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The Scale Transformed Power Prior for
Time-To-Event Data

Ethan M. Alt*l, Brady Nifong™ !, Xinxin Chen?,
Matthew A. Psioda, and Joseph G. Ibrahim?

Abstract. In survival analysis, borrowing information from historical data can
increase precision and power. However existing methods often assume that both
current and historical data are of the same type. This assumption becomes prob-
lematic when data types differ, such as in cancer trials where phase 2 studies may
use binary endpoints (e.g., response rates) while phase 3 studies typically use time-
to-event endpoints. To address this limitation, we propose the partial-borrowing
scale-transformed power prior (straPP), specifically designed for survival models
with heterogeneous historical data. By using a functional rescaling based on the
Fisher information matrices, the straPP aligns parameter vectors across differing
data types, enabling partial borrowing of historical information while mitigating
biases associated with borrowing from mismatched endpoints. Additionally, we
introduce the generalized scale-transformed power prior (Gen-straPP) to further
guard against biases in circumstances where scaling alone is insufficient. Through
simulations and analyses of real cancer trial data from the Eastern Cooperative
Oncology Group, we demonstrate that the (Gen-) straPP can outperform tradi-
tional priors in controlling type I error, power, coverage probabilities, and model
fit, making it a robust choice for time-to-event analysis in these contexts.

Keywords: Bayesian analysis, historical data, heterogeneous endpoints, scale
transformation, time-to-event data.

1 Introduction

Over the past few decades, the use of historical data in the design and analysis of new
studies has become increasingly common. The availability of historical data is quite
common in a variety of settings, including clinical trials, carcinogenicity studies, and
environmental studies, where large data sets are available from similar, previously com-
pleted studies. One common way to incorporate historical data is through the power
prior developed by Ibrahim and Chen (2000). Since then, extensive research has been
conducted on the power prior and its modifications for a substantial number of sta-
tistical models, including generalized linear models, survival models, models for longi-
tudinal data and semi-parametric models. Some, but certainly not all, of these papers
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include Ibrahim and Chen (1998), Chen et al. (1999b, 2002), Ibrahim et al. (1999, 2003),
Chen and Ibrahim (2006), De Santis (2006), Neuenschwander et al. (2009), Neelon and
O’Malley (2010), Rietbergen et al. (2011), Fouskakis et al. (2015), Gravestock et al.
(2017), Banbeta et al. (2019, 2022), and Pawel et al. (2023). Various extensions of
the power prior include the normalized power prior, initially discussed by Ibrahim and
Chen (2000) and further developed by Duan et al. (2006), Shen et al. (2024) and the
references therein, Pawel et al. (2024), the partial-borrowing power prior proposed by
Ibrahim et al. (2012b) and Chen et al. (1998, 2011). More recently, propensity score
methods have be weaved into the power prior, including papers by Wang et al. (2019,
2022, 2024), and Lu et al. (2022). Several other important variations of the power prior
have been proposed in the literature which are too numerous to list here.

Some alternative methods for borrowing information from historical data, distinct
from the power prior and its variations, have been proposed in the literature. These
include the commensurate prior (Hobbs et al., 2011), the meta-analytic-predictive prior
(MAP) and robust MAP of Schmidli et al. (2014), and the Bayesian hierarchical model
(BHM), where the normal linear model was explored and discussed in detail by Lind-
ley and Smith (1972). Although each approach allows for discounting of the historical
data in some sense, each borrowing approach has its own pros and cons, and a direct
comparison between them is out of the scope of this paper. However, much research has
been done comparing the performance of these approaches in practice, particularly in
the context of clinical trials (Viele et al., 2014; Ibrahim et al., 2015; Lewis et al., 2019;
Su et al., 2022; Lesaffre et al., 2024). Still, to our knowledge, none of these priors are
suitable when the current and historical data outcomes are of different types. Recently,
Suder et al. (2023) introduced the general concept of Bayesian transfer learning. Trans-
fer learning is a recent concept in statistical machine learning that seeks to improve
inference and/or predictive accuracy on a domain of interest by leveraging data from
related domains. Suder et al. (2023) show how the power prior, normalized power prior,
robust MAP, and BHM can emerge as special cases of the general approach.

We emphasize here, however, that all of the aforementioned papers assume the
fundamental notation that the historical data is of the same data type as the current
data. For example, the historical data may be discrete, such as binary or count data,
while the current data is continuous, such as, time-to-event, normally distributed, or
gamma distributed, or vice versa—where the current data is discrete but the historical
data is continuous. To the best of our knowledge, the only paper that handles historical
and current data of different types using power prior ideas is that of Alt et al. (2023a).
It is not at all clear if the paper by Suder et al. (2023) can be applied or extended to
these different data type settings. In this paper, we extend and develop the framework
by Alt et al. (2023a) for right censored time-to-event data, which requires a totally new
development, theory, and machinery for handling censoring in an appropriate way.

As noted above, the use of the power prior has been demonstrated in time-to-event
settings in the context of cancer clinical trials (Chen et al., 1999a, 2002; Ibrahim et al.,
2003, 2012a, 2015). These papers address analysis with the power prior for many survival
models, including the proportional hazards (PH) model with constant baseline hazard,
parametric cure rate model, semi-parametric cure rate model and promotion time cure
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rate model. Additional papers by Psioda and Ibrahim (2018, 2019) consider use of
the power prior for the design of clinical trials with time-to-event endpoints using the
cure rate model and Cox model, respectively. Other historical data borrowing methods,
aside from the power prior and its variations, have also been developed for time-to-event
settings, including the meta-analytic methods of Roychoudhury and Neuenschwander
(2020) and the references therein. Their approach is based on a robust hierarchical
model for piecewise exponential data, accommodating varying degrees of between-trial
heterogeneity and leveraging both individual and aggregate data.

However, as mentioned earlier, these papers fail to address the scenario in which
the historical and current data have different data types and therefore require different
models. Such differences in data type (i.e., binary vs time-to-event) may lead to pa-
rameters from the historical and current data that have non-comparable magnitudes.
Recently, Psioda et al. (2020a,b) developed approaches for design and analysis of con-
current clinical trials with information borrowing across different outcome models, but
the methods proposed do not address the problem of incorporating prior information
from existing data, which is the primary focus in this paper.

More recently, Alt et al. (2023a) proposed a methodology for incorporating informa-
tion from a historical data set where the outcome has a different data type compared
to the outcome measured in a current data. They consider the case where the outcomes
can be reasonably assumed to follow two generalized linear models (GLMs). To account
for differences in parameter magnitudes for the two data models, those authors develop
the scale transformed power prior (straPP). Specifically, the straPP is constructed via
a scale transformation that equates the historical and current model parameters are
equivalent. The rescaling is achieved by multiplying each parameter by the square root
of the Fisher information matrix for the respective model. However, Alt et al. (2023a)
do not consider censored time-to-event data in their development, which necessitates
substantive new developments in order to formulate a straPP. In particular, for settings
with time-to-event outcomes, the straPP transformation must accommodate nuisance
parameters such as the baseline hazard, right censored data, and the construction of
an appropriate one-to-one transformation in which the regression coefficient vectors
in the historical and current data models are of necessarily different dimensions. Our
contribution in this work addresses all of these challenges.

In this paper, we develop the partial-borrowing straPP for two commonly used
survival models: a PH model with piecewise constant baseline hazard and the mixture
cure rate model that assumes a common probability of cure for all subjects paired with
a PH model with piecewise constant baseline hazard for the non-cured population. In
addition, we develop a generalized version of the partial-borrowing straPP, which we
call the generalized scale transformed power prior (Gen-straPP), that allows for random
deviations that occur between the components of the rescaled parameter vectors through
a hierarchical modeling framework. We explore in simulations and real data analyses
the relative merits of the partial-borrowing straPP and Gen-straPP compared to other
commonly used priors.

The rest of the paper proceeds as follows. Section 2 motivates the straPP trans-
formation using two pairs of clinical data sets. Section 3 generalizes the straPP and
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Gen-straPP of Alt et al. (2023a) to accommodate time-to-event data. In Section 4,
we derive the Fisher information matrices for the piecewise constant PH model and
mixture cure rate model with piecewise constant PH for the non-cured fraction, which
are needed for the straPP and Gen-Strapp transformations. We present results from
simulation studies in Section 5. In Sections 6 and 7, we analyze two pairs of data sets,
where the historical data outcomes are respectively assumed to be binary and normal
and the current data outcomes are time-to-event. In Section 8, we discuss the strengths
and limitations of our approach.

