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Abstract

For the standard elephant random walk, Laulin (2022) studied the case when the
increment of the random walk is not uniformly distributed over the past history instead
has a power law distribution. We study such a problem for the unidirectional elephant
random walk introduced by Harbola, Kumar and Lindenberg (2014). Depending on the
memory parameter p and the power law exponent β, we obtain three distinct phases
in one such phase the elephant travels only a finite distance almost surely, in the other
phase there is a positive probability that the elephant travels an infinite distance and
in the third phase the elephant travels an infinite distance with probability 1. For the
critical case of the transition from the first phase to the second phase, the proof of
our result requires coupling with a multi-type branching process.
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1 Introduction

The elephant random walk (ERW), introduced by Schütz and Trimper [12], is a
one-dimensional discrete time random walk whose incremental steps are ±1. Unlike
the simple random walk, the ERW keeps track of each of the incremental steps taken
throughout its history. Formally, S0 ≡ 0 and, for s ∈ [0, 1],

S1 = X1 :=

{
+1 with probability s

−1 with probability 1− s.
(1.1)

Subsequently, for n ≥ 1, the location of the ERW at time (n + 1) is Sn+1 = Sn + Xn+1

where, for p ∈ (0, 1) and Un, a uniform random variable on {1, . . . , n},

Xn+1 =

{
+XUn with probability p

−XUn
with probability 1− p.
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Elephant random walk with a power law memory

Here we assume that {Uk : k ∈ N} is a collection of independent random variables.
Depending on the memory parameter p, we observe three distinct phases, when

0 < p < 3/4 we have a diffusive phase, when p = 3/4 a critical phase, and when
3/4 < p < 1 a superdiffusive phase (see Baur and Bertoin [1], Coletti et al. [5], Bercu [2],
and Kubota and Takei [7]). Other properties of the ERW as well as its multidimensional
version have been studied, see the excellent thesis of Laulin [8] and the references
therein.

Laulin [9] introduced smooth amnesia to the memory of the ERW in the following
manner. Let β > 0 and {βn+1 : n ∈ N} be independent random variables with

P (βn+1 = k) =


β + 1

n
· µk

µn+1
for 1 ≤ k ≤ n

0 otherwise
(1.2)

where

µn =
Γ(n+ β)

Γ(n)Γ(β + 1)
∼ nβ

Γ(β + 1)
as n → ∞. (1.3)

Here and elsewhere in this article we use the notation xn ∼ yn to mean that xn/yn → 1

as n → ∞. The increments are given by (1.1) and, for n ≥ 1,

Xn+1 =

{
+Xβn+1

with probability p

−Xβn+1
with probability 1− p.

Laulin [9] showed that the ERW thus obtained exhibits a phase transition in the sense
that, it is diffusive for p < (4β + 3)/(4β + 4) and superdiffusive for p > (4β + 3)/(4β + 4).
See Chen and Laulin [3] for higher-dimensional analogues.

Harbola et al. [6] introduced a unidirectional ERW where the first step is

S1 = X1 :=

{
+1 with probability s

0 with probability 1− s,

and subsequently, with the collection {Uk : k ∈ N} as earlier,

if XUn
= 1 then Xn+1 :=

{
+1 with probability p

0 with probability 1− p,

if XUn
= 0 then Xn+1 :=

{
+1 with probability q

0 with probability 1− q,

here s ∈ [0, 1], p ∈ (0, 1) and q ∈ [0, 1] are the parameters of the process. Harbola et al.
[6] showed that, for the random walk Sn :=

∑n
k=1 Xk, with {Xk : k ∈ N} as above,

E[Sn] ∼


qn

1− q
if q > 0

snp

Γ(1 + p)
if q = 0,

and for q > 0, there are three distinct phases depending on p− q (Coletti et al. [4]).
When q = 0 and s = 1 the walk is the ‘laziest elephant random walk (LERW)’:

S0 = 0 and Sn :=

n∑
k=1

Xk with X1 ≡ 1, Xn+1 =

{
XUn with probability p

0 with probability 1− p.
(1.4)
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Elephant random walk with a power law memory

Miyazaki and Takei [10] studied this model and showed that
Sn

np

d→ W , where W has a

Mittag–Leffler distribution with parameter p, and they proved that
Sn − W np

√
W np

d→ N(0, 1).

