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Abstract

We exhibit a percolating ergodic and isotropic lattice model in all but at least two
dimensions that has zero effective conductivity in all spatial directions and for all
non-trivial choices of the connectivity parameter. The model is based on the so-called
randomly stretched lattice where we additionally elongate layers containing few open
edges.
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1 Introduction

Consider a stationary and ergodic model for a randomly perforated material G ⊂ Rd.
Examples we have in mind are the supercritical cluster of the Boolean model based on a
Poisson point process or its complement. From a physical point of view, G could be the
perforations of a sponge-like material which allows for the diffusion of some chemicals
while the complement would block these chemicals.

We assume that the scale of the perforations is small compared to the macroscopic
dimensions of the material, which we express as Gε := εG and we are interested of
the effective conductivity of Gε as ε→ 0. To be more precise, given a bounded domain
Q ⊂ Rd we write Γε := ∂Gε and νΓε for the outer normal vector of Gε and consider a
partial differential equation

−∇ ·
(
|∇uε|p−2∇uε

)
= f on Q ∩Gε

−|∇uε|p−2∇uε · νΓε = 0 on Q ∩ Γε (1.1)

uε = 0 on Gε ∩ ∂Q .
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Ergodic zero-conductance lattice model

As ε→ 0 we expand uε by zero to Rd and expect that uε ⇀ u in Lr(Q), r ≤ p and that u
solves an effective equation of the form

−∇ ·
(
A|∇u|p−2∇u

)
= fP(o ∈ G) on Q (1.2)

u = 0 on ∂Q . (1.3)

If the above convergence behaviour holds, we say that G allows homogenisation and
we call A the effective conductivity of G. Its derivation goes far beyond simple averaging
as geometric features have a major influence. As a most simple example, letGε be a union
of finite pathwise connected components. Then the above definition of homogenisation
makes no sense because uε can be shifted arbitrarily on the subsets of Gε that have
positive distance to ∂Q. From a physical point of view, with Gε being fragmented into
finite mutually disconnected sets, it is intuitive that the effective conductivity is zero.

On the other hand for many connected geometries it has been shown that, A > 0:
Examples include periodic domains (see [17] and references therein), minimally smooth
domains [10] as well as the case of Bernoulli bond or site percolation [21]. More irregular
domains have been recently investigated in [12, 11, 13] where sufficient conditions on
the distributions of geometric properties such as local Lipschitz regularity or global
connectivity were derived that allow to pass to the homogenisation limit. We note also
that in [23], a homogenisation result has been established with effective conductivity A
even for irregular domains, but the framework is restricted to linear systems.

A necessary condition for homogenisation, however, is still lacking. As a consequence,
the authors proposed in [14] an approach for homogenisation of perforated domains
where it is not clear that the perforations are„good enough” but where there is also
no clear indication that the domain should be too irregular for homogenisation. Such
approaches using a regularisation of the random geometry can be helpful to justify a
homogenised model on an irregular domain, but they leave us with a grain of salt, as it
is not clear that the regularisation and the homogenisation limit really interchange.

In order to approach the question of suited or unsuited domains from the other side,
in the analysis below, we will study a reasonable discrete model for a perforated domain
that has the property that the effective conductivity is zero, although the microscopic
geometry is topologically connected. We will also discuss heuristically which of the
sufficient conditions from [13] is violated in order to make this behaviour possible, while
we leave the rigorous calculation to future work. This is considered by the authors a
necessary step towards more precise characterisations of admissible domains.

Porous media and their effective conductivity A are closely related to the analysis of
random walks on lattice models or in our specific case: random walks on percolation
clusters. These represent a special class of so called random conductance models, see
e.g. [4] for an extensive review. In such models, the variable-speed random walker
moves along an edge at a rate equal to its conductivity. This usually admits a diffusive
scaling to a Brownian motion (see e.g. [2, 1] and especially [9]) with covariance matrix
A. Indeed, having zero effective conductivity is equivalent to subdiffusivity or trapping
of the related random walker. In this regard, it is known that the random walk on the
two-dimensional uniform spanning tree is subdiffusive [3] – constituting an example of a
percolating ergodic medium that features zero effective conductivity.