2 Motivation

We consider two case studies based on melanoma clinical trials in which the current
data sets both had relapse-free survival (RFS) as a key outcome and the historical data
sets had outcomes believed to be related to (but not identical to) RFS. The first case
study, described in Section 2.1 discusses a case study based on the Eastern Cooperative
Oncology Group (ECOG) trials E1684 and E1690 trials. This first case study suffices to
illustrate the performance of the proposed method in cases where it may be reasonable
to apply. The second case study, described in Section 2.2, involves the E2696 and E1694
ECOG studies. This second case study was chosen to illustrate the robustness the
proposed method when the scale transformation motivating using the straPP is clearly
violated. Summary statistics for the baseline characteristics considered in each study
are presented in Table 1.

Study
Variable E1684, E1690, E1694, E2696,
N = 262! N = 426! N = 200! N = 98!

Treatment

Control 128 (49%) 211 (50%) 99 (50%) 67 (68%)

Treatment 134 (51%) 215 (50%) 101 (50%) 31 (32%)
Sex

Male 158 (60%) 267 (63%) 129 (64%) 56 (57%)

Female 104 (40%) 159 (37%) 71 (36%) 42 (43%)
Performance

Fully active 233 (89%) 372 (87%) 172 (86%) 71 (72%)

Ambulatory 29 (11%) 54 (13%) 28 (14%) 27 (28%)
Age 47.0 (13.1) 47.9 (13.2) 53.4 (13.0) 48.1 (12.8)

IMean (Standard Deviation) or Frequency (%).
Table 1: Summary statistics for the ECOG data sets.

2.1 The ECOG E1684 and E1690 Trials

The E1690 trial (Kirkwood et al., 2000) was a randomized three-arm trial conducted to
investigate the effectiveness of interferon alfa-2b (IFN) on RF'S for melanoma patients.
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REFS is defined to be the duration from treatment until the patient experiences a relapse
or experiences death from any cause. The three arms in the trial were high-dose ITFN,
low-dose IFN, and observation. However, we only consider the high-dose IFN arm and
the observation arm for analysis. We consider an indicator of relapse within two-years
from the E1684 trial as a mature, binary outcome in the historical data. The E1684 trial
evaluated the effectiveness of high-dose IFN on RFS (Kirkwood et al., 1996) compared
to observation. Two-year RFS is considered an important threshold and milestone for
melanoma clinical trials. Moreover, many cancer clinical trials consider milestone sur-
vival as the primary endpoint, including, but not limited to, Buunen et al. (2009),
Warren et al. (2012), Kim et al. (2012), Nilsson et al. (2013), and Joshua et al. (2015).
As both the E1684 and E1690 trials investigate the effect of IFN on related outcomes,
they provide an example where the partial-borrowing straPP may provide improved
performance compared to other commonly used priors (and compared to not using the
seemingly relevant prior information in analysis).

2.2 The ECOG E2696 and E1694 Trials

The E1694 trial (Kirkwood et al., 2001b) was a randomized trial to evaluate the effective-
ness of the GM2-KLH/QS-21 (GMK) vaccine in comparison to high-dose IFN adjuvant
therapy on RFS for patients with resectable high-risk or very high-risk melanoma. An
earlier trial, E2696 (Kirkwood et al., 2001a), was conducted to evaluate the clinical and
immunologic effects of the combination of the GMK vaccine and IFN compared to GMK
alone. For this historical data, we consider immunoglobulin (IgM) levels at day 28 as an
important immunological outcome. There was no treatment effect on IgM levels in the
E2696 study (by design) because all treatment arms contained GMK as a component
(and GMK was the driver of immunological response). In fact, one of the objectives of
the study was to confirm that IFN did not impede immunological response. Thus, this
case study corresponds to a scenario where treatment (i.e., IFN) has no effect in the
historical data outcome and where treatment is shown to have an effect in the current
data. We use this analysis as a opportunity to explore the robustness of the proposed
methodology when its underlying assumptions are violated.

3 The Partial-Borrowing StraPP and Its Generalizations

We develop the partial-borrowing straPP of Alt et al. (2023a) for situations where the
historical data outcome is related to, but different than, the current data outcome,
which we assume to be time-to-event. For example, the historical data outcome may
be an indicator of relapse within two years and the current data outcome might be
time to relapse. Developing the partial-borrowing straPP for time-to-event outcomes
presents unique challenges. In this setting, there are often nuisance parameters, such as
the parameters corresponding to a baseline hazard, upon which one does not wish to
borrow information.

To fix ideas, let 8 denote the parameters for the current (time-to-event) data and let
1 denote those for the historical data. Suppose that we can decompose 8 = (67, 05)" and
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n = (n},m5)’, where 6; and 1y are p-dimensional vectors (e.g., regression coefficients
from a PH model and a GLM, respectively), 85 is an r-dimensional vector of nuisance
parameters (e.g., parameters for the baseline hazard), and 75 is an s-dimensional vector
of nuisance parameters (e.g., an intercept and a dispersion parameter).

We wish to construct an informative prior for 8, on the basis of 11 without borrowing
any information on the nuisance parameters. We begin by assuming a power prior for

n, i.e.,
7pp (1| Do, ag) o< Lo(n|Do)**mo(n), (1)

where Ly(-|Dg) denotes the likelihood function for the historical data, ag € [0,1] is a
scalar discounting parameter, and mg is an initial prior. The power prior in (1) is an
informative prior for the parameters for the historical data, but it would be inappro-
priate to assume 1, = 607 as the outcomes are measured on different scales (e.g., the
outcomes are of two different data types). To remedy this, Alt et al. (2023a) apply a
scale transformation for the parameters in the power prior in (1). However, their ap-
proach was developed in the context where the historical and current data models are
GLMs. The incorporation of time-to-event data introduces more nuisance parameters,
and a generalization of their approach is needed.

Let the Fisher information matrices for the historical and current data sets be rep-
resented in block form as

Toom (11 Xo) T (ano)>
T X)) = MM 172
n(77| 0) <I7,17-,2(17X0)’ Inznz(mXO)

and

_ 19191 (G‘XO) 19192(0|X0)
Z6(01X0) = (Ielez<0|Xo>' Tone,(61X,) )

respectively, where we evaluate both Fisher information matrices using the historical
data design matrix X,. The purpose of evaluating the Fisher information matrix using
the historical data is to formulate a prior for @ that depends on the historical data
alone. Consider the (p 4+ r + s)-dimensional “augmented” vectors 0= (61,02,03) and
= (M1,ms,m2) and (p+r+s) X (p+ r + s) matrices given by

Iﬂl"]l (n‘XO) Opxr Op><s

ITI(TﬂXO) = 07‘><p I’I‘ 07‘><s
Os><p Osxr I,
and
S Zo,0, (0|XO) Opxr  Opxs
19(0|X0) = 0T><p I, 0rxs 5
Osxp Osxr I,

where 0, is an a x b matrix of zeros and I, is the g-dimensional identity matrix. The
partial borrowing straPP transformation in this setting is then given by solving

Z, (711 X0)"/*i = Zo(8]X,)'/*6. (2)
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Note that (2) implies 83 = 12 and 13 = 05, so that one only needs to solve the equation
Loy (01 X0)*01 = To,0,(8]X0)"/26;. (3)

If one considers the nuisance parameters as fixed and known, note that Z %91(') and
I;llm () are the asymptotic covariance matrices for 61 and 7y, respectively. Thus, the
parameters Zg, g, (0| X0)'/26, and Z,,,, (1| X0)'/?m1 can be viewed as standardized (or
unitless). We construct the asymptotic covariance matrix for the current data likeli-
hood using the historical covariate matrix to allow the partial-borrowing straPP to
be constructed using information entirely from the historical data (e.g., outcome and

covariates).

The transformation in (3) implies the existence of a function g; such that we may
solve m1 = g1 1(0,712). Hence, the partial borrowing straPP for time-to-event data is
given by applying a Jacobian adjustment to the power prior in (1), i.e.,

dg; "

00,

7(8|Dy. ao) = / rop (g7 (0, 1m2), 721 Do, ao) 70(62)dny, (4)

where 7 (02) is an initial prior for 85. We stress that the straPP in (4) does not assume
that the transformation in (3) holds for the data model. The transformation is only
used as a mechanism to formulate a prior for 8; that is compatible with the current
data outcome.