Our study here is similar to Laulin [9], however for the LERW given by (1.4) and
having a memory distribution (1.2) with β > −1. In particular, our model is given by
S0 = 0, and with {βn+1 : n ∈ N} as in (1.2) with β > −1,

Sn :=

n∑
k=1

Xk with X1 ≡ 1, Xn+1 =

{
Xβn+1

with probability p

0 with probability 1− p.
(1.5)

For this model we obtain three distinct rates of growth of Sn depending on the
parameter β. We employ a martingale method and a coupling with a multi-type branching
process. The latter is of intrinsic interest because it may be applied to other ERW models.
In the next section we state our results and in subsequent sections we present the proofs
of our results. We obtain different behaviours of Sn in three different regimes separated
by the critical values β = 0 and β = p/(1− p).

Throughout the rest of the article we restrict ourselves to the model given by (1.5).

2 Results

Let F0 be the trivial σ-field, and Fn := σ(X1, . . . , Xn). From (1.2), we have

E[Xn+1 | Fn] = p · E[Xβn+1
| Fn] = p ·

n∑
k=1

XkP (βn+1 = k)

=
p(β + 1)

nµn+1

n∑
k=1

Xkµk =
p(β + 1)

nµn+1
· Σn, (2.1)

where Σn :=
∑n

k=1 Xkµk for n ∈ N. Noting that Σ1 = X1µ1 = 1 a.s. we have

E[Σn+1 | Fn] = Σn + E[Xn+1µn+1 | Fn] =

(
1 +

p(β + 1)

n

)
Σn.

For γ > −1, let

cn(γ) :=
Γ(n+ γ)

Γ(n)Γ(γ + 1)
∼ nγ

Γ(γ + 1)
as n → ∞. (2.2)

Note that µn = cn(β). Put

Mn :=
Σn

cn(p(β + 1))
. (2.3)

Since {Mn} is a non-negative martingale, there exists a non-negative random variable
M∞ such that lim

n→∞
Mn = M∞ almost surely. As a consequence,

E[Σn] = cn(p(β + 1)) · E[Σ1] = cn(p(β + 1)) ∼ np(β+1)

Γ(p(β + 1) + 1)
as n → ∞. (2.4)

Our main results are the following. For the ERW as defined in (1.5) we have:

Theorem 2.1. For β > −1,

E[Sn] =


p(β + 1)

p(β + 1)− β
· cn(p(β + 1))

cn(β)
+

β

β − p(β + 1)
if β 6= p

1− p
n−1∑
k=0

β

k + β
if β =

p

1− p
.
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Elephant random walk with a power law memory

Table 1: Summary of the results.
Regime Asymptotic behaviour

−1 < β < 0 P (Sn ≥ Cn−β for all n) = 1,
P
(
M∞ > 0, Sn ∼ C(p, β)M∞np(β+1)−β as n → ∞

)
> 0.

β = 0 P (M∞ > 0, Sn ∼ C(p, 0)M∞np as n → ∞) = 1.

0 < β <
p

1− p
P (S∞ < +∞) > 0,

P
(
M∞ > 0, Sn ∼ C(p, β)M∞np(β+1)−β as n → ∞

)
> 0.

β =
p

1− p
E[Sn] ∼ β log n, but P (S∞ < +∞) = 1.

β >
p

1− p
E[S∞] < +∞, so P (S∞ < +∞) = 1.

Let C(p, β) :=
1

p(β + 1)− β
· Γ(β + 1)

Γ(p(β + 1))
. As a corollary, from (2.2) we have

Corollary 2.2. (i) If −1 < β < p/(1− p) then lim
n→∞

E[Sn]

np(β+1)−β
= C(p, β).

(ii) If β = p/(1− p) then lim
n→∞

E[Sn]

log n
= β.

(iii) If β > p/(1− p) then lim
n→∞

E[Sn] =
β

β − p(β + 1)
, so S∞ := lim

n→∞
Sn < +∞ a.s.

Theorem 2.3. If −1 < β < p/(1− p) then P (M∞ > 0) > 0, and

Sn ∼ C(p, β)M∞np(β+1)−β a.s. on {M∞ > 0}.

Theorem 2.4. (i) If β > 0 then P (S∞ = k) > 0 for any k ∈ N.
(ii) If β < 0 then P (S∞ = ∞) = 1.
(iii) [Miyazaki and Takei [10]] If β = 0 then P (S∞ = ∞) = 1.

