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Abstract

We present a lookdown construction for a Moran seed-bank model with variable
active and inactive population sizes and we show that the empirical measure of our
model coincides with that of the Seed-Bank-Moran Model with latency of Greven,
den Hollander and Oomen [6]. Furthermore, we prove that the time to the most
recent common ancestor, starting from N individuals with stationary distribution
over its state (active or inactive), has the same asymptotic order as the largest
inactivity period. Additionally, we give an explicit approximation of its distribution
under extra assumtion on the inactivity and activity switching rates. We then find the
first asymptotic order of the fixation time of a single beneficial mutant conditioned to
invade the whole population, resulting to be of order lnN .
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Introduction and main results

Seed-banks have been studied for their important effects in biology, but they are also
of great interest from a mathematical point of view, since they can notably modify certain
phenomena. In the probabilistic community, efforts to study the effect of seed-banks
rigorously can be traced back to the work of Kaj, Krone and Lascoux [7]. They postulated
and studied an extension of the classical Wright-Fisher model which includes a seed-bank.
The main difficulty of their approach is that the stochastic processes they study are
not Markovian. Overcoming this (in a particular case) was achieved by Blath, Kurt,
Wilke-Berenguer and one of the authors of this paper in [1]. There, a new Wright-Fisher
model with fully Markovian seed-bank was constructed. Moreover, the authors showed
that the genealogy of this new model converges to the Seed-Bank coalescent. This
process is a Kingman-type coalescent, where the lines of the coalescent can enter into
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latent state. As opposed to the Kingman coalescent, the seed-bank coalescent does not
come down from infinity. Also in [1] it was proved that the time to the most recent
common ancestor of a sample of N active individuals is of order ln(ln(N)). In [5] the
reader can find a detailed description of the Seed-Bank coalescent.

A formidable tool to study coalescent processes is the lookdown construction by
Donelly and Kurtz [2, 3]. This type of construction allows to build Moran-type models
where the lower N levels form a Markov process, for every N ∈ N. This kind of
construction has played a prolific role in the study of many phenomena [4, 9]. Such
representations are not known for seed-bank models and one main task of this paper is
to fill this gap.

Our starting point is the Moran process with latency of Greven, den Hollander and
Oomen [6], in which active and dormant individuals are not two separate families of lines,
but instead each line consists on active and dormant periods exponentially distributed
with rates α and σ respectively.

In this work, we present a lookdown construction for a Moran model with seed-bank
with variable active population sizes and fixed total population size. This is a relaxation
of assumption in [1] that the sizes of the active and dormant population are constant: we
keep the total population size constant but allow the proportion of active (resp. dormant)
individuals to vary over time, starting from a stationary distribution. We show that the
empirical measure of our SB-lookdown construction and the empirical measure of the
SB-Moran Model presented in [6] coincide via the Markov mapping theorem.

Besides our novel lookdown process, we have two other main results. The first
contribution is related to the time to the most recent common ancestor of the seed-bank
coalescent. Thanks to [1], it is known that the time to the most recent common ancestor
of the seed-bank coalescent starting from an active and bn inactive individuals fulfills

E [TMRCA[(an, bn)]] � ln(ln(an) + bn). (0.1)

While this important result is concerned with expectations, we were able to approximate
the distribution. Let p := α

α+σ be the average time that a line is inactive. Under the
condition σ < (1 − p)2, we are able to proof that the time to the most recent common
ancestor T̃MRCA[n] starting from n individuals with stationary state distribution can be
approximated by

T̃ ≤ lim
n→∞

σ

(
T̃MRCA[n]− 1

σ
lnnp

)
≤ σ%+ T̃ a.s.,

where T̃ ∼ Gumbel(0, 1) and % is the time to the most recent common ancestor of the
Kingman coalescent. To prove this result, we study the seed-bank coalescent as the
ancestry process in the lookdown construction. This allowed us to compare T̃MRCA[n]

with the largest period of inactivity of an individual, denoted by ψn, and to prove that they
are of the same order. This comparison enables us to improve the existing result (0.1) in
[1] by computing explicitly the asymptotic first order of the expected value of T̃MRCA[n]

given by

lim
n→∞

E
[
T̃MRCA[n]

]
1
σ lnnp

= 1, ∀α, σ > 0.

Finally, our last main result consists in finding the first asymptotic order of the fixation
time τ̃N of the type in the lower level for the N -lookdown model. The SB-lookdown
construction allows us to compare the fixation time and the TMRCA, to show that

τ̃N

1
σ lnNp

P−−−−→
n→∞

1 and lim
N→∞

E
[
τ̃N
]

1
σ lnNp

= 1, ∀α, σ > 0,
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and approximate its distribution in the case σ < (1− p)2.
The remainder of the paper is structured as follows. In Section 1 we construct the SB-

lookdown and in Theorem 1.2 we show that the empirical measure of the SB-lookdown
and SB-Moran Model coincide. In Section 2 we study the SB-coalescent as the ancestry
process on the SB-lookdown, and in Theorem 2.5 we find the asymptotic order of the
TMRCA. Finally, in Section 3 we deduce the asymptotic order of the fixation time of the
type in the first level in Corollary 3.1.

