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1 Introduction

1.1 Context

In this article we prove the Large deviation principle (LDP) for the complex solution
to squared Bessel SDE. For a precise definition of a LDP and usual notions related to it,
we refer to [1, 2]. For δ ≥ 0, the classical δ-dimensional squared Bessel process is the
non-negative solution to the squared Bessel SDE

dXt = 2
√
XtdBt + δdt, X0 = x ≥ 0, (1.1)

where B is a standard Brownian motion defined on some probability space (Ω,F ,P),
see [[4]-ChapterXI]. In relation to Schramm-Loewner-Evolutions (SLEs), it is natural to
consider a variant of (1.1) for δ < 0 and with complex valued solutions. More precisely,
for η > 0 (we write η = −δ), we consider the SDE

dYt = 2AtdBt − ηdt, Y0 = 0, (1.2)

where Yt, At are complex valued adapted processes (w.r.t. the filtration of B) such that
A2
t = Yt and Im(At) ≥ 0. Note that for upper half plane H := {x+ iy|y > 0}, the square

root function
√
z : C \ [0,∞)→ H is a conformal bijection. As such, if Yt ∈ C \ [0,∞) for

some t, then At =
√
Yt. Otherwise, if Yt ∈ [0,∞), then At makes a choice from ±

√
|Yt|

in an adapted way1. In other words, A is an adapted branch chosen from all possible
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1If z ∈ C \ [0,∞), we write

√
z for its complex square root so that

√
z ∈ H. If z ∈ [0,∞), we write

√
z to

mean the standard non-negative square root of z. Note that for x > 0, ±
√
x are two possible limit points of

√
z

as z → x in C \ [0,∞).
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LDP for complex Bessel processes

square roots of Y . We thus refer to A as a branch square root of Y . It is proven in [5]
that if Y is any solution to (1.2), then almost surely Yt ∈ C \ [0,∞) for all t > 0. As such,
At =

√
Yt for all t > 0 and (1.2) is equivalent to

dYt = 2
√
YtdBt − ηdt, Y0 = 0. (1.3)

The existence and uniqueness of strong solution to (1.3) is a consequence of the Rohde-
Schramm estimate [6], see [[5]-Theorem 1.5]. In this article we prove the LDP for
solutions Y η as η →∞. The corresponding LDP result for Xδ as δ →∞ was proven in
[7].

1.2 Main result

Similarly as for Xδ in [7], we translate the LDP for Y η into a small noise LDP as
follows. Set ε = 1/

√
η and Zεt = Y ηt /η. Then, Zε solves

dZεt = −dt+ 2ε
√
Zεt dBt, Zε0 = 0. (1.4)

A LDP for the process Zε as ε→ 0+ falls in the framework of Freidlin-Wentzell theory
which has been extensively studied in the literature, see [23, 25, 26, 24, 30, 16, 21, 22,
27, 29] and references therein for several related works. However, since our setup is
rather specific, the existing literature does not give an out-of-the-box statement to imply
our main result (at least to best of our knowledge). Note that for the process Zε, the
diffusive vector field which is the complex square root is not even continuous on C. One
can alternatively view Zε as a C \ (0,∞) valued process, but C \ (0,∞) is not a complete
space and

√
· is not Lipschitz on C \ (0,∞). Another key distinguishing feature of (1.4) is

that even though it is a two dimensional real valued system of equations, the noise term
B is only one dimensional.

We now state our main result. Let C0([0, T ],C) = {ϕ : [0, T ]→ C
∣∣ ϕ is continuous and

ϕ0 = 0} be equipped with the uniform metric. We view Zε as a C0([0, T ],C) valued ran-
dom variable and denote the law of Zε by µε. Let us first describe the LDP rate function
I for {µε}ε>0. The rate function I is finite for functions ϕ which satisfy condition: (H1)
ϕ ∈ C0([0, T ],C) such that ϕt ∈ C\ [0,∞) for all t > 0, (H2) ϕt is absolutely continuous, i.e.
both Re(ϕt) and Im(ϕt) are absolutely continuous, and (H3) (ϕ̇t+1)/(2

√
ϕt) is real valued

with (ϕ̇t + 1)/(2
√
ϕt) ∈ L2([0, T ],R). Let D([0, T ],C) := {ϕ

∣∣ ϕ satisfies H1, H2, H3}.
Theorem 1.1. The family {µε}ε>0 satisfies the LDP with speed ε2 and a good rate
function I(·) defined by

I(ϕ) =

{ ∫ T
0

(ϕ̇t+1)2

8ϕt
dt if ϕ ∈ D([0, T ],C),

+∞ otherwise.
(1.5)

Remark 1.2. The process Zε is scale invariant, i.e. for any λ > 0, {λZελ−1t}t≥0 has the
same law as {Zεt }t≥0. As a consequence, the rate function I(·) should also invariant
under the transformation {ϕt}t≥0 7→ {λϕλ−1t}t≥0. It can be easily verified from the
explicit form of the rate function given in (1.5) that this is indeed the case.