From Corollary 2.2 (ii) we have E[S∞] = +∞ for β = p/(1− p), however

Theorem 2.5. If β = p/(1− p) then P (S∞ < +∞) = 1.

The proof of Theorem 2.5 needs coupling with an auxiliary multi-type branching
process, which is presented in the next section, while the coupling is discussed in
Section 4.4.

In the course of the proofs we also obtain asymptotic behaviour of the growth of Sn

and a summary of our results is presented in Table 1.

3 A multi-type branching process

Before we describe the branching process we need some analytic lemmas. With µn

as defined in (1.3), let {q(x, y) : x, y ∈ N2 ∩ {x < y}}, be defined as

q(x, y) = p · P (βy = x) =
p(β + 1)

y − 1
· µx

µy
. (3.1)

Lemma 3.1. Assume that β > 0. For each k ∈ N,
∞∑

x=k+1

q(k, x) =
p(β + 1)

β
.

Proof. For K > k, we have
K∑

x=k+1

q(k, x) = p(β + 1) · Γ(k + β)

Γ(k)

K∑
x=k+1

Γ(x− 1)

Γ(x+ β)
. Now note

that, for ` ≥ 2, a ≥ −1, b ≥ 0 and b 6= a+ 1,

Γ(`+ a)

Γ(`+ b)
=

1

a− b+ 1

(
Γ(`+ 1 + a)

Γ(`+ b)
− Γ(`+ a)

Γ(`− 1 + b)

)
. (3.2)
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Elephant random walk with a power law memory

Continuing from above we have
K∑

x=k+1

q(k, x) =
p(β + 1)

β
·
(
1− Γ(k + β)

Γ(k)
· Γ(K)

Γ(K + β)

)
.

Noting that Γ(K)/Γ(K + β) ∼ K−β as K → ∞, we obtain the desired conclusion.

Now we construct the branching process. Let {Z1, Z2, . . .} be a process where Zk

denotes particles of the k-th generation and N be the space of types of particles.

(1) The first generation Z1 consists of only one particle of type y(1) ≡ 1.

(2) The particle of type y(1) in Z1 gives birth to second generation particles each of
whose type is y(1) + 1 or more, with the caveat that all its children are of distinct
types. The probability that the particle in Z1 has a child of type k > 1 is q(y(1), k).
We also assume that the event that the particle has one child of type k and another
of type ` (k 6= `) are independent of each other.

(3) In case there is no particle in the second generation, we stop. Otherwise a particle
of the second generation with type y(2) gives birth to a third generation particle
of type y(2) + 1 or more with the caveat that all its children are of distinct types.
We assume that (i) the number and types of children of two distinct particles are
independent of each other, (ii) the events that a particle has one child of type k and
another of type ` (k 6= `) are independent of each other. The probability that this
particle has a child of type k > y(2) is q(y(2), k).

(4) In case there is no particle in the n-th generation, we stop. Otherwise, first we
note here that, for n ≥ 3, there may be two particles in Zn of the same type born of
two distinct parents. We assume that (i) the number and types of children of two
distinct particles are independent of each other, (ii) the events that a particle has
one child of type k and another of type ` (k 6= `) are independent of each other. A
particle of type y(n) in the n-th generation gives birth independently to a (n+ 1)-th
generation particle of type k > y(n) with probability q(y(n), k).

From Lemma 3.1 we see that the expected number of children of a particle of any type
is p(β + 1)/β, which is smaller or equal to one if and only if β ≥ p/(1− p). However, we
still need to prove that the branching process dies out in this case, because the progeny
distribution is different and depends on the type.

Let C = C(p) := {− log(1 − p)}/p. It is straightforward to see that 1 − t ≥ e−Ct for
t ∈ [0, p]. Since 0 ≤ q(k, x) ≤ p for any k ∈ N and x ≥ k + 1, we have

p
(k)
0 ≥ exp

{
−C

∞∑
x=k+1

q(k, x)

}
= exp

{
−Cp(β + 1)

β

}
> 0 for all k ∈ N. (3.3)

Let Nn be the number of particles in the n-th generation of the branching process.
Assume that β > 0, and so m := p(β + 1)/β < ∞. We have E[Nn] = mn−1 for n ∈ N.
Lemma 3.2. If β ≥ p/(1− p) then lim

n→∞
P (Nn > 0) = 0.

Proof. If β > p/(1− p) then m < 1. So, from (3.3) and Markov’s inequality,

P (Nn > 0) ≤ E[Nn] = mn−1 → 0 as n → ∞.