1 Seed-Bank lookdown model

Throughout this work, we will use the framework of multitype Moran Seed-Bank
model given by [6, B.3], in which it was shown that the diffusion process as well as
the ancestry processes associated with the Moran model coincide with those found
in [1]. Let N ∈ N, the N-Moran Model with seed-bank, or N-particle SB-Moran
model, describes a haploid population of N individuals which evolve as follows. Each
individual starts with a type in some set E ⊆ N and a state in S = {a, d} (active
and dormant respectively), according with an exchangeable distribution. Each active
individual becomes inactive at rate α and each dormant individual becomes active at
rate σ. Independently, a pair of individuals is uniformly chosen at rate 1. The chosen
individuals will interact if both are active. As a product of the interaction, one of them,
chosen at random, will reproduce and its descendant will replace the other one. We will
denote the N -particle SB-Moran model at time t ≥ 0 by WN (t) :=

(
WN

1 (t), . . . ,WN
N (t)

)
.

Indeed, WN (t) is a random vector on (E × S)
N .

Remark 1.1. Observe that the dynamics mentioned above are completely symmetric.
Therefore, given an initial exchangeable configuration, the SB-Moran model will be
exchangeable.

We will now introduce an ordered particle model in the setting of classical lookdown
constructions [2] whose empirical measure distributions will agree with the SB-Moran
model described above. Here, each particle will be attached to a level in [N ] = {1, . . . , N}.
The population evolves as the SB-Moran Model except for the reproduction events,
in which the parent will always be the individual with lower level involved in the
reproduction event. We will refer to this ordered particle model as the SB-lookdown
model, denoted at time t ≥ 0 by ZN (t) :=

(
ZN1 (t), . . . , ZNN (t)

)
, a random vector on

(E × S)
N .

In the following, we will formalize the lookdown construction and we will prove the
equivalence between the ordered and unordered model via the Markov Mapping theorem
[4, 8, 9].

1.1 Seed-Bank lookdown construction

The first step in building the SB-lookdown model is to determine the initial activity
and dormancy periods. For each level i ∈ N we define the auxiliary process

γi(t) := yi0b
i
0 + t+

∫ t

0

∫ ∞
0

yN i(ds, dy).

Here yi0 is an exponential variable with rate σ, bi0 is a Bernoulli variable with success
probability σ/ (α+ σ), and N i(ds, dy) is a Poisson random measure with intensity mea-
sure σds⊗ αe−αydy, all of them independent of each other. Let τ i(t) := inf{s : γi(s) > t}
be the right-continuous inverse of γi which defines the activity and dormancy periods
as follows: ai := {t ∈ R+

0 : τ i(t) 6= τ i(s)∀s ∈ R+
0 } and di := R+

0 \ ai. We then define
the state process of the level i by ZN,Si (t) := a1{t∈ai} + d1{t∈di}. Note that the state
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process for a given level only depends on itself. Moreover, since the process starts from
its stationary distribution we have that the probability of being active at any moment is
described by its stationary distribution on a

P[ZNi (t) = a] = P[t ∈ ai] =
σ

σ + α
= 1− p for all t > 0, i ∈ {1, . . . , N}.

The second part of this construction arises from considering the interactions among
levels. The times in which the individual on level i tries to adopt the current type of an
individual on the lower level j are dictated by a Poisson process Ci,j with rate 1, and the
processes {Ci,j}j<i,i,j∈N are independent of each other. Hence, the type of the individual
at level i at time t is determined by the last possible interaction with individuals at lower
levels before that time. Namely, if (rijn )n∈N are the occurrence times of the process Ci,j
and we set

T ijt := sup
n∈N
{ri,jn : ri,jn ∈ ai ∩ aj , ri,jn ≤ t}

as the last interaction time between individuals on level i and j before time t, setting
sup ∅ as zero by convenience. The type-state of the system at time t is then provided
by a function g constructed in the following recursive way. Given a random function
f : N → E which determines the initial type configuration, we set g(1, t) := f(1). For
each level i, given g(1, t), . . . , g(i− 1, t), we define

g(i, t) := f(i)1{T it=0} +
∑
j<i

g(j, T it )1{T it=T
ij
t }
,

where T it := sup{T ijt , j < i} is the last interaction time that changes the type of the
individual on level i. Therefore, the state of the N -particle lookdown Moran seed-bank
process at time t is given by the vector (ZN1 (t), . . . , ZNN (t)), where

ZNi (t) :=
(
ZN,Ei (t), ZN,Si (t)

)
=
(
g(i, t), a1{t∈ai} + d1{t∈di}

)
,

with S = {a, d} the state space of each level. The only differences in the dynamic of this
process with the SB-Moran seed-bank model construction are found in the reproduction
events. In the lookdown model, each individual chooses his parent among the individuals
in the lower levels, meanwhile in the original SB model a pair of individuals is chosen to
interact, and the parent is selected uniformly.