1.3 Motivation

The process Y η is related to SLEκ as follows: for κ < 4 and η = 4/κ− 1,

{
√
κY η(T − t, T, 0)}t∈[0,T ]

d
= {γt}t∈[0,T ], (1.6)

where γt is the SLEκ curve and {Y η(s, t, z)}0≤s≤t,z∈H is the flow of solutions obtained by

solving (1.3) with the initial condition Ys = z ∈ H, see [[5]-Corollary 1.7] for details. Our
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motivation to prove a LDP for Y η comes from the work of Y. Wang [8, 9, 10] on the LDP
for SLEκ as κ→ 0+. A LDP result for SLEκ with respect to Hausdorff metric was proven
in [3]. To establish a LDP for SLEκ in the (stronger) uniform metric, one can utilise (1.6)
and reduce this problem to proving a LDP for the stochastic flow of (1.3), see [13, 18]
for some results in that direction. A natural first step in this approach is to prove a LDP
for the solution Y η itself which is addressed in this paper (note that η →∞ as κ→ 0+).
We note that a LDP result for SLEκ with respect to uniform metric (but in an incomplete
space (S, τ)) has been established by V. Guskov [12]. However, the LDP for Y η does not
follow from results of [12].
As a corollary of Theorem 1.1, one can obtain a large deviation estimate for the tip of
SLEκ. Using (1.6), the tip γκT of SLEκ is given by

√
κY ηT , where η = 4/κ− 1. Theorem 1.1

can hence be applied to obtain a LDP for γκT . This can be compared to results of [19]
which describes the exact law of the tip γκT . The corresponding rate function in the LDP
for γκT is given by I(z) = inf{I(ϕ) | ϕ joins 0 to z2}, where z ∈ H and I(ϕ) is given by (1.5).
In the language of [8], this is the minimum Loewner energy required for a curve to pass
through z. This can be explicitly computed and it turns out to be −8 log(sin(arg(z))). This
was already computed in [8] using probabilistic methods. A more direct deterministic
proof has been given by T. Mesikepp [20]. A yet another proof of this fact can also
be obtained by using Euler-Lagrange equation to directly compute the minimum value
I(z) = inf{I(ϕ) | ϕ joins 0 to z2} from (1.5). Since this computation is long and not the
main point of this paper, we do not present the details here.
Theorem 1.1 is also a natural variant of LDP for squared Bessel processes Xδ as proven
in [7]. It follows from central limit theorem and the additive property of squared Bessel
processes (cf. [[7], Equation (1.3)]) that as δ →∞,{√

δ

(
Xδ
t

δ
− t
)}

0≤t≤T

d−→
{√

2Bt2
}
0≤t≤T . (1.7)

In our setting, the process Y η does not satisfy the additive property. Nevertheless,
we can write

√
η

(
Y ηt
η

+ t

)
=

1

ε
(Zεt + t) = 2

∫ t

0

√
ZεrdBr.

It can be easily verified that {Zεt }t∈[0,T ] → {−t}t∈[0,T ] in L2(P) as ε→ 0. Hence, it follows
that as η →∞,{

√
η

(
Y ηt
η

+ t

)}
0≤t≤T

d−→
{

2i

∫ t

0

√
rdBr

}
0≤t≤T

d
=
{√

2iBt2
}
0≤t≤T . (1.8)

Hence, even though Y η does not satisfy the additivity property, we do have the above
variant of CLT for Y η. Obtaining a LDP for Y η is a natural next step.

1.4 Idea of the proof of Theorem 1.1

To prove Theorem 1.1, we use the standard argument based on exponential mar-
tingales. We first show that the family {µε}ε>0 is exponentially tight which is an easy
consequence of estimates in [17] (Lemma 2.1 below). Then, we prove the weak upper
and the weak lower bound (Proposition 3.2 and Proposition 3.6 below). The weak upper
bound is obtained by weighting P with the exponential martingale Mε

f,g(Z
ε) (see (3.5)

below). The choice of this appropriate martingale Mε
f,g(Z

ε) is a key observation of this
paper. The weak upper bound is completed by obtaining a variational description of
the rate function I which in itself is a two dimensional functional optimisation problem,
see Proposition 3.3. For the weak lower bound, we use the classical change of measure
appearing in Cameron-Martin theorem, see (3.20). The weak lower bound (3.18) boils
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down to Proposition 3.7 which is another key input of this paper, see Remark 3.8. The
proof of Proposition 3.7 relies crucially on results of [11], particularly on the uniqueness
of solution to (2.2), see Lemma 2.2 below. The paper [11] is a foundation for this paper
and its results are used repeatedly in several instances.

