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Abstract

We study the asymptotic behaviour of the number of times the elephant random walk
in the critical regime visits the origin. Our result entails that most zeros of the critical
elephant random walk occur shortly before its last passage time at zero. Additionally,
we derive the tail estimate of the first return time of the random walk.
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1 Introduction

The 1-dimensional elephant random walk, for which we use the abbreviation ERW,
was introduced by Schütz and Trimper in [13]. This process, denoted here by (S(n))n≥0,
is an Z-valued nearest neighbour process started from S(0) = 0 a.s and depends on a
memory parameter p ∈ [0, 1]. First, S(1) takes value 1 with some probability q ∈ [0, 1],
and value −1 with probability 1 − q. From the second step onwards, at each step n,
we choose a number u(n) uniformly at random from previous times {1, 2, · · · , n − 1}.
With probability p, we repeat the selected step, or with probability 1 − p, we repeat
the opposite of the chosen step. It is well-known that ERW demonstrates a phase
transition at p = 3/4. When p < 3/4, the ERW is in diffusive regime, i.e. the mean
square displacement of subcritical ERW grows linearly with time, while p ≥ 3/4, it
exhibits superdiffusive behaviour, meaning the mean square displacement of critical
and supercritical ERW grow faster than linearly with time. Its asymptotic behaviour
in different regimes was extensively studied, such as its law of large numbers, central
limit theorems and invariance principles, for example, see [1, 2, 7, 8]. The recurrence
and transience regimes of 1-dimensional ERW was established in [9], and we know for
both diffusive and marginally superdiffusive regime (i.e. p ≤ 3/4), the ERW is recurrent
and its scaling limit converge in law to a Gaussian random variable. In specific, in
the diffusive regime, we have

(
n−1/2S(bntc)

)
t≥0 converges in distribution to a centered

Gaussian process as n → ∞, and in the critical regime, we have the following weak
convergence in Skorokhod topology on R+ as n→∞,(

S (bntc)√
log nnt/2

, t ≥ 0

)
(d)−−−−→
n→∞

(B(t), t ≥ 0) (1.1)
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Figure 1: Simulation result for critical ERW with total step n = 50, 000 and its associating
plots for rescaled counting zero process and rescaled last exit time process.

where B is a standard Brownian motion. However, the ERW is transient in the supercriti-
cal regime (i.e. for p > 3/4). And in this case we have

(
S (bntc) /n2p−1

)
t≥0 converges to(

t2p−1L
)
t≥0 almost surely as n→∞, where L is a non-degenerate random variable with

mean zero, and is non-Gaussian.
We define the number of times the ERW visits origin up to the n-th step, namely

Z(n) := Card{1 ≤ k ≤ n : S(k) = 0}

The asymptotic behaviour of Z(n) has been studied in the diffusive regime by Bertoin
in [6], in which he shows

lim
n→∞

Z(n)√
n

= V in distribution (1.2)

where V is a random variable that is non-zero almost surely. Additionally, here we can
verify the ERW is recurrent at origin for p ≤ 3/4 from (1.1) and (1.2). By noting that the
ERW is transient in the supercritical regime, we obtain Z(n) is finite a.s. The purpose of
this work is to treat the critical case for the counting zero process Z(n). Specifically, we
show that

Theorem 1.1.
lim
n→∞

logZ(n)/ log n = A/2 in distribution (1.3)

where A has arcsine distribution, i.e.

lim
n→∞

P (Z(n) ≤ na) =
2

π
arcsin

(√
2a
)

for ∀a ∈ [0, 1/2]

Note A has the same law as the last passage time at zero of standard Brownian motion
before time 1. The above theorem tells us under the logarithmic scale Z(n) grows
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asymptotically at the speed of nA/2, where 0 < A ≤ 1 a.s. Meanwhile, the trend of
convergence observed in the simulation titled “Scaling limit of counting zero process
of critical ERW” in Figure 1 aligns with our theoretical result. Moreover, (1.3) implies
that, as n approaches infinity, under logarithmic scale most zeros occur right before the
last time the critical ERW leaves origin, which motivates us to define the process that
describes the last time the critical ERW leaves the origin before time n, i.e.