1.2 Equality in law of the SB-lookdown and SB-Moran models

In this (sub)section we will show that the empirical measure of the SB-lookdown
and SB-Moran Model coincide. Define P(E × S) as the space of probability measures
on E × S and DP(E×S)[0,∞) the space of càdlàg P(E × S)-valued functions with the
Skorohod topology.

Theorem 1.2. The laws of empirical measures associated with the SB-Moran model and
the SB-lookdown model coincide on DP(E×S)[0,∞).

The classic way to prove law equalities for lookdown constructions involves an explicit
coupling of the ordered and unordered models (see [3, Section 2]). Instead, we will utilize
the Markov Mapping Theorem (see [9, Theorem A.15]), which addresses the martingale
problem through its generator. To this end, let’s introduce the generators of the empirical
measures of the processes. Let B

(
(E × S)N

)
be the space of bounded measurable

functions on (E × S)N . Given a configuration z ∈ (E × S)
N and f ∈ B

(
(E × S)N

)
, we
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write

ANMf(z) := σ

N∑
i=1

(
f
(
φdi (z)

)
− f(z)

)
+ α

N∑
i=1

(f (φai (z))− f(z)) +
1

2

∑
i 6=j

(f(φij(z))− f(z))

(1.1)

and

ANLDf(z) :=σ

N∑
i=1

(
f
(
φdi (z)

)
− f(z)

)
+ α

N∑
i=1

(f (φai (z))− f(z)) +
∑
i<j

(f(φij(z))− f(z))

(1.2)

which correspond to the infinitesimal generator of the unordered and ordered models
respectively. Here, φi,j(z) corresponds to replace zj by zi only if zSi = zSj = a; φdi (z)
corresponds to replacing zSi by d; and φai (z) corresponds to replacing zSi by a. Let

zN ∈ P(E × S) be the empirical measure associated to z, given by zN := 1
N

N∑
i=1

δzi . Let π

a permutation of [N ] we denote zπ as the rearrangement of z according with π. For any
f ∈ B

(
(E × S)N

)
we define

f̂(zN ) :=
1

N !

∑
π

f(zπ), (1.3)

which correspond to the uniform average out of all the permutations of a given configu-
ration such that its empirical measure is zN .

1.2.1 Proof of Theorem 1.2.

Since

|ANMf(z)| ≤ (2σ + 2α+N)N ||f || and |ANLDf(z)| ≤ (2σ + 2α+N)N ||f ||

for all z ∈ (E × S)
N , with ||f || = supz∈(E×S)N |f(z)|, to apply the Markov mapping

theorem it is enough to prove that the infinitesimal generators defined in equation (1.1)
and equation (1.2) coincide under the average operator given by (1.3). To this end, note
that the terms correspondent to activation and dormancy events coincide. First, for the
deactivation mechanism we have that

1

N !

∑
π

σ

N∑
i=1

(
f
(
φdi (zπ)

)
− f(zπ)

)
=

1

N !

∑
π

σ

N∑
i=1

(
f
(
φd
π−1
i

(z)π

)
− f(zπ)

)
=

1

N !

∑
π

σ

N∑
i=1

(
f
(
φdi (z)π

)
− f(zπ)

)
= σ

N∑
i=1

(
1

N !

∑
π

f
(
φdi (z)π

)
− 1

N !

∑
π

f(zπ)

)

=σ

N∑
i=1

(
f̂
(

zN +N−1(δφdi (z)i − δzi)
)
− f̂(zN )

)
,

and similarly the activation mechanism has the form

1

N !

∑
π

α

N∑
i=1

(f (φai (zπ))− f(zπ)) =α

N∑
i=1

(
f̂
(
zN +N−1(δφai (z)i − δzi)

)
− f̂(zN )

)
.

ECP 29 (2024), paper 50.
Page 5/14

https://www.imstat.org/ecp

https://doi.org/10.1214/24-ECP617
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Lookdown construction for a Moran seed-bank model

Finally, for the reproduction mechanism we have that

1

N !

∑
π

1

2

∑
i 6=j

(f(φij(zπ))− f(zπ)) =
1

2

∑
i 6=j

(
f̂(zN +N−1

(
δzi − δzj

)
)− f̂(zN )

)
=

1

2

∑
i<j

(
f̂(zN +N−1

(
δzi − δzj

)
)− f̂(zN )

)
+

1

2

∑
i>j

(
f̂(zN +N−1

(
δzi − δzj

)
)− f̂(zN )

)
=
∑
i<j

(
f̂(zN +N−1

(
δzi − δzj

)
)− f̂(zN )

)
,

and we conclude that

AN f̂(zN ) :=σ

N∑
i=1

(
f̂
(

zN +N−1(δφdi (z)i − δzi)
)
− f̂(zN )

)
+ α

N∑
i=1

(
f̂
(
zN +N−1(δφai (z)i − δzi)

)
− f̂(zN )

)
+

1

2

∑
i 6=j

(
f̂(zN +N−1

(
δzi − δzj

)
)− f̂(zN )

)
= ̂ANLDf(z) = ÂNMf(z).

