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Abstract

Given a general Itô semimartingale, its Markovian projection is an Itô process, with
Markovian differential characteristics, that matches the one-dimensional marginal
laws of the original process. We construct Markovian projections for Itô semimartin-
gales with jumps, whose flows of one-dimensional marginal laws are solutions to
non-local Fokker–Planck–Kolmogorov equations (FPKEs). As an application, we show
how Markovian projections appear in building calibrated diffusion/jump models with
both local and stochastic features.
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1 Introduction

The Markovian projection arises in the problem where we want to mimic the one-
dimensional marginal laws of an Itô process using another one with simpler dynamics.
To be more specific, suppose we are given an Itô process X whose characteristics
are general stochastic processes. Our goal is to find another Itô process X̂ solving a
Markovian SDE, i.e. the coefficients are functions of time and the process itself, such
that the law of X̂t agrees with the law of Xt for every t ≥ 0. The process X̂ is called a
Markovian projection of X.

The terminology Markovian projection has no standard definition, but is widely used
in literature. Some authors require the mimicking process X̂ to be a true Markov process,
while others (including our paper) only require X̂ to solve a Markovian SDE and we
know the Markov property is not guaranteed in general. Also, some authors prefer to
use alternative terminologies like “mimicking process” or “mimicking theorem” when
referring to the same problem.

The idea of Markovian projections for Itô processes originated from Gyöngy [8],
which was inspired by Krylov [12]. In [8] Markovian projections were constructed
for continuous Itô semimartingales, under some boundedness and non-degeneracy
conditions on the coefficients. Brunick and Shreve [5] extended the results of [8]
by relaxing the assumptions therein to an integrability condition. They also proved
mimicking theorems for functionals of sample paths such as running average and
running maximum, using techniques of updating functions. Bentata and Cont [4] studied
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Markovian projections for Itô semimartingales with jumps

Markovian projections for Itô semimartingales with jumps. Their proof was based on a
uniqueness result of the FPKE, and the mimicking process they constructed was Markov.
To get such results, they imposed relatively strong assumptions on the coefficients
such as continuity, which is not always easy to check in practice. See also Köpfer and
Rüschendorf [11] for work closely related to [4].

In this paper, we construct Markovian projections for càdlàg Itô semimartingales.
Our results holds under reasonable integrability and growth conditions. In the context
of mimicking marginal laws of the process itself, this paper complements Brunick and
Shreve [5] by allowing the diffusion process to have jumps. On the other hand, we work
under different settings from Bentata and Cont [4]. Our assumptions are weaker in
most cases, at the cost of not guaranteeing the uniqueness and Markov property of the
mimicking process. One of our main tools is the superposition principle established by
Röckner, Xie and Zhang [16], which constitutes a bridge from weak solutions of non-local
FPKEs to martingale solutions for the associated non-local operator. The idea of using a
superposition principle to prove a mimicking theorem seems to have been first used in
Lacker, Shkolnikov and Zhang [14].

This paper is organized as follows. In Section 2 we gather all the required prelimi-
naries. In Section 3 we state and prove our main result (Theorem 3.2). In Section 4 we
provide several examples to illustrate how the theorem can be applied.

Throughout this paper, we let (Ω,F , (Ft)t≥0,P) be a filtered probability space satisfy-
ing the usual conditions, and we use the following notation:

• R+ = [0,∞).
• Sd+ is the set of symmetric positive semi-definite d× d real matrices.
• C0(Rd) (resp. Cc(Rd)) is the set of continuous functions on Rd which vanish at

infinity (resp. have compact support).
• P(X) is the space of Borel probability measures on a Polish space X, endowed

with the topology of weak convergence.

2 Prerequisites and preliminary results

This section serves as a preparation for stating and proving our main results. In the
sequel, we review some standard notions and present two key lemmas.

2.1 Transition kernel

In the study of the characteristics of Itô semimartingales with jumps (see Section 2.3)
and other fields like Markov processes, the notion of transition kernels comes into play.
In this subsection, we recall some of the standard definitions and fix some terminologies
for our later use.

Definition 2.1 (Transition kernel). Let (X,A), (Y,B) be two measurable spaces. We call
κ : X × B → [0,∞] a transition kernel from X to Y if:

(i) for each x ∈ X, the map κ(x, ·) : B → [0,∞] is a measure,
(ii) for each B ∈ B, the map κ(·, B) : X → [0,∞] is a measurable function.

When X = Ω, we also call κ a random measure. We often use the notation κ(dy),
omitting its dependency on ω ∈ Ω. When X = Ω × R+, for each fixed t ≥ 0, the map
(ω,B) 7→ κ(ω, t, B) is a random measure and we denote it by κt(dy). In the latter case,
we assume by default that A is the product σ-algebra F × B(R+). If we require stronger
measurability, e.g. with respect to the predictable σ-algebra, we will explicitly say so.

