∈ Bt ∀ 0 ≤ z ≤ s) and pts,x := Px(σBt ≥ s). (6.4)

Applying the Markov property of a standard BM at time s with 0 < s < t gives

pt = pts,0

∫
Bt

ptt−s,y p̃
(t)(0, s, dy). (6.5)

Furthermore, it follows from (6.2) and (6.3) that

E [nt | At] = ptf(t),0

∫
Bt

E [nt | At, Dt, Y1(f(t)) = y] p̃(t)(0, f(t), dy). (6.6)

Now apply the Markov property of BBM at time f(t), and use the many-to-one lemma
(see for instance [7, Lemma 1.6]) to obtain

E [nt | At, Dt, Y1(f(t)) = y] = ptt−f(t),y e
β(t−f(t)), y ∈ Bt. (6.7)

Using (6.5) with s therein replaced by f(t), it then follows from (6.5), (6.6) and (6.7) that

E [nt | At] = eβ(t−f(t))ptf(t),0

∫
Bt

ptt−f(t),y p̃
(t)(0, f(t), dy)

= eβ(t−f(t))pt.
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Then, by the Markov inequality,

P (Ect | At) ≤
E
[
nt
∣∣At]

γtpteβt
= γ−1

t e−βf(t). (6.8)

Choose f(t) = −(1/β) log((1− δ)γt), where 0 < δ < 1. With this choice of f , (6.8) implies
that P (Et | At) ≥ δ. Then, noting that P (At) = e−βf(t), it follows from (6.1) that

P (Et) ≥ δe−βf(t) = δ(1− δ)γt = e−κr(t)(1+o(1)).

This, along with (2.8), proves (2.5), and the lower bound in (2.4).

6.2 Proof of the upper bound

For the proof of the upper bound, we follow a method that is based on Chebyshev’s
inequality, similar to the proof of [6, Theorem 1]. Let g : R+ → R+ satisfy g(t) → 0 as
t→∞. Later, we will choose gt := g(t) in a precise way. For t ≥ 0, let Nt = |Zt| as before,
and estimate

P ( · ) ≤ P
(
·
∣∣Nt > eβtgt

)
+ P

(
Nt ≤ eβtgt

)
. (6.9)

We first bound the second term on the right-hand side of (6.9) from above. It follows
from (4.1) that P (Nt ≤ k) = 1− (1− e−βt)k ≤ ke−βt for k ≥ 1. Set k = beβtgtc to obtain

P
(
Nt ≤ eβtgt

)
= P

(
Nt ≤ beβtgtc

)
≤ beβtgtce−βt ≤ gt. (6.10)

Next, for t > 0 define
P̃t( · ) = P ( · | Nt > eβtgt),

and let Ẽt be the corresponding expectation. We now bound the first term on the right-
hand side of (6.9) from above. Let Nt denote the set of particles of Z that are alive
at time t. For u ∈ Nt, let (Yu(s))0≤s≤t denote the ancestral line up to t of particle u.
By the ancestral line up to t of a particle present at time t, we mean the continuous
trajectory traversed up to t by the particle, concatenated with the trajectories of all
its ancestors including the one traversed by the initial particle. Note that (Yu(s))0≤s≤t
is identically distributed as a Brownian path (Xs)0≤s≤t for each u ∈ Nt. Let us pick
randomly, independent of their genealogy and position, beβtgtc particles from Nt. Note
that this is possible under P̃t(·). Denote this collection of particles byMt, set Mt := |Mt|,
and define

n̂t =
∑
u∈Mt

1Au ,

where Au = {Yu(s) ∈ Bt ∀ 0 ≤ s ≤ t}. Observe that n̂t counts, out of Mt, the par-
ticles whose ancestral lines are confined to Bt over [0, t]. Since the collection Mt is
chosen independently of the motion process, each particle u inMt has an ancestral line
(Yu(s))0≤s≤t that is Brownian. Then, since the branching and motion mechanisms are
independent of each other, the many-to-one lemma implies that for t > 0,

Ẽt[n̂t] = ptMt = ptbeβtgtc, (6.11)

where pt is as before the probability of confinement of a standard BM to Bt over [0, t]. It
is clear that n̂t ≤ nt. At this point, choose g such that gt ≥ γt for all t > 0. Then, using
Chebyshev’s inequality, it follows from (6.9), (6.10), and (6.11) that

P (nt < γtpte
βt) ≤ P̃t

(
n̂t < γtpte

βt
)

+ gt

= P̃t

(
Ẽt[n̂t]− n̂t > Ẽt[n̂t]− γtpteβt

)
+ gt

≤ P̃t
(
|n̂t − Ẽt[n̂t]| > ptbeβtgtc − γtpteβt

)
+ gt

≤ Ṽart(n̂t)

[(gt − γt)pteβt − pt]2
+ gt, (6.12)
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where Ṽart denotes the variance associated to P̃t. In the rest of the proof, we estimate
Ṽart(n̂t).