Hereafter we assume that β = p/(1− p), i.e. m = 1. For K ∈ N, by Markov’s inequality,

P (Nn > 0) = P (0 < Nn ≤ K) + P (Nn > K) ≤ P (0 < Nn ≤ K) +
1

K + 1
.

To obtain the desired conclusion it suffices to show that lim
n→∞

P (0 < Nn ≤ K) = 0 for

any K ∈ N. Assume that lim sup
n→∞

P (0 < Nn ≤ K) = δ > 0. We can find a subsequence
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Elephant random walk with a power law memory

1 k2 k3 m n`k1

1 k1 k2 k3 ` m n`1 `2

Figure 1: The figure on top represents the chain of memory involved in a positive
increment at the nth step. The figure below represents the many ways at individual of
type n may appear in the branching process.

{nj} with 1 ≤ n1 < n2 < · · · and P (0 < Nnj
≤ K) ≥ δ/2 for j ∈ N. For j ∈ N, define

Ej := {0 < Nnj
≤ K, Nnj+1 = 0}. Noting that {Ej : j ∈ N} are mutually disjoint,

1 ≥ P

( ∞⋃
j=1

Ej

)
=

∞∑
j=1

P (Ej) ≥
∞∑
j=1

δ

2
·
(
inf
k∈N

p
(k)
0

)K

= +∞.

This is a contradiction.

Thus, from Lemma 3.2, we have that the multi-type branching process dies out if and
only if m ≤ 1, i.e. β ≥ p/(1− p).

We end this section by explaining the connection between the ERW and this branching
process with the help of Figure 1. The figure represents the event that the increment
of the ERW at the nth step is 1. This occurs because (i) at the nth step the elephant
recalled the k3th step correctly, (ii) at the k3th step the elephant recalled the k2th step
correctly, (iii) at the k2th step the elephant recalled the k1th step correctly and (iv) at
the k1th step the elephant recalled the first step correctly. This occurs with probability
q(k3, n)q(k2, k3)q(k1, k2)q(1, k1). The figure at the bottom represents the event that an
individual of type n is born. In the figure there are two ways in which this could happen
(i) the individual in generation 1 gave birth to a child of type k1, who gave birth to
a child of type k2, who gave birth to a child of type k3 and who gave birth to a child
of type n; (ii) alternately, the individual in generation 1 gave birth to a child of type
l1, who gave birth to a child of type k2, who gave birth to a child of type k3 and who
gave birth to a child of type n. The probability that the chain given in (i) occurred is
q(k3, n)q(k2, k3)q(k1, k2)q(1, k1), while the probability that the chain given in (ii) occurred
is q(k3, n)q(k2, k3)q(l1, k2)q(1, l1). A similar analysis may be done for the increments at
the mth and the `th steps.

From the above it may be seen that, constructing both the ERW and the branching
process on the same probability space, a chain of remembrances leading to an increment
of the ERW at the nth step is also a chain of ancestry of an individual of the nth type.

4 Proofs

4.1 Proof of Theorem 2.1

Noting that by (2.1) and (2.4), E[Sn+1] − E[Sn] = E[Xn+1] =
p(β + 1) · cn(p(β + 1))

n · cn+1(β)
,

we have
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E[Sn] = E[S1] +

n−1∑
k=1

p(β + 1) · ck(p(β + 1))

k · ck+1(β)
= 1 +

Γ(β + 1)

Γ(p(β + 1) + 1)

n−1∑
k=1

Γ(k + p(β + 1))

Γ(k + β + 1)
.

This together with (3.2) implies Theorem 2.1.

4.2 Proof of Theorem 2.3

Regarding the non-negative martingale Mn = Σn/cn(p(β + 1)) we have

Proposition 4.1. {Mn : n ∈ N} is an L2-bounded martingale if and only if β < p/(1− p).
In particular, if β < p/(1− p) then P (M∞ > 0) > 0.

Proof. Using (2.1) we have E[Σ2
n+1 | Fn] =

(
1 +

2p(β + 1)

n

)
· Σ2

n + µn+1 ·
p(β + 1)

n
· Σn.

