
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 29 (2024), article no. 16, 1–27.
ISSN: 1083-6489 https://doi.org/10.1214/24-EJP1074

Infinite random power towers

Mark Dalthorp*

Abstract

We prove a probabilistic generalization of the classic result that infinite power towers,

cc
. .
.

, converge if and only if c ∈ [e−e, e1/e]. Given an i.i.d. sequence {Ai}i∈N, we

find that convergence of the power tower A
A
. .
.

2
1 is determined by the bounds of A1’s

support, a = inf(supp(A1)) and b = sup(supp(A1)). When b ∈ [e−e, e1/e], a < 1 < b, or
a = 0, the power tower converges almost surely. When b < e−e, we define a special
function B such that almost sure convergence is equivalent to a < B(b). Only in
the case when a = 1 and b > e1/e are the values of a and b insufficient to determine
convergence. We show a rather complicated necessary and sufficient condition for
convergence when a = 1 and b is finite.

We also briefly discuss the relationship between the distribution of A1 and the

corresponding power tower T = A
A
. .
.

2
1 . For example, when T ∼ Unif[0, 1], then

the corresponding distribution of A1 is given by UV where U, V ∼ Unif[0, 1] are
independent. We generalize this example by showing that for U ∼ Unif[α, β] and

r ∈ R, there exists an i.i.d. sequence {Ai}i∈N such that Ur
d
= A

A
. .
.

2
1 if and only if

r ∈ [0, 1
1+log β

].
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1 Introduction and main result

1.1 Background

In this paper we investigate infinite random power towers, defined as the limit of the
sequence

A1, (A1)
A2 , (A1)

(A2)
A3
, . . .

where (Ai)i∈N is an i.i.d. sequence of positive real random variables. We determine
necessary and sufficient conditions for convergence of the power tower which apply
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Random power towers

unless the A1 has support bounded below by 1 and unbounded above. We also look at
some specific cases where the distribution of the limit may be written in closed form.

This question comes as a natural probabilistic extension of the long history of study of
power towers, which we outline briefly below. Power towers have usually been studied as
a topic of inherent interest, but they do occasionally find applications in other topics (see
for example [5], [9], or [12]). They also provide a simple example of a non-trivial discrete
dynamical system. Similarly, the random power tower provides a simple example of
a random dynamical system. In this paper we will see that the fact that exponential
functions are monotone allows for some shortcuts not possible in full generality.

The simplest infinite power towers, taking the form

cc
c
. .
.

were first studied by Euler in 1778 [11] and independently a few decades later by
Eisenstein in 1844 [10]. The infinite expression is not a priori well-defined, but must be
defined as the limit of the sequence

c, cc, cc
c

, . . .

On first exposure to power towers, it may be surprising that it is possible for them to
converge at all when c > 1. After all, exponentiation famously diverges to infinity rapidly,
one would expect the iterated sequence to diverge even more rapidly. However, for
nonnegative c, the infinite power tower converges if and only if c ∈ [e−e, e1/e] [11]. Even
if the existence of this interval of convergence isn’t a surprise, the endpoints seem far
nicer than they have a right to be.

The sequence c, cc, cc
c

, . . . is naturally viewed as repeated iterates of the function
x→ cx starting at x = 1, which turns the problem into a discrete dynamical system. The
theory of dynamical systems is complex and deep; in general their behavior is difficult or
impossible to predict. However, this particular system is easy to get a handle on. For
example, the iteration of x → (

√
2)x forms a sequence that increases to the first fixed

point of this function, i.e. 2 (Figure 1).
In general, iterating an increasing function creates sequence that either converges to

a fixed point or diverges to infinity. Sequences arising from iterated decreasing functions
will either converge to a fixed point, or oscillate in the limit. The convergence results
about cc

...

become perfectly natural in light of these facts: The sequence c, cc, cc
c

, . . . ,
converges in the limit when c ∈ [e−e, e

1
e ]. For larger c, the sequence diverges to infinity.

For c ∈ (0, e−e), it oscillates, with the even- and odd-indexed subsequences converging to
distinct limits (Figure 2). We will see similar behavior in the random case as discussed
below.

This is a special case of the fully general question of convergence of

c1, (c1)
c2 , (c1)

(c2)
c3
, . . .

for an arbitrary sequence ci. In this paper, we will restrict our attention to the case
of positive real sequences (the complex case was investigated by Thron [16]). To our
knowledge, this general question was first posed in the literature by D.F. Barrow in 1936
[4], who proved that this sequence converges if ci ∈ [e−e, e1/e], among other interesting
results. Barrow also introduced the notation

n

E
k=1

ck = c
c···

cn
2

1

and
∞
E
k=1

ck = lim
n→∞

n

E
k=1

ck
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Random power towers

Figure 1: Iterating exponential functions showing the four possible behaviors: a. In-
creasing convergence to a fixed point when c ∈ [1, e

1
e ]; b. Increasing to infinity when

c > e
1
e ; c. Alternating convergence to a fixed point when c ∈ [e−e, 1]; d. Oscillation in the

limit when c < e−e.

by analogy to summation and product notation, which we will follow here. Baker and
Rippon [2] gave necessary and sufficient conditions for convergence of an alternating
power tower with positive real coefficients, i.e. ck alternates between a and b, with
a, b ∈ (0,∞). Later [3], they found conditions for convergence and divergence when ck is
periodic with other periods. Bachman (1995) [1] proves an essentially tight bound on
convergence in the event that ck converges to e1/e from above, based on a note without
proof found in Ramanujan’s notebook.

In this paper, we investigate the probabilistic question: If {Ai}i∈N is an i.i.d. sequence

of random variables, when does
∞
E
i=1

Ai converge? In our main result, Theorem 1.2,

we prove necessary and sufficient conditions for almost sure convergence under the
assumption that the support of A1 is a bounded subset of [0,∞). Surprisingly, almost
sure convergence depends only on the upper and lower bounds of the support of A1,
except when the lower bound is 1 and the upper bound is larger than e1/e. Along the way
in our proof, we will derive a closed form for a function whose existence was proven by
Baker and Rippon [2], which defines the boundary between convergence and divergence

of alternating power towers ab
ab

···

for a, b ∈ (0, 1).

We end by asking which distributions arise as a limit of a sequence of random
power towers: Given a random variable X, can we find an i.i.d. sequence Ai such that
X = E∞i=1Ai? If so, we will say that X has the tower property, and the distribution of
Ai is its inverse tower distribution. In Theorem 3.1 we prove that if U ∼ Unif[α, β] and
r ∈ R, then Ur has the tower property if and only if 1 ∈ [α, β] and r ∈ [0, 1

1+log β ].

As in the deterministic case, it is natural to think of random power towers as com-
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Figure 2: Limiting behavior of c, cc, cc
c

, . . . for c on either side of e−e ≈ 0.06

posing random maps x → (An)
x. Composition sequences of random maps has also

been studied extensively, for example, see the review by Diaconis and Freedman [8],
who showed a probabilistic analogue of the Banach fixed point theorem, which may be
applied in many diverse instances of random iterated functions. Stated informally, if fn
is a random i.i.d. sequence of functions from some metric space S to itself, and fn is “on
average” a contraction, then

f1, f1 ◦ f2, f1 ◦ f2 ◦ f3, . . .

almost surely converges to a constant function in the limit. This is a powerful result, but
it is fairly limited for our question. The best that this can give us is

Corollary 1.1 (Of Proposition 5.1 in [8]). If {An}n∈∞ is an i.i.d. sequence of random
variables on [0, e

1
e ] such that

E [log (max(− logA1, (A1)
e logA1))] < 0

then the infinite random power tower
∞
E
i=1

Ai converges almost surely.

Note that the expression in the expectation is simply the log of Lipschitz constant
of the map x→ (A1)

x on the interval [0, e]. The condition of the log Lipschitz constant
having negative expectation was called “super-contracting” by Steinsaltz [14], who also
studied infinite iterated function systems, and gave convergence results with weaker
assumptions than Diaconis and Freedman’s theorem. If we allow the base to exceed e

1
e ,

then their result is not much help, as x→ ax is not a Lipschitz map of any subinterval of
[0,∞) to itself. For bases close to 0, we have the difficulty that log | log a| becomes very
large, so one might expect the random power tower to have an oscillating limit if most of

its weight is near 0, similar to the behavior of aa
. .
.

when a < e−e.

There are in fact many distributions for A1 that will give rise to an almost-surely-
convergent power tower that do not satisfy the “contracting on average” condition, and
indeed that do not satisfy any condition based on Lipschitz constants.
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1.2 Notation

As mentioned above, we will be following Barrow’s power tower notation with
n

E
i=1

ci =

(c1)
(c2)

...cn

and
∞
E
i=1

ci = (c1)
(c2)

...

. We will also find it convenient to add to these

n

E
i=1

ci;x = (c1)
(c2)

...(cn)x

.

Similar to exponentiation, we define this notation to associate to the right, i.e.

E
i∈A

ai; E
j∈B

bj ; E
k∈C

ck = E
i∈A

ai;

(
E
j∈B

bj ;

(
E
k∈C

ck

))
Also, by analogy to defining the empty product as 1, we define the empty power tower

Eni=n+1 ci = 1.
For the sake of concision, we will want to define

c ? n =
n

E
i=1

c = cc
. .
.
c

︸ ︷︷ ︸
n times

This operation is commonly called “tetration” and is often denoted nc or c ↑↑ n, but we
find this notation easier to read and pronounce (“c star n”). We also define the iterated
logarithm function

log?(x) = inf{n ∈ N : e ? n ≥ x}

which is a right-inverse of n → e ? n, i.e. log?(e ? n) = n for n ∈ N. Additionally,
e ? log?(x) = bxc. Just as e ? n diverges to infinity extremely rapidly, so log?(x) diverges to
infinity extremely slowly. The iterated logarithm function is used in study of algorithms,
and this notation is fairly standard there [7].