2 Time to the most recent common ancestor

2.1 SB-coalescent process as the ancestry process of a SB-lookdown particle
system

Let’s recall the notion of Seed-bank coalescent from [1]. For k ≥ 1 define Pk as the set
of partitions of [k] and the set of marked partitions of [k] as PSk = {(ζ,→u)|ζ ∈ Pk,

→
u ∈ S|ζ|}.

Let π, π′ ∈ PSk . We denote π � π′, if π′ can be obtained by merging exactly two blocks
carrying the a-flag of π, and the resulting block also carries the a-flag. In a similar way,
we denote π ./ π′ if π can be constructed by changing the flag of precisely one block of
π′.

Definition 2.1 (The Seed-bank k-coalescent, Definition 3.1 [1]). For k ≥ 2 and α, σ ∈
(0,∞). The seed-bank k-coalescent

(
Πk
t

)
t≥0 with seed-bank intensity α and relativity

seed-bank size σ is defined to be the continuous time Markov chain with values in PSk ,
with the following transition rates:

π 7→ π′ at rate


1, if π � π′,
α, if π ./ π′ and one a-flag is replaced by one d-flag,

σ, if π ./ π′ and one d-flag is replaced by one a-flag.

.

Let {(Nt,Mt)}t≥0 be the block counting process associated to the seed-bank coales-
cent, that is, (Nt,Mt) correspond to the numbers of a-flag and d-flag blocks on Πk

t for
each t ≥ 0.

Let’s show that the ancestry process of a sample of individuals in the N -SB-lookdown
model corresponds to the SB-coalescent. Suppose we sample k individuals at a certain
time T ≥ 0. The initial condition correspond to the singletons of the sampled individuals
levels marked according with its state at time T , and we will recover its genealogical
information tracing the particle system backwards in time. For each time t ≥ 0, each
block flag will correspond to the state of the lower individual level in the block at time
T − t. Therefore, it is immediately noticeable that each block with a-flag turns into
a d-flag block at rate σ and conversely at rate α. Similarly, coalescence events will
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correspond to the reproduction events between the lower individuals levels on each
block.

1
2
3
4
5

0 T {2} {3} {4} {5}

Figure 1: An illustration of the 5-particle lookdown model and the ancestry process
of a sample of individuals in levels {2, . . . , 5} at time T. Straight lines indicates activity
periods meanwhile dashed ones indicates the dormancy periods.

In this context, we present the following result which will be helpful later and it
strongly relies on the lookdown construction presented before.

Proposition 2.2 (First collision time with k lower levels.). Let i, k ∈ N, be such that k < i.
The first reproduction event between the individual at level i and any of the individuals
at the first k lower levels is given by

rik := inf
{
rijn | rijn ∈ ai ∩ aj , j ∈ {1, . . . , k}, n ∈ N

}
and satisfies rik ∼ exp

(
k (1− p)2

)
.

Proof. Since the state process ZN,Si starts from its stationary distribution recall that
P[rijn ∈ ai] = σ

α+σ = 1− p, for all n ∈ N and by the independence between levels,

P[rijn ∈ ai ∩ aj ] = P[rijn ∈ ai]P[rijn ∈ aj ] = (1− p)2 (2.1)

for j ∈ {1, . . . , k}. Let C̃i,k :=
k∑
j=1

Ci,j be a Poisson process of rate k by the superposition

of Poisson processes. Given K the number of occurrences of C̃i,k until the first successful
reproduction then we have that K ∼ Geo

(
(1− p)2

)
. We can write the distribution of

the first successful reproduction event in terms of the number of attempts required for
the event to occur, given by K, and the probability of encountering at least K possible
reproduction events at time t. This decomposition is expressed as follows:

P[rik ≤ t] =

∞∑
n=1

P[K = n]P
[
C̃i,kt ≥ n

]
=

∞∑
n=1

(1− p)2(1− (1− p)2)n−1
∫ t

0

k
1

(n− 1)!
(ks)n−1e−ksds

= (1− p)2k
∫ t

0

e−ks
∞∑
n=1

1

(n− 1)!
((1− (1− p)2)ks)n−1ds

= (1− p)2k
∫ t

0

e−kse(1−(1−p)
2)ksds = 1− e−k(1−p)

2t.

