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On the Stability of General Bayesian Inference

Jack Jewson∗, Jim Q. Smith†, and Chris Holmes‡

Abstract. We study the stability of posterior predictive inferences to the speci-
fication of the likelihood model and perturbations of the data generating process.
In modern big data analyses, useful broad structural judgements may be elicited
from the decision-maker but a level of interpolation is required to arrive at a like-
lihood model. As a result, an often computationally convenient canonical form
is used in place of the decision-maker’s true beliefs. Equally, in practice, obser-
vational datasets often contain unforeseen heterogeneities and recording errors
and therefore do not necessarily correspond to how the data generating process
was idealised by the decision-maker. Acknowledging such imprecisions, a faithful
Bayesian analysis should ideally be stable across reasonable equivalence classes of
such inputs. We are able to guarantee that traditional Bayesian updating provides
stability across only a very strict class of likelihood models and data generating
processes, requiring the decision-maker to elicit their beliefs and understand how
the data was generated with an unreasonable degree of accuracy. On the other
hand, a generalised Bayesian alternative using the β-divergence loss function is
shown to be stable across practical and interpretable neighbourhoods, providing
assurances that posterior inferences are not overly dependent on accidentally in-
troduced spurious specifications or data collection errors. We illustrate this in
linear regression, binary classification, and mixture modelling examples, showing
that stable updating does not compromise the ability to learn about the data
generating process. These stability results provide a compelling justification for
using generalised Bayes to facilitate inference under simplified canonical models.

Keywords: stability, generalised Bayes, β-divergence, total variation, generalised
linear models.

1 Introduction
Bayesian inferences are driven by the posterior distribution

π(θ|y) = π(θ)f(y; θ)∫
π(θ)f(y; θ)dθ

, (1)

which provides the provision to update parameter prior π(θ) using observed data y =
(y1, . . . , yn) ∈ Yn assumed to have been generated according to likelihood f(·; θ). The
quality of such posterior inference depends on the specification of the prior, likelihood,
and collection of the data. In controlled experimental environments where time is avail-
able to carefully consider such specifications, a posterior calculated in this way might
be credible. However, modern applications often involve high-dimensional observational
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data and are undertaken without the supervision of a trained statistician. In such sce-
narios, it is natural to question the quality of the specification of π(θ) and f(·; θ) and
the collection of y and we are therefore left to ponder to what extent posterior inference
through (1) can be trusted. Much work has previously investigated the stability of (1)
to the specification of the prior π(θ), therefore our focus here will be on the likelihood
f(·; θ) and data y.

The likelihood model captures the decision maker’s (DM’s) beliefs regarding the
generation of data y. However, accurately formulating expert judgements as probabil-
ity densities is difficult. Even for a well-trained expert, so doing requires many more
probability specifications to be made at a much higher precision than is possible within
the time constraints of a typical problem (Goldstein, 1990). This is not to say that
an elicited model is useless. It is certainly possible to reliably elicit important broad
structural information from domain experts. However, the resulting “functional” model
f(·; θ) generally involves some form of interpolating approximation of the DM’s “true”
beliefs. Doing so is not unreasonable. However, a consequence of such expediency is that
the DM does not fully believe all the judgements expressed through their model f(·; θ).
A typical example of the above is when applied practitioners deploy computationally
convenient canonical models, for which there are software and illustrative examples
available, to their domain specific problems. While the broad structure of such models
may be suitable across domains, it is the practitioner’s familiarity with its form, its soft-
ware implementation, or the platform on which it was published that often motivates
its use for inference, rather than a careful consideration of how it captures beliefs about
the new environment.

Similarly, the data were not necessarily collected exactly how the DM imagined when
specifying their model. There may be unforeseen heterogeneities, outliers, or recording
errors. Alternatively, the DM may be deploying someone else’s carefully elicited model
to an analogous but not necessarily exchangeable scenario.

Given the inevitable lack of specificity in f and how the data y were generated, a
faithful Bayesian analysis should be able to demonstrate that it is not overly sensitive
to their exact specification. Such stability would allow DMs to continue using familiar
models in the knowledge that their arbitrary selection is not driving critical posterior
inferences. This paper shows that the requirement for such stability necessitates the
consideration of an updating rule different from (1).

Consider, for example, a situation where the DM’s true beliefs for data y corresponds
to a Student’s-t distribution t5(y;μ, σ2) with 5 degrees of freedom. The top left of
Figure 1 shows that the ubiquitous Gaussian likelihood, N (y;μ, σ2) captures many of
the same judgements. The two likelihoods appear almost indistinguishable for all values
of their shared μ and σ2. Therefore, given finite time and introspection the DM may
reasonably settle on the Gaussian likelihood as a suitable functioning approximation of
their beliefs. However, the bottom left of Figure 1 shows that when updating according
to (1) using the Gaussian model in place of the Student’s-t results in very different
posterior inferences. Equally, (1) is not stable to perturbations of the data either, as
under the Gaussian model a small proportion of outliers moves the posterior inferences
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Figure 1: Top: Probability density function (pdf) and log-probability density function
of a Gaussian fσ2

adj
(y; θ) = N

(
y;μ, σ2

adjσ
2
)

and a Student’s-t hν(y; η) = tν(y;μ, σ2)
random variable, with μ = 0, σ2 = 1, ν = 5 and σ2

adj = 1.16. Bottom: The resulting
posterior predictive distributions using traditional and βD-Bayes updating with β =
1.22 on n = 1000 observations from an ε-contamination model g(y) = 0.9×N (y; 0, 1)+
0.1 ×N

(
y; 5, 32).

away from the uncontaminated part of the data generating process (DGP). Section 6.1
contains full details of this example.

We demonstrate that the instability observed in Figure 1 results from the fact that
implicitly (1) learns about the parameter of the model minimising the Kullback-Leibler
Divergence (KLD) between the data generating process (DGP) and the model, and, as
a result, that stability can only be expected when the DM is sure that there is strong
agreement between the tails of their functioning and true model specifications and be-
tween these and the data. The DM is highly unlikely to be sure of this a priori and
therefore, under traditional Bayesian updating, it is left up to the DM to perform some
post hoc sensitivity analysis to examine the impact their chosen model and particular
features of the data had on the inference (see Box, 1980; Berger et al., 1994, and ref-
erences within). However, such analyses are usually unsystematic and limited to the
investigation of a small number of alternative judgements, models, or data points.

An alternative, motivated by the M -open world assumption that the model is mis-
specified for the DGP (Bernardo and Smith, 2001), is to use general Bayes (Bissiri et al.,
2016) to update beliefs about model parameters minimising a divergence different from
the KLD (Jewson et al., 2018). A particularly convenient alternative is the β-divergence
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(βD) which has previously been motivated as providing inference that is robust to out-
liers (Basu et al., 1998; Ghosh and Basu, 2016) and desirable from a decision-making
point of view (Jewson et al., 2018). In this paper, we extend the motivation for using
βD-Bayes further, showing that its posterior predictive inferences are provably stable
across an interpretable neighbourhood of likelihood models and DGPs. Such results
demonstrate that the βD-Bayes facilitates the safe use of approximate canonical model
specification for modern inference problems. As a result, we provide a rigorous justifi-
cation for the use of βD-Bayes over traditional Bayesian inference that is not restricted
to specific/model data scenarios.

While inferences should desirably be stable to small perturbations of f and y, they
should still be sensitive the larger changes in order to extract useful inferences about the
DGP. Importantly, the stability afforded to βD-Bayes inference does not compromise
this. The βD-Bayes has the appealing property that if the model is correctly specified
for the DGP, then the data generating parameter will be learned. There exists a grow-
ing literature that advocates using the βD for applied analyses (e.g. Knoblauch et al.,
2018, 2022; Girardi et al., 2020; Sugasawa, 2020). This is further demonstrated in our
experiments. For example, Figure 1 shows that as well as producing similar inference
for the Gaussian and Student’s-t likelihood models, the βD-Bayes inferences both cap-
ture the modal part of the observed data. Further, inferences must also not be overly
dependent on the selection of hyperparameter, β, of the βD. We discuss methods to
select β and demonstrate reasonable insensitivity to its selection.