However, the example of a uniform spanning tree is quite artificial from a modelling
perspective and very dimension dependent. Hence, in this manuscript we present a
potentially more canonical example of a non-conductive perforated medium that pos-
sesses a number of natural properties, see Figure 1 for illustrations. More precisely, the
construction is based on the so-called randomly stretched lattice (RSL), which is essen-
tially a Bernoulli bond percolation model in a strongly correlated random environment,
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Ergodic zero-conductance lattice model

Figure 1: Two realisations of the non-conductive medium, on slightly differing scales,
given by the elongated randomly stretched lattice. Blue edges belong to the centrally
placed green dot’s cluster (restricted to the observation window).

augmented with additional deterministic deformations. The final model, which we call
elongated randomly stretched lattice (ERSL), then exhibits the following key features:

1. It is stationary ergodic and percolates.

2. A = 0, i.e., the effective conductivity is zero in all directions.

3. The (annealed) probability of an edge to be open can be chosen arbitrarily close to
one.

4. The above properties can be ensured in any dimension larger or equal to two.

Let us note that associated random walker on such an ERSL is subdiffusive and recurrent.

Violating at least one of the above conditions, one can conceive simpler models. First,
the planar uniform spanning tree satisfies the first two conditions, but it is fractal and it
is not connected in high dimensions. Second, it is not hard to construct a percolating
lattice model that is non-conductive in all directions except one, see e.g. Section 6 for a
brief description.

Let us finally mention that, while the ERSL is presented and while all relevant calcu-
lations are done in the discrete setting, they can be easily brought into the continuum:
one simply needs to thicken the ERSL by some r < 1/2 after embedding the lattice into
Rd.

2 Setting and main result

The elongated randomly stretched lattice (ERSL) is (as the name suggests) a
translation- and (lattice)-rotation-invariant nearest-neighbour percolation model on
Zd, constructed by elongating a randomly stretched lattice (RSL). We define both models
in Section 3. Given unit conductance on open edges, let A be the effective conductivity
of the ERSL. As mentioned in the introduction, while A is a semi-positive definite sym-
metric matrix, it is also the covariance matrix of the diffusively scaled (variable speed)
random walker on the ERSL. Moreover, all symmetries of the ERSL transfer to A, and in
particular A obeys lattice-rotation invariance.

In order to specify the connection between A and the ERSL, let us write [0, n] :=

{0, 1, . . . , n} and y ∼ x if and only if there exists an open edge between vertices x and y
in the ERSL. The effective conductivity in the direction e1 is represented by the following
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Ergodic zero-conductance lattice model

asymptotic minimisation problem, see Section 5.2:

et
1Ae1 = lim

n→∞
n2−d inf

V ∈Dn

1
2

∑
z,z̃∈[0,n]d

z∼z̃

|V (z̃)− V (z)|2, (2.1)

which holds for almost-every realisation of the ERSL, due to ergodicity. Here, e1 denotes
the unit vector in the first coordinate with et

1 its transposition and Dn consists of functions
V : [0, n]d → R satisfying

V (0, z2, . . . , zd) = 0 and V (n, z2, . . . , zd) = 1 .

Under the lattice isotropy, we have et
iAei = et

1Ae1 for all i ≤ d. In fact, since A is
symmetric and rotationally invariant under lattice rotations, we even have isotropy of A,
i.e. A = a0Id for some a0 ∈ R and identity matrix Id. Let us mention that, by the Dirichlet
principle, any minimiser Vmin is harmonic, i.e. it even satisfies∑

z̃∼z
(Vmin(z̃)− Vmin(z)) = 0 for all z ∈ (0, n)× [0, n]d−1,

see e.g. [7]. Before we define the ERSL precisely, let us state our main result.

Theorem 2.1. For any d ≥ 2 and p̄ ∈ (0, 1), there exists an ERSL – a stationary ergodic
nearest-neighbour bond percolation model on Zd – satisfying the following properties.

1. The ERSL percolates almost surely and is lattice rotation invariant.

2. P(e is open in the ERSL) ≥ p̄ for any edge e in Zd.

3. For the associated conductivity A, as defined in (2.1), we have that A = 0.

In particular, the random walk on the ERSL is subdiffusive.

In fact, the associated random walk is recurrent in any dimension: A calculation
analogous to the proof of A = 0 shows that the resistance from the origin to infinity is
infinite.

In the following construction as well as all proofs, we will restrict ourselves to the
planar case, d = 2, for convenience. All other cases d > 2 follow by completely analogous
arguments.

3 Construction: RSL and ERSL

Let us first introduce a prototypical lattice model with columnar disorder: the
randomly stretched lattice. It is a bond percolation model on Z2 where entire columns
are made “weak”, i.e., bonds in such areas are likely to be closed.