Setting Ln := Σ2
n/cn(2p(β + 1)), we have, for some C(β) > 0,

E[Ln+1]− E[Ln] = cn+1(β) ·
p(β + 1) · E[Σn]

n · cn+1(2p(β + 1))
∼ C(β) · nβ−p(β+1)−1 as n → ∞. (4.1)

Note that
E[M2

n]

E[Ln]
=

cn(2p(β + 1))

cn(p(β + 1))2
∼ Γ(p(β + 1) + 1)2

Γ(2p(β + 1) + 1)
as n → ∞. Using (4.1), we see that

sup
n≥1

E[M2
n] < +∞ if and only if β − p(β + 1) < 0.

Theorem 2.3 follows from Proposition 4.1 and the following lemma.

Lemma 4.2. If −1 < β < p/(1− p) then Sn ∼ C(p, β)M∞np(β+1)−β a.s. on {M∞ > 0}.

Proof. Recalling (2.1), almost surely on {M∞ > 0}, we have

E[Xn+1 | Fn] ∼
p(β + 1)

n
· Γ(β + 1)

nβ
· M∞ · np(β+1)

Γ(p(β + 1) + 1)
=

Γ(β + 1)M∞

Γ(p(β + 1))
· np(β+1)−β−1

as n → ∞. Define An :=
∑n

k=1 E[Xk | Fk−1]. From the conditional Borel–Cantelli lemma
(see e.g. Williams [11], p.124),

S∞ < +∞ a.s. on {A∞ < +∞}, while Sn ∼ An as n → ∞, a.s. on {A∞ = +∞}.

If −1 < β < p/(1−p) then An ∼ C(p, β)M∞np(β+1)−β a.s. on {M∞ > 0}, which completes
the proof.

Remark 4.3. If β > p/(1−p), i.e. p(β+1)−β−1 < −1, then A∞ < +∞ and S∞ < +∞ a.s.
(This is another proof of Corollary 2.2 (iii).) When β = p/(1− p) we have Sn ∼ βM∞ log n

a.s. on {M∞ > 0}, but as we will see later P (M∞ > 0) = 0 in this case.

4.3 Proof of Theorem 2.4

We assume that β > 0. Fix k ∈ N. First note that P (X1 = 1) = 1, and

P (X1 = · · · = Xk = 1) ≥
k∏

j=2

p · P (βj = 1) > 0 for k = 2, 3, . . ..

On the other hand, P (Xk+1 = 0 | X1 = · · · = Xk = 1) = 1− p, and

P (Xn = 0 | X1 = · · · = Xk = 1, Xk+1 = · · · = Xn−1 = 0) ≥ 1− p · P (βn ≤ k)

for n ≥ k + 2. Since P (βn ≤ k) =
β + 1

n− 1
·
∑k

j=1 µj

µn
∼ Γ(β + 2)

n1+β
·

k∑
j=1

µj as n → ∞, we have

P (S∞ = k) ≥ P (X1 = · · · = Xk = 1) ·
∏∞

n=k{1− p · P (βn ≤ k)} > 0. This proves part (i) of
the theorem.

To prove part (ii) we need the following
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Lemma 4.4. If −1 < β < 0, then there exists a positive constant C = C(β, p) such that

P
(
An ≥ Cn−β for all n, and Sn ∼ An as n → ∞

)
= 1.

Proof. Recall that P (X1 = 1) = 1 and E[X1] = 1. For each k = 2, 3, . . .,

E[Xk | Fk−1] ≥ p · P (βk = 1) =
p(β + 1)

kµk+1
.

The conclusion follows from µk+1 ∼ kβ/Γ(β + 1) as k → ∞.

As stated after (1.4), part (iii) of the theorem is proved in Miyazaki and Takei [10].

4.4 Proof of Theorem 2.5

Throughout this subsection we assume that β > 0.
To exhibit the coupling of {Sn : n ∈ N} and the branching process {Zn : n ∈ N} we

introduce a modified model. Let {β(i, j) : 1 ≤ i < j < ∞} be a collection of {0, 1}-valued
independent random variables such that P (β(i, j) = 1) = P (βj = i). We also assume
that the collection {β(i, j) : 1 ≤ i < j < ∞} is independent of all random processes
considered so far. Let Y1 = 1 and Yn+1 = Wn+1 · max

1≤i≤n
β(i, n + 1)Yi for n ∈ N, where

{Wn : n ≥ 1} is an i.i.d. collection of Bernoulli(p) random variables.
We put ηn := {k ∈ N : k ≤ n, Yk = 1}, Tn := #ηn =

∑n
k=1 Yk and note that,

{ηn : n ≥ 1} is a Markov process with

P (ηn+1 = ζ ∪ {n+ 1} | ηn = ζ) = P (Wn+1 · β(i, n+ 1) = 1 for some i ∈ ζ) for ζ ⊆ N.