G(n) := max{k ≤ n : S(k) = 0}

As an important step that contributes to the proof of joint convergence in the later part
of the paper, we briefly present the following result at this point. We obtain the limiting
behaviour of the process (G(n))n≥0,

lim
n→∞

logG(n)/ log n = A in distribution

The preceding result shows under logarithmic scale the last time the critical ERW leaves
origin before step n grows approximately like nA, where 0 < A ≤ 1 a.s. This is natural,
as the last time the critical ERW leaves origin before n is upper bounded by n. Then as
the paramount of the work, we have joint convergence between the processes G(n) and
Z(n). Here we will prove the following result

lim
n→∞

logZ(nt)

logG(nt)
=

1

2
in probability

Observe that the simulation named “Scaling limit of joint process” in Figure 1 supports
our idea, i.e. the function has the trend of approaching 1/2 as n→∞.

In this work, we also investigate the behaviour of the first return time of critical ERW,
and here we denote it as

R := inf{k ≥ 1 : S(k) = 0}

Theorem 1.2. The estimation for the tail distribution of the first return time is given as
below

P(R > n) ∼ 2

π

√
2

log n
as n→∞ (1.4)

This result demonstrates a very heavy tail behaviour, indicating that the critical ERW
returns to the origin slower than a 2-dimensional simple random walk. Specifically, for a
2-dimensional simple random walk, the tail distribution of the first return time decays
asymptotically as π/(2 log n) as n→∞.

Remark 1.3. Lots of work has also been carried out for the case of multidimensional
elephant random walk (MERW), which is a natural extension of the 1-dimensional ERW.
It is a nearest neighbour process on Zd for d ≥ 2. The asymptotics of MERW has been
addressed by [3, 4, 5]. Recently the recurrence-transience property of MERW has been
established in [10, 11]. Unlike the 1-dimensional ERW, MERW is transient at criticality,
and is only recurrent in the subcritical regime when d = 2. For d ≥ 3, MERW is always
transient for all memory parameters.

The plan of the rest of paper is as follows: In Section 2 we introduce the background
for critical ERW, and as having been pointed out by [8], there exists a sequence of real
numbers (an)n≥0 such that (anS(n))n≥0 is a martingale, and it can be embedded into a
Brownian motion. In Section 3, we employ Brownian excursion theory to express the
number of zeros visited by critical ERW in terms of the Brownian excursion intervals
away from origin. And we establish a limiting result regarding the joint distribution
between counting zero process and the process of the last time the critical ERW visits
origin. In Section 4, we conclude with the establishment of a concentration inequality
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for stopping times arising from the Brownian embedding and the derivation of a tail
estimate for the first return time of the critical ERW.

Before ending the introduction, we point out a few conventions we adopt in notation
throughout the text. In numerous instances, the bounds we provide for certain quantities
rely on one or more variables, typically denoted as k and n, while the constant component
of these bounds, often denoted as c, remains independent of k or n. Moreover, this
constant may vary across different contexts. In some scenarios where the constant
c depends on further variables, such as q (commonly encountered when applying the
Burkholder-Davis-Gundy inequality), we denote it as cq. Moreover, the function o(1) used
in various contexts should be considered as different functions that each approaches 0 as
the variable of each function tends to infinity. And we write (f(t), g(t)) ∼ (h(t),m(t)) as
t→∞ if and only if we have both limt→∞ f(t)/h(t) = 1 and limt→∞ g(t)/m(t) = 1, where
f, g, h,m are functions defined on the same space.

2 Preliminaries for critical ERW and its Brownian embedding

Before starting to prove our main result, we collect some facts and ideas relating
specifically to critical ERW that we will use later.

Here, we assert that the distribution of the first step of critical ERW does not affect
its visit to origin. This is because if we maintain the dynamics of the random walk S while
simply reversing the direction of the first step, we obtain its mirror-symmetric path −S,
which does not alter the number of zeros visited by the random walk. Therefore, without
loss of generality, we assume the first step of the random walk is Rademacher(1/2)-
distributed. We denote throughout the text P0 to be the law for the critical ERW.

Next, we define

a0 := 0 and an =
Γ(n)

Γ(n+ 1/2)
for n ≥ 1

Then by Stirling’s formula, we have

an ∼ n−1/2 as n→∞ (2.1)

The next lemma is a restatement of Lemma 2.1 in [6], which sums up basic properties
for critical ERW we need for this work.

Lemma 2.1. For every even number k ≥ 0, we have

(i) The process (M(n))n≥0 := (anS(n))n≥0 is a martingale under P0.