Also, let W (z) be the principal branch of the Lambert-W function, defined to be the
inverse function of zez on C. As a real-valued function, W (z) has domain [− 1

e ,∞) and
range [−1,∞). See [6] for an in-depth introduction to this function.

Throughout, we will always have {An}n∈N representing an i.i.d. sequence on (0,∞),

and Tn =
n

E
i=1

Ai, and a = inf(supp(A1)) and b = sup(supp(A1)).

In this paper, any unqualified equations or inequalities involving random variables
may be taken either absolutely or almost surely, depending on whether the involved
random variables are surely between the endpoints of their support, or only almost
surely in that range.

1.3 The main theorem

The following theorem gives necessary and sufficient conditions for almost-sure
convergence of the random power tower Tn provided that the support of A1 is not an
unbounded subset of [1,∞):

Theorem 1.2. We have four different cases, depending on the values of a and b:

1. If [a, b] ⊆ [1, e1/e], then Tn converges almost surely.

2. If 1 ≤ a and b ∈ (e1/e,∞): Then Tn converges a.s. if

E
[
inf{n : An ≤ e

1
e?n }

]
<∞

and Tn diverges to infinity a.s. if

E
[
inf{n : An ≤ e

1
e?n }

]
=∞
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3. Let B : [0, 1]→ [0, 1] be defined by

B(x) =

x x ≥ e−e

exp

(
W
(

1
ln x

)
exp

(
− 1

W( 1
ln x )

))
x < e−e

If b ≤ 1 and a < B(b), then Tn converges almost surely. Conversely, if b < e−e and
a ≥ B(b), then Tn diverges by oscillation, with the even and odd subsequences
converging to distinct limits.

4. If a < 1 < b ≤ ∞, then Tn converges almost surely.

For the purposes of checking given a distribution for A1 whether Tn converges, the
following corollaries are easier to use (especially since we can do without the rather
technical condition of case 2):

Corollary 1.3 (Convergence conditions). If any of the following holds, then Tn converges
almost surely:

1. a = 0

2. b ∈ [e−e, e
1
e ]

3. a < 1 ≤ b
4. b < e−e and

a < exp

(
W

(
1

ln b

)
exp

(
− 1

W
(

1
ln b

)))
5. a = 1 and b is finite and

lim inf
t→1+

[
P (A1 ≤ t) log?

(
1

t− 1

)]
> 1

Corollary 1.4 (Divergence conditions). If any of the following holds, then Tn diverges
almost surely:

1. a > 1 and b > e
1
e

2. b < e−e and

a ≥ exp

(
W

(
1

ln b

)
exp

(
− 1

W
(

1
ln b

)))

3. a = 1 and b > e
1
e and

E [log?(
1

A1 − 1
)] <∞

4. a = 1 and b > e
1
e and

lim sup
t→1+

[
P (A1 ≤ t) log?

(
1

t− 1

)]
< 1

Surprisingly, unless a = 1, the particulars of the distribution of A1 are completely
irrelevant except for the bounds of its support. One can also see immediately that this
is a much more powerful result than the “contracting on average” condition from the
introduction; indeed Tn converges almost surely when a = 0 and b < e−e, but x→ (An)

x

is never a contraction.
Even when a = 1 and b ∈ (e1/e,∞), the only fact about A1 which matters is how much

the distribution of A1 is weighted on neighborhoods around 1. Interestingly, because

log?
(

1
t−1

)
goes to infinity so slowly as t approaches 1 from above, for any function
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f : [1,∞) → [1,∞) with f(1) = 1 that is Hölder continuous at 1 and bounded on [1, b],
convergence of Tn is implies convergence of E∞k=1 f(Ak).

There is no reason to expect that any “nice” distribution for A1 should correspond to
a nice distribution of T , but we do have the following fortuitous example:

Example 1.5. If Un and Vn are two independent i.i.d. sequences, uniformly distributed
on (0, 1), then the sequence Eni=1(UiVi) converges almost surely, and the limit E∞i=1(UiVi)

is uniform on (0, 1).

Almost sure convergence follows immediately from the first convergence condition of
Corollary 1.3, even though this distribution fails to be “contracting on average”.

Proof that its limit is uniform is slightly more involved: If U, V and W are all indepen-
dent uniformly distributed random variables on (0, 1), computation of the elementary

triple integral P ((UV )W ≤ x) shows that (UV )W
d
=W . As a result of this fact, we have

that E2n
i=1(UiVi);U2n+1 is uniformly distributed on (0, 1) for each n. We furthermore have

2n+1

E
i=1

(UiVi) ≤
2n

E
i=1

(UiVi);U2n+1 ≤
2n

E
i=1

(UiVi),

which follows from the fact that the leftmost quantity equals E2n
i=1(UiVi); (U2n+1V2n+1),

and E2n
i=1(UiVi);x is an increasing function of x. The leftmost and rightmost terms both

converge to the same limit, namely E∞i=1(UiVi), hence the middle term also converges
the same thing. Since the middle term is uniformly distributed on (0, 1) for each n, it
follows that its limit is as well.

2 Proof of Theorem 1.2

As we have seen, we cannot use contraction-type of results to prove Theorem 1.2.
However, exponential functions do have a different useful property: They are always
monotonic. The proof in all different cases relies heavily on this fact, but it works
differently when a ≥ 1 and when a < 1, because in the former case, x → (An)

x is
always nondecreasing, whereas in the latter case, it can be either nonincreasing or
nondecreasing depending on which side of 1 the base is on.

2.1 Cases 1 and 2 (a ≥ 1)

Importantly, a ≥ 1 implies that Tn is a non-decreasing sequence because

Tn+1 = A
A
. .
.
A

(An+1)
n

2
1 ≥ AA

. .
.
A1
n

2
1 = Tn

Our proof strategy for convergence in cases 1 and 2 involves putting an appropriate
upper bound on Tn to ensure convergence. For case 1, this is trivial:

Theorem 1.2 case 1. If [a, b] ⊆ [1, e1/e], then Tn converges almost surely.

Proof. This admits several trivial proofs. It is immediate consequence of Theorem 6
in Barrow [4] or of Corollary 1.1 from our introduction. Alternatively, we may prove
it directly: By the above, Tn is non-decreasing. It is bounded above by e, because for
x ∈ [1, e1/e] and y ≤ e, xy ≤ e. Therefore Tn converges.

Theorem 1.2 case 2. If 1 ≤ a and b ∈ (e1/e,∞): Then Tn converges a.s. if

E
[
inf{n : An ≤ e

1
e?n }

]
<∞

and Tn diverges to infinity a.s. if

E
[
inf{n : An ≤ e

1
e?n }

]
=∞
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Proof. The proof is in several steps. The basic idea here is that, any time a run
Ai, Ai+1, . . . , Aj are all far from 1, the partial power tower Ejk=iAk becomes very large,
but if Ai−1 is extremely close to 1, it will counteract the run of large terms and Ejk=i−1Ak
may still be close to 1. Thus if An is close enough to 1 often enough, we may have
convergence of Tn, but if not, we expect Tn to diverge to infinity.

The quantity E
[
inf{n : An ≤ e

1
e?n }

]
actually measures how frequently An is suffi-

ciently close to 1. Because e
1
e?n converges to 1 rapidly, we have P (An ≤ e

1
e?n ) goes to

0 as well (unless P (A1 = 1) > 0), and this expectation being finite means that these
probabilities do not go to 0 too rapidly. For our proof, we substitute this condition for
another, slightly easier to compute one, then show equivalence of the two at the end: We
start by showing that convergence of Tn is equivalent to convergence of

∞∑
k=1

k−1∏
j=1

P (Aj > b
1
b?j ). (2.1)

For convenience, we define pj = P (An > b
1
b?j ), which is well-defined because An are

identically distributed.

2.1.1 Summability of (2.1) implies Tn converges

Here, we use the convergence of (2.1) to construct a distributional upper bound for Tn.
For deterministic nondecreasing sequences, proving existence of an upper bound proves
convergence. We use the following lemma, which is a probabilistic analogue of this fact,
to prove convergence of Tn.

Lemma 2.1. Let {Xn}n∈N be an almost surely non-decreasing sequence of random
variables. Suppose that there exists an identically distributed (but not necessarily
independent) sequence of random variables {Yn}n∈N such that Xn ≤ Yn almost surely
for all n. Then lim

n→∞
Xn converges with a nonzero probability.

In the case of EYn < ∞, this result follows from Markov’s inequality. The general
version is a straightforward modification.

Notice that Tn’s convergence is a tail event (Theorem 1 in [4]), and therefore it
either has probability 1 or 0 by Kolmogorov’s 0-1 Law. Hence, it suffices to show that Tn
converges with nonzero probability. By Lemma 2.1, it suffices to construct a sequence of
random variables Bn, constant in distribution, such that Tn ≤ Bn. This construction will
be fairly involved:

Begin by defining a triangular array of random integer-valued random variables N`,n
for 0 ≤ ` ≤ n. We define N0,n to be i.i.d. and independent from {Ai}i∈Z, each having
distribution

P (N0,n = m) =

m−1∏
j=1

pj

∞∑
k=1

k−1∏
j=1

pj

.