The following terminologies will be convenient for our later use.

Definition 2.2. Let (X,A), (Y,B) be two measurable spaces, and κ be a transition kernel
from X to Y .
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Markovian projections for Itô semimartingales with jumps

(i) We say κ is a finite transition kernel if for each x ∈ X, κ(x, Y ) <∞.
(ii) When Y = Rd, we say κ is a Lévy transition kernel if for each x ∈ X, κ(x, dy) is a

Lévy measure on Rd, i.e.

κ(x, {0}) = 0 and

∫
Rd

1 ∧ |y|2 κ(x, dy) <∞.

(iii) When X = Ω ×R+ and A is the predictable σ-algebra, we say κ is a predictable
transition kernel. That is, for each B ∈ B, (ω, t) 7→ κ(ω, t, B) is a predictable
process.

2.2 Key lemmas

Now we present two lemmas which are crucial in proving our main results. These
lemmas are also of interest on their own. The first lemma was proved by Brunick and
Shreve [5], which we quote below.

Lemma 2.3 (cf. [5], Proposition 5.1). Let X be an Rd-valued measurable process, and α
be a C-valued measurable process, where C ⊆ Rn is a closed convex set, satisfying

E

[ ∫ t

0

|αs| ds
]
<∞, ∀ t > 0.

Then, there exists a measurable function a : R+ ×Rd → C such that for Lebesgue-a.e.
t ≥ 0,

a(t,Xt) = E[αt |Xt].

Remark 2.4. For each fixed t ≥ 0, we all know E[αt |Xt] is some measurable function
of Xt. However, the joint measurability of a is less obvious, and this is the key point
of Lemma 2.3. The proof of this lemma is constructive. Indeed, we define the σ-finite
measure µ and the σ-finite vector-valued measure ν via

µ(A) := E

[∫ ∞
0

1A(s,Xs) ds

]
, A ∈ B(R+ ×Rd),

ν(A) := E

[∫ ∞
0

αs1A(s,Xs) ds

]
, A ∈ B(R+ ×Rd).

(2.1)

Clearly, we have ν � µ. Then, we can choose function a to be any version of the
Radon–Nikodym derivative dν

dµ . For more details, see the proof in [5].

The second lemma is novel, and it is an analogue of Lemma 2.3 in terms of transition
kernels. We will construct a kernel k(t, x, dξ) from R+ ×Rd to Rd satisfying an identity
involving conditional expectations. The key point is to find a family of measures indexed
by (t, x), and simultaneously preserve the joint measurability in (t, x).

Lemma 2.5. Let X be an Rd-valued measurable process, and κ be a transition kernel
from Ω×R+ to Rd satisfying

E

[ ∫ t

0

κs(R
d) ds

]
<∞, ∀ t > 0. (2.2)

Then, there exists a finite transition kernel k from R+×Rd to Rd such that for Lebesgue-
a.e. t ≥ 0,

k(t,Xt, A) = E[κt(A) |Xt], ∀A ∈ B(Rd). (2.3)

Proof. By the integrability condition (2.2), without loss of generality, we may assume
that κ is a finite transition kernel. Otherwise, we can simply modify κ(·, ·, dξ) := 0 on a
(P⊗ dt)-null set.
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Our proof is based on the Riesz–Markov–Kakutani representation theorem for the
dual space of C0(Rd). Since nonzero constant functions do not belong to C0(Rd), for
technical reasons we first consider the function space

C`(R
d) := C0(Rd)⊕R = {f + c : f ∈ C0(Rd), c ∈ R}.

In other words, C`(Rd) is the space of continuous functions on Rd which admit a finite
limit at infinity. We endow C`(R

d) with the supremum norm. Since C0(Rd) is a separable
Banach space, it is easy to check that C`(Rd) is also a separable Banach space. Let C
be a countable dense subset of C`(Rd) with 1 ∈ C. Let L be the Q-span of C, i.e. the
collection of all finite linear combinations of elements of C with rational coefficients.
Clearly, L is a countable dense subset of C`(Rd) with 1 ∈ L. Moreover, L is a vector
space over Q by construction.

For each ϕ ∈ L, by (2.2) and Lemma 2.3, there exists an R-valued measurable
function of (t, x) ∈ R+ ×Rd, denoted by Lt,x(ϕ), such that for Lebesgue-a.e. t ≥ 0,

Lt,Xt
(ϕ) = E

[∫
Rd

ϕ(ξ)κt(dξ)

∣∣∣∣Xt

]
. (2.4)

Now for fixed (t, x) ∈ R+ ×Rd, we can view ϕ 7→ Lt,x(ϕ) as a functional on L. We expect
Lt,x to be a positive Q-linear functional, but this is not guaranteed unless for each ϕ ∈ L
we carefully modify the function (t, x) 7→ Lt,x(ϕ).