Remark 2.3. Note that the coalescence between the block that contains i and the
one that contains j could be achieved without a reproduction event between their
corresponding levels. This implies that if τ ik is the coalescent time of the block {i} with
any of the ancestral lines of the first k individuals, then τ ik is bounded from above by rik
almost surely.
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2.2 Asymptotic distribution of the time to the most recent common ancestor

We will study the long time behavior of the variable

T̃MRCA[n] = inf {t ≥ 0 : Nt +Mt = 1|N0 +M0 = n} ,

using the framework developed in [1]. It is important to emphasize that the variable
T̃MRCA is different from the one defined in [1] as ours it only depends on the total
number of sampled initial individuals. The distinction lies in our assumption that the
states are in stationarity. In [1, Proposition 4.12], the authors define a stopping time
%n corresponding to “the first time that all the n initial individuals which so far had not
entered the seed-bank have coalesced”. We can bound the number of lineages left at %n
by the number of lineages that started in a dormant state, plus the number Bn of first
activation periods under the supposition that all individuals started being active, that is

N%n +M%n ≤ BN0
+M0 ≤ Bn +M0,

where Bk :=
k∑
i=2

δi + 1, with δi ∼ Be(2α/(2α+ (i− 1)) and are independent of each other,

and also independent of M0. Note that

E[M0 + Bn] = pn+

n∑
i=2

2α

2α+ (i− 1)
= pn+ 2α lnn.+R(α, n), and

V [M0 + Bn] = p(1− p)n+

n∑
i=2

2α

2α+ (i− 1)

(
1− 2α

2α+ (i− 1)

)
≤ E[M0 + Bn]

(2.2)

with R(α, n) a function which converges to a finite value depending on α as n goes to
infinity. Define ψn to be the longest first inactivity period in the SB-coalescent
process, given by

ψn := max
1≤i≤M0+BN0

ξi (2.3)

where the inactive periods ξi ∼ exp(σ) are i.i.d.. Additionally define the following
processes

ψ
n

:= max
1≤i≤M0

ξi and ψn := max
1≤i≤M0+Bn

ξi.

By definition, it follows that ψ
n

a.s.
≤ ψn

a.s.
≤ ψn. We present some properties for ψ

n
, ψn and

ψn below.

Proposition 2.4. Let ψ̃n ∈
{
ψ
n
, ψn, ψn

}
then

a) Asymptotic distribution.

σ

(
ψ̃n −

lnnp

σ

)
d−−−−→

n→∞
T̃ , (2.4)

where T̃ ∼ Gumbel(0, 1).

b) Given 0 < r < 1
σ , it holds that

lim
n→∞

P
[
ψ̃n ≤ r lnnp

]
= 0. (2.5)
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Lookdown construction for a Moran seed-bank model

c) The sequence {ψ̃n}n∈N almost surely diverges.

Proof. We start proving the proposition for the case ψ̃n = ψn.

a) Given t > 0 and ε > 0, using Tchebyshev’s inequality we have that

lim
n→∞

P [M0 + Bn < (p+ ε)n] = 1 and lim
n→∞

P [M0 + Bn > (p− ε)n] = 1 (2.6)

We can write

lim
n→∞

P

[
ψn ≤

t

σ
+

lnnp

σ

]
= lim
n→∞

P [An] ,

where An =
{
ψn ≤ t

σ + lnnp
σ ; (p− ε)n ≤M0 + Bn ≤ (p+ ε)n

}
.

Using the definition of ψn we have that

P

[
max

0≤i≤(p+ε)n
ξi ≤

t

σ
+

lnnp

σ

]
≤ P [An] ≤ P

[
max

0≤i≤(p−ε)n
ξi ≤

t

σ
+

lnnp

σ

]
,

and also

P

[
max

0≤i≤(p−ε)n
ξi ≤

t

σ
+

lnnp

σ

]
=

(
1− e−t

np

)(p−ε)n

−−−−→
n→∞

exp

[
− (p− ε)e−t

p

]
.

Analogously,

P

[
max

0≤i≤(p+ε)n
ξi ≤

t

σ
+

lnnp

σ

]
−−−−→
n→∞

exp

[
− (p+ ε)e−t

p

]
,

and letting ε go to zero we conclude that

lim
n→∞

P

[
ψn ≤

t

σ
+

lnnp

σ

]
= exp(−e−t).

The final observation is that e−e
−t

corresponds to the cumulative distribution
function of a standard Gumbel distribution.

b) Using equation (2.3) we have that

P
[
ψn ≤ r lnnp

]
= P

[
ψn ≤ r lnnp,Bn +M0 > (p− ε)n

]
+ P

[
ψn ≤ r lnnp,Bn +M0 ≤ (p− ε)n

]
≤ P

[
max

0≤i≤(p−ε)n
ξi ≤ r lnnp

]
+ P [Bn +M0 ≤ (p− ε)n] ,

and thanks to equation (2.6) for the case ε ∈ (0, p), and the fact that σr < 1 by
hypothesis, we conclude that

P
[
ψn ≤ r lnnp

]
≤
(

1− 1
(np)σr

)(p−ε)n
+ P [Bn +M0 ≤ (p− ε)n] −−−−→

n→∞
0.

c) Given M ≥ 0 and r ∈ (0, 1
σ ), there exists K ∈ N such that M ≤ r lnnp for all n ≥ K.