This is a well-defined probability distribution by the assumption that
∞∑
k=1

k−1∏
j=1

pj <∞. For

` > 0, define N`,n recursively by

N`+1,n =

{
1 if An−` ≤ b

1
b?N`,n

1 +N`,n otherwise
.
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Note that N`,n becomes 1 when An−`+1 is close to 1, and otherwise increments by 1. In
this way, N`,n is (roughly speaking) a measure of the length of a run of “distant-from-1”
values of Ai starting with index i = n− `+ 1. The requisite closeness to 1 is determined
by how long the subsequent run of large values is.

We will ultimately use Bn = b ? Nn,n as our bound on Tn. First, we show that N`,n has
identical distribution for all ` ∈ {0, 1, . . . , n} by inducting on `. Suppose

P (N`,n = m) =

m−1∏
j=1

pj

∞∑
k=1

k−1∏
j=1

pj

for all m. This is true by definition for ` = 0. For ` > 0 and m = 1:

P (N`+1,n = 1) = P (An−` ≤ b
1

b?N`,n ) =

∞∑
k=1

P (N`,n = k)P (An−` ≤ b
1

b?N`,n | N`,n = k)

=

∞∑
k=1

P (N`,n = k)(1− pk) =
∞∑
k=1

k−1∏
j=1

pj

∞∑
k=1

k−1∏
j=1

pj

(1− pk) =
1

∞∑
k=1

k−1∏
j=1

pj

.

For ` > 0 and m > 1, we again have P (N`+1,n = m) =
∑∞
k=1 P (N`,n = k)P (N`+1,n =

m|N`,n = k). But in these cases, note that P (N`+1,n = m|N`,n = k) = 0 unless k = m− 1.
Hence we have

P (N`+1,n = m) = P (N`,n = m− 1)P (N`+1,n = m|N`,n = m− 1)

= P (N`,n = m− 1)pm−1 =

m−2∏
j=1

pj

∞∑
k=1

k−1∏
j=1

pj

(pm−1) =

m−1∏
j=1

pj

∞∑
k=1

k−1∏
j=1

pj

,

which completes the induction step.
To apply Lemma 2.1, it suffices to show that

Tn ≤ b ? Nn,n
because Nn,n all have the same distribution, and Tn is a nondecreasing sequence.
Then we conclude P (Tn converges) > 0, and Kolmogorov’s 0-1 law implies almost sure
convergence. Define Tn(`) by

Tn(`) =
n

E
k=n−`+1

Ak .

Then Tn(n) = Enk=1Ak = Tn. We can prove inductively (on `) that Tn(`) ≤ b ? N`,n. This is
trivial for ` = 0 because Tn(0) = 1. Then observe:

Tn(`+ 1) =
n

E
k=n−`

Ak = (An−`)
Enk=n−`+1 Ak = (An−`)

Tn(`) ≤ (An−`)
b?N`,n .

If An−` ≤ b
1

b?N`,n then by definition N`+1,n = 1 and thus Tn(` + 1) ≤ b = b ? N`+1,n.
Otherwise, we have N`+1,n = N`,n+1, but still An−` ≤ b, and hence Tn(`+1) ≤ bb?N`,n =

b ? N`+1,n. Thus we have for all `:

Tn(`) ≤ b ? N`,n,

and in particular Tn = Tn(n) is a nondecreasing sequence with b ? Nn,n as an upper
bound whose distribution is constant in n, and therefore Lemma 2.1 implies that Tn
converges almost surely.
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2.1.2 Convergence of Tn implies summability of (2.1)

This time we assume lim
n→∞

Tn converges, and use its limiting distribution to construct a

random variable Un on N whose distribution’s existence is tied to (2.1) in a similar way
to Nn,n from the other direction. The random variable Un will also measure runs of large
values of Ai, but in a different way. The construction hinges on the fact that b ? n→∞,
which follows from the assumption that b > e1/e. We also will find it convenient to extend
the i.i.d. sequence An to the non-positive integer indices. Using almost sure convergence
of Tn and the fact that (An)n∈Z is i.i.d., we have

Sn =
∞
E
k=0

An−k

is almost surely finite, satisfies Sn+1 = (An+1)
Sn , and is identically distributed. We

also observe that Sn’s distribution has unbounded support. Define Un = min{U ∈ N |
(b ? U)3 > Sn}. This is well-defined because b ? n is unbounded, also note that its
distribution is constant in n. We ultimately will use the distribution of U1 to put an

finite upper bound on
∞∑
k=1

k−1∏
j=1

pj . Choose K ∈ N such that b ? (K − 1) ≥ 3 and such

that P (U1 = K + 1) > 0. This exists because lim
k→∞

b ? k = ∞, and the support of U1’s

distribution is unbounded. In order to tie U1’s distribution to our desired sum, we will
need to define an auxiliary sequence of random integers (Ln)n≥0 recursively by L0 = 0

and

Ln+1 =


max

{
L ∈ {0, . . . ,K} | (b ? L)3 ≤ Sn+1

}
Ln < K

1 + Ln Ln ≥ K and An+1 > b
1

b?(Ln−1)

0 Ln ≥ K and An+1 ≤ b
1

b?(Ln−1)

We claim Ln ≤ Un for all n, which can be proven by inducting n. The base case is
trivial as L0 = 0 ≤ 1 ≤ U0. It is similarly trivial that Ln+1 ≤ Un+1 when Ln ≥ K and

An+1 ≤ b
1

b?(Ln−1) . If Ln < K, then

(b ? Ln+1)
3 ≤ Sn+1 < (b ? Un+1)

3

from the definitions, which implies Ln+1 ≤ Un+1. In the remaining case, i.e. when

Ln ≥ K and An+1 > b
1

b?(Ln−1) , we claim that Un+1 ≥ Un + 1. The inductive hypothesis

Ln ≤ Un implies that in this case, Un ≥ K and An+1 > b
1

b?(Un−1) , whence we can compute

Sn ≥ (b ? (Un − 1))3

=⇒ Sn+1 = (An+1)
Sn ≥ (An+1)

(b?(Un−1))3

=⇒ Sn+1 > b
(b?(Un−1))3

b?(Un−1)

=⇒ Sn+1 >
(
bb?(Un−1)

)b?(Un−1)
=⇒ Sn+1 > (b ? Un)

b?(Un−1) ≥ (b ? Un)
b?(K−1)

=⇒ Sn+1 > (b ? Un)
3

This implies that Un+1 ≥ Un + 1 by the definition of Un. Therefore, if Un ≥ Ln and

Ln ≥ K and An+1 > b
1

b?(Ln−1) , we can conclude Un+1 ≥ Un + 1 and hence

Un+1 ≥ Un + 1 ≥ Ln + 1 = Ln+1

in this case. Therefore we have by induction that Ln ≤ Un for all n.
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The distribution of Ln will be somewhat similar to that of N`,n from the first part of
the proof. Observe that for m ∈ N we have P (Ln = K +m | Ln−1 = j) = 0 except when
j = K +m− 1. Hence

P (Ln = K +m) =

∞∑
j=0

P (Ln−1 = j)P (Ln = K +m | Ln−1 = j)

= P (Ln−1 = K +m− 1)P (Ln = K +m | Ln−1 = K +m− 1)

= P (Ln−1 = K +m− 1)P
(
An > b

1
b?(K+m−1−1)

)
= P (Ln−1 = K +m− 1)pK+m−2.

By repeatedly applying this fact, we obtain P (Ln = K +m) = P (Ln−m = K)
K+m−2∏
j=K−1

pj

and therefore

P (Ln ≥ K) ≥ P (Ln ∈ [K,K + n]) =

n∑
m=0

P (Ln−m = K)

K+m−2∏
j=K−1

pj

Observe that Ln = K is equivalent to (b ? K)3 ≤ Sn < (b ? (K + 1))3, which in turn is
equivalent to Un = K + 1. Therefore, using the fact that Un is constant in distribution
and Un ≥ Ln,

P (U1 ≥ K) = P (Un ≥ K) ≥ P (Ln ≥ K) ≥
n∑

m=0

P (Ln−m = K)

K+m−2∏
j=K−1

pj

=

n∑
m=0

P (Un−m = K + 1)

K+m−2∏
j=K−1

pj = P (U1 = K + 1)

n∑
m=0

K+m−2∏
j=K−1

pj

and thus
n∑

m=0

K+m−2∏
j=K−1

pj ≤
P (U1 ≥ K)

P (U1 = K + 1)
<∞

for all n and hence
∞∑
m=0

K+m−2∏
j=K−1

pj ≤
P (U1 ≥ K)

P (U1 = K + 1)
<∞

Convergence of this series is equivalent to convergence of the series from (2.1).

2.1.3 Equivalence of finiteness of (2.1) and E
[
inf{n : An ≤ e

1
e?n }

]
We start by observing that for any c > 1

E
[
inf{n : An ≤ c

1
c?n }

]
=

∞∑
k=1

k−1∏
j=1

P (A1 > c
1
c?j )

For c = b this is simply the summation in equation (2.1). Therefore it suffices to prove

that E
[
inf{n : An ≤ b

1
b?n }

]
is infinite if and only if E

[
inf{n : An ≤ e

1
e?n }

]
is. Of course,

this would follow if, for some fixed k ∈ N depending only on b,

P (A1 > b
1

b?(j+k) ) ≤ P (A1 > e
1
e?j ) ≤ P (A1 > b

1
b?(j−k) ) (2.2)

for all j ∈ N. To show this, we apply this lemma on the growth rate of power towers:
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Lemma 2.2. Suppose sn, tn are two sequences on (e
1
e ,∞) and u, c ∈ (e1/e,∞) such that

sn ≤ u ? n and tn ≤ u ? n
sn ≥ c and tn ≥ c.