(ii) Its (n+ 1)-th increment

∆M(n+ 1) := M(n+ 1)−M(n)

satisfies

∆M(n+ 1) = − 1

2(n+ 1/2)
M(n)± an+1

(iii) For every q ≥ 1, one has

E(|M(n)|2q) ≤ cq(log n)q

Proof. The proof for (i) and (ii) are immediate from [6, Lemma 2.1] by setting p = 3/4.
Here we only prove (iii). Since, plainly |M(n)| ≤ nan and one has∣∣∣∣ 1

2(n+ 1/2)
M(n)

∣∣∣∣ ≤ an+1
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by (ii), we have |∆M(n+ 1)| ≤ 2an+1, then we can bound the quadratic variation of M
from above by 〈M,M〉(n) ≤ 4An, where An is defined as

An :=

n∑
i=1

a2i (2.2)

In light of (2.1), we have An ∼ log n as n→∞. We finish the proof with an application of
Burkholder-Davis-Gundy inequality [12, see e.g. Chapter IV.4].

Now we introduce the main tool for our work, namely Skorokhod embedding theorem
for martingales, and the idea originates from [8]. Here (M(n))n≥0 is a martingale
starting from the origin almost surely. We can construct a new probability space in
which there exists a standard Brownian motion (B(t))t≥0 and a sequence of increasing
stopping times (Tn)n≥0 such that for every n ≥ 0, M(n) has the same distribution as
B(Tn). By (ii) in Lemma 2.1, we can define the aforementioned stopping times through
a binary splitting martingale (M(n))n≥0, as at every step it is supported by two values,
moreover, we set T0 := 0, for every n ≥ 0, we define recursively

Tn+1 := inf

{
t > Tn : B(t)−B(Tn) = − 1

2(n+ 1/2)
B(Tn)± an+1

}
(2.3)

In this way, not only do we have

{M(n), n ≥ 0} (d)
= {B(Tn), n ≥ 0}

actually, without loss of generality, we may work with a realisation of ERW such that the
above relation holds almost surely.

The following lemma, which is a direct consequence of the above comment, is a
cornerstone of our work that connects the zeros of the critical ERW and that of its
Brownian embedding path. We first define the notation representing zero set for critical
ERW:

Z := {n ≥ 0, S(n) = 0}

Lemma 2.2. [6, Lemma 2.2] The next inclusions hold P0-a.s

{Tn, n ∈ Z} ⊂ {t ≥ 0, B(t) = 0} ⊂
⋃
n∈Z

[Tn, Tn+1)

Remark 2.3. In order to count actual zeros of the critical ERW from its Brownian
embedding path, it requires us to find a way to filter out zeros from set {t ≥ 0, B(t) =

0}\{Tn, n ∈ Z}. This motivates us to introduce a selection criterion based on the absolute
height of the excursion process of the Brownian embedding path in the next section.

3 Proof of Theorem 1.1

The purpose of this section is to establish the joint convergence between the processes
G(n) and Z(n) and the precise version of the convergence appeared in (1.3). We start
this section by introducing a few notations that will be used throughout the upcoming
text.
The counting zero process for the critical ERW before time n can be expressed as

Z(n) := Card{1 ≤ k ≤ n : k ∈ Z}

Recall the definition of the last time the critical ERW leaves origin before time n, and we
denote it as

GS(n) := max{k ≤ n : S(k) = 0} (3.1)
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Define the last exit time of the Brownian motion from origin before time t as

GB(t) := sup{s ≤ t : B(s) = 0} (3.2)

Next we present our main result for this section, and the rest of the section is devoted
to its proof.

Proposition 3.1. We have the following convergences.

1. For every t ≥ 0,
logZ(nt)

logGS(nt)

(P)−−−−→
n→∞

1

2

2. The following weak convergence holds in the sense of finite dimensional distribution(
logGS(nt)

log n

)
t≥0

(d)−−−−→
n→∞

(
GB(t)

)
t≥0

3. The following weak convergence holds in the sense of finite dimensional distribution(
log(Z(nt))

log n

)
t≥0

(d)−−−−→
n→∞

(
GB(t)

2

)
t≥0

Proposition 3.1.3 is actually a generalisation of Theorem 1.1. Thus, it suffices for us
to prove the above proposition.

Plan of the section: we first prove Proposition 3.1.2, followed by a proof to Proposi-
tion 3.1.1, then we wrap up with a short proof to Proposition 3.1.3.

The next lemma will be helpful in proving the Proposition 3.1.2.