Results regarding the stability of (1) have largely focused on the parameter prior.
Gustafson and Wasserman (1995) proved that the total variation divergence (TVD)
between two posteriors resulting from functioning and true priors in linear and geomet-
ric ε-contamination neighbourhoods divergences as ε → 0 at a rate exponential in the
dimension of the parameter space. However, Smith and Rigat (2012) showed that the
TVD between two posteriors converges to 0 provided the two priors under considera-
tion are close as measured by the local De Robertis distance. Our first results provide
analogies to these for the specification of the likelihood model. Gilboa and Schmeidler
(1989); Whittle and Whittle (1990); Hansen and Sargent (2001a,b); Watson and Holmes
(2016) consider the stability of optimal decision making and consider minimax decision
across neighbourhoods of the posterior. However, they do not consider what pertur-
bations of the inputs of (1) would leave a DM in such a neighbourhood a posteriori.
Most similar to our work is Miller and Dunson (2018), which considers Bayesian updat-
ing conditioning on data arriving within a KLD ball of the observed data and results
concerning ‘global bias-robustness’ to contaminating observations, for example of the
kernel-Stein discrepancy posteriors of Matsubara et al. (2022). We consider stability to
an interpretable neighbourhood of the data which as a special case contains the globally
bias-robust contamination.

Bayes linear methods (Goldstein, 1999), which concern only the sub-collection of
probabilities and expectations the DM considers themselves to be able to specify (Gold-
stein et al., 2006), is an alternative to (1) designed to be stable to interpolating approx-
imations. We prefer, however, to adopt the general Bayesian paradigm in this analysis.
Firstly, the general Bayesian paradigm includes traditional Bayesian updating as a spe-
cial case and produces familiar posterior and predictive distributions. Secondly, linear
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Bayes requires the elicitation of expectations and variances of unbounded quantities
which are themselves unstable to small perturbations (see discussion on Goldstein and
Wooff, 1994). Lastly, rather than trying to approximate their beliefs by a single model,
the DM could consider several interpolating approximations and let the data guide any
decision the they themselves have not able to make using methods such as penalised
likelihood approaches (e.g. Akaike, 1973; Schwarz et al., 1978), Bayes’ factors (Kass
and Raftery, 1995) or Bayesian model averaging (Hoeting et al., 1999). In particular,
Williamson and Goldstein (2015) propose methods for combining posterior beliefs across
an equivalence class of analyses. However, such methods can be computationally bur-
densome to compute across even a finite class of models (e.g. Rossell et al., 2021) and
can reasonably only consider a handful of models that might fit with the DM’s beliefs,
all of which contain some level of interpolating approximation.

The rest of the paper is organised as follows: Section 2 presents our inference
paradigm, introducing general Bayesian updating (Bissiri et al., 2016), robustified in-
ference with the βD, and defining how we will investigate posterior predictive stability.
Section 3 presents our theoretical contributions surrounding the stability of Bayesian
analyses to the choice of the likelihood function and Section 4 presents our results on
the stability of inference to perturbations of the DGP. Proofs of all of our results are
deferred to the supplementary material (Jewson et al., 2024). Section 5 discusses meth-
ods to set the β hyperparameter and Section 6 illustrates the stability of the βD-Bayes
inference in continuous and binary regression examples from biostatistics and a mixture
modelling astrophysics example, where stability is shown not to compromise the model’s
ability to learn about the DGP. Code to reproduce all of the examples in this paper
can be found at https://github.com/jejewson/stabilityGBI.

2 A paradigm for inference and stability
2.1 General Bayesian inference

Under the assumption that the model used for inference f(y; θ) does not exactly capture
the DM’s beliefs, we find it appealing to adopt the general Bayesian perspective of
inference. Bissiri et al. (2016) showed that the posterior update

π�(θ|y) =
π(θ) exp (−w

∑n
i=1 	(θ, yi))∫

π(θ) exp (−w
∑n

i=1 	(θ, yi)) dθ
, (2)

provides a coherent means to update prior beliefs after observing data y ∼ g(·) about
parameter θ�g := arg minθ∈Θ

∫
	(θ, z)g(z)dz without requiring that θ index a model for

the data generating density g(·).
The parameter w > 0 in (2) calibrates the loss with the prior to accounts for the fact

that unlike the likelihood in (1), exp(−	(θ, yi)) is no longer constrained to integrate to 1.
Lyddon et al. (2018) set w to match the asymptotic information in the general Bayesian
posterior to that of a sample from the ‘loss-likelihood bootstrap’, while Giummolè et al.
(2019), building on the work of Ribatet et al. (2012), directly calibrate the curvature

https://github.com/jejewson/stabilityGBI
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of the posterior to match that of the frequentist loss minimiser. A Bernstein von-Mises
Theorem for generalised posterior (2) was proven in Miller (2021).

We focus on a subset of loss functions, known as proper scoring rules (Gneiting and
Raftery, 2007), that depend upon the DM’s likelihood model, allowing them to use this
to encode their beliefs about the DGP. A scoring rule is proper if it is minimised in
expectation at the density that generated the data. It, therefore, provides a means by
which the DM can learn about the DGP. Under the log-score, 	(θ, y) = − log f(y; θ) (2)
collapses to (1). The parameter θ�g associated with the log-score is the minimiser of the
KLD between the distribution of the sample and the model (Berk et al., 1966). We
therefore call updating using (1) KLD-Bayes. However, it is well known that minimising
the log-score puts large importance on correctly capturing the tails of the data (Bernardo
and Smith, 2001) and can have negative consequences for posterior decision making
(Jewson et al., 2018). This is demonstrated in the bottom left of Figure 1.

2.2 βD-Bayes
An alternative proper scoring rule is the β-divergence loss (Basu et al., 1998), also
known as the Tsallis Score (see e.g. Dawid et al., 2016)

	(β)(y, f(·; θ)) = − 1
β − 1f(y; θ)β−1 + 1

β

∫
f(z; θ)βdz, (3)

so called as arg minθ Ey∼g

[
	(β)(y, f(·; θ))

]
= arg minθ D

(β)
B (g||f(·; θ)) where D

(β)
B (g||f)

is the β-divergence defined in Section A.1 of the supplementary material. We refer
to updating using (2) and loss (3) as βD-Bayes. This was first used by Ghosh and
Basu (2016) to produce a robustified Bayesian posterior (βD-Bayes) and has since been
deployed for a variety of examples (e.g. Knoblauch et al., 2018, 2022; Girardi et al.,
2020; Sugasawa, 2020).

The implicit robustness to outliers exhibited by the βD-Bayes is illustrated in the
bottom right of Figure 1, where, unlike the KLD-Bayes, the βD-Bayes continues to
captures the distribution of the majority of observations under outlier contamination.
Jewson et al. (2018) argued that updating in a manner that is automatically robust to
outliers, removes the burden on the DM to specify their beliefs in a way that is robust to
the possible existence of occasional outliers. The results of the coming sections provide
a formal rationale for adopting this methodology to provide stability to the canonical
model choice and departures from the DGP.

While Bayesian inference has been proposed minimising several alternative diver-
gences including the Hellinger divergence, α-divergence, and the TVD (e.g. Hooker and
Vidyashankar, 2014; Jewson et al., 2018; Knoblauch and Vomfell, 2020) such methods
require a non-parametric density estimate, prohibiting their use for high-dimensional
problems with continuous data. We restrict our attention to local methods not requiring
such an estimate and in particular to the βD and KLD. The γ-divergence (Fujisawa
and Eguchi, 2008) has also been shown to produce robust inference without requiring a
non-parametric density estimate (Hung et al., 2018; Knoblauch et al., 2022) and in gen-
eral behaves very similarly, see Section B.1. There also exists scoring rules that tailor
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inference towards improved predictive performance (Loaiza-Maya et al., 2021). How-
ever, our focus here is on stably learning about the DGP in order to facilitate general
decision-making without a specific prediction goal in mind.