Let P be the probability under which the pair (i, j) is chosen uniformly at random
among the Mt(Mt − 1) possible pairs inMt, and let E be the corresponding expectation.
Also, for a generic Brownian motion X, let Var denote its variance, and let A = {Xs ∈
Bt ∀ 0 ≤ s ≤ t}. Then,

Ṽart(n̂t) = Ṽart

( ∑
u∈Mt

1Au

)
= MtVar (1A) +

∑
1≤i 6=j≤Mt

C̃ovt
(
1Ai ,1Aj

)
= Mt(pt − p2

t ) +Mt(Mt − 1)

∑
1≤i 6=j≤Mt

C̃ovt
(
1Ai ,1Aj

)
Mt(Mt − 1)

≤ gteβt(pt − p2
t ) + gte

βt(gte
βt − 1)

[
(E ⊗ P̃t)(Ai ∩Aj)− p2

t

]
, (6.13)

where (E⊗P̃t)(Ai∩Aj) = E [P̃t(Ai∩Aj)] denotes averaging P̃t(Ai∩Aj) over the Mt(Mt−1)

possible pairs in the randomly chosen setMt. Let Q(t) be the distribution of the splitting
time of the most recent common ancestor of ith and jth particles under E ⊗ P̃t. Applying
the Markov property at this splitting time, we obtain

(E ⊗ P̃t)(Ai ∩Aj) = pt

∫ t

0

∫
Bt

ptt−s,x p̃
(t)(0, s, dx)Q(t)(ds), (6.14)

where p̃(t)(x, s, dy) and pts,x are as defined in (6.4). Set pts = pts,0. Then, it follows
from (6.5) and (6.14) that

(E ⊗ P̃t)(Ai ∩Aj) = p2
t

∫ t

0

1

pts
Q(t)(ds). (6.15)

For t > 0 define

Jt :=

∫ t

0

1

pts
Q(t)(ds).

Then, by (6.13) and (6.15), we have

Ṽart(n̂t) ≤ gtpteβt + g2
t p

2
t e

2βt(Jt − 1). (6.16)

It is clear that Jt − 1 ≥ 0. Next, we bound Jt − 1 from above.
Recall that r(t) is a distance scale. For k > 0, we will use kr(t) as a time scale. Note

that for large t it is atypical for a BM starting at the origin to escape Bt = B(0, r(t)) over
[0, kr(t)]. For large t, split Jt up as

Jt =

∫ kr(t)

0

1

pts
Q(t)(ds) +

∫ t

kr(t)

1

pts
Q(t)(ds),

and define

J
(1)
t :=

∫ kr(t)

0

1

pts
Q(t)(ds), J

(2)
t :=

∫ t

kr(t)

1

pts
Q(t)(ds).

We first bound J (1)
t −1 from above. Observe that pts is nonincreasing in s, and estimate

J
(1)
t =

∫ kr(t)

0

1

pts
Q(t)(ds) ≤ 1

ptkr(t)
. (6.17)

EJP 29 (2024), paper 55.
Page 29/32

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1112
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


BBM in an expanding ball and among mild obstacles

From Proposition A,

1− ptkr(t) = exp

[
−r(t)

2k
(1 + o(1))

]
. (6.18)

It then follows from (6.17) and (6.18) that

J
(1)
t − 1 ≤

exp
[
− r(t)2k (1 + o(1))

]
1− exp

[
− r(t)2k (1 + o(1))

] = exp

[
−r(t)

2k
(1 + o(1))

]
. (6.19)

To bound J (2)
t from above, we will use the following fact on the distribution Q(t) from

[6, Prop. 5]: Q(t) is absolutely continuous with respect to the Lebesgue measure, which
we denote by ds, and its density function, which we denote by g(t), satisfies

∃C > 0, s0 > 0 such that ∀ s ≥ s0, g
(t)(s) ≤ Cse−βs. (6.20)

Since r(t) = o(
√
t) by assumption, this implies that for all large t we have r(t) ≤ t,

which implies 1/pts ≤ 1/p
r(t)
s . Here, pr(t)s = P0(σBr(t) ≥ s) with Br(t) = B(0, r(r(t))) in

accordance with previous notation. Then, since r(t)→∞ as t→∞, for all large t and
for kr(t) ≤ s ≤ t,

1

pts
≤ 1

p
r(t)
s

= exp

[
λds

r2(r(t))
(1 + o(1))

]
≤ exp

[
2λds

r2(r(t))

]
,

where we have used Proposition B. Then, we continue with

J
(2)
t =

∫ t

kr(t)

1

pts
Q(t)(ds) ≤

∫ t

kr(t)

exp

[
2λds

r2(r(t))

]
Cse−βsds

≤ C
∫ ∞
kr(t)

s exp

[
−
(
β − 2λd

r2(r(t))

)
s

]
ds

≤ exp [−βkr(t)(1 + o(1))] , (6.21)

where we have used integration by parts. From (6.19) and (6.21), we have

Jt − 1 = J
(1)
t − 1 + J

(2)
t ≤ exp

[
−r(t)

2k
(1 + o(1))

]
+ exp [−βkr(t)(1 + o(1))] . (6.22)

To optimize the smallest absolute exponent on the right-hand side of (6.22), choose k so
that

βkr(t) =
r(t)

2k
.