Lemma 3.2. Let (fn)n≥0 and f be real-valued functions on R+. For all n ∈ N and s ∈ R+,
let gn(s) := sup{r ≤ s, fn(r) = 0} and g(s) := sup{r ≤ s, f(r) = 0}. For fixed t ∈ R+ and
suppose that the following conditions hold:

(i) The function f is continuous. And for any δ > 0, there exist points m,n ∈ (g(t)−
δ, g(t)) such that f(m) > 0 and f(n) < 0.

(ii) For each fn and for any x, y ∈ R+ such that fn(x) > 0 and fn(y) < 0, there exists
z ∈ (x ∧ y, x ∨ y) such that fn(z) = 0.

(iii) fn converges uniformly to f on R+.

then gn(t) converges to g(t) as n→∞.

Condition (i) in Lemma 3.2 states that the function must take both strictly positive
and strictly negative values immediately before the last time it visits the origin. For
functions to fulfill (ii), even if they are not continuous, they must pass through the origin
every time they change their sign. A concrete example would be the object we saw in
(1.1), where f is the standard 1-dimensional Brownian motion, and it obviously fulfills
condition (i). We take the fn’s to be the rescaled critical ERW, which indeed satisfies
(ii). Recall also that the convergence to a continuous function in Skorokhod topology is
equivalent to the uniform convergence on compact intervals.

Proof. For a fixed t ∈ R+ as mentioned above, we will first consider the case where
g(t) 6= t. Without loss of generality, we assume f > 0 on (g(t), t]. For every δ > 0, by (ii),
there exists m ∈ (g(t)− δ, g(t)) such that f(m) < 0. Here, we take any l ∈ (g(t), g(t) + δ),
which by assumption we know f(l) > 0. We denote η := min

{
−f(m), f(l), infs∈[l,t] f(s)

}
.

For every ε ∈ (0, η), by (iii), there exists N ∈ N such that for all n > N , we have
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|fn(m)−f(m)| < ε and sups∈[l,t] |fn(s)−f(s)| < ε. Thus, for all n > N , we have fn(m) < 0

and fn(s) > 0 for every s ∈ [l, t]. Combining with (i), we know gn(t) ∈ (m, l), which gives
us gn(t) ∈ (g(t)− δ, g(t) + δ). Note that since δ > 0 was chosen arbitrarily, this completes
the proof. We then consider the case where g(t) = t, the conclusion follows directly from
the above three conditions.

Proof of Proposition 3.1.2. Recall in (1.1), we have the following weak convergence in
Skorokhod topology on R+(

S (bntc)√
log nnt/2

, t ≥ 0

)
(d)−−−−→
n→∞

(B(t), t ≥ 0) (3.3)

where (Bt, t ≥ 0) is a standard 1-dimensional Brownian motion. Combining (3.3),
Skorokhod representation theorem and the continuity of Brownian motion, we can
choose a version of random walk (S (bntc) ; t ≥ 0), which we denote as

(
S(n) (bntc) ; t ≥ 0

)
such that (

S(n)
(
bntc

)
; t ≥ 0

)
(d)
=
(
S
(
bntc

)
; t ≥ 0

)
for every n ∈ N (3.4)

and a version of Brownian motion (B(t), t ≥ 0), which we denote as (B̃(t), t ≥ 0) such
that

(B̃(t), t ≥ 0)
(d)
= (B(t), t ≥ 0) (3.5)

so that we have the following almost sure convergence, which holds with respect to the
uniform topology (

S(n) (bntc)√
log nnt/2

, t ≥ 0

)
a.s.−−→ (B̃(t), t ≥ 0) as n→∞ (3.6)

Thus, by (3.6) and Lemma 3.2, we obtain for every t ∈ R+ the last zero before time t of
the random walk

(
S(n) (bntc) ; t ≥ 0

)
converges almost surely to that of (B̃(t), t ≥ 0) as

n→∞. We conclude by putting together (3.4), (3.5), and the fact that for every t ∈ R+

and every n, logGS(nt)
logn is the last time the rescaled critical ERW

(
S(bntc)√
lognns/2 , 0 ≤ s ≤ t

)
visits 0 before time t.