We have then that

lim
n→∞

P[ψn ≤M ] ≤ lim
n→∞

P[ψn ≤ r lnnp] = 0,

so ψn
P−→∞. Since ψn

a.s.
≤ ψn+1, we conclude that ψn

a.s.−−→∞.
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Lookdown construction for a Moran seed-bank model

Note that the core of the proof relies on the equations (2.6). In turn, the equations
(2.6) follow from the expected value and variance of M0 + Bn given in (2.2). Therefore,
an analogous proof for ψ

n
holds since E[M0] = pn and V[M0] = p(1 − p)n. Finally, as

ψ
n

a.s.
≤ ψn

a.s.
≤ ψn, the result is also true for ψn.

Using this properties, we now study the asymptotic behavior of the time to the most
recent common ancestor.

Theorem 2.5. Given (Πn
t )t≥0 the seed-bank coalescent starting with n individuals asso-

ciated with the Moran lookdown seed-bank model, then

T̃MRCA[n]

ψn

P−−−−→
n→∞

1.

Moreover, if σ < (1− p)2 then

T̃ ≤ lim
n→∞

σ

(
T̃MRCA[n]− 1

σ
lnnp

)
≤ σ%+ T̃ a.s.,

where T̃ = lim
n→∞

σ
(
ψn − 1

σ lnnp
)
∼ Gumbel(0, 1) as in Proposition 2.4 and % is the time to

the most recent common ancestor of the Kingman coalescent.

Remark 2.6. The condition σ < (1 − p)2 corresponds to the case where the rate at
which dormant individuals become active is lower than the rate at which a successful
reproduction event between two individuals occurs in stationarity.

Corollary 2.7. The T̃MRCA[n] and its expected value satisfy

T̃MRCA[n]
1
σ lnnp

P−−−−→
n→∞

1 and lim
n→∞

E
[
T̃MRCA[n]

]
1
σ lnnp

= 1, ∀α, σ > 0.

Remark 2.8. Corollary 2.7 represents a notable improvement to [1, Theorem 4.6] as it
explicitly indicates the long time behavior of the expected value and the first order.

2.2.1 Proof of Theorem 2.5

To begin, note that ψn
a.s.
≤ T̃MRCA[n], since ψn corresponds to an inactive period con-

tained in the seed-bank coalescent. So, it is enough to prove that

T̃MRCA[n]− ψn
ψn

P−−−−→
n→∞

0.

To this end, we will decompose the interval [0, T̃MRCA[n]] into three different phases;
the Kingman phase, the longest inactive phase and the last coalescent phase. For the
Kingman phase we consider the time until %n, and we know that E[%n] ≤ 2 by [1].

On the other hand, let’s analyze the number of lineages after the longest inactive
phase, the time interval between %n and ψn. Let Cn be the number of levels with lineages
that did not coalesce with the first ln(np) lineages before ψn. We will show that Cn goes
to zero almost surely when n goes to infinity. In fact, using Remark 2.3, we have that

Cn :=

M0+BN0∑
i=lnnp

1{ψn<τ ilnnp} ≤
M0+Bn∑
i=lnnp

1{ψ
n
<τ ilnnp} ≤

M0+Bn∑
i=lnnp

1{ψ
n
<rilnnp}

ECP 29 (2024), paper 50.
Page 10/14

https://www.imstat.org/ecp

https://doi.org/10.1214/24-ECP617
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Lookdown construction for a Moran seed-bank model

and recalling definition (2.3), taking conditional expectation with respect to {M0 =

m,Bn = n′} for any m+ n′ > lnnp we have that

E

M0+Bn∑
i=lnnp

1{ψ
n
<rilnnp}

∣∣∣∣∣M0 = m,Bn = n′


= (m+ n′ − lnnp)E

[
1{ψ

n
<rlnnp+1

lnnp }

∣∣∣∣∣M0 = m,Bn = n′

]

≤ (m+ n′)P

[
max

1≤j≤m
ξj < rlnnp+1

lnnp

]
= (m+ n′)

∫ ∞
0

P
[
z < rlnnp+1

lnnp

]
(1− e−σz)m−1σme−σzdz

≤ (m+ n′)

∫ ∞
0

e−(lnnp)(1−p)
2z(1− e−σz)m−1σme−σzdz

= (m+ n′)

∫ ∞
0

(np)−(1−p)
2z(1− e−σz)m−1σme−σzdz

= (m+ n′)E

[
(np)

−(1−p)2 max
1≤j≤m

ξj
]

= (m+ n′)E
[
(np)−(1−p)

2ψ
n

∣∣∣M0 = m
]

= E
[
(M0 + Bn)(np)−(1−p)

2ψ
n

∣∣∣M0 = m,Bn = n′
]
.