Using the Skorokhod representation theorem and defining the processes ηn and the
first n generations of the branching process on the same probability space, we have,
from the discussion at the end of Section 3,

Tn ≤ #{k ∈ N : there is a particle of type k in the first n generations} a.s.

Thus the extinction of the branching process implies T∞ := lim
n→∞

Tn < ∞ a.s.

Next, to study the relation between {Sn} and {Tn} we need to study the relation
between ξn and ηn, where ξn := {k ∈ N : k ≤ n, Xk = 1}. Note that {ξn : n ≥ 1} is a
Markov process with P (ξn+1 = ζ ∪ {n+ 1} | ξn = ζ) = P (Wn+1 = 1, βn+1 ∈ ζ) for ζ ⊆ N.

Coupling of ξn and ηn. Noting that each of ξn and ηn are Markovian, the coupling is
given as follows: For each n ≥ 1, if ξn 6= ηn then βn+1 and {β(i, n + 1) : 1 ≤ i ≤ n} are
independent, while if ξn = ηn then we ensure that

{βn+1 = i} ⊇ {β(i, n+ 1) = 1 and β(j, n+ 1) = 0 for j ∈ ξn \ {i}}.

For fixed n and ζ ⊂ {1, . . . , n}, we fix some notation: Let Bi := {β(i, n + 1) = 1},
Ci := {β(i, n+ 1) = 1 and β(j, n+ 1) = 0 for j ∈ ζ \ {i}}, and Di := {βn+1 = i}.
Lemma 4.5. For ζ ⊂ {1, . . . , n}, we have

P (Xn+1 6= Yn+1 | ξn = ηn = ζ) ≤ 3p · (#ζ)
2 · (β + 1)

2

n2
. (4.2)

Proof. We first note that, for any n ∈ N and ζ ⊂ {1, . . . , n},

P (Xn+1 = 1, Yn+1 = 0 | ξn = ηn = ζ) = P ({Wn+1 = 1} ∩ (∪i∈ζDi \ ∪i∈ζBi))

≤ p ·
∑
i∈ζ

P (Di \ Ci) = p ·
∑
i∈ζ

{P (Di)− P (Ci)},
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where the last line follows from the coupling in the case ξn = ηn, and in the inequality
we used Di ⊇ Ci for i ∈ ζ. Note that {Ci} and {Di} are disjoint, and P (Di) = P (Bi). The
inclusion-exclusion formula gives∑

i∈ζ

P (Di)− P

(⋃
i∈ζ

Bi

)
=

∑
i∈ζ

P (Bi)− P

(⋃
i∈ζ

Bi

)
≤

∑
i,j∈ζ:i 6=j

P (Bi ∩Bj).

Because
⋃
i∈ζ

Bi \
⋃
i∈ζ

Ci =
⋃

i,j∈ζ:i 6=j

Bi ∩Bj ,

P

(⋃
i∈ζ

Bi

)
−
∑
i∈ζ

P (Ci) = P

(⋃
i∈ζ

Bi

)
− P

(⋃
i∈ζ

Ci

)
≤

∑
i,j∈ζ:i 6=j

P (Bi ∩Bj).

Next

P (Xn+1 = 0, Yn+1 = 1 | ξn = ηn = ζ) = P ({Wn+1 = 1} ∩ (∪i∈ζBi \ ∪i∈ζDi))

≤ p · P (∪i∈ζBi \ ∪i∈ζCi) ≤ p ·
∑

i,j∈ζ:i 6=j

P (Bi ∩Bj).

Noting that Bi and Bj are independent for i 6= j, and {µn} is increasing when β > 0, we
obtain ∑

i,j∈ζ:i 6=j

P (Bi ∩Bj) ≤ (#ζ)
2 ·

(
β + 1

nµn+1
max
1≤i≤n

µi

)2

≤ (#ζ)
2 · (β + 1)

2

n2
.

Combining the above, we have (4.2).