Under the special case 8; = 7, the transformation in (2) results in an identity
transformation. As a result, the straPP in (4) reduces to the partial borrowing power
prior (Ibrahim et al., 2012b). Partial discounting (e.g., in models with latent variables,
it is often desirable to only discount the non-latent parameters), can be easily handled
in the approach by effectively including them in the vector of nuisance parameters
71. The block-matrix approach giving the transformation in (2) effectively unifies the
concepts of partial borrowing and partial discounting, while offering a generalization in
that transformations of parameters may be implemented.

3.1 The Generalized StraPP

As a more flexible alternative to the straPP, Alt et al. (2023a) developed the generalized
straPP (Gen-straPP). Using the transformation in (2), we generalize their approach.
Specifically, the Gen-straPP imposes the transformation

Toms (1)) = To,0,(0)"/%01 + co, (5)

where Z,, . () and Zg, g, () are as defined in (3) and ¢ is an r x 1 vector that allows
component-specific deviations from the standardized parameter values for n; and 6;.
We may write the transformation induced by (5) as 1, = g1,¢,(0,73), and thus the joint
partial-borrowing Gen-straPP is

-1
gl,Co

90, mo(colwo)mo (wo)mo (62)dna,

(6)

(8, co,wo| Do, ag) = mpp (91,60 (0,M2),M2| Do, ao)
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where here we specify co ~ N,(0,w3I,) and a half standard normal prior on wp, i.e.,
mo(wo) x ¢P(wo)1{wy > 0}, where ¢(-) is the standard normal density function.

4 The Partial-Borrowing StraPP Transformation for
Time-to-Event Data

We now develop the Fisher information matrices needed for implementation of the
partial-borrowing straPP for two different survival models: (1) a PH model with piece-
wise constant baseline hazard and (2) a mixture cure rate model that assumes a common
probability of cure for all subjects paired with a PH model with piecewise constant base-
line hazard for the non-cured population. These models are discussed in Sections 4.2
and 4.3, respectively. While traditional analyses of time-to-event data use the observed
information matrix, this is not possible for the straPP priors since the historical data
are not time-to-event. In principle, one could use the observed information matrix of the
current data, but this would result in a prior that depends on outcome of the current
data set. Thus, to develop straPP priors when the historical data are not time-to-event,
we must make assumptions about censoring. In general, we will assume non-informative
censoring, meaning that the probability of censoring does not depend on the underlying
event time.

For the remainder of this paper, we treat the historical data distribution as aris-
ing from a GLM and the current data as following a time-to-event model. Let Dy =
(Y0, X0, n0) denote the historical data of size ng, where yy is a ng-dimensional vector of
responses and X is a ng x p design matrix, which does not include an intercept term.
Thus, using the notation in Section 3, n = (8{1, Boo, $0)’, where Bo1 is a p-dimensional
vector of regression coefficients pertaining to covariates, [y is an intercept, and ¢q is
a dispersion parameter, which may be known for some models. The Fisher information
for the historical data may be expressed as

1
oo

where W (Bo0, Bo1) is a diagonal matrix of variance functions that, in general, depends
on the regression coefficients.

Ly (0| X0) = —X{W (Boo, Bor) Xo, (7)

In this paper we focus on the piecewise constant PH model and mixture cure rate
model with piecewise constant PH for the non-cured individuals but note that the
straPP can be applied to other time-to-event models. In Supplementary Material (Alt
et al., 2023b) Section 2, we analytically derive the Fisher information matrix for applying
the straPP and Gen-straPP to the promotion time cure rate model.

4.1 The StraPP for PH Models under Right Censoring

We now develop the straPP for PH models in full generality. We begin by deriving the
Fisher information matrix for PH models. We then discuss why making assumptions
regarding censoring is necessary in order to conduct a straPP transformation.
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Let Dy = (y1,X1,v1,n1) denote the current data, in which y; is the vector of
observation times, X1 = (@11, ...,®1,,,)" is the ny xp design matrix, v = (v11,...,V1.n,)
is a vector of indicators for whether an individual had an event observed, and n; is the
sample size. The likelihood for parametric PH models may be expressed as

n1

L1(B,A|Dy) = H {ho(yup\)@m;iﬁ] vii exp {7H0(y17;|)\)6w/“ﬁ} (8)

i=1

where A is a vector of parameters pertaining to the baseline hazard, B8 is a vector of
regression coefficients associated with covariates (x1;,7 = 1,...,n), y1; = min{ty;, 14}
is the observed time (i.e., the minimum of the event time ¢1; and the censoring time
c1:), and vy; = I(t1; < ¢q;) is the event indicator.

Suppose we possess historical data Dy = {(yoi, 0i),¢ = 1,...,n0} with likelihood
Lo(Bo, Mo). We assume that the historical data outcomes are related to (but possibly of
different types than) the current data outcomes. Our goal is to apply the (Gen-)straPP
to construct an informative prior for 8. To do this, we require the Fisher information for
the likelihoods pertaining to the current and historical data sets. The Fisher information
for the current data based on the likelihood in (8) is given by

!
Ho(yri|\)e® Pz, B M] .y

xh ;B | OHo(y1ilN) e B 9% Ho(y1:|N) 9% log ho(y1:|A)
e xli[ oA B ¥ U U O U

I'(B,A|D1) ZE

9)

Let Z°(Bo, 10| Do) denote the Fisher information for the historical data likelihood eval-
uated at the historical data Dg. To conduct the straPP transformation so the prior
depends only on the historical data Dy, we need to solve

[Z55(8, A1Do)] " B = [Z5, 5, (Bos 01 Do)] ' Bo (10)

for B, giving By = g(B8). The posterior density for the current data parameters is then
given by

p(B,A|D1, Do) oc L1(B, A|D1)Lo(9(B),m0)* m0(8, A, m0)dno- (11)

However, the Fisher information in (9) depends on expectations involving the joint
distribution of the time-to-event and censoring times. To avoid making assumptions
about this joint distribution, we instead compute the information under no censoring
for the transformation in (10), which allows for analytically tractable expectations for
the Fisher information matrix Zjs(-| Do) regardless of censoring distribution. Note that,
in principle, an observed Fisher information matrix based on the historical data could
be used, but this would require the current and historical data outcomes to be directly
compatible, obviating the need for a transformation. Thus, while the assumption seems
somewhat restrictive it is necessary in general to convert from the historical parameter
space to the current parameter space. We emphasize that this assumption only applies
for the transformation to solve (10); the current data likelihood in (8) still incorporates
censoring in the posterior density provided in (11).



10 The Scale Transformed Power Prior for Time-To-Event Data

4.2 The Fisher Information Matrix for the PH Model

We assume a PH regression model with piecewise constant baseline hazard having J
components corresponding to time axis partition so =0 < s1 < --- < s5_1 < S5 = 00.
Using the notation of Section 3, the parameters for the PH model may be expressed
as @ = (B, X'), where B is a p-dimensional vector of regression coefficients pertaining
to covariates and A = (A1,...,As)" is a vector of baseline hazards. The current data
likelihood may be written as

LP(8|D, ) HH{(/\ estiB)”

i=175=1

j—1 dij
X exp l— {/\j(yli — Sj_l) + Z)\g(sg — Sg—l)} emﬂﬁ] } , (12)

g=1

where § is a matrix in which 6;; = 1{s;_1 < y1; < s;} denotes whether the it" individual
had an event or was censored in the j* interval, v = (v, ..., vy, ) is a vector of indicators
for whether an individual had an event observed, and n; is the sample size.

Let £LFH denote the i individual’s contribution to the PH likelihood in (12). As
shown by Gelfand and Mallick (1995), we may write

£~ [rotingesio) exp -t

where ho(y1;) = H;.Izl )\j” and
51’]‘

Ho(y1s)

I
'E“

{Aj(yu —sj-1) + Z Ag(8g — Sg—l)}

g=1

<
Il
—

{Nj(yi —sj-1) + HO(Sj_l)}éij .