As discussed in Remark 2.4, (t, x) 7→ Lt,x(ϕ) is defined via the Radon–Nikodym

derivative dνϕ
dµ , where µ is as defined in (2.1) and

νϕ(A) := E

[∫ ∞
0

1A(s,Xs)

∫
Rd

ϕ(ξ)κs(dξ) ds

]
, A ∈ B(R+ ×Rd).

For ϕ ∈ L with ϕ ≥ 0, we have that νϕ is a (positive) measure, so there exists a µ-null set
Nϕ such that for all (t, x) /∈ Nϕ,

Lt,x(ϕ) ≥ 0. (2.5)

For ϕ,ψ ∈ L and p, q ∈ Q, by the uniqueness of the Radon–Nikodym derivative, there
exists a µ-null set Nϕ,ψ,p,q such that for all (t, x) /∈ Nϕ,ψ,p,q,

Lt,x(pϕ+ qψ) = pLt,x(ϕ) + qLt,x(ψ). (2.6)

We define the µ-null set

N :=

( ⋃
ϕ∈L,ϕ≥0

Nϕ

)
∪

( ⋃
ϕ,ψ∈L,p,q∈Q

Nϕ,ψ,p,q

)
.

For each ϕ ∈ L, we modify Lt,x(ϕ) := 0 for (t, x) ∈ N and keep the same notation. Now
by construction, (2.5) holds for all (t, x) ∈ R+ ×Rd, ϕ ∈ L with ϕ ≥ 0, and (2.6) holds for
all (t, x) ∈ R+ ×Rd, ϕ,ψ ∈ L, p, q ∈ Q. Thus, for fixed (t, x) we see that Lt,x is a positive
Q-linear functional on L. Moreover, for each ϕ ∈ L, the function (t, x) 7→ Lt,x(ϕ) is still a

version of dνϕ
dµ , so (2.4) remains true for Lebesgue-a.e. t ≥ 0.

The next step is to extend Lt,x to C`(Rd) for each fixed (t, x) ∈ R+ ×Rd. Let ϕ ∈ L,
and take a sequence (qn)n∈N ⊂ Q decreasing to ‖ϕ‖∞. Note that |ϕ| ≤ qn for all n, so it
follows that

−qnLt,x(1) ≤ Lt,x(qn + ϕ)− Lt,x(qn) = Lt,x(ϕ) = −Lt,x(qn − ϕ) + Lt,x(qn) ≤ qnLt,x(1),

i.e. |Lt,x(ϕ)| ≤ qnLt,x(1). Letting n→∞, we obtain that

|Lt,x(ϕ)| ≤ Lt,x(1)‖ϕ‖∞. (2.7)
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By (2.7) and the density of L in C`(Rd), we can uniquely extend Lt,x to a bounded linear
functional on C`(Rd), and (2.7) holds for all ϕ ∈ C`(Rd). Moreover, let ϕ ∈ C`(Rd) with
ϕ ≥ 0, and take a sequence (ϕn)n∈N ⊂ L converging to ϕ. Let 0 < ε ∈ Q. Since ϕn ≥ −ε
for n large enough and Lt,x is positive on L, it follows that

Lt,x(ϕ) = lim
n→∞

Lt,x(ϕn) = lim
n→∞

Lt,x(ϕn + ε)− Lt,x(ε) ≥ −εLt,x(1).

Sending ε → 0 along rational numbers, we get Lt,x(ϕ) ≥ 0. Thus, Lt,x is a positive
bounded linear functional on C`(Rd), and in particular on C0(Rd). By the Riesz–Markov–
Kakutani representation theorem, there exists a finite (positive) Radon measure, denoted
by k(t, x, dξ), such that

Lt,x(ϕ) =

∫
Rd

ϕ(ξ) k(t, x, dξ), ∀ϕ ∈ C0(Rd). (2.8)

We claim that k is a finite transition kernel from R+ × Rd to Rd. For fixed (t, x) ∈
R+ × Rd, by construction k(t, x, dξ) is a finite measure. On the other hand, we have
that Lt,x(ϕ) is measurable in (t, x) for all ϕ ∈ L, thus for all ϕ ∈ C0(Rd) by pointwise
convergence. Since the indicator function of an open cube can be approximated by
functions in C0(Rd), from (2.8) and the monotone convergence theorem we know that
k(t, x,A) is measurable in (t, x) for all open cubes A. Then by Dynkin’s π-λ theorem,
measurability holds for all A ∈ B(Rd). This proves our claim.

It only remains to verify (2.3) for Lebesgue-a.e. t ≥ 0. The way we argue is similar
to the previous paragraph. We already know that for Lebesgue-a.e. t ≥ 0, (2.4) holds
for all ϕ ∈ L since L is countable, and E[κt(R

d)] <∞ due to (2.2). We fix such “good” t.
Now for ϕ ∈ C0(Rd), take a sequence in L converging to ϕ. By pointwise convergence on
the left-hand side and L1-convergence on the right-hand side of (2.4), it is easy to check
that (2.4) holds for all ϕ ∈ C0(Rd). Then by (2.8) and approximation, we know that (2.3)
holds for all open cubes. Finally, Dynkin’s π-λ theorem finishes the proof.