Remark 1.3. As shown in [7], the LDP for Xδ can be obtained via two other methods
besides the approach using exponential martingales: (1) by using an infinite dimensional
Cramer’s theorem approach which is based on additivity property of Xδ, and (2) by
using contraction principle applied to Bessel processes

√
Xδ, which in turn is based on

the work of McKean [14, 15] giving the continuity of the associated Itô map. However,
these two approaches fail to apply to Y η. The process Y η does not satisfy the additivity
property. Also, the technique of [14, 15] does not apply to

√
Y η and the associated Itô

map is not well defined.

Organization of the paper

In section 2 we recall some known results which will be useful in the proof of
Theorem 1.1. Section 3 contains the proof of Theorem 1.1.

2 Preliminaries

In this section we recall some results which will be used in the proof of Theorem 1.1.

2.1 Cameron-Martin perturbations

Let H1
0 ([0, T ],R) = {h : [0, T ]→ R

∣∣ h0 = 0, ḣ ∈ L2([0, T ],R)} be the Cameron-Martin
space equipped with the norm

||h||H1
0

=

√∫ T

0

ḣ2rdr.

Also define the Hölder (semi)norms for α ∈ (0, 1],

||h||α := sup
0≤s<t≤T

|ht − hs|
|t− s|α

.

For h ∈ H1
0 ([0, T ],R), we will need to consider Zε,ht which are solutions to

dZε,ht = −dt+ 2

√
Zε,ht (εdBt + dht), Zε,h0 = 0. (2.1)

Using Girsanov theorem, Zε,ht has the same almost sure properties as Zεt . The existence
and uniqueness of strong solution Zε,ht to (2.1) follow similarly as for (1.4). We will write√
Zε,ht = Uε,ht + iV ε,ht and

√
Zεt = Uεt + iV εt .

Lemma 2.1 (Lemma 2.1 in [17]). For Uε,ht , V ε,ht as above, we have

|Uε,ht | ≤ 2 sup
s∈[0,t]

(ε|Bs|+ |hs|),

and
V ε,ht ≤

√
(ε2 + 1)t.

We will also need to consider solutions ϕh which solves

dϕht = −dt+ 2Atdht, ϕh0 = 0, (2.2)

where At is H-valued measurable function such that A2
t = ϕht , i.e. At = At(ϕ

h) is a
branch square root of ϕh similarly as described in Section 1. Following results from [11]
are crucial inputs in the proof of Theorem 1.1.
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Lemma 2.2 (Proposition 2.6 in [11]). Let h ∈ H1
0 ([0, T ],R). For any solution (ϕh, A(ϕh))

of (2.2), At ∈ C \ [0,∞) for all t > 0. Hence, At =
√
ϕht and (2.2) is equivalent to

dϕht = −dt+ 2
√
ϕht dht, ϕh0 = 0. (2.3)

Furthermore,

lim inf
t→0+

Im(
√
ϕht )√
t

> 0,

and ϕh is the unique solution to (2.3).

Remark 2.3. The above result is in fact true under the assumption that h is bounded
variation and it satisfies a certain slowpoint condition, see [11]. It can be easily checked
that Cameron-Martin functions h satisfy this slowpoint condition.

Lemma 2.4 (Proposition 3.1 in [11]). Let hn, h ∈ H1
0 ([0, T ],R) such that hn → h uniformly

as n→∞. Further assume that supn ||hn||H1
0
<∞. Then, ϕhn converges to ϕh uniformly.

Lemma 2.5 (Lemma 2.4 in [11]). Let ϕn, ϕ ∈ C0([0, T ],C) such that ϕn → ϕ uniformly.
Suppose for all n and t > 0, ϕnt ∈ C \ [0,∞). Then, there exists a subsequence ϕnk and a
branch square root A = A(ϕ) of ϕ such that

√
ϕnk converges uniformly to A.