To prepare ourselves with the proof of Proposition 3.1.1, we now introduce the
selection method we mentioned in Remark 2.3, as our task is to identify the zeros in the
Brownian embedding path that originates from the critical ERW. Let’s recall a compact
interval [l, r] is said to be an excursion interval for Brownian motion B if and only if
B(l) = B(r) = 0 and B(t) 6= 0 for every t ∈ (l, r). From here on we denote l, r as the
left and right extremity of the excursion intervals of the Brownian embedding path for
the critical ERW. By Lemma 2.2, we deduce that for any excursion interval [l, r], either
its right-extremity is given by r = Tn for some n ∈ Z, then we say all such excursion
intervals count, as the number of such intervals coincides with the number of times the
critical ERW returns to the origin; or else the excursions will be contained in interval
(Tn, Tn+1) for some n ∈ Z, and we say all such [l, r]’s don’t count, since these excursion
intervals arise from the Brownian embedding path and not the ERW. Moreover, note Tn
here is a stopping time, by strong Markov property of Brownian motion, it will never be
the left extremity of an excursion interval. Thus, this enables us to identify the number
of zeros visited by critical ERW before time n and the number of excursion intervals that
count in the Brownian embedding trajectory on interval [0, Tn]. This leads us to define
the next right-continuous process (α(t))t≥0,

α(t) := an+1 for t ∈ [Tn, Tn+1)
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From the above construction, we know for every excursion interval [l, r] ⊂ (Tn, Tn+1),
for some n ∈ Z, we have, α(l) = an+1 and maxt∈[l,r] |B(t)| < α(l), since Tn+1 is the first
time Brownian embedding path touches ±an+1. That is to say, excursion intervals with
maxt∈[l,r] |B(t)| ≥ α(l) are those not contained in (Tn, Tn+1) for some n ∈ Z, i.e. they
count. We sum up the preceding lines with the next lemma.

Lemma 3.3. [6, Lemma 3.3] For every n ≥ 0, Z(n) coincides with the number of
excursion intervals [l, r] ⊂ [0, Tn] with maxt∈[l,r] |B(t)| ≥ α(l).

We also need the approximations for Tn and α(t) for the proof of Proposition 3.1.1.

Lemma 3.4. The next two relations hold P0-a.s,

(i) Tn = (1 + o(1)) log n as n→∞

(ii) α(t) = exp
(
− t

2 (1 + o(1))
)

as t→∞

Proof. (i) is a direct result from [8, Equation (12)]. And define the map T−1 : R+ → N by
T−1(t) = n+ 1 for Tn ≤ t < Tn+1. This is to help us locate which interval t falls into, and
with (i), we obtain

T−1(t) = exp (t(1 + o(1))) as t→∞

Then (ii) follows by the definition of α(t), i.e. α(t) = aT−1(t) ∼ (T−1(t))−1/2 as t→∞.

Now in order to move forward, we provide some elements of Brownian excursion
theory that will be of direct use in our proof. Please refer to Chapter XII in [12] for
more detail. Here we denote (L(t))t≥0 as the Brownian local time at level 0, which is
an increasing continuous adapted process that starts from origin at time 0, and the
support for its Stieljes measure dL is the set {s ≥ 0 : Bs = 0}. And for u ≥ 0, we
define the inverse local time at u as τu := inf{t ≥ 0 : L(t) > u}. It is a right-continuous
process, so now we can identify all excursion intervals with ([τu−, τu])u≥0 whenever
τu − τu− > 0, and there are at most countably many such u’s. It is a well-known result
that {(u, hu), u ≥ 0, τu − τu− > 0} is a Poisson point process with intensity h−2dhds on
R+×R, where ds and dh are both Lebesgue measures and hu := maxt∈[τu−,τu] |Bt|, which
is the absolute height of the Brownian trajectory over the excursion interval.

From the previous discussion, we define the following counting process

ν(t) := Card ({0 < u ≤ t : hu ≥ α(τu−)}) t ≥ 0

The next lemma provides asymptotic behaviour of the above counting process.

Lemma 3.5. [6, Lemma 3.5] With probability one, we have

ν(t) ∼
∫ t

0

du

α(τu)
as t→∞

We next proceed with the proof of Proposition 3.1.1.