I
KE“

<
Il
—

Let (PH(B,A\|D;) denote the log likelihood based on (12). Assuming no censoring (i.e.,
v;=1forallie{l,...,n1}), then

§2¢PH 1 ,
oBog > Ho(yr)e™ P at,. (13)
i=1

Now,

J
E[Ho(yu)] = Z dij (Aj(y1i — sj-1) + Ho(sj-1))],

J sy
> / N (i — 5j-1) + Hols-)] FonilB. M. (14)
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For each of the J integrands in the sum in (14), let u; = e®1P[\;(y1 — 5;_1) +
H o (s. 1)ehiB ' an
Hy(s;j—1)] so that yi; = s;_1 + wimHo(s;—1)e™ i o q dy1; = [)\je‘”hﬂ] Ldu;. Then

)\jewlliﬂ
, J Ho(sj)em/“[3
E [Ho(y1i)] = e *1:P / uze” " du;

/
=1/ Ho(sj—1)e”1:P

J
— o TuB Z {H(Sj_l)efH(s]‘—l) _ H(Sj)efH(Sj) + e~ H(sj-1) _ 67H(s]’)}
j=1

— @B { [H(so)e_H(so) - H(sJ)e—H(SJ)} + [S(s0) — S(SJ)]} :

Note that since so = 0, H(sp) = 0 and S(sp) = 1. Moreover, since s; = oo,
H(sz)e 767 =lim, o0 ze™ = 0 and S(s;) = 0. It follows that E[Hg(y1;)] = e~ 1:P.
Substituting this result into the expectation of (13), we get that the Fisher information
matrix for the regression coefficients for the PH model is given by

Tgp(B, A X1) = X1 X1. (15)

We now describe how the Gen-straPP works in the Markov chain Monte Carlo
(MCMC) scheme for the PH model with piecewise constant baseline hazards. Suppose
the t" iteration of the MCMC scheme yields (p®), A(®), c(()t)). Substituting the Fisher in-
formation matrix for the historical data in (7) and that for the current data in (15) evalu-
ated at X into the Gen-straPP transformation in (5) and solving, we may obtain B8(*) as

/e —1/2 1/2
g = ool { o] [xaw (6i0.600) xo) ) -} 0

where we may substitute cét) = 0 in (16) to obtain the analogous straPP transforma-

tion in (3). We may thus use “complementary sampling” techniques to sample from the
posterior density (Alt et al., 2023a). We provide details regarding the complementary
sampling technique in Supplementary Material (Alt et al., 2023b) Section 1.

4.3 The Fisher Information Matrix for the Mixture Cure Rate
Model

For the mixture cure rate model, we let @ = (8’, X', p..)’ denote the current data model
parameters, where 8 and X are defined in Section 4.2 and p. = (pe1,---,Pen,) IS 2
ni-dimensional vector of cure proportions. We can write the complete data likelihood
(i.e., the likelihood including the latent indicator of cure) as

£o(01D5) oc [T 5“7 [(1 = pet) La(B,N)] 7, (17)

=1

where D§ = (y1, X1, A,v,n1) denotes the current data, in which A = (Aq,...,A,,),
where A; = 1{y;; = oo} is an indicator for whether the it" individual is cured, pe¢;
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denotes probability of cure for subject ¢, which may depend on covariates, and

Li(B,X) = S(y1:l B, X)' 7 f (il B, X)”"

is the density function for the observed failure times and the survival time for censored
individuals for some model of event times. Note that though we can infer an individual
is not cured if we observe that the individual has an event, we cannot determine whether
an individual is cured, thus A is a partially latent variable.

We digress momentarily to further clarify our use of term complete data likelihood
in this context. Several technical points are relevant here. First, our use of the term
complete data likelihood should not be construed to imply that each individual’s event
time is observed (indeed this is impossible if one is cured), but rather that the data D$
include the latent indicators of cure. Moreover, we acknowledge that under dependent
censoring mechanisms, the full likelihood would include a model for the random censor-
ship mechanism, which we do not include here. This is based on an implicit assumption
of independent censoring or a dependent censoring mechanism such as administrative
censoring in an event driven trial. As illustrated by the recent work of (Riihl et al., 2023),
the impact of ignoring such dependence is negligible for inference unless the number of
events is smaller than is typical in a reasonably powered clinical trial.

Here we specify a PH model with piecewise constant baseline hazard with J intervals
for the event times in the non-cured population. Let Ef’H (B, ) denote the survival func-
tion if individual i’s time to event is right-censored and the density function otherwise.
Using (17) and (12), we can write the complete data log-likelihood as

(B, pel D) = > {Ai(1 = i) log pei + (1 — A;) [log(1 — pei) +log £ (8, N)] } .
=1

In Section 4.1, we discussed the necessity of assuming no censoring for the purposes
of computing the Fisher information matrix. For a cure rate model, such an assumption,
even for a transformation, would be inappropriate since there would be no cure fraction
if everyone experienced the event. Thus, to compute the transformation, we compute
the Fisher information for the cure rate model assuming all censored individuals are
cured.

To that end, let D = (y1,X1,d,v,n1) denote the observed data. Assuming all
censored individuals are cured, we have A; = 1{v; = 0} = 1 — ;. Thus, the complete
data log likelihood is free of latent variables and hence the observed data log likelihood
is

(B X pelDS) =D {(1 = vi) log pe; + vy [log(1 — peg) +log LIH(8,N)] },
i=1
which leads to the second derivative
2 n 2 APH
P, Pl
opop’ ~ 2" opop’
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The Fisher information matrix is thus given by

& 9%log LPH
Tap(0) = > By, {WW} ;
=1

- 9% log LYY
= ;(1 - Pm‘) Wf(ylih/i = 1)dy1¢7

=X'(I, - P.) X, (18)

where P. = diag{pc1,...pen} and the expectation of the second derivative with respect
to the regression coefficients was evaluated in Section 4.2. Note that the assumption that
all censored individuals are cured leads to a discounted Fisher information matrix, e.g.,
we may write the Fisher information matrix as Igg(0) = > ., (1 — pe;)x;x}. Thus, the
contribution of each individual to the Fisher information is a fraction of what it would
be without such an assumption. If we conversely assumed no censoring, there would be
no discounting. As a result, the assumption “all censored individuals are cured” is a
conservative one, protecting against too much borrowing.

Note that the Fisher information for the mixture cure rate model in (18), like that
for the PH model, is free of the regression coefficients. Thus, similar to the piecewise
constant PH model in Section 4.2, we may use complementary sampling techniques (see
Supplementary Material (Alt et al., 2023b) Section 1 for details). If the historical data is
a GLM, substituting the Fisher information matrices (18) and (7) into the Gen-straPP
transformation (5), we have for iteration ¢ of the MCMC sampling scheme that

8 = (x4 (1 - 2) ] [ol ] [ (540 887) ) 007 - <0
(19)

(®)

where P, ®

= diag{p.gys - - - » pS(t)),no} is a diagonal matrix and pig)i is the probability that

subject i of the historical data set is cured based on parameters at the t* MCMC
sampling iteration, which may depend on the subject’s covariates.

For our simulations and data analysis, we assume that the proportion cured does
not depend on covariates. The reason for this is that the outcome for the historical
data (relapse within two years) is more closely related to the time-to-event endpoint for
the current data (i.e., the hazard ratio for progression-free survival). Thus, it may be
inappropriate to borrow information from the historical data to inform the cure fraction.
While out of the scope of this paper, it is straightforward to incorporate covariates in
the proportion cured use non-informative priors for the regression coefficients associated
with the cure fraction.

For model fitting with the current data, we consider the observed data likelihood so
that the posterior density is given by

(B, A| D1, Do) o m(B, A| Do) H {pe(1 = vi) + (1= p) LM (B N},

=1
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where 7(8, A| Do) is the (Gen-)straPP and D; = (y1, X1, v, n1) is the observed current
data. Thus, while we assume all censored subjects are cured for the purposes of the
information matrix calculation to specify the prior, we make no such assumption in the
analysis of the data.

5 Simulation Study

In this section, we present a simulation study designed to evaluate the performance of
the partial-borrowing straPP and partial-borrowing Gen-straPP compared to each other
and to the partial-borrowing power prior, described in Section 2, and a non-informative
reference prior. We note that the authors investigated the commensurate prior in an
earlier study and found that it underperformed in comparison to the partial-borrowing
straPP and partial-borrowing Gen-straPP (Alt et al., 2023a), thus it was excluded from
simulations in this paper.

5.1 Simulation Setup

To perform the simulation study, we considered the data from the E1684 trial as the
historical data (sample size ng = 262 after removing patients with missing values for
number of cancerous lymph nodes) and data from the E1690 trial as the current data
(sample size ny = 426). We discuss the current and historical data sets in more detail
in Section 6. In order to permit a more comprehensive evaluation of the priors consid-
ered, we investigated multiple values of the sample size in the current study. To obtain
current data sets with reduced sample size, we took bootstrap samples from the E1690
data. This approach preserves the empirical relationships between the covariates and
event times while providing current data sets of varying sample sizes for investigation.
To evaluate the performance of the priors, we computed several metrics: the average
posterior variance, bias of the posterior mean, mean square error (MSE) of the poste-
rior mean, coverage probabilities associated with 95% credible intervals, and average
interval scores (Gneiting and Raftery, 2007) which account for both credible interval
width and coverage probabilities. For these evaluations, we treated the posterior means
from analysis of the full E1690 data set, from which bootstrap samples were taken,
as the “true” values of the parameters. In this sense, the full E1690 data set defines
a super population from which we drew random samples. Thus, the posterior means
(i.e., approximate maximum likelihood estimates (MLEs)) of the full data set may be
appropriately viewed as true parameter values for this super population. In Section 8
of the Supplementary Material (Alt et al., 2023b), we additionally provide simulation
results using a parametric model to generate the current data, showing the performance
of our proposed method across varying values of ag.