3 Proof of Theorem 1.1

3.1 Goodness of rate function I

Recall the rate function I(ϕ) from (1.5). Note that I(ϕ) < ∞ if and only if ϕ ∈
D([0, T ],C). Hence, for Lebesgue almost every t,

ϕ̇t + 1

2
√
ϕt

= ḣt

for some h ∈ H1
0 ([0, T ],R). In other words, ϕ solves (2.3). Using Lemma 2.2, it follows

that ϕ = ϕh. Hence, I(ϕ) < ∞ if and only if ϕ = ϕh for some h ∈ H1
0 ([0, T ],R). In that

case, we have

I(ϕ) = I(ϕh) =
1

2

∫ T

0

ḣ2rdr.

To show that I is a good rate function, we check that level sets {ϕ
∣∣I(ϕ) ≤ L} is

sequentially compact for all L ≥ 0. Let ϕn ∈ be a sequence such that I(ϕn) ≤ L. Then,
ϕn = ϕhn for some hn ∈ H1

0 ([0, T ],R) with ||hn||H1
0
≤
√

2L. Since (H1
0 , || · ||H1

0
) is a

Hilbert space, its closed balls are weakly compact. Hence, there exists a subsequence
hnk

converging weakly in H1
0 to some h∞ ∈ H1

0 ([0, T ],R) with ||h∞||H1
0
≤
√

2L. Also,

since ||hn||H1
0
≤
√

2L, it follows that supn ||hn||1/2 < ∞. By Arzela-Ascoli theorem,
possibly along a further subsequence, hnk

converges uniformly to h∞. Using Lemma 2.4,
we obtain that ϕhnk converges uniformly to ϕh∞ ∈ {ϕ

∣∣I(ϕ) ≤ L}. This implies that
{ϕ
∣∣I(ϕ) ≤ L} is compact.

3.2 Exponential tightness

We prove that the family {µε} is tight, and it is exponentially tight as well. More
precisely:

Proposition 3.1. For any α ∈ (0, 1/2),

lim
R→+∞

sup
ε∈(0,1)

ε2 logP(||Zε||α ≥ R) = −∞.

Also, for any h ∈ H1
0 ([0, T ],R),

lim
R→∞

sup
ε∈(0,1)

P(||Zε,h||α ≥ R) = 0.
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Proof. Fix α ∈ (0, 1/2). We write Zεt = −t+ 2(Mε
t + iNε

t ), where

Mε
t = ε

∫ t

0

Re(
√
Zεr )dBr = ε

∫ t

0

Uεr dBr, and Nε
t = ε

∫ t

0

Im(
√
Zεr )dBr = ε

∫ t

0

V εr dBr

are local martingales. Clearly, it suffices to prove that for fε = Mε, Nε

lim
R→+∞

sup
ε∈(0,1)

ε2 logP(||fε||α ≥ R) = −∞. (3.1)

Using the Garsia-Rumsey-Rodemich (GRR) inequality, ref. [Lemma 1.1, [28]], with
Ψ(x) = ecε

−2x − 1 and p(x) = x
1
2 , where 0 < c < 1/2 is properly chosen constant, we

obtain for fε = Mε and fε = Nε

|fεt − fεs | ≤
8ε2

c

∫ |t−s|
0

log

(
1 +

4Kε

u2

)
d
√
u ≤ 8ε2

c
(t− s) 1

2

[
log(T 2 + 4Kε) + 4 log

e√
t− s

]
,

where

Kε :=

∫ T

0

∫ T

0

{
exp

(
cε−2

|fεt − fεs |
|t− s|1/2

)
− 1

}
dsdt.

It follows that
||fε||α .T ε

2(log(Kε + 1) + 1). (3.2)

Using Markov inequality, this implies that

sup
ε∈(0,1)

ε2 logP(||fε||α ≥ R)≤ sup
ε∈(0,1)

ε2 logP(Kε ≥ eR/ε
2−1 − 1)

≤ sup
ε∈(0,1)

{ε2 logE(Kε)− ε2 log(eR/ε
2−1 − 1)}

≤ sup
ε∈(0,1)

ε2 logE(Kε)− inf
ε∈(0,1)

ε2 log(eR/ε
2−1 − 1).

Note that infε∈(0,1) ε
2 log(eR/ε

2−1 − 1)→∞ as R→∞. Hence, to obtain (3.1), it suffices
to verify that

sup
ε∈(0,1)

ε2 log

∫ T

0

∫ T

0

E

[
exp

(
cε−2

|fεt − fεs |
|t− s|1/2

)]
dsdt <∞. (3.3)

We now use an exponential martingale inequality: for any continuous local martingale
Y with Y0 = 0, E(eλ|Yt|) ≤ 2[E(e2λ

2[Y ]t)]1/2. Therefore, using Lemma 2.1, we have for
fεt = Mε

t

E

[
exp

(
cε−2

|Mε
t −Mε

s |
|t− s|1/2

)]
≤ 2

[
E

(
exp

(
2c2ε−2

(t− s)

∫ t

s

(Uεr )2dr

))] 1
2

≤ 2

[
E

(
exp

(
8c2 sup

r∈[0,T ]

B2
r

))] 1
2

.