2.3 Posterior predictive stability
We investigate the stability of general Bayesian posterior predictive distributions

mD
f (ynew|y) =

∫
f(ynew; θ)πD(θ|y)dθ, (4)

for exchangeable observation ynew ∈ Y to the specification of the model f , and the DGP

g. As a result, we focus on the stability of the posterior distribution for observables y ∈ Y
to perturbations of the prior for observables, f , and generating distributions for these
observables g.

From a decision-making perspective, the posterior predictive is often integrated over
to calculate expected utilities, and therefore stable posterior predictive distributions
correspond to stable decision-making. Predictive stability is also a more reasonable re-
quirement than say posterior stability. The parameter posteriors for two distinct mod-
els/DGPs will generally converge in different places (e.g. Smith, 2007). However, di-
vergent parameter posteriors do not necessarily imply divergent posterior predictives,
as we show. Further, focusing on observables allows us to consider interesting cases of
neighbouring models with nested parameter spaces (see Section 6.3).

3 Stability to the specification of the likelihood function
In this section, we investigate the stability of inference to the choice likelihood model for
a given DGP. We consider that the DM is conducting inference using the functional like-
lihood model {f(·; θ); θ ∈ Θ ⊆ R

qf } in place of their true beliefs {h(·; η); η ∈ A ⊆ R
qh}

for data y ∈ Y. We assume that f is an approximation of h in the sense that it captures
some of the main aspects of h that the DM has been able to faithfully specify, but
interpolates between those in some arbitrary and convenient manner in a way that the
DM does not necessarily believe. In this setting, a faithful posterior belief update should
not diverge if f or h is used for inference. That is to say that posterior belief updating
should be stable to the arbitrary specification of minor parts of the likelihood model
not driven by the DM’s beliefs. In this section we investigate sufficient conditions for
how f can approximate h that would ensure such stability. For clarity of argument, we
proceed under the assumption that the priors πD(θ) and πD(η) are fixed. All technical
conditions are stated in Section A.3 of the supplementary material.

3.1 The stability of the KLD-Bayes
Figure 1 demonstrated that there are examples of models that appear very similar to the
naked eye (top left) but can result in substantially different KLD-Bayes posterior pre-
dictive inference when conditioning on the same data (bottom left). As a result, we first
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examine how f must approximate h in order to guarantee stable traditional Bayesian
updating (KLD-Bayes). In particular, Lemma 1 investigates how stable the posterior
predictive approximation of the DGP g, as measured by the KLD, is to changes in
the likelihood model. Condition A.1, stated in Section A.3, requires that there exists
mappings If : Θ �→ A and Ih : A �→ Θ such that the posterior density at parameter val-
ues η and θ such that KLD(g||h(·; If (θ))) < KLD(g||h(·; η)) or KLD(g||f(·; Ih(η))) <
KLD(g||f(·; θ)) vanishes exponentially fast.

Lemma 1 (The stability in the posterior predictive approximation of the DGP of
KLD-Bayes inference). For any two likelihood models {f(·; θ) : θ ∈ Θ ⊆ R

qf } and
{h(·; η) : η ∈ A ⊆ R

qh}, and y, πKLD(θ) and πKLD(η) satisfying Condition A.1 for D =
KLD, we have that

|KLD(g||mKLD

f (·|y)) − KLD(g||mKLD

h (·|y))| ≤ CKLD(f, h, y) + 1
c

+ T (f, h, y),

where c := min{c1, c2}, If : Θ �→ A and Ih : A �→ Θ are defined in Condition A.1 and

CKLD(f, h, y) : = max
{∫

KLD(g||f(·; θ))πKLD(θ|y)dθ − KLD(g||mKLD

f (·|y)),
∫

KLD(g||h(·; η))πKLD(η|y)dη − KLD(g||mKLD

h (·|y))
}
,

T (f, h, y) : = max
{∫ ∫

g(y) log f(y; θ)
h(y; If (θ))dyπ

KLD(θ|y)dθ,
∫ ∫

g(y) log h(y; η)
f(y; Ih(η))dyπ

KLD(η|y)dη
}
. (5)

As a result, sufficient conditions for KLD-Bayes to provide a stable approximation
of the DGP g when using model f in place of model h are that terms CKLD(f, h, y),
1
c , and T (f, h, y) are small. The term CKLD(f, h, y) is the maximal difference between
the KLD of the model from g in expectation under the posterior and the KLD of the
posterior predictive from g under either model f or h. This is driven by how concentrated
the KLD-Bayes posteriors are. Similarly, the term c is the minimal rate associated
with Condition A.1. This is driven by how quickly the posteriors concentrate around
their KLD minimising parameters. We use Lemma 1 to examine what f must correctly
capture about h in order that inference with both achieves similar approximations of the
DGP. We therefore investigate some properties of T (f, h, y). Without loss of generality
assume that the second term in (5) is the largest. Then, T (f, h, y) being small requires
that

|log(h(·; η)) − log(f(·; Ih(η)))| (6)

is small in regions where g(·) and πKLD(η|y) have density. Without knowledge of g, this
requires that (6) be small everywhere for all η.

Lemma 1 establishes that if a DM can ensure that (6) is small everywhere then they
can use the approximate model f in place of their true beliefs h and be safe in the knowl-
edge that their KLD-Bayes posterior inferences cannot be driven by some arbitrary part
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of the approximate model. However, this requires the DM to be confident in the accuracy
of the probability statements made by f on the log scale. Logarithms act to inflate the
magnitude of small numbers thus ensuring that |log(h(·; η)) − log(f(·; Ih(η)))| is small
requires that f and h are increasingly similar as their values decrease. This requires the
DM to be more and more confident of the accuracy of the probability statements made
by f further and further into the tails, something that is known to already be very dif-
ficult for low dimensional problems (Winkler and Murphy, 1968; O’Hagan et al., 2006),
and becomes increasingly difficult as the dimension of the observation space increases.
Tail probabilities definitionally correspond to surprising events and are thus harder to
specify accurately. We therefore conclude that this is not a reasonable requirement to
ask of any DM.

While Lemma 1 does not indicate the tightness of this bound, the example presented
in Figure 1 demonstrates the importance of T (f, h, y) being small for stable inference.
Figure 1 (top right) shows that while the Gaussian and Student’s-t may appear similar
when viewed on the natural scale the difference in their log probabilities is large in their
tails. Figure 1, therefore provides an example of two likelihood models where (6) is not
small everywhere and a DGP where the two models result in substantially different
posterior beliefs (bottom left).

3.2 An interpretable neighbourhood of likelihood models

Motivated by the results of Section 3.1, we consider in what manner a DM might
reasonably be able to accurately approximate their beliefs. Firstly, the total variation
metric is defined as

TVD(f(·; θ), h(·; η)) := sup
Y ∈Y

|f(Y ; θ) − h(Y ; η)| = 1
2

∫
|f(y; θ) − h(y; η)| dy. (7)

Then, a likelihood model f for data y ∈ Y is considered ‘ε-close’ to true belief distribu-
tion h if Definition 1 is satisfied.

Definition 1 (TVD neighbourhood of likelihood models). Likelihood models f(·; θ)
and h(·; η) for observable y ∈ Y are in the neighbourhood NTVD

ε of size ε if

∀θ ∈ Θ,∃η ∈ A s.t. TVD(f(·; θ), h(·; η)) ≤ ε and
∀η ∈ A,∃θ ∈ Θ s.t. TVD(f(·; θ), h(·; η)) ≤ ε.