We assumed that the outcomes from the historical data (indicators of a relapse within
two years) were independently distributed according to a logistic regression model, i.e.,
the likelihood for the historical data is given by

no
£(5007ﬂ01|D0) X H'Y(g)!;“(l — ’in)l—ym‘,7
=1
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where 7g; = logit ™" (Boo + x(;B01) = Pr(yo; = 1|xo;) is the probability that subject ¢ of
the historical data set experiences a relapse within two years, B is an intercept term,
xo; = (204, ©o14) is a p-dimensional vector, where z; is the treatment indicator and @g1;
is a vector of covariates. The Fisher information matrix for the logistic regression model
may be expressed as

Iﬁmﬁm (5007 1301 |X0) = X(/)W(BOOa /BOI)XO7

where W (800, Bo1) = diag{y0i(1 —0i), = 1,...,n0}.

For the current data, we assumed that the time-to-relapse outcomes were indepen-
dently distributed according to a mixture cure rate model, as described in Section 4.3.
For our analysis, the covariates of interest are standardized age, an indicator for gender
(0 = male; 1 = female), an indicator for ECOG performance status (0 = fully active; 1
= ambulatory), and an indicator for receiving high-dose IFN (1 = high-dose IFN; 0 =
observation). Age was centered and scaled by the sample mean and standard deviation,
respectively. Henceforth we refer to standardized age simply as age for ease of exposi-
tion. We included an intercept term in the historical data model but not in the current
data model.

As the historical data were binary, we solved the partial-borrowing straPP transfor-
mation for the current regression coefficients and performed analysis with the partial-
borrowing straPP and partial-borrowing Gen-straPP via sampling from the comple-
mentary posterior distribution outlined in Supplementary Material (Alt et al., 2023b)
Section 1. Using (19), solving for the current data regression coefficients yields, at iter-
ation ¢t of the MCMC sampling scheme,

—1/2 _ 1/2
B = (1-p) " (X§Xo) ”2{[X5W(éf3, &) Xo] é?—cé“}, (20)

where B is p-dimensional vector of regression coefficients for the PH component of

(t)
0

the mixture cure rate model and where ¢’ = 0 for the straPP transformation.

Additionally, we determined the value for aqg via a grid search with the optimal value
being the one that minimized the deviance information criterion (Spiegelhalter et al.,
2002) (DIC). The identified values were ag = 0.50 for the partial-borrowing straPP
and partial-borrowing Gen-straPP and ag = 1.00 for the partial-borrowing power prior.
More details on the procedure for identifying ag are provided in Section 6. To make
a comprehensive comparison, we investigated the performance of all partial-borrowing
priors with ag € {0.5,1}.

For the simulation, we evaluated current data sample sizes, ni, in the set n; €
{100, 125,150, ...,325}. When n; = 100, the average number of events per generated
current data set was approximately 56. We assumed 5 intervals for the piecewise constant
baseline hazard for the non-cured population across all simulation studies for consis-
tency and to ensure an acceptable amount of events per interval were observed. When
computing estimates of bias, MSE, coverage probability, and interval score, we calcu-
lated the posterior means of the regression coeflicients based on the entire current data
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set using a non-informative reference prior. For the reference prior, we specified a non-
informative N (0,10%) prior for all current regression coefficients and independent and
identically distributed (i.i.d.) gamma priors for each baseline hazard component with
shape and inverse scale parameters equal to 0.1. A Uniform(0, 1) prior was also specified
on the probability of cure. This led to the following “true” values of the current regres-
sion parameters: Bqge = 0.1105, By = —0.1791, Bgena = —0.1604, and Bperr = 0.1094,
corresponding to age, treatment, gender, and performance status, respectively.

For analysis, we specified a non-informative N(0,10?) prior for all regression coef-
ficients, including the historical data model intercept, for the partial-borrowing priors.
For all priors considered, we specified a Uniform(0, 1) prior on the probability of cure
and i.i.d. gamma priors for each baseline hazard component with shape and inverse scale
parameters equal to 0.1. For the partial-borrowing Gen-straPP, we considered a hier-
archical prior ¢g ~ N(0,wI,) and wy ~ NT(0,1), where NT denotes the half-normal
distribution.

To simulate current data, we utilized a bootstrap procedure to generate 10,000 data
sets, where we sampled from the current data from the real trial with replacement.
For each prior evaluated, we obtained 25,000 samples after a burn-in period of 2,000
iterations from the posterior distribution.

5.2 Simulation Results
Key Findings

Figure 1 displays the average log posterior variance, bias, log MSE, and average interval
score for the partial-borrowing straPP, partial-borrowing Gen-straPP, partial-borrowing
power prior, and reference prior. In addition, the coverage probabilities associated with
95% credible intervals are shown in Section 3 of the Supplementary Material (Alt et al.,
2023b). The first row in Figure 1 (panels (a)—(d)) shows that both the straPP and
Gen-straPP consistently achieved lower average log posterior variance compared to the
reference prior and power prior, indicating more stable estimates. Although the histor-
ical data were discounted more for the straPP and Gen-straPP fitted with a9 = 0.5,
the average posterior variance was slightly lower under these two priors compared to
the power prior with ag = 1. This suggests that the straPP and Gen-straPP may be
more informative priors than the power prior, despite the difference in the amount of
discounting.

Panels (e)—(h) show that none of the priors performed uniformly better than the
others in terms of bias. The log mean squared error (MSE) (depicted in the third row,
panels (i)—(1)), which is a function of both bias of the posterior mean point estimator
and its sampling variability, is lowest for the straPP with ag = 1 across all regression
coefficients. For analyses using the same ag value, the log MSE under the Gen-straPP
was often between the log MSE under the power prior and the straPP, illustrating the
bias-variance trade-off for including the location parameter ¢y in the Gen-straPP.

In the final row of Figure 1 (panels (m)—(p)), the average interval scores, as proposed
by Gnueiting and Raftery (2007), were computed using the width of 95% equal-tailed



E. M. Alt, B. Nifong, X. Chen, M. A. Psioda, and J. G. Ibrahim 17

Treatment Age Gender Performance Status
3
>
o>
o
-
j=
>
<
o
K
o
w
7]
=
i=
o
-
<]
o
O
»
©
5 S
z ———— . .. —~—— .
° A & o S D S e Y
° [ S S S S e v oy ' TP TP toe> e = |
z P DS S S S D S
100 150 200 250 300 200 250 300
(n) (0)
Priors ——*—— Reference - PP - straPP ——e—— Gen-straPP
2 05 --eo- Aeees 1

Figure 1: Panels (a)—(p) present the average log posterior variance, bias of the posterior
mean, log MSE of the posterior mean, and average interval score for each current data
model regression coefficient as a function of the current data bootstrap sample size. Each
color represents a distinct prior. For each partial-borrowing prior, we fitted the model
with ap = 0.5 (shown in solid lines) and ag = 1 (shown in dashed lines). straPP, scale
transformed power prior; PP, power prior; Gen-straPP, generalized scale transformed
power prior.

credible intervals, with a penalty term proportional to the distance between the esti-
mates (that fall outside these intervals) and the nearest boundary point of the intervals.
Lower interval scores indicates better performance. Both the straPP and Gen-straPP
maintained lower average interval scores compared to the reference prior and power
prior across all sample sizes, indicating better interval estimation. Analyses based on
the straPP achieved similar or slightly lower interval scores than those based on the
Gen-straPP, regardless of the ag value.

Overall, the straPP was the best performer among all the information borrowing
priors. Of note, when fitted with the same ag value, the straPP exhibited lower posterior
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variance, lower mean squared error, and better interval score than the Gen-straPP, with
relatively small difference in bias. Thus, although the Gen-straPP is more flexible than
the straPP, it does not necessarily translate to better performance in terms of operating
characteristics. In practice, it is advisable to fit the model using both the straPP and
Gen-straPP to see which prior results in a better fit.