The c is chosen small enough so that the right hand side above is finite using Fernique
theorem. This implies (3.3) for fεt = Mε

t . For fεt = Nε
t , again using Lemma 2.1, we

similarly have

E

[
exp

(
cε−2

|Nε
t −Nε

s |
|t− s|1/2

)]
≤2

[
E

(
exp

(
2c2ε−2

(t− s)

∫ t

s

(V εr )2dr

))] 1
2

≤2 exp
(
c2ε−2(ε2 + 1)T

)
which implies (3.3) for fεt = Nε

t .
Also, it easily follows from (3.2) and estimates above that supε∈(0,1)E(||Zε||α) <∞, which

implies the tightness of {Zε}ε∈(0,1). The tightness of {Zε,h}ε∈(0,1) follows similarly.
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3.3 Upper bound

We now prove the LDP upper bound in Theorem 1.1. Since Zε is exponentially tight,
it suffices to prove:

Proposition 3.2. For ϕ ∈ C0([0, T ],C), let Br(ϕ) be the closed ball of radius r around ϕ.
Then,

lim
r→0

lim sup
ε→0

ε2 logP(Zε ∈ Br(ϕ)) ≤ −I(ϕ). (3.4)

For proving the above claim, we will weight probabilities by exponential martingale
Mε
f,g defined by

Mε
f,g(Z

ε) = E
(

1

ε

∫ T

0

(frU
ε
r + grV

ε
r )dBr

)
= exp

(
1

ε2

(∫ T

0

frεU
ε
r dBr +

∫ T

0

grεV
ε
r dBr

)
− 1

2ε2

∫ T

0

(f2r (Uεr )2 + g2r(V εr )2 + 2frgrU
ε
rV

ε
r )dr

)
, (3.5)

where f, g ∈ C1([0, T ],R). Note that we will need to have martingale Mε
f,g(Z

ε) to be
parametrised by two functions f, g. This is owing to the fact that even though B is real
valued, Zε is complex valued. Since Zε solves (1.4), we have

d(Re(Zεt ) + t) = d((Uεt )2 − (V εt )2 + t) = 2εUεt dBt, d(Im(Zεt ))/2 = d(Uεt V
ε
t ) = εV εt dBt.

(3.6)
Therefore,

Mε
f,g(Z

ε) = exp

(
1

2ε2

(∫ T

0

frd(Re(Zεr ) + r) +

∫ T

0

grd(Im(Zεr ))

)
− 1

2ε2

∫ T

0

(f2r
|Zεr |+ Re(Zεr )

2
+ g2r

|Zεr | −Re(Zεr )

2
+ frgrIm(Zεr ))dr

)
.

Correspondingly, for any ξ ∈ C0([0, T ],C), we define

Mε
f,g(ξ) := exp

(
1

ε2
Jf,g(ξ)

)
,

where

Jf,g(ξ) :=
1

2

(∫ T

0

frd(Re(ξr) + r) +

∫ T

0

grd(Im(ξr))

)
(3.7)

− 1

2

∫ T

0

(f2r
|ξr|+ Re(ξr)

2
+ g2r

|ξr| −Re(ξr)

2
+ frgrIm(ξr))dr.

Note that, since f, g ∈ C1([0, T ],R), the first two integrals appearing above is well
defined for any continuous ξ as a Riemann-Stieltjes integral2. Furthermore, using
integration by parts formula,∫ T

0

frd(Re(ξr) + r) = fT (Re(ξT ) + T )−
∫ T

0

(Re(ξr) + r)dfr,

and ∫ T

0

grd(Im(ξr)) = gTIm(ξT )−
∫ T

0

Im(ξr)dgr.

Therefore, for each fixed f, g ∈ C1([0, T ],R), the function ξ 7→ Jf,g(ξ) is continuous
on C0([0, T ],C). We further claim that:

2For continuous functions X,Y , using integration by parts, the Riemann Stieltjes integral
∫
XrdYr is well

defined if either of X or Y is of bounded variation.
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Proposition 3.3. For each ϕ ∈ C0([0, T ],C) and the functional J defined as in (3.7),

sup
f,g∈C1([0,T ],R)

Jf,g(ϕ) = I(ϕ). (3.8)

The proof of Proposition 3.3 is postponed till section 3.5. As a result of this, we have:

Proof of Proposition 3.2. Since Mε
f,g(Z

ε) is a positive local martingale, it is a super-
martingale. Hence, E(Mε

f,g(Z
ε)) ≤ 1. This implies that

P(Zε ∈ Br(ϕ)) = E

(
1Br(ϕ)(Z

ε)
Mε
f,g(Z

ε)

Mε
f,g(Z

ε)

)
≤ sup
ξ∈Br(ϕ)

(Mε
f,g(ξ))

−1E(Mε
f,g(Z

ε))

≤ sup
ξ∈Br(ϕ)

(Mε
f,g(ξ))

−1.