The penultimate equality comes from the fact that ψ
n

conditioned to M0 = m is dis-
tributed as the maximum of m exponential random variables of parameter σ whose
density is given by (1− e−σz)m−1σme−σz. Now, using L2-Cauchy inequality and the fact
that M0 + Bn ≥ (p− ε)n > lnnp almost surely for n sufficiently large by equation (2.6),
we have that

E[Cn] ≤ E

M0+Bn∑
i=lnnp

1{ψ
n
<rilnnp}

 ≤ E [E [(M0 + Bn)(np)−(1−p)
2ψ

n

∣∣∣M0, Bn
]]

≤ E
[
E
[
(M0 + Bn)(np)−(1−p)

2ψ
n

∣∣∣M0,Bn
]]

= E
[
(M0 + Bn)(np)−(1−p)

2ψ
n

]
≤
(
V(M0 + Bn) + E2[M0 + Bn]

) 1
2 E
[
(np)−2(1−p)

2ψ
n

] 1
2

≤
(
E[M0 + Bn] + E2[M0 + Bn]

) 1
2 E
[
(np)−2(1−p)

2ψ
n

] 1
2

≤
(
np+ 2α lnn+R(α, n) + (np+ 2α lnn+R(α, n))

2
) 1

2

E
[
(np)−2(1−p)

2ψ
n

] 1
2

,

where in the last line we use equation (2.2). Since {ψ
n
}n∈N diverges almost surely,

lim
n→∞

E[(np)k−2(1−p)
2ψ

n ] = 0 for any k ≥ 0, so we can deduce that

lim
n→0

(pn)kE[Cn] = 0. (2.7)

Moreover, as Cn is non-negative, we conclude that lim
n→∞

Cn
a.s.
= 0. We will employ the

same argument to check that T̃MRCA[lnnp+Cn]− T̃MRCA[lnnp]
P−−−−→

n→∞
0. Let ε > 0, using
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Lookdown construction for a Moran seed-bank model

Markov inequality we can deduce that

P
[
T̃MRCA[lnnp+ Cn]− T̃MRCA[lnnp] ≥ ε

]
≤ 1

ε
E
[
T̃MRCA [n]

]
P[Cn ≥ 1]

≤ 1

ε
E
[
T̃MRCA [n]

]
E [Cn]

≤ 1

ε

E
[
T̃MRCA [n]

]
lnnp

lnnpE [Cn]

by [1, Remark 4.13] we know that

lim sup
n→∞

E
[
T̃MRCA[n]

]
lnnp

<∞, (2.8)

whereas ln(np)E [Cn] goes to 0 by (2.7).
Therefore, T̃MRCA[n] is bounded by

ψn
a.s.
≤ T̃MRCA[n]

a.s.
≤ %n + ψn + T̃MRCA [lnnp+ Cn] (2.9)

and from here we have that

T̃MRCA[n]− ψn
ψn

a.s.
≤ %n + T̃MRCA[lnnp+ Cn]− T̃MRCA[lnnp]

ψn
+
T̃MRCA[lnnp]

ψn
. (2.10)

For any ε > 0 and r ∈ (0, 1
σ ) we have

P

[
T̃MRCA[ln(np)]

ψn
> ε

]
=P

[
T̃MRCA[ln(np)] > εψn, ψn ≤ r ln(np)

]
+ P

[
T̃MRCA[ln(np)] > εψn, ψn > r ln(np))

]
≤P [ψn ≤ r ln(np)] + P

[
T̃MRCA[ln(np)] > εr ln(np)

]
≤P [ψn ≤ r ln(np)] +

E
[
T̃MRCA[ln(np)]

]
εr ln(np)

.

The first term goes to zero according with Proposition (2.4). We will show that the
second term also goes to zero via the generalized dominated convergence theorem,
thanks to (2.8), it follows that

lim
n→∞

E
[
T̃MRCA[ln(np)]

]
εr ln(np)

= 0. (2.11)

Finally, from (2.10) we conclude that T̃MRCA[n]−ψn
ψn

P−−−−→
n→∞

0. For the remaining part of

the proof we study those lineages that have not coalesced with the lineage of the first
level individual once the longest inactivity period concludes. Note that

C̃n =

n∑
i=2

1{ψn≤τ i1} ≤
n∑
i=2

1{ψn≤ri1}

which leads to a similar inequality of (2.9)

ψn
a.s.
≤ T̃MRCA[n]

a.s.
≤ ρn + ψn + T̃MRCA[1 + C̃n]. (2.12)
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Lookdown construction for a Moran seed-bank model

Using conditional expected value

E
[
C̃n

∣∣∣ψn] =

n∑
i=2

E
[
1{ψn≤τ i1}

∣∣∣ψn] ≤ n∑
i=2

E
[
1{ψn≤ri1}

∣∣∣ψn] ≤ ne−(1−p)2ψn
then

E
[
C̃n

]
= E

[
E
[
C̃n

∣∣∣ψn]] ≤ n1− (1−p)2
σ p−

(1−p)2
σ E

[
e−

(1−p)2
σ ·σ(ψn− 1

σ lnnp)
]
.