Definition 3.1 (Randomly stretched lattice (RSL)). Let p, q ∈ (0, 1) and consider families

N (x) := (N
(x)
i )i∈Z and N (y) := (N

(y)
j )j∈Z of iid geometric random variables satisfying

P(N
(x)
0 ≥ `+ 1) = P(N

(y)
0 ≥ `+ 1) := q` .

Given a realisation of N (x) and N (y), all the bonds in Z2 are open independently with
probabilities

P
(

(i, j)↔ (i+ 1, j) is open |N (x), N (y)
)

:= pN
(x)
i

and
P
(

(i, j)↔ (i, j + 1) is open |N (x), N (y)
)

:= pN
(y)
j .

This model is called the randomly stretched lattice (RSL). We will often refer to the value
` as the badness.
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Ergodic zero-conductance lattice model

The percolation behaviour of the RSL remains an active field of research, often relying
on so called multiscale-renormalisation schemes. Fortunately, we only need to use the
basic definition as well as the existence of an infinite cluster in this paper:

Theorem 3.2 (Existence of supercritical regime in the RSL, [19, 16, 6, 15]). Consider
the RSL as in Definition 3.1 with p > 1/2. Then, there exists qc(p) ∈ (0, 1) such that the
RSL percolates almost-surely for q < qc(p) and it does not percolate almost-surely for
q > qc(p).

Proof. For d ≥ 3, percolation has been shown in [19], while the d = 2 case was estab-
lished in [16] for large p. This result as well as methods have been improved over time
in [6, 15]. Regarding the subcritical phase for large q, an argument analogous to the one
in [19] shows that the RSL is subcritical whenever qd−1 ≥ p.

Let us mention that, in two dimensions, we may even ensure finite (albeit not uni-
formly bounded) size void spaces using circuits of open bonds around Λ for every finite
set Λ ⊂ Z2. This is shown in [18] for a part of the supercritical regime, however, the
approach in [15] enables a much simpler proof covering all p > 1/2 and q(p) sufficiently
small (but not necessarily all q < qc(p)).

Let us highlight that, while the RSL features infinitely long dependencies, these
dependencies are confined to columns and rows. Therefore, the RSL is mixing in all
diagonal directions, which yields ergodicity.
As also mentioned in [15], uniqueness of the infinite cluster holds using the standard
Burton–Keane argument [5].

In the following, we will fix a parameter pair p, q ∈ (0, 1) for which the RSL percolates
and additionally p > q. Furthermore, whenever we refer to the RSL in the future, we
mean a realisation. All statements relating to the RSL are meant in the almost-sure
sense.

As of now, we are unable to establish A = 0 directly for the RSL (nor A > 0). While
weak columns have high resistance, they do not occur frequently enough for our rather
simplistic method to work. Fortunately, duplicating (or rather deterministically elongat-
ing) columns and rows solves the issue. Doing so has no impact on the connectivity of
the underlying percolation model, but it has a huge effect on the conductivity. Roughly
speaking, the elongation is done such that “bad layers” become exponentially large.

We describe this procedure in the following only for (Ni)i∈Z := (N
(x)
i )i∈Z, i.e., along

the first coordinate. All other coordinates are treated in the same fashion. Recall that
dae := inf{n ∈ Z : a ≤ n}. The key idea is to use the labels Ni in the RSL to elongate
existing edges of the lattice. More precisely, let σ ∈ (0, 1) such that qσ > p and set

S(`) := dq−`(1−σ)e, l ∈ N. (3.1)

Given the i-th column in the RSL, with label Ni, we deterministically elongate this
column to have width S(Ni). In other words, for any realisation of the RSL, for any (so
far unelongated) column i, we will insert additionally S(Ni)− 1 copies of said column’s
horizontal edges (that is, {(i, y)↔ (i+ 1, y) | y ∈ Z}) including their open or closed state.
We will call this elongated strip of width S(`) a layer of badness `. It consists of S(`)

many columns of badness `. The same elongation procedure is done for rows (and all
other possible dimensions).

Concerning the openness or closedness of the edges in the layers, we employ an
additional modification using the parameter L ∈ N, to be specified later. If an edge lies
in a rectangle spanned by a horizontal and a vertical layer with badness ≤ L then, then
we set it to be open. Otherwise, they remain unmodified. In slightly more precise terms:
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Ergodic zero-conductance lattice model

Figure 2: Realisations of the RSL with parameters p = 0.65, q = 0.3 (left), the elongated
version with σ = 0.25 (middle), and the filled version FL(RSL) with L = 2 (right). Blue
edges belong to the centrally placed green dot’s connected component (before using the
grey filling). Again, connectivity is only considered with restriction to the observation
window. However, large red clusters are likely to connect to the blue cluster outside this
window as the infinite cluster is unique.