Let Tn = t
t
. .
.
t1

n−1
n and Sn = s.

. .
s1

n . Then, for each λ ∈ (0,∞) there exists a constant k ∈ N
such that

Sn−k ≤ λTn ≤ Sn+k

for all n > k.

When b > e1/e, we can take sn ≡ b, tn ≡ e, and λ = 1
ln b and conclude that there exists

k ∈ N such that

e
1

e?(n+k) ≤ b 1
b?n ≤ e

1
e?(n−k) ,

from which (2.2) follows immediately. This completes the proof of Theorem 1.2 case
2.

Proof of Lemma 2.2. We first show the result for tn = u and Tn = u ? n: Pick τ > 1.
Observe that

lim
j→∞

u ? j = lim
j→∞

(u ? j)1−
1
τ

u ? (j − 1)
=∞.

Therefore we can choose kτ ∈ N large enough such that

u ? (j + 1) > sτ1 and
(u ? j)1−

1
τ

u ? (j − 1)
> τ

for all j ≥ kτ .
We will show inductively that

u ? n > Sτn−kτ (2.3)

for all n > kτ . We already have assumed the base case, i.e. n = kτ + 1. Suppose that
(2.3) holds for some n > kτ . Then we make a lengthy computation:

(u ? n)1−
1
τ

u ? (n− 1)
> τ

(u ? n)1−
1
τ

u ? (n− kτ )
> τ

u ? n

u ? (n− kτ )
> τ (u ? n)

1
τ

u ? n > τ (u ? n)
1
τ (u ? (n− kτ ))

u ? n > τ(u ? (n− kτ ))Sn−kτ

uu?n > uτ(u?(n−kτ ))Sn−kτ =

((
uu?(n−kτ )

)Sn−kτ
)τ

u ? (n+ 1) >
(
(u ? (n+ 1− kτ ))Sn−kτ

)τ
u ? (n+ 1) >

(
(sn+1−kτ )

Sn−kτ
)τ

= (Sn+1−kτ )
τ .

Thus, by induction, we have u ? n > Sτn−kτ for all n > kτ .

For the other inequality, pick β < min{ ln clnu , 1}, then chose kβ ∈ N large enough so
that

1 = u ? 0 < βSkβ
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and
− lnβ

ln c− (lnu)β
< Skβ .

Then we show inductively that
u ? n < βSn+kβ (2.4)

for all n. We have the base case (n = 0) already. Note that the second inequality implies

(lnu)βSn+kβ < lnβ + (ln c)Sn+kβ

for all n ≥ 0. Assuming u ? n < βSn+kβ , this implies

(lnu)(u ? n) < lnβ + (ln c)Sn+kβ

u ? (n+ 1) < βcSn+kβ

u ? (n+ 1) < β(sn+kβ+1)
Sn+kβ

u ? (n+ 1) < βSn+kβ+1,

thus we have that (2.4) holds for all n ≥ 0.
It is apparent that lim

n→∞
u?(n+1)
u?n =∞, hence there exists kλ such that

u ? (n− 1) ≤ λ(u ? n) ≤ u ? (n+ 1)

for all n ≥ kλ. Therefore, if we take k = 1 +max{kλ, kτ , kβ}, we will have, for any n ≥ k
that

Sn−k ≤ Sn−1−kτ < Sτn−1−kτ < u ? (n− 1)

≤ λ(u ? n) ≤ u ? (n+ 1) < βSn+1+kτ < Sn+1+kτ ≤ Sn+k,

as desired.
Now to prove the general case. Suppose sn and tn are two sequences satisfying the

theorem’s bounds. As we have shown, there exist k1, k2 ∈ N such that

Tn−k1 < u ? n < Tn+k1 and Sn−k2 < u ? n < Sn+k2

for all n > max(k1, k2). Thus we have

Sn−k2−k1 < u ? (n− k1) < Tn < u ? (n− k2) < Sn+k1+k2 ,

so choosing k = k1 + k2 we obtain the desired result.

2.2 Cases 3 and 4 (a < 1)

Because a < 1, Tn is not a monotonic sequence. A different approach is needed. Our
proofs hinge on the following theorem.

Theorem 2.3. Let fi : [a, b] → [a, b] be a sequence of i.i.d. randomly distributed non-
decreasing functions, where [a, b] is a closed interval in the extended real line R∪ {±∞}.
Furthermore, assume that P (f0(a) ≥ f1(b)) > 0. We define Fn : [a, b]→ [a, b] by

Fn(x) = (f0 ◦ f1 ◦ · · · ◦ fn)(x).

Then Fn(x) almost surely converges, and its limit is independent of x.

Unlike the bulk of previous work on iterated random functions, this theorem makes
no continuity assumptions. Furthermore, unlike Lemma 2.1 and the “contracting on
average” results in Diaconis and Freedman, this theorem has no obvious non-probabilistic
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analogue. It does bring to mind the fact that any non-decreasing function mapping a
closed interval to itself must have a fixed point (a consequence of Tarski’s lattice-
theoretical fixed point theorem [15]), but Tarski’s theorem has no implications about
the dynamics of such a function. Indeed, the iterates of a non-decreasing function of a
closed interval need not converge to a fixed point in general.

Proof. Without loss of generality, we suppose [a, b] is finite (in the other case, we can use
a bounded increasing function to convert [a, b] to a finite interval). Observe that Fn(a)
must form a non-decreasing sequence because fn(a) ≥ a, and similarly, Fn(b) forms a
non-increasing sequence, hence both of these converge almost surely. Call F∞(a) and
F∞(b) their respective limits. Let fω and fω+1 be i.i.d. with the same distribution as
the fi’s but independent of that sequence. We let Xn = Fn(fω(a)) and Yn = Fn(fω+1(b)).

Note that Xn
d
= Fn+1(a) and Yn

d
= Fn+1(b). We thus have Xn

d→ F∞(a) and Yn
d→ F∞(b).

We furthermore have convergence in probability: Xn ≥ Fn(a), hence Xn−Fn(a) ≥ 0, and

by boundedness of [a, b], we also have E(Xn − F∞(a))→ 0, which implies Xn
P→ F∞(a).

Similarly Yn
P→ F∞(b).

Since Fn is always nondecreasing, we have

P (Yn ≤ Xn) = P
[
Fn(fω+1(b)) ≤ Fn(fω(a))

]
≥ P (fω+1(b) ≤ fω(a)) > 0.

Hence we have a constant, nonzero lower bound on P (Yn ≤ Xn). By convergence in
probability of Xn and Yn to F∞(a) and F∞(b), respectively, we can conclude the same
inequality for their limits

P (F∞(b) ≤ F∞(a)) ≥ P (fω+1(b) ≤ fω(a)) > 0.

It is clear from the definition that F∞(b) ≥ F∞(a) almost surely, so this implies that there
is a nonzero probability F∞(b) = F∞(a). By monotonicity of Fn for each n, F∞(b) = F∞(a)

is equivalent to Fn converging uniformly to a constant function. Thus, we have a nonzero
probability of Fn converging to a constant function. Since convergence of Fn to a
constant function is a tail event, this implies that the convergence is almost sure since
its probability is nonzero.

We will apply Theorem 2.3 to both cases 3 and 4 of Theorem 1.2.

Theorem 1.2 case 3. Let B : [0, 1]→ [0, 1] be defined by

B(x) =

x x ≥ e−e

exp

(
W
(

1
ln x

)
exp

(
− 1

W( 1
ln x )

))
x < e−e

.

If b ≤ 1 and a < B(b), then Tn converges almost surely. Conversely, if b < e−e and
a ≥ B(b), then Tn diverges by oscillation, with the even an odd subsequences converging
to distinct limits.

Proof. We will show that, when a < B(b), the functions x → E
2k(n+1)
i=2kn+1Ai;x satisfy the

conditions of Theorem 2.3 for some k. When a ≥ B(b), we will show that there is almost
surely a non-zero lower bound on the difference between T2n and T2n+1.

Before diving into the proof, we note that for c ∈ [0, 1] function x → cx is a non-
increasing function from [0, 1] to itself, so we can restrict all our attention to this interval
as Tn will always be in that interval, and furthermore either Tn converges in the limit,
or it diverges by oscillation. We also have that T2n is a non-increasing sequence, and
T2n+1 is a non-decreasing sequence, which follows from the fact that composing two
exponential maps with base less than 1 forms a non-decreasing function. We furthermore
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observe that Enk=1 ck is nondecreasing in its even terms and nonincreasing in its odd
terms.

Now, define the alternating power tower function ATn(x, y) recursively by AT0(x, y) = 1

and
ATn(x, y) = xATn−1(y,x),

so called because it makes a power tower that alternates between x and y, e.g.

AT5(x, y) = xy
xy
x

.

These have the monotonicity properties that for each n, ATn(x, y) is increasing in x and
decreasing in y. Furthermore, for fixed x, y, we have that AT2n−1(x, y) is an increasing
sequence and AT2n(x, y) is a decreasing sequence, so we can also define the functions

ATeven(x, y) = lim
n→∞

AT2n(x, y)

ATodd(x, y) = lim
n→∞

AT2n−1(x, y)

which obey the relations

ATeven(x, y) = xATodd(y,x) ATodd(x, y) = xATeven(y,x)

and furthermore, both are fixed points of the map t → xy
t

. In fact, ATeven(x, y) is the
largest such fixed point, and ATodd(x, y) is the smallest. Baker and Rippon [2] have shown
that there exists a function B(x) such that, for y ≤ x, ATeven(x, y) = ATodd(x, y) if and only
if 0 < y ≤ B(x). Here, we have found its closed form in terms of the Lambert W-function.