Remark 2.6. Under the framework of Lemma 2.5, with a bit more effort, we can show
that for Lebesgue-a.e. t ≥ 0,∫

Rd

g(Xt, ξ) k(t,Xt, dξ) = E

[∫
Rd

g(Xt, ξ)κt(dξ)

∣∣∣∣Xt

]
(2.9)

holds for all bounded measurable functions g : R2d → R. Indeed, (2.3) implies that (2.9)
holds for all g of the form 1A1×A2

with A1, A2 ∈ B(Rd). Dynkin’s π-λ theorem then
tells us that (2.9) holds for all g of the form 1E with E ∈ B(R2d). Finally, a standard
approximation argument yields the desired result.

2.3 Differential characteristics

In this subsection we briefly review the concept of differential characteristics of Itô
semimartingales. For a detailed discussion, the readers can refer to [9], Chapter II.2.
Note that in this paper, all semimartingales have càdlàg sample paths by convention.

Definition 2.7. We say h : Rd → Rd is a truncation function if h is measurable, bounded
and h(x) = x in a neighborhood of 0.

Now we give the definition of differential characteristics. Recall that an Itô semi-
martingale is a semimartingale whose characteristics are absolutely continuous in the
time variable.

Definition 2.8. Let X = (Xi)1≤i≤d be an Rd-valued Itô semimartingale. The differen-
tial characteristics of X associated with a truncation function h is the triplet (β, α, κ)

consisting in:
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(i) β = (βi)1≤i≤d is an Rd-valued predictable process such that
∫ ·

0
βs ds is the pre-

dictable finite variation part of the special semimartingaleX−
∑
s≤·(∆Xs−h(∆Xs)).

(ii) α = (αij)1≤i,j≤d is an Sd+-valued predictable process such that∫ ·
0

αijs ds = 〈Xi,c, Xj,c〉, 1 ≤ i, j ≤ d,

where Xc = (Xi,c)1≤i≤d is the continuous local martingale part of X.
(iii) κ is a predictable Lévy transition kernel from Ω ×R+ to Rd such that κt(dξ)dt is

the compensator of the random measure µX associated to the jumps of X, namely

µX(dt, dξ) =
∑
s>0

1{∆Xs 6=0}δ(s,∆Xs)(dt, dξ).

We state a well-known property of Itô semimartingales, which will be used in our
main results. Since the proof is short, we present it below for completeness.

Lemma 2.9. Let X be an Itô semimartingale. Then, for each fixed t ≥ 0, ∆Xt = 0 P-a.s.

Proof. Let κ be the third differential characteristic of X, i.e. κs(dξ)ds is the compensator
of µX . Fix t ≥ 0, then by the definition of compensators,

P(∆Xt 6= 0) = E

[∫
R+

∫
Rd

1{s=t} µ
X(ds, dξ)

]
= E

[∫
R+

∫
Rd

1{s=t} κs(dξ) ds

]
= 0.

3 Main results

In this section we present our main results on Markovian projections for Itô semi-
martingales with jumps. Our proof uses the superposition principle for non-local FPKEs
established in [16]. As a consequence, we construct Markovian projections which are
solutions to martingale problems, or equivalently, weak solutions to SDEs.

First we recall the notion of martingale problem. Since we are working with semi-
martingales with jumps, consider the path space D(R+;Rd) of all càdlàg functions from
R+ to Rd, endowed with the Skorokhod topology. Let X be the canonical process, i.e.
Xt(ω) = ω(t) for ω ∈ D(R+;Rd) and t ≥ 0. Let F0 be the natural filtration generated by
X, and F be the right-continuous regularization of F0. Consider the non-local operator
L = (Lt)t≥0 given, for f ∈ C2(Rd) ∩ Cb(Rd) and x ∈ Rd, by

Ltf(x) := b(t, x) · ∇f(x) +
1

2
tr(a(t, x)∇2f(x))

+

∫
Rd

(
f(x+ ξ)− f(x)−∇f(x) · ξ1{|ξ|≤r}

)
k(t, x, dξ),

(3.1)

where b : R+ × Rd → Rd, a : R+ × Rd → Sd+ are measurable functions, k is a Lévy
transition kernel from R+ ×Rd to Rd, and r > 0 is a constant.