If [xmin, xmax], [ymin, ymax] are horizontal/vertical layers with badness ≤ L, then all edges
of the form z ↔ z̃ with z ∼ z̃ are set to be open if z, z̃ ∈ [xmin, xmax]× [ymin, ymax]. All in
all, this leads to the elongation and filling transformation RSL 7→ FL(RSL), as illustrated
in Figure 2.

We have to be cautious as the deterministic elongation destroys the stationarity of the
lattice. But we can introduce a stationarising random initial shift Z̄ = (Z(x), Z(y)) (with
Z(x), Z(y) > 0 iid for both coordinates) to recover stationarity, see e.g. [24, Theorem 9.1
in Chapter 2, Section 9.2]. This can be done as long as the expected elongation is finite,
which is the case since, by the definition in (3.1),

E[S(N1)] = (1− q)
∑
`≥0

q`dq−(`+1)·(1−σ)e ≤ 1 +
1− q

q(1− qσ)
<∞.

To be precise, Z(x) has the size-biased distribution

P(Z(x) = n) := nE[S(N1)]−1P(S(N1) = n)

and we note that Z(x) is finite but possibly without finite first moment. The probability of
a (horizontal) edge in the initial layer of badness Z(x) to be open is given by pN

′
0 , where

N ′0 is a random variable with

P(N ′0 = n) = S(n)E[S(N1)]−1P(N1 = n).

Now we can define our model.

Definition 3.3 (Elongated randomly stretched lattice (ERSL)). The elongated randomly
stretched lattice (ERSL) is defined as FL(RSL′) − Ū , where RSL′ is the RSL in which

the initial marks N (x)
0 and N (y)

0 are replaced by iid copies of the size-biased marks N ′0
as defined above. The random shift Ū = (U (x), U (y)) is given by independent uniformly

distributed random variables U (x) ∈ [0,S(N
(x)
0 )].

Let us mention that it is precisely this possibility to create a shift-invariant version
that fails for an elongated, non-conductive version of simple Bernoulli bond percolation
on Z2. Indeed, to get infinite resistance, the elongations would need to have infinite first
moment.

Let us collect the first properties of the ERSL.
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Ergodic zero-conductance lattice model

Proof of Theorem 2.1 Part (1) and (2). Note that the ERSL is ergodic since it is still
mixing along the diagonal directions. Furthermore, it is a nearest-neighbour bond
percolation model and its distribution is invariant under all lattice rotations. In the
given parameter regime p > 1/2 and q ≤ min{qc, p} it features percolation almost surely
and this percolation is maintained if we set additional edges to be open under the
L-dependent rule. In particular, for all p̄, we can pick L sufficiently large such that the
typical edge in the system is open with probability not smaller than p̄.

The next section verifies that A = 0.

4 Checking non-conductance

Before we start, let us give some intuition. Disregarding the stationarisation as well
as the L-dependent rule, the RSL with both dimensions being elongated serves as our
material model in Z2. The idea behind the introduction of the parameter σ is now the
following: In macroscopic columns of badness `, the fraction of open edges is at most p`.
This means, that the whole column behaves similarly to one where all edges are open
but with conductance p` instead of unit conductance. In other words, the resistance is
not smaller than approximately p−`. Additionally, the probability of seeing a column of
badness ` is given by S(`)q`(1− q)E[S(N1)]−1 ≈ Cqσ` instead of q`(1− q) due to size bias,
for some constant C > 0. Observe now that σ has been chosen such that qσ > p and
hence, the expected macroscopic resistance is given by

C

∞∑
`=1

p−`qσ` = C

∞∑
`=1

(qσ/p)` =∞.

But this means that we have zero conductivity.
On a technical level, it suffices to show that the right-hand side in Equation (2.1)

equals 0. For this, the idea is to locate bad layers and ensure that only few edges are
open. In order to do that, let us introduce some relevant quantities that will aid us in our
calculations.

4.1 Parameters

Given p, q, σ as before, we also consider

γ :=
[
(1− σ) +

log(p)

log(q)

]−1/2

.

As qσ > p, i.e., σ < log(p)
log(q) , we see that γ ∈ (0, 1). We will see that we find layers with

badness `n in boxes of size n with high probability, where

`n :=
γ log n

log(q−1)
.