This implies, using the continuity of ξ 7→Mε
f,g(ξ),

lim
r→0

lim sup
ε→0

ε2 logP(Zε ∈ Br(ϕ)) ≤ −Jf,g(ϕ). (3.9)

Minimizing the right hand side over f, g and using Proposition 3.3 completes the proof.

3.4 Some analytical lemmas

The proof of Proposition 3.3 requires following optimisation results. The following
lemma is well known and it is a consequence of Riesz theorem, see [[7], Proposition 3.2]
for details.

Lemma 3.4. Let α, β ∈ C0([0, T ],R) such that β is non-negative. Assume that

sup
f∈C1([0,T ],R)

{∫ T

0

frdαr −
1

2

∫ T

0

f2r βrdr

}
<∞. (3.10)

Then α is a absolutely continuous function and there exists a measurable function
k : [0, T ]→ R such that

∫ T
0
k2rβrdr <∞ and α̇t = ktβt Lebesgue almost everywhere.

Besides the above one dimensional optimisation in f , we also need a two dimensional
optimisation over functions f, g:

Lemma 3.5. Let u, v : [0, T ]→ R are bounded measurable functions and p, q ∈ L2([0, T ],

R). Then,

sup
f,g∈C1([0,T ],R)

∫ T

0

{frurpr + grvrqr − (frur + grvr)
2}dr <∞ (3.11)

if and only if p = q a.e. on the set {uv 6= 0}.

Proof. If p = q a.e. on the set {uv 6= 0}, then for almost every r,

frurpr + grvrqr − (frur + grvr)
2

= (frurpr + grvrqr − (frur + grvr)
2)1urvr 6=0 + (frurpr + grvrqr − (frur + grvr)

2)1urvr=0

= (pr(frur + grvr)− (frur + grvr)
2)1urvr 6=0 + (frurpr + grvrqr − f2r u2r−g2rv2r)1urvr=0

≤ 1

4
(p2r1urvr 6=0 + (p2r + q2r)1urvr=0),

which implies (3.11).
Conversely, let us now assume (3.11) holds.
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For constants L, ε > 0, consider functions

xr :=
L(pr − qr) + pr + qr

2ur
1|ur|∧|vr|≥ε + 1|ur|∧|vr|≤ε,

and

yr :=
pr + qr − L(pr − qr)

2vr
1|ur|∧|vr|≥ε + 1|ur|∧|vr|≤ε.

Clearly, x, y ∈ L2([0, T ],R). Since C1([0, T ],R) is dense in L2([0, T ],R), we can pick
sequences fn, gn ∈ C1([0, T ],R) such that fn → x and gn → y in L2([0, T ],R). Since u, v
are bounded, it follows that

fnu+ gnv → (p+ q)1|u|∧|v|≥ε + (u+ v)1|u|∧|v|≤ε,

and
fnu− gnv → L(p− q)1|u|∧|v|≥ε + (u− v)1|u|∧|v|≤ε

in L2([0, T ],R). This in turn implies that as n→∞

1

2

∫ T

0

(fnr ur − gnr vr)(pr − qr)dr

→ L

2

∫ T

0

(pr − qr)21|ur|∧|vr|≥εdr +
1

2

∫ T

0

(ur − vr)(pr − qr)1|ur|∧|vr|≤εdr,

and
1

2

∫ T

0

(fnr ur + gnr vr)(pr + qr)dr −
∫ T

0

(fnr ur + gnr vr)
2dr → c

where c is independent of L. Note that sum of left hand sides of above two equations
equals the integral appearing in (3.11), which is bounded in f, g. This implies that
L
∫ T
0

(pr − qr)21|ur|∧|vr|≥εdr is bounded. Since L is arbitrary, this implies that∫ T

0

(pr − qr)21|ur|∧|vr|≥εdr = 0.

By letting ε→ 0+, it follows using dominated convergence theorem that∫ T

0

(pr − qr)21|ur|∧|vr|>0dr = 0,

which concludes the proof.