This case of Theorem 1.2 follows immediately from these two lemmas:

Lemma 2.4. If 0 ≤ a < b ≤ 1 and there exists k ∈ N such that AT2k−1(b, a) > AT2k(a, b),
then Tn converges almost surely. Conversely, if AT2k−1(b, a) ≤ AT2k(a, b) for all k, then Tn
almost surely diverges by oscillation.

Lemma 2.5. If 0 ≤ a < B(b), then AT2k−1(b, a) > AT2k(a, b) for some k ∈ N. Conversely, if
B(b) ≤ a ≤ b, then AT2k−1(b, a) ≤ AT2k(a, b) for all k ∈ N.

Proof of Lemma 2.4. Suppose AT2k−1(b, a) > AT2k(a, b). Then define fn : [0, 1]→ [0, 1] by

fn(x) =
2(n+1)k

E
i=2nk+1

Ai;x.

We note that (fn)n∈N is a random i.i.d. sequence of increasing functions on a closed
interval, so we will attempt to apply Theorem 2.3. By continuity, we have that for some
ε > 0 sufficiently small, AT2k−1(b− ε, a+ ε) > AT2k(a+ ε, b− ε). Also by assumption, we
have P (Ai ∈ [a, a+ ε]) and P (Ai ∈ [b− ε, b]) are positive for all i, hence

P (f0(0) ≥ f1(1)) = P

(
2k

E
i=1

Ai; 0 ≥
4k

E
i=2k+1

Ai; 1

)
= P

(
2k−1
E
i=1

Ai ≥
4k

E
i=2k+1

Ai

)

≥ P

(
2k−1
E
i=1

Ai > AT2k−1(b− ε, a+ ε) and
4k

E
i=2k+1

Ai < AT2k(a+ ε, b− ε))

)
> 0.

Thus we can apply the result of Theorem 2.3 to obtain

lim
n→∞

f1 ◦ f2 ◦ · · · ◦ fn(0) = lim
n→∞

f1 ◦ f2 ◦ · · · ◦ fn(1)

lim
n→∞

2nk

E
i=1

Ai; 0 = lim
n→∞

2nk

E
i=1

Ai; 1

lim
n→∞

T2kn−1 = lim
n→∞

T2kn.
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To complete the proof, we use the fact that both the even- and odd-indexed power towers
converge. We conclude

lim
n→∞

T2n−1 = lim
n→∞

T2kn−1 = lim
n→∞

T2kn = lim
n→∞

T2n,

hence Tn converges, as desired.
Conversely, we suppose AT2k−1(b, a) ≤ AT2k(a, b) for all k, which implies ATodd(b, a) ≤

ATeven(a, b). Let c ∈ (a, b] such that P (A1 ≥ c) > 0. Therefore, we have the following with
nonzero probability:

T2k − T2k−1 = (A1)
E2k

i=2 Ai −
2k−1
E
i=1

Ai ≥ (A1)
AT2k−1(b,a) − AT2k−1(b, a)

≥ (A1)
ATodd(b,a) − ATodd(b, a) ≥ cATodd(b,a) − ATodd(b, a)

> aATodd(b,a) − ATodd(b, a) = ATeven(a, b)− ATodd(b, a) ≥ 0

hence we have a nonzero probability that lim
n→∞

Tn does not converge, since there is a

nonzero probability that the limit of T2k is strictly greater than the limit of T2k−1. Since
convergence is a tail event, Kolmogorov’s 0-1 law implies that lim

n→∞
Tn converges with

probability 0, proving the lemma.

Proof of Lemma 2.5. Baker and Rippon [2] have proven that lim
n→∞

ATn(a, b) converges if

and only if φa,b(x) = ab
x

has exactly one fixed point c such that |φ′a,b(c)| ≤ 1. Furthermore,
they showed for each b, there exists a constant a1 such that this happens for all a ≤ a1
and for no a ∈ (a1, b). Furthermore, φa1,b(x) has a fixed point c such that φ′a1,b(c) = 1.

If ATn(a, b) converges, by monotonicity and the fact that a 6= b, this implies

lim
n→∞

ATn(b, a) > lim
n→∞

ATn(a, b),

and in particular that AT2n−1(b, a) > AT2n(a, b) for some n. Conversely, if lim
n→∞

ATn(a, b)

does not converge, we must have a ∈ (a1, b), and by continuity of ab
x

in all variables
and its monotonicity properties, we must have that ATeven(a, b) is larger than the fixed
point of x → bx for all a ∈ (a1, b). This implies that ATeven(a, b)

1/ATeven(a,b) ≥ b, and
thus ATeven(a, b) ≥ bATeven(a,b) = ATodd(b, a). Hence, for all n, we must have AT2n(a, b) ≥
AT2n−1(b, a).

Therefore it suffices to show that φa,b(c) = c and |φ′a,b(c)| ≤ 1 has exactly one solution
if and only if 0 ≤ a < B(b). Baker and Rippon also proved that for each b ≥ e−e, this
holds for all a ∈ [0, b], and for each b < e−e, there exists a constant a1 ∈ (0, b) such that
this holds for a < a1 and fails for a ∈ [a1, b]. Furthermore, they proved that there is a
fixed point c of φa1,b such that φ′a1,b(c) = (log a1)(log b)b

cab
c

1 = 1. Therefore, it suffices to
prove that a = B(b) is the only number in (0, b) that solves the system

ab
c

= c

(log a)(log b)bcab
c

= 1.

Solving this system is not obviously possible in any kind of closed form. Using the
Lambert W -function, it becomes straightforward. Start by rearranging the second
equation to

log(ab
c

)ab
c

=
1

log b

log(c)c =
1

log b

log c = W

(
1

log b

)
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where this can be either of the two real branches of the W function. Using the fact that
exp(W (x)) = x

W (x) for any branch of the W function, this gives us c = 1

(log b)W( 1
log b )

, and

thus bc = exp

(
1

W( 1
log b )

)
. Thus, the requirement a = cb

−c
gives us the desired form for

a = B(b), and the requirement that a ≤ b implies that we must take the principle branch
of the W -function.

We can do a similar technique, using Theorem 2.3, to solve the case of a < 1 < b.

Theorem 1.2 case 4. If a < 1 < b ≤ ∞, then Tn converges almost surely.

Proof. We obviously have P (An < 1) > 0, therefore we have a.s. that An < 1 infinitely
often. Let (ni)i≥0 be the set of indices where An < 1 (note that ni is an increasing
sequence of random variables, and also ni+1 − ni is i.i.d.). Define

fi(t) =
n2i+2−1
E

k=n2i

Ak; (t).

By letting fi(∞) = lim
t→∞

fi(t), we can consider this as a function from [0,∞] to [0,∞]

and apply Theorem 2.3. (The limit is well defined because the limit of a monotonic
function on [0,∞) either converges or diverges to infinity.) To show that this theorem is
applicable, we must show that fi(t) are increasing in t, i.i.d., and P (f0(0) ≥ f1(∞)) > 0.

Firstly, fi is increasing because {An2i
, . . . , An2i+2−1} contains exactly two elements

less than one. Secondly, fi are i.i.d. because the three sequences (Ani)i≥1, {An | An ≥
1}, and (ni)i≥1 are independent and each individually is i.i.d. Thirdly, we must show
P (f0(0) ≥ f1(∞)) > 0. Observe that

f0(0) =
n2i+2−1
E

k=n2i

Ak; 0 =
n2i+2−2
E

k=n2i

Ak

and

f1(∞) = lim
t→∞

f1(t) = lim
t→∞

n2i+2−1
E

k=n2i

An; (t) = lim
x→∞

n2i+1

E
k=n2i

Ak;x =
n2i+1−2
E

k=n2i

Ak .

Next, choose c ∈ [a, 1) such that both P (An ∈ [c, 1)) and P (An ∈ [a, c]) are nonnegative.
This exists by the definition of a. Thus the event that A1 ∈ [c, 1) and A2, A3 ∈ [a, c] and
A4 > 1 has nonzero probability. In this event, we have ni = i + 1 for i ≤ 2 and n3 > 4,
and the following inequalities:

f0(0) =
n2−1
E

k=n0

Ak =
2

E
k=1

Ak = (A1)
A2 ≥ cA2 ≥ cc

f1(∞) =
n3−1
E

k=n2

Ak = (A3)
En3−1

k=4 Ak ≤ A3 ≤ c.

Because cc ≥ c, we therefore conclude that

P (f0(0) ≥ f1(∞)) ≥ P (f0(0) ≥ cc and f1(∞) ≤ c)
≥ P (A1 ∈ [c, 1) and A2, A3 ∈ [a, c] and A4 > 1) > 0.

Therefore we can apply Theorem 2.3 to

Fi(x) = f0 ◦ f1 ◦ · · · ◦ fi(x) =
n2i+2−1
E

k=n0

Ak;x

and find that lim
i→∞

Fi(x) converges almost surely to a limit that does not depend on x.