Let us note that, with these quantities, we have

p`nn ≥ q`nn→∞ (4.1)

and, as γ < 1, also

p`nn

S(`n)
≤ exp

(
log(n)

[ γ

log(q−1)
log(p) + 1 +

γ

log(q−1)
log(q)(1− σ)

])
= exp

(
log(n)

[
− γ
( log(p)

log(q)
+ (1− σ)

)
+ 1
])

= n1−1/γ → 0.

(4.2)
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Ergodic zero-conductance lattice model

4.2 Finding bad layers

We want to estimate the probability of finding suitably weak columns as n→∞. Due
to the stationarising (horizontal) shift U = U (x), we know that [U,U + S(N1)) is a layer
in [0,∞). Analogously, the i-th consequent layer is [U +

∑i
k=1 S(Nk), U +

∑i+1
k=1 S(Nk))

and has badness Ni+1. Therefore, finding a layer with badness not smaller than `n inside
[0, n] is guaranteed under the event

En :=
{
∃i ∈ N : Ni ≥ `n and U +

i∑
k=1

S(Nk) < n
}
.

Lemma 4.1 (Probability of bad layers). We have that limn↑∞P(En) = 1.

Proof. Set C := (2E[S(N1)])−1 and denote the events

An :=
{ Cn∑
k=1

S(Nk) < n− U
}

=
{ 1

Cn

Cn∑
k=1

S(Nk) < 2E[S(N1)]− 1

Cn
U
}

and

Bn :=
{
∃1 ≤ i ≤ Cn : Ni ≥ `n

}
.

Then, by restricting to i ≤ Cn, we see that En ⊃ An ∩ Bn. But, by the law of large
numbers and almost-sure finiteness of U , we have P(An) ↑ 1. Further, since the Ni are
iid geometric random variables, Equation (4.1) yields

P(B{
n) =

(
1− q`n

)Cn ≤ exp(−Cq`nn)
n→∞−−−−→ 0 .

Combining the two statements yields

P(En) ≥ P(An ∩Bn) ≥ P(An)− P(Bcn)
n→∞−−−−→ 1.

which finishes the proof.

Each column inside the box [0, n]2 contains at most n horizontal edges. Now, we
check that only few of these edges are open with high probability if they belong to a bad
layer.

Lemma 4.2 (Conductivity through bad layers). Assume that En occurs and consider one
associated layer of badness at least `n. Let Fn be the event that at most 2np`n out of at
most n horizontal edges inside the layer are open. Then,

lim
n→∞

P(Fn ∩ En) = 1.

Proof. Let X1, . . . , Xn be iid Bernoulli random variables with P(X1 = 1) = p`n and
Y :=

∑n
i=1Xi. Then, by the Chebyshev inequality,

P(F cn ∩ En) ≤ P(Y − E[Y ] > E[Y ]) ≤ nVar[X1]

(nE[X1])2
=

1

nE[X1]
· Var[X1]

E[X1]
≤ 1

p`nn
· 1 n→∞−−−−→ 0,

by Lemma 4.1 and again Equation (4.1). This finishes the claim.

4.3 Calculating the effective conductivity

We may finally calculate the right-hand side in (2.1).

Lemma 4.3 (Upper bound). Under the event En ∩ Fn there exists a V ∈ Dn such that∑
z,z̃∈[0,n]2 : z∼z̃

|V (z̃)− V (z)|2 ≤ 4n1−1/γ . (4.3)
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Proof. Under the event Fn ∩ En there exists a layer with badness at least `n inside [0, n].
Let X denote its starting location. Then, we define V : [0, n]2 → R as

V (i, j) :=


0 i < X,

1 i > X + S(`n),
i−X
S(`n) i ∈ [X,X + S(`n)],

and note that V (i, j) does not depend on j and is constant except inside the bad layer
where it linearly grows to 1. Therefore, the only contribution to the sum in (4.3) comes
from horizontal edges involving i ∈ [X,X + S(`n)] and in particular V ∈ Dn.

Let us focus on the chosen bad layer. There, under Fn, we have at most 2np`n open
edges along a strip of size S(`n) (which is part of a potentially larger layer). Using
Inequality (4.2), the contribution is therefore∑

z,z̃∈[0,n]2

z∼z̃

|V (z̃)− V (z)|2 ≤ 4np`nS(`n)S(`n)−2 ≤ 4n1−1/γ ,

as desired.

Proof of Theorem 2.1 Part (3). Using Lemma 4.2, we are able to pick a subsequence
(nk)k≥1 such that

∞∑
k=1

P
(

(Enk
∩ Fnk

){
)
<∞ .