Proof of Proposition 3.1.1. In order to prove Proposition 3.1.1, it suffices for us to find,
for every t ≥ 0, the limiting law of(

logGS(nt)

log n
,

logZ(nt)

log n

)
We start by dealing with the second coordinate. Given Lemma 3.3, we have Z(nt) =

ν(L(Tbntc)). Together with Lemma 3.5, this yields

Z(nt) ∼
∫ L(Tbntc)

0

du

α(τu)
=

∫ Tbntc

0

dL(u)

α(u)
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From a change of variable for Stieljes integral and Lemma 3.4 (i), we have∫ Tbntc

0

dL(u)

α(u)
∼
∫ t

0

dL(u log n)

α(u log n)
(3.7)

Recall GB(t) defined in (3.2) is the last time the standard Brownian motion leaves origin
before time t. In light of Brownian scaling property,(

GB(t log n), L(t log n)
)
t≥0

(d)
=
(
GB(t) log n,

√
log nL(t)

)
t≥0

(3.8)

and Lemma 3.4 (ii) gives us almost surely

α(u log n) = exp
(
−u

2
(1 + o(1)) log n

)
as n→∞ (3.9)

Then for every t ≥ 0, we can write(
logGS(nt)

log n
,

logZ(nt)

log n

)
∼
(
GB(t log n)

log n
,

1

log n
log

∫ t

0

dL(u log n)

α(u log n)

)
as n→∞ (3.10)

where we used {M(n), n ≥ 0} a.s.= {B(Tn), n ≥ 0} and Lemma 3.4 (i) for the asymptotic
equivalence in first coordinate while (3.7) tells us that of the second coordinate. We
observe, in (3.10), finding the limiting law of the left hand side is equivalent to finding
that of the right hand side.
Because of (3.8) and (3.9), the right hand side of (3.10) has the same law as(

GB(t),
1

log n

(
log
(√

log n
)

+ log

∫ t

0

exp
((u

2
+ o(1)

)
log n

)
dL(u)

))
as n→∞

(3.11)
Next, we work on finding the almost sure limit of the second coordinate in (3.11). With
an application of Brownian local time property, L(t) = L(GB(t)), we have the following
relations hold almost surely,∫ t

0

exp
((u

2
+ o(1)

)
log n

)
dL(u) ≤ exp

((
GB(t)

2
+ o(1)

)
log n

)
L(t) (3.12)

In the same fashion, let any η > 0∫ t

0

exp
((u

2
+ o(1)

)
log n

)
dL(u) ≥

exp

((
GB(t)− η

2
+ o(1)

)
log n

)
(L(GB(t))− L(GB(t)− η)) (3.13)

since for every η > 0, we have L(GB(t) − η) < L(GB(t)) almost surely. By putting
together (3.11), (3.12), (3.13) and a use of the continuous mapping theorem, we finish
the proof by first sending n→∞ then η → 0.

Proof of Proposition 3.1.3. It follows from Proposition 3.1.1, 3.1.2 together with Slutsky
theorem.

4 Proof of Theorem 1.2

In this section, we begin by proving a concentration inequality for the distribution of
stopping times that arose in the Brownian embedding of the critical ERW. Subsequently,
we use this result to derive a tail estimate for the first return time of the critical ERW.

Define the first time critical ERW comes back to origin, as

R := inf{n ≥ 1 : S(n) = 0}
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Theorem 4.1. We have the following tail estimate for the first return time

lim
n→∞

√
log nP0(R > n) =

2
√

2

π

Notice in the next proposition the probability measure P represents the Wiener
measure for the Brownian embedding path defined in Section 2. Recall An :=

∑n
i=1 a

2
i

which has been defined in (2.2) and An ∼ log n as n→∞.

Proposition 4.2. For every ε > 0, r ≥ 1, we have

P

(
sup
l≤n
|Tl −Al| ≥ ε log n

)
≤ cε,r

(
log n

n

)r
The first half of this section will be devoted to proving Proposition 4.2. Inspired by the

definition of the stopping times in (2.3) that allows us to perform Brownian embedding,
we define the following stopping time

τ(x, y) := inf{t ≥ 0 : |B(t) + y| = x}

which is the first time a Brownian motion starts from y and leaves interval (−x, x).