This yields k = 1√
2β

. With this choice of k, we have

Jt − 1 ≤ exp
[
−
√
β/2 r(t)(1 + o(1))

]
.

It then follows from (6.12) and (6.16) that

P (nt < γtpte
βt) ≤ 2gt

(gt − γt)2pt
e−βt +

2g2
t

(gt − γt)2
e−
√
β/2 r(t)(1+o(1)) + gt. (6.23)

By assumption, γt = e−κr(t) with κ > 0. Choose gt = 2γt. Then, we can continue (6.23)
with

P (nt < γtpte
βt) ≤ 4

γtpt
e−βt + 8e−

√
β/2 r(t)(1+o(1)) + gt. (6.24)
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Using Proposition B, and the assumptions that r(t)→∞ and r(t) = o(
√
t) as t→∞, we

have

γtpt = e
−κr(t)− λdt

r2(t)
(1+o(1))

= exp[o(t)].

Then, using that gt = 2γt = 2e−κr(t), it follows from (6.24) that

P (nt < γtpte
βt) ≤

{
e−κ r(t)(1+o(1)), 0 < κ ≤

√
β/2,

e−
√
β/2 r(t)(1+o(1)), κ >

√
β/2.

This completes the proof of (2.6) and the upper bound of (2.4).

References

[1] Berestycki, J., Berestycki, N. and Schweinsberg, J.: Survival of near-critical branching
Brownian motion. J. Stat. Phys. 143 (5), (2011), 833–854. MR2811463

[2] Berestycki, J., Berestycki, N. and Schweinsberg, J.: The genealogy of branching Brownian
motion with absorption. Ann. Probab. 41 (2), (2013), 527–618. MR3077519

[3] Engländer, J.: On the volume of the supercritical super-Brownian sausage conditioned on
survival. Stochastic Process. Appl. 88 (2), (2000), 225–243. MR1767846

[4] Engländer, J. and den Hollander, F.: Survival asymptotics for branching Brownian motion in a
Poissonian trap field. Markov Process. Related Fields 9 (3), (2003), 363–389. MR2028219

[5] Engländer, J.: Branching diffusions, superdiffusions and random media. Probab. Surv. 4,
(2007), 303–364. MR2368953

[6] Engländer, J.: Quenched law of large numbers for branching Brownian motion in a random
medium. Ann. Inst. Henri Poincaré Probab. Stat. 44 (3), (2008), 490–518. MR2451055

[7] Engländer, J.: Spatial Branching in Random Environments and with Interaction. Advanced
Series on Statistical Science & Applied Probability, 20. World Scientific Publishing Co. Pte.
Ltd., Hackensack, NJ, 2015. xvi+270 pp. MR3362353

[8] Gonzalez, I., Horton, E. and Kyprianou, A. E.: Asymptotic moments of spatial branching
processes. Probab. Theory Related Fields (184) (3-4), (2022), 805–858. MR4507935

[9] Harris, J. W., Harris, S. C. and Kyprianou, A. E.: Further probabilistic analysis of the Fisher-
Kolmogorov-Petrovskii-Piscounov equation: One sided travelling-waves. Ann. Inst. Henri
Poincaré Probab. Stat. 42 (1), (2006), 125–145. MR2196975

[10] Harris, S. C., Hesse, M. and Kyprianou, A. E.: Branching brownian motion in a strip: survival
near criticality. Ann. Probab. 44 (1), (2016), 235–275. MR3456337

[11] Karlin, S. and Taylor, H. M.: A First Course in Stochastic Processes. Second edition. Academic
Press, New York-London, 1975. xvii+557 pp. MR0356197

[12] Kesten, H.: Branching Brownian motion with absorption. Stochastic Process. Appl. 7 (1),
(1978), 9–47. MR0494543

[13] Le Gall, J. -F. and Véber, A.: Escape Probabilities for Branching Brownian Motion Among Soft
Obstacles. J. Theoret. Probab. 25 (2), (2012), 505–535. MR2914440

[14] Maillard, P.: The number of absorbed individuals in branching Brownian motion with a barrier.
Ann. Inst. Henri Poincaré Probab. Stat. 49 (2), (2013), 428–455. MR3088376

[15] Neveu, J.: Multiplicative martingales for spatial branching processes. Seminar on Stochastic
Processes, 1987 (Princeton, NJ, 1987), Progr. Probab. Statist., 15, 223–242. Birkhhäuser
Boston, Boston, MA, 1988. MR1046418

[16] Öz, M.: Survival of branching Brownian motion in a uniform trap field. Statist. Probab. Lett.
110, (2016), 211–216. MR3474760
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