In particular, the Borel–Cantelli lemma then tells us that the event Enk
∩ Fnk

occurs
infinitely often. Hence, using Lemma 4.3 yields

P
(

lim
n→∞

inf
W∈Dn

∑
x,y∈[0,n]d : x∼y

|W (y)−W (x)|2 ≤ 0
)

= P
(

inf
W∈Dnk

∑
x,y∈[0,nk]d : x∼y

|W (y)−W (x)|2 ≤ 4n
1−1/γ
k for infinitely many k

)
≥ P

(
Enk
∩ Fnk

happens for infinitely many k
)

= 1 ,

where the first equality follows from the fact that the limit in Equation (2.1) exists almost
surely as well as limk→∞ n

1−1/γ
k = 0. This shows A = 0.

5 Background on discrete models for perforated domains

5.1 Justification of discrete models replacing continuous problems

We will now demonstrate that discrete homogenisation problems can at least in some
cases be considered as continuous homogenisation problems. The implication of this
insight is that a discrete medium satisfying topological connectedness but macroscopic
conductivity zero can be mapped onto a continuous medium with the same properties.

The classical point of view, which we discuss first, somehow follows the opposite
direction. However, we provide it here for completeness.

The classical point of view Historically, the upscaling of discrete models was first
proposed independently in [22, 20] as substitutes for the homogenisation of partial dif-
ferential equations. A basic idea behind this discretisation is the finite-volume approach:
A partial differential equation of the form −∇ · (a(x)∇u) = f(x) can be discretised on
a cubic grid by −δ−2

∑
±
∑d
j=1 ax,j (u(x± δej)− u(x)) = f(x), where x ∈ δZd and ax,j is

constructed properly in [8].
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Hence, if we consider a homogenisation problem −∇ · (a(x/ε)∇u) = f(x), we can
consider instead −(δε)−2

∑d
j=1 ax,j (u(x+ δεej)− u(x)) = f(x), where x ∈ εδZd or equiv-

alently, after a rescaling,

−ε−2
d∑
j=1

aεi,j (u(xi + εej)− u(xi)) = f(xi) , x ∈ εZd .

In order to transfer this insight to the case of a perforated domain, we can consider a
stationary ergodic random domain with holes that are large compared to the grid distance
in Zd. Then, we consider GZ := G∩Zd and say ai,j = 1 if and only if xi, xi + ej ∈ GZ and
ai,j = 0 otherwise. This mimics the behaviour of (1.1) in the discrete setting.

The exact solution point of view Through another point of view, our discrete solu-
tions can be mapped one on one to solutions for a subclass of problems on a special
perforated domain. In order to avoid struggles with boundary conditions, we consider
the full-space problem, even though the major events happen around a bounded domain
Q.

For every vertex x of our rectangular grid, we consider for δ � 1 the cube of width δ
with centre x and call it C(x, δ). If x ∼ y are connected neighbours in our discrete model,
we connect the two cubes C(x, δ) and C(y, δ) by their combined convex hull C(x, y, δ),
e.g., a rectangular cylinder with a (d− 1)-dimensional cube of size δ as its base. We call
C0(x, y, δ) = C(x, y, δ) \ (C(x, δ) ∪ C(y, δ)) and Gδ =

⋃
x C(x, δ) ∪

⋃
x∼y C0(x, y, δ).

Given values fx for each vertex x, with fx = 0 for x 6∈ Q we consider the discrete
equation for u

∀x ∈ Zd ∩Q ,
∑

x,y∈[0,n]d : x∼y

ux − uy = fx and ∀x ∈ Zd \Q, ux = 0. (5.1)

This problem has a unique solution as the linear map on the left-hand side is positive
definite.

Next we define fδ(x) = fx on C(x, δ) and fδ(x) = 0 else. We set uδ as the linear
interpolation of ux on ∂C(x, δ)∩∂C0(x, y, δ) and uy on ∂C(y, δ)∩∂C0(x, y, δ). Furthermore,
let uδ solve −∆uδ = f on C(x, δ) with uδ = ux on ∂C(x, δ). Then, uδ is an H1

loc(G
δ)

function that solves −∆uδ = fδ on Gδ. Furthermore, uδ = 0 outside a sufficiently large
ball around Q.

It is thus reasonable to consider a sequence of discrete solutions as a sequence
of solutions to (1.1), turning the discrete homogenisation problem into a continuous
homogenisation problem.