Definition 3.1 (Martingale Problem). Let µ0 ∈ P(Rd). We call P̂ ∈ P(D(R+;Rd)) a
solution to the martingale problem (or a martingale solution) for L with initial law µ0, if

(i) P̂ ◦ (X0)−1 = µ0,
(ii) for each f ∈ C2

c (Rd), the process

Mf
t := f(Xt)− f(X0)−

∫ t

0

Lsf(Xs−) ds

is well-defined and an F-martingale under P̂.
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Under some regularity conditions, e.g. local boundedness of b, a,
∫
Rd 1 ∧ |ξ|2 k(·, ·, dξ)

(which holds under the assumptions of Theorem 3.2), (ii) in Definition 3.1 implies that
for each f ∈ C2(Rd) ∩ Cb(Rd), Mf is an F-local martingale under P̂. In particular,
by [9], Theorem II.2.42, X admits differential characteristics b(t,Xt−), a(t,Xt−) and
k(t,Xt−, dξ), associated with the truncation function h(x) = x1{|x|≤r}. We sometimes

also say a process X̃ is a solution to the martingale problem for L. By this, we mean
there exists some filtered probability space and an adapted, càdlàg process X̃ on it, such
that (i) and (ii) in Definition 3.1 are satisfied by X̃ on its underlying probability space.
We can think of it as an analogy to the notion of weak solutions of SDEs.

Now we can state our main results.

Theorem 3.2 (Markovian Projection). Let X be an Rd-valued Itô semimartingale with dif-
ferential characteristics (β, α, κ) associated with the truncation function h(x) = x1{|x|≤r}
for some r > 0. Suppose that (β, α, κ) satisfies

E

[∫ t

0

(
|βs|+ |αs|+

∫
Rd

1 ∧ |ξ|2 κs(dξ)
)
ds

]
<∞, ∀ t > 0. (3.2)

Then, there exist measurable functions b : R+ ×Rd → Rd, a : R+ ×Rd → Sd+, and a Lévy
transition kernel k from R+ ×Rd to Rd such that for Lebesgue-a.e. t ≥ 0,

b(t,Xt−) = E[βt |Xt−],

a(t,Xt−) = E[αt |Xt−],∫
A

1 ∧ |ξ|2 k(t,Xt−, dξ) = E

[∫
A

1 ∧ |ξ|2 κt(dξ)
∣∣∣∣Xt−

]
, ∀A ∈ B(Rd).

(3.3)

Furthermore, if (b, a, k) satisfies the condition

sup
(t,x)∈R+×Rd

[
|b(t, x)|
1 + |x|

+
|a(t, x)|
1 + |x|2

+

∫
Rd

(
1{|ξ|<r}

|ξ|2

1 + |x|2
+ 1{|ξ|≥r} log

(
1 +

|ξ|
1 + |x|

))
k(t, x, dξ)

]
<∞,

(3.4)

then there exists a solution X̂ to the martingale problem for L, where L is as defined
in (3.1), such that for each t ≥ 0, the law of X̂t agrees with the law of Xt.

Before proving Theorem 3.2, we make a few remarks to give more insight into it.

Remark 3.3. Consider the measure µ̃ defined as follows:

µ̃(A) := E

[∫ ∞
0

1A(s,Xs−) ds

]
= Ê

[∫ ∞
0

1A(s, X̂s−) ds

]
, A ∈ B(R+ ×Rd), (3.5)

where Ê is the expectation on the underlying probability space of X̂. One can easily
check that the triplet (b, a, k(·, ·, dξ)), which satisfies (3.3) for Lebesgue-a.e. t ≥ 0, is
unique up to a µ̃-null set. Moreover, X̂ is a martingale solution for L, regardless of
which version of (b, a, k) is used in (3.1). Indeed, for each f ∈ C2

c (Rd), the function
(t, x) 7→ Ltf(x) is uniquely defined up to a µ̃-null set. By the second equality in (3.5), we
see that different versions of (b, a, k) lead to indistinguishable processes

∫ ·
0
Lsf(X̂s−) ds.

As a consequence of this observation, condition (3.4) can be weakened by replacing
supremum with µ̃-essential supremum.

Remark 3.4. Under (3.2), one sufficient condition on X that automatically implies (3.4)
with µ̃-essential supremum is the following: the process

|βt|
1 + |Xt|

+
|αt|

1 + |Xt|2
+

∫
Rd

(
1{|ξ|<r}

|ξ|2

1 + |Xt|2
+ 1{|ξ|≥r} log

(
1 +

|ξ|
1 + |Xt|

))
κt(dξ)
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(or equivalently replacing X with X−) is bounded up to a (P⊗ dt)-null set. The proof is
simply by taking conditional expectations E[· |Xt−].

Now we prove our main theorem.

Proof of Theorem 3.2. The existence of b and a follows from (3.2) and Lemma 2.3, notic-
ing that Sd+ is a closed convex set in Rd×d. To get the existence of k, consider the
transition kernel κ̃t(dξ) := 1 ∧ |ξ|2 κt(dξ) from Ω×R+ to Rd. (3.2) and Lemma 2.5 yield a
finite transition kernel k̃ from R+ ×Rd to Rd such that for Lebesgue-a.e. t ≥ 0,

k̃(t,Xt−, A) = E[κ̃t(A) |Xt−], ∀A ∈ B(Rd).