By Lemma 2.4.a the expected value in the right hand side converges to the moment

generating function of the Gumbel distribution. Additionally, if σ < (1− p)2 then E
[
C̃n

]
converges to 0 as n approaches infinity. Consequently, C̃n converges almost surely to 0

since it is positive, enabling us to conclude that

lim
n→∞

T̃MRCA[1 + C̃n] = T̃MRCA

[
1 + lim

n→∞
C̃n

]
a.s.
= 0.

Finally, rescaling (2.12) we conclude the proof where % correspond to the time to the
most recent common ancestor in the Kingman coalescent.

Proof of Corollary 2.7. By Slutsky’s theorem to deduce that

ψn
1
σ lnnp

=
ψn − 1

σ lnnp
1
σ lnnp

+ 1
P−−−−→

n→∞
1

which implies that T̃MRCA[n]
1
σ lnnp

P−−−−→
n→∞

1. Using the left side of the identity (2.9) and

Proposition 2.4.b for r < 1
σ it follows that

σr = lim
n→∞

σrP [r lnnp ≤ ψn] ≤ lim
n→∞

E[ψn1{r lnnp≤ψn}]
1
σ lnnp

≤ lim
n→∞

E
[
T̃MRCA[n]

]
1
σ lnnp

.

By letting r approach to 1
σ we deduce that 1 ≤ lim

n→∞

E[T̃MRCA[n]]
1
σ lnnp

. We will use the right

hand side of the identity (2.9) to proof the upper bound inequality. Since E[%n] ≤ 2, we
have that lim

n→∞
E[%n]
1
σ lnnp

= 0. Note that

E
[
T̃MRCA[lnnp+ Cn]

]
lnnp

≤
E
[
T̃MRCA[n]

]
lnnp

P [Cn ≥ 1] +
E
[
T̃MRCA[lnnp]

]
lnnp

which goes to 0 as n tends to infinity by (2.7), (2.8) and (2.11). Finally, since ψn is
bounded by the maximum of n independent exponential random variables of rate σ we
have that

lim
n→∞

E
[
T̃MRCA[n]

]
1
σ lnnp

≤ lim
n→∞

E [ψn]
1
σ lnnp

≤ lim
n→∞

E

[
max
1≤i≤n

ξi

]
1
σ lnnp

= lim
n→∞

n∑
i=1

1
i

lnnp
= 1

which concludes the proof.

3 Fixation time of a type in the SB-lookdown

Suppose we start with an initial exchangeable distribution
(
ZN1 (0), . . . , ZNN (0)

)
which

sets at most one individual per type. Let τ̃N be the fixation time of type in the first level
for the N -lookdown model, given by

τ̃N := inf
{
t ≥ 0 : ZN,Ei (t) = ZN,E1 (0), i ∈ {1, 2, · · · , N}

}
. (3.1)
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If we study the the time to the most recent common ancestor T̃MRCA[N ] from a fixed
initial time ζ ≥ 0, we will see that there are only the following two scenarios.

1. Scenario 1. If T̃MRCA[N ] ≤ ζ, this implies that (ζ − T̃MRCA[N ], ζ) ⊆ (0, ζ), and the
fixation time τ̃N also occurs before ζ, since each individual has already coalesced
with the individual in the first level.

2. Scenario 2. If T̃MRCA[N ] > ζ, this implies that (0, ζ) ⊂ (ζ − T̃MRCA[N ], ζ) and the
fixation time τ̃N is bigger than ζ, because at time zero the individual in the first
level has not yet coalesced with all the N − 1 remaining individuals.

From before, we deduce that P
[
τ̃N ≤ ζ

]
≤ P

[
T̃MRCA[N ] ≤ ζ

]
and P

[
T̃MRCA[N ] ≤ ζ

]
≤ P

[
τ̃N ≤ ζ

]
, so τ̃N

d
= T̃MRCA[N ].

Using this equality in law, Theorem 2.5 and Corollary 2.7, we obtain the first order of
the fixation time as well as its distribution approximation under the case σ < (1− p)2.

Corollary 3.1. Given τ̃N the fixation time of the type in the first level for the N -lookdown
model, it holds that

τ̃N

1
σ lnNp

P−−−−→
n→∞

1 and lim
N→∞

E
[
τ̃N
]

1
σ lnNp

= 1, ∀α, σ > 0.

Moreover if σ < (1− p)2 then for all t ∈ R

P
[
σ%+ T̃ ≤ t

]
≤ P

[
lim
N→∞

σ

(
τ̃N − 1

σ
lnNp

)
≤ t
]
≤ P

[
T̃ ≤ t

]
where T̃ ∼ Gumbel(0, 1) and % is distributed as the time to the most recent common
ancestor of the Kingman coalescent.
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