Being in the neighbourhood NTVD

ε entails the existence of functions If : Θ �→
A and Ih : A �→ Θ such that for all θ, TVD(f(·; θ), h(·; If (θ))) is small and for all
η, TVD(h(·; η), f(·; Ih(η))) is also small. This means that there must exist mappings
between the two parameter spaces such that for any parameter θ of f , mapping θ to η
via If leaves h(·; η) TVD-close to f(·, θ). Note that the symmetry of Definition 1 allows
Θ and A to have different dimensions.

The motivation for using the TVD in Definition 1 is three-fold. Firstly, and foremost,
the TVD is interpretable. For two likelihoods to be close in terms of TVD requires that
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the greatest difference in any of the probability statements made by the two likelihoods
be small on the natural scale – where elicitation of probabilities and sample distributions
usually takes place – and not the log scale. In a practical sense, two densities that appear
‘close’ to the naked eye will be close according to TVD, while this heuristic will not be
sufficient for close log probability. As a result, we believe that specifying a model that
is TVD close to their exact beliefs is a feasible and reasonable requirement of a DM.

Further, the TVD is natural in the context of Bayesian decision-making. Two densi-
ties that are close in terms of TVD will produce similar estimates of bounded expected
utility, and thus lead to similar decisions. This has previously been discussed by Smith
(2010) and Jewson et al. (2018). Therefore, a model that is TVD close to the DM’s true
beliefs will perform similarly from a decision-making perspective a priori. Lastly, the
TVD neighbourhood contains ε-contamination models which are popular models for
investigating prior stability (Gustafson and Wasserman, 1995) and outliers (e.g. Aitkin
and Wilson, 1980).

While Pinsker’s inequality (Pinkser, 1964) shows that (6) being small everywhere is
a sufficient condition for Definition 1, it is not necessary to have close log probabilities
to have close absolute probabilities. This is for example evidenced by Figure 1 where
the TVD between the two densities is less than 0.05. Therefore, Definition 1 imposes
a less strict requirement on the DM than (6) being small everywhere. Section A.6
demonstrates this by presenting an example where a shrinking TVD neighbourhood
corresponds to an expanding KLD neighbourhood.

3.3 The stability of the βD-Bayes
In this section, we demonstrate that Definition 1 is a sufficient condition for stable
updating under βD-Bayes. In addition to Condition A.1, the results in this section
require Condition A.2, stated in Section A.3. This requires the boundedness over the
space of data y of the essential supremum of DGP g(·) and models f(·; θ) and h(·; η)
for all values of their parameters θ and η. We need this condition to bound the βD

and relate it to the TVD. In discrete models, this bound is always 1 and in continuous
models such as Gaussian or Student’s-t likelihood a bound can be achieved by lower
bounding their scale. Theorem 1 provides an analogous result to Lemma 1 but shows
that Definition 1 is sufficient for posterior predictive stability.
Theorem 1 (The stability in the posterior predictive approximation of two models to
the DGP of βD-Bayes inference). Assume 1 < β ≤ 2 and that the two likelihood models
{f(·; θ) : θ ∈ Θ ⊆ R

qf } and {h(·; η) : η ∈ A ⊆ R
qh} are such that f, h ∈ NTVD

ε for ε > 0.
Then provided Condition A.1 for D = D

(β)
B is satisfied for y, π(β)(θ) and π(β)(η) and

there exists M < ∞ such that Condition A.2 holds, then

|D(β)
B (g||m(β)

f (·|y)) −D
(β)
B (g||m(β)

h (·|y))| ≤ Mβ−1(3β − 2)
β(β − 1) ε + 1

c
+ C(β)(f, h, y),

where c = min{c1, c2} are defined in Condition A.1 and

C(β)(f, h, y) : = max
{∫

D
(β)
B (g||f(·; θ))π(β)(θ|y)dθ −D

(β)
B (g||m(β)

f (·|y)),
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∫

D
(β)
B (g||h(·; η))π(β)(η|y)dη −D

(β)
B (g||m(β)

h (·|y))
}
.

Additionally, Theorem 2 proves that as well as providing similar approximations to
the DGP, the βD between the βD-Bayes posterior predictive distributions themselves
can also be bounded.

Theorem 2 (Stability of the posterior predictive distributions of two models un-
der the βD-Bayes inference). Assume 1 < β ≤ 2 and that the two likelihood models
{f(·; θ) : θ ∈ Θ ⊆ R

qf } and {h(·; η) : η ∈ A ⊆ R
qh} are such that f, h ∈ NTVD

ε for ε > 0.
Then provided Condition A.1 for D = D

(β)
B is satisfied for y, π(β)(θ) and π(β)(η) and

there exists M < ∞ such that Condition A.2 holds, then

D
(β)
B (m(β)

f (·|y)||m(β)
h (·|y)) ≤ Mβ−1(3β − 2)

β(β − 1) ε + 1
c1

+ 2M
β−1

β − 1

∫
TVD(g, f(·; θ))π(β)(θ|y)dθ,

D
(β)
B (m(β)

h (·|y)||m(β)
f (·|y)) ≤ Mβ−1(3β − 2)

β(β − 1) ε + 1
c2

+ 2M
β−1

β − 1

∫
TVD(g, h(·; η))π(β)(η|y)dη,

where c1 and c2 are defined in Condition A.1.

Theorem 1 is directly analogous to Lemma 1 with terms C(β)(f, h, y) and c hav-
ing the same interpretation. Corollaries A.1 and A.2 invoke the generalised Bayesian
Bernstein von-Mises theorem (Miller, 2021) applied to the βD (Theorem A.1) to show
that under very general regularity conditions c → ∞ and C(β)(f, h, y) → 0 as n → ∞.
Therefore, Theorem 1 establishes that Definition 1 is sufficient for the βD-Bayes pos-
terior predictive distributions under two models to produce similar approximations of
DGP g. This allows a DM to proceed using a model that well approximates their beliefs,
as measured by the TVD, and know that the imprecision of their beliefs specification
cannot lead to substantially different posterior predictive beliefs.

Note that Theorem 1 and Lemma 1 are not directly comparable results. Lemma 1
upper bounds the difference in the KLD approximation of the DGP whereas Theorem 1
bounds the difference in βD approximation of the DGP. The two bounds themselves
are therefore not directly comparable only the conditions leading to these bounds. The
sufficient conditions for KLD-Bayes to be stable are impractical to satisfy, while the βD-
Bayes is provably stable under reasonable conditions that might in practice be plausible
to believe. We also do not expect Theorem 1 (and 2) to be tight, however they are
not vacuous. Lemma A.8 demonstrates that under Condition A.2, the βD between any
two densities is bounded by Mβ−1

β−1 , where M is an upper bound on the model’s density
or mass function (e.g. 1 if y is discrete). Therefore, provided (3β−2)

β ε < 1, our results
provide a tighter upper bound than a trivial bound on the divergence.
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Theorem 2 demonstrates that βD-Bayes updating not only provides a stable ap-
proximation of the DGP (as in Theorem 1) but also that the βD between posterior
predictives under two TVD close models can be bounded above. This result is slightly
weaker than Theorem 1 because it requires the TVD between the model and the DGP

to be small in expectation under the posterior. A strength of Theorem 1 is that it holds
independent of how well either of the models approximates the DGP. Lastly, note that
the choice of β away from 1 – the case corresponding to the KLD – is necessary for
Theorems 1 and 2 to be practically useful as the bounds in all tend to infinity as β → 1.