We see from the simulation studies that it is in fact possible to obtain higher than
95% coverage probabilities under an informative prior when the informative prior has
high mass around the truth. To see this point, for example, consider an 7.i.d. setting
where y; | 1 ~ N(p,1) and suppose p ~ N(pg,03). Suppose further that the “truth” is
p = po. As o — 0, the prior is converging to a point mass at the truth, in which case
we will have 100% coverage probability a posteriori. For small values of o2 > 0, we will
have slightly lower than 100% coverage, but we will only have 95% coverage for large
values of o2. However, if the prior has mass far from the truth, then the coverage can
of course be substantially less than the nominal value.

Investigation of Marginal Prior Densities

To further investigate the information borrowing priors, we examined the marginal
prior densities for each regression coefficient in the current data model, as illustrated
in Figure 2. To highlight differences among these priors, we set the x-axis limits of
each density plot to the 0.5th and 99.5th percentiles of the estimates. By Figure 2, the
power prior appears to have heavier tails than the straPP and Gen-straPP across all
regression coeflicients, which is consistent with the difference in average log posterior
variance shown in Figure 1 panels (a)—(d). The prior modes from using the straPP and
Gen-straPP are similar for each regression coefficient. In contrast, the prior modes from
using the power prior differ from those of straPP and Gen-straPP for the regression
coefficients associated with treatment and age but are relatively close for the regression
coeflicients associated with gender and performance status.

Note that in the straPP paper focusing on generalized linear models by Alt et al.
(2023a), we investigated the normalized straPP, comparing its performance and oper-
ating characteristics in detail to the straPP and various other priors through exten-
sive simulations and real data analyses. The results demonstrated that the normalized
straPP performs very similarly to the straPP. Therefore, we do not carry out a simula-
tion study for the normalized straPP for time-to-event data here for brevity.

Choice of Intervals and Spacing

Finally, we emphasize that choosing the number of intervals and their spacing is a
crucial aspect in fitting a piecewise constant hazard model. As discussed in detail in the
book by Ibrahim et al. (2001), there are four main strategies for choosing the number
of intervals and their spacing. (i) The most common approach is to pick the number of
intervals such that one has an equal number of events (failures) in each interval. This
strategy provides the best guarantee for stability in parameter estimation and MCMC
convergence and constitutes the most efficient construction. In most applications, 5-10
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Figure 2: Marginal prior densities for each current data model regression coefficient.
For each subplot, the x-axis limits are set to the 0.5th and 99.5th percentiles of the
estimates. Each color represents a distinct prior. For each prior, we fitted the model
with ap = 0.5 (shown in solid lines) and ag = 1 (shown in dashed lines). straPP, scale
transformed power prior; PP, power prior; Gen-straPP, generalized scale transformed
power prior.

intervals suffice and one can use Bayesian model of fit statistics, such as DIC, to find
the optimal number of intervals. (ii) Another strategy is to break up the time axis into
quantiles (say 5-10). This approach gives very similar results as (i). (iii) One may also
pick 5-10 equally-spaced intervals. This is typically not a good strategy since it may
result in intervals with very few failures, resulting in estimation instability. Models with
no failures in an interval are not identifiable. (iv) Lastly, one can pick each interval to
contain exactly one failure. This strategy offers the most flexible construction of the
baseline hazard, but again, it suffers from instability in parameter estimation due to
only one event in each interval. Moreover, it may result in an unnecessarily large number
of intervals, leading to further instability in estimation, a high computational burden,
and an inefficient interval construction which may not fit the data well. Consequently,
most authors use strategy (i) or (ii) as we have done here for the reasons stated.

6 Analysis of the ECOG E1684 and E1690 Trials

In this section, we consider the E1684 trial as the historical data and the E1690 trial
as the current data. See Section 2 for more details on these studies. For the historical
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data, the outcome of interest was an indicator of relapse within two years, which we
modeled as a logistic regression model. For the current data, the outcome of interest was
taken to be time-to-relapse which was modeled using a mixture cure rate model with a
piecewise constant PH regression model for the event times in the non-cured population.
For covariates, we consider an indicator for high-dose IFN (0 = observation; 1 = high-
dose), standardized age, an indicator for sex (0 = male; 1 = female), and an indicator
for ECOG performance status (0 = fully active; 1 = ambulatory). In the historical
and current data, 262 and 426 patients, respectively, had non-missing values for these
covariates and were thus included in our analyses. For the historical data, there were
only 3 subjects who were censored within 2 years, and these subjects were removed from
the final analysis so that the binary response variable contains no censored subjects. As
in Section 5, we included an intercept term in the historical data model but not in the
current data model.

As the historical data were binary in this case, one cannot solve for the historical data
model regression parameters in (3) and (5). However, as stated in Section 4.3, the Fisher
information matrix for the mixture cure rate model does not involve the regression pa-
rameters. Thus, we solved for the current data model regression coefficients using the
transformation formula in (20) and performed the analysis with the partial-borrowing
straPP and partial-borrowing Gen-straPP via sampling from the complementary poste-
rior distribution, as described in Section 3. We also investigated the partial-borrowing
power prior and a non-informative reference prior for comparison purposes.

To determine the interval size, we analyzed the current data using the reference
prior for J € {2,...,10} and computed the DIC values. The DIC for J = 5 (992.48)
was marginally higher than that for J = 10 (991.35), both much lower than the DIC
values from using other interval sizes. A sharp increase in DIC was observed after
J =5 (Figure 2 in the Supplementary Material (Alt et al., 2023b)). Thus, we selected
J = b to obtain a simpler, more parsimonious model. The time axis was discretized
so that an approximately equal number of events was observed in each of the J = 5
intervals.

For the partial-borrowing priors, we specified a non-informative N(0,102) prior for
all regression coefficients pertaining to covariates of interest and a N(0,102) prior for
the historical data model intercept. We specified i.i.d. gamma priors for each baseline
hazard component with shape and inverse scale parameters equal to 0.1. Via sensitivity
analysis shown in Supplementary Material (Alt et al., 2023b) Section 7, we found that
the results are relatively robust to changes in the gamma priors for the baseline hazards.
We took J = 5 hazard components and chose the time axis partition so that there was
an equal number of events observed in each interval. For the partial-borrowing Gen-
straPP, we considered a hierarchical prior ¢y ~ N(0,w3I,) and wy ~ NT(0,1), where
N7 denotes the half-normal distribution.

For each prior, we obtained 25,000 posterior samples after a burn-in period of 2,000
iterations. No thinning was performed. Posterior sampling was conducted via a Hamil-
tonian Monte Carlo (HMC) algorithm as implemented in the Stan software (Carpenter
et al., 2017).
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Variable
Treatment Age Sex Performance
Priors ap DIC Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI
Reference 0.00 993.31 —0.18 (—0.52, 0.17) 0.11 (-0.09, 0.29) —0.16 0.52, 0.21 0.11  (—0.39, 0.58
straPP 0.25 989.77 —0.24 (—0.52, 0.05) 0.11 —0.04, 0.26) —0.09 0.39, 0.21 0.12 —0.33, 0.53
—0.28, 0.47

0.50 989.40 —0.26 (—0.51,-0.01) 0.11 (—0.02, 0.24) —0.06 0.32, 0.20 0.11
0.75 989.93 —0.27 (—0.50,—-0.04) 0.11
1.00 990.40 -0.28 (—0.49,-0.07) 0.11 (-0.00, 0.21) —0.02 0.24, 0.20 0.11
Gen-straPP  0.25 990.12 —0.23 (—0.52, 0.06) 0.11 (-0.05, 0.26) —0.10 0.41, 0.21 0.12

( (= ) ( )
( (= ) ( )
( (= ) ( )
(—0.01, 0.22) —0.04 (- ) ( )
z e e
0.50 988.77 —0.25 (—0.50, 0.01) 0.11  (—0.03, 0.24) —0.07 (—0.34, 0.20) 0.11 (—0.29, 0.49)
( (= ) ( )
( (= ) ( )
( (= ) ( )
( (= ) ( )
( (= ) ( )
(= ( )

0.27, 0.20 0.11

0.75 991.23 —0.26 (—0.50,—-0.01) 0.11 (-0.02, 0.23) —0.05 0.31, 0.20 0.11
1.00  990.68 —0.26 (—0.49,—-0.03) 0.11 (-0.02, 0.23) —0.04 0.29, 0.20 0.11
PP 0.25 987.25 —0.23 (—0.54, 0.10) 0.12  (-0.06, 0.28) —0.12 0.46, 0.22 0.10
0.50 983.56 —0.26 (—0.56, 0.04) 0.12  (—0.04, 0.28) —0.10 0.41, 0.23 0.10
0.75 981.30 —0.29 (—0.58,-0.01) 0.13  (—0.03, 0.27) —0.08 0.37, 0.22 0.10
1.00 980.03 —0.31 (—0.58,—0.03) 0.13  (-0.01, 0.27) —0.06 0.34, 0.23) 0.10

Gen-straPP, generalized scale transformed power prior; straPP, scaled transformed power prior; PP,
power prior.