In particular, lim
i→∞

Fi(0) = lim
i→∞

Fi(∞). From the definition, we note that fi(t) is always
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a number less than 1 to a nonnegative power, hence it is bounded above by 1, and
therefore lim

i→∞
Fi(x) is finite. To complete the proof, we note what this means for Tn. Let

i(n) = max{i | n2i+2 − 1 ≤ n}. Then

Tn =
n

E
k=1

Ak =
n0−1
E
k=1

Ak;
n2i(n)+2−1

E
k=n0

Ak;
n

E
k=n2i(n)+2

Ak =
n0−1
E
k=1

Ak;

(
Fi(n)

(
n

E
k=n2i(n)+2

Ak

))
,

which implies
n0−1
E
k=1

Ak;
(
Fi(n) (0)

)
≤ Tn ≤

n0−1
E
k=1

Ak;
(
Fi(n) (∞)

)
.

The upper and lower bounds almost surely converge to the same finite value, and hence
Tn converges almost surely.

2.3 Proof of corollaries

The corollaries follow trivially from Theorem 1.2 except in the cases where b > e
1
e

and a ≥ 1, where we have the claim that Tn diverges if a > 1, if E
[
log?( 1

A1−1 )
]
<∞, or if

lim inf
t→1+

[
P (A1 ≤ t) log?

(
1
t−1

)]
> 1, and Tn converges if lim sup

t→1+

[
P (A1 ≤ t) log?

(
1
t−1

)]
< 1.

Note that a > 1 implies E
[
log?( 1

A1−1 )
]
< log?( 1

a−1 ) < ∞. Also, observe that for any

non-increasing function f : [1,∞)→ [0,∞) and any random variable X supported on a
subset of [1,∞) with Ef(X) <∞, we have

0 ≤ lim sup
t→1+

[f(t)P (X ≤ t)] = lim sup
t→1+

[
f(t)

∫ ∞
1

1[1,t](x)dPX(x)

]
= 0,

using the dominated convergence theorem in the last step, which is applicable because
f(t)1[1,t](x) ≤ f(x) for all x, and f(x) is integrable with respect to dPX . Therefore

E
[
log?( 1

A1−1 )
]
<∞ implies lim sup

t→1+

[
P (A1 ≤ t) log?

(
1
t−1

)]
= 0 < 1, so we conclude that

it suffices to prove

Lemma 2.6.

lim inf
t→1+

[
P (A1 ≤ t) log?

(
1

t− 1

)]
> 1 =⇒ E

[
inf{n : An ≤ e

1
e?n }

]
<∞

and

lim sup
t→1+

[
P (A1 ≤ t) log?

(
1

t− 1

)]
< 1 =⇒ E

[
inf{n : An ≤ e

1
e?n }

]
=∞.

Proof. Note that

E
[
inf{n : An ≤ e

1
e?n }

]
=

∞∑
n=1

n−1∏
j=1

P (A1 > e
1
e?j ) =

∞∑
n=1

n−1∏
j=1

(
1− P (A1 ≤ e

1
e?j )

)
.

In this form, it is clear that having information on the asymptotic behavior of P (A1 ≤ t)
as t goes to 1 from above should give us information about the convergence of this sum.

First, consider the case of P (A1 = 1) > 0, which implies lim
t→1+

[
P (A1≤ t) log?

(
1
t−1

)]
=

∞ > 1 because lim
t→1+

log?
(

1
t−1

)
= ∞, and also P (A1 = 1) > 0 implies E(inf{n : An ≤

e
1
e?n }) ≤ E(inf{n : An = 1}) <∞. Hence, we may proceed assuming that P (A1 = 1) = 0.

Before proving either claim under this assumption, we want to replace log?( 1
A1−1 )

with a new variable X = log?( 1
logA1

) as this will be easier to work with. To do this,
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we start by noting that
∣∣∣ 1
log x −

1
x−1

∣∣∣ < 1 on (1,∞), which may be shown by elementary

calculus. We also know that for integers n 6= m, |e ? n− e ? m| > 1, which implies that if
|x− y| < 1 then |log?(x)− log?(y)| ≤ 1. Therefore

lim inf
t→1+

[
P (A1 ≤ t) log?

(
1

t− 1

)]
= lim inf

t→1+

[
P (A1 ≤ t) log?

(
1

log t

)]
,

and similarly the corresponding limsups are equal.

Suppose that lim inft→1+

[
P (A1 ≤ t) log?

(
1

log t

)]
> 1. Then, there exist constants

c > 1 and N ∈ N such that j ≥ N implies

P (A1 ≤ e
1
e?j ) ≥ c

log?
(
1/ log(e

1
e?j )

) =
c

j
.

Thus, for n > N , we have

n−1∏
j=N

(
1− P (A1 ≤ e

1
e?j )

)
≤

n−1∏
j=N

(
1− c

j

)
= exp

n−1∑
j=N

log

(
1− c

j

) ≤ exp

− n−1∑
j=N

c

j


≤ exp (−c log n+ c logN) =

exp(c logN)

nc

Since
∑
n

1
nc < ∞, we conclude that

∑∞
n=1

∏n−1
j=1

(
1− P (A1 ≤ e

1
e?j )

)
< ∞, as desired.

Similarly, if lim supt→1+

[
P (A1 ≤ t) log?

(
1

log t

)]
< 1, the summands go to 0 slower than

1
nc for some c ∈ (0, 1), hence the series diverges in that case.

3 The inverse question

It is natural to ask, which distributions can be represented as power towers of an
i.i.d. sequence? More precisely, given a random variable T , does there exist an i.i.d.

sequence {Ai}i∈N such that T
d
= (A1)

(A2)
(A3)

. .
.

? If the answer is yes, we will say T has a
tower distribution, and the distribution of Ai we will call its inverse tower distribution.
We will not answer this question in full generality, but Theorem 3.1 gives the answer in
the case that T = Ur for a uniform distribution U and fixed r ∈ R \ {0}.
Theorem 3.1. Let U ∼ Unif[α, β] for some 0 ≤ α < β. Then Ur has a tower distribution
if and only if 1 ∈ [α, β] and r ∈ [0, 1

1+log β ]. When these conditions hold and r 6= 0, the
inverse tower distribution has distribution function given by

F (x) =



x
βr

r

β (1− βr log x)− α
β + α

βF
(
x
βr

αr

)
x ∈ [αr/β

r

, βr/β
r

) \ {1}

0 x < αr/β
r

1 x ≥ βr/βr

1−α
β−α x = 1

where we interpret α
βF (x

βr

αr ) as 0 when α = 0.

This result suggests that the inverse question may be quite difficult for an arbitrary
T , as it is not clear exactly what “goes wrong” when the conditions are not met. In the
case of α = 0 and β = 1, this F has a relatively simple form, and we get an interesting
generalization of Example 1.5:

Example 3.2. If U ∼ Unif(0, 1) then
T = Ur
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has a tower distribution if and only if r ∈ [0, 1]. When r ∈ (0, 1): Let V1, V2, V3 be
independent and uniform on (0, 1). Then

A = max(V
r

1−r
1 , V2V3)

has the inverse tower distribution of T .

In our proof of Theorem 3.1, we will use the following lemmas, each of which may be
useful on its own for checking whether a distribution is a tower distribution:

Lemma 3.3. Suppose X,Y are independent with almost sure bounds X ∈ [0, e] and

Y ∈ [0, e
1
e ]. If X

d
= Y X , then Y has a tower distribution, and its inverse tower distribution

is X.

Proof. Let Xi be an i.i.d. sequence with terms having the same distribution as X, but
independent of it. By the second condition of Corollary 1.3, the power tower formed
T = E∞i=1Xi converges almost surely. This allows us to apply Letac’s principle [13],
which says that if (fi)i∈N is an i.i.d. sequence of random continuous functions on some
space E and lim

n→∞
f1 ◦ f2 ◦ · · · ◦ fn(x) almost surely converges to a constant function on

E, then the distribution of its limit is the unique distribution stationary under iteration
by an independent copy of fi. In this case, taking E = [0, e] and fi(x) = Xx

i , we have
that lim

n→∞
f1 ◦ f2 ◦ · · · ◦ fn(x) converges to T , which is independent of x, and thus the

distribution of T is the unique one such that XT d
= T , hence T

d
= Y , so the distribution

of X is the inverse tower distribution of Y .

Lemma 3.4. Suppose that X,Y are independent, nonnegative, bounded random vari-

ables such that X
d
= Y X . Let a = inf(suppX) and b = sup(supp(X)).

If b <∞, and (a, b) 6= (0, 1), then

inf(supp(Y )) = max(a
1
a , a

1
b )

and
sup(supp(Y )) = min(b

1
a , b

1
b ).

If a = 0 and b = 1, then inf(supp(X)) = 0 and sup(supp(Y )) ≤ 1. If a = 0 and b 6= 1, we
treat the quantities a

1
a and b

1
a as being the limit as a approaches 0 from above.

Proof. Start by assuming (a, b) 6= (0, 1). Choose ε ∈ (0, b). Then note that P (X ≤ a+ ε)

and P (X ≥ b− ε) are both nonnegative. Thus, we observe:

0 = P (X < a) = P (Y X < a)

≥ P (Y < a1/X |X ≤ a+ ε)P (X ≤ a+ ε) + P (Y < a1/X |X ≥ b− ε)P (X ≥ b− ε)

≥ P
(
Y < min(a

1
a , a

1
a+ε )

)
P (X ≤ a+ ε) + P

(
Y < min(a

1
b , a

1
b−ε )

)
P (X ≥ b− ε)

thus P (Y < min(a
1
b , a

1
b−ε )) = P (Y < min(a

1
a , a

1
a+ε )) = 0. We also have

P (Y < max((a+ ε)
1
a , (a+ ε)

1
b )) = P (Y X < max((a+ ε)

X
a , (a+ ε)

X
b ))

≥ P (Y X < a+ ε) = P (X < a+ ε) > 0.