4 Stability to the data generating process
In this section, we investigate the stability of inference to perturbations of the DGP, the
mechanism with which the data was generated. Consider that the DM is conducting
inference using likelihood model {f(·; θ); θ ∈ Θ ⊆ R

qf } that was faithfully elicited to
capture beliefs about idealised DGP g1(·). Whether this corresponds to their true beliefs
or an approximation is not relevant to the argument below. Now suppose that, for
unforeseen reasons, the data were actually generated according to g2(·), a perturbation
of g1(·). A useful property to demonstrate would be that if, in some appropriate sense,
such perturbations were small, inferences from what was actually observed g2 would be
similar to those had g1 been observed. Therefore, we investigate sufficient conditions for
how g2(·) can differ from g1(·) and this stability be achieved. Throughout we consider
data sets y1 := (y1, . . . , yn1) ∼ g1. and y2 := (y1, . . . , yn2) ∼ g2. Although not necessary
to our argument we assume for simplicity that n1 = n2. All regularity conditions for
these results to hold and their proofs are given in Section A.3 of the supplementary
material.

4.1 The stability of the KLD-Bayes

Figure 1 considered a case where the data were generated from g2(y) = 0.9×N (y; 0, 1)+
0.1 ×N

(
y; 5, 32) while the Gaussian model was an accurate representation of g1(y) =

N (y; 0, 1). Although the DGP was the same for 90% of the observations, KLD-Bayes
posterior inference under g2 differs considerable from what one obtains when fitting f to
g1 – see Figure B.2. Figure 1, therefore, demonstrates that there are examples of models
and data where two largely similar DGPs result in substantially different posterior
predictive inferences from the same model. As a result, we first investigate how g2 can
differ from g1 in order to guarantee stable traditional Bayesian updating (KLD-Bayes)
for f . Lemma 2 investigates how stable the posterior predictive approximation to the
DGP as measured by the KLD is to changes in the DGP. Condition A.3, stated in
Section A.3, is analogous to Condition A.1. This requires that the posterior density
on regions of θ1|g1 and θ2|g2 that leaves f(·; θ1) KLD closer to g2 than f(·; θ2) (i.e.
KLD(g2||f(·; θ1)) < KLD(g2||f(·; θ2))) or f(·; θ2) KLD closer to g1 than f(·; θ1) (i.e.
KLD(g1||f(·; θ2)) < KLD(g1||f(·; θ1))) vanishes exponentially fast.

Lemma 2 (The stability in the posterior predictive approximation of two DGPs under
the same model for KLD-Bayes inference). For likelihood model {f(·; θ) : θ ∈ Θ ⊆ R

qf }
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and data sets y1 := (y1, . . . , yn1) ∼ g1 and y2 := (y1, . . . , yn2) ∼ g2 for n1, n2 > 0, if
Condition A.3 holds for D = KLD, y1, y2 and πKLD(θ), then

|KLD(g1||mKLD

f (·|y1)) − KLD(g2||mKLD

f (·|y2))| ≤ CKLD(f, y1, y2) + 1
c

+ T1(g1, g2)

+ T2(f, y1, y2),

where c := min{cS(1) , cS(2)} are defined in Condition A.3 and

T1(g1, g2) : =
∣∣∣∣
∫

g2(y) log g2(y) − g1(y) log g1dy

∣∣∣∣ ,
T2(f, y1, y2) : = max

{∫ ∫
(g1(y) − g2(y)) log f(y; θ1)dyπKLD(θ1|y1)dθ1,

∫ ∫
(g2(y) − g1(y)) log f(y; θ2)dyπKLD(θ2|y2)dθ2

}
,

CKLD(f, y1, y2) : = max
{∫

KLD(g1||f(·; θ1))πKLD(θ1|y1)dθ1 − KLD(g1||mKLD

f (·|y1)),
∫

KLD(g2||f(·; θ2))πKLD(θ2|y2)dθ2 − KLD(g2||mKLD

f (·|y2))
}
.

So KLD-Bayes can certainly be ensured to provide stable approximation to the
DGP when using model f to update beliefs on data from g2 rather than g1 if terms
CKLD(f, y1, y2), 1

c , T1(g1, g2) and T2(f, y1, y2) are small. The term CKLD(f, y1, y2) is the
difference between the KLD of f from gj in expectation under the posterior and the
KLD of the posterior predictive of f from gj maximised over j = 1, 2. This is driven by
how concentrated the posteriors are. Similarly, the term c is the minimal rate associated
with Condition A.3 and is driven by how quickly the posteriors concentrate around their
KLD minimising parameters. We are interested in how g2 must be close to g1 for this
bound to be small and therefore we focus on terms T1(g1, g2) and T2(f, y1, y2). Small
T1(g1, g2) requires g1 and g2 to have similar Shannon entropy, a measure of the inherent
randomness in the data, which seems a reasonable condition. However, as f(y; θ) → 0,
| log f(y; θ)| → ∞ therefore small T2(f, y1, y2) requires that |g1(y) − g2(y)| gets smaller
as f(y; θ) gets smaller for θ ∼ πKLD(θ|y). That is to say that, T2(f, y1, y2) being small
requires g1 and g2 to be increasingly close in their tails.

Such a requirement greatly reduces the generalisability of statistical modelling. The
tails of the DGP correspond to rare observations and therefore the KLD-Bayes only
generalises across DGPs with similar rare observations. Encountering such situations
is not only unlikely in practice, but difficult for any DM to consider following our dis-
cussion in Section 3. This, for example, prohibits outlier ε-contamination models where
the DGP for (1− ε)% of the data is the same across g1 and g2, but g2 is contaminated
with ε% of outliers, as seen in Figure 1 and B.2. Such an example also provides an
indication that although Lemma 2 is only an upper bound that is not necessarily tight,
the absence of small T2(f, y1, y2) results in substantially different KLD-Bayes posterior
predictive inferences.
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4.2 A plausible neighbourhood of data generating process
perturbations

The results of Section 4.1 motivated us to consider what perturbations of the DGP

should we reasonably expect our posterior inferences to be stable to. Data generating
processes g1 and g2 for data y ∈ Y are considered ‘ε-close’ if Definition 2 is satisfied.

Definition 2 (TVD Neighbourhood of data generating processes). Data generating
processes g1 and g2 for observables y ∈ Y are in the neighbourhood GTVD

ε of size ε if
TVD(g1, g2) ≤ ε

Following (7), g2 is a small perturbation of g1 according to Definition 2 if the prob-
ability statements made by either differ by a maximum of ε. This gives equal weight to
modal or tail discrepancies rather than overly focusing on having the same tails. As a
result, the data generating distribution for two populations will be close if distributions
of the majority of the observations are close, rather than the distributions for a few of
the observations.

Further, Definition 2 contains ε-contamination neighbourhoods as considered by
Matsubara et al. (2022) and demands that the data sets were generated under mecha-
nisms that were absolutely close on the natural scale, rather than the log-score consid-
ered in the KLD neighbourhoods of Miller and Dunson (2018).

4.3 The stability of the βD
We now demonstrate that Definition 2 is a sufficient condition on g1 and g2 to bound
the consequences of generalising βD-Bayes inference for f from g1 to g2. In addition to
Condition A.3, the results in this section require Condition A.4 which is analogous to
Condition A.2 and requires the bounding of the essential supremum over the space y of
DGPs g1(·) and g2(·) and model f(y; θ) for all θ. Theorem 3 is an analogous result to
Lemma 2 showing that Definition 2 is sufficient for posterior predictive stability

Theorem 3 (The stability in the posterior predictive approximation of two DGPs

under the same model of βD-Bayes inference). Assume 1 < β ≤ 2, likelihood model
{f(·; θ) : θ ∈ Θ ⊆ R

qf } and that the two data sets y1 := (y1, . . . , yn1) ∼ g1 and y2 :=
(y1, . . . , yn2) ∼ g2 for n1, n2 > 0 are such that {g1, g2} ∈ GTVD

ε . Then provided that
Condition A.3 holds for D = D

(β)
B y1, y2 and π(β)(θ) and there exists M < ∞ such

Condition A.4 holds, then

|D(β)
B (g1||m(β)

f (·|y1)) −D
(β)
B (g2||m(β)

f (·|y2))| ≤
Mβ−1(β + 2)

β(β − 1) ε + 1
c

+ C(β)(f, y1, y2),

where c := min{cS(1) , cS(2)} are defined in Condition A.4 and

C(β)(f, y1, y2) : = max
{∫

D
(β)
B (g1||f(·; θ1))π(β)(θ1|y1)dθ1 −D

(β)
B (g1||m(β)

f (·|y1)),
∫

D
(β)
B (g2||f(·; θ2))π(β)(θ2|y2)dθ2 −D

(β)
B (g2||m(β)

f (·|y2))
}
.
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Additionally, Theorem 4 proves that as well as providing similar approximations to
the DGPs, the βD between the βD-Bayes posterior predictive distributions themselves
can also be bounded.