Table 2: Posterior Summaries for the E1684 and E1690 data sets.

6.1 Analysis Results

Table 2 presents the DIC, value for ag, posterior mean, and 95% equal-tailed credible
interval (CI) for each regression coefficient and for each prior distribution. Posterior
estimates for the cure fraction and baseline hazards are provided in Table 1 of the
Supplementary Material (Alt et al., 2023b). Note that the row corresponding to the
lowest DIC for each prior family is highlighted in gray (i.e., the value of ¢ that minimizes
the DIC in the grid search).

The power prior with ag = 1.00 minimizes the DIC overall, suggesting that a scale
transformation is not necessary and that the data sets are compatible. Of course, this
is illogical, since the historical data outcome is binary and the current data outcome is
time-to-event. Conversely, for the straPP and Gen-straPP families, the DIC is minimized
by taking ag = 0.50, resulting in more discounting of the historical data compared to the
power prior. As mentioned in Section 5, a larger amount of discounting for the straPP
and Gen-straPP does not necessarily translate to a less informative prior. Indeed, the
95% credible intervals under the power prior with ag = 1.00 are wider than those for
the straPP and Gen-straPP with ag = 0.50.

In this example, the posterior means and 95% credible intervals using the optimal
straPP and Gen-straPP are virtually identical, with the optimal Gen-straPP offering
a lower DIC. This suggests that the bias introduced by the straPP transformation is
sufficiently large compared to the increased complexity required by the Gen-straPP.
However, the posterior means and 95% credible intervals are virtually identical between
these two priors. Moreover, the posterior mean for the treatment effect under the power
prior was more sensitive to the choice of ag than compared to the straPP or Gen-straPP,
which may be attributable to the fact that the historical data and current data outcomes
are of different types.
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7 Analysis of the ECOG E2696 and E1694 Trials

For the analysis presented in this section, we took continuous log(IgM) measured 28
days after vaccination in the E2696 trial as the outcome for the historical data and
time-to-relapse from the E1694 trial as the outcome for the current data. See Section 2
for more details on these studies and recall that the data sets were chosen to reflect a
scenario where the straPP assumption is violated (i.e., there is no effect of treatment
in the historical data and an apparent treatment effect in the current data). Hence, our
objective is to explore robustness of the partial-borrowing straPP and Gen-straPP in
settings where the partial-borrowing straPP assumption is violated.

For analysis, we assumed that the outcomes from the historical data were inde-
pendently distributed according to a linear regression model. For the current data, we
compared two different models to illustrate the proposed method: a PH regression model
with piecewise constant baseline hazard and a mixture cure rate model with a piecewise
constant PH regression model for the event times in the non-cured population. The
covariates of interest for each regression model were standardized age, an indicator for
treatment (0 = GMK; 1 = IFN and GMK for E2696, and IFN for E1694), an indicator
for gender (0 = male; 1 = female), and an indicator for ECOG performance status (0
= fully active; 1 = ambulatory). We included an intercept term in the historical data
model but not in the two current data models.

We analyzed the E2696 and E1694 data sets using the partial-borrowing straPP,
partial-borrowing Gen-straPP, partial-borrowing power prior, and a non-informative
(reference) prior. For the reference prior, we specified a N(0,102) prior for all current
regression coefficients, including the current data model intercept (if it is in the model).
For the information borrowing priors, we specified a N(0,102) prior for all regression
coefficients, including the historical data model intercept and the current data model
intercept (if it is in the model). We specified a gamma prior for the historical data
model dispersion parameter with shape and inverse scale parameters equal to 0.1. For
all models considered, we specified i.i.d. gamma priors for all hazard components with
shape and inverse scale parameters equal to 0.1. For the partial-borrowing Gen-straPP,
we considered the hierarchical prior ¢y ~ N(0,w¢I,) and wy ~ NT(0,1).

In this case, the Fisher information matrix for the historical data is simply

I,@01,301 (ﬁOO)BOl)UaXO) = 0'0_2X6X0.

Thus, using the Gen-straPP solutions (16) and (19), we may solve for the current data
regression coefficients at iteration ¢ of the MCMC sampling scheme via

—1/2 (t) _1/2
8O = (1-p) (% — (X3 X%0] el )
O9

where we may substitute pg) = 0 for the PH model and cét) = 0 when using the straPP.

We use the complementary sampling approach described in Supplementary Material
(Alt et al., 2023b) Section 1.
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To determine the interval size, we analyzed the current data using the PH model
with piecewise constant baseline hazard and the mixture cure rate model under reference
priors for J € {2,...,10}, computing the DIC values. For the PH regression model, the
DIC for J =5 (771.98) was marginally higher than that for J = 8 (771.42), both much
lower than the DIC values from using other interval sizes. A sharp increase in DIC was
observed after J = 5. A similar trend in DIC was observed for the mixture cure rate
model (Figure 3 in the Supplementary Material (Alt et al., 2023b)). Thus, we selected
J = 5 to obtain a simpler, more parsimonious model. The time axis was then selected
so that an approximately equal number of events was observed in each interval.

The sample size of the E2696 data set is more than eight times smaller than that of
the E1694 data set (ng = 98 vs ny = 873). Due to this difference in total information
content, the historical data would contribute comparatively little information regardless
of the prior used if no other adjustment was made. Thus, for the sake of illustration
in this section, we restricted the current data to only include patients without nodal
metastases, which led to a current data sample size of 200. We note that the E2696 data
set only contains patients without nodal metastases, thus consistent with the restricted
population in the current data. Several patients in the E1694 data set had failure times
of zero, which we coded as 0.50 (i.e., half of a day) for analysis.

7.1 Analysis Results

For analyses using each information borrowing prior, we computed the DIC for each
ag € {0.25,0.50,0.75,1.00}. Table 3 presents the DIC, value for ag, posterior mean,
and 95% equal-tailed credible interval (CI) for each parameter and for each model
and prior distribution combination. The posterior estimates were calculated based on
25,000 posterior samples obtained via HMC after a burn-in period of 2,000 iterations. No
thinning was performed. Note that the row corresponding to the lowest DIC for each
model and prior combination is highlighted in gray. Posterior estimates for the cure
fraction and baseline hazards are presented in Table 2 of the Supplementary Material
(Alt et al., 2023Db).

For the mixture cure rate model, one can see that the power prior with ag = 0.25
results in the lowest DIC among the families of priors considered. Focusing on the
optimal prior within each family (optimal over the ay values considered), the optimal
straPP prior results in the highest DIC, with the comparatively poor performance likely
attributable to the fact that the straPP assumption is violated for these data. The fact
that the DIC for the Gen-straPP is somewhat lower than that for the straPP provides
support for this conjecture.

For the PH model, the optimal straPP and Gen-straPP priors result in essentially
identical values for the DIC, which are lower than those for the reference prior and
the power prior. This may indicate that, for the PH model, a scale transformation
of the power prior was necessary, and the complexity introduced by the Gen-straPP
transformation did not result in sufficiently better model fit compared to the straPP
transformation.
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Variable
Treatment Age Sex Performance