For (t, x) ∈ R+×Rd, define k(t, x, dξ) := (1∧|ξ|2)−1k̃(t, x, dξ) on Rd\{0} and k(t, x, {0}) :=

0. Then, k is a Lévy transition kernel from R+ ×Rd to Rd that satisfies (3.3). Moreover,
Remark 2.6 further tells us that for Lebesgue-a.e. t ≥ 0,∫

Rd

g(Xt−, ξ) k(t,Xt−, dξ) = E

[∫
Rd

g(Xt−, ξ)κt(dξ)

∣∣∣∣Xt−

]
(3.6)

holds for all measurable functions g : R2d → R satisfying |g(x, ξ)| ≤ C(1∧|ξ|2), ∀x, ξ ∈ Rd,
for some constant C > 0.

Now we prove the second part of Theorem 3.2. By [9], Theorem II.2.42, we know
that for each f ∈ C2

c (Rd), the process

Mf
t := f(Xt)− f(X0)−

∫ t

0

(
βs · ∇f(Xs−) +

1

2
tr(αs∇2f(Xs−))

+

∫
Rd

(
f(Xs− + ξ)− f(Xs−)−∇f(Xs−) · h(ξ)

)
κs(dξ)

)
ds

is a local martingale. In particular, Mf is locally bounded, thus locally square-integrable
and 〈Mf ,Mf 〉 is well-defined. We claim that Mf is a (true) martingale. To show this,
it suffices to check E[〈Mf ,Mf 〉t] < ∞ for all t ≥ 0. Let’s first compute [Mf ,Mf ].
Note that Mf − f(X) − f(X0) is a continuous finite variation process, so we have
[Mf ,Mf ] = [f(X), f(X)]. By Itô’s formula, the continuous local martingale part of f(X)

is given by
∑d
i=1

∫ ·
0
∂if(Xs−) dXi,c

s . Then, it follows from [9], Theorem I.4.52 that

[f(X), f(X)]t =

d∑
i=1

d∑
j=1

∫ t

0

∂if(Xs−)∂jf(Xs−) d〈Xi,c, Xj,c〉s +
∑
s≤t

(f(Xs)− f(Xs−))2

=

∫ t

0

∇f(Xs−) · αs∇f(Xs−) ds+

∫ t

0

∫
Rd

(f(Xs− + ξ)− f(Xs−))2 µX(ds, dξ).

Since 〈Mf ,Mf 〉 is the compensator of [Mf ,Mf ] = [f(X), f(X)], we deduce that

〈Mf ,Mf 〉t =

∫ t

0

(
∇f(Xs−) · αs∇f(Xs−) +

∫
Rd

(f(Xs− + ξ)− f(Xs−))2 κs(dξ)

)
ds

≤ C
∫ t

0

(
|αs|+

∫
Rd

1 ∧ |ξ|2 κs(dξ)
)
ds,

where C = C(f) > 0 is some constant, and we used the fact that

|f(x+ ξ)− f(x)|2 ≤ C(1 ∧ |ξ|2), ∀x, ξ ∈ Rd.

Thus, by (3.2) we get E[〈Mf ,Mf 〉t] <∞ for all t ≥ 0, which proves our claim.
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From the martingale property established above, we have that E[Mf
t ] = E[Mf

0 ] = 0

for each t ≥ 0. This allows us to compute

E[f(Xt)]− E[f(X0)]

=

∫ t

0

E

[
βs · ∇f(Xs−) +

1

2
tr(αs∇2f(Xs−))

+

∫
Rd

(
f(Xs− + ξ)− f(Xs−)−∇f(Xs−) · h(ξ)

)
κs(dξ)

]
ds

=

∫ t

0

E

[
E[βs |Xs−] · ∇f(Xs−) +

1

2
tr(E[αs |Xs−]∇2f(Xs−))

+ E

[∫
Rd

(
f(Xs− + ξ)− f(Xs−)−∇f(Xs−) · h(ξ)

)
κs(dξ)

∣∣∣∣Xs−

]]
ds

=

∫ t

0

E

[
b(s,Xs−) · ∇f(Xs−) +

1

2
tr(a(s,Xs−)∇2f(Xs−))

+

∫
Rd

(
f(Xs− + ξ)− f(Xs−)−∇f(Xs−) · h(ξ)

)
k(s,Xs−, dξ)