Therefore

max
(
min(a

1
b , a

1
b−ε ),min(a

1
a , a

1
a+ε )

)
≤ inf(supp(Y )) ≤ max((a+ ε)

1
a , (a+ ε)

1
b )

Letting ε go to 0 we obtain the desired result for inf(supp(Y )). The proof for the
supremum is similar.
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If a = 0 and b = 1, we have inf(supp(Y )) = 0 by similar reasoning to the above. We
must have sup(supp(Y )) ≤ 1 because

1 = P (X ≤ 1) = P (Y X ≤ 1) = P (Y ≤ 1)

but nothing else can be said about sup(supp(Y )). For example, if Y ∼ Unif(0, b) for
b ∈ (0, 1) and we define X to be a power tower of i.i.d. copies of Y (which converges by
Theorem 1.2), we have supp(X) = (0, 1).

An interesting consequence of Lemma 3.4 is that a
1
a ≤ b 1

b and aa ≤ bb are necessary
conditions for X having a tower distribution. These are not guaranteed by a ≤ b. For

instance, if X has support [ 15 ,
1
2 ], then there can be no Y such that Y X

d
= X because

( 15 )
1
5 > ( 12 )

1
2 . Another consequence is that if X is bounded, then Y is bounded by e

1
e ,

which is the maximum of x
1
x for x ∈ R+.

Proof of Theorem 3.1: Let T = Ur. We observe that P (T ≤ x) = x
1
r−α
β−α for x ∈ (αr, βr)

and hence the probability density function of T has the form

pT (x) =

{
Cxp−1 x ∈ (a, b)

0 else
(3.1)

with p = 1
r , a = αr and b = βr (or the other way around, if r < 0), and C chosen such that

the total integral is 1. Thus, it suffices to show that a random variable T with a density
function of the form given in (3.1) has a tower distribution if and only if 1 ∈ [a, b] and
1
p ∈ [0, 1

1+p log b ], which is equivalent to b < e and p ≥ 1
1−log b . In that case, we claim

F (x) =


xbp

bp (1− b log x)− ap

bp + ap

bp F (x
b
a ) x ∈ [a

1
b , b

1
b ) \ {1}

0 x < a
1
b

1 x ≥ b 1
b

1−ap
bp−ap x = 1

is the inverse tower distribution function of T . By Lemma 3.3, it suffices to show that if

A is a random variable, independent of T , with distribution function F , then AT
d
= T .

First, we show that if b > e, then T does not have the tower property: By Lemma 3.4,

if b ∈ (e,∞) and AT
d
= T , then sup(supp(A)) = b

1
b ≤ e

1
e , which by Theorem 1.2 implies

that the infinite power tower formed by an i.i.d. sequence of copies of A converges, but
we can also see that the limit of this sequence is bounded above by e, so its distribution
cannot be T . For the case of b =∞, in order for the power tower of Ai’s to converge to
T , we would need sup(supp(Ai)) > e

1
e . If c > e

1
e and P (Ai > c) > 0, we have E(T ε) =∞

for all ε > 0 because

E(T ε) ≥ sup
k∈N

((c ? k)εP (T > c ? k)) ≥ sup
k∈N

((c ? k)εP (Ai > c | i ∈ {1, . . . , k + 1}))

= sup
k∈N

(
(c ? k)εP (A1 > c)k+1

)
=∞.

Thus, T cannot have a power-law tail, because such a distribution would have E(T ε) <∞
for sufficiently small ε.

If b ≤ e, then we check whether T has a tower distribution. Let G(x) = P (T ≤ x) be
the distribution function of T . We note that, for x 6= 1

P (AT ≤ x) =

∫
R

P (At ≤ x)pT (t)dt = C

∫ b

a

P (A ≤ x 1
t )tp−1dt

= C

∫ b

a

F (x
1
t )tp−1dt = −C

∫ x
1
b

x
1
a

F (u)
(log x)p

u(log u)p+1
du.

EJP 29 (2024), paper 16.
Page 21/27

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1074
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Random power towers

In the final step, we make the substitution t = log x
log u . If a = 0, we take x

1
a = lim

a→0+
x

1
a .

As we have seen, it suffices to check whether AT
d
= T . Thus A has the inverse tower

distribution of T if and only if its distribution function F (x) satisfies

G(x) = −C(log x)p
∫ x

1
b

x
1
a

F (u)

u(log u)p+1
du , (3.2)

so we begin by looking for solutions to this equation. It is not hard to show that there
is no distribution function satisfying the equation for p = 0, which in turn implies that
exp(U) never has a tower distribution for uniform U . However, this is not necessary for
our theorem, and is left to the interested reader to check.

Assuming p 6= 0, we observe that (3.2) implies

F (x) =
p

Cbp
G(xb)− xb log x

Cbp−1
G′(xb) +

ap

bp
F (x

b
a ) (3.3)

almost everywhere, because

G(x)

(log x)p
= −C

∫ x
1
b

x
1
a

F (u)

u(log u)p+1
du

d

dx

(
G(x)

(log x)p

)
= −C d

dx

∫ x
1
b

x
1
a

F (u)

u(log u)p+1
du

1

(log x)p
G′(x)− p

x(log x)p+1
G(x) = −Cx

1
b−1

b

F (x
1
b )

x
1
b

bp+1 (log x)p+1
+ C

x
1
a−1

a

F (x
1
a )

x
1
a

ap+1 (log x)p+1

G′(x)− p

x log x
G(x) = − Cbp

x log x
F (x

1
b ) +

Cap

x log x
F (x

1
a )

F (x
1
b ) =

p

Cbp
G(x)− x log x

Cbp
G′(x) +

ap

bp
F (x

1
a ).

We do not necessarily have (3.3) implies (3.2) because of the differentiation step. We do,
however, have that (3.3) implies

−C
∫ x

1
b

x
1
a

F (u)

u(log u)p+1
du = K +

G(x)

(log x)p
.

We will start by showing that if p > 0 and F (x) is a distribution function satisfying (3.3),
then K in the above equation is 0, hence (3.2) is satisfied by F , and we conclude that F
is the distribution function for the inverse tower distribution of T . Observe that p > 0

implies lim
x→∞

G(x)
(log x)p = 0. If F is distribution function, then in particular |F (x)| ≤ 1, so we

have

|K| = lim
x→∞

∣∣∣∣∣∣−C
∫ x

1
b

x
1
a

F (u)

u(log u)p+1
du

∣∣∣∣∣∣
≤ |C| lim

x→∞

∫ x
1
a

x
1
b

1

u(log u)p+1
du

= |C| lim
x→∞

1

−p

(
1

(log(x
1
a ))p

− 1

(log(x
1
b ))p

)
= |C| lim

x→∞

bp − ap

p(log x)p

= 0.

Hence, to prove the theorem it suffices to show that there exists a distribution function
satisfying (3.3) if and only if 0 ≤ a ≤ b < e and p ≥ 1

1−log b .
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We first show this for a = 0, then deal with the case of a > 0. We note that when
a = 0, we must have p > 0, because otherwise xp−1 does not have a finite integral. Then,
(3.3) gives us F in closed form

F (x) =

{
xbp

bp (1− b log x) x < b
1
b

1 x ≥ b 1
b

which is the form claimed in the theorem, but is not necessarily a distribution function.
If b < 1, we observe that

lim
x→(b

1
b )−

F (x) =
b

1
b ·bp

bp
(1− b log b 1

b ) = 1− log b > 1

which means that F (x) > 1 just below b
1
b , and therefore F cannot be a distribution

function, so for a = 0 and b < 1, T does not have a tower distribution. If b ≥ 1, we do
have F (x) ∈ [0, 1] for all x, so it suffices to check whether F is non-decreasing. Looking
at the derivative, we can see that for x ∈ (0, b

1
b )

F ′(x) =
pxbp−1

bp−1
(1− b log x)− xbp−1

bp−1
=
xbp−1

bp−1
(p− 1− pb log x)

so F is non-decreasing if and only if p− 1− pb log x ≥ 0 for all x ∈ (0, b
1
b ). Since that is a

decreasing function, it suffices to check at x = b
1
b , hence F is a distribution function if

and only if

p− 1− p log b ≥ 0 ⇐⇒ p ≥ 1

1− log b

which is the claim of the theorem. Next, we deal with the case of a > 0 and 1 ∈ [a, b],
after which we will conclude by showing that when a > 0 and 1 /∈ [a, b], equation (3.3)
has no solution, completing the proof of the theorem.

Similarly to the case of a = 0, when 0 < a ≤ 1 ≤ b ≤ e we must check that F (x) as
defined by (3.3) is a distribution function. Since b ≥ 1 and a ≤ 1, Lemma 3.4 implies that
F (x) = 0 for x < a

1
b and F (x) = 1 for x > b

1
b , so we have

F (x) =


xbp

bp (1− b log x)− ap

bp + ap

bp F (x
b
a ) x ∈ [a

1
b , b

1
b ) \ {1}

0 x < a
1
b

1 x ≥ b 1
b

1−ap
bp−ap x = 1

,

as claimed. This obviously satisfies (3.3), so it remains to show that it is a distribution
function if and only if p ≥ 1

1−log b . Since F (0) = 0 and lim
x→∞

F (x) = 1, we only need to

check whether F (x) is non-decreasing. Observe that

d

dx
xbp(1− b log x) = bxbp−1(p− 1− pb log x) = bxbp−1(−1 + p(1− b log x)),

which implies

F ′(x) =


bxbp−1(−1 + p(1− b log x)) + ap+1

bp+1 x
b
a−1F ′(x

b
a ) x ∈ (a

1
b , b

1
b ) \ {1}

0 x /∈ [a
1
b , b

1
b ]

undefined else

.