Model Prior ag DIC Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI
Mixture cure  Reference 0.00 731.29 —0.49 (-1.08, 0.12) 0.03  (=0.35, 0.35) —0.15 (—0.78, 0.50) —0.32 (—1.26, 0.59)
straPP 025 73312 —0.37 (=087, 0.17) —0.06 (=041, 0.22) —0.17 (=0.73, 0.37) —0.32 (—1.03, 0.39)
0.50 734.02 -0.29 (-0.77, 0.21) —0.15 (—0.47, 0.12) —0.21 (-0.74, 0.28) —0.32 (—0.96, 0.31)
0.75 73516 —0.23 (~0.69, 0.24) —021 (~0.50, 0.05) —025 (-0.75, 0.21) —0.34 (-0.91, 0.22)
1.00 736.26 —0.19 (-0.62, 0.24) —0.25 (—0.52,—0.00) —0.27 (—0.74, 0.16) —0.35 (—0.88, 0.18)
Gen-straPP  0.25 732.62 -0.38 (—0.90, 0.15) —0.05 (-0.39, 0.23) —0.17 (—0.72, 0.37) —0.31 (—1.05, 0.40)
0.50 733.52 —0.32  (—0.82, 0.19) —0.11 (—0.44, 0.17) —0.20 (—0.71, 0.32) —0.31 (—0.99, 0.40)
0.75 73357 —0.29 (-0.78, 0.21) —0.15 (—0.47, 0.15) —0.22 (-0.73, 0.28) —0.33 (—0.95, 0.28)
1.00 733.98 —0.27 (-0.75, 0.23) —0.17 (-0.49, 0.13) —0.23 (—0.73, 0.26) —0.33 (—0.93, 0.28)
PP 0.25 730.51 —0.41 (-0.97, 0.18) —0.06 (—0.44, 0.25) —0.19 (—0.79, 0.42) —0.37 (—1.18, 0.44)
0.50 731.11 -0.34 (—0.88, 0.23) —0.15 (—0.50, 0.16) —0.23 (—0.81, 0.34) —0.39 (—1.12, 0.33)
0.75 73213 —0.27 (=0.79, 0.26) —0.22 (—0.54, 0.09) —0.27 (-0.83, 0.26) —0.41 (—1.08, 0.26)
1.00 73345 —0.23 (-0.72, 0.27) —0.28 (—0.56, 0.02) —0.31 (—0.82, 0.20) —0.41 (—1.03, 0.20)
PH Reference 0.00 771.95 —0.48 (—0.95,—0.02) 0.11 (-0.13, 0.35) —0.18 (—0.69, 0.31) —0.37 (—1.19, 0.34)
straPP 025 77059 —0.36 (=077, 0.04) 001 (=0.19, 0.22) —0.16 (—0.59, 0.26) —0.30 (—0.88, 0.25)
050 770.83 —0.29 (~0.65, 0.07) —0.05 (~0.23, 0.14) —0.7 (-0.55, 0.20) —0.29 (—0.78, 0.19)
0.75 771.29 —0.24 (-0.58, 0.09) —0.09 (—0.26, 0.08) —0.18 (—0.53, 0.17) —0.29 (—0.72, 0.13)
1.00 771.98 -0.21 (-0.52, 0.10) —0.12 (—0.28, 0.04) —0.19 (—0.50, 0.13) —0.29 (—0.68, 0.09)
GenstraPP 025 77047 —037  (=0.79, 0.02) 002 (=0.19, 0.24) —0.16 (=0.59, 0.26) —0.31 (-0.91, 0.27)
0.50 770.59 —0.33 (=0.72, 0.06) —0.02 (—0.21, 0.19) —0.16 (—0.56, 0.23) —0.29 (—0.85, 0.22)
0.75 77100 —0.30 (—0.70, 0.06) —0.04 (—0.24, 0.18) —0.16 (—0.54, 0.21) —0.29 (—0.80, 0.19)
1.00 771.01 -0.29 (-0.68, 0.07) —0.05 (—0.24, 0.17) —0.16 (—0.53, 0.20) —0.30 (—0.79, 0.18)
rp 0.25 771.47 —0.43 (—0.88, 0.00) 0.05 (—0.18, 0.28) —0.19 (—0.66, 0.28) —0.39 (—1.12, 0.26)
050 77120 —0.40 (—0.83, 0.03) 000 (=0.22, 0.21) —0.19 (—0.64, 0.24) —041 (—1.07, 0.20)
0.75 771.65 —0.36 (—0.78, 0.04) —0.04 (—0.25, 0.17) —0.20 (—0.63, 0.22) —0.42 (—1.02, 0.14)
1.00 77205 —0.34 (-0.73, 0.05) —0.08 (-0.28, 0.12) —0.21 (—0.62, 0.19) —0.43 (—0.99, 0.10)

Gen-straPP, generalized scale transformed power prior; straPP, scaled transformed power prior; PP,
power prior; PH, proportional hazards.

Table 3: Posterior Summaries for the E2696 and E1694 data sets.

For both the PH and the mixture cure rate models, the posterior density of ¢y from
using the Gen-straPP with ag = 1 (Figure 4 in the Supplementary Material (Alt et al.,
2023b)) shows some support for the Gen-straPP transformation. The value ag = 1
was selected because the effects of ¢y play a bigger role in the estimation when more
historical data are borrowed (i.e., when the ag value is larger).

8 Discussion

In this paper, we have developed the partial-borrowing scale transformed power prior
for applications with time-to-event data. Applications with time-to-event data require
the use of a partial-borrowing version of the straPP as time-to-event data involve nui-
sance parameters, such as the parameters in a piecewise constant hazard, that have no
analog in non-time-to-event models. Though the simulations and case studies discussed
in the paper involve historical data following generalized linear models and current
data following time-to-event models, it is straightforward to extend the methods pre-
sented to settings in which the opposite is true. The case studies presented in the paper
consider commonly used time-to-event models and collectively suggest that the partial-
borrowing straPP and the partial-borrowing Gen-straPP may effectively account for
the scale differences in outcomes in these complex settings.

The straPP and Gen-straPP are designed for settings where historical data are
available but where the outcomes assessed in the historical data are not the same as
in the current data (or perhaps even when the outcomes measured in the current data
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are measured in the historical data as well, but are much less mature in the historical
data). There are several contexts in which this could occur. First, in early phase trials,
surrogate outcomes that can be measured quickly are often used (e.g., response) with
later phase trials frequently using outcomes that more clearly indicate clinical benefit
(e.g., overall survival). In this setting, the straPP and Gen-straPP could be used to
translate effects on binary response outcomes to time-to-event outcomes. Thus, although
our examples involved surrogate endpoints for historical and current data sets, our
approach is broadly applicable. In other settings, the types of outcomes measured (e.g.,
patient reported outcomes) evolve over time and this could provide a context where the
straPP and Gen-straPP could be useful.

Another useful application of our proposed method could be in postmarketing safety
studies. Since adverse event (AE) data are typically reported in clinical publications as
binary, one could use a straPP transformation to elicit an informative prior for the
hazard ratio based on summary statistics for the binary endpoint.

Regardless of context, it is not in dispute that application of the straPP and Gen-
straPP will be subject to more scrutiny than, for example, applications of a simple
power prior for contexts where the power prior is appropriate (exchangeable populations
with the same outcomes measured). Thus, careful planned sensitivity analyses will be
important for users of the straPP and Gen-straPP. The straPP and Gen-straPP are not
designed to replace commonly used priors such as the power prior in contexts where
commonly used priors are appropriate.

For the analyses with the Gen-straPP, we considered a hierarchical prior ¢y ~
N(0,wiI,) and wy ~ NT(0,1). As an alternative strategy, one may consider a tip-
ping point analysis whereby an initial value of wq is increased until such time as the
evidence in favor of some claim ceases to be substantial. Such an approach can facilitate
a discussion of whether the value of wq that corresponds to the tipping point is suffi-
ciently small to be of concern. In fact, a similar strategy can be used with the straPP
for the ay parameter value. This type of analysis may be particularly advantageous as
a prespecified sensitivity analysis in cases where it is desired to fully specify a single
formulation of the straPP or Gen-straPP as the primary prior for analysis (e.g., as one
would need to do for a clinical trial protocol).

Note that the Gen-straPP transformation in (5) allows for the partial-borrowing
straPP assumption to be violated in a specific way. Accordingly, the Gen-straPP will
provide added robustness compared to the straPP when the violation is well captured
by the additional additive term (i.e., ¢p). If the straPP transformation is violated in
other ways, it is not clear the degree to which the Gen-straPP can counteract such
violations. Quality of performance will likely be case-specific. Future work will compare
the Gen-straPP robustification strategy to other strategies, such as constructing a robust
mixture prior where one component of the mixture is a straPP and another component
is a non-informative prior.

For future work, the authors plan to develop Bayesian sample size determination
methods using the straPP for clinical trial applications with time-to-event outcomes,
including trials with group sequential designs. While this work primarily focuses on
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estimation quality (e.g., bias, MSE) as a means to understand the potential value of
the straPP and Gen-straPP, applications to clinical trial design will necessarily need
to address how one can use the straPP and Gen-straPP while balancing important
operating characteristics such as type I error control and power which are of paramount
importance in that setting. Finally, it is worth mentioning that, in situations where the
current data measures the outcome in the historical data (but the primary endpoint
is different), a joint modeling approach could potentially be used. This is an area for
future research.
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