]
ds

=

∫ t

0

E[Lsf(Xs−)] ds,

(3.7)

where in the first equality Fubini’s theorem is justified because of (3.2) and the fact that

|f(x+ ξ)− f(x)−∇f(x) · h(ξ)| ≤ C(1 ∧ |ξ|2), ∀x, ξ ∈ Rd, (3.8)

for some constant C = C(f) > 0, and in the third equality we used (3.3), (3.6) and (3.8).
Let µt denote the law of Xt. Since X is a càdlàg process, it is easy to see that the

map R+ 3 t 7→ µt ∈ P(Rd) is càdlàg and µt− is the law of Xt−. Moreover, by Lemma 2.9,
for fixed t ≥ 0 we have ∆Xt = 0 P-a.s., i.e. Xt = Xt− P-a.s. This implies that µt = µt−,
and the map R+ 3 t 7→ µt ∈ P(Rd) is actually continuous. Then, (3.7) can be written as∫

Rd

f dµt =

∫
Rd

f dµ0 +

∫ t

0

∫
Rd

Lsf dµs ds, ∀ t ≥ 0, f ∈ C2
c (Rd). (3.9)

This shows that (µt)t≥0 is a weak solution to the non-local FPKE associated with L in
the sense of [16], Definition 1.1. Together with the growth condition (3.4), we are now
in a position to apply [16], Theorem 1.51. We conclude that there exists a solution
P̂ ∈ P(D(R+;Rd)) to the martingale problem for L such that for each t ≥ 0, the time-t
marginal of P̂ agrees with µt. Equivalently, there exists a martingale solution X̂ for L
which mimics the one-dimensional marginal laws of X. This finishes the proof.

When X is a continuous Itô semimartingale, Theorem 3.2 holds without the growth
condition (3.4). This is exactly Corollary 3.7 in Brunick and Shreve [5]. In this case,
the setting of the theorem is much simplified: we have κ = 0, thus k = 0. The same
type of proof still works here. Indeed, following a similar argument, one can derive the
FPKE (3.9). Now L is a local FPK operator, so we refer to Trevisan [17], which implies
that the superposition principle holds under the assumption:

Γt :=

∫ t

0

∫
Rd

(
|b(s, x)|+ |a(s, x)|

)
µs(dx) ds <∞, ∀ t ≥ 0.

This is an immediate consequence of (3.2) and (3.3), once we rewrite Γt as follows:

Γt =

∫ t

0

E
[
|b(s,Xs)|+ |a(s,Xs)|

]
ds ≤

∫ t

0

E
[
|βs|+ |αs|

]
ds <∞.

1In the proof of [16], Theorem 1.5, the authors assumed without loss of generality that r ≤ 1/
√
2, so as to

avoid complicated constants involving r in some upper bound estimates. The result actually holds for all r > 0.
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For local FPK operators, the superposition principle holds under relatively mild
integrability assumptions. However, in the non-local case, the literature is limited and
there is no such result to the best of our knowledge. Some boundedness or growth
conditions need to be imposed, for example as in [16]. As of now, assumption (3.4) is
needed for general discontinuous Itô semimartingales. Removing or weakening this
assumption is a possible direction of future work.

4 Examples

In applications, Markovian projections usually appear in the inversion problem.
More specifically, suppose we start with a relatively simple process X̂. Our goal is to
construct a more complicated process X, while keeping the one-dimensional marginal
laws unchanged. If we manage to find an X such that X̂ is a Markovian projection of X,
then the marginal law constraints are automatically satisfied. This is what we mean by
“inverting the Markovian projection”. In this section, we present three examples where
our Markovian projection theorem can be applied.

4.1 Local stochastic volatility (LSV) model

One of the most famous applications of Markovian projections is the calibration of
the LSV model in mathematical finance (see [3], Appendix A, [7], Chapter 11, and the
references therein). We start with the local volatility (LV) model developed in the seminal
work of Dupire [6]. In the LV model, the risk-neutral dynamics of the stock price is
modeled via the following SDE (assuming constant interest rate r and no dividend):

dŜt = rŜt dt+ σDup(t, Ŝt)Ŝt dB̂t,

where σDup is given by the so-called Dupire’s formula (see [6]) such that the model is
perfectly calibrated to European call option prices (which depends on one-dimensional
marginal laws).

The LSV model is an extension of the LV model by introducing a stochastic factor in
the volatility term. One requires the LSV model to be perfectly calibrated to European
calls as well, which leads to the McKean–Vlasov type SDE

dSt = rSt dt+
ηt√

E[η2
t |St]

σDup(t, St)St dBt, (4.1)

where η is the stochastic volatility. Assuming the well-posedness of (4.1) and suitable
boundedness conditions on η and σDup, one can apply Theorem 3.2 to deduce that Ŝ is a
Markovian projection of S, so the two models yield the same European option prices.

However, the SDE (4.1) is notoriously hard to solve, and doing so still remains an open
problem in full generality. Partial results exist when η is of the form f(Y ). For instance,
Abergel and Tachet [1] proved short-time existence of solutions to the corresponding
FPKE, with Y being a multi-dimensional diffusion process. Jourdain and Zhou [10]
showed the weak existence when Y is a finite-state jump process and f satisfies a
structural condition. Lacker, Shkolnikov and Zhang [13] showed the strong existence
and uniqueness of stationary solutions, when σDup does not depend on t and Y solves an
independent time homogeneous SDE.