Let Λn := {ξn = ηn, #ξn ≤ n(1−δ)/2}. Note that, by successive conditioning

P (ξ` = η` for all ` > n | Λn) ≥
∞∏
`=n

P (Λ`+1 | Λ`). (4.3)

Because P (S`+1 ≤ (` + 1)(1−δ)/2 | Λ`) = P (#ξ`+1 ≤ (` + 1)(1−δ)/2 | #ξ` ≤ `(1−δ)/2) ≥
P (#ξ`+1 ≤ (`+ 1)(1−δ)/2) = P (S`+1 ≤ (`+ 1)(1−δ)/2) by the FKG inequality, we have

P (Λ`+1 | Λ`) ≥ P (ξ`+1 = η`+1 | Λ`)− P (S`+1 > (`+ 1)(1−δ)/2 | Λ`)

≥ 1− P (X`+1 6= Y`+1 | Λ`)− P (S`+1 > (`+ 1)(1−δ)/2). (4.4)

Suppose that

∞∑
n=1

P (Sn > n(1−δ)/2) < ∞. (4.5)

Choose N such that
∞∑

n=N

3(β + 1)2

n1+δ
+

∞∑
n=N

P (Sn > n(1−δ)/2) < ε. From (4.2), (4.3), and

(4.4), we have P (ξ` = η` for all ` > N | ΛN ) ≥ 1− ε. From Lemma 3.2, we have that the
multi-type branching process dies out if and only if m ≤ 1, i.e. β ≥ p/(1 − p). Hence,
P (T∞ < ∞) = 1 whenever β ≥ p/(1 − p). For any n ≥ 1, we have that #ηn ≤ n and so
P (T∞ < ∞| ηn) = 1 almost surely. Hence,

P (S∞ < ∞ | SN ≤ N (1−δ)/2) = P (S∞ < ∞ | ΛN )

≥ P (S∞ < ∞, ξ` = η` for all ` > N | ΛN )

≥ P (T∞ < ∞ | TN ≤ N (1−δ)/2)− P (ξ` 6= η` for some ` > N | ΛN ) ≥ 1− ε.
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Since P (SN ≤ N (1−δ)/2) ≥ 1− ε from the property of N , we have

P (S∞ < ∞) = P (S∞ < ∞ | SN ≤ N (1−δ)/2) · P (SN ≤ N (1−δ)/2) ≥ (1− ε)2.

As ε > 0 is arbitrary, to complete the proof of P (S∞ < ∞) = 1 for β = p/(1− p), we need
to establish (4.5) whose proof is obtained by using the Markov inequality and Proposition
4.6 for k = 3 and ` = 0 stated below.

Proposition 4.6. Assume that p ∈ (0, 1) and β = p/(1 − p). For k ∈ {1, 2, 3} and
` ∈ {0, 1, . . . , k}, we have that

E
[
(Sn)

k−`
(Σn)

`
]
∼ Ck,` · n`β(log n)2k−1−` as n → ∞, (4.6)

where Ck,` is a positive constant.

To prove Proposition 4.6, we need the following lemma.

Lemma 4.7. Let γ ≥ 0. Assume that a sequence {xn} satisfies

x1 = c, xn+1 =
(
1 +

γ

n

)
xn + fn for n ∈ N, (4.7)

where

fn
cn+1(γ)

∼ C(log n)m

n
as n → ∞ (4.8)

for some C > 0 and m ∈ Z+. Then there exists a constant K = K(γ,m) > 0 such that
xn ∼ Knγ(log n)m+1 as n → ∞.

Proof. Putting yn := xn/cn+1(γ), we have that

yn = y1 +

n−1∑
k=1

(yk+1 − yk) =
c

cn+1(γ)
+

n−1∑
k=1

fk
ck+1(γ)

.

From (4.8), yn ∼ {C(log n)m+1}/(m + 1) as n → ∞. Since cn+1(γ) ∼ nγ/Γ(γ + 1) as
n → ∞, we obtain the desired conclusion.

Proof of Proposition 4.6. Assume that β = p/(1 − p), and so p(β + 1) = β. For the case
k = 1, Eq. (2.4) and Corollary 2.2 (ii) implies (4.6) with C1,0 = β and C1,1 = 1/Γ(β).

We turn to the case k = 2. Since

E[(Σn+1)
2 | Fn] =

(
1 +

2β

n

)
· (Σn)

2 +
βµn+1

n
· Σn,

we have that xn = E[(Σn)
2] satisfies (4.7) with c = 1, γ = 2β and fn = βµn+1E[Σn]/n.