Theorem 4 (The stability of the posterior predictive distribution under two DGPs of
the βD-Bayes inference). Assume 1 < β ≤ 2, likelihood model {f(·; θ) : θ ∈ Θ ⊆ R

qf }
and that the two data sets y1 := (y1, . . . , yn1) ∼ g1 and y2 := (y1, . . . , yn2) ∼ g2 for
n1, n2 > 0 are such that {g1, g2} ∈ GTVD

ε . Then provided there exists M < ∞ such that
Condition A.3 hold, Condition A.4 holds for D = D

(β)
B y1, y2 and π(β)(θ), then

D
(β)
B (m(β)

f (·|y1)||m(β)
f (·|y2)) ≤ 2M

β−1

β − 1 ε + 1
cS(1)

+ 2M
β−1

β − 1

∫
TVD(g1, f(·; θ1))π(β)(θ1|y1)dθ1,

D
(β)
B (m(β)

f (·|y2)||m(β)
f (·|y1)) ≤ 2M

β−1

β − 1 ε + 1
cS(2)

+ 2M
β−1

β − 1

∫
TVD(g2, f(·; θ2))π(β)(θ2|y2)dθ2,

where cS(1) and cS(2) are defined in Condition A.4.

Theorems 3 and 4 are the analogous result to Theorems 1 and 2 respectively with
terms C(β)(f, y1, y2) and c having the same interpretation. The value M is still easy
to bound here and Corollaries A.1 and A.2 demonstrate that C(β)(f, y1, y2) → 0 and
1
c → 0, as n → ∞. Therefore, Theorem’s 3 and 4 establish that βD-Bayes inferences
will be similar for any two DGPs satisfying Definition 2. This allows a DM to use
their model and know that small unforeseen perturbations of the DGP will not drive
substantially different posterior inference or alternatively use a default model or software
from the literature and know that as long as their application area is similar, the model’s
generalisation will not overly affect posterior inferences.

Once again, we do not invoke a comparison of the bounds from Lemma 2 and Theo-
rem 3, as they are bounding different quantities. Instead, we consider the strength of the
sufficient conditions required for boundedness. KLD-Bayes requires strict conditions for
the DGPs that are difficult for the DM to know would be satisfied, while the βD-Bayes
is stable across a reasonable generalisation of the DGP.

5 Setting β

To implement βD-Bayes inference it is obviously necessary to choose an appropriate
value of β. We briefly review a variety of methods that have been proposed to do this
and comment on how these relate to the results of this paper. We then demonstrate
that inference is not too sensitive to this choice provided that β is not chosen close to
one.
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5.1 Data driven methods

One approach is to try to learn a value for β that is ‘optimal’ in some sense for the
DM’s functioning likelihood model and the particular observed data at hand. Once
the DM has decided upon model f(·; θ), the value β regulates the trade-off between
robustness and efficiency (e.g. Basu et al., 1998). Minimising the KLD (β = 1) provides
the most efficient inference but is very sensitive to outliers. Increasing β away from 1
gains robustness to outliers at a cost to efficiency. Warwick and Jones (2005); Ghosh
and Basu (2015); Basak et al. (2021) seek to optimise the robustness-efficiency trade-
off by estimating β to minimise the mean squared error (MSE) of estimated model
parameters, Toma and Broniatowski (2011); Kang and Lee (2014) minimise the maxi-
mum perturbation of the parameter estimates resulting from replacing one observation
by the population estimated mean, and Yonekura and Sugasawa (2023) build on the
work of Jewson and Rossell (2022) to estimate β minimising the Fisher’s divergence to
the DGP. The intuition behind these methods is that values estimated close to β = 1
indicate the model f is pretty well specified for the data at hand, while larger values
indicate increasing large levels of possible model misspecification. We use the method
of Yonekura and Sugasawa (2023) to learn the value of β in the example in Section 6.1.

While each of the above methods use different criteria with different interpretations
to select β, the results of this paper provide a DM using one of these a unifying in-
terpretation via an upper bound for how sensitive their posterior inferences could be
to the specification of their model and the data. For example, a DM learning a larger
value for β knows that the term Mβ−1

(β−1) ε will be small for any value of ε and that even
large departures from their model or data would result in similar inferences. This sug-
gests they will only be able to learn slowly about the DGP. On the other hand, a DM

estimating a very small β knows that their posterior inference may be very dependent
on the precise model class they have chosen.

5.2 User specified

Other works have advocated for the subjective specification for the value of β (e.g.
Jewson et al., 2018) and the results in this paper help to facilitate this by interpreting
β in terms of the level of stability it brings. The results of this paper demonstrate that
β controls the amount that imprecision in the specification of the model or data can
be magnified into the posterior, allowing for the interpretation of β as a meta prior
for the DM’s confidence in their elicited model or data collection. The less confident
they are, the greater β will need to be to prevent non-negligible a posteriori divergence.
Eliciting β as such requires the DM to reflect on the value of ε associated with their
beliefs or the quality of the data. For the neighbourhoods of Definition 1, this can be
obtained by considering for a given set of parameters what the largest possible error
in any of the probability statements could be, or for Definition 2 by considering the
minimal proportion of a population that they believe is consistent with the DGP.

A default implementation, however, would be to set β such that Mβ−1(3β−2)
β(β−1) = U

ensuring that the posterior predictive imprecision as measured by Theorem 1 is only
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Figure 2: Posterior predictive distributions using βD-Bayes updating on n = 1000
observations from an ε-contamination model g(y) = 0.9×N (y; 0, 1)+ 0.1×N

(
y; 5, 32)

for different values of β.

U > 1 times the level of prior imprecision ε. We demonstrate such an approach for the
example in Section 6.2 for U = 2. Importantly, a DM could not hope to set β to provide
maximal stability. Maximum stability, i.e. minimising the right-hand side of the bounds
in Theorems 1 and 3 would set β → ∞ and result in the posterior under any model
and data collapsing to the prior, providing absolutely stable inference but not learning
anything from the data. For minimally efficient learning to take place, posterior beliefs
should not be closer, in the worst case, than the models were a priori.

5.3 Sensitivity

Finally, βD-Bayes inference appears not to be overly sensitive to the exact value of β.
Figure 2 demonstrates that for the example introduced in Section 1, inference for the
Gaussian and Student’s-t models is almost identical for values of β ≥ 1.2. Section B.1
provides further demonstration of this.