4.2 Local stochastic intensity (LSI) model

The LSI model (see [2]) is a jump process analogue of the LSV model. It is often used
in credit risk applications to model the number of defaults via a counting process X
whose intensity has the form ηtλ(t,Xt−), where η is the stochastic intensity and λ is a
function. In other words, the process X −

∫ ·
0
ηsλ(s,Xs−) ds is a (local) martingale.
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Similarly as in Example 4.1, we want the one-dimensional marginal laws of the LSI
model to match those of the local intensity (LI) model, which can be perfectly calibrated
to collateralized debt obligation (CDO) tranche prices (see [2] and the references therein).
Note that in the LI model, defaults are modeled via a counting process X̂ whose intensity
has the form λLoc(t, X̂t−). Assume that η is bounded from above and below by positive
constants, and λLoc is bounded. One can choose λ(t, x) = λLoc(t,x)

E[ηt |Xt−=x] , which yields the
McKean–Vlasov type martingale problem:(

Xt −
∫ t

0

ηs
E[ηs |Xs−]

λLoc(s,Xs−) ds

)
t≥0

is a martingale.

The differential characteristics of X, associated with the truncation function h(x) =

x1{|x|≤r} for r < 1, are

βt = 0, αt = 0, κt(dξ) =
ηt

E[ηt |Xt−]
λLoc(t,Xt−)δ1(dξ).

Taking conditional expectations E[· |Xt−], we get

b(t, x) = 0, a(t, x) = 0, k(t, x, dξ) = λLoc(t, x)δ1(dξ).

Clearly, (3.2) and (3.4) are justified, so it follows from Theorem 3.2 that X̂ is a Markovian
projection of X. When X̂ is a Poisson process (i.e. λLoc is constant or a deterministic
function of time t), we call X a fake Poisson process.

Alfonsi, Labart and Lelong [2] constructed solutions to the LSI model when ηt = f(Yt)

for Y either being a discrete state Markov chain or solving a jump diffusion SDE involving
X. In recent work [15], we prove the existence of solutions to the LSI model under
milder regularity conditions, while our η is an exogenously given process not in the
above feedback form involving X. We also extend the jump sizes of X to follow any
discrete law with finite first moment.

4.3 Fake Hawkes processes

A Hawkes process X̂ is a self-exciting counting process whose intensity is given by

λt = λ0 +

∫ t−

0

K(t− s) dX̂s = λ0 +
∑
i:τ̂i<t

K(t− τ̂i),

where λ0 > 0 is the background intensity, K ∈ L1(R+;R+) is the excitation function
and τ̂1 < τ̂2 < · · · are the jump times of X̂. In this example, we consider the most basic
excitation function, namely the exponential K(t) = ce−θt for some c, θ > 0.

We are interested in inverting the Markovian projection of X̂. However, we observe
that the intensity of X̂ depends on the history of X̂. In other words, the differential
characteristics of X̂ are not functions of time and the process itself. Therefore, we
cannot expect X̂ to be a Markovian projection of some process. To tackle this problem,
we lift X̂ to the pair (X̂, Ŷ ) by incorporating the right-continuous version of the intensity
process, Ŷ = λ+, and our goal is to invert the Markovian projection of (X̂, Ŷ ).

The specific form of the excitation function allows us to derive the dynamics of Ŷ as

dŶt = θ(λ0 − Ŷt−) dt+ cdX̂t.

We see that the differential characteristics of (X̂, Ŷ ), associated with the truncation
function h(x) = x1{|x|≤r} for r <

√
1 + c2 (the jump size of (X̂, Ŷ )), are

β̂t =
(
0, θ(λ0 − Ŷt−)

)
, α̂t = 02×2, κ̂t(dξ1, dξ2) = Ŷt−δ(1,c)(dξ1, dξ2).
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This inspires us to define (X,Y ) as follows: X is a counting process with intensity
ηt

E[ηt |Xt−,Yt−]Yt−, where η is some stochastic intensity bounded from above and below by
positive constants, and Y satisfies

Yt = λ0 +

∫ t

0

ce−θ(t−s) dXs.

We can similarly write down the differential characteristics of (X,Y ):

βt =
(
0, θ(λ0 − Yt−)

)
, αt = 02×2, κt(dξ1, dξ2) =

ηt
E[ηt |Xt−, Yt−]

Yt−δ(1,c)(dξ1, dξ2).

One can show that (X,Y ) is bounded in L1 on any finite time interval [0, t]. Thus, (3.2)
and (3.4) are justified, and Theorem 3.2 tells us that (X,Y ) has the same one-dimensional
marginal laws as (X̂, Ŷ ). We call (X,Y ) a fake Hawkes process. In our recent work [15],
we prove the existence of such fake Hawkes processes.
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