From (2.4), we can see that (4.8) holds with m = 0. Lemma 4.7 implies that

E[(Σn)
2] ∼ C2,2n

2β log n as n → ∞. (4.9)

To obtain the asymptotics of E[SnΣn], note that

E[Sn+1Σn+1 | Fn] =

(
1 +

β

n

)
· SnΣn +

β

nµn+1
· (Σn)

2 +
β

n
· Σn.

We see that xn = E[SnΣn] satisfies (4.7) with c = 1, γ = β and fn =
βE[(Σn)

2]

nµn+1
+

βE[Σn]

n
.

From (2.4) and (4.9), we have that (4.8) holds with m = 1. Lemma 4.7 implies that

E[SnΣn] ∼ C2,1n
β(log n)2 as n → ∞. (4.10)
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As for E[(Sn)
2], we have E[(Sn+1)

2 | Fn] = (Sn)
2 +

2β

nµn+1
· SnΣn +

β

nµn+1
· Σn. Since

xn = E[(Sn)
2] satisfies c = 1, γ = 0 and fn =

2βE[SnΣn]

nµn+1
+
βE[Σn]

nµn+1
. From (2.4) and (4.10),

we can see that (4.8) holds with m = 2. Lemma 4.7 implies that E[(Sn)
2] ∼ C2,0(log n)

3

as n → ∞.
The case k = 3 can be handled in a similar manner. We can obtain the following

equations:

E[(Σn+1)
3 | Fn] =

(
1 +

3β

n

)
· (Σn)

3 +
3βµn+1

n
· (Σn)

2 +
3βµ2

n+1

n
· Σn,

E[Sn+1(Σn+1)
2 | Fn]

=

(
1 +

2β

n

)
· Sn(Σn)

2 +
βµn+1

n
· SnΣn +

β

nµn+1
· (Σn)

3 +
2β

n
· (Σn)

2 + ·βµn+1

n
· Σn,

E[(Sn+1)
2Σn+1 | Fn]

=

(
1 +

β

n

)
· (Sn)

2Σn +
2β

nµn+1
· Sn(Σn)

2 +
2β

n
· SnΣn +

β

nµn+1
· (Σn)

2 +
β

n
· Σn,

E[(Sn+1)
3 | Fn] = (Sn)

3 +
3β

nµn+1
· (Sn)

2Σn +
3β

nµn+1
· SnΣn +

β

nµn+1
· Σn.

Using Lemma 4.7, E
[
(Sn)

3−`
(Σn)

`
]
∼ C3,` · n`β(log n)5−` for ` = 3, 2, 1, 0 can be succes-

sively proved.

5 Concluding remarks

In Section 4.4 we introduced a comparison with the multi-type branching process.
Here we introduce another comparison with the LERW, and obtain some different bounds.

Assume that −1 < β < 0. By (2.1),

P (Xn+1 = 1 | Fn) =
p(β + 1)

n
· n

n+ β
· Sn ≥ p(β + 1) · Sn

n
. (5.1)

Consider the LERW {S′
n =

∑n
k=1 X

′
k} defined by

X ′
1 ≡ 1, X ′

n+1 =

{
X ′

Un
with probability p(β + 1)

0 with probability 1− p(β + 1).

We have

P (X ′
n+1 = 1 | F ′

n) = p(β + 1) · S
′
n

n
for n ∈ N, (5.2)

where F ′
n is the σ-algebra generated by X ′

1, . . . , X
′
n. By (5.1) and (5.2), we can construct

a coupling such that with probability one,

Sn ≥ S′
n for all n ∈ N, (5.3)

and so with probability one, there exists a positive constant C such that

Sn ≥ Cnp(1+β) for all n ∈ N.

Note that −1 < β < 0 and p(1 + β) > −β if and only if −p/(1 + p) < β < 0. The above
argument gives a better lower bound than Lemma 4.4.
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For β > 0, using a similar argument leading to (5.3) we can show that, with probability
one, Sn ≤ S′

n for all n ∈ N, and there exists a positive constant C such that Sn ≤ Cnp(1+β)

for all n ∈ N. Note that p(1 + β) < 1/2 if p < 1/2 and 0 < β < (1 − 2p)/2p. As
(1− 2p)/2p ≥ p/(1− p) is equivalent to p ≤ 1/3,

if p ≤ 1

3
then p(1 + β) <

1

2
for all β ∈

(
0,

p

1− p

)
.

In view of (4.5), we hope this is useful for comparison with the branching process.
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