If p < 0, then (−1 + p(1− b log x)) < 0 for all x < b
1
b , and hence F will also have negative

derivative, hence we may proceed under the assumption that p > 0. If p ≥ 1
1−log b , then
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we note that F ′(x) ≥ 0 for all x where the derivative exists. Conversely, if p < 1
1−log b , we

can show that F ′(x) < 0 for some x. Suppose b > 1. For x ∈ (b
a
b2 , b

1
b ), we have

F (x) =
xbp

bp
(1− b log x),

which is decreasing in a neighborhood of b
1
b if p < 1

1−log b . The case of b = 1 and

p < 1
1−log b = 1 is a little more difficult. Define

Mn = inf{F ′(x) : F ′(x) exists and x ≤ aa
n

}.

Obviously, if Mn < 0 for any n, then F ′(x) < 0 for some x ∈ (0, 1). We claim that p < 1

implies lim
n→∞

Mn < 0. Assume that Mn ≥ 0 for all n. Then lim
n→∞

Mn exists (since Mn is

non-increasing), and we have

Mn+1 = inf
(
Mn ∪ {F ′(x) | x ∈ (aa

n

, aa
n+1

]}
)

= inf
(
Mn ∪

{
xp−1(−1 + p(1− log x)) + ap+1x

1
a−1F ′(x

1
a ) | x ∈ (aa

n

, aa
n+1

]
})

≤ sup
{
xp−1(−1 + p(1− log x)) | x ∈ (aa

n

, aa
n+1

]
}
+
(
ap+1(aa

n+1

)
1
a−1
)
Mn

and therefore

lim
n→∞

Mn

≤ lim
n→∞

(
sup

{
xp−1(−1 + p(1− log x)) | x ∈ (aa

n

, aa
n+1

]
}
+
(
ap+1(aa

n+1

)
1
a−1
)
Mn

)
= −1 + p+ ap+1 lim

n→∞
Mn

which can be rearranged to obtain

lim
n→∞

Mn ≤
−1 + p

1− ap+1

which is negative if p < 1 = 1
1−log b , a contradiction. Therefore Mn < 0 for some n, which

in implies that there exists x ∈ (0, 1) such that F ′(x) < 0. Hence we have that F is not a
distribution if p < 1, as claimed.

Thus, it remains to see what happens at the points where F is not differentiable.

These points are all those of the form a
an

bn+1 or b
an

bn+1 for n ∈ N. Define

F±(x) = lim
h→0±

F (x+ h)

to be the left- and right-limits of F . By induction, we can show

F+(a
an

bn+1 ) ≥ F−(a
an

bn+1 )

for all n. This is trivial for n = 0 because

F+(a
1
b ) =

ap

bp
(1− log a)− ap

bp
= −a

p

bp
log a ≥ 0 = F−(a

1
b )

and the recurrence relation for F gives us the inductive step:

F+(a
an

bn+1 ) ≥ F−(a
an

bn+1 )

ap
an

bn

bp
− ap

bp
+
ap

bp
F+(a

an

bn+1 ) ≥ ap
an

bn

bp
− ap

bp
+
ap

bp
F−(a

an

bn+1 )

F+(a
an+1

bn+2 ) ≥ F−(a
an+1

bn+2 ).
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We similarly have

F+(b
an

bn+1 ) ≥ F−(b
an

bn+1 )

for all n, and hence F is non-decreasing in all the cases where p ≥ 1
1−log b , as claimed.

Finally, we check that (3.3) has no solutions when 1 /∈ [a, b] and a > 0. To do this, we
notice that for x ∈ (a1/b, b1/b), (3.3) becomes

F (x) =
xbp

bp
− ap

bp
− bxbp log(x)

bp
+
ap

bp
F (x

b
a ) (3.4)

or equivalently, when x ∈ (a1/a, b1/a)

F (x) = −x
ap

ap
+ 1 +

axap log(x)

ap
+
bp

ap
F (x

a
b ). (3.5)

Suppose a > 1. Define fn recursively by f0(x) = 1 and

fn(x) =
xbp

bp
− ap

bp
− bxbp log(x)

bp
+
ap

bp
fn−1(x

b
a ).

Note that, if p > 0, lim
x→∞

fn(x) = −∞ for all x, and if p < 0, lim
x→0+

fn(x) =∞. (These may

be shown inductively.)
By Lemma 3.4, we have that F (x) = 1 for x > b

1
b . Therefore, for x ∈ (b

a
b2 , b

1
b )∩(a 1

b , b
1
b ),

equation (3.4) implies

F (x) =
xbp

bp
− ap

bp
− bxbp log(x)

bp
+
ap

bp
F (x

b
a ) =

xbp

bp
− ap

bp
− bxbp log(x)

bp
+
ap

bp
= f1(x)

and inductively F (x) = fn(x), for all x ∈ (b
an

bn+1 , b
an−1

bn ) ∩ (a
1
b , b

1
b ). We observe that there

exists N ∈ N such that I = (b
aN

bN+1 , b
aN−1

bN ) ∩ (a
1
a , a

b
a2 ) 6= ∅ because

⋃
n≥1

(b
an

bn+1 , b
an−1

bn ) is

open and dense in (1, b
1
b ).

By Lemma 3.4, F (x) = 0 for x < a
1
a , so by equation (3.5), for all x ∈ I

fN (x) = F (x) = −x
ap

ap
+ 1 +

axap log(x)

ap
+
bp

ap
F (x

a
b ) = −x

ap

ap
+ 1 +

axap log(x)

ap
.

However, this is a contradiction because fN (x) and −x
ap

ap + 1 + axap log(x)
ap are distinct

analytic functions on (0,∞), so they cannot be equal on any open set. That they are
distinct can be seen by looking at the limiting behavior as x goes to 0 or goes to∞. When
p > 0, the limit as x goes to infinity of fN (x) is −∞, while the limit of −x

ap

ap +1+ axap log(x)
ap

is∞. Similarly, when p < 0, the limits as x goes to 0 of the two functions are unequal.
Thus, when a > 1, we have that T does not have the tower property. The proof for b < 1

and a > 0 is similar.

4 Open questions

There remain many open questions about random power towers. As far as conver-
gence is concerned, Theorem 1.2 is quite broad. It only leaves out the case of a = 1 and
b =∞. While our condition for convergence when a = 1 and b > e

1
e does not involve b

in any way, our proof required boundedness of A1. However, there do exist unbounded
distributions for A1 such that the corresponding power tower converges.

Example 4.1. Let {Ai}i∈N be an i.i.d. sequence with distribution given by

A1 =

{
e ? n w.p. 1

2n+1 for n ∈ N
e

1
e?(16n) w.p. 1

2n+1 for n ∈ N

and let Ti =
i

E
k=1

Ak be the corresponding power tower. Then Ti converges almost surely.
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To show convergence of Ti, it suffices to show that lim
i→∞

E log?(Ti) < ∞, since this

implies that the probability of Ti going to infinity is 0. Note that

E log?(A1) =

∞∑
n=1

n

2n+1
= 1 <

8(1 +
√
1− log 2)

log 2
≈ 17.94...

and we show inductively that E log? Ti <
8(1+

√
1−log 2)

log 2 . Assuming this is true for i, we
prove it for i+ 1 (making use of the fact that log?(x+ y) ≤ 1 + log? x+ log? y in the third
line):

E log?(Ti+1) =

∞∑
n=1

1

2n+1
E log?

(
(e ? n)Ti

)
+

∞∑
n=1

1

2n+1
E log?

(
eTi/(e?(16n))

)
= 1 +

∞∑
n=1

1

2n+1
E log? ((e ? (n− 2)) + log Ti) +

1

2
+

∞∑
n=1

1

2n+1
E log?

(
Ti

e ? (16n)

)

≤ 3

2
+

∞∑
n=1

1

2n+1
(n− 2 + E log?(Ti)) +

∞∑
n=1

1

2n+1
E log?

(
Ti

e ? (16n)

)

≤ 3

2
+

∞∑
n=1

1

2n+1
(n− 2 + E log?(Ti)) +

∞∑
n=1

1

2n+1
(1 + P (T1 ≥ e ? (16n))E log?(Ti))

= 2 +
1

2
E log? Ti +

∞∑
n=1

1

2n+1
P (log? T1 ≥ (16n))E log?(Ti)

≤ 2 +
1

2
E log? Ti +

∞∑
n=1

1

2n+1

(E log?(Ti))
2

16n
= 2 +

1

2
E log? Ti +

log 2

32
(E log? Ti)

2

<
8(1 +

√
1− log 2)

log 2
.

This, and other similar examples, suggest that in order to check convergence of Ti for
unbounded A1, we need to have some comparison between the weight of the distribution
of A1 at 1 and at infinity. I conjecture that condition 2 from Theorem 1.2 may be relaxed
by replacing b <∞ with E log∗A1 <∞.

We also did not touch on questions of convergence rate at all. For the “contracting
on average” random power towers, Diaconis and Freedman’s results also give us an
exponential convergence rate. Are there cases that do not have an exponential type of
convergence? If so, what convergence rates are possible?

We only scratched the surface of the inverse question. If T were a mixture of
powers of uniform distributions, we should be able to apply similar techniques to those
used in the proof of Theorem 3.1, though the complexity of checking monotonicity
increases substantially. Can one tell in general whether T has a tower distribution by
approximating it with uniform distributions?
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