5.2 Formulas for the effective conductivity

We will now justify our formula for the effective conductivity (2.1). Since this formula
is well established in literature, it is not our goal to rigorously derive it, but to recap
some of the main arguments as to why this formula is correct. Given a lattice L ⊂ Zd,
we consider Lε := εL as well as the following scaled version of (5.1)

∀z ∈ Lε ∩Q , ε−2
∑

z̃∈Lε∩Q
z∼z̃

uεz − uεz̃ = fz , (5.2)

which takes the following form by a variational principle

uε = arg minu 7→ εd
∑

z∈Lε∩Q

1

2
ε−2

∑
z̃∈Lε∩Q
z∼z̃

|uz − uz̃|2 − fzuz

 .
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Boundary conditions can be imposed by restricting the space over which the minimum is
taken.

Without going into detail, but referring to [4], the effective conductivity is again
defined as A such that fε → f and uε → u in an appropriate sense (this involves mapping
discrete functions to continuous ones) implies that u solves −∇ · (A∇u) = f on Q.
Furthermore, using Γ-convergence arguments, one can draw the conclusion that the
minimisers uε from above satisfy

∫
Q

∇u · A∇u− fudx = lim inf
ε→0

εd
∑

z∈Lε∩Q

(
1

2
ε−2

∑
z̃∼z
|uz − uz̃|2 − fzuz

)
. (5.3)

With regard to (2.1), let us note that in the continuous case, a function satisfying
u(0, z2, . . . , zd) = 0, u(1, z2, . . . , zd) = 1, −∇· (A∇u) = 0, and also minimising the left-hand
side of (5.3), has to satisfy u(z) = z1 and it holds that

∫
(0,1)d

∇u · A∇udx = e1Ae1.

The correctness of (2.1) now follows from a rescaling, choosing ε = N−1.

5.3 Violation of the homogenisation conditions in [13]

In [13] it is assumed that we can distribute a point process X = (Xi)i≥1, inside the
random geometry, that is jointly stationary and with a uniform minimal distance δ > 0

to the boundary. Then, these points Xi are used to create a Voronoi tessellation where
each cell Ci, corresponding to Xi, has a diameter Di. Within our above construction of a
channel network, this situation can be reproduced for example by choosing a subset of
Zd ∩Gδ, as each of these points has a distance δ to ∂Gδ.

Now, [13] states three conditions on the random geometry and the chosen point
process that together ensure positive conductivity. Two of these conditions are concerned
with the moments of local Lipschitz regularity and thickness of pipes, which are both
satisfied even uniformly in our model.

The third condition, [13, Equation (1.12)], is the relevant condition for our case and is
related to the Voronoi cells emerging from X and it implies that the (5d+ 1)-th moment
of the typical diameter of the large Voronoi cells exists, i.e., E[D5d+1

0 ] <∞, where D0 is
the diameter corresponding to a uniformly chosen point in the domain, see Palm theory
for details. This moment condition is important as huge Voronoi cells are intertwined
with the long range conductivity: large Voronoi cells are hinting at large void spaces and
hence enforced detours when travelling from A to B if the “direct” euclidean path would
pass through such a cell. Large detours on the other hand dramatically decrease the
conductivity of the medium.

Since we characterise our geometry by exponential distributions, one would at first
glance expect that the distribution of large cells decreases exponentially in our model.
However, since the conditions in [13] are polynomial, let us shortly sketch how we
actually get a polynomial distribution of D0, anyway, and hence the reason why our
model violates the sufficient conditions in [13].

We observe that the diameters Di are related to the thickness of bad layers and
to the mean mutual distance of channels in bad layers. Concerning the first part, we
note that P(S(N0) = q−l(1−σ)) ≈ ql and thus P(k < D0 ≤ k + 1) ∼ k1/(σ−1). Concerning
the second part, we can put ourselves in one of the channels in the layer of badness
l and observe that the probability to find another channel in orthogonal direction to
the current channel and within a distance R is proportional to ωl(1− pl)R

d−1

where ωl
is supposedly exponentially decreasing. Comparing the sum

∑
l ωl(1− pl)R

d−1

with an

integral
∫∞

1
ωl(1− px)R

d−1

dx, the probability becomes polynomial in R1−d. We can now
integrate R5d+1 with respect to this distribution and observe that the integral is infinite.
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Figure 3: Realisation of a lattice model with zero conductivity in vertical direction. Here,
P0 is a uniform random variable on [0, 1].

We leave the detailed verification of the above heuristic to future investigations as
we expect the corresponding calculations to be involved, for example due to boundary
effects in the creation of the Voronoi cells.