6 Experiments
6.1 Gaussian and Student’s-t likelihood

We revisit the Gaussian and Student’s-t example briefly introduced in Section 1. The
likelihood models considered here are

fσ2
adj

(y; θ) := N
(
y;μ, σ2 × σ2

adj

)
and hν(y; η) := Student’s − tν

(
y;μ, σ2) . (8)

Hyperparameters, ν = 5 and σ2
adj = 1.16 are fixed to match the quartiles of the two

distributions for all μ and σ2. These were inspired by O’Hagan (2012), who argued
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that for absolutely continuous probability distributions, it is only reasonable to ask
an expert to make a judgement about the median and the quartiles of a distribution
along with maybe a few specially selected features. This is justified as adequate as any
two distributions with similar percentiles will look very similar, see for example Fig-
ure 1. However, Section 3.1 suggests that greater precision is required to ensure the
stability of Bayes’ rule updating. On the other hand, the likelihoods in (8) are con-
tained in NTVD

0.043. We generated n = 1000 observations from the ε-contamination model
g(x) = 0.9×N (y; 0, 1)+0.1×N

(
y; 5, 32) contained within the GTVD

0.1 neighbourhood of
N (y; 0, 1). We then conducted Bayesian updating under the Gaussian and Student’s-t
likelihood using both Bayes’ rule and the βD-Bayes under shared priors π(μ, σ2) =
N

(
μ;μ0, v0σ

2) IG(σ2; a0, b0), with hyperparameters (a0 = 0.01, b0 = 0.01, μ0 = 0, v0 =
10). We used the method of Yonekura and Sugasawa (2023) to set β = 1.22 when using
the Gaussian distribution and use the same value for the Student’s-t. Figure 1 and Fig-
ure B.1, which plots the parameter posterior distributions for both models under both
updating mechanisms, clearly demonstrate the stability of the βD-Bayes across these
two models and the lack of stability of traditional Bayesian updating. Not only is the
βD inference more stable across NTVD

ε , the βD predictive better captures the majority
of the DGP than either of the KLD-Bayes predictives. The capturing of the N (y; 0, 1)
mode further illustrates the βD-Bayes’ stability across neighbourhoods of the DGP.

While the predictive distributions and divergence measures are not available in closed
form, we can use Markov chain Monte Carlo (MCMC) samples and adaptive quadra-
ture (Piessens et al., 2012), respectively, to estimate the necessary quantities and ver-
ify that Lemma 1 and Theorems 1 and 2 hold for this example. For the KLD-Bayes
|KLD(g||mKLD

f (·|y)) − KLD(g||mKLD

h (·|y))| is estimated to be 0.220 which is smaller
than our estimate of T (f, h, y) which was 0.617. For the βD-Bayes |D(β)

B (g||m(β)
f (·|y))−

D
(β)
B (g||m(β)

h (·|y))| is estimated as 0.041, D(β)
B (m(β)

f (·|y)||m(β)
h (·|y)) as 0.006, and

D
(β)
B (m(β)

h (·|y)||m(β)
f (·|y)) as 0.010 which are all smaller than Mβ−1(3β−2)

β(β−1) ε = 0.219 for
M = 1/

√
2π. Verification of Lemma 2 and Theorems 3 and 4 for this example is pre-

sented in Section B.1.

Figure 3 plots influence functions (West, 1984) for the KLD-Bayes and βD-Bayes
under the Gaussian and Student’s-t model. Influence functions are the gradient of the
loss function evaluated at parameter estimates as a function of the observations and show
the impact that observation had on the analysis. Under the βD-Bayes, the influence
functions of the Gaussian and Student’s-t likelihoods are closer for almost every y,
illustrating the stability to the model, and additionally, the influence functions for both
models under the βD-Bayes vary less with y, illustrating stability to the DGP.

DLD data

We consider a ribonucleic acid (RNA) sequencing data set from Yuan et al. (2016)
measuring gene expression for n = 192 patients with different types of cancer. Rossell
and Rubio (2018) studied the impact of 57 predictors on the expression of DLD, a gene
that can perform several functions such as metabolism regulation. To illustrate our
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Figure 3: Influence functions for parameter μ and σ2 of the Gaussian and Student’s-t
likelihood models under the KLD-Bayes and βD-Bayes with β = 1.22.

results, we selected the 15 variables with the 5 highest loadings in the first 3 principal
components, and fitted regression models using the neighbouring models in (8) for the
residuals. Section B.1 lists the selected variables. Once again, we used the method of
Yonekura and Sugasawa (2023) to set β = 1.34 when using the Gaussian distribution,
and use the same value for the Student’s-t.

Figure 4 demonstrates that βD-Bayes produces more stable estimates of the fitted
residuals (top-left), the estimated density of the residuals (top-right), parameter esti-
mates (bottom-left), and posterior predictive density for the observed data (bottom-
right) than the traditional Bayesian inference. Rossell and Rubio (2018) found evidence
that this data is heavy-tailed, further demonstrated in Figure B.5, which caused the
KLD-Bayes to estimate very different densities under the Gaussian and Student’s-t
model, while the βD-Bayes is stable to this feature of the data. Figure B.4 shows the
fit of the models to the posterior mean estimates of the standardised residuals, showing
that as well as being stable, the βD-Bayes produces good estimation around the mode
of the DLD data under both models. Section B.1 considers a further regression example
showing that even when one of the models under consideration is ‘well-specified’ for the
data, the βD-Bayes inference continues to perform adequately.

6.2 Binary classification

Binary classification models predict y ∈ {0, 1} from p-dimensional regressors X. The
canonical model in such a setting is logistic regression where

PLR(y = 1|X, θ) = 1
1 + exp (−Xθ) , PLR(y = 0|X, θ) = 1 − PLR(Y = 1|X, θ),

where θ ∈ R
p are the regression parameters. Alternative, less ubiquitous models in-

clude probit regression, which uses an alternative generalised linear model (GLM) link
function depending on the standard Gaussian cumulative distribution function (CDF)
Φ(·), ‘heavier tailed’ t-logistic regression (Ding and Vishwanathan, 2010; Ding et al.,
2013) and a mixture type model that explicitly models the chance of mislabelling of the
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Figure 4: Posterior mean estimates of standardised residuals (top left), posterior predic-
tive residual distributions (top-right), absolute difference in posterior mean parameter
estimates (bottom left) and difference in posterior predictive densities of the observa-
tions (bottom right) under the Gaussian and Student’s-t model of KLD-Bayes and
βD-Bayes (β = 1.34) for the DLD data.

observed classes.

PPR(y = 1|X, η) = Φ(wPRXθ),
PtLR(y = 1|X, η) = expt((0.5wtLRXθ −Gt(wtLRXθ))),
PML(y = 1|X, η) = (1 − ν1)PLR(y = 1|X, θ) + ν0(1 − PLR(y = 1|X, θ)),

where 0 < t < 2, 0 < ν0, ν1 < 1, ‘expt’ is the so-called t-exponential and Gt ensures that
PtLR(y = 1|X, η) is normalised, both are defined in Section B.3. Setting t > 1 results in
heavier-tailed probabilities than the logistic model. For the probit and t-logistic models
parameters θ are scalar multiples wPR, wtLR ∈ R of the logistic regression parameters
θ �→ wθ. These are calculated in order to minimise the a priori TVD between the
models and the logistic regression baseline according to NTVD

ε (see Section B.3). We
upper bound ν0 and ν1 by 0.05 making ε = 0.05 for these models. Figure 5 plots
P (y = 1|X, θ) as a function of Xθ for all four models (left) and the TVD between
each alternative model and the logistic regression (right), demonstrating that all four
produce very similar binary probabilities.
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Figure 5: Left: P (y = 1|X, θ) for logistic, probit, t-logistic and mislabelled models.
Right: TVD between the logistic regression canonical model and the probit, t-logistic
and mislabelled models. The θ parameters of the probit and t-logistic models are scalar
multiplied in a fashion that minimise the TVD to the logistic regression.

Colon cancer dataset

To investigate the stability of posterior predictive inferences across the logistic, probit,
t-logistic, and mislabelled binary regression models we consider the colon cancer dataset
of Alon et al. (1999). The dataset contains the expression levels of 2000 genes from 40
tumours and 22 normal tissues and there is purportedly evidence that certain tissue
samples may have been cross-contaminated (Tibshirani and Manning, 2013). Rather
than consider the full 2000 genes we first run a frequentist least absolute shrinkage
and selection operator (LASSO) procedure, estimating the hyperparameter via cross-
validation, and focus our modelling only on the nine genes selected by this procedure. We
understand that such post-model selection biases parameter estimates, but the stability
of the predictive inference is our focus here. We set β = 2 so that U := Mβ−1(3β−2)

β(β−1) = 2
with M = 1 as was proposed in Section 5.2.