3.5 Proof of Proposition 3.3

Let us first assume I(ϕ) < ∞. Then, ϕ = ϕh for some h ∈ H1
0 ([0, T ],R). Let√

ϕt = Ut + iVt. Since ϕ solves (2.3), we have

d(U2
t − V 2

t + t) = 2Utdht, (3.12)

and
d(UtVt) = Vtdht. (3.13)

Following a simple rewriting, this implies that

Jf,g(ϕ) =

∫ T

0

(frUr + grVr)dhr −
1

2

∫ T

0

(frUr + grVr)
2dr

=

∫ T

0

{
(frUr + grVr)ḣr −

1

2
(frUr + grVr)

2
}
dr

≤ 1

2

∫ T

0

ḣ2rdr = I(ϕ),
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which implies supf,g∈C1([0,T ],R) Jf,g(ϕ) ≤ I(ϕ) <∞. Also, note that

J0,g(ϕ) =

∫ T

0

grVrḣrdr −
1

2

∫ T

0

g2rV
2
r dr = −1

2

∫ T

0

(ḣr − grVr)2dr + I(ϕ).

Since C1([0, T ],R) is dense in L2([0, T ],R),

inf
g∈C1([0,T ],R)

∫ T

0

(ḣr − grVr)2dr = inf
g∈L2([0,T ],R)

∫ T

0

(ḣr − grVr)2dr.

Also, since ḣ ∈ L2([0, T ],R) and V is a strictly increasing positive function,

inf
g∈L2([0,T ],R)

∫ T

0

(ḣr − grVr)2dr = 0.

Hence, supf,g∈C1([0,T ],R) Jf,g(ϕ) = I(ϕ).

Conversely, now assume that supf,g∈C1([0,T ],R) Jf,g(ϕ) <∞. This in particular implies
that both supf∈C1([0,T ],R) Jf,0(ϕ) < ∞ and supg∈C1([0,T ],R) J0,g(ϕ) < ∞. Since Jf,g(ϕ) is
given by (3.7), we have

Jf,0(ϕ) =
1

2

∫ T

0

frd(Re(ϕr) + r)− 1

2

∫ T

0

f2r
|ϕr|+ Re(ϕr)

2
dr.

J0,g(ϕ) =
1

2

∫ T

0

grd(Im(ϕr))−
1

2

∫ T

0

g2r
|ϕr| −Re(ϕr)

2
dr

Applying Lemma 3.4 to above two equations, this implies that Re(ϕ) and Im(ϕ)

are absolutely continuous functions. Furthermore, for some measurable functions
k, l : [0, T ]→ R such that∫ T

0

k2r(|ϕr|+ Re(ϕr))dr +

∫ T

0

l2r(|ϕr| −Re(ϕr))dr <∞, (3.14)

we have

Re(ϕ̇t) + 1 =
1

2
kt(|ϕt|+ Re(ϕt)) a.e., (3.15)

and

Im(ϕ̇t) =
1

2
lt(|ϕt| −Re(ϕt)) a.e.. (3.16)

Next, let ut + ivt =
√
ϕt1ϕt∈C\[0,∞) +

√
|ϕt|1ϕt∈[0,∞). Note that ut + ivt is a branch

square root of ϕ. It follows that |ϕt| = u2t + v2t ,Re(ϕt) = u2t − v2t , and Im(ϕt) = 2utvt.
Hence, Jf,g(ϕ) can be written as

Jf,g(ϕ) =
1

2

∫ T

0

{frkru2r + grlrv
2
r − (frur + grvr)

2}dr. (3.17)

Using Lemma 3.5, we obtain that krur = lrvr a.e. on the set {uv 6= 0}. Now, (3.15), (3.16),
Re(ϕ̇t) + 1 = ktu

2
t , Im(ϕ̇t) = ltv

2
t , which implies that

ϕt = −t+

∫ t

0

(kru
2
r + ilrv

2
r)dr

= −t+

∫ t

0

(ur + ivr)(krur1urvr 6=0 + lrvr1ur=0,vr 6=0 + krur1ur 6=0,vr=0)dr.

Therefore, ϕ solves (2.2) with At = ut + ivt and

ht =
1

2

∫ t

0

(krur1urvr 6=0 + lrvr1ur=0,vr 6=0 + krur1ur 6=0,vr=0)dr.