6 Discussions and outlook

We briefly mentioned a simple percolation model with infinite resistance in all (stan-
dard lattice) directions but one, which we illustrate in Figure 3: Let us first choose
e1 ∈ Zd as our special direction. In this direction, we set all edges (v ↔ v+e1) to be open.
For all other directions, we do the following (only illustrated for d = 2 and analogously
for higher dimensions): For each column i of horizontal edges, sample independently a
Pi ∈ (0, 1). Then, the edges in said column are independently set open with probability Pi
and closed otherwise. If all the Pi are iid and E[P−1

0 ] =∞, then the expected resistance
is infinite and the effective conductivity is zero in this direction. In fact, this model
features exactly one connected component which contains all open edges.

Previously, we exploited the existence of weak columns in the RSL by elongating them.
With actual control on the percolation cluster, one might be able to answer the following
question: Is there perhaps a supercritical regime in the unmodified (non-elongated) RSL
which satisfies A = 0?

By now, we have shown that the (variable speed) random walker on a properly tuned
ERSL is subdiffusive. Figuring out the exact non-diffusive scaling and determining
whether it depends on the elongation parameter σ seems worthwhile.
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[23] A.L. Pyatnitskĭi and V.V. Zhikov Homogenization of random singular structures and random
measures, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 70 (2006), no. 1,
27–74. MR2212433

[24] H. Thorisson, Coupling, stationarity, and regeneration, Probability and its Applications,
Springer-Verlag, New York, 2000. MR1741181

Acknowledgments. We would like to thank Sebastian Andres, Marek Biskup and
Alessandra Faggionato for inspiring discussions.

ECP 29 (2024), paper 66.
Page 13/13

https://www.imstat.org/ecp

https://mathscinet.ams.org/mathscinet-getitem?mr=0920811
https://mathscinet.ams.org/mathscinet-getitem?mr=3898702
https://mathscinet.ams.org/mathscinet-getitem?mr=4575012
https://mathscinet.ams.org/mathscinet-getitem?mr=3296147
https://mathscinet.ams.org/mathscinet-getitem?mr=4559149
https://mathscinet.ams.org/mathscinet-getitem?mr=4669296
https://mathscinet.ams.org/mathscinet-getitem?mr=4629638
https://arXiv.org/abs/2110.03256
https://arXiv.org/abs/2311.14644
https://mathscinet.ams.org/mathscinet-getitem?mr=2116736
https://mathscinet.ams.org/mathscinet-getitem?mr=4660696
https://mathscinet.ams.org/mathscinet-getitem?mr=1761579
https://mathscinet.ams.org/mathscinet-getitem?mr=0837129
https://mathscinet.ams.org/mathscinet-getitem?mr=1318242
https://mathscinet.ams.org/mathscinet-getitem?mr=0714611
https://mathscinet.ams.org/mathscinet-getitem?mr=2212433
https://mathscinet.ams.org/mathscinet-getitem?mr=1741181
https://doi.org/10.1214/24-ECP633
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Electronic Journal of Probability
Electronic Communications in Probability

Advantages of publishing in EJP-ECP

•Very high standards

•Free for authors, free for readers

•Quick publication (no backlog)

•Secure publication (LOCKSS1)

•Easy interface (EJMS2)

Economical model of EJP-ECP

•Non profit, sponsored by IMS3, BS4, ProjectEuclid5

•Purely electronic

Help keep the journal free and vigorous

•Donate to the IMS open access fund6 (click here to donate!)

•Submit your best articles to EJP-ECP

•Choose EJP-ECP over for-profit journals

1LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
2EJMS: Electronic Journal Management System: https://vtex.lt/services/ejms-peer-review/
3IMS: Institute of Mathematical Statistics http://www.imstat.org/
4BS: Bernoulli Society http://www.bernoulli-society.org/
5Project Euclid: https://projecteuclid.org/
6IMS Open Access Fund: https://imstat.org/shop/donation/

http://en.wikipedia.org/wiki/LOCKSS
https://vtex.lt/services/ejms-peer-review
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
https://projecteuclid.org/
https://imstat.org/shop/donation/
http://www.lockss.org/
https://vtex.lt/services/ejms-peer-review/
http://www.imstat.org/
http://www.bernoulli-society.org/
https://projecteuclid.org/
https://imstat.org/shop/donation/

	Introduction
	Setting and main result
	Construction: RSL and ERSL
	Checking non-conductance
	Parameters
	Finding bad layers
	Calculating the effective conductivity

	Background on discrete models for perforated domains
	Justification of discrete models replacing continuous problems
	Formulas for the effective conductivity
	Violation of the homogenisation conditions in heida3perforation

	Discussions and outlook
	References