We write (Ft)t≥0 the natural filtration induced by the Brownian motion (B(t))t≥0. We
define the increment between adjacent stopping times given in (2.3) as, for n ≥ 0

∆Tn+1 := Tn+1 − Tn = inf

{
t > 0 : B(Tn + t)−B(Tn) = − 1

2(n+ 1/2)
B(Tn)± an+1

}
By conditioning ∆Tn+1 on FTn

, the above line indicates on the event {B(Tn)} = b, for
some b = anZ, the strong Markov property together with the definition of τ(x, y) gives
us the conditional distribution of ∆Tn+1 given FTn

is the same as that of

τ

(
an+1,−

1

2(n+ 1/2)
b

)
Hence on the event {B(Tn)} = b, for some b = anZ, together with Lemma 4.4 (ii) in [6]
yields

E (∆Tn+1|FTn) = a2n+1 −
1

4(n+ 1/2)2
B2(Tn)

It prompts us to introduce

V (n) :=

n∑
j=1

1

4(n+ 1/2)2
B2(Tj)

Thus, we can write

N(n) := Tn −An + V (n), for n ≥ 0

and it is a martingale.

Lemma 4.3. For every integer m ≥ 1, we have the following inequality

E (V (n)m) ≤ cm
nm/2
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Proof. By the definition of Vk(n), we can write

E (V (n)m) = 2−2m
n−1∑

j1,...jm=1

E
(
B2(Tj1)

)
· · ·E

(
B2(Tjm)

)
(j1 + 1/2)

2 · · · (jm + 1/2)
2

≤
n−1∑

j1,...jm=1

(
E
(
B2m(Tj1)

)
· · ·E

(
B2m(Tjm)

))1/m
(j1 + 1/2)

2 · · · (jm + 1/2)
2

≤ cm
n−1∑

j1,...jm=1

log j1 · · · log jm

(j1 + 1/2)
2 · · · (jm + 1/2)

2 ≤ cm

n−1∑
j=1

1

j3/2

m

where in the second line we invoke Hölder inequality and we use Lemma 2.1 (iii) on the
first inequality in the third line.

The following upper bound from Lemma 4.6 in [6] for Nk(n) is crucial in our later
proof, here for reader’s convenience, we write it under the setting of k = 0, p = 3/4.

Lemma 4.4. For every q ≥ 1, we have

E

(
sup

1≤l≤n
N(l)2q

)
≤ cqn−q

Now we are equipped to proving Proposition 4.2.

Proof of Proposition 4.2. Since from the definition of N(n), we have the following upper
bound

sup
l≤n
|Tl −Al| ≤ sup

l≤n
|N(l)|+ V (n)

then followed by Lemma 4.3 and 4.4, we know for m ≥ 1,

E

(
sup
l≤n
|Tl −Al|2m

)
≤ cmn−m

We finish the proof by an easy application of Markov inequality.

Proof of Theorem 4.1. This proof goes in the same spirit as in [6] with minor differences.
Here we still provide the proof for the sake of completeness. For every s > 0, n ≥ 0, we
have

{TR ≥ s} = {TR ≥ s,R ≥ n} ∪ {TR ≥ s,R < n} ⊂ {R ≥ n} ∪ {Tn ≥ s}

Hence, we have the lower bound

P0(R ≥ n) ≥ P(TR ≥ s)− P(Tn ≥ s) (4.1)

Then by Lemma 4.7 in [6], we know, for any s > 0

s 7→

∣∣∣∣∣
√
πs

2
P(TR ≥ s)−

√
2

π

∣∣∣∣∣
converge to 0, as s→∞. Thus, by taking s = (1 + ε)An, for any ε > 0, we obtain

lim
n→∞

√
π log n

2
P (TR ≥ (1 + ε)An) =

√
2

π(1 + ε)

Also, by Proposition 4.2 together with taking s = (1 + ε)An, for any ε > 0, we have
√
π log n

2
P (Tn ≥ (1 + ε)An) ≤

√
π log n

2
P (Tn −An ≥ ε log n)

n→∞−−−−→ 0
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where we use for every n, An = log n+γ+O( 1
n ), where γ is the so called Euler-Macheroni

constant and O( 1
n ) is a positive term, thus An ≥ log n. Together with (4.1) gives us

lim inf
n→∞

√
π log n

2
P0(R ≥ n) ≥

√
2

π(1 + ε)

On the other hand, for every s > 0, n ≥ 0

{R ≥ n} = {R ≥ n, Tn ≥ s} ∪ {R ≥ n, Tn < s} ⊂ {TR ≥ s} ∪ {Tn < s}

from which we have the upper bound,

P0(R ≥ n) ≤ P(Tk,R ≥ s) + P(Tk,n < s)

Then similar to the case for lower bound, we get

lim sup
n→∞

√
π log n

2
P0(R ≥ n) ≤

√
2

π(1− ε)

Lastly, by letting ε→ 0, we finish the proof.
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