Note that by (3.14), h ∈ H1
0 ([0, T ],R). Hence, using Lemma 2.2, ϕt ∈ C \ [0,∞) for all

t > 0 and ϕ = ϕh. Hence I(ϕ) <∞ and (3.3) follows from the previous case.
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3.6 Lower bound

We now prove the LDP lower bound in Theorem 1.1. Let C2
0 ([0, T ],R) be the space

of continuously twice differentiable h : [0, T ] → R with h0 = 0 and Y := {ϕh
∣∣ h ∈

C2
0 ([0, T ],R)}. It follows using density of C2

0 ([0, T ],R) in H1
0 ([0, T ],R) and Lemma 2.4

that for each ϕ with I(ϕ) < ∞, there exists a sequence ϕn ∈ Y such that ϕn → ϕ

uniformly and I(ϕn)→ I(ϕ). Thus, it suffices to prove the following to obtain the LDP
lower bound for Zε.

Proposition 3.6. For any ϕ ∈ Y = {ϕh
∣∣ h ∈ C2

0 ([0, T ],R)},

lim
r→0

lim inf
ε→0

ε2 logP(Zε ∈ Br(ϕ)) ≥ −I(ϕ). (3.18)

The key ingredient in the proof of above claim is the following observation:

Proposition 3.7. Let h ∈ H1
0 ([0, T ],R) and Zε,h, ϕh be as described in Section 2. Then,

as ε→ 0+,

Zε,h
P−→ ϕh. (3.19)

The proof of Proposition 3.7 is postponed till next section. As a result of this, we
have:

Proof of Proposition 3.6. Let ϕ = ϕh for some h ∈ C2([0, T ],R). We introduce a change
of measure

dQ

dP
= Nε

where

Nε = exp

(
1

ε

∫ T

0

ḣrdBr −
1

2ε2

∫ T

0

ḣ2rdr

)
. (3.20)

By Girsanov theorem, Bt − ht/ε is a standard Brownian motion under Q. Also, using
integration by parts, ∫ T

0

ḣrdBr = ḣTBT −
∫ T

0

Brḧdr ≤ C||B||∞

for some constant C depending only on h. Therefore,

P(Zε ∈ Br(ϕ)) = E

(
1Br(ϕ)(Z

ε)
Nε

Nε

)
= EQ

(
1Br(ϕ)(Z

ε) exp

(
−1

ε

∫ T

0

ḣrdBr +
1

2ε2

∫ T

0

ḣ2rdr

))

= E

(
1Br(ϕ)(Z

ε,h) exp

(
−1

ε

∫ T

0

ḣrdBr −
1

2ε2

∫ T

0

ḣ2rdr

))

≥ P
(
Zε,h ∈ Br(ϕ), ||B||∞ ≤ 1

)
e−

C
ε exp

(
− 1

2ε2

∫ T

0

ḣ2rdr

)
.

Using Proposition 3.7, as ε → 0, P
(
Zε,h ∈ Br(ϕ), ||B||∞ ≤ 1

)
→ P (||B||∞ ≤ 1) > 0.

Therefore,

lim
r→0

lim inf
ε→0

ε2 logP(Zε ∈ Br(ϕ)) ≥ −I(ϕ). (3.21)
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3.7 Proof of Proposition 3.7

Using Lemma 2.1, it can be easily seen that as ε→ 0+

ε

∫ ·
0

√
Zε,hr dBr

P−→ 0.

Since Zε,h solve (2.1), we get that

Zε,ht + t+ 2

∫ t

0

√
Zε,hr dhr

P−→ 0. (3.22)

Now, let εn → 0+ be any sequence. Let us write Znt = Zεn,h. Using the tightness of

Zε,h (Proposition 3.1), we get that along a subsequence εnk
, Znk

d→ ϕ, where ϕ is some
C0([0, T ],C)-valued random variable. Using Skorokhod’s representation theorem, there

exists C0([0, T ],C)-valued random variables Y k and Ψ such that Y k
d
= Znk , Ψ

d
= ϕ, and

Y k → Ψ almost surely. Clearly, (3.22) implies that

Y kt + t+ 2

∫ t

0

√
Y kr dhr

P−→ 0. (3.23)

Next, using Lemma 2.5, possibly along a subsequence,
√
Y k converges uniformly to a

branch square root At = At(Ψ). Therefore, it follows by taking k →∞ in the above that

Ψt + t+ 2

∫ t

0

Ardhr = 0 a.s..

Using Lemma 2.2, this implies that Ψ = ϕh a.s.. Hence, ϕ = ϕh a.s.. Since ϕh is

deterministic, it follows that Znk
P−→ ϕh. Since the limiting object ϕh is the same for any

sequence εn → 0+, the (3.19) follows.

Remark 3.8. The Proposition 3.7 is similar in spirit to continuity of Loewner traces
with respect to perturbations in the driving function. This in general is a delicate and
difficult problem. However, since we only need convergence in probability in (3.19), we
get around this difficulty by relying on the uniqueness of solution to (2.2).
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