Figure 6 compares the a posteriori TVD distance between the posterior predictive
distributions for each observation with the a priori TVD distance between each of the
models (top) and the difference between the posterior mean regression parameter esti-
mates of the two models (bottom) under the KLD-Bayes and βD-Bayes. The stability of
the βD-Bayes is once again demonstrated here. For almost every observation and every
pair of models, the posterior predictive inference is as stable as it was a priori, while the
KLD-Bayes inference is more often divergent. For the t-logistic and mislabelled models
the predictive stability of the βD-Bayes also provides greater stability in the posterior
mean parameter estimates.

6.3 Mixture modeling

An advantage of considering the stability of the distributions for observables rather than
parameters is that it allows ‘neighbouring’ models to have different dimensions to their
parameter space. For example, consider initial model f(·; θ) and then ‘neighbouring’
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Figure 6: Colon Cancer Data. Top: TVD between the posterior predictive estimated
probabilities for each observation of the probit (left), t-logistic (centre) and mislabelled
(right) models and the canonical logistic regression under the KLD-Bayes and βD-
Bayes (β = 2). The dotted line represented the a priori TVD distance between the
models. Bottom: Absolute differences between posterior mean parameter estimates
and those of the logistic regression.

model

h(·; η) = (1 − ω) × f(·; θ) + ω × h′(·;κ),

for η = {θ, κ, ω}. Here, h(·; η) is a mixture model combining the likelihood model f(·; θ),
which could itself already be a mixture model, and some other density h′(·;κ) with
additional parameters κ. For all θ ∈ Θ and any κ ∈ K we have that TVD(f (·; θ) ,
h (·; {θ, κ, ω})) < ω and therefore a TVD neighbourhood can be defined by upper
bounding ω.

Shapley galaxy dataset

We examine the Shapley galaxy dataset of Drinkwater et al. (2004), recording the veloci-
ties of 4215 galaxies in the Shapley supercluster, a large concentration of gravitationally-
interacting galaxies; see Figure 7. The clustering tendency of galaxies continues to be
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a subject of interest in astronomy. Miller and Dunson (2018) investigate this data us-
ing Gaussian mixture models and use their coarsened posterior to select the number of
mixture components, finding considerable instability in the number of estimated com-
ponents K under different specifications of the coarsening parameter. See Cai et al.
(2021) for further issues with estimating the number of components in mixture models.

We estimate Gaussian mixture models of the form

f(y; θ) =
K∑

k=1

ωjN (y;μj , σj),

under the KLD-Bayes and βD-Bayes, considering number of components K ∈ {2, 3, 4,
5, 6} and using the normal-inverse Wishart priors of Fúquene et al. (2019) (full details
available in Section B.2). βD-Bayes inference for such one-dimensional mixture models
is easy to implement using adaptive quadrature to approximate the necessary integral
term 1

β

∫
h(z; η)βdz. We do not formally place any constraint on the estimation of

ωk, however, any model that estimates a component with small ωk can be seen as a
neighbour of a model with one fewer component.

Figure 7 shows the posterior predictive approximation to the histogram of the data
of the Gaussian mixture models under the KLD-Bayes and βD-Bayes and Table 1
records the TVD between the posterior predictive distribution of recursively adding
components to the model. The βD-Bayes inference for β = 1.25 and 1.5 is more stable
to the addition of an extra component. In particular, for K ≥ 3 the βD-Bayes inference
stably estimates the biggest components of the data centered approximately at 5, 000
and 15, 000 km/s, while the KLD-Bayes produces very different inference for these
modes depending on the number of clusters selected.

Method K = 2 vs 3 K = 3 vs 4 K = 4 vs 5 K = 5 vs 6
KLD 0.27 0.12 0.13 0.08

βD (β = 1.25) 0.26 0.06 0.06 0.05
βD (β = 1.5) 0.22 0.04 0.07 0.02

Table 1: Total variation distances between posterior predictive distributions for different
number of mixture components K under the KLD-Bayes and βD for β = 1.25 and 1.5.

7 Discussion
This paper investigated the posterior predictive stability of traditional Bayesian updat-
ing and a generalised Bayesian alternative minimising the βD. In practice, the model
used for inference is usually a convenient and canonical interpolation of the broad belief
statements made by the DM and the observed data was not necessarily collected in the
manner the DM imagined. We proved that βD-Bayes inference is provably stable across
a class of likelihood models and data generating processes whose probability statements
are absolutely close, a TVD neighbourhood, by establishing bounds on how far their
predictive inferences can diverge. On the other hand, our results require the DM to be
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Figure 7: Shapley Galaxy Data: Histograms of the data, in units of 1,000 km/s, excluding
a small amount of data extending in a tail up to 80,000 km/s, and posterior predictive
distributions of the fitted Gaussian mixture models with K = 2 − 6 components under
the KLD-Bayes (top), βD-Bayes with β = 1.25 (middle) and βD-Bayes with β = 1.5
(bottom).

sure about the tail properties of their beliefs and the DGP to guarantee stability for
standard Bayesian inference.

The results of this paper simplify the process of belief elicitation for the βD-Bayes,
bounding the a posteriori consequences for a given level of a priori inaccuracy, leaving
the DM free to use the best guess approximation of their beliefs that they are most
comfortable with, rather than switch to a less familiar model with better outlier rejection
properties (O’Hagan, 1979). Such stability is achieved through a minimal amount of
extra work compared with traditional Bayes’ rule inference, and it provides a similarly
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recognisable output. We hope such results help to justify the increased use of the βD

to make robust inferences in statistics and machine learning applications.

A key issue motivating the departure from standard Bayesian methods here is a
lack of concordance between the likelihood model and the data. Such an issue can be
attributed to either a failure of the modeller to think carefully enough about the DGP,
or errors in data collection. However, we treat these results separately to exemplify two
different manifestations of the instability of Bayes’ rule.

The main limitation of our work is that we do not consider a universal measure of
posterior predictive stability. Lemmas 1 and 2 use the KLD divergence to the DGP

and Theorems 1 and 3 use the βD. It could of course be reasonably argued that the
TVD should be used directly. However, the TVD is notoriously difficult to compute
directly for large problems and is complicated by the intractability of the KLD and
βD-Bayes posterior distributions. So instead, we focused on comparing the strength of
the sufficient conditions required by each method for some measure of stability and used
examples to indicate that these translate into meaningful differences.

The feasibility of βD-Bayes is dependent on the model likelihood being available in
closed form – although robust general Bayesian method exists to deal with cases when
it is not (Matsubara et al., 2022) – and the integral term in (3) being either available
in closed form or fast to approximate accurately. These conditions are met by many
standard models including exponential family and Student’s-t models. When they are
not then there are various methods available to make such calculations. For example,
quadrature can be used for low-dimensional data. This integral is over the data not
parameters and is therefore invariant to the parametrisation of the model. Further, one
contribution of this paper is to show that the βD-Bayes allows a DM to use a canonical
model, where this integral would be available, in place of their true beliefs and know
that any approximate probabilistic specifications this might make will not have had an
undue influence on their inference.

Future work could explore the applicability of such results in multivariate settings
where belief specification and data collection are harder, and further investigate our
KLD-Bayes results. While we argued when you could guarantee the stability of such
methods, identifying for which statements KLD-Bayes is not stable would provide im-
portant and useful results to facilitate more focused belief elicitation.

To continue to facilitate the deployment of βD-Bayes methods in practice, more work
is required to study and build upon existing methods to select β, particularly in high
dimensions. While it is clear that considerable gains can be made over standard methods
in certain scenarios, an adversarial analysis of the βD performance compared with its
KLD-Bayes analogue would further motivate its wider applications. Other, interesting
theoretical developments could seek to extend the posterior predictive stability to the
stability of marginal posterior distributions in the case where there is an interpretable
parameter of interest that is shared across models.
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